dm raid: fix typo in write_mostly flag
[deliverable/linux.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22 /*
23 * Minimum sectors of free reshape space per raid device
24 */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30 * The following flags are used by dm-raid.c to set up the array state.
31 * They must be cleared before md_run is called.
32 */
33 #define FirstUse 10 /* rdev flag */
34
35 struct raid_dev {
36 /*
37 * Two DM devices, one to hold metadata and one to hold the
38 * actual data/parity. The reason for this is to not confuse
39 * ti->len and give more flexibility in altering size and
40 * characteristics.
41 *
42 * While it is possible for this device to be associated
43 * with a different physical device than the data_dev, it
44 * is intended for it to be the same.
45 * |--------- Physical Device ---------|
46 * |- meta_dev -|------ data_dev ------|
47 */
48 struct dm_dev *meta_dev;
49 struct dm_dev *data_dev;
50 struct md_rdev rdev;
51 };
52
53 /*
54 * Bits for establishing rs->ctr_flags
55 *
56 * 1 = no flag value
57 * 2 = flag with value
58 */
59 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77 * Flags for rs->ctr_flags field.
78 */
79 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96 * Definitions of various constructor flags to
97 * be used in checks of valid / invalid flags
98 * per raid level.
99 */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
105 CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109 CTR_FLAG_WRITE_MOSTLY | \
110 CTR_FLAG_DAEMON_SLEEP | \
111 CTR_FLAG_MIN_RECOVERY_RATE | \
112 CTR_FLAG_MAX_RECOVERY_RATE | \
113 CTR_FLAG_MAX_WRITE_BEHIND | \
114 CTR_FLAG_STRIPE_CACHE | \
115 CTR_FLAG_REGION_SIZE | \
116 CTR_FLAG_RAID10_COPIES | \
117 CTR_FLAG_RAID10_FORMAT | \
118 CTR_FLAG_DELTA_DISKS | \
119 CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
128 CTR_FLAG_REBUILD | \
129 CTR_FLAG_WRITE_MOSTLY | \
130 CTR_FLAG_DAEMON_SLEEP | \
131 CTR_FLAG_MIN_RECOVERY_RATE | \
132 CTR_FLAG_MAX_RECOVERY_RATE | \
133 CTR_FLAG_MAX_WRITE_BEHIND | \
134 CTR_FLAG_REGION_SIZE | \
135 CTR_FLAG_DATA_OFFSET)
136
137 /* "raid10" does not accept any raid1 or stripe cache options */
138 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
139 CTR_FLAG_REBUILD | \
140 CTR_FLAG_DAEMON_SLEEP | \
141 CTR_FLAG_MIN_RECOVERY_RATE | \
142 CTR_FLAG_MAX_RECOVERY_RATE | \
143 CTR_FLAG_REGION_SIZE | \
144 CTR_FLAG_RAID10_COPIES | \
145 CTR_FLAG_RAID10_FORMAT | \
146 CTR_FLAG_DELTA_DISKS | \
147 CTR_FLAG_DATA_OFFSET | \
148 CTR_FLAG_RAID10_USE_NEAR_SETS)
149
150 /*
151 * "raid4/5/6" do not accept any raid1 or raid10 specific options
152 *
153 * "raid6" does not accept "nosync", because it is not guaranteed
154 * that both parity and q-syndrome are being written properly with
155 * any writes
156 */
157 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
158 CTR_FLAG_REBUILD | \
159 CTR_FLAG_DAEMON_SLEEP | \
160 CTR_FLAG_MIN_RECOVERY_RATE | \
161 CTR_FLAG_MAX_RECOVERY_RATE | \
162 CTR_FLAG_MAX_WRITE_BEHIND | \
163 CTR_FLAG_STRIPE_CACHE | \
164 CTR_FLAG_REGION_SIZE | \
165 CTR_FLAG_DELTA_DISKS | \
166 CTR_FLAG_DATA_OFFSET)
167
168 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
169 CTR_FLAG_REBUILD | \
170 CTR_FLAG_DAEMON_SLEEP | \
171 CTR_FLAG_MIN_RECOVERY_RATE | \
172 CTR_FLAG_MAX_RECOVERY_RATE | \
173 CTR_FLAG_MAX_WRITE_BEHIND | \
174 CTR_FLAG_STRIPE_CACHE | \
175 CTR_FLAG_REGION_SIZE | \
176 CTR_FLAG_DELTA_DISKS | \
177 CTR_FLAG_DATA_OFFSET)
178 /* ...valid options definitions per raid level */
179
180 /*
181 * Flags for rs->runtime_flags field
182 * (RT_FLAG prefix meaning "runtime flag")
183 *
184 * These are all internal and used to define runtime state,
185 * e.g. to prevent another resume from preresume processing
186 * the raid set all over again.
187 */
188 #define RT_FLAG_RS_PRERESUMED 0
189 #define RT_FLAG_RS_RESUMED 1
190 #define RT_FLAG_RS_BITMAP_LOADED 2
191 #define RT_FLAG_UPDATE_SBS 3
192 #define RT_FLAG_RESHAPE_RS 4
193 #define RT_FLAG_KEEP_RS_FROZEN 5
194
195 /* Array elements of 64 bit needed for rebuild/write_mostly bits */
196 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
197
198 /*
199 * raid set level, layout and chunk sectors backup/restore
200 */
201 struct rs_layout {
202 int new_level;
203 int new_layout;
204 int new_chunk_sectors;
205 };
206
207 struct raid_set {
208 struct dm_target *ti;
209
210 uint32_t bitmap_loaded;
211 uint32_t stripe_cache_entries;
212 unsigned long ctr_flags;
213 unsigned long runtime_flags;
214
215 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
216
217 int raid_disks;
218 int delta_disks;
219 int data_offset;
220 int raid10_copies;
221 int requested_bitmap_chunk_sectors;
222
223 struct mddev md;
224 struct raid_type *raid_type;
225 struct dm_target_callbacks callbacks;
226
227 struct raid_dev dev[0];
228 };
229
230 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
231 {
232 struct mddev *mddev = &rs->md;
233
234 l->new_level = mddev->new_level;
235 l->new_layout = mddev->new_layout;
236 l->new_chunk_sectors = mddev->new_chunk_sectors;
237 }
238
239 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
240 {
241 struct mddev *mddev = &rs->md;
242
243 mddev->new_level = l->new_level;
244 mddev->new_layout = l->new_layout;
245 mddev->new_chunk_sectors = l->new_chunk_sectors;
246 }
247
248 /* raid10 algorithms (i.e. formats) */
249 #define ALGORITHM_RAID10_DEFAULT 0
250 #define ALGORITHM_RAID10_NEAR 1
251 #define ALGORITHM_RAID10_OFFSET 2
252 #define ALGORITHM_RAID10_FAR 3
253
254 /* Supported raid types and properties. */
255 static struct raid_type {
256 const char *name; /* RAID algorithm. */
257 const char *descr; /* Descriptor text for logging. */
258 const unsigned parity_devs; /* # of parity devices. */
259 const unsigned minimal_devs; /* minimal # of devices in set. */
260 const unsigned level; /* RAID level. */
261 const unsigned algorithm; /* RAID algorithm. */
262 } raid_types[] = {
263 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
264 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
265 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
266 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
267 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
268 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
269 {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
270 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
271 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
272 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
273 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
274 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
275 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
276 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
277 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
278 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
279 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
280 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
281 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
282 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
283 };
284
285 /* True, if @v is in inclusive range [@min, @max] */
286 static bool __within_range(long v, long min, long max)
287 {
288 return v >= min && v <= max;
289 }
290
291 /* All table line arguments are defined here */
292 static struct arg_name_flag {
293 const unsigned long flag;
294 const char *name;
295 } __arg_name_flags[] = {
296 { CTR_FLAG_SYNC, "sync"},
297 { CTR_FLAG_NOSYNC, "nosync"},
298 { CTR_FLAG_REBUILD, "rebuild"},
299 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
300 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
301 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
302 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
303 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
304 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
305 { CTR_FLAG_REGION_SIZE, "region_size"},
306 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
307 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
308 { CTR_FLAG_DATA_OFFSET, "data_offset"},
309 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
310 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
311 };
312
313 /* Return argument name string for given @flag */
314 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
315 {
316 if (hweight32(flag) == 1) {
317 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
318
319 while (anf-- > __arg_name_flags)
320 if (flag & anf->flag)
321 return anf->name;
322
323 } else
324 DMERR("%s called with more than one flag!", __func__);
325
326 return NULL;
327 }
328
329 /*
330 * bool helpers to test for various raid levels of a raid set,
331 * is. it's level as reported by the superblock rather than
332 * the requested raid_type passed to the constructor.
333 */
334 /* Return true, if raid set in @rs is raid0 */
335 static bool rs_is_raid0(struct raid_set *rs)
336 {
337 return !rs->md.level;
338 }
339
340 /* Return true, if raid set in @rs is raid1 */
341 static bool rs_is_raid1(struct raid_set *rs)
342 {
343 return rs->md.level == 1;
344 }
345
346 /* Return true, if raid set in @rs is raid10 */
347 static bool rs_is_raid10(struct raid_set *rs)
348 {
349 return rs->md.level == 10;
350 }
351
352 /* Return true, if raid set in @rs is level 6 */
353 static bool rs_is_raid6(struct raid_set *rs)
354 {
355 return rs->md.level == 6;
356 }
357
358 /* Return true, if raid set in @rs is level 4, 5 or 6 */
359 static bool rs_is_raid456(struct raid_set *rs)
360 {
361 return __within_range(rs->md.level, 4, 6);
362 }
363
364 /* Return true, if raid set in @rs is reshapable */
365 static unsigned int __is_raid10_far(int layout);
366 static bool rs_is_reshapable(struct raid_set *rs)
367 {
368 return rs_is_raid456(rs) ||
369 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
370 }
371
372 /* Return true, if raid set in @rs is recovering */
373 static bool rs_is_recovering(struct raid_set *rs)
374 {
375 return rs->md.recovery_cp != MaxSector;
376 }
377
378 /* Return true, if raid set in @rs is reshaping */
379 static bool rs_is_reshaping(struct raid_set *rs)
380 {
381 return rs->md.reshape_position != MaxSector;
382 }
383
384 /*
385 * bool helpers to test for various raid levels of a raid type
386 */
387
388 /* Return true, if raid type in @rt is raid0 */
389 static bool rt_is_raid0(struct raid_type *rt)
390 {
391 return !rt->level;
392 }
393
394 /* Return true, if raid type in @rt is raid1 */
395 static bool rt_is_raid1(struct raid_type *rt)
396 {
397 return rt->level == 1;
398 }
399
400 /* Return true, if raid type in @rt is raid10 */
401 static bool rt_is_raid10(struct raid_type *rt)
402 {
403 return rt->level == 10;
404 }
405
406 /* Return true, if raid type in @rt is raid4/5 */
407 static bool rt_is_raid45(struct raid_type *rt)
408 {
409 return __within_range(rt->level, 4, 5);
410 }
411
412 /* Return true, if raid type in @rt is raid6 */
413 static bool rt_is_raid6(struct raid_type *rt)
414 {
415 return rt->level == 6;
416 }
417
418 /* Return true, if raid type in @rt is raid4/5/6 */
419 static bool rt_is_raid456(struct raid_type *rt)
420 {
421 return __within_range(rt->level, 4, 6);
422 }
423 /* END: raid level bools */
424
425 /* Return valid ctr flags for the raid level of @rs */
426 static unsigned long __valid_flags(struct raid_set *rs)
427 {
428 if (rt_is_raid0(rs->raid_type))
429 return RAID0_VALID_FLAGS;
430 else if (rt_is_raid1(rs->raid_type))
431 return RAID1_VALID_FLAGS;
432 else if (rt_is_raid10(rs->raid_type))
433 return RAID10_VALID_FLAGS;
434 else if (rt_is_raid45(rs->raid_type))
435 return RAID45_VALID_FLAGS;
436 else if (rt_is_raid6(rs->raid_type))
437 return RAID6_VALID_FLAGS;
438
439 return ~0;
440 }
441
442 /*
443 * Check for valid flags set on @rs
444 *
445 * Has to be called after parsing of the ctr flags!
446 */
447 static int rs_check_for_valid_flags(struct raid_set *rs)
448 {
449 if (rs->ctr_flags & ~__valid_flags(rs)) {
450 rs->ti->error = "Invalid flags combination";
451 return -EINVAL;
452 }
453
454 return 0;
455 }
456
457 /* MD raid10 bit definitions and helpers */
458 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
459 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
460 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
461 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
462
463 /* Return md raid10 near copies for @layout */
464 static unsigned int __raid10_near_copies(int layout)
465 {
466 return layout & 0xFF;
467 }
468
469 /* Return md raid10 far copies for @layout */
470 static unsigned int __raid10_far_copies(int layout)
471 {
472 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
473 }
474
475 /* Return true if md raid10 offset for @layout */
476 static unsigned int __is_raid10_offset(int layout)
477 {
478 return layout & RAID10_OFFSET;
479 }
480
481 /* Return true if md raid10 near for @layout */
482 static unsigned int __is_raid10_near(int layout)
483 {
484 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
485 }
486
487 /* Return true if md raid10 far for @layout */
488 static unsigned int __is_raid10_far(int layout)
489 {
490 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
491 }
492
493 /* Return md raid10 layout string for @layout */
494 static const char *raid10_md_layout_to_format(int layout)
495 {
496 /*
497 * Bit 16 stands for "offset"
498 * (i.e. adjacent stripes hold copies)
499 *
500 * Refer to MD's raid10.c for details
501 */
502 if (__is_raid10_offset(layout))
503 return "offset";
504
505 if (__raid10_near_copies(layout) > 1)
506 return "near";
507
508 WARN_ON(__raid10_far_copies(layout) < 2);
509
510 return "far";
511 }
512
513 /* Return md raid10 algorithm for @name */
514 static int raid10_name_to_format(const char *name)
515 {
516 if (!strcasecmp(name, "near"))
517 return ALGORITHM_RAID10_NEAR;
518 else if (!strcasecmp(name, "offset"))
519 return ALGORITHM_RAID10_OFFSET;
520 else if (!strcasecmp(name, "far"))
521 return ALGORITHM_RAID10_FAR;
522
523 return -EINVAL;
524 }
525
526 /* Return md raid10 copies for @layout */
527 static unsigned int raid10_md_layout_to_copies(int layout)
528 {
529 return __raid10_near_copies(layout) > 1 ?
530 __raid10_near_copies(layout) : __raid10_far_copies(layout);
531 }
532
533 /* Return md raid10 format id for @format string */
534 static int raid10_format_to_md_layout(struct raid_set *rs,
535 unsigned int algorithm,
536 unsigned int copies)
537 {
538 unsigned int n = 1, f = 1, r = 0;
539
540 /*
541 * MD resilienece flaw:
542 *
543 * enabling use_far_sets for far/offset formats causes copies
544 * to be colocated on the same devs together with their origins!
545 *
546 * -> disable it for now in the definition above
547 */
548 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
549 algorithm == ALGORITHM_RAID10_NEAR)
550 n = copies;
551
552 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
553 f = copies;
554 r = RAID10_OFFSET;
555 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
556 r |= RAID10_USE_FAR_SETS;
557
558 } else if (algorithm == ALGORITHM_RAID10_FAR) {
559 f = copies;
560 r = !RAID10_OFFSET;
561 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
562 r |= RAID10_USE_FAR_SETS;
563
564 } else
565 return -EINVAL;
566
567 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
568 }
569 /* END: MD raid10 bit definitions and helpers */
570
571 /* Check for any of the raid10 algorithms */
572 static int __got_raid10(struct raid_type *rtp, const int layout)
573 {
574 if (rtp->level == 10) {
575 switch (rtp->algorithm) {
576 case ALGORITHM_RAID10_DEFAULT:
577 case ALGORITHM_RAID10_NEAR:
578 return __is_raid10_near(layout);
579 case ALGORITHM_RAID10_OFFSET:
580 return __is_raid10_offset(layout);
581 case ALGORITHM_RAID10_FAR:
582 return __is_raid10_far(layout);
583 default:
584 break;
585 }
586 }
587
588 return 0;
589 }
590
591 /* Return raid_type for @name */
592 static struct raid_type *get_raid_type(const char *name)
593 {
594 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
595
596 while (rtp-- > raid_types)
597 if (!strcasecmp(rtp->name, name))
598 return rtp;
599
600 return NULL;
601 }
602
603 /* Return raid_type for @name based derived from @level and @layout */
604 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
605 {
606 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
607
608 while (rtp-- > raid_types) {
609 /* RAID10 special checks based on @layout flags/properties */
610 if (rtp->level == level &&
611 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
612 return rtp;
613 }
614
615 return NULL;
616 }
617
618 /*
619 * Conditionally change bdev capacity of @rs
620 * in case of a disk add/remove reshape
621 */
622 static void rs_set_capacity(struct raid_set *rs)
623 {
624 struct mddev *mddev = &rs->md;
625 struct md_rdev *rdev;
626 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
627
628 /*
629 * raid10 sets rdev->sector to the device size, which
630 * is unintended in case of out-of-place reshaping
631 */
632 rdev_for_each(rdev, mddev)
633 rdev->sectors = mddev->dev_sectors;
634
635 set_capacity(gendisk, mddev->array_sectors);
636 revalidate_disk(gendisk);
637 }
638
639 /*
640 * Set the mddev properties in @rs to the current
641 * ones retrieved from the freshest superblock
642 */
643 static void rs_set_cur(struct raid_set *rs)
644 {
645 struct mddev *mddev = &rs->md;
646
647 mddev->new_level = mddev->level;
648 mddev->new_layout = mddev->layout;
649 mddev->new_chunk_sectors = mddev->chunk_sectors;
650 }
651
652 /*
653 * Set the mddev properties in @rs to the new
654 * ones requested by the ctr
655 */
656 static void rs_set_new(struct raid_set *rs)
657 {
658 struct mddev *mddev = &rs->md;
659
660 mddev->level = mddev->new_level;
661 mddev->layout = mddev->new_layout;
662 mddev->chunk_sectors = mddev->new_chunk_sectors;
663 mddev->raid_disks = rs->raid_disks;
664 mddev->delta_disks = 0;
665 }
666
667 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
668 unsigned raid_devs)
669 {
670 unsigned i;
671 struct raid_set *rs;
672
673 if (raid_devs <= raid_type->parity_devs) {
674 ti->error = "Insufficient number of devices";
675 return ERR_PTR(-EINVAL);
676 }
677
678 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
679 if (!rs) {
680 ti->error = "Cannot allocate raid context";
681 return ERR_PTR(-ENOMEM);
682 }
683
684 mddev_init(&rs->md);
685
686 rs->raid_disks = raid_devs;
687 rs->delta_disks = 0;
688
689 rs->ti = ti;
690 rs->raid_type = raid_type;
691 rs->stripe_cache_entries = 256;
692 rs->md.raid_disks = raid_devs;
693 rs->md.level = raid_type->level;
694 rs->md.new_level = rs->md.level;
695 rs->md.layout = raid_type->algorithm;
696 rs->md.new_layout = rs->md.layout;
697 rs->md.delta_disks = 0;
698 rs->md.recovery_cp = MaxSector;
699
700 for (i = 0; i < raid_devs; i++)
701 md_rdev_init(&rs->dev[i].rdev);
702
703 /*
704 * Remaining items to be initialized by further RAID params:
705 * rs->md.persistent
706 * rs->md.external
707 * rs->md.chunk_sectors
708 * rs->md.new_chunk_sectors
709 * rs->md.dev_sectors
710 */
711
712 return rs;
713 }
714
715 static void raid_set_free(struct raid_set *rs)
716 {
717 int i;
718
719 for (i = 0; i < rs->md.raid_disks; i++) {
720 if (rs->dev[i].meta_dev)
721 dm_put_device(rs->ti, rs->dev[i].meta_dev);
722 md_rdev_clear(&rs->dev[i].rdev);
723 if (rs->dev[i].data_dev)
724 dm_put_device(rs->ti, rs->dev[i].data_dev);
725 }
726
727 kfree(rs);
728 }
729
730 /*
731 * For every device we have two words
732 * <meta_dev>: meta device name or '-' if missing
733 * <data_dev>: data device name or '-' if missing
734 *
735 * The following are permitted:
736 * - -
737 * - <data_dev>
738 * <meta_dev> <data_dev>
739 *
740 * The following is not allowed:
741 * <meta_dev> -
742 *
743 * This code parses those words. If there is a failure,
744 * the caller must use raid_set_free() to unwind the operations.
745 */
746 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
747 {
748 int i;
749 int rebuild = 0;
750 int metadata_available = 0;
751 int r = 0;
752 const char *arg;
753
754 /* Put off the number of raid devices argument to get to dev pairs */
755 arg = dm_shift_arg(as);
756 if (!arg)
757 return -EINVAL;
758
759 for (i = 0; i < rs->md.raid_disks; i++) {
760 rs->dev[i].rdev.raid_disk = i;
761
762 rs->dev[i].meta_dev = NULL;
763 rs->dev[i].data_dev = NULL;
764
765 /*
766 * There are no offsets, since there is a separate device
767 * for data and metadata.
768 */
769 rs->dev[i].rdev.data_offset = 0;
770 rs->dev[i].rdev.mddev = &rs->md;
771
772 arg = dm_shift_arg(as);
773 if (!arg)
774 return -EINVAL;
775
776 if (strcmp(arg, "-")) {
777 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
778 &rs->dev[i].meta_dev);
779 if (r) {
780 rs->ti->error = "RAID metadata device lookup failure";
781 return r;
782 }
783
784 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
785 if (!rs->dev[i].rdev.sb_page) {
786 rs->ti->error = "Failed to allocate superblock page";
787 return -ENOMEM;
788 }
789 }
790
791 arg = dm_shift_arg(as);
792 if (!arg)
793 return -EINVAL;
794
795 if (!strcmp(arg, "-")) {
796 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
797 (!rs->dev[i].rdev.recovery_offset)) {
798 rs->ti->error = "Drive designated for rebuild not specified";
799 return -EINVAL;
800 }
801
802 if (rs->dev[i].meta_dev) {
803 rs->ti->error = "No data device supplied with metadata device";
804 return -EINVAL;
805 }
806
807 continue;
808 }
809
810 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
811 &rs->dev[i].data_dev);
812 if (r) {
813 rs->ti->error = "RAID device lookup failure";
814 return r;
815 }
816
817 if (rs->dev[i].meta_dev) {
818 metadata_available = 1;
819 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
820 }
821 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
822 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
823 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
824 rebuild++;
825 }
826
827 if (metadata_available) {
828 rs->md.external = 0;
829 rs->md.persistent = 1;
830 rs->md.major_version = 2;
831 } else if (rebuild && !rs->md.recovery_cp) {
832 /*
833 * Without metadata, we will not be able to tell if the array
834 * is in-sync or not - we must assume it is not. Therefore,
835 * it is impossible to rebuild a drive.
836 *
837 * Even if there is metadata, the on-disk information may
838 * indicate that the array is not in-sync and it will then
839 * fail at that time.
840 *
841 * User could specify 'nosync' option if desperate.
842 */
843 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
844 return -EINVAL;
845 }
846
847 return 0;
848 }
849
850 /*
851 * validate_region_size
852 * @rs
853 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
854 *
855 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
856 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
857 *
858 * Returns: 0 on success, -EINVAL on failure.
859 */
860 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
861 {
862 unsigned long min_region_size = rs->ti->len / (1 << 21);
863
864 if (!region_size) {
865 /*
866 * Choose a reasonable default. All figures in sectors.
867 */
868 if (min_region_size > (1 << 13)) {
869 /* If not a power of 2, make it the next power of 2 */
870 region_size = roundup_pow_of_two(min_region_size);
871 DMINFO("Choosing default region size of %lu sectors",
872 region_size);
873 } else {
874 DMINFO("Choosing default region size of 4MiB");
875 region_size = 1 << 13; /* sectors */
876 }
877 } else {
878 /*
879 * Validate user-supplied value.
880 */
881 if (region_size > rs->ti->len) {
882 rs->ti->error = "Supplied region size is too large";
883 return -EINVAL;
884 }
885
886 if (region_size < min_region_size) {
887 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
888 region_size, min_region_size);
889 rs->ti->error = "Supplied region size is too small";
890 return -EINVAL;
891 }
892
893 if (!is_power_of_2(region_size)) {
894 rs->ti->error = "Region size is not a power of 2";
895 return -EINVAL;
896 }
897
898 if (region_size < rs->md.chunk_sectors) {
899 rs->ti->error = "Region size is smaller than the chunk size";
900 return -EINVAL;
901 }
902 }
903
904 /*
905 * Convert sectors to bytes.
906 */
907 rs->md.bitmap_info.chunksize = (region_size << 9);
908
909 return 0;
910 }
911
912 /*
913 * validate_raid_redundancy
914 * @rs
915 *
916 * Determine if there are enough devices in the array that haven't
917 * failed (or are being rebuilt) to form a usable array.
918 *
919 * Returns: 0 on success, -EINVAL on failure.
920 */
921 static int validate_raid_redundancy(struct raid_set *rs)
922 {
923 unsigned i, rebuild_cnt = 0;
924 unsigned rebuilds_per_group = 0, copies;
925 unsigned group_size, last_group_start;
926
927 for (i = 0; i < rs->md.raid_disks; i++)
928 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
929 !rs->dev[i].rdev.sb_page)
930 rebuild_cnt++;
931
932 switch (rs->raid_type->level) {
933 case 1:
934 if (rebuild_cnt >= rs->md.raid_disks)
935 goto too_many;
936 break;
937 case 4:
938 case 5:
939 case 6:
940 if (rebuild_cnt > rs->raid_type->parity_devs)
941 goto too_many;
942 break;
943 case 10:
944 copies = raid10_md_layout_to_copies(rs->md.new_layout);
945 if (rebuild_cnt < copies)
946 break;
947
948 /*
949 * It is possible to have a higher rebuild count for RAID10,
950 * as long as the failed devices occur in different mirror
951 * groups (i.e. different stripes).
952 *
953 * When checking "near" format, make sure no adjacent devices
954 * have failed beyond what can be handled. In addition to the
955 * simple case where the number of devices is a multiple of the
956 * number of copies, we must also handle cases where the number
957 * of devices is not a multiple of the number of copies.
958 * E.g. dev1 dev2 dev3 dev4 dev5
959 * A A B B C
960 * C D D E E
961 */
962 if (__is_raid10_near(rs->md.new_layout)) {
963 for (i = 0; i < rs->raid_disks; i++) {
964 if (!(i % copies))
965 rebuilds_per_group = 0;
966 if ((!rs->dev[i].rdev.sb_page ||
967 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
968 (++rebuilds_per_group >= copies))
969 goto too_many;
970 }
971 break;
972 }
973
974 /*
975 * When checking "far" and "offset" formats, we need to ensure
976 * that the device that holds its copy is not also dead or
977 * being rebuilt. (Note that "far" and "offset" formats only
978 * support two copies right now. These formats also only ever
979 * use the 'use_far_sets' variant.)
980 *
981 * This check is somewhat complicated by the need to account
982 * for arrays that are not a multiple of (far) copies. This
983 * results in the need to treat the last (potentially larger)
984 * set differently.
985 */
986 group_size = (rs->md.raid_disks / copies);
987 last_group_start = (rs->md.raid_disks / group_size) - 1;
988 last_group_start *= group_size;
989 for (i = 0; i < rs->md.raid_disks; i++) {
990 if (!(i % copies) && !(i > last_group_start))
991 rebuilds_per_group = 0;
992 if ((!rs->dev[i].rdev.sb_page ||
993 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
994 (++rebuilds_per_group >= copies))
995 goto too_many;
996 }
997 break;
998 default:
999 if (rebuild_cnt)
1000 return -EINVAL;
1001 }
1002
1003 return 0;
1004
1005 too_many:
1006 return -EINVAL;
1007 }
1008
1009 /*
1010 * Possible arguments are...
1011 * <chunk_size> [optional_args]
1012 *
1013 * Argument definitions
1014 * <chunk_size> The number of sectors per disk that
1015 * will form the "stripe"
1016 * [[no]sync] Force or prevent recovery of the
1017 * entire array
1018 * [rebuild <idx>] Rebuild the drive indicated by the index
1019 * [daemon_sleep <ms>] Time between bitmap daemon work to
1020 * clear bits
1021 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1022 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1023 * [write_mostly <idx>] Indicate a write mostly drive via index
1024 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1025 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1026 * [region_size <sectors>] Defines granularity of bitmap
1027 *
1028 * RAID10-only options:
1029 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1030 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1031 */
1032 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1033 unsigned num_raid_params)
1034 {
1035 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1036 unsigned raid10_copies = 2;
1037 unsigned i, write_mostly = 0;
1038 unsigned region_size = 0;
1039 sector_t max_io_len;
1040 const char *arg, *key;
1041 struct raid_dev *rd;
1042 struct raid_type *rt = rs->raid_type;
1043
1044 arg = dm_shift_arg(as);
1045 num_raid_params--; /* Account for chunk_size argument */
1046
1047 if (kstrtoint(arg, 10, &value) < 0) {
1048 rs->ti->error = "Bad numerical argument given for chunk_size";
1049 return -EINVAL;
1050 }
1051
1052 /*
1053 * First, parse the in-order required arguments
1054 * "chunk_size" is the only argument of this type.
1055 */
1056 if (rt_is_raid1(rt)) {
1057 if (value)
1058 DMERR("Ignoring chunk size parameter for RAID 1");
1059 value = 0;
1060 } else if (!is_power_of_2(value)) {
1061 rs->ti->error = "Chunk size must be a power of 2";
1062 return -EINVAL;
1063 } else if (value < 8) {
1064 rs->ti->error = "Chunk size value is too small";
1065 return -EINVAL;
1066 }
1067
1068 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1069
1070 /*
1071 * We set each individual device as In_sync with a completed
1072 * 'recovery_offset'. If there has been a device failure or
1073 * replacement then one of the following cases applies:
1074 *
1075 * 1) User specifies 'rebuild'.
1076 * - Device is reset when param is read.
1077 * 2) A new device is supplied.
1078 * - No matching superblock found, resets device.
1079 * 3) Device failure was transient and returns on reload.
1080 * - Failure noticed, resets device for bitmap replay.
1081 * 4) Device hadn't completed recovery after previous failure.
1082 * - Superblock is read and overrides recovery_offset.
1083 *
1084 * What is found in the superblocks of the devices is always
1085 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1086 */
1087 for (i = 0; i < rs->md.raid_disks; i++) {
1088 set_bit(In_sync, &rs->dev[i].rdev.flags);
1089 rs->dev[i].rdev.recovery_offset = MaxSector;
1090 }
1091
1092 /*
1093 * Second, parse the unordered optional arguments
1094 */
1095 for (i = 0; i < num_raid_params; i++) {
1096 key = dm_shift_arg(as);
1097 if (!key) {
1098 rs->ti->error = "Not enough raid parameters given";
1099 return -EINVAL;
1100 }
1101
1102 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1103 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1104 rs->ti->error = "Only one 'nosync' argument allowed";
1105 return -EINVAL;
1106 }
1107 continue;
1108 }
1109 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1110 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1111 rs->ti->error = "Only one 'sync' argument allowed";
1112 return -EINVAL;
1113 }
1114 continue;
1115 }
1116 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1117 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1118 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1119 return -EINVAL;
1120 }
1121 continue;
1122 }
1123
1124 arg = dm_shift_arg(as);
1125 i++; /* Account for the argument pairs */
1126 if (!arg) {
1127 rs->ti->error = "Wrong number of raid parameters given";
1128 return -EINVAL;
1129 }
1130
1131 /*
1132 * Parameters that take a string value are checked here.
1133 */
1134
1135 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1136 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1137 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1138 return -EINVAL;
1139 }
1140 if (!rt_is_raid10(rt)) {
1141 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1142 return -EINVAL;
1143 }
1144 raid10_format = raid10_name_to_format(arg);
1145 if (raid10_format < 0) {
1146 rs->ti->error = "Invalid 'raid10_format' value given";
1147 return raid10_format;
1148 }
1149 continue;
1150 }
1151
1152 if (kstrtoint(arg, 10, &value) < 0) {
1153 rs->ti->error = "Bad numerical argument given in raid params";
1154 return -EINVAL;
1155 }
1156
1157 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1158 /*
1159 * "rebuild" is being passed in by userspace to provide
1160 * indexes of replaced devices and to set up additional
1161 * devices on raid level takeover.
1162 */
1163 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1164 rs->ti->error = "Invalid rebuild index given";
1165 return -EINVAL;
1166 }
1167
1168 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1169 rs->ti->error = "rebuild for this index already given";
1170 return -EINVAL;
1171 }
1172
1173 rd = rs->dev + value;
1174 clear_bit(In_sync, &rd->rdev.flags);
1175 clear_bit(Faulty, &rd->rdev.flags);
1176 rd->rdev.recovery_offset = 0;
1177 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1178 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1179 if (!rt_is_raid1(rt)) {
1180 rs->ti->error = "write_mostly option is only valid for RAID1";
1181 return -EINVAL;
1182 }
1183
1184 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1185 rs->ti->error = "Invalid write_mostly index given";
1186 return -EINVAL;
1187 }
1188
1189 write_mostly++;
1190 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1191 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1192 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1193 if (!rt_is_raid1(rt)) {
1194 rs->ti->error = "max_write_behind option is only valid for RAID1";
1195 return -EINVAL;
1196 }
1197
1198 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1199 rs->ti->error = "Only one max_write_behind argument pair allowed";
1200 return -EINVAL;
1201 }
1202
1203 /*
1204 * In device-mapper, we specify things in sectors, but
1205 * MD records this value in kB
1206 */
1207 value /= 2;
1208 if (value > COUNTER_MAX) {
1209 rs->ti->error = "Max write-behind limit out of range";
1210 return -EINVAL;
1211 }
1212
1213 rs->md.bitmap_info.max_write_behind = value;
1214 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1215 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1216 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1217 return -EINVAL;
1218 }
1219 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1220 rs->ti->error = "daemon sleep period out of range";
1221 return -EINVAL;
1222 }
1223 rs->md.bitmap_info.daemon_sleep = value;
1224 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1225 /* Userspace passes new data_offset after having extended the the data image LV */
1226 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1227 rs->ti->error = "Only one data_offset argument pair allowed";
1228 return -EINVAL;
1229 }
1230 /* Ensure sensible data offset */
1231 if (value < 0 ||
1232 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1233 rs->ti->error = "Bogus data_offset value";
1234 return -EINVAL;
1235 }
1236 rs->data_offset = value;
1237 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1238 /* Define the +/-# of disks to add to/remove from the given raid set */
1239 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1240 rs->ti->error = "Only one delta_disks argument pair allowed";
1241 return -EINVAL;
1242 }
1243 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1244 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1245 rs->ti->error = "Too many delta_disk requested";
1246 return -EINVAL;
1247 }
1248
1249 rs->delta_disks = value;
1250 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1251 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1252 rs->ti->error = "Only one stripe_cache argument pair allowed";
1253 return -EINVAL;
1254 }
1255
1256 if (!rt_is_raid456(rt)) {
1257 rs->ti->error = "Inappropriate argument: stripe_cache";
1258 return -EINVAL;
1259 }
1260
1261 rs->stripe_cache_entries = value;
1262 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1263 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1264 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1265 return -EINVAL;
1266 }
1267 if (value > INT_MAX) {
1268 rs->ti->error = "min_recovery_rate out of range";
1269 return -EINVAL;
1270 }
1271 rs->md.sync_speed_min = (int)value;
1272 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1273 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1274 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1275 return -EINVAL;
1276 }
1277 if (value > INT_MAX) {
1278 rs->ti->error = "max_recovery_rate out of range";
1279 return -EINVAL;
1280 }
1281 rs->md.sync_speed_max = (int)value;
1282 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1283 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1284 rs->ti->error = "Only one region_size argument pair allowed";
1285 return -EINVAL;
1286 }
1287
1288 region_size = value;
1289 rs->requested_bitmap_chunk_sectors = value;
1290 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1291 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1292 rs->ti->error = "Only one raid10_copies argument pair allowed";
1293 return -EINVAL;
1294 }
1295
1296 if (!__within_range(value, 2, rs->md.raid_disks)) {
1297 rs->ti->error = "Bad value for 'raid10_copies'";
1298 return -EINVAL;
1299 }
1300
1301 raid10_copies = value;
1302 } else {
1303 DMERR("Unable to parse RAID parameter: %s", key);
1304 rs->ti->error = "Unable to parse RAID parameter";
1305 return -EINVAL;
1306 }
1307 }
1308
1309 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1310 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1311 rs->ti->error = "sync and nosync are mutually exclusive";
1312 return -EINVAL;
1313 }
1314
1315 if (write_mostly >= rs->md.raid_disks) {
1316 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1317 return -EINVAL;
1318 }
1319
1320 if (validate_region_size(rs, region_size))
1321 return -EINVAL;
1322
1323 if (rs->md.chunk_sectors)
1324 max_io_len = rs->md.chunk_sectors;
1325 else
1326 max_io_len = region_size;
1327
1328 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1329 return -EINVAL;
1330
1331 if (rt_is_raid10(rt)) {
1332 if (raid10_copies > rs->md.raid_disks) {
1333 rs->ti->error = "Not enough devices to satisfy specification";
1334 return -EINVAL;
1335 }
1336
1337 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1338 if (rs->md.new_layout < 0) {
1339 rs->ti->error = "Error getting raid10 format";
1340 return rs->md.new_layout;
1341 }
1342
1343 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1344 if (!rt) {
1345 rs->ti->error = "Failed to recognize new raid10 layout";
1346 return -EINVAL;
1347 }
1348
1349 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1350 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1351 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1352 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1353 return -EINVAL;
1354 }
1355 }
1356
1357 rs->raid10_copies = raid10_copies;
1358
1359 /* Assume there are no metadata devices until the drives are parsed */
1360 rs->md.persistent = 0;
1361 rs->md.external = 1;
1362
1363 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1364 return rs_check_for_valid_flags(rs);
1365 }
1366
1367 /* Set raid4/5/6 cache size */
1368 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1369 {
1370 int r;
1371 struct r5conf *conf;
1372 struct mddev *mddev = &rs->md;
1373 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1374 uint32_t nr_stripes = rs->stripe_cache_entries;
1375
1376 if (!rt_is_raid456(rs->raid_type)) {
1377 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1378 return -EINVAL;
1379 }
1380
1381 if (nr_stripes < min_stripes) {
1382 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1383 nr_stripes, min_stripes);
1384 nr_stripes = min_stripes;
1385 }
1386
1387 conf = mddev->private;
1388 if (!conf) {
1389 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1390 return -EINVAL;
1391 }
1392
1393 /* Try setting number of stripes in raid456 stripe cache */
1394 if (conf->min_nr_stripes != nr_stripes) {
1395 r = raid5_set_cache_size(mddev, nr_stripes);
1396 if (r) {
1397 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1398 return r;
1399 }
1400
1401 DMINFO("%u stripe cache entries", nr_stripes);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1408 static unsigned int mddev_data_stripes(struct raid_set *rs)
1409 {
1410 return rs->md.raid_disks - rs->raid_type->parity_devs;
1411 }
1412
1413 /* Return # of data stripes of @rs (i.e. as of ctr) */
1414 static unsigned int rs_data_stripes(struct raid_set *rs)
1415 {
1416 return rs->raid_disks - rs->raid_type->parity_devs;
1417 }
1418
1419 /* Calculate the sectors per device and per array used for @rs */
1420 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1421 {
1422 int delta_disks;
1423 unsigned int data_stripes;
1424 struct mddev *mddev = &rs->md;
1425 struct md_rdev *rdev;
1426 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1427
1428 if (use_mddev) {
1429 delta_disks = mddev->delta_disks;
1430 data_stripes = mddev_data_stripes(rs);
1431 } else {
1432 delta_disks = rs->delta_disks;
1433 data_stripes = rs_data_stripes(rs);
1434 }
1435
1436 /* Special raid1 case w/o delta_disks support (yet) */
1437 if (rt_is_raid1(rs->raid_type))
1438 ;
1439 else if (rt_is_raid10(rs->raid_type)) {
1440 if (rs->raid10_copies < 2 ||
1441 delta_disks < 0) {
1442 rs->ti->error = "Bogus raid10 data copies or delta disks";
1443 return EINVAL;
1444 }
1445
1446 dev_sectors *= rs->raid10_copies;
1447 if (sector_div(dev_sectors, data_stripes))
1448 goto bad;
1449
1450 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1451 if (sector_div(array_sectors, rs->raid10_copies))
1452 goto bad;
1453
1454 } else if (sector_div(dev_sectors, data_stripes))
1455 goto bad;
1456
1457 else
1458 /* Striped layouts */
1459 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1460
1461 rdev_for_each(rdev, mddev)
1462 rdev->sectors = dev_sectors;
1463
1464 mddev->array_sectors = array_sectors;
1465 mddev->dev_sectors = dev_sectors;
1466
1467 return 0;
1468 bad:
1469 rs->ti->error = "Target length not divisible by number of data devices";
1470 return EINVAL;
1471 }
1472
1473 /* Setup recovery on @rs */
1474 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1475 {
1476 /* raid0 does not recover */
1477 if (rs_is_raid0(rs))
1478 rs->md.recovery_cp = MaxSector;
1479 /*
1480 * A raid6 set has to be recovered either
1481 * completely or for the grown part to
1482 * ensure proper parity and Q-Syndrome
1483 */
1484 else if (rs_is_raid6(rs))
1485 rs->md.recovery_cp = dev_sectors;
1486 /*
1487 * Other raid set types may skip recovery
1488 * depending on the 'nosync' flag.
1489 */
1490 else
1491 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1492 ? MaxSector : dev_sectors;
1493 }
1494
1495 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1496 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1497 {
1498 if (!dev_sectors)
1499 /* New raid set or 'sync' flag provided */
1500 __rs_setup_recovery(rs, 0);
1501 else if (dev_sectors == MaxSector)
1502 /* Prevent recovery */
1503 __rs_setup_recovery(rs, MaxSector);
1504 else if (rs->dev[0].rdev.sectors < dev_sectors)
1505 /* Grown raid set */
1506 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1507 else
1508 __rs_setup_recovery(rs, MaxSector);
1509 }
1510
1511 static void do_table_event(struct work_struct *ws)
1512 {
1513 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1514
1515 smp_rmb(); /* Make sure we access most actual mddev properties */
1516 if (!rs_is_reshaping(rs))
1517 rs_set_capacity(rs);
1518 dm_table_event(rs->ti->table);
1519 }
1520
1521 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1522 {
1523 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1524
1525 return mddev_congested(&rs->md, bits);
1526 }
1527
1528 /*
1529 * Make sure a valid takover (level switch) is being requested on @rs
1530 *
1531 * Conversions of raid sets from one MD personality to another
1532 * have to conform to restrictions which are enforced here.
1533 */
1534 static int rs_check_takeover(struct raid_set *rs)
1535 {
1536 struct mddev *mddev = &rs->md;
1537 unsigned int near_copies;
1538
1539 if (rs->md.degraded) {
1540 rs->ti->error = "Can't takeover degraded raid set";
1541 return -EPERM;
1542 }
1543
1544 if (rs_is_reshaping(rs)) {
1545 rs->ti->error = "Can't takeover reshaping raid set";
1546 return -EPERM;
1547 }
1548
1549 switch (mddev->level) {
1550 case 0:
1551 /* raid0 -> raid1/5 with one disk */
1552 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1553 mddev->raid_disks == 1)
1554 return 0;
1555
1556 /* raid0 -> raid10 */
1557 if (mddev->new_level == 10 &&
1558 !(rs->raid_disks % mddev->raid_disks))
1559 return 0;
1560
1561 /* raid0 with multiple disks -> raid4/5/6 */
1562 if (__within_range(mddev->new_level, 4, 6) &&
1563 mddev->new_layout == ALGORITHM_PARITY_N &&
1564 mddev->raid_disks > 1)
1565 return 0;
1566
1567 break;
1568
1569 case 10:
1570 /* Can't takeover raid10_offset! */
1571 if (__is_raid10_offset(mddev->layout))
1572 break;
1573
1574 near_copies = __raid10_near_copies(mddev->layout);
1575
1576 /* raid10* -> raid0 */
1577 if (mddev->new_level == 0) {
1578 /* Can takeover raid10_near with raid disks divisable by data copies! */
1579 if (near_copies > 1 &&
1580 !(mddev->raid_disks % near_copies)) {
1581 mddev->raid_disks /= near_copies;
1582 mddev->delta_disks = mddev->raid_disks;
1583 return 0;
1584 }
1585
1586 /* Can takeover raid10_far */
1587 if (near_copies == 1 &&
1588 __raid10_far_copies(mddev->layout) > 1)
1589 return 0;
1590
1591 break;
1592 }
1593
1594 /* raid10_{near,far} -> raid1 */
1595 if (mddev->new_level == 1 &&
1596 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1597 return 0;
1598
1599 /* raid10_{near,far} with 2 disks -> raid4/5 */
1600 if (__within_range(mddev->new_level, 4, 5) &&
1601 mddev->raid_disks == 2)
1602 return 0;
1603 break;
1604
1605 case 1:
1606 /* raid1 with 2 disks -> raid4/5 */
1607 if (__within_range(mddev->new_level, 4, 5) &&
1608 mddev->raid_disks == 2) {
1609 mddev->degraded = 1;
1610 return 0;
1611 }
1612
1613 /* raid1 -> raid0 */
1614 if (mddev->new_level == 0 &&
1615 mddev->raid_disks == 1)
1616 return 0;
1617
1618 /* raid1 -> raid10 */
1619 if (mddev->new_level == 10)
1620 return 0;
1621 break;
1622
1623 case 4:
1624 /* raid4 -> raid0 */
1625 if (mddev->new_level == 0)
1626 return 0;
1627
1628 /* raid4 -> raid1/5 with 2 disks */
1629 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1630 mddev->raid_disks == 2)
1631 return 0;
1632
1633 /* raid4 -> raid5/6 with parity N */
1634 if (__within_range(mddev->new_level, 5, 6) &&
1635 mddev->layout == ALGORITHM_PARITY_N)
1636 return 0;
1637 break;
1638
1639 case 5:
1640 /* raid5 with parity N -> raid0 */
1641 if (mddev->new_level == 0 &&
1642 mddev->layout == ALGORITHM_PARITY_N)
1643 return 0;
1644
1645 /* raid5 with parity N -> raid4 */
1646 if (mddev->new_level == 4 &&
1647 mddev->layout == ALGORITHM_PARITY_N)
1648 return 0;
1649
1650 /* raid5 with 2 disks -> raid1/4/10 */
1651 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1652 mddev->raid_disks == 2)
1653 return 0;
1654
1655 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1656 if (mddev->new_level == 6 &&
1657 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1658 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1659 return 0;
1660 break;
1661
1662 case 6:
1663 /* raid6 with parity N -> raid0 */
1664 if (mddev->new_level == 0 &&
1665 mddev->layout == ALGORITHM_PARITY_N)
1666 return 0;
1667
1668 /* raid6 with parity N -> raid4 */
1669 if (mddev->new_level == 4 &&
1670 mddev->layout == ALGORITHM_PARITY_N)
1671 return 0;
1672
1673 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1674 if (mddev->new_level == 5 &&
1675 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1676 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1677 return 0;
1678
1679 default:
1680 break;
1681 }
1682
1683 rs->ti->error = "takeover not possible";
1684 return -EINVAL;
1685 }
1686
1687 /* True if @rs requested to be taken over */
1688 static bool rs_takeover_requested(struct raid_set *rs)
1689 {
1690 return rs->md.new_level != rs->md.level;
1691 }
1692
1693 /* True if @rs is requested to reshape by ctr */
1694 static bool rs_reshape_requested(struct raid_set *rs)
1695 {
1696 struct mddev *mddev = &rs->md;
1697
1698 if (!mddev->level)
1699 return false;
1700
1701 return !__is_raid10_far(mddev->new_layout) &&
1702 mddev->new_level == mddev->level &&
1703 (mddev->new_layout != mddev->layout ||
1704 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1705 rs->raid_disks + rs->delta_disks != mddev->raid_disks);
1706 }
1707
1708 /* Features */
1709 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1710
1711 /* State flags for sb->flags */
1712 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1713 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1714
1715 /*
1716 * This structure is never routinely used by userspace, unlike md superblocks.
1717 * Devices with this superblock should only ever be accessed via device-mapper.
1718 */
1719 #define DM_RAID_MAGIC 0x64526D44
1720 struct dm_raid_superblock {
1721 __le32 magic; /* "DmRd" */
1722 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1723
1724 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1725 __le32 array_position; /* The position of this drive in the raid set */
1726
1727 __le64 events; /* Incremented by md when superblock updated */
1728 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1729 /* indicate failures (see extension below) */
1730
1731 /*
1732 * This offset tracks the progress of the repair or replacement of
1733 * an individual drive.
1734 */
1735 __le64 disk_recovery_offset;
1736
1737 /*
1738 * This offset tracks the progress of the initial raid set
1739 * synchronisation/parity calculation.
1740 */
1741 __le64 array_resync_offset;
1742
1743 /*
1744 * raid characteristics
1745 */
1746 __le32 level;
1747 __le32 layout;
1748 __le32 stripe_sectors;
1749
1750 /********************************************************************
1751 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1752 *
1753 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1754 */
1755
1756 __le32 flags; /* Flags defining array states for reshaping */
1757
1758 /*
1759 * This offset tracks the progress of a raid
1760 * set reshape in order to be able to restart it
1761 */
1762 __le64 reshape_position;
1763
1764 /*
1765 * These define the properties of the array in case of an interrupted reshape
1766 */
1767 __le32 new_level;
1768 __le32 new_layout;
1769 __le32 new_stripe_sectors;
1770 __le32 delta_disks;
1771
1772 __le64 array_sectors; /* Array size in sectors */
1773
1774 /*
1775 * Sector offsets to data on devices (reshaping).
1776 * Needed to support out of place reshaping, thus
1777 * not writing over any stripes whilst converting
1778 * them from old to new layout
1779 */
1780 __le64 data_offset;
1781 __le64 new_data_offset;
1782
1783 __le64 sectors; /* Used device size in sectors */
1784
1785 /*
1786 * Additonal Bit field of devices indicating failures to support
1787 * up to 256 devices with the 1.9.0 on-disk metadata format
1788 */
1789 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1790
1791 __le32 incompat_features; /* Used to indicate any incompatible features */
1792
1793 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1794 } __packed;
1795
1796 /*
1797 * Check for reshape constraints on raid set @rs:
1798 *
1799 * - reshape function non-existent
1800 * - degraded set
1801 * - ongoing recovery
1802 * - ongoing reshape
1803 *
1804 * Returns 0 if none or -EPERM if given constraint
1805 * and error message reference in @errmsg
1806 */
1807 static int rs_check_reshape(struct raid_set *rs)
1808 {
1809 struct mddev *mddev = &rs->md;
1810
1811 if (!mddev->pers || !mddev->pers->check_reshape)
1812 rs->ti->error = "Reshape not supported";
1813 else if (mddev->degraded)
1814 rs->ti->error = "Can't reshape degraded raid set";
1815 else if (rs_is_recovering(rs))
1816 rs->ti->error = "Convert request on recovering raid set prohibited";
1817 else if (mddev->reshape_position && rs_is_reshaping(rs))
1818 rs->ti->error = "raid set already reshaping!";
1819 else if (!(rs_is_raid10(rs) || rs_is_raid456(rs)))
1820 rs->ti->error = "Reshaping only supported for raid4/5/6/10";
1821 else
1822 return 0;
1823
1824 return -EPERM;
1825 }
1826
1827 static int read_disk_sb(struct md_rdev *rdev, int size)
1828 {
1829 BUG_ON(!rdev->sb_page);
1830
1831 if (rdev->sb_loaded)
1832 return 0;
1833
1834 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1835 DMERR("Failed to read superblock of device at position %d",
1836 rdev->raid_disk);
1837 md_error(rdev->mddev, rdev);
1838 return -EINVAL;
1839 }
1840
1841 rdev->sb_loaded = 1;
1842
1843 return 0;
1844 }
1845
1846 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1847 {
1848 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1849 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1850
1851 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1852 int i = ARRAY_SIZE(sb->extended_failed_devices);
1853
1854 while (i--)
1855 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1856 }
1857 }
1858
1859 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1860 {
1861 int i = ARRAY_SIZE(sb->extended_failed_devices);
1862
1863 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1864 while (i--)
1865 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1866 }
1867
1868 /*
1869 * Synchronize the superblock members with the raid set properties
1870 *
1871 * All superblock data is little endian.
1872 */
1873 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1874 {
1875 bool update_failed_devices = false;
1876 unsigned int i;
1877 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1878 struct dm_raid_superblock *sb;
1879 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1880
1881 /* No metadata device, no superblock */
1882 if (!rdev->meta_bdev)
1883 return;
1884
1885 BUG_ON(!rdev->sb_page);
1886
1887 sb = page_address(rdev->sb_page);
1888
1889 sb_retrieve_failed_devices(sb, failed_devices);
1890
1891 for (i = 0; i < rs->raid_disks; i++)
1892 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1893 update_failed_devices = true;
1894 set_bit(i, (void *) failed_devices);
1895 }
1896
1897 if (update_failed_devices)
1898 sb_update_failed_devices(sb, failed_devices);
1899
1900 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1901 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1902
1903 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1904 sb->array_position = cpu_to_le32(rdev->raid_disk);
1905
1906 sb->events = cpu_to_le64(mddev->events);
1907
1908 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1909 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1910
1911 sb->level = cpu_to_le32(mddev->level);
1912 sb->layout = cpu_to_le32(mddev->layout);
1913 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1914
1915 sb->new_level = cpu_to_le32(mddev->new_level);
1916 sb->new_layout = cpu_to_le32(mddev->new_layout);
1917 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1918
1919 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1920
1921 smp_rmb(); /* Make sure we access most recent reshape position */
1922 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1923 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1924 /* Flag ongoing reshape */
1925 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1926
1927 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1928 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1929 } else {
1930 /* Clear reshape flags */
1931 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1932 }
1933
1934 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1935 sb->data_offset = cpu_to_le64(rdev->data_offset);
1936 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1937 sb->sectors = cpu_to_le64(rdev->sectors);
1938
1939 /* Zero out the rest of the payload after the size of the superblock */
1940 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1941 }
1942
1943 /*
1944 * super_load
1945 *
1946 * This function creates a superblock if one is not found on the device
1947 * and will decide which superblock to use if there's a choice.
1948 *
1949 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1950 */
1951 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1952 {
1953 int r;
1954 struct dm_raid_superblock *sb;
1955 struct dm_raid_superblock *refsb;
1956 uint64_t events_sb, events_refsb;
1957
1958 rdev->sb_start = 0;
1959 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1960 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1961 DMERR("superblock size of a logical block is no longer valid");
1962 return -EINVAL;
1963 }
1964
1965 r = read_disk_sb(rdev, rdev->sb_size);
1966 if (r)
1967 return r;
1968
1969 sb = page_address(rdev->sb_page);
1970
1971 /*
1972 * Two cases that we want to write new superblocks and rebuild:
1973 * 1) New device (no matching magic number)
1974 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1975 */
1976 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1977 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
1978 super_sync(rdev->mddev, rdev);
1979
1980 set_bit(FirstUse, &rdev->flags);
1981 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1982
1983 /* Force writing of superblocks to disk */
1984 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1985
1986 /* Any superblock is better than none, choose that if given */
1987 return refdev ? 0 : 1;
1988 }
1989
1990 if (!refdev)
1991 return 1;
1992
1993 events_sb = le64_to_cpu(sb->events);
1994
1995 refsb = page_address(refdev->sb_page);
1996 events_refsb = le64_to_cpu(refsb->events);
1997
1998 return (events_sb > events_refsb) ? 1 : 0;
1999 }
2000
2001 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2002 {
2003 int role;
2004 unsigned int d;
2005 struct mddev *mddev = &rs->md;
2006 uint64_t events_sb;
2007 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2008 struct dm_raid_superblock *sb;
2009 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2010 struct md_rdev *r;
2011 struct dm_raid_superblock *sb2;
2012
2013 sb = page_address(rdev->sb_page);
2014 events_sb = le64_to_cpu(sb->events);
2015
2016 /*
2017 * Initialise to 1 if this is a new superblock.
2018 */
2019 mddev->events = events_sb ? : 1;
2020
2021 mddev->reshape_position = MaxSector;
2022
2023 /*
2024 * Reshaping is supported, e.g. reshape_position is valid
2025 * in superblock and superblock content is authoritative.
2026 */
2027 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2028 /* Superblock is authoritative wrt given raid set layout! */
2029 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2030 mddev->level = le32_to_cpu(sb->level);
2031 mddev->layout = le32_to_cpu(sb->layout);
2032 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2033 mddev->new_level = le32_to_cpu(sb->new_level);
2034 mddev->new_layout = le32_to_cpu(sb->new_layout);
2035 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2036 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2037 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2038
2039 /* raid was reshaping and got interrupted */
2040 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2041 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2042 DMERR("Reshape requested but raid set is still reshaping");
2043 return -EINVAL;
2044 }
2045
2046 if (mddev->delta_disks < 0 ||
2047 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2048 mddev->reshape_backwards = 1;
2049 else
2050 mddev->reshape_backwards = 0;
2051
2052 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2053 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2054 }
2055
2056 } else {
2057 /*
2058 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2059 */
2060 if (le32_to_cpu(sb->level) != mddev->level) {
2061 DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2062 return -EINVAL;
2063 }
2064 if (le32_to_cpu(sb->layout) != mddev->layout) {
2065 DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2066 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2067 DMERR(" Old layout: %s w/ %d copies",
2068 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2069 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2070 DMERR(" New layout: %s w/ %d copies",
2071 raid10_md_layout_to_format(mddev->layout),
2072 raid10_md_layout_to_copies(mddev->layout));
2073 return -EINVAL;
2074 }
2075 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2076 DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2077 return -EINVAL;
2078 }
2079
2080 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2081 if (!rt_is_raid1(rs->raid_type) &&
2082 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2083 DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2084 sb->num_devices, mddev->raid_disks);
2085 return -EINVAL;
2086 }
2087
2088 /* Table line is checked vs. authoritative superblock */
2089 rs_set_new(rs);
2090 }
2091
2092 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2093 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2094
2095 /*
2096 * During load, we set FirstUse if a new superblock was written.
2097 * There are two reasons we might not have a superblock:
2098 * 1) The raid set is brand new - in which case, all of the
2099 * devices must have their In_sync bit set. Also,
2100 * recovery_cp must be 0, unless forced.
2101 * 2) This is a new device being added to an old raid set
2102 * and the new device needs to be rebuilt - in which
2103 * case the In_sync bit will /not/ be set and
2104 * recovery_cp must be MaxSector.
2105 * 3) This is/are a new device(s) being added to an old
2106 * raid set during takeover to a higher raid level
2107 * to provide capacity for redundancy or during reshape
2108 * to add capacity to grow the raid set.
2109 */
2110 d = 0;
2111 rdev_for_each(r, mddev) {
2112 if (test_bit(FirstUse, &r->flags))
2113 new_devs++;
2114
2115 if (!test_bit(In_sync, &r->flags)) {
2116 DMINFO("Device %d specified for rebuild; clearing superblock",
2117 r->raid_disk);
2118 rebuilds++;
2119
2120 if (test_bit(FirstUse, &r->flags))
2121 rebuild_and_new++;
2122 }
2123
2124 d++;
2125 }
2126
2127 if (new_devs == rs->raid_disks || !rebuilds) {
2128 /* Replace a broken device */
2129 if (new_devs == 1 && !rs->delta_disks)
2130 ;
2131 if (new_devs == rs->raid_disks) {
2132 DMINFO("Superblocks created for new raid set");
2133 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2134 } else if (new_devs != rebuilds &&
2135 new_devs != rs->delta_disks) {
2136 DMERR("New device injected into existing raid set without "
2137 "'delta_disks' or 'rebuild' parameter specified");
2138 return -EINVAL;
2139 }
2140 } else if (new_devs && new_devs != rebuilds) {
2141 DMERR("%u 'rebuild' devices cannot be injected into"
2142 " a raid set with %u other first-time devices",
2143 rebuilds, new_devs);
2144 return -EINVAL;
2145 } else if (rebuilds) {
2146 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2147 DMERR("new device%s provided without 'rebuild'",
2148 new_devs > 1 ? "s" : "");
2149 return -EINVAL;
2150 } else if (rs_is_recovering(rs)) {
2151 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2152 (unsigned long long) mddev->recovery_cp);
2153 return -EINVAL;
2154 } else if (rs_is_reshaping(rs)) {
2155 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2156 (unsigned long long) mddev->reshape_position);
2157 return -EINVAL;
2158 }
2159 }
2160
2161 /*
2162 * Now we set the Faulty bit for those devices that are
2163 * recorded in the superblock as failed.
2164 */
2165 sb_retrieve_failed_devices(sb, failed_devices);
2166 rdev_for_each(r, mddev) {
2167 if (!r->sb_page)
2168 continue;
2169 sb2 = page_address(r->sb_page);
2170 sb2->failed_devices = 0;
2171 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2172
2173 /*
2174 * Check for any device re-ordering.
2175 */
2176 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2177 role = le32_to_cpu(sb2->array_position);
2178 if (role < 0)
2179 continue;
2180
2181 if (role != r->raid_disk) {
2182 if (__is_raid10_near(mddev->layout)) {
2183 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2184 rs->raid_disks % rs->raid10_copies) {
2185 rs->ti->error =
2186 "Cannot change raid10 near set to odd # of devices!";
2187 return -EINVAL;
2188 }
2189
2190 sb2->array_position = cpu_to_le32(r->raid_disk);
2191
2192 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2193 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2194 !rt_is_raid1(rs->raid_type)) {
2195 rs->ti->error = "Cannot change device positions in raid set";
2196 return -EINVAL;
2197 }
2198
2199 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2200 }
2201
2202 /*
2203 * Partial recovery is performed on
2204 * returning failed devices.
2205 */
2206 if (test_bit(role, (void *) failed_devices))
2207 set_bit(Faulty, &r->flags);
2208 }
2209 }
2210
2211 return 0;
2212 }
2213
2214 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2215 {
2216 struct mddev *mddev = &rs->md;
2217 struct dm_raid_superblock *sb;
2218
2219 if (rs_is_raid0(rs) || !rdev->sb_page)
2220 return 0;
2221
2222 sb = page_address(rdev->sb_page);
2223
2224 /*
2225 * If mddev->events is not set, we know we have not yet initialized
2226 * the array.
2227 */
2228 if (!mddev->events && super_init_validation(rs, rdev))
2229 return -EINVAL;
2230
2231 if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2232 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2233 return -EINVAL;
2234 }
2235
2236 if (sb->incompat_features) {
2237 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2238 return -EINVAL;
2239 }
2240
2241 /* Enable bitmap creation for RAID levels != 0 */
2242 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2243 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2244
2245 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2246 /* Retrieve device size stored in superblock to be prepared for shrink */
2247 rdev->sectors = le64_to_cpu(sb->sectors);
2248 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2249 if (rdev->recovery_offset == MaxSector)
2250 set_bit(In_sync, &rdev->flags);
2251 /*
2252 * If no reshape in progress -> we're recovering single
2253 * disk(s) and have to set the device(s) to out-of-sync
2254 */
2255 else if (!rs_is_reshaping(rs))
2256 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2257 }
2258
2259 /*
2260 * If a device comes back, set it as not In_sync and no longer faulty.
2261 */
2262 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2263 rdev->recovery_offset = 0;
2264 clear_bit(In_sync, &rdev->flags);
2265 rdev->saved_raid_disk = rdev->raid_disk;
2266 }
2267
2268 /* Reshape support -> restore repective data offsets */
2269 rdev->data_offset = le64_to_cpu(sb->data_offset);
2270 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2271
2272 return 0;
2273 }
2274
2275 /*
2276 * Analyse superblocks and select the freshest.
2277 */
2278 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2279 {
2280 int r;
2281 struct raid_dev *dev;
2282 struct md_rdev *rdev, *tmp, *freshest;
2283 struct mddev *mddev = &rs->md;
2284
2285 freshest = NULL;
2286 rdev_for_each_safe(rdev, tmp, mddev) {
2287 /*
2288 * Skipping super_load due to CTR_FLAG_SYNC will cause
2289 * the array to undergo initialization again as
2290 * though it were new. This is the intended effect
2291 * of the "sync" directive.
2292 *
2293 * When reshaping capability is added, we must ensure
2294 * that the "sync" directive is disallowed during the
2295 * reshape.
2296 */
2297 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2298 continue;
2299
2300 if (!rdev->meta_bdev)
2301 continue;
2302
2303 r = super_load(rdev, freshest);
2304
2305 switch (r) {
2306 case 1:
2307 freshest = rdev;
2308 break;
2309 case 0:
2310 break;
2311 default:
2312 dev = container_of(rdev, struct raid_dev, rdev);
2313 if (dev->meta_dev)
2314 dm_put_device(ti, dev->meta_dev);
2315
2316 dev->meta_dev = NULL;
2317 rdev->meta_bdev = NULL;
2318
2319 if (rdev->sb_page)
2320 put_page(rdev->sb_page);
2321
2322 rdev->sb_page = NULL;
2323
2324 rdev->sb_loaded = 0;
2325
2326 /*
2327 * We might be able to salvage the data device
2328 * even though the meta device has failed. For
2329 * now, we behave as though '- -' had been
2330 * set for this device in the table.
2331 */
2332 if (dev->data_dev)
2333 dm_put_device(ti, dev->data_dev);
2334
2335 dev->data_dev = NULL;
2336 rdev->bdev = NULL;
2337
2338 list_del(&rdev->same_set);
2339 }
2340 }
2341
2342 if (!freshest)
2343 return 0;
2344
2345 if (validate_raid_redundancy(rs)) {
2346 rs->ti->error = "Insufficient redundancy to activate array";
2347 return -EINVAL;
2348 }
2349
2350 /*
2351 * Validation of the freshest device provides the source of
2352 * validation for the remaining devices.
2353 */
2354 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2355 if (super_validate(rs, freshest))
2356 return -EINVAL;
2357
2358 rdev_for_each(rdev, mddev)
2359 if ((rdev != freshest) && super_validate(rs, rdev))
2360 return -EINVAL;
2361 return 0;
2362 }
2363
2364 /*
2365 * Adjust data_offset and new_data_offset on all disk members of @rs
2366 * for out of place reshaping if requested by contructor
2367 *
2368 * We need free space at the beginning of each raid disk for forward
2369 * and at the end for backward reshapes which userspace has to provide
2370 * via remapping/reordering of space.
2371 */
2372 static int rs_adjust_data_offsets(struct raid_set *rs)
2373 {
2374 sector_t data_offset = 0, new_data_offset = 0;
2375 struct md_rdev *rdev;
2376
2377 /* Constructor did not request data offset change */
2378 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2379 if (!rs_is_reshapable(rs))
2380 goto out;
2381
2382 return 0;
2383 }
2384
2385 /* HM FIXME: get InSync raid_dev? */
2386 rdev = &rs->dev[0].rdev;
2387
2388 if (rs->delta_disks < 0) {
2389 /*
2390 * Removing disks (reshaping backwards):
2391 *
2392 * - before reshape: data is at offset 0 and free space
2393 * is at end of each component LV
2394 *
2395 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2396 */
2397 data_offset = 0;
2398 new_data_offset = rs->data_offset;
2399
2400 } else if (rs->delta_disks > 0) {
2401 /*
2402 * Adding disks (reshaping forwards):
2403 *
2404 * - before reshape: data is at offset rs->data_offset != 0 and
2405 * free space is at begin of each component LV
2406 *
2407 * - after reshape: data is at offset 0 on each component LV
2408 */
2409 data_offset = rs->data_offset;
2410 new_data_offset = 0;
2411
2412 } else {
2413 /*
2414 * User space passes in 0 for data offset after having removed reshape space
2415 *
2416 * - or - (data offset != 0)
2417 *
2418 * Changing RAID layout or chunk size -> toggle offsets
2419 *
2420 * - before reshape: data is at offset rs->data_offset 0 and
2421 * free space is at end of each component LV
2422 * -or-
2423 * data is at offset rs->data_offset != 0 and
2424 * free space is at begin of each component LV
2425 *
2426 * - after reshape: data is at offset 0 if it was at offset != 0
2427 * or at offset != 0 if it was at offset 0
2428 * on each component LV
2429 *
2430 */
2431 data_offset = rs->data_offset ? rdev->data_offset : 0;
2432 new_data_offset = data_offset ? 0 : rs->data_offset;
2433 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2434 }
2435
2436 /*
2437 * Make sure we got a minimum amount of free sectors per device
2438 */
2439 if (rs->data_offset &&
2440 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2441 rs->ti->error = data_offset ? "No space for forward reshape" :
2442 "No space for backward reshape";
2443 return -ENOSPC;
2444 }
2445 out:
2446 /* Adjust data offsets on all rdevs */
2447 rdev_for_each(rdev, &rs->md) {
2448 rdev->data_offset = data_offset;
2449 rdev->new_data_offset = new_data_offset;
2450 }
2451
2452 return 0;
2453 }
2454
2455 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2456 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2457 {
2458 int i = 0;
2459 struct md_rdev *rdev;
2460
2461 rdev_for_each(rdev, &rs->md) {
2462 rdev->raid_disk = i++;
2463 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2464 }
2465 }
2466
2467 /*
2468 * Setup @rs for takeover by a different raid level
2469 */
2470 static int rs_setup_takeover(struct raid_set *rs)
2471 {
2472 struct mddev *mddev = &rs->md;
2473 struct md_rdev *rdev;
2474 unsigned int d = mddev->raid_disks = rs->raid_disks;
2475 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2476
2477 if (rt_is_raid10(rs->raid_type)) {
2478 if (mddev->level == 0) {
2479 /* Userpace reordered disks -> adjust raid_disk indexes */
2480 __reorder_raid_disk_indexes(rs);
2481
2482 /* raid0 -> raid10_far layout */
2483 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2484 rs->raid10_copies);
2485 } else if (mddev->level == 1)
2486 /* raid1 -> raid10_near layout */
2487 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2488 rs->raid_disks);
2489 else
2490 return -EINVAL;
2491
2492 }
2493
2494 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2495 mddev->recovery_cp = MaxSector;
2496
2497 while (d--) {
2498 rdev = &rs->dev[d].rdev;
2499
2500 if (test_bit(d, (void *) rs->rebuild_disks)) {
2501 clear_bit(In_sync, &rdev->flags);
2502 clear_bit(Faulty, &rdev->flags);
2503 mddev->recovery_cp = rdev->recovery_offset = 0;
2504 /* Bitmap has to be created when we do an "up" takeover */
2505 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2506 }
2507
2508 rdev->new_data_offset = new_data_offset;
2509 }
2510
2511 return 0;
2512 }
2513
2514 /*
2515 *
2516 * - change raid layout
2517 * - change chunk size
2518 * - add disks
2519 * - remove disks
2520 */
2521 static int rs_setup_reshape(struct raid_set *rs)
2522 {
2523 int r = 0;
2524 unsigned int cur_raid_devs, d;
2525 struct mddev *mddev = &rs->md;
2526 struct md_rdev *rdev;
2527
2528 mddev->delta_disks = rs->delta_disks;
2529 cur_raid_devs = mddev->raid_disks;
2530
2531 /* Ignore impossible layout change whilst adding/removing disks */
2532 if (mddev->delta_disks &&
2533 mddev->layout != mddev->new_layout) {
2534 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2535 mddev->new_layout = mddev->layout;
2536 }
2537
2538 /*
2539 * Adjust array size:
2540 *
2541 * - in case of adding disks, array size has
2542 * to grow after the disk adding reshape,
2543 * which'll hapen in the event handler;
2544 * reshape will happen forward, so space has to
2545 * be available at the beginning of each disk
2546 *
2547 * - in case of removing disks, array size
2548 * has to shrink before starting the reshape,
2549 * which'll happen here;
2550 * reshape will happen backward, so space has to
2551 * be available at the end of each disk
2552 *
2553 * - data_offset and new_data_offset are
2554 * adjusted for aforementioned out of place
2555 * reshaping based on userspace passing in
2556 * the "data_offset <sectors>" key/value
2557 * pair via the constructor
2558 */
2559
2560 /* Add disk(s) */
2561 if (rs->delta_disks > 0) {
2562 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2563 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2564 rdev = &rs->dev[d].rdev;
2565 clear_bit(In_sync, &rdev->flags);
2566
2567 /*
2568 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2569 * by md, which'll store that erroneously in the superblock on reshape
2570 */
2571 rdev->saved_raid_disk = -1;
2572 rdev->raid_disk = d;
2573
2574 rdev->sectors = mddev->dev_sectors;
2575 rdev->recovery_offset = MaxSector;
2576 }
2577
2578 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2579
2580 /* Remove disk(s) */
2581 } else if (rs->delta_disks < 0) {
2582 r = rs_set_dev_and_array_sectors(rs, true);
2583 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2584
2585 /* Change layout and/or chunk size */
2586 } else {
2587 /*
2588 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2589 *
2590 * keeping number of disks and do layout change ->
2591 *
2592 * toggle reshape_backward depending on data_offset:
2593 *
2594 * - free space upfront -> reshape forward
2595 *
2596 * - free space at the end -> reshape backward
2597 *
2598 *
2599 * This utilizes free reshape space avoiding the need
2600 * for userspace to move (parts of) LV segments in
2601 * case of layout/chunksize change (for disk
2602 * adding/removing reshape space has to be at
2603 * the proper address (see above with delta_disks):
2604 *
2605 * add disk(s) -> begin
2606 * remove disk(s)-> end
2607 */
2608 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2609 }
2610
2611 return r;
2612 }
2613
2614 /*
2615 * Enable/disable discard support on RAID set depending on
2616 * RAID level and discard properties of underlying RAID members.
2617 */
2618 static void configure_discard_support(struct raid_set *rs)
2619 {
2620 int i;
2621 bool raid456;
2622 struct dm_target *ti = rs->ti;
2623
2624 /* Assume discards not supported until after checks below. */
2625 ti->discards_supported = false;
2626
2627 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2628 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2629
2630 for (i = 0; i < rs->md.raid_disks; i++) {
2631 struct request_queue *q;
2632
2633 if (!rs->dev[i].rdev.bdev)
2634 continue;
2635
2636 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2637 if (!q || !blk_queue_discard(q))
2638 return;
2639
2640 if (raid456) {
2641 if (!q->limits.discard_zeroes_data)
2642 return;
2643 if (!devices_handle_discard_safely) {
2644 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2645 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2646 return;
2647 }
2648 }
2649 }
2650
2651 /* All RAID members properly support discards */
2652 ti->discards_supported = true;
2653
2654 /*
2655 * RAID1 and RAID10 personalities require bio splitting,
2656 * RAID0/4/5/6 don't and process large discard bios properly.
2657 */
2658 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2659 ti->num_discard_bios = 1;
2660 }
2661
2662 /*
2663 * Construct a RAID0/1/10/4/5/6 mapping:
2664 * Args:
2665 * <raid_type> <#raid_params> <raid_params>{0,} \
2666 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2667 *
2668 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2669 * details on possible <raid_params>.
2670 *
2671 * Userspace is free to initialize the metadata devices, hence the superblocks to
2672 * enforce recreation based on the passed in table parameters.
2673 *
2674 */
2675 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2676 {
2677 int r;
2678 struct raid_type *rt;
2679 unsigned num_raid_params, num_raid_devs;
2680 sector_t calculated_dev_sectors;
2681 struct raid_set *rs = NULL;
2682 const char *arg;
2683 struct rs_layout rs_layout;
2684 struct dm_arg_set as = { argc, argv }, as_nrd;
2685 struct dm_arg _args[] = {
2686 { 0, as.argc, "Cannot understand number of raid parameters" },
2687 { 1, 254, "Cannot understand number of raid devices parameters" }
2688 };
2689
2690 /* Must have <raid_type> */
2691 arg = dm_shift_arg(&as);
2692 if (!arg) {
2693 ti->error = "No arguments";
2694 return -EINVAL;
2695 }
2696
2697 rt = get_raid_type(arg);
2698 if (!rt) {
2699 ti->error = "Unrecognised raid_type";
2700 return -EINVAL;
2701 }
2702
2703 /* Must have <#raid_params> */
2704 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2705 return -EINVAL;
2706
2707 /* number of raid device tupples <meta_dev data_dev> */
2708 as_nrd = as;
2709 dm_consume_args(&as_nrd, num_raid_params);
2710 _args[1].max = (as_nrd.argc - 1) / 2;
2711 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2712 return -EINVAL;
2713
2714 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2715 ti->error = "Invalid number of supplied raid devices";
2716 return -EINVAL;
2717 }
2718
2719 rs = raid_set_alloc(ti, rt, num_raid_devs);
2720 if (IS_ERR(rs))
2721 return PTR_ERR(rs);
2722
2723 r = parse_raid_params(rs, &as, num_raid_params);
2724 if (r)
2725 goto bad;
2726
2727 r = parse_dev_params(rs, &as);
2728 if (r)
2729 goto bad;
2730
2731 rs->md.sync_super = super_sync;
2732
2733 /*
2734 * Calculate ctr requested array and device sizes to allow
2735 * for superblock analysis needing device sizes defined.
2736 *
2737 * Any existing superblock will overwrite the array and device sizes
2738 */
2739 r = rs_set_dev_and_array_sectors(rs, false);
2740 if (r)
2741 return r;
2742
2743 calculated_dev_sectors = rs->dev[0].rdev.sectors;
2744
2745 /*
2746 * Backup any new raid set level, layout, ...
2747 * requested to be able to compare to superblock
2748 * members for conversion decisions.
2749 */
2750 rs_config_backup(rs, &rs_layout);
2751
2752 r = analyse_superblocks(ti, rs);
2753 if (r)
2754 goto bad;
2755
2756 rs_setup_recovery(rs, calculated_dev_sectors);
2757
2758 INIT_WORK(&rs->md.event_work, do_table_event);
2759 ti->private = rs;
2760 ti->num_flush_bios = 1;
2761
2762 /* Restore any requested new layout for conversion decision */
2763 rs_config_restore(rs, &rs_layout);
2764
2765 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2766 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2767 rs_set_new(rs);
2768 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2769 if (rs_is_raid6(rs) &&
2770 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2771 ti->error = "'nosync' not allowed for new raid6 set";
2772 return -EINVAL;
2773 }
2774 rs_setup_recovery(rs, 0);
2775 } else if (rs_is_recovering(rs) || rs_is_reshaping(rs)) {
2776 /* Have to reject size change request during recovery/reshape */
2777 if (calculated_dev_sectors != rs->dev[0].rdev.sectors) {
2778 ti->error = "Can't resize a recovering/reshaping raid set";
2779 return -EPERM;
2780 }
2781 /* skip setup rs */
2782 } else if (rs_takeover_requested(rs)) {
2783 if (rs_is_reshaping(rs)) {
2784 ti->error = "Can't takeover a reshaping raid set";
2785 return -EPERM;
2786 }
2787
2788 /*
2789 * If a takeover is needed, userspace sets any additional
2790 * devices to rebuild, so just set the level to the new
2791 * requested one and allow the raid set to run
2792 */
2793 r = rs_check_takeover(rs);
2794 if (r)
2795 return r;
2796
2797 r = rs_setup_takeover(rs);
2798 if (r)
2799 return r;
2800
2801 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2802 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2803 rs_set_new(rs);
2804 } else if (rs_reshape_requested(rs)) {
2805 if (rs_is_reshaping(rs)) {
2806 ti->error = "raid set already reshaping!";
2807 return -EPERM;
2808 }
2809
2810 if (rs_is_raid10(rs)) {
2811 if (rs->raid_disks != rs->md.raid_disks &&
2812 __is_raid10_near(rs->md.layout) &&
2813 rs->raid10_copies &&
2814 rs->raid10_copies != __raid10_near_copies(rs->md.layout)) {
2815 /*
2816 * raid disk have to be multiple of data copies to allow this conversion,
2817 *
2818 * This is actually not a reshape it is a
2819 * rebuild of any additional mirrors per group
2820 */
2821 if (rs->raid_disks % rs->raid10_copies) {
2822 ti->error = "Can't reshape raid10 mirror groups";
2823 return -EINVAL;
2824 }
2825
2826 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2827 __reorder_raid_disk_indexes(rs);
2828 rs->md.layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2829 rs->raid10_copies);
2830 rs->md.new_layout = rs->md.layout;
2831
2832 } else
2833 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2834
2835 } else if (rs_is_raid456(rs))
2836 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2837
2838 /*
2839 * HM FIXME: process raid1 via delta_disks as well?
2840 * Would cause allocations in raid1->check_reshape
2841 * though, thus more issues with potential failures
2842 */
2843 else if (rs_is_raid1(rs)) {
2844 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2845 rs->md.raid_disks = rs->raid_disks;
2846 }
2847
2848 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2849 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2850 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2851 }
2852
2853 /* Create new superblocks and bitmaps, if any */
2854 if (rs->md.raid_disks < rs->raid_disks)
2855 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2856
2857 rs_set_cur(rs);
2858 rs_setup_recovery(rs, MaxSector);
2859 } else {
2860 rs_set_cur(rs);
2861 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2862 0 : calculated_dev_sectors);
2863 }
2864
2865 /* If constructor requested it, change data and new_data offsets */
2866 r = rs_adjust_data_offsets(rs);
2867 if (r)
2868 return r;
2869
2870 /* Start raid set read-only and assumed clean to change in raid_resume() */
2871 rs->md.ro = 1;
2872 rs->md.in_sync = 1;
2873 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2874
2875 /* Has to be held on running the array */
2876 mddev_lock_nointr(&rs->md);
2877 r = md_run(&rs->md);
2878 rs->md.in_sync = 0; /* Assume already marked dirty */
2879
2880 if (r) {
2881 ti->error = "Failed to run raid array";
2882 mddev_unlock(&rs->md);
2883 goto bad;
2884 }
2885
2886 rs->callbacks.congested_fn = raid_is_congested;
2887 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2888
2889 mddev_suspend(&rs->md);
2890
2891 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2892 if (rs_is_raid456(rs)) {
2893 r = rs_set_raid456_stripe_cache(rs);
2894 if (r)
2895 goto bad_stripe_cache;
2896 }
2897
2898 /* Now do an early reshape check */
2899 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2900 r = rs_check_reshape(rs);
2901 if (r)
2902 return r;
2903
2904 /* Restore new, ctr requested layout to perform check */
2905 rs_config_restore(rs, &rs_layout);
2906
2907 r = rs->md.pers->check_reshape(&rs->md);
2908 if (r) {
2909 ti->error = "Reshape check failed";
2910 goto bad_check_reshape;
2911 }
2912 }
2913
2914 mddev_unlock(&rs->md);
2915 return 0;
2916
2917 bad_stripe_cache:
2918 bad_check_reshape:
2919 md_stop(&rs->md);
2920 bad:
2921 raid_set_free(rs);
2922
2923 return r;
2924 }
2925
2926 static void raid_dtr(struct dm_target *ti)
2927 {
2928 struct raid_set *rs = ti->private;
2929
2930 list_del_init(&rs->callbacks.list);
2931 md_stop(&rs->md);
2932 raid_set_free(rs);
2933 }
2934
2935 static int raid_map(struct dm_target *ti, struct bio *bio)
2936 {
2937 struct raid_set *rs = ti->private;
2938 struct mddev *mddev = &rs->md;
2939
2940 /*
2941 * If we're reshaping to add disk(s)), ti->len and
2942 * mddev->array_sectors will differ during the process
2943 * (ti->len > mddev->array_sectors), so we have to requeue
2944 * bios with addresses > mddev->array_sectors here or
2945 * there will occur accesses past EOD of the component
2946 * data images thus erroring the raid set.
2947 */
2948 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
2949 return DM_MAPIO_REQUEUE;
2950
2951 mddev->pers->make_request(mddev, bio);
2952
2953 return DM_MAPIO_SUBMITTED;
2954 }
2955
2956 /* Return string describing the current sync action of @mddev */
2957 static const char *decipher_sync_action(struct mddev *mddev)
2958 {
2959 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2960 return "frozen";
2961
2962 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2963 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2964 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2965 return "reshape";
2966
2967 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2968 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2969 return "resync";
2970 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2971 return "check";
2972 return "repair";
2973 }
2974
2975 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2976 return "recover";
2977 }
2978
2979 return "idle";
2980 }
2981
2982 /*
2983 * Return status string @rdev
2984 *
2985 * Status characters:
2986 *
2987 * 'D' = Dead/Failed device
2988 * 'a' = Alive but not in-sync
2989 * 'A' = Alive and in-sync
2990 */
2991 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
2992 {
2993 if (test_bit(Faulty, &rdev->flags))
2994 return "D";
2995 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
2996 return "a";
2997 else
2998 return "A";
2999 }
3000
3001 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3002 static sector_t rs_get_progress(struct raid_set *rs,
3003 sector_t resync_max_sectors, bool *array_in_sync)
3004 {
3005 sector_t r, recovery_cp, curr_resync_completed;
3006 struct mddev *mddev = &rs->md;
3007
3008 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3009 recovery_cp = mddev->recovery_cp;
3010 *array_in_sync = false;
3011
3012 if (rs_is_raid0(rs)) {
3013 r = resync_max_sectors;
3014 *array_in_sync = true;
3015
3016 } else {
3017 r = mddev->reshape_position;
3018
3019 /* Reshape is relative to the array size */
3020 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3021 r != MaxSector) {
3022 if (r == MaxSector) {
3023 *array_in_sync = true;
3024 r = resync_max_sectors;
3025 } else {
3026 /* Got to reverse on backward reshape */
3027 if (mddev->reshape_backwards)
3028 r = mddev->array_sectors - r;
3029
3030 /* Devide by # of data stripes */
3031 sector_div(r, mddev_data_stripes(rs));
3032 }
3033
3034 /* Sync is relative to the component device size */
3035 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3036 r = curr_resync_completed;
3037 else
3038 r = recovery_cp;
3039
3040 if (r == MaxSector) {
3041 /*
3042 * Sync complete.
3043 */
3044 *array_in_sync = true;
3045 r = resync_max_sectors;
3046 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3047 /*
3048 * If "check" or "repair" is occurring, the raid set has
3049 * undergone an initial sync and the health characters
3050 * should not be 'a' anymore.
3051 */
3052 *array_in_sync = true;
3053 } else {
3054 struct md_rdev *rdev;
3055
3056 /*
3057 * The raid set may be doing an initial sync, or it may
3058 * be rebuilding individual components. If all the
3059 * devices are In_sync, then it is the raid set that is
3060 * being initialized.
3061 */
3062 rdev_for_each(rdev, mddev)
3063 if (!test_bit(In_sync, &rdev->flags))
3064 *array_in_sync = true;
3065 #if 0
3066 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3067 #endif
3068 }
3069 }
3070
3071 return r;
3072 }
3073
3074 /* Helper to return @dev name or "-" if !@dev */
3075 static const char *__get_dev_name(struct dm_dev *dev)
3076 {
3077 return dev ? dev->name : "-";
3078 }
3079
3080 static void raid_status(struct dm_target *ti, status_type_t type,
3081 unsigned int status_flags, char *result, unsigned int maxlen)
3082 {
3083 struct raid_set *rs = ti->private;
3084 struct mddev *mddev = &rs->md;
3085 struct r5conf *conf = mddev->private;
3086 int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3087 bool array_in_sync;
3088 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3089 unsigned int sz = 0;
3090 unsigned int write_mostly_params = 0;
3091 sector_t progress, resync_max_sectors, resync_mismatches;
3092 const char *sync_action;
3093 struct raid_type *rt;
3094 struct md_rdev *rdev;
3095
3096 switch (type) {
3097 case STATUSTYPE_INFO:
3098 /* *Should* always succeed */
3099 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3100 if (!rt)
3101 return;
3102
3103 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3104
3105 /* Access most recent mddev properties for status output */
3106 smp_rmb();
3107 /* Get sensible max sectors even if raid set not yet started */
3108 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3109 mddev->resync_max_sectors : mddev->dev_sectors;
3110 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3111 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3112 atomic64_read(&mddev->resync_mismatches) : 0;
3113 sync_action = decipher_sync_action(&rs->md);
3114
3115 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3116 rdev_for_each(rdev, mddev)
3117 DMEMIT(__raid_dev_status(rdev, array_in_sync));
3118
3119 /*
3120 * In-sync/Reshape ratio:
3121 * The in-sync ratio shows the progress of:
3122 * - Initializing the raid set
3123 * - Rebuilding a subset of devices of the raid set
3124 * The user can distinguish between the two by referring
3125 * to the status characters.
3126 *
3127 * The reshape ratio shows the progress of
3128 * changing the raid layout or the number of
3129 * disks of a raid set
3130 */
3131 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3132 (unsigned long long) resync_max_sectors);
3133
3134 /*
3135 * v1.5.0+:
3136 *
3137 * Sync action:
3138 * See Documentation/device-mapper/dm-raid.txt for
3139 * information on each of these states.
3140 */
3141 DMEMIT(" %s", sync_action);
3142
3143 /*
3144 * v1.5.0+:
3145 *
3146 * resync_mismatches/mismatch_cnt
3147 * This field shows the number of discrepancies found when
3148 * performing a "check" of the raid set.
3149 */
3150 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3151
3152 /*
3153 * v1.9.0+:
3154 *
3155 * data_offset (needed for out of space reshaping)
3156 * This field shows the data offset into the data
3157 * image LV where the first stripes data starts.
3158 *
3159 * We keep data_offset equal on all raid disks of the set,
3160 * so retrieving it from the first raid disk is sufficient.
3161 */
3162 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3163 break;
3164
3165 case STATUSTYPE_TABLE:
3166 /* Report the table line string you would use to construct this raid set */
3167
3168 /* Calculate raid parameter count */
3169 rdev_for_each(rdev, mddev)
3170 if (test_bit(WriteMostly, &rdev->flags))
3171 write_mostly_params += 2;
3172 raid_param_cnt += memweight(rs->rebuild_disks,
3173 DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
3174 write_mostly_params +
3175 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3176 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3177 /* Emit table line */
3178 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3179 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3180 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3181 raid10_md_layout_to_format(mddev->layout));
3182 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3183 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3184 raid10_md_layout_to_copies(mddev->layout));
3185 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3186 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3187 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3188 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3189 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3190 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3191 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3192 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3193 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3194 (unsigned long long) rs->data_offset);
3195 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3196 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3197 mddev->bitmap_info.daemon_sleep);
3198 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3199 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3200 mddev->delta_disks);
3201 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3202 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3203 max_nr_stripes);
3204 rdev_for_each(rdev, mddev)
3205 if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
3206 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3207 rdev->raid_disk);
3208 rdev_for_each(rdev, mddev)
3209 if (test_bit(WriteMostly, &rdev->flags))
3210 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3211 rdev->raid_disk);
3212 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3213 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3214 mddev->bitmap_info.max_write_behind);
3215 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3216 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3217 mddev->sync_speed_max);
3218 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3219 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3220 mddev->sync_speed_min);
3221 DMEMIT(" %d", rs->raid_disks);
3222 rdev_for_each(rdev, mddev) {
3223 struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
3224
3225 DMEMIT(" %s %s", __get_dev_name(rd->meta_dev),
3226 __get_dev_name(rd->data_dev));
3227 }
3228 }
3229 }
3230
3231 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
3232 {
3233 struct raid_set *rs = ti->private;
3234 struct mddev *mddev = &rs->md;
3235
3236 if (!mddev->pers || !mddev->pers->sync_request)
3237 return -EINVAL;
3238
3239 if (!strcasecmp(argv[0], "frozen"))
3240 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3241 else
3242 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3243
3244 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3245 if (mddev->sync_thread) {
3246 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3247 md_reap_sync_thread(mddev);
3248 }
3249 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3250 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3251 return -EBUSY;
3252 else if (!strcasecmp(argv[0], "resync"))
3253 ; /* MD_RECOVERY_NEEDED set below */
3254 else if (!strcasecmp(argv[0], "recover"))
3255 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3256 else {
3257 if (!strcasecmp(argv[0], "check"))
3258 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3259 else if (!!strcasecmp(argv[0], "repair"))
3260 return -EINVAL;
3261 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3262 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3263 }
3264 if (mddev->ro == 2) {
3265 /* A write to sync_action is enough to justify
3266 * canceling read-auto mode
3267 */
3268 mddev->ro = 0;
3269 if (!mddev->suspended && mddev->sync_thread)
3270 md_wakeup_thread(mddev->sync_thread);
3271 }
3272 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3273 if (!mddev->suspended && mddev->thread)
3274 md_wakeup_thread(mddev->thread);
3275
3276 return 0;
3277 }
3278
3279 static int raid_iterate_devices(struct dm_target *ti,
3280 iterate_devices_callout_fn fn, void *data)
3281 {
3282 struct raid_set *rs = ti->private;
3283 unsigned i;
3284 int r = 0;
3285
3286 for (i = 0; !r && i < rs->md.raid_disks; i++)
3287 if (rs->dev[i].data_dev)
3288 r = fn(ti,
3289 rs->dev[i].data_dev,
3290 0, /* No offset on data devs */
3291 rs->md.dev_sectors,
3292 data);
3293
3294 return r;
3295 }
3296
3297 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3298 {
3299 struct raid_set *rs = ti->private;
3300 unsigned chunk_size = rs->md.chunk_sectors << 9;
3301 struct r5conf *conf = rs->md.private;
3302
3303 blk_limits_io_min(limits, chunk_size);
3304 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
3305 }
3306
3307 static void raid_presuspend(struct dm_target *ti)
3308 {
3309 struct raid_set *rs = ti->private;
3310
3311 md_stop_writes(&rs->md);
3312 }
3313
3314 static void raid_postsuspend(struct dm_target *ti)
3315 {
3316 struct raid_set *rs = ti->private;
3317
3318 if (test_and_clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3319 if (!rs->md.suspended)
3320 mddev_suspend(&rs->md);
3321 rs->md.ro = 1;
3322 }
3323 }
3324
3325 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3326 {
3327 int i;
3328 uint64_t failed_devices, cleared_failed_devices = 0;
3329 unsigned long flags;
3330 struct dm_raid_superblock *sb;
3331 struct md_rdev *r;
3332
3333 for (i = 0; i < rs->md.raid_disks; i++) {
3334 r = &rs->dev[i].rdev;
3335 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3336 sync_page_io(r, 0, r->sb_size, r->sb_page,
3337 REQ_OP_READ, 0, true)) {
3338 DMINFO("Faulty %s device #%d has readable super block."
3339 " Attempting to revive it.",
3340 rs->raid_type->name, i);
3341
3342 /*
3343 * Faulty bit may be set, but sometimes the array can
3344 * be suspended before the personalities can respond
3345 * by removing the device from the array (i.e. calling
3346 * 'hot_remove_disk'). If they haven't yet removed
3347 * the failed device, its 'raid_disk' number will be
3348 * '>= 0' - meaning we must call this function
3349 * ourselves.
3350 */
3351 if ((r->raid_disk >= 0) &&
3352 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
3353 /* Failed to revive this device, try next */
3354 continue;
3355
3356 r->raid_disk = i;
3357 r->saved_raid_disk = i;
3358 flags = r->flags;
3359 clear_bit(Faulty, &r->flags);
3360 clear_bit(WriteErrorSeen, &r->flags);
3361 clear_bit(In_sync, &r->flags);
3362 if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
3363 r->raid_disk = -1;
3364 r->saved_raid_disk = -1;
3365 r->flags = flags;
3366 } else {
3367 r->recovery_offset = 0;
3368 cleared_failed_devices |= 1 << i;
3369 }
3370 }
3371 }
3372 if (cleared_failed_devices) {
3373 rdev_for_each(r, &rs->md) {
3374 sb = page_address(r->sb_page);
3375 failed_devices = le64_to_cpu(sb->failed_devices);
3376 failed_devices &= ~cleared_failed_devices;
3377 sb->failed_devices = cpu_to_le64(failed_devices);
3378 }
3379 }
3380 }
3381
3382 static int __load_dirty_region_bitmap(struct raid_set *rs)
3383 {
3384 int r = 0;
3385
3386 /* Try loading the bitmap unless "raid0", which does not have one */
3387 if (!rs_is_raid0(rs) &&
3388 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3389 r = bitmap_load(&rs->md);
3390 if (r)
3391 DMERR("Failed to load bitmap");
3392 }
3393
3394 return r;
3395 }
3396
3397 /* Enforce updating all superblocks */
3398 static void rs_update_sbs(struct raid_set *rs)
3399 {
3400 struct mddev *mddev = &rs->md;
3401 int ro = mddev->ro;
3402
3403 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3404 mddev->ro = 0;
3405 md_update_sb(mddev, 1);
3406 mddev->ro = ro;
3407 }
3408
3409 /*
3410 * Reshape changes raid algorithm of @rs to new one within personality
3411 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3412 * disks from a raid set thus growing/shrinking it or resizes the set
3413 *
3414 * Call mddev_lock_nointr() before!
3415 */
3416 static int rs_start_reshape(struct raid_set *rs)
3417 {
3418 int r;
3419 struct mddev *mddev = &rs->md;
3420 struct md_personality *pers = mddev->pers;
3421
3422 r = rs_setup_reshape(rs);
3423 if (r)
3424 return r;
3425
3426 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3427 if (mddev->suspended)
3428 mddev_resume(mddev);
3429
3430 /*
3431 * Check any reshape constraints enforced by the personalility
3432 *
3433 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3434 */
3435 r = pers->check_reshape(mddev);
3436 if (r) {
3437 rs->ti->error = "pers->check_reshape() failed";
3438 return r;
3439 }
3440
3441 /*
3442 * Personality may not provide start reshape method in which
3443 * case check_reshape above has already covered everything
3444 */
3445 if (pers->start_reshape) {
3446 r = pers->start_reshape(mddev);
3447 if (r) {
3448 rs->ti->error = "pers->start_reshape() failed";
3449 return r;
3450 }
3451 }
3452
3453 /* Suspend because a resume will happen in raid_resume() */
3454 if (!mddev->suspended)
3455 mddev_suspend(mddev);
3456
3457 /*
3458 * Now reshape got set up, update superblocks to
3459 * reflect the fact so that a table reload will
3460 * access proper superblock content in the ctr.
3461 */
3462 rs_update_sbs(rs);
3463
3464 return 0;
3465 }
3466
3467 static int raid_preresume(struct dm_target *ti)
3468 {
3469 int r;
3470 struct raid_set *rs = ti->private;
3471 struct mddev *mddev = &rs->md;
3472
3473 /* This is a resume after a suspend of the set -> it's already started */
3474 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3475 return 0;
3476
3477 /*
3478 * The superblocks need to be updated on disk if the
3479 * array is new or new devices got added (thus zeroed
3480 * out by userspace) or __load_dirty_region_bitmap
3481 * will overwrite them in core with old data or fail.
3482 */
3483 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3484 rs_update_sbs(rs);
3485
3486 /*
3487 * Disable/enable discard support on raid set after any
3488 * conversion, because devices can have been added
3489 */
3490 configure_discard_support(rs);
3491
3492 /* Load the bitmap from disk unless raid0 */
3493 r = __load_dirty_region_bitmap(rs);
3494 if (r)
3495 return r;
3496
3497 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3498 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3499 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3500 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3501 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3502 if (r)
3503 DMERR("Failed to resize bitmap");
3504 }
3505
3506 /* Check for any resize/reshape on @rs and adjust/initiate */
3507 /* Be prepared for mddev_resume() in raid_resume() */
3508 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3509 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3510 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3511 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3512 mddev->resync_min = mddev->recovery_cp;
3513 }
3514
3515 rs_set_capacity(rs);
3516
3517 /* Check for any reshape request and region size change unless new raid set */
3518 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3519 /* Initiate a reshape. */
3520 mddev_lock_nointr(mddev);
3521 r = rs_start_reshape(rs);
3522 mddev_unlock(mddev);
3523 if (r)
3524 DMWARN("Failed to check/start reshape, continuing without change");
3525 r = 0;
3526 }
3527
3528 return r;
3529 }
3530
3531 static void raid_resume(struct dm_target *ti)
3532 {
3533 struct raid_set *rs = ti->private;
3534 struct mddev *mddev = &rs->md;
3535
3536 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3537 /*
3538 * A secondary resume while the device is active.
3539 * Take this opportunity to check whether any failed
3540 * devices are reachable again.
3541 */
3542 attempt_restore_of_faulty_devices(rs);
3543 } else {
3544 mddev->ro = 0;
3545 mddev->in_sync = 0;
3546
3547 /*
3548 * When passing in flags to the ctr, we expect userspace
3549 * to reset them because they made it to the superblocks
3550 * and reload the mapping anyway.
3551 *
3552 * -> only unfreeze recovery in case of a table reload or
3553 * we'll have a bogus recovery/reshape position
3554 * retrieved from the superblock by the ctr because
3555 * the ongoing recovery/reshape will change it after read.
3556 */
3557 if (!test_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags))
3558 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3559
3560 if (mddev->suspended)
3561 mddev_resume(mddev);
3562 }
3563 }
3564
3565 static struct target_type raid_target = {
3566 .name = "raid",
3567 .version = {1, 9, 0},
3568 .module = THIS_MODULE,
3569 .ctr = raid_ctr,
3570 .dtr = raid_dtr,
3571 .map = raid_map,
3572 .status = raid_status,
3573 .message = raid_message,
3574 .iterate_devices = raid_iterate_devices,
3575 .io_hints = raid_io_hints,
3576 .presuspend = raid_presuspend,
3577 .postsuspend = raid_postsuspend,
3578 .preresume = raid_preresume,
3579 .resume = raid_resume,
3580 };
3581
3582 static int __init dm_raid_init(void)
3583 {
3584 DMINFO("Loading target version %u.%u.%u",
3585 raid_target.version[0],
3586 raid_target.version[1],
3587 raid_target.version[2]);
3588 return dm_register_target(&raid_target);
3589 }
3590
3591 static void __exit dm_raid_exit(void)
3592 {
3593 dm_unregister_target(&raid_target);
3594 }
3595
3596 module_init(dm_raid_init);
3597 module_exit(dm_raid_exit);
3598
3599 module_param(devices_handle_discard_safely, bool, 0644);
3600 MODULE_PARM_DESC(devices_handle_discard_safely,
3601 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3602
3603 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3604 MODULE_ALIAS("dm-raid0");
3605 MODULE_ALIAS("dm-raid1");
3606 MODULE_ALIAS("dm-raid10");
3607 MODULE_ALIAS("dm-raid4");
3608 MODULE_ALIAS("dm-raid5");
3609 MODULE_ALIAS("dm-raid6");
3610 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3611 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3612 MODULE_LICENSE("GPL");
This page took 0.111236 seconds and 6 git commands to generate.