dm raid: clarify and fix recovery
[deliverable/linux.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22 /*
23 * Minimum sectors of free reshape space per raid device
24 */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30 * The following flags are used by dm-raid.c to set up the array state.
31 * They must be cleared before md_run is called.
32 */
33 #define FirstUse 10 /* rdev flag */
34
35 struct raid_dev {
36 /*
37 * Two DM devices, one to hold metadata and one to hold the
38 * actual data/parity. The reason for this is to not confuse
39 * ti->len and give more flexibility in altering size and
40 * characteristics.
41 *
42 * While it is possible for this device to be associated
43 * with a different physical device than the data_dev, it
44 * is intended for it to be the same.
45 * |--------- Physical Device ---------|
46 * |- meta_dev -|------ data_dev ------|
47 */
48 struct dm_dev *meta_dev;
49 struct dm_dev *data_dev;
50 struct md_rdev rdev;
51 };
52
53 /*
54 * Bits for establishing rs->ctr_flags
55 *
56 * 1 = no flag value
57 * 2 = flag with value
58 */
59 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77 * Flags for rs->ctr_flags field.
78 */
79 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96 * Definitions of various constructor flags to
97 * be used in checks of valid / invalid flags
98 * per raid level.
99 */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
105 CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109 CTR_FLAG_WRITE_MOSTLY | \
110 CTR_FLAG_DAEMON_SLEEP | \
111 CTR_FLAG_MIN_RECOVERY_RATE | \
112 CTR_FLAG_MAX_RECOVERY_RATE | \
113 CTR_FLAG_MAX_WRITE_BEHIND | \
114 CTR_FLAG_STRIPE_CACHE | \
115 CTR_FLAG_REGION_SIZE | \
116 CTR_FLAG_RAID10_COPIES | \
117 CTR_FLAG_RAID10_FORMAT | \
118 CTR_FLAG_DELTA_DISKS | \
119 CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
128 CTR_FLAG_REBUILD | \
129 CTR_FLAG_WRITE_MOSTLY | \
130 CTR_FLAG_DAEMON_SLEEP | \
131 CTR_FLAG_MIN_RECOVERY_RATE | \
132 CTR_FLAG_MAX_RECOVERY_RATE | \
133 CTR_FLAG_MAX_WRITE_BEHIND | \
134 CTR_FLAG_REGION_SIZE | \
135 CTR_FLAG_DATA_OFFSET)
136
137 /* "raid10" does not accept any raid1 or stripe cache options */
138 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
139 CTR_FLAG_REBUILD | \
140 CTR_FLAG_DAEMON_SLEEP | \
141 CTR_FLAG_MIN_RECOVERY_RATE | \
142 CTR_FLAG_MAX_RECOVERY_RATE | \
143 CTR_FLAG_REGION_SIZE | \
144 CTR_FLAG_RAID10_COPIES | \
145 CTR_FLAG_RAID10_FORMAT | \
146 CTR_FLAG_DELTA_DISKS | \
147 CTR_FLAG_DATA_OFFSET | \
148 CTR_FLAG_RAID10_USE_NEAR_SETS)
149
150 /*
151 * "raid4/5/6" do not accept any raid1 or raid10 specific options
152 *
153 * "raid6" does not accept "nosync", because it is not guaranteed
154 * that both parity and q-syndrome are being written properly with
155 * any writes
156 */
157 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
158 CTR_FLAG_REBUILD | \
159 CTR_FLAG_DAEMON_SLEEP | \
160 CTR_FLAG_MIN_RECOVERY_RATE | \
161 CTR_FLAG_MAX_RECOVERY_RATE | \
162 CTR_FLAG_MAX_WRITE_BEHIND | \
163 CTR_FLAG_STRIPE_CACHE | \
164 CTR_FLAG_REGION_SIZE | \
165 CTR_FLAG_DELTA_DISKS | \
166 CTR_FLAG_DATA_OFFSET)
167
168 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
169 CTR_FLAG_REBUILD | \
170 CTR_FLAG_DAEMON_SLEEP | \
171 CTR_FLAG_MIN_RECOVERY_RATE | \
172 CTR_FLAG_MAX_RECOVERY_RATE | \
173 CTR_FLAG_MAX_WRITE_BEHIND | \
174 CTR_FLAG_STRIPE_CACHE | \
175 CTR_FLAG_REGION_SIZE | \
176 CTR_FLAG_DELTA_DISKS | \
177 CTR_FLAG_DATA_OFFSET)
178 /* ...valid options definitions per raid level */
179
180 /*
181 * Flags for rs->runtime_flags field
182 * (RT_FLAG prefix meaning "runtime flag")
183 *
184 * These are all internal and used to define runtime state,
185 * e.g. to prevent another resume from preresume processing
186 * the raid set all over again.
187 */
188 #define RT_FLAG_RS_PRERESUMED 0
189 #define RT_FLAG_RS_RESUMED 1
190 #define RT_FLAG_RS_BITMAP_LOADED 2
191 #define RT_FLAG_UPDATE_SBS 3
192 #define RT_FLAG_RESHAPE_RS 4
193 #define RT_FLAG_KEEP_RS_FROZEN 5
194
195 /* Array elements of 64 bit needed for rebuild/write_mostly bits */
196 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
197
198 /*
199 * raid set level, layout and chunk sectors backup/restore
200 */
201 struct rs_layout {
202 int new_level;
203 int new_layout;
204 int new_chunk_sectors;
205 };
206
207 struct raid_set {
208 struct dm_target *ti;
209
210 uint32_t bitmap_loaded;
211 uint32_t stripe_cache_entries;
212 unsigned long ctr_flags;
213 unsigned long runtime_flags;
214
215 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
216
217 int raid_disks;
218 int delta_disks;
219 int data_offset;
220 int raid10_copies;
221 int requested_bitmap_chunk_sectors;
222
223 struct mddev md;
224 struct raid_type *raid_type;
225 struct dm_target_callbacks callbacks;
226
227 struct raid_dev dev[0];
228 };
229
230 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
231 {
232 struct mddev *mddev = &rs->md;
233
234 l->new_level = mddev->new_level;
235 l->new_layout = mddev->new_layout;
236 l->new_chunk_sectors = mddev->new_chunk_sectors;
237 }
238
239 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
240 {
241 struct mddev *mddev = &rs->md;
242
243 mddev->new_level = l->new_level;
244 mddev->new_layout = l->new_layout;
245 mddev->new_chunk_sectors = l->new_chunk_sectors;
246 }
247
248 /* raid10 algorithms (i.e. formats) */
249 #define ALGORITHM_RAID10_DEFAULT 0
250 #define ALGORITHM_RAID10_NEAR 1
251 #define ALGORITHM_RAID10_OFFSET 2
252 #define ALGORITHM_RAID10_FAR 3
253
254 /* Supported raid types and properties. */
255 static struct raid_type {
256 const char *name; /* RAID algorithm. */
257 const char *descr; /* Descriptor text for logging. */
258 const unsigned parity_devs; /* # of parity devices. */
259 const unsigned minimal_devs; /* minimal # of devices in set. */
260 const unsigned level; /* RAID level. */
261 const unsigned algorithm; /* RAID algorithm. */
262 } raid_types[] = {
263 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
264 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
265 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
266 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
267 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
268 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
269 {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
270 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
271 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
272 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
273 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
274 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
275 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
276 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
277 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
278 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
279 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
280 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
281 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
282 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
283 };
284
285 /* True, if @v is in inclusive range [@min, @max] */
286 static bool __within_range(long v, long min, long max)
287 {
288 return v >= min && v <= max;
289 }
290
291 /* All table line arguments are defined here */
292 static struct arg_name_flag {
293 const unsigned long flag;
294 const char *name;
295 } __arg_name_flags[] = {
296 { CTR_FLAG_SYNC, "sync"},
297 { CTR_FLAG_NOSYNC, "nosync"},
298 { CTR_FLAG_REBUILD, "rebuild"},
299 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
300 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
301 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
302 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
303 { CTR_FLAG_WRITE_MOSTLY, "writemostly"},
304 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
305 { CTR_FLAG_REGION_SIZE, "region_size"},
306 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
307 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
308 { CTR_FLAG_DATA_OFFSET, "data_offset"},
309 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
310 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
311 };
312
313 /* Return argument name string for given @flag */
314 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
315 {
316 if (hweight32(flag) == 1) {
317 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
318
319 while (anf-- > __arg_name_flags)
320 if (flag & anf->flag)
321 return anf->name;
322
323 } else
324 DMERR("%s called with more than one flag!", __func__);
325
326 return NULL;
327 }
328
329 /*
330 * bool helpers to test for various raid levels of a raid set,
331 * is. it's level as reported by the superblock rather than
332 * the requested raid_type passed to the constructor.
333 */
334 /* Return true, if raid set in @rs is raid0 */
335 static bool rs_is_raid0(struct raid_set *rs)
336 {
337 return !rs->md.level;
338 }
339
340 /* Return true, if raid set in @rs is raid1 */
341 static bool rs_is_raid1(struct raid_set *rs)
342 {
343 return rs->md.level == 1;
344 }
345
346 /* Return true, if raid set in @rs is raid10 */
347 static bool rs_is_raid10(struct raid_set *rs)
348 {
349 return rs->md.level == 10;
350 }
351
352 /* Return true, if raid set in @rs is level 6 */
353 static bool rs_is_raid6(struct raid_set *rs)
354 {
355 return rs->md.level == 6;
356 }
357
358 /* Return true, if raid set in @rs is level 4, 5 or 6 */
359 static bool rs_is_raid456(struct raid_set *rs)
360 {
361 return __within_range(rs->md.level, 4, 6);
362 }
363
364 /* Return true, if raid set in @rs is reshapable */
365 static unsigned int __is_raid10_far(int layout);
366 static bool rs_is_reshapable(struct raid_set *rs)
367 {
368 return rs_is_raid456(rs) ||
369 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
370 }
371
372 /* Return true, if raid set in @rs is recovering */
373 static bool rs_is_recovering(struct raid_set *rs)
374 {
375 return rs->md.recovery_cp != MaxSector;
376 }
377
378 /* Return true, if raid set in @rs is reshaping */
379 static bool rs_is_reshaping(struct raid_set *rs)
380 {
381 return rs->md.reshape_position != MaxSector;
382 }
383
384 /*
385 * bool helpers to test for various raid levels of a raid type
386 */
387
388 /* Return true, if raid type in @rt is raid0 */
389 static bool rt_is_raid0(struct raid_type *rt)
390 {
391 return !rt->level;
392 }
393
394 /* Return true, if raid type in @rt is raid1 */
395 static bool rt_is_raid1(struct raid_type *rt)
396 {
397 return rt->level == 1;
398 }
399
400 /* Return true, if raid type in @rt is raid10 */
401 static bool rt_is_raid10(struct raid_type *rt)
402 {
403 return rt->level == 10;
404 }
405
406 /* Return true, if raid type in @rt is raid4/5 */
407 static bool rt_is_raid45(struct raid_type *rt)
408 {
409 return __within_range(rt->level, 4, 5);
410 }
411
412 /* Return true, if raid type in @rt is raid6 */
413 static bool rt_is_raid6(struct raid_type *rt)
414 {
415 return rt->level == 6;
416 }
417
418 /* Return true, if raid type in @rt is raid4/5/6 */
419 static bool rt_is_raid456(struct raid_type *rt)
420 {
421 return __within_range(rt->level, 4, 6);
422 }
423 /* END: raid level bools */
424
425 /* Return valid ctr flags for the raid level of @rs */
426 static unsigned long __valid_flags(struct raid_set *rs)
427 {
428 if (rt_is_raid0(rs->raid_type))
429 return RAID0_VALID_FLAGS;
430 else if (rt_is_raid1(rs->raid_type))
431 return RAID1_VALID_FLAGS;
432 else if (rt_is_raid10(rs->raid_type))
433 return RAID10_VALID_FLAGS;
434 else if (rt_is_raid45(rs->raid_type))
435 return RAID45_VALID_FLAGS;
436 else if (rt_is_raid6(rs->raid_type))
437 return RAID6_VALID_FLAGS;
438
439 return ~0;
440 }
441
442 /*
443 * Check for valid flags set on @rs
444 *
445 * Has to be called after parsing of the ctr flags!
446 */
447 static int rs_check_for_valid_flags(struct raid_set *rs)
448 {
449 if (rs->ctr_flags & ~__valid_flags(rs)) {
450 rs->ti->error = "Invalid flags combination";
451 return -EINVAL;
452 }
453
454 return 0;
455 }
456
457 /* MD raid10 bit definitions and helpers */
458 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
459 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
460 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
461 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
462
463 /* Return md raid10 near copies for @layout */
464 static unsigned int __raid10_near_copies(int layout)
465 {
466 return layout & 0xFF;
467 }
468
469 /* Return md raid10 far copies for @layout */
470 static unsigned int __raid10_far_copies(int layout)
471 {
472 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
473 }
474
475 /* Return true if md raid10 offset for @layout */
476 static unsigned int __is_raid10_offset(int layout)
477 {
478 return layout & RAID10_OFFSET;
479 }
480
481 /* Return true if md raid10 near for @layout */
482 static unsigned int __is_raid10_near(int layout)
483 {
484 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
485 }
486
487 /* Return true if md raid10 far for @layout */
488 static unsigned int __is_raid10_far(int layout)
489 {
490 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
491 }
492
493 /* Return md raid10 layout string for @layout */
494 static const char *raid10_md_layout_to_format(int layout)
495 {
496 /*
497 * Bit 16 stands for "offset"
498 * (i.e. adjacent stripes hold copies)
499 *
500 * Refer to MD's raid10.c for details
501 */
502 if (__is_raid10_offset(layout))
503 return "offset";
504
505 if (__raid10_near_copies(layout) > 1)
506 return "near";
507
508 WARN_ON(__raid10_far_copies(layout) < 2);
509
510 return "far";
511 }
512
513 /* Return md raid10 algorithm for @name */
514 static int raid10_name_to_format(const char *name)
515 {
516 if (!strcasecmp(name, "near"))
517 return ALGORITHM_RAID10_NEAR;
518 else if (!strcasecmp(name, "offset"))
519 return ALGORITHM_RAID10_OFFSET;
520 else if (!strcasecmp(name, "far"))
521 return ALGORITHM_RAID10_FAR;
522
523 return -EINVAL;
524 }
525
526 /* Return md raid10 copies for @layout */
527 static unsigned int raid10_md_layout_to_copies(int layout)
528 {
529 return __raid10_near_copies(layout) > 1 ?
530 __raid10_near_copies(layout) : __raid10_far_copies(layout);
531 }
532
533 /* Return md raid10 format id for @format string */
534 static int raid10_format_to_md_layout(struct raid_set *rs,
535 unsigned int algorithm,
536 unsigned int copies)
537 {
538 unsigned int n = 1, f = 1, r = 0;
539
540 /*
541 * MD resilienece flaw:
542 *
543 * enabling use_far_sets for far/offset formats causes copies
544 * to be colocated on the same devs together with their origins!
545 *
546 * -> disable it for now in the definition above
547 */
548 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
549 algorithm == ALGORITHM_RAID10_NEAR)
550 n = copies;
551
552 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
553 f = copies;
554 r = RAID10_OFFSET;
555 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
556 r |= RAID10_USE_FAR_SETS;
557
558 } else if (algorithm == ALGORITHM_RAID10_FAR) {
559 f = copies;
560 r = !RAID10_OFFSET;
561 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
562 r |= RAID10_USE_FAR_SETS;
563
564 } else
565 return -EINVAL;
566
567 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
568 }
569 /* END: MD raid10 bit definitions and helpers */
570
571 /* Check for any of the raid10 algorithms */
572 static int __got_raid10(struct raid_type *rtp, const int layout)
573 {
574 if (rtp->level == 10) {
575 switch (rtp->algorithm) {
576 case ALGORITHM_RAID10_DEFAULT:
577 case ALGORITHM_RAID10_NEAR:
578 return __is_raid10_near(layout);
579 case ALGORITHM_RAID10_OFFSET:
580 return __is_raid10_offset(layout);
581 case ALGORITHM_RAID10_FAR:
582 return __is_raid10_far(layout);
583 default:
584 break;
585 }
586 }
587
588 return 0;
589 }
590
591 /* Return raid_type for @name */
592 static struct raid_type *get_raid_type(const char *name)
593 {
594 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
595
596 while (rtp-- > raid_types)
597 if (!strcasecmp(rtp->name, name))
598 return rtp;
599
600 return NULL;
601 }
602
603 /* Return raid_type for @name based derived from @level and @layout */
604 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
605 {
606 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
607
608 while (rtp-- > raid_types) {
609 /* RAID10 special checks based on @layout flags/properties */
610 if (rtp->level == level &&
611 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
612 return rtp;
613 }
614
615 return NULL;
616 }
617
618 /*
619 * Conditionally change bdev capacity of @rs
620 * in case of a disk add/remove reshape
621 */
622 static void rs_set_capacity(struct raid_set *rs)
623 {
624 struct mddev *mddev = &rs->md;
625 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
626
627 set_capacity(gendisk, mddev->array_sectors);
628 revalidate_disk(gendisk);
629 }
630
631 /*
632 * Set the mddev properties in @rs to the current
633 * ones retrieved from the freshest superblock
634 */
635 static void rs_set_cur(struct raid_set *rs)
636 {
637 struct mddev *mddev = &rs->md;
638
639 mddev->new_level = mddev->level;
640 mddev->new_layout = mddev->layout;
641 mddev->new_chunk_sectors = mddev->chunk_sectors;
642 }
643
644 /*
645 * Set the mddev properties in @rs to the new
646 * ones requested by the ctr
647 */
648 static void rs_set_new(struct raid_set *rs)
649 {
650 struct mddev *mddev = &rs->md;
651
652 mddev->level = mddev->new_level;
653 mddev->layout = mddev->new_layout;
654 mddev->chunk_sectors = mddev->new_chunk_sectors;
655 mddev->raid_disks = rs->raid_disks;
656 mddev->delta_disks = 0;
657 }
658
659 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
660 unsigned raid_devs)
661 {
662 unsigned i;
663 struct raid_set *rs;
664
665 if (raid_devs <= raid_type->parity_devs) {
666 ti->error = "Insufficient number of devices";
667 return ERR_PTR(-EINVAL);
668 }
669
670 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
671 if (!rs) {
672 ti->error = "Cannot allocate raid context";
673 return ERR_PTR(-ENOMEM);
674 }
675
676 mddev_init(&rs->md);
677
678 rs->raid_disks = raid_devs;
679 rs->delta_disks = 0;
680
681 rs->ti = ti;
682 rs->raid_type = raid_type;
683 rs->stripe_cache_entries = 256;
684 rs->md.raid_disks = raid_devs;
685 rs->md.level = raid_type->level;
686 rs->md.new_level = rs->md.level;
687 rs->md.layout = raid_type->algorithm;
688 rs->md.new_layout = rs->md.layout;
689 rs->md.delta_disks = 0;
690 rs->md.recovery_cp = MaxSector;
691
692 for (i = 0; i < raid_devs; i++)
693 md_rdev_init(&rs->dev[i].rdev);
694
695 /*
696 * Remaining items to be initialized by further RAID params:
697 * rs->md.persistent
698 * rs->md.external
699 * rs->md.chunk_sectors
700 * rs->md.new_chunk_sectors
701 * rs->md.dev_sectors
702 */
703
704 return rs;
705 }
706
707 static void raid_set_free(struct raid_set *rs)
708 {
709 int i;
710
711 for (i = 0; i < rs->md.raid_disks; i++) {
712 if (rs->dev[i].meta_dev)
713 dm_put_device(rs->ti, rs->dev[i].meta_dev);
714 md_rdev_clear(&rs->dev[i].rdev);
715 if (rs->dev[i].data_dev)
716 dm_put_device(rs->ti, rs->dev[i].data_dev);
717 }
718
719 kfree(rs);
720 }
721
722 /*
723 * For every device we have two words
724 * <meta_dev>: meta device name or '-' if missing
725 * <data_dev>: data device name or '-' if missing
726 *
727 * The following are permitted:
728 * - -
729 * - <data_dev>
730 * <meta_dev> <data_dev>
731 *
732 * The following is not allowed:
733 * <meta_dev> -
734 *
735 * This code parses those words. If there is a failure,
736 * the caller must use raid_set_free() to unwind the operations.
737 */
738 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
739 {
740 int i;
741 int rebuild = 0;
742 int metadata_available = 0;
743 int r = 0;
744 const char *arg;
745
746 /* Put off the number of raid devices argument to get to dev pairs */
747 arg = dm_shift_arg(as);
748 if (!arg)
749 return -EINVAL;
750
751 for (i = 0; i < rs->md.raid_disks; i++) {
752 rs->dev[i].rdev.raid_disk = i;
753
754 rs->dev[i].meta_dev = NULL;
755 rs->dev[i].data_dev = NULL;
756
757 /*
758 * There are no offsets, since there is a separate device
759 * for data and metadata.
760 */
761 rs->dev[i].rdev.data_offset = 0;
762 rs->dev[i].rdev.mddev = &rs->md;
763
764 arg = dm_shift_arg(as);
765 if (!arg)
766 return -EINVAL;
767
768 if (strcmp(arg, "-")) {
769 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
770 &rs->dev[i].meta_dev);
771 if (r) {
772 rs->ti->error = "RAID metadata device lookup failure";
773 return r;
774 }
775
776 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
777 if (!rs->dev[i].rdev.sb_page) {
778 rs->ti->error = "Failed to allocate superblock page";
779 return -ENOMEM;
780 }
781 }
782
783 arg = dm_shift_arg(as);
784 if (!arg)
785 return -EINVAL;
786
787 if (!strcmp(arg, "-")) {
788 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
789 (!rs->dev[i].rdev.recovery_offset)) {
790 rs->ti->error = "Drive designated for rebuild not specified";
791 return -EINVAL;
792 }
793
794 if (rs->dev[i].meta_dev) {
795 rs->ti->error = "No data device supplied with metadata device";
796 return -EINVAL;
797 }
798
799 continue;
800 }
801
802 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
803 &rs->dev[i].data_dev);
804 if (r) {
805 rs->ti->error = "RAID device lookup failure";
806 return r;
807 }
808
809 if (rs->dev[i].meta_dev) {
810 metadata_available = 1;
811 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
812 }
813 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
814 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
815 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
816 rebuild++;
817 }
818
819 if (metadata_available) {
820 rs->md.external = 0;
821 rs->md.persistent = 1;
822 rs->md.major_version = 2;
823 } else if (rebuild && !rs->md.recovery_cp) {
824 /*
825 * Without metadata, we will not be able to tell if the array
826 * is in-sync or not - we must assume it is not. Therefore,
827 * it is impossible to rebuild a drive.
828 *
829 * Even if there is metadata, the on-disk information may
830 * indicate that the array is not in-sync and it will then
831 * fail at that time.
832 *
833 * User could specify 'nosync' option if desperate.
834 */
835 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
836 return -EINVAL;
837 }
838
839 return 0;
840 }
841
842 /*
843 * validate_region_size
844 * @rs
845 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
846 *
847 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
848 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
849 *
850 * Returns: 0 on success, -EINVAL on failure.
851 */
852 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
853 {
854 unsigned long min_region_size = rs->ti->len / (1 << 21);
855
856 if (!region_size) {
857 /*
858 * Choose a reasonable default. All figures in sectors.
859 */
860 if (min_region_size > (1 << 13)) {
861 /* If not a power of 2, make it the next power of 2 */
862 region_size = roundup_pow_of_two(min_region_size);
863 DMINFO("Choosing default region size of %lu sectors",
864 region_size);
865 } else {
866 DMINFO("Choosing default region size of 4MiB");
867 region_size = 1 << 13; /* sectors */
868 }
869 } else {
870 /*
871 * Validate user-supplied value.
872 */
873 if (region_size > rs->ti->len) {
874 rs->ti->error = "Supplied region size is too large";
875 return -EINVAL;
876 }
877
878 if (region_size < min_region_size) {
879 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
880 region_size, min_region_size);
881 rs->ti->error = "Supplied region size is too small";
882 return -EINVAL;
883 }
884
885 if (!is_power_of_2(region_size)) {
886 rs->ti->error = "Region size is not a power of 2";
887 return -EINVAL;
888 }
889
890 if (region_size < rs->md.chunk_sectors) {
891 rs->ti->error = "Region size is smaller than the chunk size";
892 return -EINVAL;
893 }
894 }
895
896 /*
897 * Convert sectors to bytes.
898 */
899 rs->md.bitmap_info.chunksize = (region_size << 9);
900
901 return 0;
902 }
903
904 /*
905 * validate_raid_redundancy
906 * @rs
907 *
908 * Determine if there are enough devices in the array that haven't
909 * failed (or are being rebuilt) to form a usable array.
910 *
911 * Returns: 0 on success, -EINVAL on failure.
912 */
913 static int validate_raid_redundancy(struct raid_set *rs)
914 {
915 unsigned i, rebuild_cnt = 0;
916 unsigned rebuilds_per_group = 0, copies;
917 unsigned group_size, last_group_start;
918
919 for (i = 0; i < rs->md.raid_disks; i++)
920 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
921 !rs->dev[i].rdev.sb_page)
922 rebuild_cnt++;
923
924 switch (rs->raid_type->level) {
925 case 1:
926 if (rebuild_cnt >= rs->md.raid_disks)
927 goto too_many;
928 break;
929 case 4:
930 case 5:
931 case 6:
932 if (rebuild_cnt > rs->raid_type->parity_devs)
933 goto too_many;
934 break;
935 case 10:
936 copies = raid10_md_layout_to_copies(rs->md.new_layout);
937 if (rebuild_cnt < copies)
938 break;
939
940 /*
941 * It is possible to have a higher rebuild count for RAID10,
942 * as long as the failed devices occur in different mirror
943 * groups (i.e. different stripes).
944 *
945 * When checking "near" format, make sure no adjacent devices
946 * have failed beyond what can be handled. In addition to the
947 * simple case where the number of devices is a multiple of the
948 * number of copies, we must also handle cases where the number
949 * of devices is not a multiple of the number of copies.
950 * E.g. dev1 dev2 dev3 dev4 dev5
951 * A A B B C
952 * C D D E E
953 */
954 if (__is_raid10_near(rs->md.new_layout)) {
955 for (i = 0; i < rs->raid_disks; i++) {
956 if (!(i % copies))
957 rebuilds_per_group = 0;
958 if ((!rs->dev[i].rdev.sb_page ||
959 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
960 (++rebuilds_per_group >= copies))
961 goto too_many;
962 }
963 break;
964 }
965
966 /*
967 * When checking "far" and "offset" formats, we need to ensure
968 * that the device that holds its copy is not also dead or
969 * being rebuilt. (Note that "far" and "offset" formats only
970 * support two copies right now. These formats also only ever
971 * use the 'use_far_sets' variant.)
972 *
973 * This check is somewhat complicated by the need to account
974 * for arrays that are not a multiple of (far) copies. This
975 * results in the need to treat the last (potentially larger)
976 * set differently.
977 */
978 group_size = (rs->md.raid_disks / copies);
979 last_group_start = (rs->md.raid_disks / group_size) - 1;
980 last_group_start *= group_size;
981 for (i = 0; i < rs->md.raid_disks; i++) {
982 if (!(i % copies) && !(i > last_group_start))
983 rebuilds_per_group = 0;
984 if ((!rs->dev[i].rdev.sb_page ||
985 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
986 (++rebuilds_per_group >= copies))
987 goto too_many;
988 }
989 break;
990 default:
991 if (rebuild_cnt)
992 return -EINVAL;
993 }
994
995 return 0;
996
997 too_many:
998 return -EINVAL;
999 }
1000
1001 /*
1002 * Possible arguments are...
1003 * <chunk_size> [optional_args]
1004 *
1005 * Argument definitions
1006 * <chunk_size> The number of sectors per disk that
1007 * will form the "stripe"
1008 * [[no]sync] Force or prevent recovery of the
1009 * entire array
1010 * [rebuild <idx>] Rebuild the drive indicated by the index
1011 * [daemon_sleep <ms>] Time between bitmap daemon work to
1012 * clear bits
1013 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1014 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1015 * [write_mostly <idx>] Indicate a write mostly drive via index
1016 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1017 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1018 * [region_size <sectors>] Defines granularity of bitmap
1019 *
1020 * RAID10-only options:
1021 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1022 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1023 */
1024 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1025 unsigned num_raid_params)
1026 {
1027 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1028 unsigned raid10_copies = 2;
1029 unsigned i, write_mostly = 0;
1030 unsigned region_size = 0;
1031 sector_t max_io_len;
1032 const char *arg, *key;
1033 struct raid_dev *rd;
1034 struct raid_type *rt = rs->raid_type;
1035
1036 arg = dm_shift_arg(as);
1037 num_raid_params--; /* Account for chunk_size argument */
1038
1039 if (kstrtoint(arg, 10, &value) < 0) {
1040 rs->ti->error = "Bad numerical argument given for chunk_size";
1041 return -EINVAL;
1042 }
1043
1044 /*
1045 * First, parse the in-order required arguments
1046 * "chunk_size" is the only argument of this type.
1047 */
1048 if (rt_is_raid1(rt)) {
1049 if (value)
1050 DMERR("Ignoring chunk size parameter for RAID 1");
1051 value = 0;
1052 } else if (!is_power_of_2(value)) {
1053 rs->ti->error = "Chunk size must be a power of 2";
1054 return -EINVAL;
1055 } else if (value < 8) {
1056 rs->ti->error = "Chunk size value is too small";
1057 return -EINVAL;
1058 }
1059
1060 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1061
1062 /*
1063 * We set each individual device as In_sync with a completed
1064 * 'recovery_offset'. If there has been a device failure or
1065 * replacement then one of the following cases applies:
1066 *
1067 * 1) User specifies 'rebuild'.
1068 * - Device is reset when param is read.
1069 * 2) A new device is supplied.
1070 * - No matching superblock found, resets device.
1071 * 3) Device failure was transient and returns on reload.
1072 * - Failure noticed, resets device for bitmap replay.
1073 * 4) Device hadn't completed recovery after previous failure.
1074 * - Superblock is read and overrides recovery_offset.
1075 *
1076 * What is found in the superblocks of the devices is always
1077 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1078 */
1079 for (i = 0; i < rs->md.raid_disks; i++) {
1080 set_bit(In_sync, &rs->dev[i].rdev.flags);
1081 rs->dev[i].rdev.recovery_offset = MaxSector;
1082 }
1083
1084 /*
1085 * Second, parse the unordered optional arguments
1086 */
1087 for (i = 0; i < num_raid_params; i++) {
1088 key = dm_shift_arg(as);
1089 if (!key) {
1090 rs->ti->error = "Not enough raid parameters given";
1091 return -EINVAL;
1092 }
1093
1094 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1095 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1096 rs->ti->error = "Only one 'nosync' argument allowed";
1097 return -EINVAL;
1098 }
1099 continue;
1100 }
1101 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1102 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1103 rs->ti->error = "Only one 'sync' argument allowed";
1104 return -EINVAL;
1105 }
1106 continue;
1107 }
1108 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1109 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1110 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1111 return -EINVAL;
1112 }
1113 continue;
1114 }
1115
1116 arg = dm_shift_arg(as);
1117 i++; /* Account for the argument pairs */
1118 if (!arg) {
1119 rs->ti->error = "Wrong number of raid parameters given";
1120 return -EINVAL;
1121 }
1122
1123 /*
1124 * Parameters that take a string value are checked here.
1125 */
1126
1127 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1128 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1129 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1130 return -EINVAL;
1131 }
1132 if (!rt_is_raid10(rt)) {
1133 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1134 return -EINVAL;
1135 }
1136 raid10_format = raid10_name_to_format(arg);
1137 if (raid10_format < 0) {
1138 rs->ti->error = "Invalid 'raid10_format' value given";
1139 return raid10_format;
1140 }
1141 continue;
1142 }
1143
1144 if (kstrtoint(arg, 10, &value) < 0) {
1145 rs->ti->error = "Bad numerical argument given in raid params";
1146 return -EINVAL;
1147 }
1148
1149 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1150 /*
1151 * "rebuild" is being passed in by userspace to provide
1152 * indexes of replaced devices and to set up additional
1153 * devices on raid level takeover.
1154 */
1155 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1156 rs->ti->error = "Invalid rebuild index given";
1157 return -EINVAL;
1158 }
1159
1160 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1161 rs->ti->error = "rebuild for this index already given";
1162 return -EINVAL;
1163 }
1164
1165 rd = rs->dev + value;
1166 clear_bit(In_sync, &rd->rdev.flags);
1167 clear_bit(Faulty, &rd->rdev.flags);
1168 rd->rdev.recovery_offset = 0;
1169 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1170 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1171 if (!rt_is_raid1(rt)) {
1172 rs->ti->error = "write_mostly option is only valid for RAID1";
1173 return -EINVAL;
1174 }
1175
1176 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1177 rs->ti->error = "Invalid write_mostly index given";
1178 return -EINVAL;
1179 }
1180
1181 write_mostly++;
1182 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1183 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1184 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1185 if (!rt_is_raid1(rt)) {
1186 rs->ti->error = "max_write_behind option is only valid for RAID1";
1187 return -EINVAL;
1188 }
1189
1190 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1191 rs->ti->error = "Only one max_write_behind argument pair allowed";
1192 return -EINVAL;
1193 }
1194
1195 /*
1196 * In device-mapper, we specify things in sectors, but
1197 * MD records this value in kB
1198 */
1199 value /= 2;
1200 if (value > COUNTER_MAX) {
1201 rs->ti->error = "Max write-behind limit out of range";
1202 return -EINVAL;
1203 }
1204
1205 rs->md.bitmap_info.max_write_behind = value;
1206 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1207 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1208 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1209 return -EINVAL;
1210 }
1211 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1212 rs->ti->error = "daemon sleep period out of range";
1213 return -EINVAL;
1214 }
1215 rs->md.bitmap_info.daemon_sleep = value;
1216 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1217 /* Userspace passes new data_offset after having extended the the data image LV */
1218 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1219 rs->ti->error = "Only one data_offset argument pair allowed";
1220 return -EINVAL;
1221 }
1222 /* Ensure sensible data offset */
1223 if (value < 0 ||
1224 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1225 rs->ti->error = "Bogus data_offset value";
1226 return -EINVAL;
1227 }
1228 rs->data_offset = value;
1229 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1230 /* Define the +/-# of disks to add to/remove from the given raid set */
1231 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1232 rs->ti->error = "Only one delta_disks argument pair allowed";
1233 return -EINVAL;
1234 }
1235 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1236 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1237 rs->ti->error = "Too many delta_disk requested";
1238 return -EINVAL;
1239 }
1240
1241 rs->delta_disks = value;
1242 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1243 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1244 rs->ti->error = "Only one stripe_cache argument pair allowed";
1245 return -EINVAL;
1246 }
1247
1248 if (!rt_is_raid456(rt)) {
1249 rs->ti->error = "Inappropriate argument: stripe_cache";
1250 return -EINVAL;
1251 }
1252
1253 rs->stripe_cache_entries = value;
1254 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1255 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1256 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1257 return -EINVAL;
1258 }
1259 if (value > INT_MAX) {
1260 rs->ti->error = "min_recovery_rate out of range";
1261 return -EINVAL;
1262 }
1263 rs->md.sync_speed_min = (int)value;
1264 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1265 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1266 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1267 return -EINVAL;
1268 }
1269 if (value > INT_MAX) {
1270 rs->ti->error = "max_recovery_rate out of range";
1271 return -EINVAL;
1272 }
1273 rs->md.sync_speed_max = (int)value;
1274 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1275 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1276 rs->ti->error = "Only one region_size argument pair allowed";
1277 return -EINVAL;
1278 }
1279
1280 region_size = value;
1281 rs->requested_bitmap_chunk_sectors = value;
1282 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1283 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1284 rs->ti->error = "Only one raid10_copies argument pair allowed";
1285 return -EINVAL;
1286 }
1287
1288 if (!__within_range(value, 2, rs->md.raid_disks)) {
1289 rs->ti->error = "Bad value for 'raid10_copies'";
1290 return -EINVAL;
1291 }
1292
1293 raid10_copies = value;
1294 } else {
1295 DMERR("Unable to parse RAID parameter: %s", key);
1296 rs->ti->error = "Unable to parse RAID parameter";
1297 return -EINVAL;
1298 }
1299 }
1300
1301 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1302 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1303 rs->ti->error = "sync and nosync are mutually exclusive";
1304 return -EINVAL;
1305 }
1306
1307 if (write_mostly >= rs->md.raid_disks) {
1308 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1309 return -EINVAL;
1310 }
1311
1312 if (validate_region_size(rs, region_size))
1313 return -EINVAL;
1314
1315 if (rs->md.chunk_sectors)
1316 max_io_len = rs->md.chunk_sectors;
1317 else
1318 max_io_len = region_size;
1319
1320 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1321 return -EINVAL;
1322
1323 if (rt_is_raid10(rt)) {
1324 if (raid10_copies > rs->md.raid_disks) {
1325 rs->ti->error = "Not enough devices to satisfy specification";
1326 return -EINVAL;
1327 }
1328
1329 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1330 if (rs->md.new_layout < 0) {
1331 rs->ti->error = "Error getting raid10 format";
1332 return rs->md.new_layout;
1333 }
1334
1335 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1336 if (!rt) {
1337 rs->ti->error = "Failed to recognize new raid10 layout";
1338 return -EINVAL;
1339 }
1340
1341 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1342 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1343 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1344 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1345 return -EINVAL;
1346 }
1347 }
1348
1349 rs->raid10_copies = raid10_copies;
1350
1351 /* Assume there are no metadata devices until the drives are parsed */
1352 rs->md.persistent = 0;
1353 rs->md.external = 1;
1354
1355 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1356 return rs_check_for_valid_flags(rs);
1357 }
1358
1359 /* Set raid4/5/6 cache size */
1360 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1361 {
1362 int r;
1363 struct r5conf *conf;
1364 struct mddev *mddev = &rs->md;
1365 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1366 uint32_t nr_stripes = rs->stripe_cache_entries;
1367
1368 if (!rt_is_raid456(rs->raid_type)) {
1369 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1370 return -EINVAL;
1371 }
1372
1373 if (nr_stripes < min_stripes) {
1374 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1375 nr_stripes, min_stripes);
1376 nr_stripes = min_stripes;
1377 }
1378
1379 conf = mddev->private;
1380 if (!conf) {
1381 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1382 return -EINVAL;
1383 }
1384
1385 /* Try setting number of stripes in raid456 stripe cache */
1386 if (conf->min_nr_stripes != nr_stripes) {
1387 r = raid5_set_cache_size(mddev, nr_stripes);
1388 if (r) {
1389 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1390 return r;
1391 }
1392
1393 DMINFO("%u stripe cache entries", nr_stripes);
1394 }
1395
1396 return 0;
1397 }
1398
1399 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1400 static unsigned int mddev_data_stripes(struct raid_set *rs)
1401 {
1402 return rs->md.raid_disks - rs->raid_type->parity_devs;
1403 }
1404
1405 /* Return # of data stripes of @rs (i.e. as of ctr) */
1406 static unsigned int rs_data_stripes(struct raid_set *rs)
1407 {
1408 return rs->raid_disks - rs->raid_type->parity_devs;
1409 }
1410
1411 /* Calculate the sectors per device and per array used for @rs */
1412 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1413 {
1414 int delta_disks;
1415 unsigned int data_stripes;
1416 struct mddev *mddev = &rs->md;
1417 struct md_rdev *rdev;
1418 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1419
1420 if (use_mddev) {
1421 delta_disks = mddev->delta_disks;
1422 data_stripes = mddev_data_stripes(rs);
1423 } else {
1424 delta_disks = rs->delta_disks;
1425 data_stripes = rs_data_stripes(rs);
1426 }
1427
1428 /* Special raid1 case w/o delta_disks support (yet) */
1429 if (rt_is_raid1(rs->raid_type))
1430 ;
1431 else if (rt_is_raid10(rs->raid_type)) {
1432 if (rs->raid10_copies < 2 ||
1433 delta_disks < 0) {
1434 rs->ti->error = "Bogus raid10 data copies or delta disks";
1435 return EINVAL;
1436 }
1437
1438 dev_sectors *= rs->raid10_copies;
1439 if (sector_div(dev_sectors, data_stripes))
1440 goto bad;
1441
1442 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1443 if (sector_div(array_sectors, rs->raid10_copies))
1444 goto bad;
1445
1446 } else if (sector_div(dev_sectors, data_stripes))
1447 goto bad;
1448
1449 else
1450 /* Striped layouts */
1451 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1452
1453 rdev_for_each(rdev, mddev)
1454 rdev->sectors = dev_sectors;
1455
1456 mddev->array_sectors = array_sectors;
1457 mddev->dev_sectors = dev_sectors;
1458
1459 return 0;
1460 bad:
1461 rs->ti->error = "Target length not divisible by number of data devices";
1462 return EINVAL;
1463 }
1464
1465 /* Setup recovery on @rs */
1466 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1467 {
1468 /* raid0 does not recover */
1469 if (rs_is_raid0(rs))
1470 rs->md.recovery_cp = MaxSector;
1471 /*
1472 * A raid6 set has to be recovered either
1473 * completely or for the grown part to
1474 * ensure proper parity and Q-Syndrome
1475 */
1476 else if (rs_is_raid6(rs))
1477 rs->md.recovery_cp = dev_sectors;
1478 /*
1479 * Other raid set types may skip recovery
1480 * depending on the 'nosync' flag.
1481 */
1482 else
1483 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1484 ? MaxSector : dev_sectors;
1485 }
1486
1487 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1488 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1489 {
1490 if (!dev_sectors)
1491 /* New raid set or 'sync' flag provided */
1492 __rs_setup_recovery(rs, 0);
1493 else if (dev_sectors == MaxSector)
1494 /* Prevent recovery */
1495 __rs_setup_recovery(rs, MaxSector);
1496 else if (rs->dev[0].rdev.sectors < dev_sectors)
1497 /* Grown raid set */
1498 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1499 else
1500 __rs_setup_recovery(rs, MaxSector);
1501 }
1502
1503 static void do_table_event(struct work_struct *ws)
1504 {
1505 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1506
1507 smp_rmb(); /* Make sure we access most actual mddev properties */
1508 if (!rs_is_reshaping(rs))
1509 rs_set_capacity(rs);
1510 dm_table_event(rs->ti->table);
1511 }
1512
1513 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1514 {
1515 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1516
1517 return mddev_congested(&rs->md, bits);
1518 }
1519
1520 /*
1521 * Make sure a valid takover (level switch) is being requested on @rs
1522 *
1523 * Conversions of raid sets from one MD personality to another
1524 * have to conform to restrictions which are enforced here.
1525 */
1526 static int rs_check_takeover(struct raid_set *rs)
1527 {
1528 struct mddev *mddev = &rs->md;
1529 unsigned int near_copies;
1530
1531 if (rs->md.degraded) {
1532 rs->ti->error = "Can't takeover degraded raid set";
1533 return -EPERM;
1534 }
1535
1536 if (rs_is_reshaping(rs)) {
1537 rs->ti->error = "Can't takeover reshaping raid set";
1538 return -EPERM;
1539 }
1540
1541 switch (mddev->level) {
1542 case 0:
1543 /* raid0 -> raid1/5 with one disk */
1544 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1545 mddev->raid_disks == 1)
1546 return 0;
1547
1548 /* raid0 -> raid10 */
1549 if (mddev->new_level == 10 &&
1550 !(rs->raid_disks % mddev->raid_disks))
1551 return 0;
1552
1553 /* raid0 with multiple disks -> raid4/5/6 */
1554 if (__within_range(mddev->new_level, 4, 6) &&
1555 mddev->new_layout == ALGORITHM_PARITY_N &&
1556 mddev->raid_disks > 1)
1557 return 0;
1558
1559 break;
1560
1561 case 10:
1562 /* Can't takeover raid10_offset! */
1563 if (__is_raid10_offset(mddev->layout))
1564 break;
1565
1566 near_copies = __raid10_near_copies(mddev->layout);
1567
1568 /* raid10* -> raid0 */
1569 if (mddev->new_level == 0) {
1570 /* Can takeover raid10_near with raid disks divisable by data copies! */
1571 if (near_copies > 1 &&
1572 !(mddev->raid_disks % near_copies)) {
1573 mddev->raid_disks /= near_copies;
1574 mddev->delta_disks = mddev->raid_disks;
1575 return 0;
1576 }
1577
1578 /* Can takeover raid10_far */
1579 if (near_copies == 1 &&
1580 __raid10_far_copies(mddev->layout) > 1)
1581 return 0;
1582
1583 break;
1584 }
1585
1586 /* raid10_{near,far} -> raid1 */
1587 if (mddev->new_level == 1 &&
1588 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1589 return 0;
1590
1591 /* raid10_{near,far} with 2 disks -> raid4/5 */
1592 if (__within_range(mddev->new_level, 4, 5) &&
1593 mddev->raid_disks == 2)
1594 return 0;
1595 break;
1596
1597 case 1:
1598 /* raid1 with 2 disks -> raid4/5 */
1599 if (__within_range(mddev->new_level, 4, 5) &&
1600 mddev->raid_disks == 2) {
1601 mddev->degraded = 1;
1602 return 0;
1603 }
1604
1605 /* raid1 -> raid0 */
1606 if (mddev->new_level == 0 &&
1607 mddev->raid_disks == 1)
1608 return 0;
1609
1610 /* raid1 -> raid10 */
1611 if (mddev->new_level == 10)
1612 return 0;
1613
1614 break;
1615
1616 case 4:
1617 /* raid4 -> raid0 */
1618 if (mddev->new_level == 0)
1619 return 0;
1620
1621 /* raid4 -> raid1/5 with 2 disks */
1622 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1623 mddev->raid_disks == 2)
1624 return 0;
1625
1626 /* raid4 -> raid5/6 with parity N */
1627 if (__within_range(mddev->new_level, 5, 6) &&
1628 mddev->layout == ALGORITHM_PARITY_N)
1629 return 0;
1630 break;
1631
1632 case 5:
1633 /* raid5 with parity N -> raid0 */
1634 if (mddev->new_level == 0 &&
1635 mddev->layout == ALGORITHM_PARITY_N)
1636 return 0;
1637
1638 /* raid5 with parity N -> raid4 */
1639 if (mddev->new_level == 4 &&
1640 mddev->layout == ALGORITHM_PARITY_N)
1641 return 0;
1642
1643 /* raid5 with 2 disks -> raid1/4/10 */
1644 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1645 mddev->raid_disks == 2)
1646 return 0;
1647
1648 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1649 if (mddev->new_level == 6 &&
1650 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1651 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1652 return 0;
1653 break;
1654
1655 case 6:
1656 /* raid6 with parity N -> raid0 */
1657 if (mddev->new_level == 0 &&
1658 mddev->layout == ALGORITHM_PARITY_N)
1659 return 0;
1660
1661 /* raid6 with parity N -> raid4 */
1662 if (mddev->new_level == 4 &&
1663 mddev->layout == ALGORITHM_PARITY_N)
1664 return 0;
1665
1666 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1667 if (mddev->new_level == 5 &&
1668 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1669 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1670 return 0;
1671
1672 default:
1673 break;
1674 }
1675
1676 rs->ti->error = "takeover not possible";
1677 return -EINVAL;
1678 }
1679
1680 /* True if @rs requested to be taken over */
1681 static bool rs_takeover_requested(struct raid_set *rs)
1682 {
1683 return rs->md.new_level != rs->md.level;
1684 }
1685
1686 /* True if @rs is requested to reshape by ctr */
1687 static bool rs_reshape_requested(struct raid_set *rs)
1688 {
1689 struct mddev *mddev = &rs->md;
1690
1691 if (!mddev->level)
1692 return false;
1693
1694 return !__is_raid10_far(mddev->new_layout) &&
1695 mddev->new_level == mddev->level &&
1696 (mddev->new_layout != mddev->layout ||
1697 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1698 rs->raid_disks + rs->delta_disks != mddev->raid_disks);
1699 }
1700
1701 /* Features */
1702 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1703
1704 /* State flags for sb->flags */
1705 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1706 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1707
1708 /*
1709 * This structure is never routinely used by userspace, unlike md superblocks.
1710 * Devices with this superblock should only ever be accessed via device-mapper.
1711 */
1712 #define DM_RAID_MAGIC 0x64526D44
1713 struct dm_raid_superblock {
1714 __le32 magic; /* "DmRd" */
1715 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1716
1717 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1718 __le32 array_position; /* The position of this drive in the raid set */
1719
1720 __le64 events; /* Incremented by md when superblock updated */
1721 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1722 /* indicate failures (see extension below) */
1723
1724 /*
1725 * This offset tracks the progress of the repair or replacement of
1726 * an individual drive.
1727 */
1728 __le64 disk_recovery_offset;
1729
1730 /*
1731 * This offset tracks the progress of the initial raid set
1732 * synchronisation/parity calculation.
1733 */
1734 __le64 array_resync_offset;
1735
1736 /*
1737 * raid characteristics
1738 */
1739 __le32 level;
1740 __le32 layout;
1741 __le32 stripe_sectors;
1742
1743 /********************************************************************
1744 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1745 *
1746 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1747 */
1748
1749 __le32 flags; /* Flags defining array states for reshaping */
1750
1751 /*
1752 * This offset tracks the progress of a raid
1753 * set reshape in order to be able to restart it
1754 */
1755 __le64 reshape_position;
1756
1757 /*
1758 * These define the properties of the array in case of an interrupted reshape
1759 */
1760 __le32 new_level;
1761 __le32 new_layout;
1762 __le32 new_stripe_sectors;
1763 __le32 delta_disks;
1764
1765 __le64 array_sectors; /* Array size in sectors */
1766
1767 /*
1768 * Sector offsets to data on devices (reshaping).
1769 * Needed to support out of place reshaping, thus
1770 * not writing over any stripes whilst converting
1771 * them from old to new layout
1772 */
1773 __le64 data_offset;
1774 __le64 new_data_offset;
1775
1776 __le64 sectors; /* Used device size in sectors */
1777
1778 /*
1779 * Additonal Bit field of devices indicating failures to support
1780 * up to 256 devices with the 1.9.0 on-disk metadata format
1781 */
1782 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1783
1784 __le32 incompat_features; /* Used to indicate any incompatible features */
1785
1786 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1787 } __packed;
1788
1789 /*
1790 * Check for reshape constraints on raid set @rs:
1791 *
1792 * - reshape function non-existent
1793 * - degraded set
1794 * - ongoing recovery
1795 * - ongoing reshape
1796 *
1797 * Returns 0 if none or -EPERM if given constraint
1798 * and error message reference in @errmsg
1799 */
1800 static int rs_check_reshape(struct raid_set *rs)
1801 {
1802 struct mddev *mddev = &rs->md;
1803
1804 if (!mddev->pers || !mddev->pers->check_reshape)
1805 rs->ti->error = "Reshape not supported";
1806 else if (mddev->degraded)
1807 rs->ti->error = "Can't reshape degraded raid set";
1808 else if (rs_is_recovering(rs))
1809 rs->ti->error = "Convert request on recovering raid set prohibited";
1810 else if (mddev->reshape_position && rs_is_reshaping(rs))
1811 rs->ti->error = "raid set already reshaping!";
1812 else if (!(rs_is_raid10(rs) || rs_is_raid456(rs)))
1813 rs->ti->error = "Reshaping only supported for raid4/5/6/10";
1814 else
1815 return 0;
1816
1817 return -EPERM;
1818 }
1819
1820 static int read_disk_sb(struct md_rdev *rdev, int size)
1821 {
1822 BUG_ON(!rdev->sb_page);
1823
1824 if (rdev->sb_loaded)
1825 return 0;
1826
1827 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1828 DMERR("Failed to read superblock of device at position %d",
1829 rdev->raid_disk);
1830 md_error(rdev->mddev, rdev);
1831 return -EINVAL;
1832 }
1833
1834 rdev->sb_loaded = 1;
1835
1836 return 0;
1837 }
1838
1839 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1840 {
1841 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1842 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1843
1844 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1845 int i = ARRAY_SIZE(sb->extended_failed_devices);
1846
1847 while (i--)
1848 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1849 }
1850 }
1851
1852 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1853 {
1854 int i = ARRAY_SIZE(sb->extended_failed_devices);
1855
1856 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1857 while (i--)
1858 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1859 }
1860
1861 /*
1862 * Synchronize the superblock members with the raid set properties
1863 *
1864 * All superblock data is little endian.
1865 */
1866 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1867 {
1868 bool update_failed_devices = false;
1869 unsigned int i;
1870 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1871 struct dm_raid_superblock *sb;
1872 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1873
1874 /* No metadata device, no superblock */
1875 if (!rdev->meta_bdev)
1876 return;
1877
1878 BUG_ON(!rdev->sb_page);
1879
1880 sb = page_address(rdev->sb_page);
1881
1882 sb_retrieve_failed_devices(sb, failed_devices);
1883
1884 for (i = 0; i < rs->raid_disks; i++)
1885 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1886 update_failed_devices = true;
1887 set_bit(i, (void *) failed_devices);
1888 }
1889
1890 if (update_failed_devices)
1891 sb_update_failed_devices(sb, failed_devices);
1892
1893 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1894 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1895
1896 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1897 sb->array_position = cpu_to_le32(rdev->raid_disk);
1898
1899 sb->events = cpu_to_le64(mddev->events);
1900
1901 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1902 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1903
1904 sb->level = cpu_to_le32(mddev->level);
1905 sb->layout = cpu_to_le32(mddev->layout);
1906 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1907
1908 sb->new_level = cpu_to_le32(mddev->new_level);
1909 sb->new_layout = cpu_to_le32(mddev->new_layout);
1910 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1911
1912 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1913
1914 smp_rmb(); /* Make sure we access most recent reshape position */
1915 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1916 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1917 /* Flag ongoing reshape */
1918 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1919
1920 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1921 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1922 } else {
1923 /* Clear reshape flags */
1924 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1925 }
1926
1927 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1928 sb->data_offset = cpu_to_le64(rdev->data_offset);
1929 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1930 sb->sectors = cpu_to_le64(rdev->sectors);
1931
1932 /* Zero out the rest of the payload after the size of the superblock */
1933 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1934 }
1935
1936 /*
1937 * super_load
1938 *
1939 * This function creates a superblock if one is not found on the device
1940 * and will decide which superblock to use if there's a choice.
1941 *
1942 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1943 */
1944 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1945 {
1946 int r;
1947 struct dm_raid_superblock *sb;
1948 struct dm_raid_superblock *refsb;
1949 uint64_t events_sb, events_refsb;
1950
1951 rdev->sb_start = 0;
1952 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1953 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1954 DMERR("superblock size of a logical block is no longer valid");
1955 return -EINVAL;
1956 }
1957
1958 r = read_disk_sb(rdev, rdev->sb_size);
1959 if (r)
1960 return r;
1961
1962 sb = page_address(rdev->sb_page);
1963
1964 /*
1965 * Two cases that we want to write new superblocks and rebuild:
1966 * 1) New device (no matching magic number)
1967 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1968 */
1969 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1970 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
1971 super_sync(rdev->mddev, rdev);
1972
1973 set_bit(FirstUse, &rdev->flags);
1974 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1975
1976 /* Force writing of superblocks to disk */
1977 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1978
1979 /* Any superblock is better than none, choose that if given */
1980 return refdev ? 0 : 1;
1981 }
1982
1983 if (!refdev)
1984 return 1;
1985
1986 events_sb = le64_to_cpu(sb->events);
1987
1988 refsb = page_address(refdev->sb_page);
1989 events_refsb = le64_to_cpu(refsb->events);
1990
1991 return (events_sb > events_refsb) ? 1 : 0;
1992 }
1993
1994 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
1995 {
1996 int role;
1997 unsigned int d;
1998 struct mddev *mddev = &rs->md;
1999 uint64_t events_sb;
2000 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2001 struct dm_raid_superblock *sb;
2002 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2003 struct md_rdev *r;
2004 struct dm_raid_superblock *sb2;
2005
2006 sb = page_address(rdev->sb_page);
2007 events_sb = le64_to_cpu(sb->events);
2008
2009 /*
2010 * Initialise to 1 if this is a new superblock.
2011 */
2012 mddev->events = events_sb ? : 1;
2013
2014 mddev->reshape_position = MaxSector;
2015
2016 /*
2017 * Reshaping is supported, e.g. reshape_position is valid
2018 * in superblock and superblock content is authoritative.
2019 */
2020 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2021 /* Superblock is authoritative wrt given raid set layout! */
2022 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2023 mddev->level = le32_to_cpu(sb->level);
2024 mddev->layout = le32_to_cpu(sb->layout);
2025 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2026 mddev->new_level = le32_to_cpu(sb->new_level);
2027 mddev->new_layout = le32_to_cpu(sb->new_layout);
2028 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2029 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2030 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2031
2032 /* raid was reshaping and got interrupted */
2033 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2034 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2035 DMERR("Reshape requested but raid set is still reshaping");
2036 return -EINVAL;
2037 }
2038
2039 if (mddev->delta_disks < 0 ||
2040 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2041 mddev->reshape_backwards = 1;
2042 else
2043 mddev->reshape_backwards = 0;
2044
2045 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2046 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2047 }
2048
2049 } else {
2050 /*
2051 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2052 */
2053 if (le32_to_cpu(sb->level) != mddev->level) {
2054 DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2055 return -EINVAL;
2056 }
2057 if (le32_to_cpu(sb->layout) != mddev->layout) {
2058 DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2059 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2060 DMERR(" Old layout: %s w/ %d copies",
2061 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2062 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2063 DMERR(" New layout: %s w/ %d copies",
2064 raid10_md_layout_to_format(mddev->layout),
2065 raid10_md_layout_to_copies(mddev->layout));
2066 return -EINVAL;
2067 }
2068 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2069 DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2070 return -EINVAL;
2071 }
2072
2073 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2074 if (!rt_is_raid1(rs->raid_type) &&
2075 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2076 DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2077 sb->num_devices, mddev->raid_disks);
2078 return -EINVAL;
2079 }
2080
2081 /* Table line is checked vs. authoritative superblock */
2082 rs_set_new(rs);
2083 }
2084
2085 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2086 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2087
2088 /*
2089 * During load, we set FirstUse if a new superblock was written.
2090 * There are two reasons we might not have a superblock:
2091 * 1) The raid set is brand new - in which case, all of the
2092 * devices must have their In_sync bit set. Also,
2093 * recovery_cp must be 0, unless forced.
2094 * 2) This is a new device being added to an old raid set
2095 * and the new device needs to be rebuilt - in which
2096 * case the In_sync bit will /not/ be set and
2097 * recovery_cp must be MaxSector.
2098 * 3) This is/are a new device(s) being added to an old
2099 * raid set during takeover to a higher raid level
2100 * to provide capacity for redundancy or during reshape
2101 * to add capacity to grow the raid set.
2102 */
2103 d = 0;
2104 rdev_for_each(r, mddev) {
2105 if (test_bit(FirstUse, &r->flags))
2106 new_devs++;
2107
2108 if (!test_bit(In_sync, &r->flags)) {
2109 DMINFO("Device %d specified for rebuild; clearing superblock",
2110 r->raid_disk);
2111 rebuilds++;
2112
2113 if (test_bit(FirstUse, &r->flags))
2114 rebuild_and_new++;
2115 }
2116
2117 d++;
2118 }
2119
2120 if (new_devs == rs->raid_disks || !rebuilds) {
2121 /* Replace a broken device */
2122 if (new_devs == 1 && !rs->delta_disks)
2123 ;
2124 if (new_devs == rs->raid_disks) {
2125 DMINFO("Superblocks created for new raid set");
2126 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2127 } else if (new_devs != rebuilds &&
2128 new_devs != rs->delta_disks) {
2129 DMERR("New device injected into existing raid set without "
2130 "'delta_disks' or 'rebuild' parameter specified");
2131 return -EINVAL;
2132 }
2133 } else if (new_devs && new_devs != rebuilds) {
2134 DMERR("%u 'rebuild' devices cannot be injected into"
2135 " a raid set with %u other first-time devices",
2136 rebuilds, new_devs);
2137 return -EINVAL;
2138 } else if (rebuilds) {
2139 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2140 DMERR("new device%s provided without 'rebuild'",
2141 new_devs > 1 ? "s" : "");
2142 return -EINVAL;
2143 } else if (rs_is_recovering(rs)) {
2144 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2145 (unsigned long long) mddev->recovery_cp);
2146 return -EINVAL;
2147 } else if (rs_is_reshaping(rs)) {
2148 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2149 (unsigned long long) mddev->reshape_position);
2150 return -EINVAL;
2151 }
2152 }
2153
2154 /*
2155 * Now we set the Faulty bit for those devices that are
2156 * recorded in the superblock as failed.
2157 */
2158 sb_retrieve_failed_devices(sb, failed_devices);
2159 rdev_for_each(r, mddev) {
2160 if (!r->sb_page)
2161 continue;
2162 sb2 = page_address(r->sb_page);
2163 sb2->failed_devices = 0;
2164 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2165
2166 /*
2167 * Check for any device re-ordering.
2168 */
2169 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2170 role = le32_to_cpu(sb2->array_position);
2171 if (role < 0)
2172 continue;
2173
2174 if (role != r->raid_disk) {
2175 if (__is_raid10_near(mddev->layout)) {
2176 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2177 rs->raid_disks % rs->raid10_copies) {
2178 rs->ti->error =
2179 "Cannot change raid10 near set to odd # of devices!";
2180 return -EINVAL;
2181 }
2182
2183 sb2->array_position = cpu_to_le32(r->raid_disk);
2184
2185 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2186 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2187 !rt_is_raid1(rs->raid_type)) {
2188 rs->ti->error = "Cannot change device positions in raid set";
2189 return -EINVAL;
2190 }
2191
2192 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2193 }
2194
2195 /*
2196 * Partial recovery is performed on
2197 * returning failed devices.
2198 */
2199 if (test_bit(role, (void *) failed_devices))
2200 set_bit(Faulty, &r->flags);
2201 }
2202 }
2203
2204 return 0;
2205 }
2206
2207 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2208 {
2209 struct mddev *mddev = &rs->md;
2210 struct dm_raid_superblock *sb;
2211
2212 if (rs_is_raid0(rs) || !rdev->sb_page)
2213 return 0;
2214
2215 sb = page_address(rdev->sb_page);
2216
2217 /*
2218 * If mddev->events is not set, we know we have not yet initialized
2219 * the array.
2220 */
2221 if (!mddev->events && super_init_validation(rs, rdev))
2222 return -EINVAL;
2223
2224 if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2225 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2226 return -EINVAL;
2227 }
2228
2229 if (sb->incompat_features) {
2230 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2231 return -EINVAL;
2232 }
2233
2234 /* Enable bitmap creation for RAID levels != 0 */
2235 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2236 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2237
2238 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2239 /* Retrieve device size stored in superblock to be prepared for shrink */
2240 rdev->sectors = le64_to_cpu(sb->sectors);
2241 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2242 if (rdev->recovery_offset == MaxSector)
2243 set_bit(In_sync, &rdev->flags);
2244 /*
2245 * If no reshape in progress -> we're recovering single
2246 * disk(s) and have to set the device(s) to out-of-sync
2247 */
2248 else if (!rs_is_reshaping(rs))
2249 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2250 }
2251
2252 /*
2253 * If a device comes back, set it as not In_sync and no longer faulty.
2254 */
2255 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2256 rdev->recovery_offset = 0;
2257 clear_bit(In_sync, &rdev->flags);
2258 rdev->saved_raid_disk = rdev->raid_disk;
2259 }
2260
2261 /* Reshape support -> restore repective data offsets */
2262 rdev->data_offset = le64_to_cpu(sb->data_offset);
2263 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2264
2265 return 0;
2266 }
2267
2268 /*
2269 * Analyse superblocks and select the freshest.
2270 */
2271 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2272 {
2273 int r;
2274 struct raid_dev *dev;
2275 struct md_rdev *rdev, *tmp, *freshest;
2276 struct mddev *mddev = &rs->md;
2277
2278 freshest = NULL;
2279 rdev_for_each_safe(rdev, tmp, mddev) {
2280 /*
2281 * Skipping super_load due to CTR_FLAG_SYNC will cause
2282 * the array to undergo initialization again as
2283 * though it were new. This is the intended effect
2284 * of the "sync" directive.
2285 *
2286 * When reshaping capability is added, we must ensure
2287 * that the "sync" directive is disallowed during the
2288 * reshape.
2289 */
2290 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2291 continue;
2292
2293 if (!rdev->meta_bdev)
2294 continue;
2295
2296 r = super_load(rdev, freshest);
2297
2298 switch (r) {
2299 case 1:
2300 freshest = rdev;
2301 break;
2302 case 0:
2303 break;
2304 default:
2305 dev = container_of(rdev, struct raid_dev, rdev);
2306 if (dev->meta_dev)
2307 dm_put_device(ti, dev->meta_dev);
2308
2309 dev->meta_dev = NULL;
2310 rdev->meta_bdev = NULL;
2311
2312 if (rdev->sb_page)
2313 put_page(rdev->sb_page);
2314
2315 rdev->sb_page = NULL;
2316
2317 rdev->sb_loaded = 0;
2318
2319 /*
2320 * We might be able to salvage the data device
2321 * even though the meta device has failed. For
2322 * now, we behave as though '- -' had been
2323 * set for this device in the table.
2324 */
2325 if (dev->data_dev)
2326 dm_put_device(ti, dev->data_dev);
2327
2328 dev->data_dev = NULL;
2329 rdev->bdev = NULL;
2330
2331 list_del(&rdev->same_set);
2332 }
2333 }
2334
2335 if (!freshest)
2336 return 0;
2337
2338 if (validate_raid_redundancy(rs)) {
2339 rs->ti->error = "Insufficient redundancy to activate array";
2340 return -EINVAL;
2341 }
2342
2343 /*
2344 * Validation of the freshest device provides the source of
2345 * validation for the remaining devices.
2346 */
2347 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2348 if (super_validate(rs, freshest))
2349 return -EINVAL;
2350
2351 rdev_for_each(rdev, mddev)
2352 if ((rdev != freshest) && super_validate(rs, rdev))
2353 return -EINVAL;
2354 return 0;
2355 }
2356
2357 /*
2358 * Adjust data_offset and new_data_offset on all disk members of @rs
2359 * for out of place reshaping if requested by contructor
2360 *
2361 * We need free space at the beginning of each raid disk for forward
2362 * and at the end for backward reshapes which userspace has to provide
2363 * via remapping/reordering of space.
2364 */
2365 static int rs_adjust_data_offsets(struct raid_set *rs)
2366 {
2367 sector_t data_offset = 0, new_data_offset = 0;
2368 struct md_rdev *rdev;
2369
2370 /* Constructor did not request data offset change */
2371 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2372 if (!rs_is_reshapable(rs))
2373 goto out;
2374
2375 return 0;
2376 }
2377
2378 /* HM FIXME: get InSync raid_dev? */
2379 rdev = &rs->dev[0].rdev;
2380
2381 if (rs->delta_disks < 0) {
2382 /*
2383 * Removing disks (reshaping backwards):
2384 *
2385 * - before reshape: data is at offset 0 and free space
2386 * is at end of each component LV
2387 *
2388 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2389 */
2390 data_offset = 0;
2391 new_data_offset = rs->data_offset;
2392
2393 } else if (rs->delta_disks > 0) {
2394 /*
2395 * Adding disks (reshaping forwards):
2396 *
2397 * - before reshape: data is at offset rs->data_offset != 0 and
2398 * free space is at begin of each component LV
2399 *
2400 * - after reshape: data is at offset 0 on each component LV
2401 */
2402 data_offset = rs->data_offset;
2403 new_data_offset = 0;
2404
2405 } else {
2406 /*
2407 * User space passes in 0 for data offset after having removed reshape space
2408 *
2409 * - or - (data offset != 0)
2410 *
2411 * Changing RAID layout or chunk size -> toggle offsets
2412 *
2413 * - before reshape: data is at offset rs->data_offset 0 and
2414 * free space is at end of each component LV
2415 * -or-
2416 * data is at offset rs->data_offset != 0 and
2417 * free space is at begin of each component LV
2418 *
2419 * - after reshape: data is at offset 0 if i was at offset != 0
2420 * of at offset != 0 if it was at offset 0
2421 * on each component LV
2422 *
2423 */
2424 data_offset = rs->data_offset ? rdev->data_offset : 0;
2425 new_data_offset = data_offset ? 0 : rs->data_offset;
2426 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2427 }
2428
2429 /*
2430 * Make sure we got a minimum amount of free sectors per device
2431 */
2432 if (rs->data_offset &&
2433 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2434 rs->ti->error = data_offset ? "No space for forward reshape" :
2435 "No space for backward reshape";
2436 return -ENOSPC;
2437 }
2438 out:
2439 /* Adjust data offsets on all rdevs */
2440 rdev_for_each(rdev, &rs->md) {
2441 rdev->data_offset = data_offset;
2442 rdev->new_data_offset = new_data_offset;
2443 }
2444
2445 return 0;
2446 }
2447
2448 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2449 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2450 {
2451 int i = 0;
2452 struct md_rdev *rdev;
2453
2454 rdev_for_each(rdev, &rs->md) {
2455 rdev->raid_disk = i++;
2456 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2457 }
2458 }
2459
2460 /*
2461 * Setup @rs for takeover by a different raid level
2462 */
2463 static int rs_setup_takeover(struct raid_set *rs)
2464 {
2465 struct mddev *mddev = &rs->md;
2466 struct md_rdev *rdev;
2467 unsigned int d = mddev->raid_disks = rs->raid_disks;
2468 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2469
2470 if (rt_is_raid10(rs->raid_type)) {
2471 if (mddev->level == 0) {
2472 /* Userpace reordered disks -> adjust raid_disk indexes */
2473 __reorder_raid_disk_indexes(rs);
2474
2475 /* raid0 -> raid10_far layout */
2476 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2477 rs->raid10_copies);
2478 } else if (mddev->level == 1)
2479 /* raid1 -> raid10_near layout */
2480 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2481 rs->raid_disks);
2482 else
2483 return -EINVAL;
2484
2485 }
2486
2487 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2488 mddev->recovery_cp = MaxSector;
2489
2490 while (d--) {
2491 rdev = &rs->dev[d].rdev;
2492
2493 if (test_bit(d, (void *) rs->rebuild_disks)) {
2494 clear_bit(In_sync, &rdev->flags);
2495 clear_bit(Faulty, &rdev->flags);
2496 mddev->recovery_cp = rdev->recovery_offset = 0;
2497 /* Bitmap has to be created when we do an "up" takeover */
2498 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2499 }
2500
2501 rdev->new_data_offset = new_data_offset;
2502 }
2503
2504 return 0;
2505 }
2506
2507 /*
2508 *
2509 * - change raid layout
2510 * - change chunk size
2511 * - add disks
2512 * - remove disks
2513 */
2514 static int rs_setup_reshape(struct raid_set *rs)
2515 {
2516 int r = 0;
2517 unsigned int cur_raid_devs, d;
2518 struct mddev *mddev = &rs->md;
2519 struct md_rdev *rdev;
2520
2521 mddev->delta_disks = rs->delta_disks;
2522 cur_raid_devs = mddev->raid_disks;
2523
2524 /* Ignore impossible layout change whilst adding/removing disks */
2525 if (mddev->delta_disks &&
2526 mddev->layout != mddev->new_layout) {
2527 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2528 mddev->new_layout = mddev->layout;
2529 }
2530
2531 /*
2532 * Adjust array size:
2533 *
2534 * - in case of adding disks, array size has
2535 * to grow after the disk adding reshape,
2536 * which'll hapen in the event handler;
2537 * reshape will happen forward, so space has to
2538 * be available at the beginning of each disk
2539 *
2540 * - in case of removing disks, array size
2541 * has to shrink before starting the reshape,
2542 * which'll happen here;
2543 * reshape will happen backward, so space has to
2544 * be available at the end of each disk
2545 *
2546 * - data_offset and new_data_offset are
2547 * adjusted for aforementioned out of place
2548 * reshaping based on userspace passing in
2549 * the "data_offset <sectors>" key/value
2550 * pair via the constructor
2551 */
2552
2553 /* Add disk(s) */
2554 if (rs->delta_disks > 0) {
2555 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2556 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2557 rdev = &rs->dev[d].rdev;
2558 clear_bit(In_sync, &rdev->flags);
2559
2560 /*
2561 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2562 * by md, which'll store that erroneously in the superblock on reshape
2563 */
2564 rdev->saved_raid_disk = -1;
2565 rdev->raid_disk = d;
2566
2567 rdev->sectors = mddev->dev_sectors;
2568 rdev->recovery_offset = MaxSector;
2569 }
2570
2571 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2572
2573 /* Remove disk(s) */
2574 } else if (rs->delta_disks < 0) {
2575 r = rs_set_dev_and_array_sectors(rs, true);
2576 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2577
2578 /* Change layout and/or chunk size */
2579 } else {
2580 /*
2581 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2582 *
2583 * keeping number of disks and do layout change ->
2584 *
2585 * toggle reshape_backward depending on data_offset:
2586 *
2587 * - free space upfront -> reshape forward
2588 *
2589 * - free space at the end -> reshape backward
2590 *
2591 *
2592 * This utilizes free reshape space avoiding the need
2593 * for userspace to move (parts of) LV segments in
2594 * case of layout/chunksize change (for disk
2595 * adding/removing reshape space has to be at
2596 * the proper address (see above with delta_disks):
2597 *
2598 * add disk(s) -> begin
2599 * remove disk(s)-> end
2600 */
2601 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2602 }
2603
2604 return r;
2605 }
2606
2607 /*
2608 * Enable/disable discard support on RAID set depending on
2609 * RAID level and discard properties of underlying RAID members.
2610 */
2611 static void configure_discard_support(struct raid_set *rs)
2612 {
2613 int i;
2614 bool raid456;
2615 struct dm_target *ti = rs->ti;
2616
2617 /* Assume discards not supported until after checks below. */
2618 ti->discards_supported = false;
2619
2620 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2621 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2622
2623 for (i = 0; i < rs->md.raid_disks; i++) {
2624 struct request_queue *q;
2625
2626 if (!rs->dev[i].rdev.bdev)
2627 continue;
2628
2629 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2630 if (!q || !blk_queue_discard(q))
2631 return;
2632
2633 if (raid456) {
2634 if (!q->limits.discard_zeroes_data)
2635 return;
2636 if (!devices_handle_discard_safely) {
2637 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2638 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2639 return;
2640 }
2641 }
2642 }
2643
2644 /* All RAID members properly support discards */
2645 ti->discards_supported = true;
2646
2647 /*
2648 * RAID1 and RAID10 personalities require bio splitting,
2649 * RAID0/4/5/6 don't and process large discard bios properly.
2650 */
2651 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2652 ti->num_discard_bios = 1;
2653 }
2654
2655 /*
2656 * Construct a RAID0/1/10/4/5/6 mapping:
2657 * Args:
2658 * <raid_type> <#raid_params> <raid_params>{0,} \
2659 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2660 *
2661 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2662 * details on possible <raid_params>.
2663 *
2664 * Userspace is free to initialize the metadata devices, hence the superblocks to
2665 * enforce recreation based on the passed in table parameters.
2666 *
2667 */
2668 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2669 {
2670 int r;
2671 struct raid_type *rt;
2672 unsigned num_raid_params, num_raid_devs;
2673 sector_t calculated_dev_sectors;
2674 struct raid_set *rs = NULL;
2675 const char *arg;
2676 struct rs_layout rs_layout;
2677 struct dm_arg_set as = { argc, argv }, as_nrd;
2678 struct dm_arg _args[] = {
2679 { 0, as.argc, "Cannot understand number of raid parameters" },
2680 { 1, 254, "Cannot understand number of raid devices parameters" }
2681 };
2682
2683 /* Must have <raid_type> */
2684 arg = dm_shift_arg(&as);
2685 if (!arg) {
2686 ti->error = "No arguments";
2687 return -EINVAL;
2688 }
2689
2690 rt = get_raid_type(arg);
2691 if (!rt) {
2692 ti->error = "Unrecognised raid_type";
2693 return -EINVAL;
2694 }
2695
2696 /* Must have <#raid_params> */
2697 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2698 return -EINVAL;
2699
2700 /* number of raid device tupples <meta_dev data_dev> */
2701 as_nrd = as;
2702 dm_consume_args(&as_nrd, num_raid_params);
2703 _args[1].max = (as_nrd.argc - 1) / 2;
2704 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2705 return -EINVAL;
2706
2707 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2708 ti->error = "Invalid number of supplied raid devices";
2709 return -EINVAL;
2710 }
2711
2712 rs = raid_set_alloc(ti, rt, num_raid_devs);
2713 if (IS_ERR(rs))
2714 return PTR_ERR(rs);
2715
2716 r = parse_raid_params(rs, &as, num_raid_params);
2717 if (r)
2718 goto bad;
2719
2720 r = parse_dev_params(rs, &as);
2721 if (r)
2722 goto bad;
2723
2724 rs->md.sync_super = super_sync;
2725
2726 r = rs_set_dev_and_array_sectors(rs, false);
2727 if (r)
2728 return r;
2729
2730 calculated_dev_sectors = rs->dev[0].rdev.sectors;
2731
2732 /*
2733 * Backup any new raid set level, layout, ...
2734 * requested to be able to compare to superblock
2735 * members for conversion decisions.
2736 */
2737 rs_config_backup(rs, &rs_layout);
2738
2739 r = analyse_superblocks(ti, rs);
2740 if (r)
2741 goto bad;
2742
2743 rs_setup_recovery(rs, calculated_dev_sectors);
2744
2745 INIT_WORK(&rs->md.event_work, do_table_event);
2746 ti->private = rs;
2747 ti->num_flush_bios = 1;
2748
2749 /* Restore any requested new layout for conversion decision */
2750 rs_config_restore(rs, &rs_layout);
2751
2752 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2753 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2754 rs_set_new(rs);
2755 } else if (rs_is_reshaping(rs))
2756 ; /* skip rs setup */
2757 else if (rs_takeover_requested(rs)) {
2758 if (rs_is_reshaping(rs)) {
2759 ti->error = "Can't takeover a reshaping raid set";
2760 return -EPERM;
2761 }
2762
2763 /*
2764 * If a takeover is needed, just set the level to
2765 * the new requested one and allow the raid set to run.
2766 */
2767 r = rs_check_takeover(rs);
2768 if (r)
2769 return r;
2770
2771 r = rs_setup_takeover(rs);
2772 if (r)
2773 return r;
2774
2775 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2776 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2777 rs_set_new(rs);
2778 } else if (rs_reshape_requested(rs)) {
2779 if (rs_is_reshaping(rs)) {
2780 ti->error = "raid set already reshaping!";
2781 return -EPERM;
2782 }
2783
2784 if (rs_is_raid10(rs)) {
2785 if (rs->raid_disks != rs->md.raid_disks &&
2786 __is_raid10_near(rs->md.layout) &&
2787 rs->raid10_copies &&
2788 rs->raid10_copies != __raid10_near_copies(rs->md.layout)) {
2789 /*
2790 * raid disk have to be multiple of data copies to allow this conversion,
2791 *
2792 * This is actually not a reshape it is a
2793 * rebuild of any additional mirrors per group
2794 */
2795 if (rs->raid_disks % rs->raid10_copies) {
2796 ti->error = "Can't reshape raid10 mirror groups";
2797 return -EINVAL;
2798 }
2799
2800 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2801 __reorder_raid_disk_indexes(rs);
2802 rs->md.layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2803 rs->raid10_copies);
2804 rs->md.new_layout = rs->md.layout;
2805
2806 } else
2807 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2808
2809 } else if (rs_is_raid456(rs))
2810 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2811
2812 /*
2813 * HM FIXME: process raid1 via delta_disks as well?
2814 * Would cause allocations in raid1->check_reshape
2815 * though, thus more issues with potential failures
2816 */
2817 else if (rs_is_raid1(rs)) {
2818 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2819 rs->md.raid_disks = rs->raid_disks;
2820 }
2821
2822 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2823 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2824 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2825 }
2826
2827 if (rs->md.raid_disks < rs->raid_disks)
2828 set_bit(MD_ARRAY_FIRST_USE, &rs->md.flags);
2829
2830 rs_set_cur(rs);
2831 rs_setup_recovery(rs, MaxSector);
2832 } else {
2833 rs_set_cur(rs);
2834 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2835 0 : calculated_dev_sectors);
2836 }
2837
2838 /* If constructor requested it, change data and new_data offsets */
2839 r = rs_adjust_data_offsets(rs);
2840 if (r)
2841 return r;
2842
2843 /* Start raid set read-only and assumed clean to change in raid_resume() */
2844 rs->md.ro = 1;
2845 rs->md.in_sync = 1;
2846 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2847
2848 /* Has to be held on running the array */
2849 mddev_lock_nointr(&rs->md);
2850 r = md_run(&rs->md);
2851 rs->md.in_sync = 0; /* Assume already marked dirty */
2852
2853 if (r) {
2854 ti->error = "Failed to run raid array";
2855 mddev_unlock(&rs->md);
2856 goto bad;
2857 }
2858
2859 rs->callbacks.congested_fn = raid_is_congested;
2860 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2861
2862 mddev_suspend(&rs->md);
2863
2864 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2865 if (rs_is_raid456(rs)) {
2866 r = rs_set_raid456_stripe_cache(rs);
2867 if (r)
2868 goto bad_stripe_cache;
2869 }
2870
2871 /* Now do an early reshape check */
2872 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2873 r = rs_check_reshape(rs);
2874 if (r)
2875 return r;
2876
2877 /* Restore new, ctr requested layout to perform check */
2878 rs_config_restore(rs, &rs_layout);
2879
2880 r = rs->md.pers->check_reshape(&rs->md);
2881 if (r) {
2882 ti->error = "Reshape check failed";
2883 goto bad_check_reshape;
2884 }
2885 }
2886
2887 mddev_unlock(&rs->md);
2888 return 0;
2889
2890 bad_stripe_cache:
2891 bad_check_reshape:
2892 md_stop(&rs->md);
2893 bad:
2894 raid_set_free(rs);
2895
2896 return r;
2897 }
2898
2899 static void raid_dtr(struct dm_target *ti)
2900 {
2901 struct raid_set *rs = ti->private;
2902
2903 list_del_init(&rs->callbacks.list);
2904 md_stop(&rs->md);
2905 raid_set_free(rs);
2906 }
2907
2908 static int raid_map(struct dm_target *ti, struct bio *bio)
2909 {
2910 struct raid_set *rs = ti->private;
2911 struct mddev *mddev = &rs->md;
2912
2913 /*
2914 * If we're reshaping to add disk(s)), ti->len and
2915 * mddev->array_sectors will differ during the process
2916 * (ti->len > mddev->array_sectors), so we have to requeue
2917 * bios with addresses > mddev->array_sectors here or
2918 * or there will occur accesses past EOD of the component
2919 * data images thus erroring the raid set.
2920 */
2921 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
2922 return DM_MAPIO_REQUEUE;
2923
2924 mddev->pers->make_request(mddev, bio);
2925
2926 return DM_MAPIO_SUBMITTED;
2927 }
2928
2929 /* Return string describing the current sync action of @mddev */
2930 static const char *decipher_sync_action(struct mddev *mddev)
2931 {
2932 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2933 return "frozen";
2934
2935 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2936 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2937 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2938 return "reshape";
2939
2940 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2941 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2942 return "resync";
2943 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2944 return "check";
2945 return "repair";
2946 }
2947
2948 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2949 return "recover";
2950 }
2951
2952 return "idle";
2953 }
2954
2955 /*
2956 * Return status string @rdev
2957 *
2958 * Status characters:
2959 *
2960 * 'D' = Dead/Failed device
2961 * 'a' = Alive but not in-sync
2962 * 'A' = Alive and in-sync
2963 */
2964 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
2965 {
2966 if (test_bit(Faulty, &rdev->flags))
2967 return "D";
2968 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
2969 return "a";
2970 else
2971 return "A";
2972 }
2973
2974 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
2975 static sector_t rs_get_progress(struct raid_set *rs,
2976 sector_t resync_max_sectors, bool *array_in_sync)
2977 {
2978 sector_t r, recovery_cp, curr_resync_completed;
2979 struct mddev *mddev = &rs->md;
2980
2981 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
2982 recovery_cp = mddev->recovery_cp;
2983 *array_in_sync = false;
2984
2985 if (rs_is_raid0(rs)) {
2986 r = resync_max_sectors;
2987 *array_in_sync = true;
2988
2989 } else {
2990 r = mddev->reshape_position;
2991
2992 /* Reshape is relative to the array size */
2993 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
2994 r != MaxSector) {
2995 if (r == MaxSector) {
2996 *array_in_sync = true;
2997 r = resync_max_sectors;
2998 } else {
2999 /* Got to reverse on backward reshape */
3000 if (mddev->reshape_backwards)
3001 r = mddev->array_sectors - r;
3002
3003 /* Devide by # of data stripes */
3004 sector_div(r, mddev_data_stripes(rs));
3005 }
3006
3007 /* Sync is relative to the component device size */
3008 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3009 r = curr_resync_completed;
3010 else
3011 r = recovery_cp;
3012
3013 if (r == MaxSector) {
3014 /*
3015 * Sync complete.
3016 */
3017 *array_in_sync = true;
3018 r = resync_max_sectors;
3019 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3020 /*
3021 * If "check" or "repair" is occurring, the raid set has
3022 * undergone an initial sync and the health characters
3023 * should not be 'a' anymore.
3024 */
3025 *array_in_sync = true;
3026 } else {
3027 struct md_rdev *rdev;
3028
3029 /*
3030 * The raid set may be doing an initial sync, or it may
3031 * be rebuilding individual components. If all the
3032 * devices are In_sync, then it is the raid set that is
3033 * being initialized.
3034 */
3035 rdev_for_each(rdev, mddev)
3036 if (!test_bit(In_sync, &rdev->flags))
3037 *array_in_sync = true;
3038 #if 0
3039 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3040 #endif
3041 }
3042 }
3043
3044 return r;
3045 }
3046
3047 /* Helper to return @dev name or "-" if !@dev */
3048 static const char *__get_dev_name(struct dm_dev *dev)
3049 {
3050 return dev ? dev->name : "-";
3051 }
3052
3053 static void raid_status(struct dm_target *ti, status_type_t type,
3054 unsigned int status_flags, char *result, unsigned int maxlen)
3055 {
3056 struct raid_set *rs = ti->private;
3057 struct mddev *mddev = &rs->md;
3058 struct r5conf *conf = mddev->private;
3059 int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3060 bool array_in_sync;
3061 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3062 unsigned int sz = 0;
3063 unsigned int write_mostly_params = 0;
3064 sector_t progress, resync_max_sectors, resync_mismatches;
3065 const char *sync_action;
3066 struct raid_type *rt;
3067 struct md_rdev *rdev;
3068
3069 switch (type) {
3070 case STATUSTYPE_INFO:
3071 /* *Should* always succeed */
3072 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3073 if (!rt)
3074 return;
3075
3076 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3077
3078 /* Access most recent mddev properties for status output */
3079 smp_rmb();
3080 /* Get sensible max sectors even if raid set not yet started */
3081 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3082 mddev->resync_max_sectors : mddev->dev_sectors;
3083 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3084 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3085 atomic64_read(&mddev->resync_mismatches) : 0;
3086 sync_action = decipher_sync_action(&rs->md);
3087
3088 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3089 rdev_for_each(rdev, mddev)
3090 DMEMIT(__raid_dev_status(rdev, array_in_sync));
3091
3092 /*
3093 * In-sync/Reshape ratio:
3094 * The in-sync ratio shows the progress of:
3095 * - Initializing the raid set
3096 * - Rebuilding a subset of devices of the raid set
3097 * The user can distinguish between the two by referring
3098 * to the status characters.
3099 *
3100 * The reshape ratio shows the progress of
3101 * changing the raid layout or the number of
3102 * disks of a raid set
3103 */
3104 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3105 (unsigned long long) resync_max_sectors);
3106
3107 /*
3108 * v1.5.0+:
3109 *
3110 * Sync action:
3111 * See Documentation/device-mapper/dm-raid.txt for
3112 * information on each of these states.
3113 */
3114 DMEMIT(" %s", sync_action);
3115
3116 /*
3117 * v1.5.0+:
3118 *
3119 * resync_mismatches/mismatch_cnt
3120 * This field shows the number of discrepancies found when
3121 * performing a "check" of the raid set.
3122 */
3123 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3124
3125 /*
3126 * v1.9.0+:
3127 *
3128 * data_offset (needed for out of space reshaping)
3129 * This field shows the data offset into the data
3130 * image LV where the first stripes data starts.
3131 *
3132 * We keep data_offset equal on all raid disks of the set,
3133 * so retrieving it from the first raid disk is sufficient.
3134 */
3135 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3136 break;
3137
3138 case STATUSTYPE_TABLE:
3139 /* Report the table line string you would use to construct this raid set */
3140
3141 /* Calculate raid parameter count */
3142 rdev_for_each(rdev, mddev)
3143 if (test_bit(WriteMostly, &rdev->flags))
3144 write_mostly_params += 2;
3145 raid_param_cnt += memweight(rs->rebuild_disks,
3146 DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
3147 write_mostly_params +
3148 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3149 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3150 /* Emit table line */
3151 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3152 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3153 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3154 raid10_md_layout_to_format(mddev->layout));
3155 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3156 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3157 raid10_md_layout_to_copies(mddev->layout));
3158 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3159 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3160 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3161 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3162 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3163 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3164 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3165 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3166 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3167 (unsigned long long) rs->data_offset);
3168 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3169 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3170 mddev->bitmap_info.daemon_sleep);
3171 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3172 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3173 mddev->delta_disks);
3174 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3175 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3176 max_nr_stripes);
3177 rdev_for_each(rdev, mddev)
3178 if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
3179 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3180 rdev->raid_disk);
3181 rdev_for_each(rdev, mddev)
3182 if (test_bit(WriteMostly, &rdev->flags))
3183 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3184 rdev->raid_disk);
3185 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3186 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3187 mddev->bitmap_info.max_write_behind);
3188 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3189 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3190 mddev->sync_speed_max);
3191 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3192 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3193 mddev->sync_speed_min);
3194 DMEMIT(" %d", rs->raid_disks);
3195 rdev_for_each(rdev, mddev) {
3196 struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
3197
3198 DMEMIT(" %s %s", __get_dev_name(rd->meta_dev),
3199 __get_dev_name(rd->data_dev));
3200 }
3201 }
3202 }
3203
3204 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
3205 {
3206 struct raid_set *rs = ti->private;
3207 struct mddev *mddev = &rs->md;
3208
3209 if (!mddev->pers || !mddev->pers->sync_request)
3210 return -EINVAL;
3211
3212 if (!strcasecmp(argv[0], "frozen"))
3213 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3214 else
3215 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3216
3217 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3218 if (mddev->sync_thread) {
3219 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3220 md_reap_sync_thread(mddev);
3221 }
3222 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3223 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3224 return -EBUSY;
3225 else if (!strcasecmp(argv[0], "resync"))
3226 ; /* MD_RECOVERY_NEEDED set below */
3227 else if (!strcasecmp(argv[0], "recover"))
3228 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3229 else {
3230 if (!strcasecmp(argv[0], "check"))
3231 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3232 else if (!!strcasecmp(argv[0], "repair"))
3233 return -EINVAL;
3234 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3235 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3236 }
3237 if (mddev->ro == 2) {
3238 /* A write to sync_action is enough to justify
3239 * canceling read-auto mode
3240 */
3241 mddev->ro = 0;
3242 if (!mddev->suspended && mddev->sync_thread)
3243 md_wakeup_thread(mddev->sync_thread);
3244 }
3245 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3246 if (!mddev->suspended && mddev->thread)
3247 md_wakeup_thread(mddev->thread);
3248
3249 return 0;
3250 }
3251
3252 static int raid_iterate_devices(struct dm_target *ti,
3253 iterate_devices_callout_fn fn, void *data)
3254 {
3255 struct raid_set *rs = ti->private;
3256 unsigned i;
3257 int r = 0;
3258
3259 for (i = 0; !r && i < rs->md.raid_disks; i++)
3260 if (rs->dev[i].data_dev)
3261 r = fn(ti,
3262 rs->dev[i].data_dev,
3263 0, /* No offset on data devs */
3264 rs->md.dev_sectors,
3265 data);
3266
3267 return r;
3268 }
3269
3270 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3271 {
3272 struct raid_set *rs = ti->private;
3273 unsigned chunk_size = rs->md.chunk_sectors << 9;
3274 struct r5conf *conf = rs->md.private;
3275
3276 blk_limits_io_min(limits, chunk_size);
3277 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
3278 }
3279
3280 static void raid_presuspend(struct dm_target *ti)
3281 {
3282 struct raid_set *rs = ti->private;
3283
3284 md_stop_writes(&rs->md);
3285 }
3286
3287 static void raid_postsuspend(struct dm_target *ti)
3288 {
3289 struct raid_set *rs = ti->private;
3290
3291 if (test_and_clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3292 if (!rs->md.suspended)
3293 mddev_suspend(&rs->md);
3294 rs->md.ro = 1;
3295 }
3296 }
3297
3298 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3299 {
3300 int i;
3301 uint64_t failed_devices, cleared_failed_devices = 0;
3302 unsigned long flags;
3303 struct dm_raid_superblock *sb;
3304 struct md_rdev *r;
3305
3306 for (i = 0; i < rs->md.raid_disks; i++) {
3307 r = &rs->dev[i].rdev;
3308 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3309 sync_page_io(r, 0, r->sb_size, r->sb_page,
3310 REQ_OP_READ, 0, true)) {
3311 DMINFO("Faulty %s device #%d has readable super block."
3312 " Attempting to revive it.",
3313 rs->raid_type->name, i);
3314
3315 /*
3316 * Faulty bit may be set, but sometimes the array can
3317 * be suspended before the personalities can respond
3318 * by removing the device from the array (i.e. calling
3319 * 'hot_remove_disk'). If they haven't yet removed
3320 * the failed device, its 'raid_disk' number will be
3321 * '>= 0' - meaning we must call this function
3322 * ourselves.
3323 */
3324 if ((r->raid_disk >= 0) &&
3325 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
3326 /* Failed to revive this device, try next */
3327 continue;
3328
3329 r->raid_disk = i;
3330 r->saved_raid_disk = i;
3331 flags = r->flags;
3332 clear_bit(Faulty, &r->flags);
3333 clear_bit(WriteErrorSeen, &r->flags);
3334 clear_bit(In_sync, &r->flags);
3335 if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
3336 r->raid_disk = -1;
3337 r->saved_raid_disk = -1;
3338 r->flags = flags;
3339 } else {
3340 r->recovery_offset = 0;
3341 cleared_failed_devices |= 1 << i;
3342 }
3343 }
3344 }
3345 if (cleared_failed_devices) {
3346 rdev_for_each(r, &rs->md) {
3347 sb = page_address(r->sb_page);
3348 failed_devices = le64_to_cpu(sb->failed_devices);
3349 failed_devices &= ~cleared_failed_devices;
3350 sb->failed_devices = cpu_to_le64(failed_devices);
3351 }
3352 }
3353 }
3354
3355 static int __load_dirty_region_bitmap(struct raid_set *rs)
3356 {
3357 int r = 0;
3358
3359 /* Try loading the bitmap unless "raid0", which does not have one */
3360 if (!rs_is_raid0(rs) &&
3361 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3362 r = bitmap_load(&rs->md);
3363 if (r)
3364 DMERR("Failed to load bitmap");
3365 }
3366
3367 return r;
3368 }
3369
3370 /* Enforce updating all superblocks */
3371 static void rs_update_sbs(struct raid_set *rs)
3372 {
3373 struct mddev *mddev = &rs->md;
3374 int ro = mddev->ro;
3375
3376 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3377 mddev->ro = 0;
3378 md_update_sb(mddev, 1);
3379 mddev->ro = ro;
3380 }
3381
3382 /*
3383 * Reshape changes raid algorithm of @rs to new one within personality
3384 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3385 * disks from a raid set thus growing/shrinking it or resizes the set
3386 *
3387 * Call mddev_lock_nointr() before!
3388 */
3389 static int rs_start_reshape(struct raid_set *rs)
3390 {
3391 int r;
3392 struct mddev *mddev = &rs->md;
3393 struct md_personality *pers = mddev->pers;
3394
3395 r = rs_setup_reshape(rs);
3396 if (r)
3397 return r;
3398
3399 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3400 if (mddev->suspended)
3401 mddev_resume(mddev);
3402
3403 /*
3404 * Check any reshape constraints enforced by the personalility
3405 *
3406 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3407 */
3408 r = pers->check_reshape(mddev);
3409 if (r) {
3410 rs->ti->error = "pers->check_reshape() failed";
3411 return r;
3412 }
3413
3414 /*
3415 * Personality may not provide start reshape method in which
3416 * case check_reshape above has already covered everything
3417 */
3418 if (pers->start_reshape) {
3419 r = pers->start_reshape(mddev);
3420 if (r) {
3421 rs->ti->error = "pers->start_reshape() failed";
3422 return r;
3423 }
3424 }
3425
3426 /* Suspend because a resume will happen in raid_resume() */
3427 if (!mddev->suspended)
3428 mddev_suspend(mddev);
3429
3430 /*
3431 * Now reshape got set up, update superblocks to
3432 * reflect the fact so that a table reload will
3433 * access proper superblock content in the ctr.
3434 */
3435 rs_update_sbs(rs);
3436
3437 return 0;
3438 }
3439
3440 static int raid_preresume(struct dm_target *ti)
3441 {
3442 int r;
3443 struct raid_set *rs = ti->private;
3444 struct mddev *mddev = &rs->md;
3445
3446 /* This is a resume after a suspend of the set -> it's already started */
3447 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3448 return 0;
3449
3450 /*
3451 * The superblocks need to be updated on disk if the
3452 * array is new or new devices got added (thus zeroed
3453 * out by userspace) or __load_dirty_region_bitmap
3454 * will overwrite them in core with old data or fail.
3455 */
3456 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3457 rs_update_sbs(rs);
3458
3459 /*
3460 * Disable/enable discard support on raid set after any
3461 * conversion, because devices can have been added
3462 */
3463 configure_discard_support(rs);
3464
3465 /* Load the bitmap from disk unless raid0 */
3466 r = __load_dirty_region_bitmap(rs);
3467 if (r)
3468 return r;
3469
3470 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3471 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3472 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3473 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3474 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3475 if (r)
3476 DMERR("Failed to resize bitmap");
3477 }
3478
3479 /* Check for any resize/reshape on @rs and adjust/initiate */
3480 /* Be prepared for mddev_resume() in raid_resume() */
3481 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3482 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3483 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3484 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3485 mddev->resync_min = mddev->recovery_cp;
3486 }
3487
3488 rs_set_capacity(rs);
3489
3490 /* Check for any reshape request and region size change unless new raid set */
3491 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3492 /* Initiate a reshape. */
3493 mddev_lock_nointr(mddev);
3494 r = rs_start_reshape(rs);
3495 mddev_unlock(mddev);
3496 if (r)
3497 DMWARN("Failed to check/start reshape, continuing without change");
3498 r = 0;
3499 }
3500
3501 return r;
3502 }
3503
3504 static void raid_resume(struct dm_target *ti)
3505 {
3506 struct raid_set *rs = ti->private;
3507 struct mddev *mddev = &rs->md;
3508
3509 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3510 /*
3511 * A secondary resume while the device is active.
3512 * Take this opportunity to check whether any failed
3513 * devices are reachable again.
3514 */
3515 attempt_restore_of_faulty_devices(rs);
3516 } else {
3517 mddev->ro = 0;
3518 mddev->in_sync = 0;
3519
3520 /*
3521 * When passing in flags to the ctr, we expect userspace
3522 * to reset them because they made it to the superblocks
3523 * and reload the mapping anyway.
3524 *
3525 * -> only unfreeze recovery in case of a table reload or
3526 * we'll have a bogus recovery/reshape position
3527 * retrieved from the superblock by the ctr because
3528 * the ongoing recovery/reshape will change it after read.
3529 */
3530 if (!test_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags))
3531 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3532
3533 if (mddev->suspended)
3534 mddev_resume(mddev);
3535 }
3536 }
3537
3538 static struct target_type raid_target = {
3539 .name = "raid",
3540 .version = {1, 9, 0},
3541 .module = THIS_MODULE,
3542 .ctr = raid_ctr,
3543 .dtr = raid_dtr,
3544 .map = raid_map,
3545 .status = raid_status,
3546 .message = raid_message,
3547 .iterate_devices = raid_iterate_devices,
3548 .io_hints = raid_io_hints,
3549 .presuspend = raid_presuspend,
3550 .postsuspend = raid_postsuspend,
3551 .preresume = raid_preresume,
3552 .resume = raid_resume,
3553 };
3554
3555 static int __init dm_raid_init(void)
3556 {
3557 DMINFO("Loading target version %u.%u.%u",
3558 raid_target.version[0],
3559 raid_target.version[1],
3560 raid_target.version[2]);
3561 return dm_register_target(&raid_target);
3562 }
3563
3564 static void __exit dm_raid_exit(void)
3565 {
3566 dm_unregister_target(&raid_target);
3567 }
3568
3569 module_init(dm_raid_init);
3570 module_exit(dm_raid_exit);
3571
3572 module_param(devices_handle_discard_safely, bool, 0644);
3573 MODULE_PARM_DESC(devices_handle_discard_safely,
3574 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3575
3576 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3577 MODULE_ALIAS("dm-raid0");
3578 MODULE_ALIAS("dm-raid1");
3579 MODULE_ALIAS("dm-raid10");
3580 MODULE_ALIAS("dm-raid4");
3581 MODULE_ALIAS("dm-raid5");
3582 MODULE_ALIAS("dm-raid6");
3583 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3584 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3585 MODULE_LICENSE("GPL");
This page took 0.104755 seconds and 6 git commands to generate.