Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arjan/linux...
[deliverable/linux.git] / drivers / md / dm-raid1.c
1 /*
2 * Copyright (C) 2003 Sistina Software Limited.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-list.h"
9 #include "dm-bio-record.h"
10
11 #include <linux/ctype.h>
12 #include <linux/init.h>
13 #include <linux/mempool.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
18 #include <linux/vmalloc.h>
19 #include <linux/workqueue.h>
20 #include <linux/log2.h>
21 #include <linux/hardirq.h>
22 #include <linux/dm-io.h>
23 #include <linux/dm-dirty-log.h>
24 #include <linux/dm-kcopyd.h>
25
26 #define DM_MSG_PREFIX "raid1"
27 #define DM_IO_PAGES 64
28
29 #define DM_RAID1_HANDLE_ERRORS 0x01
30 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS)
31
32 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
33
34 /*-----------------------------------------------------------------
35 * Region hash
36 *
37 * The mirror splits itself up into discrete regions. Each
38 * region can be in one of three states: clean, dirty,
39 * nosync. There is no need to put clean regions in the hash.
40 *
41 * In addition to being present in the hash table a region _may_
42 * be present on one of three lists.
43 *
44 * clean_regions: Regions on this list have no io pending to
45 * them, they are in sync, we are no longer interested in them,
46 * they are dull. rh_update_states() will remove them from the
47 * hash table.
48 *
49 * quiesced_regions: These regions have been spun down, ready
50 * for recovery. rh_recovery_start() will remove regions from
51 * this list and hand them to kmirrord, which will schedule the
52 * recovery io with kcopyd.
53 *
54 * recovered_regions: Regions that kcopyd has successfully
55 * recovered. rh_update_states() will now schedule any delayed
56 * io, up the recovery_count, and remove the region from the
57 * hash.
58 *
59 * There are 2 locks:
60 * A rw spin lock 'hash_lock' protects just the hash table,
61 * this is never held in write mode from interrupt context,
62 * which I believe means that we only have to disable irqs when
63 * doing a write lock.
64 *
65 * An ordinary spin lock 'region_lock' that protects the three
66 * lists in the region_hash, with the 'state', 'list' and
67 * 'bhs_delayed' fields of the regions. This is used from irq
68 * context, so all other uses will have to suspend local irqs.
69 *---------------------------------------------------------------*/
70 struct mirror_set;
71 struct region_hash {
72 struct mirror_set *ms;
73 uint32_t region_size;
74 unsigned region_shift;
75
76 /* holds persistent region state */
77 struct dm_dirty_log *log;
78
79 /* hash table */
80 rwlock_t hash_lock;
81 mempool_t *region_pool;
82 unsigned int mask;
83 unsigned int nr_buckets;
84 struct list_head *buckets;
85
86 spinlock_t region_lock;
87 atomic_t recovery_in_flight;
88 struct semaphore recovery_count;
89 struct list_head clean_regions;
90 struct list_head quiesced_regions;
91 struct list_head recovered_regions;
92 struct list_head failed_recovered_regions;
93 };
94
95 enum {
96 RH_CLEAN,
97 RH_DIRTY,
98 RH_NOSYNC,
99 RH_RECOVERING
100 };
101
102 struct region {
103 struct region_hash *rh; /* FIXME: can we get rid of this ? */
104 region_t key;
105 int state;
106
107 struct list_head hash_list;
108 struct list_head list;
109
110 atomic_t pending;
111 struct bio_list delayed_bios;
112 };
113
114
115 /*-----------------------------------------------------------------
116 * Mirror set structures.
117 *---------------------------------------------------------------*/
118 enum dm_raid1_error {
119 DM_RAID1_WRITE_ERROR,
120 DM_RAID1_SYNC_ERROR,
121 DM_RAID1_READ_ERROR
122 };
123
124 struct mirror {
125 struct mirror_set *ms;
126 atomic_t error_count;
127 unsigned long error_type;
128 struct dm_dev *dev;
129 sector_t offset;
130 };
131
132 struct mirror_set {
133 struct dm_target *ti;
134 struct list_head list;
135 struct region_hash rh;
136 struct dm_kcopyd_client *kcopyd_client;
137 uint64_t features;
138
139 spinlock_t lock; /* protects the lists */
140 struct bio_list reads;
141 struct bio_list writes;
142 struct bio_list failures;
143
144 struct dm_io_client *io_client;
145 mempool_t *read_record_pool;
146
147 /* recovery */
148 region_t nr_regions;
149 int in_sync;
150 int log_failure;
151 atomic_t suspend;
152
153 atomic_t default_mirror; /* Default mirror */
154
155 struct workqueue_struct *kmirrord_wq;
156 struct work_struct kmirrord_work;
157 struct timer_list timer;
158 unsigned long timer_pending;
159
160 struct work_struct trigger_event;
161
162 unsigned int nr_mirrors;
163 struct mirror mirror[0];
164 };
165
166 /*
167 * Conversion fns
168 */
169 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio)
170 {
171 return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift;
172 }
173
174 static inline sector_t region_to_sector(struct region_hash *rh, region_t region)
175 {
176 return region << rh->region_shift;
177 }
178
179 static void wake(struct mirror_set *ms)
180 {
181 queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
182 }
183
184 static void delayed_wake_fn(unsigned long data)
185 {
186 struct mirror_set *ms = (struct mirror_set *) data;
187
188 clear_bit(0, &ms->timer_pending);
189 wake(ms);
190 }
191
192 static void delayed_wake(struct mirror_set *ms)
193 {
194 if (test_and_set_bit(0, &ms->timer_pending))
195 return;
196
197 ms->timer.expires = jiffies + HZ / 5;
198 ms->timer.data = (unsigned long) ms;
199 ms->timer.function = delayed_wake_fn;
200 add_timer(&ms->timer);
201 }
202
203 /* FIXME move this */
204 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw);
205
206 #define MIN_REGIONS 64
207 #define MAX_RECOVERY 1
208 static int rh_init(struct region_hash *rh, struct mirror_set *ms,
209 struct dm_dirty_log *log, uint32_t region_size,
210 region_t nr_regions)
211 {
212 unsigned int nr_buckets, max_buckets;
213 size_t i;
214
215 /*
216 * Calculate a suitable number of buckets for our hash
217 * table.
218 */
219 max_buckets = nr_regions >> 6;
220 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
221 ;
222 nr_buckets >>= 1;
223
224 rh->ms = ms;
225 rh->log = log;
226 rh->region_size = region_size;
227 rh->region_shift = ffs(region_size) - 1;
228 rwlock_init(&rh->hash_lock);
229 rh->mask = nr_buckets - 1;
230 rh->nr_buckets = nr_buckets;
231
232 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
233 if (!rh->buckets) {
234 DMERR("unable to allocate region hash memory");
235 return -ENOMEM;
236 }
237
238 for (i = 0; i < nr_buckets; i++)
239 INIT_LIST_HEAD(rh->buckets + i);
240
241 spin_lock_init(&rh->region_lock);
242 sema_init(&rh->recovery_count, 0);
243 atomic_set(&rh->recovery_in_flight, 0);
244 INIT_LIST_HEAD(&rh->clean_regions);
245 INIT_LIST_HEAD(&rh->quiesced_regions);
246 INIT_LIST_HEAD(&rh->recovered_regions);
247 INIT_LIST_HEAD(&rh->failed_recovered_regions);
248
249 rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS,
250 sizeof(struct region));
251 if (!rh->region_pool) {
252 vfree(rh->buckets);
253 rh->buckets = NULL;
254 return -ENOMEM;
255 }
256
257 return 0;
258 }
259
260 static void rh_exit(struct region_hash *rh)
261 {
262 unsigned int h;
263 struct region *reg, *nreg;
264
265 BUG_ON(!list_empty(&rh->quiesced_regions));
266 for (h = 0; h < rh->nr_buckets; h++) {
267 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) {
268 BUG_ON(atomic_read(&reg->pending));
269 mempool_free(reg, rh->region_pool);
270 }
271 }
272
273 if (rh->log)
274 dm_dirty_log_destroy(rh->log);
275 if (rh->region_pool)
276 mempool_destroy(rh->region_pool);
277 vfree(rh->buckets);
278 }
279
280 #define RH_HASH_MULT 2654435387U
281
282 static inline unsigned int rh_hash(struct region_hash *rh, region_t region)
283 {
284 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask;
285 }
286
287 static struct region *__rh_lookup(struct region_hash *rh, region_t region)
288 {
289 struct region *reg;
290
291 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list)
292 if (reg->key == region)
293 return reg;
294
295 return NULL;
296 }
297
298 static void __rh_insert(struct region_hash *rh, struct region *reg)
299 {
300 unsigned int h = rh_hash(rh, reg->key);
301 list_add(&reg->hash_list, rh->buckets + h);
302 }
303
304 static struct region *__rh_alloc(struct region_hash *rh, region_t region)
305 {
306 struct region *reg, *nreg;
307
308 read_unlock(&rh->hash_lock);
309 nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC);
310 if (unlikely(!nreg))
311 nreg = kmalloc(sizeof(struct region), GFP_NOIO);
312 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
313 RH_CLEAN : RH_NOSYNC;
314 nreg->rh = rh;
315 nreg->key = region;
316
317 INIT_LIST_HEAD(&nreg->list);
318
319 atomic_set(&nreg->pending, 0);
320 bio_list_init(&nreg->delayed_bios);
321 write_lock_irq(&rh->hash_lock);
322
323 reg = __rh_lookup(rh, region);
324 if (reg)
325 /* we lost the race */
326 mempool_free(nreg, rh->region_pool);
327
328 else {
329 __rh_insert(rh, nreg);
330 if (nreg->state == RH_CLEAN) {
331 spin_lock(&rh->region_lock);
332 list_add(&nreg->list, &rh->clean_regions);
333 spin_unlock(&rh->region_lock);
334 }
335 reg = nreg;
336 }
337 write_unlock_irq(&rh->hash_lock);
338 read_lock(&rh->hash_lock);
339
340 return reg;
341 }
342
343 static inline struct region *__rh_find(struct region_hash *rh, region_t region)
344 {
345 struct region *reg;
346
347 reg = __rh_lookup(rh, region);
348 if (!reg)
349 reg = __rh_alloc(rh, region);
350
351 return reg;
352 }
353
354 static int rh_state(struct region_hash *rh, region_t region, int may_block)
355 {
356 int r;
357 struct region *reg;
358
359 read_lock(&rh->hash_lock);
360 reg = __rh_lookup(rh, region);
361 read_unlock(&rh->hash_lock);
362
363 if (reg)
364 return reg->state;
365
366 /*
367 * The region wasn't in the hash, so we fall back to the
368 * dirty log.
369 */
370 r = rh->log->type->in_sync(rh->log, region, may_block);
371
372 /*
373 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
374 * taken as a RH_NOSYNC
375 */
376 return r == 1 ? RH_CLEAN : RH_NOSYNC;
377 }
378
379 static inline int rh_in_sync(struct region_hash *rh,
380 region_t region, int may_block)
381 {
382 int state = rh_state(rh, region, may_block);
383 return state == RH_CLEAN || state == RH_DIRTY;
384 }
385
386 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list)
387 {
388 struct bio *bio;
389
390 while ((bio = bio_list_pop(bio_list))) {
391 queue_bio(ms, bio, WRITE);
392 }
393 }
394
395 static void complete_resync_work(struct region *reg, int success)
396 {
397 struct region_hash *rh = reg->rh;
398
399 rh->log->type->set_region_sync(rh->log, reg->key, success);
400
401 /*
402 * Dispatch the bios before we call 'wake_up_all'.
403 * This is important because if we are suspending,
404 * we want to know that recovery is complete and
405 * the work queue is flushed. If we wake_up_all
406 * before we dispatch_bios (queue bios and call wake()),
407 * then we risk suspending before the work queue
408 * has been properly flushed.
409 */
410 dispatch_bios(rh->ms, &reg->delayed_bios);
411 if (atomic_dec_and_test(&rh->recovery_in_flight))
412 wake_up_all(&_kmirrord_recovery_stopped);
413 up(&rh->recovery_count);
414 }
415
416 static void rh_update_states(struct region_hash *rh)
417 {
418 struct region *reg, *next;
419
420 LIST_HEAD(clean);
421 LIST_HEAD(recovered);
422 LIST_HEAD(failed_recovered);
423
424 /*
425 * Quickly grab the lists.
426 */
427 write_lock_irq(&rh->hash_lock);
428 spin_lock(&rh->region_lock);
429 if (!list_empty(&rh->clean_regions)) {
430 list_splice_init(&rh->clean_regions, &clean);
431
432 list_for_each_entry(reg, &clean, list)
433 list_del(&reg->hash_list);
434 }
435
436 if (!list_empty(&rh->recovered_regions)) {
437 list_splice_init(&rh->recovered_regions, &recovered);
438
439 list_for_each_entry (reg, &recovered, list)
440 list_del(&reg->hash_list);
441 }
442
443 if (!list_empty(&rh->failed_recovered_regions)) {
444 list_splice_init(&rh->failed_recovered_regions,
445 &failed_recovered);
446
447 list_for_each_entry(reg, &failed_recovered, list)
448 list_del(&reg->hash_list);
449 }
450
451 spin_unlock(&rh->region_lock);
452 write_unlock_irq(&rh->hash_lock);
453
454 /*
455 * All the regions on the recovered and clean lists have
456 * now been pulled out of the system, so no need to do
457 * any more locking.
458 */
459 list_for_each_entry_safe (reg, next, &recovered, list) {
460 rh->log->type->clear_region(rh->log, reg->key);
461 complete_resync_work(reg, 1);
462 mempool_free(reg, rh->region_pool);
463 }
464
465 list_for_each_entry_safe(reg, next, &failed_recovered, list) {
466 complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1);
467 mempool_free(reg, rh->region_pool);
468 }
469
470 list_for_each_entry_safe(reg, next, &clean, list) {
471 rh->log->type->clear_region(rh->log, reg->key);
472 mempool_free(reg, rh->region_pool);
473 }
474
475 rh->log->type->flush(rh->log);
476 }
477
478 static void rh_inc(struct region_hash *rh, region_t region)
479 {
480 struct region *reg;
481
482 read_lock(&rh->hash_lock);
483 reg = __rh_find(rh, region);
484
485 spin_lock_irq(&rh->region_lock);
486 atomic_inc(&reg->pending);
487
488 if (reg->state == RH_CLEAN) {
489 reg->state = RH_DIRTY;
490 list_del_init(&reg->list); /* take off the clean list */
491 spin_unlock_irq(&rh->region_lock);
492
493 rh->log->type->mark_region(rh->log, reg->key);
494 } else
495 spin_unlock_irq(&rh->region_lock);
496
497
498 read_unlock(&rh->hash_lock);
499 }
500
501 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios)
502 {
503 struct bio *bio;
504
505 for (bio = bios->head; bio; bio = bio->bi_next)
506 rh_inc(rh, bio_to_region(rh, bio));
507 }
508
509 static void rh_dec(struct region_hash *rh, region_t region)
510 {
511 unsigned long flags;
512 struct region *reg;
513 int should_wake = 0;
514
515 read_lock(&rh->hash_lock);
516 reg = __rh_lookup(rh, region);
517 read_unlock(&rh->hash_lock);
518
519 spin_lock_irqsave(&rh->region_lock, flags);
520 if (atomic_dec_and_test(&reg->pending)) {
521 /*
522 * There is no pending I/O for this region.
523 * We can move the region to corresponding list for next action.
524 * At this point, the region is not yet connected to any list.
525 *
526 * If the state is RH_NOSYNC, the region should be kept off
527 * from clean list.
528 * The hash entry for RH_NOSYNC will remain in memory
529 * until the region is recovered or the map is reloaded.
530 */
531
532 /* do nothing for RH_NOSYNC */
533 if (reg->state == RH_RECOVERING) {
534 list_add_tail(&reg->list, &rh->quiesced_regions);
535 } else if (reg->state == RH_DIRTY) {
536 reg->state = RH_CLEAN;
537 list_add(&reg->list, &rh->clean_regions);
538 }
539 should_wake = 1;
540 }
541 spin_unlock_irqrestore(&rh->region_lock, flags);
542
543 if (should_wake)
544 wake(rh->ms);
545 }
546
547 /*
548 * Starts quiescing a region in preparation for recovery.
549 */
550 static int __rh_recovery_prepare(struct region_hash *rh)
551 {
552 int r;
553 struct region *reg;
554 region_t region;
555
556 /*
557 * Ask the dirty log what's next.
558 */
559 r = rh->log->type->get_resync_work(rh->log, &region);
560 if (r <= 0)
561 return r;
562
563 /*
564 * Get this region, and start it quiescing by setting the
565 * recovering flag.
566 */
567 read_lock(&rh->hash_lock);
568 reg = __rh_find(rh, region);
569 read_unlock(&rh->hash_lock);
570
571 spin_lock_irq(&rh->region_lock);
572 reg->state = RH_RECOVERING;
573
574 /* Already quiesced ? */
575 if (atomic_read(&reg->pending))
576 list_del_init(&reg->list);
577 else
578 list_move(&reg->list, &rh->quiesced_regions);
579
580 spin_unlock_irq(&rh->region_lock);
581
582 return 1;
583 }
584
585 static void rh_recovery_prepare(struct region_hash *rh)
586 {
587 /* Extra reference to avoid race with rh_stop_recovery */
588 atomic_inc(&rh->recovery_in_flight);
589
590 while (!down_trylock(&rh->recovery_count)) {
591 atomic_inc(&rh->recovery_in_flight);
592 if (__rh_recovery_prepare(rh) <= 0) {
593 atomic_dec(&rh->recovery_in_flight);
594 up(&rh->recovery_count);
595 break;
596 }
597 }
598
599 /* Drop the extra reference */
600 if (atomic_dec_and_test(&rh->recovery_in_flight))
601 wake_up_all(&_kmirrord_recovery_stopped);
602 }
603
604 /*
605 * Returns any quiesced regions.
606 */
607 static struct region *rh_recovery_start(struct region_hash *rh)
608 {
609 struct region *reg = NULL;
610
611 spin_lock_irq(&rh->region_lock);
612 if (!list_empty(&rh->quiesced_regions)) {
613 reg = list_entry(rh->quiesced_regions.next,
614 struct region, list);
615 list_del_init(&reg->list); /* remove from the quiesced list */
616 }
617 spin_unlock_irq(&rh->region_lock);
618
619 return reg;
620 }
621
622 static void rh_recovery_end(struct region *reg, int success)
623 {
624 struct region_hash *rh = reg->rh;
625
626 spin_lock_irq(&rh->region_lock);
627 if (success)
628 list_add(&reg->list, &reg->rh->recovered_regions);
629 else {
630 reg->state = RH_NOSYNC;
631 list_add(&reg->list, &reg->rh->failed_recovered_regions);
632 }
633 spin_unlock_irq(&rh->region_lock);
634
635 wake(rh->ms);
636 }
637
638 static int rh_flush(struct region_hash *rh)
639 {
640 return rh->log->type->flush(rh->log);
641 }
642
643 static void rh_delay(struct region_hash *rh, struct bio *bio)
644 {
645 struct region *reg;
646
647 read_lock(&rh->hash_lock);
648 reg = __rh_find(rh, bio_to_region(rh, bio));
649 bio_list_add(&reg->delayed_bios, bio);
650 read_unlock(&rh->hash_lock);
651 }
652
653 static void rh_stop_recovery(struct region_hash *rh)
654 {
655 int i;
656
657 /* wait for any recovering regions */
658 for (i = 0; i < MAX_RECOVERY; i++)
659 down(&rh->recovery_count);
660 }
661
662 static void rh_start_recovery(struct region_hash *rh)
663 {
664 int i;
665
666 for (i = 0; i < MAX_RECOVERY; i++)
667 up(&rh->recovery_count);
668
669 wake(rh->ms);
670 }
671
672 #define MIN_READ_RECORDS 20
673 struct dm_raid1_read_record {
674 struct mirror *m;
675 struct dm_bio_details details;
676 };
677
678 /*
679 * Every mirror should look like this one.
680 */
681 #define DEFAULT_MIRROR 0
682
683 /*
684 * This is yucky. We squirrel the mirror struct away inside
685 * bi_next for read/write buffers. This is safe since the bh
686 * doesn't get submitted to the lower levels of block layer.
687 */
688 static struct mirror *bio_get_m(struct bio *bio)
689 {
690 return (struct mirror *) bio->bi_next;
691 }
692
693 static void bio_set_m(struct bio *bio, struct mirror *m)
694 {
695 bio->bi_next = (struct bio *) m;
696 }
697
698 static struct mirror *get_default_mirror(struct mirror_set *ms)
699 {
700 return &ms->mirror[atomic_read(&ms->default_mirror)];
701 }
702
703 static void set_default_mirror(struct mirror *m)
704 {
705 struct mirror_set *ms = m->ms;
706 struct mirror *m0 = &(ms->mirror[0]);
707
708 atomic_set(&ms->default_mirror, m - m0);
709 }
710
711 /* fail_mirror
712 * @m: mirror device to fail
713 * @error_type: one of the enum's, DM_RAID1_*_ERROR
714 *
715 * If errors are being handled, record the type of
716 * error encountered for this device. If this type
717 * of error has already been recorded, we can return;
718 * otherwise, we must signal userspace by triggering
719 * an event. Additionally, if the device is the
720 * primary device, we must choose a new primary, but
721 * only if the mirror is in-sync.
722 *
723 * This function must not block.
724 */
725 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
726 {
727 struct mirror_set *ms = m->ms;
728 struct mirror *new;
729
730 if (!errors_handled(ms))
731 return;
732
733 /*
734 * error_count is used for nothing more than a
735 * simple way to tell if a device has encountered
736 * errors.
737 */
738 atomic_inc(&m->error_count);
739
740 if (test_and_set_bit(error_type, &m->error_type))
741 return;
742
743 if (m != get_default_mirror(ms))
744 goto out;
745
746 if (!ms->in_sync) {
747 /*
748 * Better to issue requests to same failing device
749 * than to risk returning corrupt data.
750 */
751 DMERR("Primary mirror (%s) failed while out-of-sync: "
752 "Reads may fail.", m->dev->name);
753 goto out;
754 }
755
756 for (new = ms->mirror; new < ms->mirror + ms->nr_mirrors; new++)
757 if (!atomic_read(&new->error_count)) {
758 set_default_mirror(new);
759 break;
760 }
761
762 if (unlikely(new == ms->mirror + ms->nr_mirrors))
763 DMWARN("All sides of mirror have failed.");
764
765 out:
766 schedule_work(&ms->trigger_event);
767 }
768
769 /*-----------------------------------------------------------------
770 * Recovery.
771 *
772 * When a mirror is first activated we may find that some regions
773 * are in the no-sync state. We have to recover these by
774 * recopying from the default mirror to all the others.
775 *---------------------------------------------------------------*/
776 static void recovery_complete(int read_err, unsigned long write_err,
777 void *context)
778 {
779 struct region *reg = (struct region *)context;
780 struct mirror_set *ms = reg->rh->ms;
781 int m, bit = 0;
782
783 if (read_err) {
784 /* Read error means the failure of default mirror. */
785 DMERR_LIMIT("Unable to read primary mirror during recovery");
786 fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
787 }
788
789 if (write_err) {
790 DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
791 write_err);
792 /*
793 * Bits correspond to devices (excluding default mirror).
794 * The default mirror cannot change during recovery.
795 */
796 for (m = 0; m < ms->nr_mirrors; m++) {
797 if (&ms->mirror[m] == get_default_mirror(ms))
798 continue;
799 if (test_bit(bit, &write_err))
800 fail_mirror(ms->mirror + m,
801 DM_RAID1_SYNC_ERROR);
802 bit++;
803 }
804 }
805
806 rh_recovery_end(reg, !(read_err || write_err));
807 }
808
809 static int recover(struct mirror_set *ms, struct region *reg)
810 {
811 int r;
812 unsigned int i;
813 struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
814 struct mirror *m;
815 unsigned long flags = 0;
816
817 /* fill in the source */
818 m = get_default_mirror(ms);
819 from.bdev = m->dev->bdev;
820 from.sector = m->offset + region_to_sector(reg->rh, reg->key);
821 if (reg->key == (ms->nr_regions - 1)) {
822 /*
823 * The final region may be smaller than
824 * region_size.
825 */
826 from.count = ms->ti->len & (reg->rh->region_size - 1);
827 if (!from.count)
828 from.count = reg->rh->region_size;
829 } else
830 from.count = reg->rh->region_size;
831
832 /* fill in the destinations */
833 for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
834 if (&ms->mirror[i] == get_default_mirror(ms))
835 continue;
836
837 m = ms->mirror + i;
838 dest->bdev = m->dev->bdev;
839 dest->sector = m->offset + region_to_sector(reg->rh, reg->key);
840 dest->count = from.count;
841 dest++;
842 }
843
844 /* hand to kcopyd */
845 if (!errors_handled(ms))
846 set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
847
848 r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
849 flags, recovery_complete, reg);
850
851 return r;
852 }
853
854 static void do_recovery(struct mirror_set *ms)
855 {
856 int r;
857 struct region *reg;
858 struct dm_dirty_log *log = ms->rh.log;
859
860 /*
861 * Start quiescing some regions.
862 */
863 rh_recovery_prepare(&ms->rh);
864
865 /*
866 * Copy any already quiesced regions.
867 */
868 while ((reg = rh_recovery_start(&ms->rh))) {
869 r = recover(ms, reg);
870 if (r)
871 rh_recovery_end(reg, 0);
872 }
873
874 /*
875 * Update the in sync flag.
876 */
877 if (!ms->in_sync &&
878 (log->type->get_sync_count(log) == ms->nr_regions)) {
879 /* the sync is complete */
880 dm_table_event(ms->ti->table);
881 ms->in_sync = 1;
882 }
883 }
884
885 /*-----------------------------------------------------------------
886 * Reads
887 *---------------------------------------------------------------*/
888 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
889 {
890 struct mirror *m = get_default_mirror(ms);
891
892 do {
893 if (likely(!atomic_read(&m->error_count)))
894 return m;
895
896 if (m-- == ms->mirror)
897 m += ms->nr_mirrors;
898 } while (m != get_default_mirror(ms));
899
900 return NULL;
901 }
902
903 static int default_ok(struct mirror *m)
904 {
905 struct mirror *default_mirror = get_default_mirror(m->ms);
906
907 return !atomic_read(&default_mirror->error_count);
908 }
909
910 static int mirror_available(struct mirror_set *ms, struct bio *bio)
911 {
912 region_t region = bio_to_region(&ms->rh, bio);
913
914 if (ms->rh.log->type->in_sync(ms->rh.log, region, 0))
915 return choose_mirror(ms, bio->bi_sector) ? 1 : 0;
916
917 return 0;
918 }
919
920 /*
921 * remap a buffer to a particular mirror.
922 */
923 static sector_t map_sector(struct mirror *m, struct bio *bio)
924 {
925 return m->offset + (bio->bi_sector - m->ms->ti->begin);
926 }
927
928 static void map_bio(struct mirror *m, struct bio *bio)
929 {
930 bio->bi_bdev = m->dev->bdev;
931 bio->bi_sector = map_sector(m, bio);
932 }
933
934 static void map_region(struct dm_io_region *io, struct mirror *m,
935 struct bio *bio)
936 {
937 io->bdev = m->dev->bdev;
938 io->sector = map_sector(m, bio);
939 io->count = bio->bi_size >> 9;
940 }
941
942 /*-----------------------------------------------------------------
943 * Reads
944 *---------------------------------------------------------------*/
945 static void read_callback(unsigned long error, void *context)
946 {
947 struct bio *bio = context;
948 struct mirror *m;
949
950 m = bio_get_m(bio);
951 bio_set_m(bio, NULL);
952
953 if (likely(!error)) {
954 bio_endio(bio, 0);
955 return;
956 }
957
958 fail_mirror(m, DM_RAID1_READ_ERROR);
959
960 if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
961 DMWARN_LIMIT("Read failure on mirror device %s. "
962 "Trying alternative device.",
963 m->dev->name);
964 queue_bio(m->ms, bio, bio_rw(bio));
965 return;
966 }
967
968 DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.",
969 m->dev->name);
970 bio_endio(bio, -EIO);
971 }
972
973 /* Asynchronous read. */
974 static void read_async_bio(struct mirror *m, struct bio *bio)
975 {
976 struct dm_io_region io;
977 struct dm_io_request io_req = {
978 .bi_rw = READ,
979 .mem.type = DM_IO_BVEC,
980 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
981 .notify.fn = read_callback,
982 .notify.context = bio,
983 .client = m->ms->io_client,
984 };
985
986 map_region(&io, m, bio);
987 bio_set_m(bio, m);
988 (void) dm_io(&io_req, 1, &io, NULL);
989 }
990
991 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
992 {
993 region_t region;
994 struct bio *bio;
995 struct mirror *m;
996
997 while ((bio = bio_list_pop(reads))) {
998 region = bio_to_region(&ms->rh, bio);
999 m = get_default_mirror(ms);
1000
1001 /*
1002 * We can only read balance if the region is in sync.
1003 */
1004 if (likely(rh_in_sync(&ms->rh, region, 1)))
1005 m = choose_mirror(ms, bio->bi_sector);
1006 else if (m && atomic_read(&m->error_count))
1007 m = NULL;
1008
1009 if (likely(m))
1010 read_async_bio(m, bio);
1011 else
1012 bio_endio(bio, -EIO);
1013 }
1014 }
1015
1016 /*-----------------------------------------------------------------
1017 * Writes.
1018 *
1019 * We do different things with the write io depending on the
1020 * state of the region that it's in:
1021 *
1022 * SYNC: increment pending, use kcopyd to write to *all* mirrors
1023 * RECOVERING: delay the io until recovery completes
1024 * NOSYNC: increment pending, just write to the default mirror
1025 *---------------------------------------------------------------*/
1026
1027 /* __bio_mark_nosync
1028 * @ms
1029 * @bio
1030 * @done
1031 * @error
1032 *
1033 * The bio was written on some mirror(s) but failed on other mirror(s).
1034 * We can successfully endio the bio but should avoid the region being
1035 * marked clean by setting the state RH_NOSYNC.
1036 *
1037 * This function is _not_ safe in interrupt context!
1038 */
1039 static void __bio_mark_nosync(struct mirror_set *ms,
1040 struct bio *bio, unsigned done, int error)
1041 {
1042 unsigned long flags;
1043 struct region_hash *rh = &ms->rh;
1044 struct dm_dirty_log *log = ms->rh.log;
1045 struct region *reg;
1046 region_t region = bio_to_region(rh, bio);
1047 int recovering = 0;
1048
1049 /* We must inform the log that the sync count has changed. */
1050 log->type->set_region_sync(log, region, 0);
1051 ms->in_sync = 0;
1052
1053 read_lock(&rh->hash_lock);
1054 reg = __rh_find(rh, region);
1055 read_unlock(&rh->hash_lock);
1056
1057 /* region hash entry should exist because write was in-flight */
1058 BUG_ON(!reg);
1059 BUG_ON(!list_empty(&reg->list));
1060
1061 spin_lock_irqsave(&rh->region_lock, flags);
1062 /*
1063 * Possible cases:
1064 * 1) RH_DIRTY
1065 * 2) RH_NOSYNC: was dirty, other preceeding writes failed
1066 * 3) RH_RECOVERING: flushing pending writes
1067 * Either case, the region should have not been connected to list.
1068 */
1069 recovering = (reg->state == RH_RECOVERING);
1070 reg->state = RH_NOSYNC;
1071 BUG_ON(!list_empty(&reg->list));
1072 spin_unlock_irqrestore(&rh->region_lock, flags);
1073
1074 bio_endio(bio, error);
1075 if (recovering)
1076 complete_resync_work(reg, 0);
1077 }
1078
1079 static void write_callback(unsigned long error, void *context)
1080 {
1081 unsigned i, ret = 0;
1082 struct bio *bio = (struct bio *) context;
1083 struct mirror_set *ms;
1084 int uptodate = 0;
1085 int should_wake = 0;
1086 unsigned long flags;
1087
1088 ms = bio_get_m(bio)->ms;
1089 bio_set_m(bio, NULL);
1090
1091 /*
1092 * NOTE: We don't decrement the pending count here,
1093 * instead it is done by the targets endio function.
1094 * This way we handle both writes to SYNC and NOSYNC
1095 * regions with the same code.
1096 */
1097 if (likely(!error))
1098 goto out;
1099
1100 for (i = 0; i < ms->nr_mirrors; i++)
1101 if (test_bit(i, &error))
1102 fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
1103 else
1104 uptodate = 1;
1105
1106 if (unlikely(!uptodate)) {
1107 DMERR("All replicated volumes dead, failing I/O");
1108 /* None of the writes succeeded, fail the I/O. */
1109 ret = -EIO;
1110 } else if (errors_handled(ms)) {
1111 /*
1112 * Need to raise event. Since raising
1113 * events can block, we need to do it in
1114 * the main thread.
1115 */
1116 spin_lock_irqsave(&ms->lock, flags);
1117 if (!ms->failures.head)
1118 should_wake = 1;
1119 bio_list_add(&ms->failures, bio);
1120 spin_unlock_irqrestore(&ms->lock, flags);
1121 if (should_wake)
1122 wake(ms);
1123 return;
1124 }
1125 out:
1126 bio_endio(bio, ret);
1127 }
1128
1129 static void do_write(struct mirror_set *ms, struct bio *bio)
1130 {
1131 unsigned int i;
1132 struct dm_io_region io[ms->nr_mirrors], *dest = io;
1133 struct mirror *m;
1134 struct dm_io_request io_req = {
1135 .bi_rw = WRITE,
1136 .mem.type = DM_IO_BVEC,
1137 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
1138 .notify.fn = write_callback,
1139 .notify.context = bio,
1140 .client = ms->io_client,
1141 };
1142
1143 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
1144 map_region(dest++, m, bio);
1145
1146 /*
1147 * Use default mirror because we only need it to retrieve the reference
1148 * to the mirror set in write_callback().
1149 */
1150 bio_set_m(bio, get_default_mirror(ms));
1151
1152 (void) dm_io(&io_req, ms->nr_mirrors, io, NULL);
1153 }
1154
1155 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
1156 {
1157 int state;
1158 struct bio *bio;
1159 struct bio_list sync, nosync, recover, *this_list = NULL;
1160
1161 if (!writes->head)
1162 return;
1163
1164 /*
1165 * Classify each write.
1166 */
1167 bio_list_init(&sync);
1168 bio_list_init(&nosync);
1169 bio_list_init(&recover);
1170
1171 while ((bio = bio_list_pop(writes))) {
1172 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1);
1173 switch (state) {
1174 case RH_CLEAN:
1175 case RH_DIRTY:
1176 this_list = &sync;
1177 break;
1178
1179 case RH_NOSYNC:
1180 this_list = &nosync;
1181 break;
1182
1183 case RH_RECOVERING:
1184 this_list = &recover;
1185 break;
1186 }
1187
1188 bio_list_add(this_list, bio);
1189 }
1190
1191 /*
1192 * Increment the pending counts for any regions that will
1193 * be written to (writes to recover regions are going to
1194 * be delayed).
1195 */
1196 rh_inc_pending(&ms->rh, &sync);
1197 rh_inc_pending(&ms->rh, &nosync);
1198 ms->log_failure = rh_flush(&ms->rh) ? 1 : 0;
1199
1200 /*
1201 * Dispatch io.
1202 */
1203 if (unlikely(ms->log_failure)) {
1204 spin_lock_irq(&ms->lock);
1205 bio_list_merge(&ms->failures, &sync);
1206 spin_unlock_irq(&ms->lock);
1207 wake(ms);
1208 } else
1209 while ((bio = bio_list_pop(&sync)))
1210 do_write(ms, bio);
1211
1212 while ((bio = bio_list_pop(&recover)))
1213 rh_delay(&ms->rh, bio);
1214
1215 while ((bio = bio_list_pop(&nosync))) {
1216 map_bio(get_default_mirror(ms), bio);
1217 generic_make_request(bio);
1218 }
1219 }
1220
1221 static void do_failures(struct mirror_set *ms, struct bio_list *failures)
1222 {
1223 struct bio *bio;
1224
1225 if (!failures->head)
1226 return;
1227
1228 if (!ms->log_failure) {
1229 while ((bio = bio_list_pop(failures)))
1230 __bio_mark_nosync(ms, bio, bio->bi_size, 0);
1231 return;
1232 }
1233
1234 /*
1235 * If the log has failed, unattempted writes are being
1236 * put on the failures list. We can't issue those writes
1237 * until a log has been marked, so we must store them.
1238 *
1239 * If a 'noflush' suspend is in progress, we can requeue
1240 * the I/O's to the core. This give userspace a chance
1241 * to reconfigure the mirror, at which point the core
1242 * will reissue the writes. If the 'noflush' flag is
1243 * not set, we have no choice but to return errors.
1244 *
1245 * Some writes on the failures list may have been
1246 * submitted before the log failure and represent a
1247 * failure to write to one of the devices. It is ok
1248 * for us to treat them the same and requeue them
1249 * as well.
1250 */
1251 if (dm_noflush_suspending(ms->ti)) {
1252 while ((bio = bio_list_pop(failures)))
1253 bio_endio(bio, DM_ENDIO_REQUEUE);
1254 return;
1255 }
1256
1257 if (atomic_read(&ms->suspend)) {
1258 while ((bio = bio_list_pop(failures)))
1259 bio_endio(bio, -EIO);
1260 return;
1261 }
1262
1263 spin_lock_irq(&ms->lock);
1264 bio_list_merge(&ms->failures, failures);
1265 spin_unlock_irq(&ms->lock);
1266
1267 delayed_wake(ms);
1268 }
1269
1270 static void trigger_event(struct work_struct *work)
1271 {
1272 struct mirror_set *ms =
1273 container_of(work, struct mirror_set, trigger_event);
1274
1275 dm_table_event(ms->ti->table);
1276 }
1277
1278 /*-----------------------------------------------------------------
1279 * kmirrord
1280 *---------------------------------------------------------------*/
1281 static void do_mirror(struct work_struct *work)
1282 {
1283 struct mirror_set *ms =container_of(work, struct mirror_set,
1284 kmirrord_work);
1285 struct bio_list reads, writes, failures;
1286 unsigned long flags;
1287
1288 spin_lock_irqsave(&ms->lock, flags);
1289 reads = ms->reads;
1290 writes = ms->writes;
1291 failures = ms->failures;
1292 bio_list_init(&ms->reads);
1293 bio_list_init(&ms->writes);
1294 bio_list_init(&ms->failures);
1295 spin_unlock_irqrestore(&ms->lock, flags);
1296
1297 rh_update_states(&ms->rh);
1298 do_recovery(ms);
1299 do_reads(ms, &reads);
1300 do_writes(ms, &writes);
1301 do_failures(ms, &failures);
1302
1303 dm_table_unplug_all(ms->ti->table);
1304 }
1305
1306
1307 /*-----------------------------------------------------------------
1308 * Target functions
1309 *---------------------------------------------------------------*/
1310 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
1311 uint32_t region_size,
1312 struct dm_target *ti,
1313 struct dm_dirty_log *dl)
1314 {
1315 size_t len;
1316 struct mirror_set *ms = NULL;
1317
1318 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors))
1319 return NULL;
1320
1321 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
1322
1323 ms = kzalloc(len, GFP_KERNEL);
1324 if (!ms) {
1325 ti->error = "Cannot allocate mirror context";
1326 return NULL;
1327 }
1328
1329 spin_lock_init(&ms->lock);
1330
1331 ms->ti = ti;
1332 ms->nr_mirrors = nr_mirrors;
1333 ms->nr_regions = dm_sector_div_up(ti->len, region_size);
1334 ms->in_sync = 0;
1335 ms->log_failure = 0;
1336 atomic_set(&ms->suspend, 0);
1337 atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
1338
1339 len = sizeof(struct dm_raid1_read_record);
1340 ms->read_record_pool = mempool_create_kmalloc_pool(MIN_READ_RECORDS,
1341 len);
1342 if (!ms->read_record_pool) {
1343 ti->error = "Error creating mirror read_record_pool";
1344 kfree(ms);
1345 return NULL;
1346 }
1347
1348 ms->io_client = dm_io_client_create(DM_IO_PAGES);
1349 if (IS_ERR(ms->io_client)) {
1350 ti->error = "Error creating dm_io client";
1351 mempool_destroy(ms->read_record_pool);
1352 kfree(ms);
1353 return NULL;
1354 }
1355
1356 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) {
1357 ti->error = "Error creating dirty region hash";
1358 dm_io_client_destroy(ms->io_client);
1359 mempool_destroy(ms->read_record_pool);
1360 kfree(ms);
1361 return NULL;
1362 }
1363
1364 return ms;
1365 }
1366
1367 static void free_context(struct mirror_set *ms, struct dm_target *ti,
1368 unsigned int m)
1369 {
1370 while (m--)
1371 dm_put_device(ti, ms->mirror[m].dev);
1372
1373 dm_io_client_destroy(ms->io_client);
1374 rh_exit(&ms->rh);
1375 mempool_destroy(ms->read_record_pool);
1376 kfree(ms);
1377 }
1378
1379 static inline int _check_region_size(struct dm_target *ti, uint32_t size)
1380 {
1381 return !(size % (PAGE_SIZE >> 9) || !is_power_of_2(size) ||
1382 size > ti->len);
1383 }
1384
1385 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
1386 unsigned int mirror, char **argv)
1387 {
1388 unsigned long long offset;
1389
1390 if (sscanf(argv[1], "%llu", &offset) != 1) {
1391 ti->error = "Invalid offset";
1392 return -EINVAL;
1393 }
1394
1395 if (dm_get_device(ti, argv[0], offset, ti->len,
1396 dm_table_get_mode(ti->table),
1397 &ms->mirror[mirror].dev)) {
1398 ti->error = "Device lookup failure";
1399 return -ENXIO;
1400 }
1401
1402 ms->mirror[mirror].ms = ms;
1403 atomic_set(&(ms->mirror[mirror].error_count), 0);
1404 ms->mirror[mirror].error_type = 0;
1405 ms->mirror[mirror].offset = offset;
1406
1407 return 0;
1408 }
1409
1410 /*
1411 * Create dirty log: log_type #log_params <log_params>
1412 */
1413 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
1414 unsigned int argc, char **argv,
1415 unsigned int *args_used)
1416 {
1417 unsigned int param_count;
1418 struct dm_dirty_log *dl;
1419
1420 if (argc < 2) {
1421 ti->error = "Insufficient mirror log arguments";
1422 return NULL;
1423 }
1424
1425 if (sscanf(argv[1], "%u", &param_count) != 1) {
1426 ti->error = "Invalid mirror log argument count";
1427 return NULL;
1428 }
1429
1430 *args_used = 2 + param_count;
1431
1432 if (argc < *args_used) {
1433 ti->error = "Insufficient mirror log arguments";
1434 return NULL;
1435 }
1436
1437 dl = dm_dirty_log_create(argv[0], ti, param_count, argv + 2);
1438 if (!dl) {
1439 ti->error = "Error creating mirror dirty log";
1440 return NULL;
1441 }
1442
1443 if (!_check_region_size(ti, dl->type->get_region_size(dl))) {
1444 ti->error = "Invalid region size";
1445 dm_dirty_log_destroy(dl);
1446 return NULL;
1447 }
1448
1449 return dl;
1450 }
1451
1452 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
1453 unsigned *args_used)
1454 {
1455 unsigned num_features;
1456 struct dm_target *ti = ms->ti;
1457
1458 *args_used = 0;
1459
1460 if (!argc)
1461 return 0;
1462
1463 if (sscanf(argv[0], "%u", &num_features) != 1) {
1464 ti->error = "Invalid number of features";
1465 return -EINVAL;
1466 }
1467
1468 argc--;
1469 argv++;
1470 (*args_used)++;
1471
1472 if (num_features > argc) {
1473 ti->error = "Not enough arguments to support feature count";
1474 return -EINVAL;
1475 }
1476
1477 if (!strcmp("handle_errors", argv[0]))
1478 ms->features |= DM_RAID1_HANDLE_ERRORS;
1479 else {
1480 ti->error = "Unrecognised feature requested";
1481 return -EINVAL;
1482 }
1483
1484 (*args_used)++;
1485
1486 return 0;
1487 }
1488
1489 /*
1490 * Construct a mirror mapping:
1491 *
1492 * log_type #log_params <log_params>
1493 * #mirrors [mirror_path offset]{2,}
1494 * [#features <features>]
1495 *
1496 * log_type is "core" or "disk"
1497 * #log_params is between 1 and 3
1498 *
1499 * If present, features must be "handle_errors".
1500 */
1501 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1502 {
1503 int r;
1504 unsigned int nr_mirrors, m, args_used;
1505 struct mirror_set *ms;
1506 struct dm_dirty_log *dl;
1507
1508 dl = create_dirty_log(ti, argc, argv, &args_used);
1509 if (!dl)
1510 return -EINVAL;
1511
1512 argv += args_used;
1513 argc -= args_used;
1514
1515 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1516 nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) {
1517 ti->error = "Invalid number of mirrors";
1518 dm_dirty_log_destroy(dl);
1519 return -EINVAL;
1520 }
1521
1522 argv++, argc--;
1523
1524 if (argc < nr_mirrors * 2) {
1525 ti->error = "Too few mirror arguments";
1526 dm_dirty_log_destroy(dl);
1527 return -EINVAL;
1528 }
1529
1530 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1531 if (!ms) {
1532 dm_dirty_log_destroy(dl);
1533 return -ENOMEM;
1534 }
1535
1536 /* Get the mirror parameter sets */
1537 for (m = 0; m < nr_mirrors; m++) {
1538 r = get_mirror(ms, ti, m, argv);
1539 if (r) {
1540 free_context(ms, ti, m);
1541 return r;
1542 }
1543 argv += 2;
1544 argc -= 2;
1545 }
1546
1547 ti->private = ms;
1548 ti->split_io = ms->rh.region_size;
1549
1550 ms->kmirrord_wq = create_singlethread_workqueue("kmirrord");
1551 if (!ms->kmirrord_wq) {
1552 DMERR("couldn't start kmirrord");
1553 r = -ENOMEM;
1554 goto err_free_context;
1555 }
1556 INIT_WORK(&ms->kmirrord_work, do_mirror);
1557 init_timer(&ms->timer);
1558 ms->timer_pending = 0;
1559 INIT_WORK(&ms->trigger_event, trigger_event);
1560
1561 r = parse_features(ms, argc, argv, &args_used);
1562 if (r)
1563 goto err_destroy_wq;
1564
1565 argv += args_used;
1566 argc -= args_used;
1567
1568 /*
1569 * Any read-balancing addition depends on the
1570 * DM_RAID1_HANDLE_ERRORS flag being present.
1571 * This is because the decision to balance depends
1572 * on the sync state of a region. If the above
1573 * flag is not present, we ignore errors; and
1574 * the sync state may be inaccurate.
1575 */
1576
1577 if (argc) {
1578 ti->error = "Too many mirror arguments";
1579 r = -EINVAL;
1580 goto err_destroy_wq;
1581 }
1582
1583 r = dm_kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client);
1584 if (r)
1585 goto err_destroy_wq;
1586
1587 wake(ms);
1588 return 0;
1589
1590 err_destroy_wq:
1591 destroy_workqueue(ms->kmirrord_wq);
1592 err_free_context:
1593 free_context(ms, ti, ms->nr_mirrors);
1594 return r;
1595 }
1596
1597 static void mirror_dtr(struct dm_target *ti)
1598 {
1599 struct mirror_set *ms = (struct mirror_set *) ti->private;
1600
1601 del_timer_sync(&ms->timer);
1602 flush_workqueue(ms->kmirrord_wq);
1603 dm_kcopyd_client_destroy(ms->kcopyd_client);
1604 destroy_workqueue(ms->kmirrord_wq);
1605 free_context(ms, ti, ms->nr_mirrors);
1606 }
1607
1608 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
1609 {
1610 unsigned long flags;
1611 int should_wake = 0;
1612 struct bio_list *bl;
1613
1614 bl = (rw == WRITE) ? &ms->writes : &ms->reads;
1615 spin_lock_irqsave(&ms->lock, flags);
1616 should_wake = !(bl->head);
1617 bio_list_add(bl, bio);
1618 spin_unlock_irqrestore(&ms->lock, flags);
1619
1620 if (should_wake)
1621 wake(ms);
1622 }
1623
1624 /*
1625 * Mirror mapping function
1626 */
1627 static int mirror_map(struct dm_target *ti, struct bio *bio,
1628 union map_info *map_context)
1629 {
1630 int r, rw = bio_rw(bio);
1631 struct mirror *m;
1632 struct mirror_set *ms = ti->private;
1633 struct dm_raid1_read_record *read_record = NULL;
1634
1635 if (rw == WRITE) {
1636 /* Save region for mirror_end_io() handler */
1637 map_context->ll = bio_to_region(&ms->rh, bio);
1638 queue_bio(ms, bio, rw);
1639 return DM_MAPIO_SUBMITTED;
1640 }
1641
1642 r = ms->rh.log->type->in_sync(ms->rh.log,
1643 bio_to_region(&ms->rh, bio), 0);
1644 if (r < 0 && r != -EWOULDBLOCK)
1645 return r;
1646
1647 /*
1648 * If region is not in-sync queue the bio.
1649 */
1650 if (!r || (r == -EWOULDBLOCK)) {
1651 if (rw == READA)
1652 return -EWOULDBLOCK;
1653
1654 queue_bio(ms, bio, rw);
1655 return DM_MAPIO_SUBMITTED;
1656 }
1657
1658 /*
1659 * The region is in-sync and we can perform reads directly.
1660 * Store enough information so we can retry if it fails.
1661 */
1662 m = choose_mirror(ms, bio->bi_sector);
1663 if (unlikely(!m))
1664 return -EIO;
1665
1666 read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1667 if (likely(read_record)) {
1668 dm_bio_record(&read_record->details, bio);
1669 map_context->ptr = read_record;
1670 read_record->m = m;
1671 }
1672
1673 map_bio(m, bio);
1674
1675 return DM_MAPIO_REMAPPED;
1676 }
1677
1678 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1679 int error, union map_info *map_context)
1680 {
1681 int rw = bio_rw(bio);
1682 struct mirror_set *ms = (struct mirror_set *) ti->private;
1683 struct mirror *m = NULL;
1684 struct dm_bio_details *bd = NULL;
1685 struct dm_raid1_read_record *read_record = map_context->ptr;
1686
1687 /*
1688 * We need to dec pending if this was a write.
1689 */
1690 if (rw == WRITE) {
1691 rh_dec(&ms->rh, map_context->ll);
1692 return error;
1693 }
1694
1695 if (error == -EOPNOTSUPP)
1696 goto out;
1697
1698 if ((error == -EWOULDBLOCK) && bio_rw_ahead(bio))
1699 goto out;
1700
1701 if (unlikely(error)) {
1702 if (!read_record) {
1703 /*
1704 * There wasn't enough memory to record necessary
1705 * information for a retry or there was no other
1706 * mirror in-sync.
1707 */
1708 DMERR_LIMIT("Mirror read failed.");
1709 return -EIO;
1710 }
1711
1712 m = read_record->m;
1713
1714 DMERR("Mirror read failed from %s. Trying alternative device.",
1715 m->dev->name);
1716
1717 fail_mirror(m, DM_RAID1_READ_ERROR);
1718
1719 /*
1720 * A failed read is requeued for another attempt using an intact
1721 * mirror.
1722 */
1723 if (default_ok(m) || mirror_available(ms, bio)) {
1724 bd = &read_record->details;
1725
1726 dm_bio_restore(bd, bio);
1727 mempool_free(read_record, ms->read_record_pool);
1728 map_context->ptr = NULL;
1729 queue_bio(ms, bio, rw);
1730 return 1;
1731 }
1732 DMERR("All replicated volumes dead, failing I/O");
1733 }
1734
1735 out:
1736 if (read_record) {
1737 mempool_free(read_record, ms->read_record_pool);
1738 map_context->ptr = NULL;
1739 }
1740
1741 return error;
1742 }
1743
1744 static void mirror_presuspend(struct dm_target *ti)
1745 {
1746 struct mirror_set *ms = (struct mirror_set *) ti->private;
1747 struct dm_dirty_log *log = ms->rh.log;
1748
1749 atomic_set(&ms->suspend, 1);
1750
1751 /*
1752 * We must finish up all the work that we've
1753 * generated (i.e. recovery work).
1754 */
1755 rh_stop_recovery(&ms->rh);
1756
1757 wait_event(_kmirrord_recovery_stopped,
1758 !atomic_read(&ms->rh.recovery_in_flight));
1759
1760 if (log->type->presuspend && log->type->presuspend(log))
1761 /* FIXME: need better error handling */
1762 DMWARN("log presuspend failed");
1763
1764 /*
1765 * Now that recovery is complete/stopped and the
1766 * delayed bios are queued, we need to wait for
1767 * the worker thread to complete. This way,
1768 * we know that all of our I/O has been pushed.
1769 */
1770 flush_workqueue(ms->kmirrord_wq);
1771 }
1772
1773 static void mirror_postsuspend(struct dm_target *ti)
1774 {
1775 struct mirror_set *ms = ti->private;
1776 struct dm_dirty_log *log = ms->rh.log;
1777
1778 if (log->type->postsuspend && log->type->postsuspend(log))
1779 /* FIXME: need better error handling */
1780 DMWARN("log postsuspend failed");
1781 }
1782
1783 static void mirror_resume(struct dm_target *ti)
1784 {
1785 struct mirror_set *ms = ti->private;
1786 struct dm_dirty_log *log = ms->rh.log;
1787
1788 atomic_set(&ms->suspend, 0);
1789 if (log->type->resume && log->type->resume(log))
1790 /* FIXME: need better error handling */
1791 DMWARN("log resume failed");
1792 rh_start_recovery(&ms->rh);
1793 }
1794
1795 /*
1796 * device_status_char
1797 * @m: mirror device/leg we want the status of
1798 *
1799 * We return one character representing the most severe error
1800 * we have encountered.
1801 * A => Alive - No failures
1802 * D => Dead - A write failure occurred leaving mirror out-of-sync
1803 * S => Sync - A sychronization failure occurred, mirror out-of-sync
1804 * R => Read - A read failure occurred, mirror data unaffected
1805 *
1806 * Returns: <char>
1807 */
1808 static char device_status_char(struct mirror *m)
1809 {
1810 if (!atomic_read(&(m->error_count)))
1811 return 'A';
1812
1813 return (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1814 (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1815 (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1816 }
1817
1818
1819 static int mirror_status(struct dm_target *ti, status_type_t type,
1820 char *result, unsigned int maxlen)
1821 {
1822 unsigned int m, sz = 0;
1823 struct mirror_set *ms = (struct mirror_set *) ti->private;
1824 struct dm_dirty_log *log = ms->rh.log;
1825 char buffer[ms->nr_mirrors + 1];
1826
1827 switch (type) {
1828 case STATUSTYPE_INFO:
1829 DMEMIT("%d ", ms->nr_mirrors);
1830 for (m = 0; m < ms->nr_mirrors; m++) {
1831 DMEMIT("%s ", ms->mirror[m].dev->name);
1832 buffer[m] = device_status_char(&(ms->mirror[m]));
1833 }
1834 buffer[m] = '\0';
1835
1836 DMEMIT("%llu/%llu 1 %s ",
1837 (unsigned long long)log->type->get_sync_count(ms->rh.log),
1838 (unsigned long long)ms->nr_regions, buffer);
1839
1840 sz += log->type->status(ms->rh.log, type, result+sz, maxlen-sz);
1841
1842 break;
1843
1844 case STATUSTYPE_TABLE:
1845 sz = log->type->status(ms->rh.log, type, result, maxlen);
1846
1847 DMEMIT("%d", ms->nr_mirrors);
1848 for (m = 0; m < ms->nr_mirrors; m++)
1849 DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1850 (unsigned long long)ms->mirror[m].offset);
1851
1852 if (ms->features & DM_RAID1_HANDLE_ERRORS)
1853 DMEMIT(" 1 handle_errors");
1854 }
1855
1856 return 0;
1857 }
1858
1859 static struct target_type mirror_target = {
1860 .name = "mirror",
1861 .version = {1, 0, 20},
1862 .module = THIS_MODULE,
1863 .ctr = mirror_ctr,
1864 .dtr = mirror_dtr,
1865 .map = mirror_map,
1866 .end_io = mirror_end_io,
1867 .presuspend = mirror_presuspend,
1868 .postsuspend = mirror_postsuspend,
1869 .resume = mirror_resume,
1870 .status = mirror_status,
1871 };
1872
1873 static int __init dm_mirror_init(void)
1874 {
1875 int r;
1876
1877 r = dm_register_target(&mirror_target);
1878 if (r < 0)
1879 DMERR("Failed to register mirror target");
1880
1881 return r;
1882 }
1883
1884 static void __exit dm_mirror_exit(void)
1885 {
1886 int r;
1887
1888 r = dm_unregister_target(&mirror_target);
1889 if (r < 0)
1890 DMERR("unregister failed %d", r);
1891 }
1892
1893 /* Module hooks */
1894 module_init(dm_mirror_init);
1895 module_exit(dm_mirror_exit);
1896
1897 MODULE_DESCRIPTION(DM_NAME " mirror target");
1898 MODULE_AUTHOR("Joe Thornber");
1899 MODULE_LICENSE("GPL");
This page took 0.071617 seconds and 5 git commands to generate.