dm raid: avoid superfluous memory barriers on static metadata
[deliverable/linux.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22 /*
23 * Minimum sectors of free reshape space per raid device
24 */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30 * The following flags are used by dm-raid.c to set up the array state.
31 * They must be cleared before md_run is called.
32 */
33 #define FirstUse 10 /* rdev flag */
34
35 struct raid_dev {
36 /*
37 * Two DM devices, one to hold metadata and one to hold the
38 * actual data/parity. The reason for this is to not confuse
39 * ti->len and give more flexibility in altering size and
40 * characteristics.
41 *
42 * While it is possible for this device to be associated
43 * with a different physical device than the data_dev, it
44 * is intended for it to be the same.
45 * |--------- Physical Device ---------|
46 * |- meta_dev -|------ data_dev ------|
47 */
48 struct dm_dev *meta_dev;
49 struct dm_dev *data_dev;
50 struct md_rdev rdev;
51 };
52
53 /*
54 * Bits for establishing rs->ctr_flags
55 *
56 * 1 = no flag value
57 * 2 = flag with value
58 */
59 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77 * Flags for rs->ctr_flags field.
78 */
79 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96 * Definitions of various constructor flags to
97 * be used in checks of valid / invalid flags
98 * per raid level.
99 */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
105 CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109 CTR_FLAG_WRITE_MOSTLY | \
110 CTR_FLAG_DAEMON_SLEEP | \
111 CTR_FLAG_MIN_RECOVERY_RATE | \
112 CTR_FLAG_MAX_RECOVERY_RATE | \
113 CTR_FLAG_MAX_WRITE_BEHIND | \
114 CTR_FLAG_STRIPE_CACHE | \
115 CTR_FLAG_REGION_SIZE | \
116 CTR_FLAG_RAID10_COPIES | \
117 CTR_FLAG_RAID10_FORMAT | \
118 CTR_FLAG_DELTA_DISKS | \
119 CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
128 CTR_FLAG_REBUILD | \
129 CTR_FLAG_WRITE_MOSTLY | \
130 CTR_FLAG_DAEMON_SLEEP | \
131 CTR_FLAG_MIN_RECOVERY_RATE | \
132 CTR_FLAG_MAX_RECOVERY_RATE | \
133 CTR_FLAG_MAX_WRITE_BEHIND | \
134 CTR_FLAG_REGION_SIZE | \
135 CTR_FLAG_DATA_OFFSET)
136
137 /* "raid10" does not accept any raid1 or stripe cache options */
138 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
139 CTR_FLAG_REBUILD | \
140 CTR_FLAG_DAEMON_SLEEP | \
141 CTR_FLAG_MIN_RECOVERY_RATE | \
142 CTR_FLAG_MAX_RECOVERY_RATE | \
143 CTR_FLAG_REGION_SIZE | \
144 CTR_FLAG_RAID10_COPIES | \
145 CTR_FLAG_RAID10_FORMAT | \
146 CTR_FLAG_DELTA_DISKS | \
147 CTR_FLAG_DATA_OFFSET | \
148 CTR_FLAG_RAID10_USE_NEAR_SETS)
149
150 /*
151 * "raid4/5/6" do not accept any raid1 or raid10 specific options
152 *
153 * "raid6" does not accept "nosync", because it is not guaranteed
154 * that both parity and q-syndrome are being written properly with
155 * any writes
156 */
157 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
158 CTR_FLAG_REBUILD | \
159 CTR_FLAG_DAEMON_SLEEP | \
160 CTR_FLAG_MIN_RECOVERY_RATE | \
161 CTR_FLAG_MAX_RECOVERY_RATE | \
162 CTR_FLAG_MAX_WRITE_BEHIND | \
163 CTR_FLAG_STRIPE_CACHE | \
164 CTR_FLAG_REGION_SIZE | \
165 CTR_FLAG_DELTA_DISKS | \
166 CTR_FLAG_DATA_OFFSET)
167
168 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
169 CTR_FLAG_REBUILD | \
170 CTR_FLAG_DAEMON_SLEEP | \
171 CTR_FLAG_MIN_RECOVERY_RATE | \
172 CTR_FLAG_MAX_RECOVERY_RATE | \
173 CTR_FLAG_MAX_WRITE_BEHIND | \
174 CTR_FLAG_STRIPE_CACHE | \
175 CTR_FLAG_REGION_SIZE | \
176 CTR_FLAG_DELTA_DISKS | \
177 CTR_FLAG_DATA_OFFSET)
178 /* ...valid options definitions per raid level */
179
180 /*
181 * Flags for rs->runtime_flags field
182 * (RT_FLAG prefix meaning "runtime flag")
183 *
184 * These are all internal and used to define runtime state,
185 * e.g. to prevent another resume from preresume processing
186 * the raid set all over again.
187 */
188 #define RT_FLAG_RS_PRERESUMED 0
189 #define RT_FLAG_RS_RESUMED 1
190 #define RT_FLAG_RS_BITMAP_LOADED 2
191 #define RT_FLAG_UPDATE_SBS 3
192 #define RT_FLAG_RESHAPE_RS 4
193 #define RT_FLAG_KEEP_RS_FROZEN 5
194
195 /* Array elements of 64 bit needed for rebuild/write_mostly bits */
196 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
197
198 /*
199 * raid set level, layout and chunk sectors backup/restore
200 */
201 struct rs_layout {
202 int new_level;
203 int new_layout;
204 int new_chunk_sectors;
205 };
206
207 struct raid_set {
208 struct dm_target *ti;
209
210 uint32_t bitmap_loaded;
211 uint32_t stripe_cache_entries;
212 unsigned long ctr_flags;
213 unsigned long runtime_flags;
214
215 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
216
217 int raid_disks;
218 int delta_disks;
219 int data_offset;
220 int raid10_copies;
221 int requested_bitmap_chunk_sectors;
222
223 struct mddev md;
224 struct raid_type *raid_type;
225 struct dm_target_callbacks callbacks;
226
227 struct raid_dev dev[0];
228 };
229
230 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
231 {
232 struct mddev *mddev = &rs->md;
233
234 l->new_level = mddev->new_level;
235 l->new_layout = mddev->new_layout;
236 l->new_chunk_sectors = mddev->new_chunk_sectors;
237 }
238
239 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
240 {
241 struct mddev *mddev = &rs->md;
242
243 mddev->new_level = l->new_level;
244 mddev->new_layout = l->new_layout;
245 mddev->new_chunk_sectors = l->new_chunk_sectors;
246 }
247
248 /* raid10 algorithms (i.e. formats) */
249 #define ALGORITHM_RAID10_DEFAULT 0
250 #define ALGORITHM_RAID10_NEAR 1
251 #define ALGORITHM_RAID10_OFFSET 2
252 #define ALGORITHM_RAID10_FAR 3
253
254 /* Supported raid types and properties. */
255 static struct raid_type {
256 const char *name; /* RAID algorithm. */
257 const char *descr; /* Descriptor text for logging. */
258 const unsigned parity_devs; /* # of parity devices. */
259 const unsigned minimal_devs; /* minimal # of devices in set. */
260 const unsigned level; /* RAID level. */
261 const unsigned algorithm; /* RAID algorithm. */
262 } raid_types[] = {
263 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
264 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
265 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
266 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
267 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
268 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
269 {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
270 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
271 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
272 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
273 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
274 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
275 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
276 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
277 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
278 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
279 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
280 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
281 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
282 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
283 };
284
285 /* True, if @v is in inclusive range [@min, @max] */
286 static bool __within_range(long v, long min, long max)
287 {
288 return v >= min && v <= max;
289 }
290
291 /* All table line arguments are defined here */
292 static struct arg_name_flag {
293 const unsigned long flag;
294 const char *name;
295 } __arg_name_flags[] = {
296 { CTR_FLAG_SYNC, "sync"},
297 { CTR_FLAG_NOSYNC, "nosync"},
298 { CTR_FLAG_REBUILD, "rebuild"},
299 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
300 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
301 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
302 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
303 { CTR_FLAG_WRITE_MOSTLY, "writemostly"},
304 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
305 { CTR_FLAG_REGION_SIZE, "region_size"},
306 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
307 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
308 { CTR_FLAG_DATA_OFFSET, "data_offset"},
309 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
310 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
311 };
312
313 /* Return argument name string for given @flag */
314 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
315 {
316 if (hweight32(flag) == 1) {
317 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
318
319 while (anf-- > __arg_name_flags)
320 if (flag & anf->flag)
321 return anf->name;
322
323 } else
324 DMERR("%s called with more than one flag!", __func__);
325
326 return NULL;
327 }
328
329 /*
330 * bool helpers to test for various raid levels of a raid set,
331 * is. it's level as reported by the superblock rather than
332 * the requested raid_type passed to the constructor.
333 */
334 /* Return true, if raid set in @rs is raid0 */
335 static bool rs_is_raid0(struct raid_set *rs)
336 {
337 return !rs->md.level;
338 }
339
340 /* Return true, if raid set in @rs is raid1 */
341 static bool rs_is_raid1(struct raid_set *rs)
342 {
343 return rs->md.level == 1;
344 }
345
346 /* Return true, if raid set in @rs is raid10 */
347 static bool rs_is_raid10(struct raid_set *rs)
348 {
349 return rs->md.level == 10;
350 }
351
352 /* Return true, if raid set in @rs is level 4, 5 or 6 */
353 static bool rs_is_raid456(struct raid_set *rs)
354 {
355 return __within_range(rs->md.level, 4, 6);
356 }
357
358 /* Return true, if raid set in @rs is reshapable */
359 static unsigned int __is_raid10_far(int layout);
360 static bool rs_is_reshapable(struct raid_set *rs)
361 {
362 return rs_is_raid456(rs) ||
363 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
364 }
365
366 /* Return true, if raid set in @rs is recovering */
367 static bool rs_is_recovering(struct raid_set *rs)
368 {
369 return rs->md.recovery_cp != MaxSector;
370 }
371
372 /* Return true, if raid set in @rs is reshaping */
373 static bool rs_is_reshaping(struct raid_set *rs)
374 {
375 return rs->md.reshape_position != MaxSector;
376 }
377
378 /*
379 * bool helpers to test for various raid levels of a raid type
380 */
381
382 /* Return true, if raid type in @rt is raid0 */
383 static bool rt_is_raid0(struct raid_type *rt)
384 {
385 return !rt->level;
386 }
387
388 /* Return true, if raid type in @rt is raid1 */
389 static bool rt_is_raid1(struct raid_type *rt)
390 {
391 return rt->level == 1;
392 }
393
394 /* Return true, if raid type in @rt is raid10 */
395 static bool rt_is_raid10(struct raid_type *rt)
396 {
397 return rt->level == 10;
398 }
399
400 /* Return true, if raid type in @rt is raid4/5 */
401 static bool rt_is_raid45(struct raid_type *rt)
402 {
403 return __within_range(rt->level, 4, 5);
404 }
405
406 /* Return true, if raid type in @rt is raid6 */
407 static bool rt_is_raid6(struct raid_type *rt)
408 {
409 return rt->level == 6;
410 }
411
412 /* Return true, if raid type in @rt is raid4/5/6 */
413 static bool rt_is_raid456(struct raid_type *rt)
414 {
415 return __within_range(rt->level, 4, 6);
416 }
417 /* END: raid level bools */
418
419 /* Return valid ctr flags for the raid level of @rs */
420 static unsigned long __valid_flags(struct raid_set *rs)
421 {
422 if (rt_is_raid0(rs->raid_type))
423 return RAID0_VALID_FLAGS;
424 else if (rt_is_raid1(rs->raid_type))
425 return RAID1_VALID_FLAGS;
426 else if (rt_is_raid10(rs->raid_type))
427 return RAID10_VALID_FLAGS;
428 else if (rt_is_raid45(rs->raid_type))
429 return RAID45_VALID_FLAGS;
430 else if (rt_is_raid6(rs->raid_type))
431 return RAID6_VALID_FLAGS;
432
433 return ~0;
434 }
435
436 /*
437 * Check for valid flags set on @rs
438 *
439 * Has to be called after parsing of the ctr flags!
440 */
441 static int rs_check_for_valid_flags(struct raid_set *rs)
442 {
443 if (rs->ctr_flags & ~__valid_flags(rs)) {
444 rs->ti->error = "Invalid flags combination";
445 return -EINVAL;
446 }
447
448 return 0;
449 }
450
451 /* MD raid10 bit definitions and helpers */
452 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
453 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
454 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
455 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
456
457 /* Return md raid10 near copies for @layout */
458 static unsigned int __raid10_near_copies(int layout)
459 {
460 return layout & 0xFF;
461 }
462
463 /* Return md raid10 far copies for @layout */
464 static unsigned int __raid10_far_copies(int layout)
465 {
466 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
467 }
468
469 /* Return true if md raid10 offset for @layout */
470 static unsigned int __is_raid10_offset(int layout)
471 {
472 return layout & RAID10_OFFSET;
473 }
474
475 /* Return true if md raid10 near for @layout */
476 static unsigned int __is_raid10_near(int layout)
477 {
478 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
479 }
480
481 /* Return true if md raid10 far for @layout */
482 static unsigned int __is_raid10_far(int layout)
483 {
484 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
485 }
486
487 /* Return md raid10 layout string for @layout */
488 static const char *raid10_md_layout_to_format(int layout)
489 {
490 /*
491 * Bit 16 stands for "offset"
492 * (i.e. adjacent stripes hold copies)
493 *
494 * Refer to MD's raid10.c for details
495 */
496 if (__is_raid10_offset(layout))
497 return "offset";
498
499 if (__raid10_near_copies(layout) > 1)
500 return "near";
501
502 WARN_ON(__raid10_far_copies(layout) < 2);
503
504 return "far";
505 }
506
507 /* Return md raid10 algorithm for @name */
508 static int raid10_name_to_format(const char *name)
509 {
510 if (!strcasecmp(name, "near"))
511 return ALGORITHM_RAID10_NEAR;
512 else if (!strcasecmp(name, "offset"))
513 return ALGORITHM_RAID10_OFFSET;
514 else if (!strcasecmp(name, "far"))
515 return ALGORITHM_RAID10_FAR;
516
517 return -EINVAL;
518 }
519
520 /* Return md raid10 copies for @layout */
521 static unsigned int raid10_md_layout_to_copies(int layout)
522 {
523 return __raid10_near_copies(layout) > 1 ?
524 __raid10_near_copies(layout) : __raid10_far_copies(layout);
525 }
526
527 /* Return md raid10 format id for @format string */
528 static int raid10_format_to_md_layout(struct raid_set *rs,
529 unsigned int algorithm,
530 unsigned int copies)
531 {
532 unsigned int n = 1, f = 1, r = 0;
533
534 /*
535 * MD resilienece flaw:
536 *
537 * enabling use_far_sets for far/offset formats causes copies
538 * to be colocated on the same devs together with their origins!
539 *
540 * -> disable it for now in the definition above
541 */
542 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
543 algorithm == ALGORITHM_RAID10_NEAR)
544 n = copies;
545
546 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
547 f = copies;
548 r = RAID10_OFFSET;
549 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
550 r |= RAID10_USE_FAR_SETS;
551
552 } else if (algorithm == ALGORITHM_RAID10_FAR) {
553 f = copies;
554 r = !RAID10_OFFSET;
555 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
556 r |= RAID10_USE_FAR_SETS;
557
558 } else
559 return -EINVAL;
560
561 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
562 }
563 /* END: MD raid10 bit definitions and helpers */
564
565 /* Check for any of the raid10 algorithms */
566 static int __got_raid10(struct raid_type *rtp, const int layout)
567 {
568 if (rtp->level == 10) {
569 switch (rtp->algorithm) {
570 case ALGORITHM_RAID10_DEFAULT:
571 case ALGORITHM_RAID10_NEAR:
572 return __is_raid10_near(layout);
573 case ALGORITHM_RAID10_OFFSET:
574 return __is_raid10_offset(layout);
575 case ALGORITHM_RAID10_FAR:
576 return __is_raid10_far(layout);
577 default:
578 break;
579 }
580 }
581
582 return 0;
583 }
584
585 /* Return raid_type for @name */
586 static struct raid_type *get_raid_type(const char *name)
587 {
588 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
589
590 while (rtp-- > raid_types)
591 if (!strcasecmp(rtp->name, name))
592 return rtp;
593
594 return NULL;
595 }
596
597 /* Return raid_type for @name based derived from @level and @layout */
598 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
599 {
600 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
601
602 while (rtp-- > raid_types) {
603 /* RAID10 special checks based on @layout flags/properties */
604 if (rtp->level == level &&
605 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
606 return rtp;
607 }
608
609 return NULL;
610 }
611
612 /*
613 * Conditionally change bdev capacity of @rs
614 * in case of a disk add/remove reshape
615 */
616 static void rs_set_capacity(struct raid_set *rs)
617 {
618 struct mddev *mddev = &rs->md;
619
620 /* Make sure we access most actual mddev properties */
621 smp_rmb();
622 if (rs->ti->len != mddev->array_sectors && !rs_is_reshaping(rs)) {
623 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
624
625 set_capacity(gendisk, mddev->array_sectors);
626 revalidate_disk(gendisk);
627 }
628 }
629
630 /*
631 * Set the mddev properties in @rs to the current
632 * ones retrieved from the freshest superblock
633 */
634 static void rs_set_cur(struct raid_set *rs)
635 {
636 struct mddev *mddev = &rs->md;
637
638 mddev->new_level = mddev->level;
639 mddev->new_layout = mddev->layout;
640 mddev->new_chunk_sectors = mddev->chunk_sectors;
641 }
642
643 /*
644 * Set the mddev properties in @rs to the new
645 * ones requested by the ctr
646 */
647 static void rs_set_new(struct raid_set *rs)
648 {
649 struct mddev *mddev = &rs->md;
650
651 mddev->level = mddev->new_level;
652 mddev->layout = mddev->new_layout;
653 mddev->chunk_sectors = mddev->new_chunk_sectors;
654 mddev->raid_disks = rs->raid_disks;
655 mddev->delta_disks = 0;
656 }
657
658 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
659 unsigned raid_devs)
660 {
661 unsigned i;
662 struct raid_set *rs;
663
664 if (raid_devs <= raid_type->parity_devs) {
665 ti->error = "Insufficient number of devices";
666 return ERR_PTR(-EINVAL);
667 }
668
669 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
670 if (!rs) {
671 ti->error = "Cannot allocate raid context";
672 return ERR_PTR(-ENOMEM);
673 }
674
675 mddev_init(&rs->md);
676
677 rs->raid_disks = raid_devs;
678 rs->delta_disks = 0;
679
680 rs->ti = ti;
681 rs->raid_type = raid_type;
682 rs->stripe_cache_entries = 256;
683 rs->md.raid_disks = raid_devs;
684 rs->md.level = raid_type->level;
685 rs->md.new_level = rs->md.level;
686 rs->md.layout = raid_type->algorithm;
687 rs->md.new_layout = rs->md.layout;
688 rs->md.delta_disks = 0;
689 rs->md.recovery_cp = rs_is_raid0(rs) ? MaxSector : 0;
690
691 for (i = 0; i < raid_devs; i++)
692 md_rdev_init(&rs->dev[i].rdev);
693
694 /*
695 * Remaining items to be initialized by further RAID params:
696 * rs->md.persistent
697 * rs->md.external
698 * rs->md.chunk_sectors
699 * rs->md.new_chunk_sectors
700 * rs->md.dev_sectors
701 */
702
703 return rs;
704 }
705
706 static void raid_set_free(struct raid_set *rs)
707 {
708 int i;
709
710 for (i = 0; i < rs->md.raid_disks; i++) {
711 if (rs->dev[i].meta_dev)
712 dm_put_device(rs->ti, rs->dev[i].meta_dev);
713 md_rdev_clear(&rs->dev[i].rdev);
714 if (rs->dev[i].data_dev)
715 dm_put_device(rs->ti, rs->dev[i].data_dev);
716 }
717
718 kfree(rs);
719 }
720
721 /*
722 * For every device we have two words
723 * <meta_dev>: meta device name or '-' if missing
724 * <data_dev>: data device name or '-' if missing
725 *
726 * The following are permitted:
727 * - -
728 * - <data_dev>
729 * <meta_dev> <data_dev>
730 *
731 * The following is not allowed:
732 * <meta_dev> -
733 *
734 * This code parses those words. If there is a failure,
735 * the caller must use raid_set_free() to unwind the operations.
736 */
737 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
738 {
739 int i;
740 int rebuild = 0;
741 int metadata_available = 0;
742 int r = 0;
743 const char *arg;
744
745 /* Put off the number of raid devices argument to get to dev pairs */
746 arg = dm_shift_arg(as);
747 if (!arg)
748 return -EINVAL;
749
750 for (i = 0; i < rs->md.raid_disks; i++) {
751 rs->dev[i].rdev.raid_disk = i;
752
753 rs->dev[i].meta_dev = NULL;
754 rs->dev[i].data_dev = NULL;
755
756 /*
757 * There are no offsets, since there is a separate device
758 * for data and metadata.
759 */
760 rs->dev[i].rdev.data_offset = 0;
761 rs->dev[i].rdev.mddev = &rs->md;
762
763 arg = dm_shift_arg(as);
764 if (!arg)
765 return -EINVAL;
766
767 if (strcmp(arg, "-")) {
768 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
769 &rs->dev[i].meta_dev);
770 if (r) {
771 rs->ti->error = "RAID metadata device lookup failure";
772 return r;
773 }
774
775 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
776 if (!rs->dev[i].rdev.sb_page) {
777 rs->ti->error = "Failed to allocate superblock page";
778 return -ENOMEM;
779 }
780 }
781
782 arg = dm_shift_arg(as);
783 if (!arg)
784 return -EINVAL;
785
786 if (!strcmp(arg, "-")) {
787 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
788 (!rs->dev[i].rdev.recovery_offset)) {
789 rs->ti->error = "Drive designated for rebuild not specified";
790 return -EINVAL;
791 }
792
793 if (rs->dev[i].meta_dev) {
794 rs->ti->error = "No data device supplied with metadata device";
795 return -EINVAL;
796 }
797
798 continue;
799 }
800
801 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
802 &rs->dev[i].data_dev);
803 if (r) {
804 rs->ti->error = "RAID device lookup failure";
805 return r;
806 }
807
808 if (rs->dev[i].meta_dev) {
809 metadata_available = 1;
810 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
811 }
812 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
813 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
814 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
815 rebuild++;
816 }
817
818 if (metadata_available) {
819 rs->md.external = 0;
820 rs->md.persistent = 1;
821 rs->md.major_version = 2;
822 } else if (rebuild && !rs->md.recovery_cp) {
823 /*
824 * Without metadata, we will not be able to tell if the array
825 * is in-sync or not - we must assume it is not. Therefore,
826 * it is impossible to rebuild a drive.
827 *
828 * Even if there is metadata, the on-disk information may
829 * indicate that the array is not in-sync and it will then
830 * fail at that time.
831 *
832 * User could specify 'nosync' option if desperate.
833 */
834 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
835 return -EINVAL;
836 }
837
838 return 0;
839 }
840
841 /*
842 * validate_region_size
843 * @rs
844 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
845 *
846 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
847 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
848 *
849 * Returns: 0 on success, -EINVAL on failure.
850 */
851 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
852 {
853 unsigned long min_region_size = rs->ti->len / (1 << 21);
854
855 if (!region_size) {
856 /*
857 * Choose a reasonable default. All figures in sectors.
858 */
859 if (min_region_size > (1 << 13)) {
860 /* If not a power of 2, make it the next power of 2 */
861 region_size = roundup_pow_of_two(min_region_size);
862 DMINFO("Choosing default region size of %lu sectors",
863 region_size);
864 } else {
865 DMINFO("Choosing default region size of 4MiB");
866 region_size = 1 << 13; /* sectors */
867 }
868 } else {
869 /*
870 * Validate user-supplied value.
871 */
872 if (region_size > rs->ti->len) {
873 rs->ti->error = "Supplied region size is too large";
874 return -EINVAL;
875 }
876
877 if (region_size < min_region_size) {
878 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
879 region_size, min_region_size);
880 rs->ti->error = "Supplied region size is too small";
881 return -EINVAL;
882 }
883
884 if (!is_power_of_2(region_size)) {
885 rs->ti->error = "Region size is not a power of 2";
886 return -EINVAL;
887 }
888
889 if (region_size < rs->md.chunk_sectors) {
890 rs->ti->error = "Region size is smaller than the chunk size";
891 return -EINVAL;
892 }
893 }
894
895 /*
896 * Convert sectors to bytes.
897 */
898 rs->md.bitmap_info.chunksize = (region_size << 9);
899
900 return 0;
901 }
902
903 /*
904 * validate_raid_redundancy
905 * @rs
906 *
907 * Determine if there are enough devices in the array that haven't
908 * failed (or are being rebuilt) to form a usable array.
909 *
910 * Returns: 0 on success, -EINVAL on failure.
911 */
912 static int validate_raid_redundancy(struct raid_set *rs)
913 {
914 unsigned i, rebuild_cnt = 0;
915 unsigned rebuilds_per_group = 0, copies;
916 unsigned group_size, last_group_start;
917
918 for (i = 0; i < rs->md.raid_disks; i++)
919 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
920 !rs->dev[i].rdev.sb_page)
921 rebuild_cnt++;
922
923 switch (rs->raid_type->level) {
924 case 1:
925 if (rebuild_cnt >= rs->md.raid_disks)
926 goto too_many;
927 break;
928 case 4:
929 case 5:
930 case 6:
931 if (rebuild_cnt > rs->raid_type->parity_devs)
932 goto too_many;
933 break;
934 case 10:
935 copies = raid10_md_layout_to_copies(rs->md.new_layout);
936 if (rebuild_cnt < copies)
937 break;
938
939 /*
940 * It is possible to have a higher rebuild count for RAID10,
941 * as long as the failed devices occur in different mirror
942 * groups (i.e. different stripes).
943 *
944 * When checking "near" format, make sure no adjacent devices
945 * have failed beyond what can be handled. In addition to the
946 * simple case where the number of devices is a multiple of the
947 * number of copies, we must also handle cases where the number
948 * of devices is not a multiple of the number of copies.
949 * E.g. dev1 dev2 dev3 dev4 dev5
950 * A A B B C
951 * C D D E E
952 */
953 if (__is_raid10_near(rs->md.new_layout)) {
954 for (i = 0; i < rs->raid_disks; i++) {
955 if (!(i % copies))
956 rebuilds_per_group = 0;
957 if ((!rs->dev[i].rdev.sb_page ||
958 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
959 (++rebuilds_per_group >= copies))
960 goto too_many;
961 }
962 break;
963 }
964
965 /*
966 * When checking "far" and "offset" formats, we need to ensure
967 * that the device that holds its copy is not also dead or
968 * being rebuilt. (Note that "far" and "offset" formats only
969 * support two copies right now. These formats also only ever
970 * use the 'use_far_sets' variant.)
971 *
972 * This check is somewhat complicated by the need to account
973 * for arrays that are not a multiple of (far) copies. This
974 * results in the need to treat the last (potentially larger)
975 * set differently.
976 */
977 group_size = (rs->md.raid_disks / copies);
978 last_group_start = (rs->md.raid_disks / group_size) - 1;
979 last_group_start *= group_size;
980 for (i = 0; i < rs->md.raid_disks; i++) {
981 if (!(i % copies) && !(i > last_group_start))
982 rebuilds_per_group = 0;
983 if ((!rs->dev[i].rdev.sb_page ||
984 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
985 (++rebuilds_per_group >= copies))
986 goto too_many;
987 }
988 break;
989 default:
990 if (rebuild_cnt)
991 return -EINVAL;
992 }
993
994 return 0;
995
996 too_many:
997 return -EINVAL;
998 }
999
1000 /*
1001 * Possible arguments are...
1002 * <chunk_size> [optional_args]
1003 *
1004 * Argument definitions
1005 * <chunk_size> The number of sectors per disk that
1006 * will form the "stripe"
1007 * [[no]sync] Force or prevent recovery of the
1008 * entire array
1009 * [rebuild <idx>] Rebuild the drive indicated by the index
1010 * [daemon_sleep <ms>] Time between bitmap daemon work to
1011 * clear bits
1012 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1013 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1014 * [write_mostly <idx>] Indicate a write mostly drive via index
1015 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1016 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1017 * [region_size <sectors>] Defines granularity of bitmap
1018 *
1019 * RAID10-only options:
1020 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1021 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1022 */
1023 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1024 unsigned num_raid_params)
1025 {
1026 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1027 unsigned raid10_copies = 2;
1028 unsigned i;
1029 unsigned region_size = 0;
1030 sector_t max_io_len;
1031 const char *arg, *key;
1032 struct raid_dev *rd;
1033 struct raid_type *rt = rs->raid_type;
1034
1035 arg = dm_shift_arg(as);
1036 num_raid_params--; /* Account for chunk_size argument */
1037
1038 if (kstrtoint(arg, 10, &value) < 0) {
1039 rs->ti->error = "Bad numerical argument given for chunk_size";
1040 return -EINVAL;
1041 }
1042
1043 /*
1044 * First, parse the in-order required arguments
1045 * "chunk_size" is the only argument of this type.
1046 */
1047 if (rt_is_raid1(rt)) {
1048 if (value)
1049 DMERR("Ignoring chunk size parameter for RAID 1");
1050 value = 0;
1051 } else if (!is_power_of_2(value)) {
1052 rs->ti->error = "Chunk size must be a power of 2";
1053 return -EINVAL;
1054 } else if (value < 8) {
1055 rs->ti->error = "Chunk size value is too small";
1056 return -EINVAL;
1057 }
1058
1059 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1060
1061 /*
1062 * We set each individual device as In_sync with a completed
1063 * 'recovery_offset'. If there has been a device failure or
1064 * replacement then one of the following cases applies:
1065 *
1066 * 1) User specifies 'rebuild'.
1067 * - Device is reset when param is read.
1068 * 2) A new device is supplied.
1069 * - No matching superblock found, resets device.
1070 * 3) Device failure was transient and returns on reload.
1071 * - Failure noticed, resets device for bitmap replay.
1072 * 4) Device hadn't completed recovery after previous failure.
1073 * - Superblock is read and overrides recovery_offset.
1074 *
1075 * What is found in the superblocks of the devices is always
1076 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1077 */
1078 for (i = 0; i < rs->md.raid_disks; i++) {
1079 set_bit(In_sync, &rs->dev[i].rdev.flags);
1080 rs->dev[i].rdev.recovery_offset = MaxSector;
1081 }
1082
1083 /*
1084 * Second, parse the unordered optional arguments
1085 */
1086 for (i = 0; i < num_raid_params; i++) {
1087 key = dm_shift_arg(as);
1088 if (!key) {
1089 rs->ti->error = "Not enough raid parameters given";
1090 return -EINVAL;
1091 }
1092
1093 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1094 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1095 rs->ti->error = "Only one 'nosync' argument allowed";
1096 return -EINVAL;
1097 }
1098 rs->md.recovery_cp = MaxSector;
1099 continue;
1100 }
1101 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1102 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1103 rs->ti->error = "Only one 'sync' argument allowed";
1104 return -EINVAL;
1105 }
1106 rs->md.recovery_cp = 0;
1107 continue;
1108 }
1109 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1110 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1111 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1112 return -EINVAL;
1113 }
1114 continue;
1115 }
1116
1117 arg = dm_shift_arg(as);
1118 i++; /* Account for the argument pairs */
1119 if (!arg) {
1120 rs->ti->error = "Wrong number of raid parameters given";
1121 return -EINVAL;
1122 }
1123
1124 /*
1125 * Parameters that take a string value are checked here.
1126 */
1127
1128 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1129 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1130 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1131 return -EINVAL;
1132 }
1133 if (!rt_is_raid10(rt)) {
1134 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1135 return -EINVAL;
1136 }
1137 raid10_format = raid10_name_to_format(arg);
1138 if (raid10_format < 0) {
1139 rs->ti->error = "Invalid 'raid10_format' value given";
1140 return raid10_format;
1141 }
1142 continue;
1143 }
1144
1145 if (kstrtoint(arg, 10, &value) < 0) {
1146 rs->ti->error = "Bad numerical argument given in raid params";
1147 return -EINVAL;
1148 }
1149
1150 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1151 /*
1152 * "rebuild" is being passed in by userspace to provide
1153 * indexes of replaced devices and to set up additional
1154 * devices on raid level takeover.
1155 */
1156 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1157 rs->ti->error = "Invalid rebuild index given";
1158 return -EINVAL;
1159 }
1160
1161 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1162 rs->ti->error = "rebuild for this index already given";
1163 return -EINVAL;
1164 }
1165
1166 rd = rs->dev + value;
1167 clear_bit(In_sync, &rd->rdev.flags);
1168 clear_bit(Faulty, &rd->rdev.flags);
1169 rd->rdev.recovery_offset = 0;
1170 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1171 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1172 if (!rt_is_raid1(rt)) {
1173 rs->ti->error = "write_mostly option is only valid for RAID1";
1174 return -EINVAL;
1175 }
1176
1177 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1178 rs->ti->error = "Invalid write_mostly index given";
1179 return -EINVAL;
1180 }
1181
1182 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1183 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1184 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1185 if (!rt_is_raid1(rt)) {
1186 rs->ti->error = "max_write_behind option is only valid for RAID1";
1187 return -EINVAL;
1188 }
1189
1190 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1191 rs->ti->error = "Only one max_write_behind argument pair allowed";
1192 return -EINVAL;
1193 }
1194
1195 /*
1196 * In device-mapper, we specify things in sectors, but
1197 * MD records this value in kB
1198 */
1199 value /= 2;
1200 if (value > COUNTER_MAX) {
1201 rs->ti->error = "Max write-behind limit out of range";
1202 return -EINVAL;
1203 }
1204
1205 rs->md.bitmap_info.max_write_behind = value;
1206 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1207 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1208 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1209 return -EINVAL;
1210 }
1211 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1212 rs->ti->error = "daemon sleep period out of range";
1213 return -EINVAL;
1214 }
1215 rs->md.bitmap_info.daemon_sleep = value;
1216 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1217 /* Userspace passes new data_offset after having extended the the data image LV */
1218 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1219 rs->ti->error = "Only one data_offset argument pair allowed";
1220 return -EINVAL;
1221 }
1222 /* Ensure sensible data offset */
1223 if (value < 0) {
1224 rs->ti->error = "Bogus data_offset value";
1225 return -EINVAL;
1226 }
1227 rs->data_offset = value;
1228 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1229 /* Define the +/-# of disks to add to/remove from the given raid set */
1230 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1231 rs->ti->error = "Only one delta_disks argument pair allowed";
1232 return -EINVAL;
1233 }
1234 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1235 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1236 rs->ti->error = "Too many delta_disk requested";
1237 return -EINVAL;
1238 }
1239
1240 rs->delta_disks = value;
1241 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1242 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1243 rs->ti->error = "Only one stripe_cache argument pair allowed";
1244 return -EINVAL;
1245 }
1246
1247 if (!rt_is_raid456(rt)) {
1248 rs->ti->error = "Inappropriate argument: stripe_cache";
1249 return -EINVAL;
1250 }
1251
1252 rs->stripe_cache_entries = value;
1253 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1254 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1255 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1256 return -EINVAL;
1257 }
1258 if (value > INT_MAX) {
1259 rs->ti->error = "min_recovery_rate out of range";
1260 return -EINVAL;
1261 }
1262 rs->md.sync_speed_min = (int)value;
1263 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1264 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1265 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1266 return -EINVAL;
1267 }
1268 if (value > INT_MAX) {
1269 rs->ti->error = "max_recovery_rate out of range";
1270 return -EINVAL;
1271 }
1272 rs->md.sync_speed_max = (int)value;
1273 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1274 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1275 rs->ti->error = "Only one region_size argument pair allowed";
1276 return -EINVAL;
1277 }
1278
1279 region_size = value;
1280 rs->requested_bitmap_chunk_sectors = value;
1281 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1282 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1283 rs->ti->error = "Only one raid10_copies argument pair allowed";
1284 return -EINVAL;
1285 }
1286
1287 if (!__within_range(value, 2, rs->md.raid_disks)) {
1288 rs->ti->error = "Bad value for 'raid10_copies'";
1289 return -EINVAL;
1290 }
1291
1292 raid10_copies = value;
1293 } else {
1294 DMERR("Unable to parse RAID parameter: %s", key);
1295 rs->ti->error = "Unable to parse RAID parameter";
1296 return -EINVAL;
1297 }
1298 }
1299
1300 if (validate_region_size(rs, region_size))
1301 return -EINVAL;
1302
1303 if (rs->md.chunk_sectors)
1304 max_io_len = rs->md.chunk_sectors;
1305 else
1306 max_io_len = region_size;
1307
1308 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1309 return -EINVAL;
1310
1311 if (rt_is_raid10(rt)) {
1312 if (raid10_copies > rs->md.raid_disks) {
1313 rs->ti->error = "Not enough devices to satisfy specification";
1314 return -EINVAL;
1315 }
1316
1317 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1318 if (rs->md.new_layout < 0) {
1319 rs->ti->error = "Error getting raid10 format";
1320 return rs->md.new_layout;
1321 }
1322
1323 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1324 if (!rt) {
1325 rs->ti->error = "Failed to recognize new raid10 layout";
1326 return -EINVAL;
1327 }
1328
1329 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1330 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1331 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1332 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1333 return -EINVAL;
1334 }
1335 }
1336
1337 rs->raid10_copies = raid10_copies;
1338
1339 /* Assume there are no metadata devices until the drives are parsed */
1340 rs->md.persistent = 0;
1341 rs->md.external = 1;
1342
1343 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1344 return rs_check_for_valid_flags(rs);
1345 }
1346
1347 /* Set raid4/5/6 cache size */
1348 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1349 {
1350 int r;
1351 struct r5conf *conf;
1352 struct mddev *mddev = &rs->md;
1353 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1354 uint32_t nr_stripes = rs->stripe_cache_entries;
1355
1356 if (!rt_is_raid456(rs->raid_type)) {
1357 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1358 return -EINVAL;
1359 }
1360
1361 if (nr_stripes < min_stripes) {
1362 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1363 nr_stripes, min_stripes);
1364 nr_stripes = min_stripes;
1365 }
1366
1367 conf = mddev->private;
1368 if (!conf) {
1369 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1370 return -EINVAL;
1371 }
1372
1373 /* Try setting number of stripes in raid456 stripe cache */
1374 if (conf->min_nr_stripes != nr_stripes) {
1375 r = raid5_set_cache_size(mddev, nr_stripes);
1376 if (r) {
1377 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1378 return r;
1379 }
1380
1381 DMINFO("%u stripe cache entries", nr_stripes);
1382 }
1383
1384 return 0;
1385 }
1386
1387 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1388 static unsigned int mddev_data_stripes(struct raid_set *rs)
1389 {
1390 return rs->md.raid_disks - rs->raid_type->parity_devs;
1391 }
1392
1393 /* Return # of data stripes of @rs (i.e. as of ctr) */
1394 static unsigned int rs_data_stripes(struct raid_set *rs)
1395 {
1396 return rs->raid_disks - rs->raid_type->parity_devs;
1397 }
1398
1399 /* Calculate the sectors per device and per array used for @rs */
1400 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1401 {
1402 int delta_disks;
1403 unsigned int data_stripes;
1404 struct mddev *mddev = &rs->md;
1405 struct md_rdev *rdev;
1406 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1407 sector_t cur_dev_sectors = rs->dev[0].rdev.sectors;
1408
1409 if (use_mddev) {
1410 delta_disks = mddev->delta_disks;
1411 data_stripes = mddev_data_stripes(rs);
1412 } else {
1413 delta_disks = rs->delta_disks;
1414 data_stripes = rs_data_stripes(rs);
1415 }
1416
1417 /* Special raid1 case w/o delta_disks support (yet) */
1418 if (rt_is_raid1(rs->raid_type))
1419 ;
1420 else if (rt_is_raid10(rs->raid_type)) {
1421 if (rs->raid10_copies < 2 ||
1422 delta_disks < 0) {
1423 rs->ti->error = "Bogus raid10 data copies or delta disks";
1424 return EINVAL;
1425 }
1426
1427 dev_sectors *= rs->raid10_copies;
1428 if (sector_div(dev_sectors, data_stripes))
1429 goto bad;
1430
1431 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1432 if (sector_div(array_sectors, rs->raid10_copies))
1433 goto bad;
1434
1435 } else if (sector_div(dev_sectors, data_stripes))
1436 goto bad;
1437
1438 else
1439 /* Striped layouts */
1440 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1441
1442 rdev_for_each(rdev, mddev)
1443 rdev->sectors = dev_sectors;
1444
1445 mddev->array_sectors = array_sectors;
1446 mddev->dev_sectors = dev_sectors;
1447
1448 if (!rs_is_raid0(rs) && dev_sectors > cur_dev_sectors)
1449 mddev->recovery_cp = dev_sectors;
1450
1451 return 0;
1452 bad:
1453 rs->ti->error = "Target length not divisible by number of data devices";
1454 return EINVAL;
1455 }
1456
1457 static void do_table_event(struct work_struct *ws)
1458 {
1459 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1460
1461 rs_set_capacity(rs);
1462 dm_table_event(rs->ti->table);
1463 }
1464
1465 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1466 {
1467 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1468
1469 return mddev_congested(&rs->md, bits);
1470 }
1471
1472 /*
1473 * Make sure a valid takover (level switch) is being requested on @rs
1474 *
1475 * Conversions of raid sets from one MD personality to another
1476 * have to conform to restrictions which are enforced here.
1477 *
1478 * Degration is already checked for in rs_check_conversion() below.
1479 */
1480 static int rs_check_takeover(struct raid_set *rs)
1481 {
1482 struct mddev *mddev = &rs->md;
1483 unsigned int near_copies;
1484
1485 if (rs->md.degraded) {
1486 rs->ti->error = "Can't takeover degraded raid set";
1487 return -EPERM;
1488 }
1489
1490 if (rs_is_reshaping(rs)) {
1491 rs->ti->error = "Can't takeover reshaping raid set";
1492 return -EPERM;
1493 }
1494
1495 switch (mddev->level) {
1496 case 0:
1497 /* raid0 -> raid1/5 with one disk */
1498 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1499 mddev->raid_disks == 1)
1500 return 0;
1501
1502 /* raid0 -> raid10 */
1503 if (mddev->new_level == 10 &&
1504 !(rs->raid_disks % mddev->raid_disks))
1505 return 0;
1506
1507 /* raid0 with multiple disks -> raid4/5/6 */
1508 if (__within_range(mddev->new_level, 4, 6) &&
1509 mddev->new_layout == ALGORITHM_PARITY_N &&
1510 mddev->raid_disks > 1)
1511 return 0;
1512
1513 break;
1514
1515 case 10:
1516 /* Can't takeover raid10_offset! */
1517 if (__is_raid10_offset(mddev->layout))
1518 break;
1519
1520 near_copies = __raid10_near_copies(mddev->layout);
1521
1522 /* raid10* -> raid0 */
1523 if (mddev->new_level == 0) {
1524 /* Can takeover raid10_near with raid disks divisable by data copies! */
1525 if (near_copies > 1 &&
1526 !(mddev->raid_disks % near_copies)) {
1527 mddev->raid_disks /= near_copies;
1528 mddev->delta_disks = mddev->raid_disks;
1529 return 0;
1530 }
1531
1532 /* Can takeover raid10_far */
1533 if (near_copies == 1 &&
1534 __raid10_far_copies(mddev->layout) > 1)
1535 return 0;
1536
1537 break;
1538 }
1539
1540 /* raid10_{near,far} -> raid1 */
1541 if (mddev->new_level == 1 &&
1542 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1543 return 0;
1544
1545 /* raid10_{near,far} with 2 disks -> raid4/5 */
1546 if (__within_range(mddev->new_level, 4, 5) &&
1547 mddev->raid_disks == 2)
1548 return 0;
1549 break;
1550
1551 case 1:
1552 /* raid1 with 2 disks -> raid4/5 */
1553 if (__within_range(mddev->new_level, 4, 5) &&
1554 mddev->raid_disks == 2) {
1555 mddev->degraded = 1;
1556 return 0;
1557 }
1558
1559 /* raid1 -> raid0 */
1560 if (mddev->new_level == 0 &&
1561 mddev->raid_disks == 1)
1562 return 0;
1563
1564 /* raid1 -> raid10 */
1565 if (mddev->new_level == 10)
1566 return 0;
1567
1568 break;
1569
1570 case 4:
1571 /* raid4 -> raid0 */
1572 if (mddev->new_level == 0)
1573 return 0;
1574
1575 /* raid4 -> raid1/5 with 2 disks */
1576 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1577 mddev->raid_disks == 2)
1578 return 0;
1579
1580 /* raid4 -> raid5/6 with parity N */
1581 if (__within_range(mddev->new_level, 5, 6) &&
1582 mddev->layout == ALGORITHM_PARITY_N)
1583 return 0;
1584 break;
1585
1586 case 5:
1587 /* raid5 with parity N -> raid0 */
1588 if (mddev->new_level == 0 &&
1589 mddev->layout == ALGORITHM_PARITY_N)
1590 return 0;
1591
1592 /* raid5 with parity N -> raid4 */
1593 if (mddev->new_level == 4 &&
1594 mddev->layout == ALGORITHM_PARITY_N)
1595 return 0;
1596
1597 /* raid5 with 2 disks -> raid1/4/10 */
1598 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1599 mddev->raid_disks == 2)
1600 return 0;
1601
1602 /* raid5 with parity N -> raid6 with parity N */
1603 if (mddev->new_level == 6 &&
1604 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1605 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1606 return 0;
1607 break;
1608
1609 case 6:
1610 /* raid6 with parity N -> raid0 */
1611 if (mddev->new_level == 0 &&
1612 mddev->layout == ALGORITHM_PARITY_N)
1613 return 0;
1614
1615 /* raid6 with parity N -> raid4 */
1616 if (mddev->new_level == 4 &&
1617 mddev->layout == ALGORITHM_PARITY_N)
1618 return 0;
1619
1620 /* raid6_*_n with parity N -> raid5_* */
1621 if (mddev->new_level == 5 &&
1622 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1623 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1624 return 0;
1625
1626 default:
1627 break;
1628 }
1629
1630 rs->ti->error = "takeover not possible";
1631 return -EINVAL;
1632 }
1633
1634 /* True if @rs requested to be taken over */
1635 static bool rs_takeover_requested(struct raid_set *rs)
1636 {
1637 return rs->md.new_level != rs->md.level;
1638 }
1639
1640 /* True if @rs is requested to reshape by ctr */
1641 static bool rs_reshape_requested(struct raid_set *rs)
1642 {
1643 struct mddev *mddev = &rs->md;
1644
1645 if (!mddev->level)
1646 return false;
1647
1648 return !__is_raid10_far(mddev->new_layout) &&
1649 mddev->new_level == mddev->level &&
1650 (mddev->new_layout != mddev->layout ||
1651 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1652 rs->raid_disks + rs->delta_disks != mddev->raid_disks);
1653 }
1654
1655 /* Features */
1656 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1657
1658 /* State flags for sb->flags */
1659 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1660 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1661
1662 /*
1663 * This structure is never routinely used by userspace, unlike md superblocks.
1664 * Devices with this superblock should only ever be accessed via device-mapper.
1665 */
1666 #define DM_RAID_MAGIC 0x64526D44
1667 struct dm_raid_superblock {
1668 __le32 magic; /* "DmRd" */
1669 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1670
1671 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1672 __le32 array_position; /* The position of this drive in the raid set */
1673
1674 __le64 events; /* Incremented by md when superblock updated */
1675 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1676 /* indicate failures (see extension below) */
1677
1678 /*
1679 * This offset tracks the progress of the repair or replacement of
1680 * an individual drive.
1681 */
1682 __le64 disk_recovery_offset;
1683
1684 /*
1685 * This offset tracks the progress of the initial raid set
1686 * synchronisation/parity calculation.
1687 */
1688 __le64 array_resync_offset;
1689
1690 /*
1691 * raid characteristics
1692 */
1693 __le32 level;
1694 __le32 layout;
1695 __le32 stripe_sectors;
1696
1697 /********************************************************************
1698 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1699 *
1700 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1701 */
1702
1703 __le32 flags; /* Flags defining array states for reshaping */
1704
1705 /*
1706 * This offset tracks the progress of a raid
1707 * set reshape in order to be able to restart it
1708 */
1709 __le64 reshape_position;
1710
1711 /*
1712 * These define the properties of the array in case of an interrupted reshape
1713 */
1714 __le32 new_level;
1715 __le32 new_layout;
1716 __le32 new_stripe_sectors;
1717 __le32 delta_disks;
1718
1719 __le64 array_sectors; /* Array size in sectors */
1720
1721 /*
1722 * Sector offsets to data on devices (reshaping).
1723 * Needed to support out of place reshaping, thus
1724 * not writing over any stripes whilst converting
1725 * them from old to new layout
1726 */
1727 __le64 data_offset;
1728 __le64 new_data_offset;
1729
1730 __le64 sectors; /* Used device size in sectors */
1731
1732 /*
1733 * Additonal Bit field of devices indicating failures to support
1734 * up to 256 devices with the 1.9.0 on-disk metadata format
1735 */
1736 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1737
1738 __le32 incompat_features; /* Used to indicate any incompatible features */
1739
1740 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1741 } __packed;
1742
1743 /*
1744 * Check for reshape constraints on raid set @rs:
1745 *
1746 * - reshape function non-existent
1747 * - degraded set
1748 * - ongoing recovery
1749 * - ongoing reshape
1750 *
1751 * Returns 0 if none or -EPERM if given constraint
1752 * and error message reference in @errmsg
1753 */
1754 static int rs_check_reshape(struct raid_set *rs)
1755 {
1756 struct mddev *mddev = &rs->md;
1757
1758 if (!mddev->pers || !mddev->pers->check_reshape)
1759 rs->ti->error = "Reshape not supported";
1760 else if (mddev->degraded)
1761 rs->ti->error = "Can't reshape degraded raid set";
1762 else if (rs_is_recovering(rs))
1763 rs->ti->error = "Convert request on recovering raid set prohibited";
1764 else if (mddev->reshape_position && rs_is_reshaping(rs))
1765 rs->ti->error = "raid set already reshaping!";
1766 else if (!(rs_is_raid10(rs) || rs_is_raid456(rs)))
1767 rs->ti->error = "Reshaping only supported for raid4/5/6/10";
1768 else
1769 return 0;
1770
1771 return -EPERM;
1772 }
1773
1774 static int read_disk_sb(struct md_rdev *rdev, int size)
1775 {
1776 BUG_ON(!rdev->sb_page);
1777
1778 if (rdev->sb_loaded)
1779 return 0;
1780
1781 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, 1)) {
1782 DMERR("Failed to read superblock of device at position %d",
1783 rdev->raid_disk);
1784 md_error(rdev->mddev, rdev);
1785 return -EINVAL;
1786 }
1787
1788 rdev->sb_loaded = 1;
1789
1790 return 0;
1791 }
1792
1793 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1794 {
1795 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1796 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1797
1798 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1799 int i = ARRAY_SIZE(sb->extended_failed_devices);
1800
1801 while (i--)
1802 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1803 }
1804 }
1805
1806 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1807 {
1808 int i = ARRAY_SIZE(sb->extended_failed_devices);
1809
1810 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1811 while (i--)
1812 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1813 }
1814
1815 /*
1816 * Synchronize the superblock members with the raid set properties
1817 *
1818 * All superblock data is little endian.
1819 */
1820 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1821 {
1822 bool update_failed_devices = false;
1823 unsigned int i;
1824 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1825 struct dm_raid_superblock *sb;
1826 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1827
1828 /* No metadata device, no superblock */
1829 if (!rdev->meta_bdev)
1830 return;
1831
1832 BUG_ON(!rdev->sb_page);
1833
1834 sb = page_address(rdev->sb_page);
1835
1836 sb_retrieve_failed_devices(sb, failed_devices);
1837
1838 for (i = 0; i < rs->raid_disks; i++)
1839 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1840 update_failed_devices = true;
1841 set_bit(i, (void *) failed_devices);
1842 }
1843
1844 if (update_failed_devices)
1845 sb_update_failed_devices(sb, failed_devices);
1846
1847 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1848 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1849
1850 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1851 sb->array_position = cpu_to_le32(rdev->raid_disk);
1852
1853 sb->events = cpu_to_le64(mddev->events);
1854
1855 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1856 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1857
1858 sb->level = cpu_to_le32(mddev->level);
1859 sb->layout = cpu_to_le32(mddev->layout);
1860 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1861
1862 sb->new_level = cpu_to_le32(mddev->new_level);
1863 sb->new_layout = cpu_to_le32(mddev->new_layout);
1864 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1865
1866 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1867
1868 smp_rmb(); /* Make sure we access most recent reshape position */
1869 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1870 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1871 /* Flag ongoing reshape */
1872 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1873
1874 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1875 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1876 } else {
1877 /* Clear reshape flags */
1878 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1879 }
1880
1881 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1882 sb->data_offset = cpu_to_le64(rdev->data_offset);
1883 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1884 sb->sectors = cpu_to_le64(rdev->sectors);
1885
1886 /* Zero out the rest of the payload after the size of the superblock */
1887 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1888 }
1889
1890 /*
1891 * super_load
1892 *
1893 * This function creates a superblock if one is not found on the device
1894 * and will decide which superblock to use if there's a choice.
1895 *
1896 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1897 */
1898 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1899 {
1900 int r;
1901 struct dm_raid_superblock *sb;
1902 struct dm_raid_superblock *refsb;
1903 uint64_t events_sb, events_refsb;
1904
1905 rdev->sb_start = 0;
1906 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1907 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1908 DMERR("superblock size of a logical block is no longer valid");
1909 return -EINVAL;
1910 }
1911
1912 r = read_disk_sb(rdev, rdev->sb_size);
1913 if (r)
1914 return r;
1915
1916 sb = page_address(rdev->sb_page);
1917
1918 /*
1919 * Two cases that we want to write new superblocks and rebuild:
1920 * 1) New device (no matching magic number)
1921 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1922 */
1923 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1924 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
1925 super_sync(rdev->mddev, rdev);
1926
1927 set_bit(FirstUse, &rdev->flags);
1928 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1929
1930 /* Force writing of superblocks to disk */
1931 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1932
1933 /* Any superblock is better than none, choose that if given */
1934 return refdev ? 0 : 1;
1935 }
1936
1937 if (!refdev)
1938 return 1;
1939
1940 events_sb = le64_to_cpu(sb->events);
1941
1942 refsb = page_address(refdev->sb_page);
1943 events_refsb = le64_to_cpu(refsb->events);
1944
1945 return (events_sb > events_refsb) ? 1 : 0;
1946 }
1947
1948 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
1949 {
1950 int role;
1951 unsigned int d;
1952 struct mddev *mddev = &rs->md;
1953 uint64_t events_sb;
1954 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1955 struct dm_raid_superblock *sb;
1956 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
1957 struct md_rdev *r;
1958 struct dm_raid_superblock *sb2;
1959
1960 sb = page_address(rdev->sb_page);
1961 events_sb = le64_to_cpu(sb->events);
1962
1963 /*
1964 * Initialise to 1 if this is a new superblock.
1965 */
1966 mddev->events = events_sb ? : 1;
1967
1968 mddev->reshape_position = MaxSector;
1969
1970 /*
1971 * Reshaping is supported, e.g. reshape_position is valid
1972 * in superblock and superblock content is authoritative.
1973 */
1974 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1975 /* Superblock is authoritative wrt given raid set layout! */
1976 mddev->raid_disks = le32_to_cpu(sb->num_devices);
1977 mddev->level = le32_to_cpu(sb->level);
1978 mddev->layout = le32_to_cpu(sb->layout);
1979 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
1980 mddev->new_level = le32_to_cpu(sb->new_level);
1981 mddev->new_layout = le32_to_cpu(sb->new_layout);
1982 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
1983 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1984 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
1985
1986 /* raid was reshaping and got interrupted */
1987 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
1988 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1989 DMERR("Reshape requested but raid set is still reshaping");
1990 return -EINVAL;
1991 }
1992
1993 if (mddev->delta_disks < 0 ||
1994 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
1995 mddev->reshape_backwards = 1;
1996 else
1997 mddev->reshape_backwards = 0;
1998
1999 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2000 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2001 }
2002
2003 } else {
2004 /*
2005 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2006 */
2007 if (le32_to_cpu(sb->level) != mddev->level) {
2008 DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2009 return -EINVAL;
2010 }
2011 if (le32_to_cpu(sb->layout) != mddev->layout) {
2012 DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2013 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2014 DMERR(" Old layout: %s w/ %d copies",
2015 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2016 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2017 DMERR(" New layout: %s w/ %d copies",
2018 raid10_md_layout_to_format(mddev->layout),
2019 raid10_md_layout_to_copies(mddev->layout));
2020 return -EINVAL;
2021 }
2022 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2023 DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2024 return -EINVAL;
2025 }
2026
2027 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2028 if (!rt_is_raid1(rs->raid_type) &&
2029 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2030 DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2031 sb->num_devices, mddev->raid_disks);
2032 return -EINVAL;
2033 }
2034
2035 /* Table line is checked vs. authoritative superblock */
2036 rs_set_new(rs);
2037 }
2038
2039 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2040 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2041
2042 /*
2043 * During load, we set FirstUse if a new superblock was written.
2044 * There are two reasons we might not have a superblock:
2045 * 1) The raid set is brand new - in which case, all of the
2046 * devices must have their In_sync bit set. Also,
2047 * recovery_cp must be 0, unless forced.
2048 * 2) This is a new device being added to an old raid set
2049 * and the new device needs to be rebuilt - in which
2050 * case the In_sync bit will /not/ be set and
2051 * recovery_cp must be MaxSector.
2052 * 3) This is/are a new device(s) being added to an old
2053 * raid set during takeover to a higher raid level
2054 * to provide capacity for redundancy or during reshape
2055 * to add capacity to grow the raid set.
2056 */
2057 d = 0;
2058 rdev_for_each(r, mddev) {
2059 if (test_bit(FirstUse, &r->flags))
2060 new_devs++;
2061
2062 if (!test_bit(In_sync, &r->flags)) {
2063 DMINFO("Device %d specified for rebuild; clearing superblock",
2064 r->raid_disk);
2065 rebuilds++;
2066
2067 if (test_bit(FirstUse, &r->flags))
2068 rebuild_and_new++;
2069 }
2070
2071 d++;
2072 }
2073
2074 if (new_devs == rs->raid_disks || !rebuilds) {
2075 /* Replace a broken device */
2076 if (new_devs == 1 && !rs->delta_disks)
2077 ;
2078 if (new_devs == rs->raid_disks) {
2079 DMINFO("Superblocks created for new raid set");
2080 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2081 mddev->recovery_cp = 0;
2082 } else if (new_devs != rebuilds &&
2083 new_devs != rs->delta_disks) {
2084 DMERR("New device injected into existing raid set without "
2085 "'delta_disks' or 'rebuild' parameter specified");
2086 return -EINVAL;
2087 }
2088 } else if (new_devs && new_devs != rebuilds) {
2089 DMERR("%u 'rebuild' devices cannot be injected into"
2090 " a raid set with %u other first-time devices",
2091 rebuilds, new_devs);
2092 return -EINVAL;
2093 } else if (rebuilds) {
2094 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2095 DMERR("new device%s provided without 'rebuild'",
2096 new_devs > 1 ? "s" : "");
2097 return -EINVAL;
2098 } else if (rs_is_recovering(rs)) {
2099 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2100 (unsigned long long) mddev->recovery_cp);
2101 return -EINVAL;
2102 } else if (rs_is_reshaping(rs)) {
2103 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2104 (unsigned long long) mddev->reshape_position);
2105 return -EINVAL;
2106 }
2107 }
2108
2109 /*
2110 * Now we set the Faulty bit for those devices that are
2111 * recorded in the superblock as failed.
2112 */
2113 sb_retrieve_failed_devices(sb, failed_devices);
2114 rdev_for_each(r, mddev) {
2115 if (!r->sb_page)
2116 continue;
2117 sb2 = page_address(r->sb_page);
2118 sb2->failed_devices = 0;
2119 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2120
2121 /*
2122 * Check for any device re-ordering.
2123 */
2124 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2125 role = le32_to_cpu(sb2->array_position);
2126 if (role < 0)
2127 continue;
2128
2129 if (role != r->raid_disk) {
2130 if (__is_raid10_near(mddev->layout)) {
2131 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2132 rs->raid_disks % rs->raid10_copies) {
2133 rs->ti->error =
2134 "Cannot change raid10 near set to odd # of devices!";
2135 return -EINVAL;
2136 }
2137
2138 sb2->array_position = cpu_to_le32(r->raid_disk);
2139
2140 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2141 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2142 !rt_is_raid1(rs->raid_type)) {
2143 rs->ti->error = "Cannot change device positions in raid set";
2144 return -EINVAL;
2145 }
2146
2147 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2148 }
2149
2150 /*
2151 * Partial recovery is performed on
2152 * returning failed devices.
2153 */
2154 if (test_bit(role, (void *) failed_devices))
2155 set_bit(Faulty, &r->flags);
2156 }
2157 }
2158
2159 return 0;
2160 }
2161
2162 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2163 {
2164 struct mddev *mddev = &rs->md;
2165 struct dm_raid_superblock *sb;
2166
2167 if (rs_is_raid0(rs) || !rdev->sb_page)
2168 return 0;
2169
2170 sb = page_address(rdev->sb_page);
2171
2172 /*
2173 * If mddev->events is not set, we know we have not yet initialized
2174 * the array.
2175 */
2176 if (!mddev->events && super_init_validation(rs, rdev))
2177 return -EINVAL;
2178
2179 if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2180 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2181 return -EINVAL;
2182 }
2183
2184 if (sb->incompat_features) {
2185 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2186 return -EINVAL;
2187 }
2188
2189 /* Enable bitmap creation for RAID levels != 0 */
2190 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2191 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2192
2193 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2194 /* Retrieve device size stored in superblock to be prepared for shrink */
2195 rdev->sectors = le64_to_cpu(sb->sectors);
2196 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2197 if (rdev->recovery_offset == MaxSector)
2198 set_bit(In_sync, &rdev->flags);
2199 /*
2200 * If no reshape in progress -> we're recovering single
2201 * disk(s) and have to set the device(s) to out-of-sync
2202 */
2203 else if (!rs_is_reshaping(rs))
2204 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2205 }
2206
2207 /*
2208 * If a device comes back, set it as not In_sync and no longer faulty.
2209 */
2210 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2211 rdev->recovery_offset = 0;
2212 clear_bit(In_sync, &rdev->flags);
2213 rdev->saved_raid_disk = rdev->raid_disk;
2214 }
2215
2216 /* Reshape support -> restore repective data offsets */
2217 rdev->data_offset = le64_to_cpu(sb->data_offset);
2218 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2219
2220 return 0;
2221 }
2222
2223 /*
2224 * Analyse superblocks and select the freshest.
2225 */
2226 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2227 {
2228 int r;
2229 struct raid_dev *dev;
2230 struct md_rdev *rdev, *tmp, *freshest;
2231 struct mddev *mddev = &rs->md;
2232
2233 freshest = NULL;
2234 rdev_for_each_safe(rdev, tmp, mddev) {
2235 /*
2236 * Skipping super_load due to CTR_FLAG_SYNC will cause
2237 * the array to undergo initialization again as
2238 * though it were new. This is the intended effect
2239 * of the "sync" directive.
2240 *
2241 * When reshaping capability is added, we must ensure
2242 * that the "sync" directive is disallowed during the
2243 * reshape.
2244 */
2245 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2246 continue;
2247
2248 if (!rdev->meta_bdev)
2249 continue;
2250
2251 r = super_load(rdev, freshest);
2252
2253 switch (r) {
2254 case 1:
2255 freshest = rdev;
2256 break;
2257 case 0:
2258 break;
2259 default:
2260 dev = container_of(rdev, struct raid_dev, rdev);
2261 if (dev->meta_dev)
2262 dm_put_device(ti, dev->meta_dev);
2263
2264 dev->meta_dev = NULL;
2265 rdev->meta_bdev = NULL;
2266
2267 if (rdev->sb_page)
2268 put_page(rdev->sb_page);
2269
2270 rdev->sb_page = NULL;
2271
2272 rdev->sb_loaded = 0;
2273
2274 /*
2275 * We might be able to salvage the data device
2276 * even though the meta device has failed. For
2277 * now, we behave as though '- -' had been
2278 * set for this device in the table.
2279 */
2280 if (dev->data_dev)
2281 dm_put_device(ti, dev->data_dev);
2282
2283 dev->data_dev = NULL;
2284 rdev->bdev = NULL;
2285
2286 list_del(&rdev->same_set);
2287 }
2288 }
2289
2290 if (!freshest)
2291 return 0;
2292
2293 if (validate_raid_redundancy(rs)) {
2294 rs->ti->error = "Insufficient redundancy to activate array";
2295 return -EINVAL;
2296 }
2297
2298 /*
2299 * Validation of the freshest device provides the source of
2300 * validation for the remaining devices.
2301 */
2302 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2303 if (super_validate(rs, freshest))
2304 return -EINVAL;
2305
2306 rdev_for_each(rdev, mddev)
2307 if ((rdev != freshest) && super_validate(rs, rdev))
2308 return -EINVAL;
2309 return 0;
2310 }
2311
2312 /*
2313 * Adjust data_offset and new_data_offset on all disk members of @rs
2314 * for out of place reshaping if requested by contructor
2315 *
2316 * We need free space at the beginning of each raid disk for forward
2317 * and at the end for backward reshapes which userspace has to provide
2318 * via remapping/reordering of space.
2319 */
2320 static int rs_adjust_data_offsets(struct raid_set *rs)
2321 {
2322 sector_t data_offset = 0, new_data_offset = 0;
2323 struct md_rdev *rdev;
2324
2325 /* Constructor did not request data offset change */
2326 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2327 if (!rs_is_reshapable(rs))
2328 goto out;
2329
2330 return 0;
2331 }
2332
2333 /* HM FIXME: get InSync raid_dev? */
2334 rdev = &rs->dev[0].rdev;
2335
2336 if (rs->delta_disks < 0) {
2337 /*
2338 * Removing disks (reshaping backwards):
2339 *
2340 * - before reshape: data is at offset 0 and free space
2341 * is at end of each component LV
2342 *
2343 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2344 */
2345 data_offset = 0;
2346 new_data_offset = rs->data_offset;
2347
2348 } else if (rs->delta_disks > 0) {
2349 /*
2350 * Adding disks (reshaping forwards):
2351 *
2352 * - before reshape: data is at offset rs->data_offset != 0 and
2353 * free space is at begin of each component LV
2354 *
2355 * - after reshape: data is at offset 0 on each component LV
2356 */
2357 data_offset = rs->data_offset;
2358 new_data_offset = 0;
2359
2360 } else {
2361 /*
2362 * User space passes in 0 for data offset after having removed reshape space
2363 *
2364 * - or - (data offset != 0)
2365 *
2366 * Changing RAID layout or chunk size -> toggle offsets
2367 *
2368 * - before reshape: data is at offset rs->data_offset 0 and
2369 * free space is at end of each component LV
2370 * -or-
2371 * data is at offset rs->data_offset != 0 and
2372 * free space is at begin of each component LV
2373 *
2374 * - after reshape: data is at offset 0 if i was at offset != 0
2375 * of at offset != 0 if it was at offset 0
2376 * on each component LV
2377 *
2378 */
2379 data_offset = rs->data_offset ? rdev->data_offset : 0;
2380 new_data_offset = data_offset ? 0 : rs->data_offset;
2381 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2382 }
2383
2384 /*
2385 * Make sure we got a minimum amount of free sectors per device
2386 */
2387 if (rs->data_offset &&
2388 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2389 rs->ti->error = data_offset ? "No space for forward reshape" :
2390 "No space for backward reshape";
2391 return -ENOSPC;
2392 }
2393 out:
2394 /* Adjust data offsets on all rdevs */
2395 rdev_for_each(rdev, &rs->md) {
2396 rdev->data_offset = data_offset;
2397 rdev->new_data_offset = new_data_offset;
2398 }
2399
2400 return 0;
2401 }
2402
2403 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2404 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2405 {
2406 int i = 0;
2407 struct md_rdev *rdev;
2408
2409 rdev_for_each(rdev, &rs->md) {
2410 rdev->raid_disk = i++;
2411 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2412 }
2413 }
2414
2415 /*
2416 * Setup @rs for takeover by a different raid level
2417 */
2418 static int rs_setup_takeover(struct raid_set *rs)
2419 {
2420 struct mddev *mddev = &rs->md;
2421 struct md_rdev *rdev;
2422 unsigned int d = mddev->raid_disks = rs->raid_disks;
2423 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2424
2425 if (rt_is_raid10(rs->raid_type)) {
2426 if (mddev->level == 0) {
2427 /* Userpace reordered disks -> adjust raid_disk indexes */
2428 __reorder_raid_disk_indexes(rs);
2429
2430 /* raid0 -> raid10_far layout */
2431 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2432 rs->raid10_copies);
2433 } else if (mddev->level == 1)
2434 /* raid1 -> raid10_near layout */
2435 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2436 rs->raid_disks);
2437 else
2438 return -EINVAL;
2439
2440 }
2441
2442 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2443 mddev->recovery_cp = MaxSector;
2444
2445 while (d--) {
2446 rdev = &rs->dev[d].rdev;
2447
2448 if (test_bit(d, (void *) rs->rebuild_disks)) {
2449 clear_bit(In_sync, &rdev->flags);
2450 clear_bit(Faulty, &rdev->flags);
2451 mddev->recovery_cp = rdev->recovery_offset = 0;
2452 /* Bitmap has to be created when we do an "up" takeover */
2453 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2454 }
2455
2456 rdev->new_data_offset = new_data_offset;
2457 }
2458
2459 return 0;
2460 }
2461
2462 /*
2463 *
2464 * - change raid layout
2465 * - change chunk size
2466 * - add disks
2467 * - remove disks
2468 */
2469 static int rs_setup_reshape(struct raid_set *rs)
2470 {
2471 int r = 0;
2472 unsigned int cur_raid_devs, d;
2473 struct mddev *mddev = &rs->md;
2474 struct md_rdev *rdev;
2475
2476 mddev->delta_disks = rs->delta_disks;
2477 cur_raid_devs = mddev->raid_disks;
2478
2479 /* Ignore impossible layout change whilst adding/removing disks */
2480 if (mddev->delta_disks &&
2481 mddev->layout != mddev->new_layout) {
2482 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2483 mddev->new_layout = mddev->layout;
2484 }
2485
2486 /*
2487 * Adjust array size:
2488 *
2489 * - in case of adding disks, array size has
2490 * to grow after the disk adding reshape,
2491 * which'll hapen in the event handler;
2492 * reshape will happen forward, so space has to
2493 * be available at the beginning of each disk
2494 *
2495 * - in case of removing disks, array size
2496 * has to shrink before starting the reshape,
2497 * which'll happen here;
2498 * reshape will happen backward, so space has to
2499 * be available at the end of each disk
2500 *
2501 * - data_offset and new_data_offset are
2502 * adjusted for afreentioned out of place
2503 * reshaping based on userspace passing in
2504 * the "data_offset <sectors>" key/value
2505 * pair via te constructor
2506 */
2507
2508 /* Add disk(s) */
2509 if (rs->delta_disks > 0) {
2510 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2511 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2512 rdev = &rs->dev[d].rdev;
2513 clear_bit(In_sync, &rdev->flags);
2514
2515 /*
2516 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2517 * by md, which'll store that erroneously in the superblock on reshape
2518 */
2519 rdev->saved_raid_disk = -1;
2520 rdev->raid_disk = d;
2521
2522 rdev->sectors = mddev->dev_sectors;
2523 rdev->recovery_offset = MaxSector;
2524 }
2525
2526 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2527
2528 /* Remove disk(s) */
2529 } else if (rs->delta_disks < 0) {
2530 r = rs_set_dev_and_array_sectors(rs, true);
2531 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2532
2533 /* Change layout and/or chunk size */
2534 } else {
2535 /*
2536 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2537 *
2538 * keeping number of disks and do layout change ->
2539 *
2540 * toggle reshape_backward depending on data_offset:
2541 *
2542 * - free space upfront -> reshape forward
2543 *
2544 * - free space at the end -> reshape backward
2545 *
2546 *
2547 * This utilizes free reshape space avoiding the need
2548 * for userspace to move (parts of) LV segments in
2549 * case of layout/chunksize change (for disk
2550 * adding/removing reshape space has to be at
2551 * the proper address (see above with delta_disks):
2552 *
2553 * add disk(s) -> begin
2554 * remove disk(s)-> end
2555 */
2556 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2557 }
2558
2559 return r;
2560 }
2561
2562 /*
2563 * Enable/disable discard support on RAID set depending on
2564 * RAID level and discard properties of underlying RAID members.
2565 */
2566 static void configure_discard_support(struct raid_set *rs)
2567 {
2568 int i;
2569 bool raid456;
2570 struct dm_target *ti = rs->ti;
2571
2572 /* Assume discards not supported until after checks below. */
2573 ti->discards_supported = false;
2574
2575 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2576 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2577
2578 for (i = 0; i < rs->md.raid_disks; i++) {
2579 struct request_queue *q;
2580
2581 if (!rs->dev[i].rdev.bdev)
2582 continue;
2583
2584 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2585 if (!q || !blk_queue_discard(q))
2586 return;
2587
2588 if (raid456) {
2589 if (!q->limits.discard_zeroes_data)
2590 return;
2591 if (!devices_handle_discard_safely) {
2592 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2593 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2594 return;
2595 }
2596 }
2597 }
2598
2599 /* All RAID members properly support discards */
2600 ti->discards_supported = true;
2601
2602 /*
2603 * RAID1 and RAID10 personalities require bio splitting,
2604 * RAID0/4/5/6 don't and process large discard bios properly.
2605 */
2606 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2607 ti->num_discard_bios = 1;
2608 }
2609
2610 /*
2611 * Construct a RAID0/1/10/4/5/6 mapping:
2612 * Args:
2613 * <raid_type> <#raid_params> <raid_params>{0,} \
2614 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2615 *
2616 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2617 * details on possible <raid_params>.
2618 *
2619 * Userspace is free to initialize the metadata devices, hence the superblocks to
2620 * enforce recreation based on the passed in table parameters.
2621 *
2622 */
2623 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2624 {
2625 int r;
2626 struct raid_type *rt;
2627 unsigned num_raid_params, num_raid_devs;
2628 struct raid_set *rs = NULL;
2629 const char *arg;
2630 struct rs_layout rs_layout;
2631 struct dm_arg_set as = { argc, argv }, as_nrd;
2632 struct dm_arg _args[] = {
2633 { 0, as.argc, "Cannot understand number of raid parameters" },
2634 { 1, 254, "Cannot understand number of raid devices parameters" }
2635 };
2636
2637 /* Must have <raid_type> */
2638 arg = dm_shift_arg(&as);
2639 if (!arg) {
2640 ti->error = "No arguments";
2641 return -EINVAL;
2642 }
2643
2644 rt = get_raid_type(arg);
2645 if (!rt) {
2646 ti->error = "Unrecognised raid_type";
2647 return -EINVAL;
2648 }
2649
2650 /* Must have <#raid_params> */
2651 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2652 return -EINVAL;
2653
2654 /* number of raid device tupples <meta_dev data_dev> */
2655 as_nrd = as;
2656 dm_consume_args(&as_nrd, num_raid_params);
2657 _args[1].max = (as_nrd.argc - 1) / 2;
2658 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2659 return -EINVAL;
2660
2661 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2662 ti->error = "Invalid number of supplied raid devices";
2663 return -EINVAL;
2664 }
2665
2666 rs = raid_set_alloc(ti, rt, num_raid_devs);
2667 if (IS_ERR(rs))
2668 return PTR_ERR(rs);
2669
2670 r = parse_raid_params(rs, &as, num_raid_params);
2671 if (r)
2672 goto bad;
2673
2674 r = parse_dev_params(rs, &as);
2675 if (r)
2676 goto bad;
2677
2678 rs->md.sync_super = super_sync;
2679
2680 r = rs_set_dev_and_array_sectors(rs, false);
2681 if (r)
2682 return r;
2683
2684 /*
2685 * Backup any new raid set level, layout, ...
2686 * requested to be able to compare to superblock
2687 * members for conversion decisions.
2688 */
2689 rs_config_backup(rs, &rs_layout);
2690
2691 r = analyse_superblocks(ti, rs);
2692 if (r)
2693 goto bad;
2694
2695 INIT_WORK(&rs->md.event_work, do_table_event);
2696 ti->private = rs;
2697 ti->num_flush_bios = 1;
2698
2699 /* Restore any requested new layout for conversion decision */
2700 rs_config_restore(rs, &rs_layout);
2701
2702 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2703 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2704 rs_set_new(rs);
2705 } else if (rs_is_reshaping(rs))
2706 ; /* skip rs setup */
2707 else if (rs_takeover_requested(rs)) {
2708 if (rs_is_reshaping(rs)) {
2709 ti->error = "Can't takeover a reshaping raid set";
2710 return -EPERM;
2711 }
2712
2713 /*
2714 * If a takeover is needed, just set the level to
2715 * the new requested one and allow the raid set to run.
2716 */
2717 r = rs_check_takeover(rs);
2718 if (r)
2719 return r;
2720
2721 r = rs_setup_takeover(rs);
2722 if (r)
2723 return r;
2724
2725 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2726 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2727 rs_set_new(rs);
2728 } else if (rs_reshape_requested(rs)) {
2729 if (rs_is_reshaping(rs)) {
2730 ti->error = "raid set already reshaping!";
2731 return -EPERM;
2732 }
2733
2734 if (rs_is_raid10(rs)) {
2735 if (rs->raid_disks != rs->md.raid_disks &&
2736 __is_raid10_near(rs->md.layout) &&
2737 rs->raid10_copies &&
2738 rs->raid10_copies != __raid10_near_copies(rs->md.layout)) {
2739 /*
2740 * raid disk have to be multiple of data copies to allow this conversion,
2741 *
2742 * This is actually not a reshape it is a
2743 * rebuild of any additional mirrors per group
2744 */
2745 if (rs->raid_disks % rs->raid10_copies) {
2746 ti->error = "Can't reshape raid10 mirror groups";
2747 return -EINVAL;
2748 }
2749
2750 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2751 __reorder_raid_disk_indexes(rs);
2752 rs->md.layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2753 rs->raid10_copies);
2754 rs->md.new_layout = rs->md.layout;
2755
2756 } else
2757 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2758
2759 } else if (rs_is_raid456(rs))
2760 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2761
2762 /*
2763 * HM FIXME: process raid1 via delta_disks as well?
2764 * Would cause allocations in raid1->check_reshape
2765 * though, thus more issues with potential failures
2766 */
2767 else if (rs_is_raid1(rs)) {
2768 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2769 rs->md.raid_disks = rs->raid_disks;
2770 }
2771
2772 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2773 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2774 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2775 }
2776
2777 if (rs->md.raid_disks < rs->raid_disks)
2778 set_bit(MD_ARRAY_FIRST_USE, &rs->md.flags);
2779
2780 rs_set_cur(rs);
2781 } else
2782 rs_set_cur(rs);
2783
2784 /* If constructor requested it, change data and new_data offsets */
2785 r = rs_adjust_data_offsets(rs);
2786 if (r)
2787 return r;
2788
2789 /* Start raid set read-only and assumed clean to change in raid_resume() */
2790 rs->md.ro = 1;
2791 rs->md.in_sync = 1;
2792 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2793
2794 /* Has to be held on running the array */
2795 mddev_lock_nointr(&rs->md);
2796 r = md_run(&rs->md);
2797 rs->md.in_sync = 0; /* Assume already marked dirty */
2798
2799 if (r) {
2800 ti->error = "Failed to run raid array";
2801 mddev_unlock(&rs->md);
2802 goto bad;
2803 }
2804
2805 rs->callbacks.congested_fn = raid_is_congested;
2806 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2807
2808 mddev_suspend(&rs->md);
2809
2810 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2811 if (rs_is_raid456(rs)) {
2812 r = rs_set_raid456_stripe_cache(rs);
2813 if (r)
2814 goto bad_stripe_cache;
2815 }
2816
2817 /* Now do an early reshape check */
2818 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2819 r = rs_check_reshape(rs);
2820 if (r)
2821 return r;
2822
2823 /* Restore new, ctr requested layout to perform check */
2824 rs_config_restore(rs, &rs_layout);
2825
2826 r = rs->md.pers->check_reshape(&rs->md);
2827 if (r) {
2828 ti->error = "Reshape check failed";
2829 goto bad_check_reshape;
2830 }
2831 }
2832
2833 mddev_unlock(&rs->md);
2834 return 0;
2835
2836 bad_stripe_cache:
2837 bad_check_reshape:
2838 md_stop(&rs->md);
2839 bad:
2840 raid_set_free(rs);
2841
2842 return r;
2843 }
2844
2845 static void raid_dtr(struct dm_target *ti)
2846 {
2847 struct raid_set *rs = ti->private;
2848
2849 list_del_init(&rs->callbacks.list);
2850 md_stop(&rs->md);
2851 raid_set_free(rs);
2852 }
2853
2854 static int raid_map(struct dm_target *ti, struct bio *bio)
2855 {
2856 struct raid_set *rs = ti->private;
2857 struct mddev *mddev = &rs->md;
2858
2859 /*
2860 * If we're reshaping to add disk(s)), ti->len and
2861 * mddev->array_sectors will differ during the process
2862 * (ti->len > mddev->array_sectors), so we have to requeue
2863 * bios with addresses > mddev->array_sectors here or
2864 * or there will occur accesses past EOD of the component
2865 * data images thus erroring the raid set.
2866 */
2867 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
2868 return DM_MAPIO_REQUEUE;
2869
2870 mddev->pers->make_request(mddev, bio);
2871
2872 return DM_MAPIO_SUBMITTED;
2873 }
2874
2875 /* Return string describing the current sync action of @mddev */
2876 static const char *decipher_sync_action(struct mddev *mddev)
2877 {
2878 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2879 return "frozen";
2880
2881 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2882 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2883 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2884 return "reshape";
2885
2886 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2887 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2888 return "resync";
2889 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2890 return "check";
2891 return "repair";
2892 }
2893
2894 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2895 return "recover";
2896 }
2897
2898 return "idle";
2899 }
2900
2901 /*
2902 * Return status string @rdev
2903 *
2904 * Status characters:
2905 *
2906 * 'D' = Dead/Failed device
2907 * 'a' = Alive but not in-sync
2908 * 'A' = Alive and in-sync
2909 */
2910 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
2911 {
2912 if (test_bit(Faulty, &rdev->flags))
2913 return "D";
2914 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
2915 return "a";
2916 else
2917 return "A";
2918 }
2919
2920 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
2921 static sector_t rs_get_progress(struct raid_set *rs,
2922 sector_t resync_max_sectors, bool *array_in_sync)
2923 {
2924 sector_t r, recovery_cp, curr_resync_completed;
2925 struct mddev *mddev = &rs->md;
2926
2927 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
2928 recovery_cp = mddev->recovery_cp;
2929 *array_in_sync = false;
2930
2931 if (rs_is_raid0(rs)) {
2932 r = resync_max_sectors;
2933 *array_in_sync = true;
2934
2935 } else {
2936 r = mddev->reshape_position;
2937
2938 /* Reshape is relative to the array size */
2939 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
2940 r != MaxSector) {
2941 if (r == MaxSector) {
2942 *array_in_sync = true;
2943 r = resync_max_sectors;
2944 } else {
2945 /* Got to reverse on backward reshape */
2946 if (mddev->reshape_backwards)
2947 r = mddev->array_sectors - r;
2948
2949 /* Devide by # of data stripes */
2950 sector_div(r, mddev_data_stripes(rs));
2951 }
2952
2953 /* Sync is relative to the component device size */
2954 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2955 r = curr_resync_completed;
2956 else
2957 r = recovery_cp;
2958
2959 if (r == MaxSector) {
2960 /*
2961 * Sync complete.
2962 */
2963 *array_in_sync = true;
2964 r = resync_max_sectors;
2965 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2966 /*
2967 * If "check" or "repair" is occurring, the raid set has
2968 * undergone an initial sync and the health characters
2969 * should not be 'a' anymore.
2970 */
2971 *array_in_sync = true;
2972 } else {
2973 struct md_rdev *rdev;
2974
2975 /*
2976 * The raid set may be doing an initial sync, or it may
2977 * be rebuilding individual components. If all the
2978 * devices are In_sync, then it is the raid set that is
2979 * being initialized.
2980 */
2981 rdev_for_each(rdev, mddev)
2982 if (!test_bit(In_sync, &rdev->flags))
2983 *array_in_sync = true;
2984 #if 0
2985 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
2986 #endif
2987 }
2988 }
2989
2990 return r;
2991 }
2992
2993 /* Helper to return @dev name or "-" if !@dev */
2994 static const char *__get_dev_name(struct dm_dev *dev)
2995 {
2996 return dev ? dev->name : "-";
2997 }
2998
2999 static void raid_status(struct dm_target *ti, status_type_t type,
3000 unsigned int status_flags, char *result, unsigned int maxlen)
3001 {
3002 struct raid_set *rs = ti->private;
3003 struct mddev *mddev = &rs->md;
3004 struct r5conf *conf = mddev->private;
3005 int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3006 bool array_in_sync;
3007 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3008 unsigned int sz = 0;
3009 unsigned int write_mostly_params = 0;
3010 sector_t progress, resync_max_sectors, resync_mismatches;
3011 const char *sync_action;
3012 struct raid_type *rt;
3013 struct md_rdev *rdev;
3014
3015 switch (type) {
3016 case STATUSTYPE_INFO:
3017 /* *Should* always succeed */
3018 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3019 if (!rt)
3020 return;
3021
3022 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3023
3024 /* Access most recent mddev properties for status output */
3025 smp_rmb();
3026 /* Get sensible max sectors even if raid set not yet started */
3027 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3028 mddev->resync_max_sectors : mddev->dev_sectors;
3029 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3030 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3031 atomic64_read(&mddev->resync_mismatches) : 0;
3032 sync_action = decipher_sync_action(&rs->md);
3033
3034 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3035 rdev_for_each(rdev, mddev)
3036 DMEMIT(__raid_dev_status(rdev, array_in_sync));
3037
3038 /*
3039 * In-sync/Reshape ratio:
3040 * The in-sync ratio shows the progress of:
3041 * - Initializing the raid set
3042 * - Rebuilding a subset of devices of the raid set
3043 * The user can distinguish between the two by referring
3044 * to the status characters.
3045 *
3046 * The reshape ratio shows the progress of
3047 * changing the raid layout or the number of
3048 * disks of a raid set
3049 */
3050 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3051 (unsigned long long) resync_max_sectors);
3052
3053 /*
3054 * v1.5.0+:
3055 *
3056 * Sync action:
3057 * See Documentation/device-mapper/dm-raid.txt for
3058 * information on each of these states.
3059 */
3060 DMEMIT(" %s", sync_action);
3061
3062 /*
3063 * v1.5.0+:
3064 *
3065 * resync_mismatches/mismatch_cnt
3066 * This field shows the number of discrepancies found when
3067 * performing a "check" of the raid set.
3068 */
3069 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3070
3071 /*
3072 * v1.9.0+:
3073 *
3074 * data_offset (needed for out of space reshaping)
3075 * This field shows the data offset into the data
3076 * image LV where the first stripes data starts.
3077 *
3078 * We keep data_offset equal on all raid disks of the set,
3079 * so retrieving it from the first raid disk is sufficient.
3080 */
3081 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3082 break;
3083
3084 case STATUSTYPE_TABLE:
3085 /* Report the table line string you would use to construct this raid set */
3086
3087 /* Calculate raid parameter count */
3088 rdev_for_each(rdev, mddev)
3089 if (test_bit(WriteMostly, &rdev->flags))
3090 write_mostly_params += 2;
3091 raid_param_cnt += memweight(rs->rebuild_disks,
3092 DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
3093 write_mostly_params +
3094 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3095 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3096 /* Emit table line */
3097 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3098 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3099 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3100 raid10_md_layout_to_format(mddev->layout));
3101 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3102 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3103 raid10_md_layout_to_copies(mddev->layout));
3104 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3105 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3106 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3107 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3108 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3109 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3110 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3111 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3112 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3113 (unsigned long long) rs->data_offset);
3114 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3115 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3116 mddev->bitmap_info.daemon_sleep);
3117 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3118 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3119 mddev->delta_disks);
3120 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3121 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3122 max_nr_stripes);
3123 rdev_for_each(rdev, mddev)
3124 if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
3125 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3126 rdev->raid_disk);
3127 rdev_for_each(rdev, mddev)
3128 if (test_bit(WriteMostly, &rdev->flags))
3129 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3130 rdev->raid_disk);
3131 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3132 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3133 mddev->bitmap_info.max_write_behind);
3134 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3135 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3136 mddev->sync_speed_max);
3137 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3138 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3139 mddev->sync_speed_min);
3140 DMEMIT(" %d", rs->raid_disks);
3141 rdev_for_each(rdev, mddev) {
3142 struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
3143
3144 DMEMIT(" %s %s", __get_dev_name(rd->meta_dev),
3145 __get_dev_name(rd->data_dev));
3146 }
3147 }
3148 }
3149
3150 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
3151 {
3152 struct raid_set *rs = ti->private;
3153 struct mddev *mddev = &rs->md;
3154
3155 if (!mddev->pers || !mddev->pers->sync_request)
3156 return -EINVAL;
3157
3158 if (!strcasecmp(argv[0], "frozen"))
3159 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3160 else
3161 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3162
3163 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3164 if (mddev->sync_thread) {
3165 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3166 md_reap_sync_thread(mddev);
3167 }
3168 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3169 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3170 return -EBUSY;
3171 else if (!strcasecmp(argv[0], "resync"))
3172 ; /* MD_RECOVERY_NEEDED set below */
3173 else if (!strcasecmp(argv[0], "recover"))
3174 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3175 else {
3176 if (!strcasecmp(argv[0], "check"))
3177 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3178 else if (!!strcasecmp(argv[0], "repair"))
3179 return -EINVAL;
3180 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3181 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3182 }
3183 if (mddev->ro == 2) {
3184 /* A write to sync_action is enough to justify
3185 * canceling read-auto mode
3186 */
3187 mddev->ro = 0;
3188 if (!mddev->suspended && mddev->sync_thread)
3189 md_wakeup_thread(mddev->sync_thread);
3190 }
3191 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3192 if (!mddev->suspended && mddev->thread)
3193 md_wakeup_thread(mddev->thread);
3194
3195 return 0;
3196 }
3197
3198 static int raid_iterate_devices(struct dm_target *ti,
3199 iterate_devices_callout_fn fn, void *data)
3200 {
3201 struct raid_set *rs = ti->private;
3202 unsigned i;
3203 int r = 0;
3204
3205 for (i = 0; !r && i < rs->md.raid_disks; i++)
3206 if (rs->dev[i].data_dev)
3207 r = fn(ti,
3208 rs->dev[i].data_dev,
3209 0, /* No offset on data devs */
3210 rs->md.dev_sectors,
3211 data);
3212
3213 return r;
3214 }
3215
3216 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3217 {
3218 struct raid_set *rs = ti->private;
3219 unsigned chunk_size = rs->md.chunk_sectors << 9;
3220 struct r5conf *conf = rs->md.private;
3221
3222 blk_limits_io_min(limits, chunk_size);
3223 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
3224 }
3225
3226 static void raid_presuspend(struct dm_target *ti)
3227 {
3228 struct raid_set *rs = ti->private;
3229
3230 md_stop_writes(&rs->md);
3231 }
3232
3233 static void raid_postsuspend(struct dm_target *ti)
3234 {
3235 struct raid_set *rs = ti->private;
3236
3237 if (test_and_clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3238 if (!rs->md.suspended)
3239 mddev_suspend(&rs->md);
3240 rs->md.ro = 1;
3241 }
3242 }
3243
3244 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3245 {
3246 int i;
3247 uint64_t failed_devices, cleared_failed_devices = 0;
3248 unsigned long flags;
3249 struct dm_raid_superblock *sb;
3250 struct md_rdev *r;
3251
3252 for (i = 0; i < rs->md.raid_disks; i++) {
3253 r = &rs->dev[i].rdev;
3254 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3255 sync_page_io(r, 0, r->sb_size, r->sb_page, REQ_OP_READ, 0,
3256 1)) {
3257 DMINFO("Faulty %s device #%d has readable super block."
3258 " Attempting to revive it.",
3259 rs->raid_type->name, i);
3260
3261 /*
3262 * Faulty bit may be set, but sometimes the array can
3263 * be suspended before the personalities can respond
3264 * by removing the device from the array (i.e. calling
3265 * 'hot_remove_disk'). If they haven't yet removed
3266 * the failed device, its 'raid_disk' number will be
3267 * '>= 0' - meaning we must call this function
3268 * ourselves.
3269 */
3270 if ((r->raid_disk >= 0) &&
3271 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
3272 /* Failed to revive this device, try next */
3273 continue;
3274
3275 r->raid_disk = i;
3276 r->saved_raid_disk = i;
3277 flags = r->flags;
3278 clear_bit(Faulty, &r->flags);
3279 clear_bit(WriteErrorSeen, &r->flags);
3280 clear_bit(In_sync, &r->flags);
3281 if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
3282 r->raid_disk = -1;
3283 r->saved_raid_disk = -1;
3284 r->flags = flags;
3285 } else {
3286 r->recovery_offset = 0;
3287 cleared_failed_devices |= 1 << i;
3288 }
3289 }
3290 }
3291 if (cleared_failed_devices) {
3292 rdev_for_each(r, &rs->md) {
3293 sb = page_address(r->sb_page);
3294 failed_devices = le64_to_cpu(sb->failed_devices);
3295 failed_devices &= ~cleared_failed_devices;
3296 sb->failed_devices = cpu_to_le64(failed_devices);
3297 }
3298 }
3299 }
3300
3301 static int __load_dirty_region_bitmap(struct raid_set *rs)
3302 {
3303 int r = 0;
3304
3305 /* Try loading the bitmap unless "raid0", which does not have one */
3306 if (!rs_is_raid0(rs) &&
3307 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3308 r = bitmap_load(&rs->md);
3309 if (r)
3310 DMERR("Failed to load bitmap");
3311 }
3312
3313 return r;
3314 }
3315
3316 /* Enforce updating all superblocks */
3317 static void rs_update_sbs(struct raid_set *rs)
3318 {
3319 struct mddev *mddev = &rs->md;
3320 int ro = mddev->ro;
3321
3322 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3323 mddev->ro = 0;
3324 md_update_sb(mddev, 1);
3325 mddev->ro = ro;
3326 }
3327
3328 /*
3329 * Reshape changes raid algorithm of @rs to new one within personality
3330 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3331 * disks from a raid set thus growing/shrinking it or resizes the set
3332 *
3333 * Call mddev_lock_nointr() before!
3334 */
3335 static int rs_start_reshape(struct raid_set *rs)
3336 {
3337 int r;
3338 struct mddev *mddev = &rs->md;
3339 struct md_personality *pers = mddev->pers;
3340
3341 r = rs_setup_reshape(rs);
3342 if (r)
3343 return r;
3344
3345 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3346 if (mddev->suspended)
3347 mddev_resume(mddev);
3348
3349 /*
3350 * Check any reshape constraints enforced by the personalility
3351 *
3352 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3353 */
3354 r = pers->check_reshape(mddev);
3355 if (r) {
3356 rs->ti->error = "pers->check_reshape() failed";
3357 return r;
3358 }
3359
3360 /*
3361 * Personality may not provide start reshape method in which
3362 * case check_reshape above has already covered everything
3363 */
3364 if (pers->start_reshape) {
3365 r = pers->start_reshape(mddev);
3366 if (r) {
3367 rs->ti->error = "pers->start_reshape() failed";
3368 return r;
3369 }
3370 }
3371
3372 /* Suspend because a resume will happen in raid_resume() */
3373 if (!mddev->suspended)
3374 mddev_suspend(mddev);
3375
3376 /*
3377 * Now reshape got set up, update superblocks to
3378 * reflect the fact so that a table reload will
3379 * access proper superblock content in the ctr.
3380 */
3381 rs_update_sbs(rs);
3382
3383 return 0;
3384 }
3385
3386 static int raid_preresume(struct dm_target *ti)
3387 {
3388 int r;
3389 struct raid_set *rs = ti->private;
3390 struct mddev *mddev = &rs->md;
3391
3392 /* This is a resume after a suspend of the set -> it's already started */
3393 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3394 return 0;
3395
3396 /*
3397 * The superblocks need to be updated on disk if the
3398 * array is new or new devices got added (thus zeroed
3399 * out by userspace) or __load_dirty_region_bitmap
3400 * will overwrite them in core with old data or fail.
3401 */
3402 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3403 rs_update_sbs(rs);
3404
3405 /*
3406 * Disable/enable discard support on raid set after any
3407 * conversion, because devices can have been added
3408 */
3409 configure_discard_support(rs);
3410
3411 /* Load the bitmap from disk unless raid0 */
3412 r = __load_dirty_region_bitmap(rs);
3413 if (r)
3414 return r;
3415
3416 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3417 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3418 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3419 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3420 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3421 if (r)
3422 DMERR("Failed to resize bitmap");
3423 }
3424
3425 /* Check for any resize/reshape on @rs and adjust/initiate */
3426 /* Be prepared for mddev_resume() in raid_resume() */
3427 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3428 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3429 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3430 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3431 mddev->resync_min = mddev->recovery_cp;
3432 }
3433
3434 rs_set_capacity(rs);
3435
3436 /* Check for any reshape request and region size change unless new raid set */
3437 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3438 /* Initiate a reshape. */
3439 mddev_lock_nointr(mddev);
3440 r = rs_start_reshape(rs);
3441 mddev_unlock(mddev);
3442 if (r)
3443 DMWARN("Failed to check/start reshape, continuing without change");
3444 r = 0;
3445 }
3446
3447 return r;
3448 }
3449
3450 static void raid_resume(struct dm_target *ti)
3451 {
3452 struct raid_set *rs = ti->private;
3453 struct mddev *mddev = &rs->md;
3454
3455 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3456 /*
3457 * A secondary resume while the device is active.
3458 * Take this opportunity to check whether any failed
3459 * devices are reachable again.
3460 */
3461 attempt_restore_of_faulty_devices(rs);
3462 } else {
3463 mddev->ro = 0;
3464 mddev->in_sync = 0;
3465
3466 /*
3467 * When passing in flags to the ctr, we expect userspace
3468 * to reset them because they made it to the superblocks
3469 * and reload the mapping anyway.
3470 *
3471 * -> only unfreeze recovery in case of a table reload or
3472 * we'll have a bogus recovery/reshape position
3473 * retrieved from the superblock by the ctr because
3474 * the ongoing recovery/reshape will change it after read.
3475 */
3476 if (!test_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags))
3477 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3478
3479 if (mddev->suspended)
3480 mddev_resume(mddev);
3481 }
3482 }
3483
3484 static struct target_type raid_target = {
3485 .name = "raid",
3486 .version = {1, 9, 0},
3487 .module = THIS_MODULE,
3488 .ctr = raid_ctr,
3489 .dtr = raid_dtr,
3490 .map = raid_map,
3491 .status = raid_status,
3492 .message = raid_message,
3493 .iterate_devices = raid_iterate_devices,
3494 .io_hints = raid_io_hints,
3495 .presuspend = raid_presuspend,
3496 .postsuspend = raid_postsuspend,
3497 .preresume = raid_preresume,
3498 .resume = raid_resume,
3499 };
3500
3501 static int __init dm_raid_init(void)
3502 {
3503 DMINFO("Loading target version %u.%u.%u",
3504 raid_target.version[0],
3505 raid_target.version[1],
3506 raid_target.version[2]);
3507 return dm_register_target(&raid_target);
3508 }
3509
3510 static void __exit dm_raid_exit(void)
3511 {
3512 dm_unregister_target(&raid_target);
3513 }
3514
3515 module_init(dm_raid_init);
3516 module_exit(dm_raid_exit);
3517
3518 module_param(devices_handle_discard_safely, bool, 0644);
3519 MODULE_PARM_DESC(devices_handle_discard_safely,
3520 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3521
3522 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3523 MODULE_ALIAS("dm-raid0");
3524 MODULE_ALIAS("dm-raid1");
3525 MODULE_ALIAS("dm-raid10");
3526 MODULE_ALIAS("dm-raid4");
3527 MODULE_ALIAS("dm-raid5");
3528 MODULE_ALIAS("dm-raid6");
3529 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3530 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3531 MODULE_LICENSE("GPL");
This page took 0.100646 seconds and 6 git commands to generate.