dm: allocate buffer for messages with small number of arguments using GFP_NOIO
[deliverable/linux.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 struct dm_table {
30 struct mapped_device *md;
31 unsigned type;
32
33 /* btree table */
34 unsigned int depth;
35 unsigned int counts[MAX_DEPTH]; /* in nodes */
36 sector_t *index[MAX_DEPTH];
37
38 unsigned int num_targets;
39 unsigned int num_allocated;
40 sector_t *highs;
41 struct dm_target *targets;
42
43 struct target_type *immutable_target_type;
44 unsigned integrity_supported:1;
45 unsigned singleton:1;
46
47 /*
48 * Indicates the rw permissions for the new logical
49 * device. This should be a combination of FMODE_READ
50 * and FMODE_WRITE.
51 */
52 fmode_t mode;
53
54 /* a list of devices used by this table */
55 struct list_head devices;
56
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
60
61 struct dm_md_mempools *mempools;
62
63 struct list_head target_callbacks;
64 };
65
66 /*
67 * Similar to ceiling(log_size(n))
68 */
69 static unsigned int int_log(unsigned int n, unsigned int base)
70 {
71 int result = 0;
72
73 while (n > 1) {
74 n = dm_div_up(n, base);
75 result++;
76 }
77
78 return result;
79 }
80
81 /*
82 * Calculate the index of the child node of the n'th node k'th key.
83 */
84 static inline unsigned int get_child(unsigned int n, unsigned int k)
85 {
86 return (n * CHILDREN_PER_NODE) + k;
87 }
88
89 /*
90 * Return the n'th node of level l from table t.
91 */
92 static inline sector_t *get_node(struct dm_table *t,
93 unsigned int l, unsigned int n)
94 {
95 return t->index[l] + (n * KEYS_PER_NODE);
96 }
97
98 /*
99 * Return the highest key that you could lookup from the n'th
100 * node on level l of the btree.
101 */
102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103 {
104 for (; l < t->depth - 1; l++)
105 n = get_child(n, CHILDREN_PER_NODE - 1);
106
107 if (n >= t->counts[l])
108 return (sector_t) - 1;
109
110 return get_node(t, l, n)[KEYS_PER_NODE - 1];
111 }
112
113 /*
114 * Fills in a level of the btree based on the highs of the level
115 * below it.
116 */
117 static int setup_btree_index(unsigned int l, struct dm_table *t)
118 {
119 unsigned int n, k;
120 sector_t *node;
121
122 for (n = 0U; n < t->counts[l]; n++) {
123 node = get_node(t, l, n);
124
125 for (k = 0U; k < KEYS_PER_NODE; k++)
126 node[k] = high(t, l + 1, get_child(n, k));
127 }
128
129 return 0;
130 }
131
132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133 {
134 unsigned long size;
135 void *addr;
136
137 /*
138 * Check that we're not going to overflow.
139 */
140 if (nmemb > (ULONG_MAX / elem_size))
141 return NULL;
142
143 size = nmemb * elem_size;
144 addr = vzalloc(size);
145
146 return addr;
147 }
148 EXPORT_SYMBOL(dm_vcalloc);
149
150 /*
151 * highs, and targets are managed as dynamic arrays during a
152 * table load.
153 */
154 static int alloc_targets(struct dm_table *t, unsigned int num)
155 {
156 sector_t *n_highs;
157 struct dm_target *n_targets;
158 int n = t->num_targets;
159
160 /*
161 * Allocate both the target array and offset array at once.
162 * Append an empty entry to catch sectors beyond the end of
163 * the device.
164 */
165 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
166 sizeof(sector_t));
167 if (!n_highs)
168 return -ENOMEM;
169
170 n_targets = (struct dm_target *) (n_highs + num);
171
172 if (n) {
173 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
174 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
175 }
176
177 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185 }
186
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189 {
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (alloc_targets(t, num_targets)) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 t->mode = mode;
209 t->md = md;
210 *result = t;
211 return 0;
212 }
213
214 static void free_devices(struct list_head *devices)
215 {
216 struct list_head *tmp, *next;
217
218 list_for_each_safe(tmp, next, devices) {
219 struct dm_dev_internal *dd =
220 list_entry(tmp, struct dm_dev_internal, list);
221 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
222 dd->dm_dev.name);
223 kfree(dd);
224 }
225 }
226
227 void dm_table_destroy(struct dm_table *t)
228 {
229 unsigned int i;
230
231 if (!t)
232 return;
233
234 /* free the indexes */
235 if (t->depth >= 2)
236 vfree(t->index[t->depth - 2]);
237
238 /* free the targets */
239 for (i = 0; i < t->num_targets; i++) {
240 struct dm_target *tgt = t->targets + i;
241
242 if (tgt->type->dtr)
243 tgt->type->dtr(tgt);
244
245 dm_put_target_type(tgt->type);
246 }
247
248 vfree(t->highs);
249
250 /* free the device list */
251 free_devices(&t->devices);
252
253 dm_free_md_mempools(t->mempools);
254
255 kfree(t);
256 }
257
258 /*
259 * Checks to see if we need to extend highs or targets.
260 */
261 static inline int check_space(struct dm_table *t)
262 {
263 if (t->num_targets >= t->num_allocated)
264 return alloc_targets(t, t->num_allocated * 2);
265
266 return 0;
267 }
268
269 /*
270 * See if we've already got a device in the list.
271 */
272 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
273 {
274 struct dm_dev_internal *dd;
275
276 list_for_each_entry (dd, l, list)
277 if (dd->dm_dev.bdev->bd_dev == dev)
278 return dd;
279
280 return NULL;
281 }
282
283 /*
284 * Open a device so we can use it as a map destination.
285 */
286 static int open_dev(struct dm_dev_internal *d, dev_t dev,
287 struct mapped_device *md)
288 {
289 static char *_claim_ptr = "I belong to device-mapper";
290 struct block_device *bdev;
291
292 int r;
293
294 BUG_ON(d->dm_dev.bdev);
295
296 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
297 if (IS_ERR(bdev))
298 return PTR_ERR(bdev);
299
300 r = bd_link_disk_holder(bdev, dm_disk(md));
301 if (r) {
302 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
303 return r;
304 }
305
306 d->dm_dev.bdev = bdev;
307 return 0;
308 }
309
310 /*
311 * Close a device that we've been using.
312 */
313 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
314 {
315 if (!d->dm_dev.bdev)
316 return;
317
318 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
319 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
320 d->dm_dev.bdev = NULL;
321 }
322
323 /*
324 * If possible, this checks an area of a destination device is invalid.
325 */
326 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
327 sector_t start, sector_t len, void *data)
328 {
329 struct request_queue *q;
330 struct queue_limits *limits = data;
331 struct block_device *bdev = dev->bdev;
332 sector_t dev_size =
333 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
334 unsigned short logical_block_size_sectors =
335 limits->logical_block_size >> SECTOR_SHIFT;
336 char b[BDEVNAME_SIZE];
337
338 /*
339 * Some devices exist without request functions,
340 * such as loop devices not yet bound to backing files.
341 * Forbid the use of such devices.
342 */
343 q = bdev_get_queue(bdev);
344 if (!q || !q->make_request_fn) {
345 DMWARN("%s: %s is not yet initialised: "
346 "start=%llu, len=%llu, dev_size=%llu",
347 dm_device_name(ti->table->md), bdevname(bdev, b),
348 (unsigned long long)start,
349 (unsigned long long)len,
350 (unsigned long long)dev_size);
351 return 1;
352 }
353
354 if (!dev_size)
355 return 0;
356
357 if ((start >= dev_size) || (start + len > dev_size)) {
358 DMWARN("%s: %s too small for target: "
359 "start=%llu, len=%llu, dev_size=%llu",
360 dm_device_name(ti->table->md), bdevname(bdev, b),
361 (unsigned long long)start,
362 (unsigned long long)len,
363 (unsigned long long)dev_size);
364 return 1;
365 }
366
367 if (logical_block_size_sectors <= 1)
368 return 0;
369
370 if (start & (logical_block_size_sectors - 1)) {
371 DMWARN("%s: start=%llu not aligned to h/w "
372 "logical block size %u of %s",
373 dm_device_name(ti->table->md),
374 (unsigned long long)start,
375 limits->logical_block_size, bdevname(bdev, b));
376 return 1;
377 }
378
379 if (len & (logical_block_size_sectors - 1)) {
380 DMWARN("%s: len=%llu not aligned to h/w "
381 "logical block size %u of %s",
382 dm_device_name(ti->table->md),
383 (unsigned long long)len,
384 limits->logical_block_size, bdevname(bdev, b));
385 return 1;
386 }
387
388 return 0;
389 }
390
391 /*
392 * This upgrades the mode on an already open dm_dev, being
393 * careful to leave things as they were if we fail to reopen the
394 * device and not to touch the existing bdev field in case
395 * it is accessed concurrently inside dm_table_any_congested().
396 */
397 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
398 struct mapped_device *md)
399 {
400 int r;
401 struct dm_dev_internal dd_new, dd_old;
402
403 dd_new = dd_old = *dd;
404
405 dd_new.dm_dev.mode |= new_mode;
406 dd_new.dm_dev.bdev = NULL;
407
408 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
409 if (r)
410 return r;
411
412 dd->dm_dev.mode |= new_mode;
413 close_dev(&dd_old, md);
414
415 return 0;
416 }
417
418 /*
419 * Add a device to the list, or just increment the usage count if
420 * it's already present.
421 */
422 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
423 struct dm_dev **result)
424 {
425 int r;
426 dev_t uninitialized_var(dev);
427 struct dm_dev_internal *dd;
428 unsigned int major, minor;
429 struct dm_table *t = ti->table;
430 char dummy;
431
432 BUG_ON(!t);
433
434 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
435 /* Extract the major/minor numbers */
436 dev = MKDEV(major, minor);
437 if (MAJOR(dev) != major || MINOR(dev) != minor)
438 return -EOVERFLOW;
439 } else {
440 /* convert the path to a device */
441 struct block_device *bdev = lookup_bdev(path);
442
443 if (IS_ERR(bdev))
444 return PTR_ERR(bdev);
445 dev = bdev->bd_dev;
446 bdput(bdev);
447 }
448
449 dd = find_device(&t->devices, dev);
450 if (!dd) {
451 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
452 if (!dd)
453 return -ENOMEM;
454
455 dd->dm_dev.mode = mode;
456 dd->dm_dev.bdev = NULL;
457
458 if ((r = open_dev(dd, dev, t->md))) {
459 kfree(dd);
460 return r;
461 }
462
463 format_dev_t(dd->dm_dev.name, dev);
464
465 atomic_set(&dd->count, 0);
466 list_add(&dd->list, &t->devices);
467
468 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
469 r = upgrade_mode(dd, mode, t->md);
470 if (r)
471 return r;
472 }
473 atomic_inc(&dd->count);
474
475 *result = &dd->dm_dev;
476 return 0;
477 }
478 EXPORT_SYMBOL(dm_get_device);
479
480 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
481 sector_t start, sector_t len, void *data)
482 {
483 struct queue_limits *limits = data;
484 struct block_device *bdev = dev->bdev;
485 struct request_queue *q = bdev_get_queue(bdev);
486 char b[BDEVNAME_SIZE];
487
488 if (unlikely(!q)) {
489 DMWARN("%s: Cannot set limits for nonexistent device %s",
490 dm_device_name(ti->table->md), bdevname(bdev, b));
491 return 0;
492 }
493
494 if (bdev_stack_limits(limits, bdev, start) < 0)
495 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
496 "physical_block_size=%u, logical_block_size=%u, "
497 "alignment_offset=%u, start=%llu",
498 dm_device_name(ti->table->md), bdevname(bdev, b),
499 q->limits.physical_block_size,
500 q->limits.logical_block_size,
501 q->limits.alignment_offset,
502 (unsigned long long) start << SECTOR_SHIFT);
503
504 /*
505 * Check if merge fn is supported.
506 * If not we'll force DM to use PAGE_SIZE or
507 * smaller I/O, just to be safe.
508 */
509 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
510 blk_limits_max_hw_sectors(limits,
511 (unsigned int) (PAGE_SIZE >> 9));
512 return 0;
513 }
514 EXPORT_SYMBOL_GPL(dm_set_device_limits);
515
516 /*
517 * Decrement a device's use count and remove it if necessary.
518 */
519 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
520 {
521 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
522 dm_dev);
523
524 if (atomic_dec_and_test(&dd->count)) {
525 close_dev(dd, ti->table->md);
526 list_del(&dd->list);
527 kfree(dd);
528 }
529 }
530 EXPORT_SYMBOL(dm_put_device);
531
532 /*
533 * Checks to see if the target joins onto the end of the table.
534 */
535 static int adjoin(struct dm_table *table, struct dm_target *ti)
536 {
537 struct dm_target *prev;
538
539 if (!table->num_targets)
540 return !ti->begin;
541
542 prev = &table->targets[table->num_targets - 1];
543 return (ti->begin == (prev->begin + prev->len));
544 }
545
546 /*
547 * Used to dynamically allocate the arg array.
548 *
549 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
550 * process messages even if some device is suspended. These messages have a
551 * small fixed number of arguments.
552 *
553 * On the other hand, dm-switch needs to process bulk data using messages and
554 * excessive use of GFP_NOIO could cause trouble.
555 */
556 static char **realloc_argv(unsigned *array_size, char **old_argv)
557 {
558 char **argv;
559 unsigned new_size;
560 gfp_t gfp;
561
562 if (*array_size) {
563 new_size = *array_size * 2;
564 gfp = GFP_KERNEL;
565 } else {
566 new_size = 8;
567 gfp = GFP_NOIO;
568 }
569 argv = kmalloc(new_size * sizeof(*argv), gfp);
570 if (argv) {
571 memcpy(argv, old_argv, *array_size * sizeof(*argv));
572 *array_size = new_size;
573 }
574
575 kfree(old_argv);
576 return argv;
577 }
578
579 /*
580 * Destructively splits up the argument list to pass to ctr.
581 */
582 int dm_split_args(int *argc, char ***argvp, char *input)
583 {
584 char *start, *end = input, *out, **argv = NULL;
585 unsigned array_size = 0;
586
587 *argc = 0;
588
589 if (!input) {
590 *argvp = NULL;
591 return 0;
592 }
593
594 argv = realloc_argv(&array_size, argv);
595 if (!argv)
596 return -ENOMEM;
597
598 while (1) {
599 /* Skip whitespace */
600 start = skip_spaces(end);
601
602 if (!*start)
603 break; /* success, we hit the end */
604
605 /* 'out' is used to remove any back-quotes */
606 end = out = start;
607 while (*end) {
608 /* Everything apart from '\0' can be quoted */
609 if (*end == '\\' && *(end + 1)) {
610 *out++ = *(end + 1);
611 end += 2;
612 continue;
613 }
614
615 if (isspace(*end))
616 break; /* end of token */
617
618 *out++ = *end++;
619 }
620
621 /* have we already filled the array ? */
622 if ((*argc + 1) > array_size) {
623 argv = realloc_argv(&array_size, argv);
624 if (!argv)
625 return -ENOMEM;
626 }
627
628 /* we know this is whitespace */
629 if (*end)
630 end++;
631
632 /* terminate the string and put it in the array */
633 *out = '\0';
634 argv[*argc] = start;
635 (*argc)++;
636 }
637
638 *argvp = argv;
639 return 0;
640 }
641
642 /*
643 * Impose necessary and sufficient conditions on a devices's table such
644 * that any incoming bio which respects its logical_block_size can be
645 * processed successfully. If it falls across the boundary between
646 * two or more targets, the size of each piece it gets split into must
647 * be compatible with the logical_block_size of the target processing it.
648 */
649 static int validate_hardware_logical_block_alignment(struct dm_table *table,
650 struct queue_limits *limits)
651 {
652 /*
653 * This function uses arithmetic modulo the logical_block_size
654 * (in units of 512-byte sectors).
655 */
656 unsigned short device_logical_block_size_sects =
657 limits->logical_block_size >> SECTOR_SHIFT;
658
659 /*
660 * Offset of the start of the next table entry, mod logical_block_size.
661 */
662 unsigned short next_target_start = 0;
663
664 /*
665 * Given an aligned bio that extends beyond the end of a
666 * target, how many sectors must the next target handle?
667 */
668 unsigned short remaining = 0;
669
670 struct dm_target *uninitialized_var(ti);
671 struct queue_limits ti_limits;
672 unsigned i = 0;
673
674 /*
675 * Check each entry in the table in turn.
676 */
677 while (i < dm_table_get_num_targets(table)) {
678 ti = dm_table_get_target(table, i++);
679
680 blk_set_stacking_limits(&ti_limits);
681
682 /* combine all target devices' limits */
683 if (ti->type->iterate_devices)
684 ti->type->iterate_devices(ti, dm_set_device_limits,
685 &ti_limits);
686
687 /*
688 * If the remaining sectors fall entirely within this
689 * table entry are they compatible with its logical_block_size?
690 */
691 if (remaining < ti->len &&
692 remaining & ((ti_limits.logical_block_size >>
693 SECTOR_SHIFT) - 1))
694 break; /* Error */
695
696 next_target_start =
697 (unsigned short) ((next_target_start + ti->len) &
698 (device_logical_block_size_sects - 1));
699 remaining = next_target_start ?
700 device_logical_block_size_sects - next_target_start : 0;
701 }
702
703 if (remaining) {
704 DMWARN("%s: table line %u (start sect %llu len %llu) "
705 "not aligned to h/w logical block size %u",
706 dm_device_name(table->md), i,
707 (unsigned long long) ti->begin,
708 (unsigned long long) ti->len,
709 limits->logical_block_size);
710 return -EINVAL;
711 }
712
713 return 0;
714 }
715
716 int dm_table_add_target(struct dm_table *t, const char *type,
717 sector_t start, sector_t len, char *params)
718 {
719 int r = -EINVAL, argc;
720 char **argv;
721 struct dm_target *tgt;
722
723 if (t->singleton) {
724 DMERR("%s: target type %s must appear alone in table",
725 dm_device_name(t->md), t->targets->type->name);
726 return -EINVAL;
727 }
728
729 if ((r = check_space(t)))
730 return r;
731
732 tgt = t->targets + t->num_targets;
733 memset(tgt, 0, sizeof(*tgt));
734
735 if (!len) {
736 DMERR("%s: zero-length target", dm_device_name(t->md));
737 return -EINVAL;
738 }
739
740 tgt->type = dm_get_target_type(type);
741 if (!tgt->type) {
742 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
743 type);
744 return -EINVAL;
745 }
746
747 if (dm_target_needs_singleton(tgt->type)) {
748 if (t->num_targets) {
749 DMERR("%s: target type %s must appear alone in table",
750 dm_device_name(t->md), type);
751 return -EINVAL;
752 }
753 t->singleton = 1;
754 }
755
756 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
757 DMERR("%s: target type %s may not be included in read-only tables",
758 dm_device_name(t->md), type);
759 return -EINVAL;
760 }
761
762 if (t->immutable_target_type) {
763 if (t->immutable_target_type != tgt->type) {
764 DMERR("%s: immutable target type %s cannot be mixed with other target types",
765 dm_device_name(t->md), t->immutable_target_type->name);
766 return -EINVAL;
767 }
768 } else if (dm_target_is_immutable(tgt->type)) {
769 if (t->num_targets) {
770 DMERR("%s: immutable target type %s cannot be mixed with other target types",
771 dm_device_name(t->md), tgt->type->name);
772 return -EINVAL;
773 }
774 t->immutable_target_type = tgt->type;
775 }
776
777 tgt->table = t;
778 tgt->begin = start;
779 tgt->len = len;
780 tgt->error = "Unknown error";
781
782 /*
783 * Does this target adjoin the previous one ?
784 */
785 if (!adjoin(t, tgt)) {
786 tgt->error = "Gap in table";
787 r = -EINVAL;
788 goto bad;
789 }
790
791 r = dm_split_args(&argc, &argv, params);
792 if (r) {
793 tgt->error = "couldn't split parameters (insufficient memory)";
794 goto bad;
795 }
796
797 r = tgt->type->ctr(tgt, argc, argv);
798 kfree(argv);
799 if (r)
800 goto bad;
801
802 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
803
804 if (!tgt->num_discard_bios && tgt->discards_supported)
805 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
806 dm_device_name(t->md), type);
807
808 return 0;
809
810 bad:
811 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
812 dm_put_target_type(tgt->type);
813 return r;
814 }
815
816 /*
817 * Target argument parsing helpers.
818 */
819 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
820 unsigned *value, char **error, unsigned grouped)
821 {
822 const char *arg_str = dm_shift_arg(arg_set);
823 char dummy;
824
825 if (!arg_str ||
826 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
827 (*value < arg->min) ||
828 (*value > arg->max) ||
829 (grouped && arg_set->argc < *value)) {
830 *error = arg->error;
831 return -EINVAL;
832 }
833
834 return 0;
835 }
836
837 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
838 unsigned *value, char **error)
839 {
840 return validate_next_arg(arg, arg_set, value, error, 0);
841 }
842 EXPORT_SYMBOL(dm_read_arg);
843
844 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
845 unsigned *value, char **error)
846 {
847 return validate_next_arg(arg, arg_set, value, error, 1);
848 }
849 EXPORT_SYMBOL(dm_read_arg_group);
850
851 const char *dm_shift_arg(struct dm_arg_set *as)
852 {
853 char *r;
854
855 if (as->argc) {
856 as->argc--;
857 r = *as->argv;
858 as->argv++;
859 return r;
860 }
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dm_shift_arg);
865
866 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
867 {
868 BUG_ON(as->argc < num_args);
869 as->argc -= num_args;
870 as->argv += num_args;
871 }
872 EXPORT_SYMBOL(dm_consume_args);
873
874 static int dm_table_set_type(struct dm_table *t)
875 {
876 unsigned i;
877 unsigned bio_based = 0, request_based = 0, hybrid = 0;
878 struct dm_target *tgt;
879 struct dm_dev_internal *dd;
880 struct list_head *devices;
881 unsigned live_md_type;
882
883 for (i = 0; i < t->num_targets; i++) {
884 tgt = t->targets + i;
885 if (dm_target_hybrid(tgt))
886 hybrid = 1;
887 else if (dm_target_request_based(tgt))
888 request_based = 1;
889 else
890 bio_based = 1;
891
892 if (bio_based && request_based) {
893 DMWARN("Inconsistent table: different target types"
894 " can't be mixed up");
895 return -EINVAL;
896 }
897 }
898
899 if (hybrid && !bio_based && !request_based) {
900 /*
901 * The targets can work either way.
902 * Determine the type from the live device.
903 * Default to bio-based if device is new.
904 */
905 live_md_type = dm_get_md_type(t->md);
906 if (live_md_type == DM_TYPE_REQUEST_BASED)
907 request_based = 1;
908 else
909 bio_based = 1;
910 }
911
912 if (bio_based) {
913 /* We must use this table as bio-based */
914 t->type = DM_TYPE_BIO_BASED;
915 return 0;
916 }
917
918 BUG_ON(!request_based); /* No targets in this table */
919
920 /* Non-request-stackable devices can't be used for request-based dm */
921 devices = dm_table_get_devices(t);
922 list_for_each_entry(dd, devices, list) {
923 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
924 DMWARN("table load rejected: including"
925 " non-request-stackable devices");
926 return -EINVAL;
927 }
928 }
929
930 /*
931 * Request-based dm supports only tables that have a single target now.
932 * To support multiple targets, request splitting support is needed,
933 * and that needs lots of changes in the block-layer.
934 * (e.g. request completion process for partial completion.)
935 */
936 if (t->num_targets > 1) {
937 DMWARN("Request-based dm doesn't support multiple targets yet");
938 return -EINVAL;
939 }
940
941 t->type = DM_TYPE_REQUEST_BASED;
942
943 return 0;
944 }
945
946 unsigned dm_table_get_type(struct dm_table *t)
947 {
948 return t->type;
949 }
950
951 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
952 {
953 return t->immutable_target_type;
954 }
955
956 bool dm_table_request_based(struct dm_table *t)
957 {
958 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
959 }
960
961 int dm_table_alloc_md_mempools(struct dm_table *t)
962 {
963 unsigned type = dm_table_get_type(t);
964 unsigned per_bio_data_size = 0;
965 struct dm_target *tgt;
966 unsigned i;
967
968 if (unlikely(type == DM_TYPE_NONE)) {
969 DMWARN("no table type is set, can't allocate mempools");
970 return -EINVAL;
971 }
972
973 if (type == DM_TYPE_BIO_BASED)
974 for (i = 0; i < t->num_targets; i++) {
975 tgt = t->targets + i;
976 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
977 }
978
979 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
980 if (!t->mempools)
981 return -ENOMEM;
982
983 return 0;
984 }
985
986 void dm_table_free_md_mempools(struct dm_table *t)
987 {
988 dm_free_md_mempools(t->mempools);
989 t->mempools = NULL;
990 }
991
992 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
993 {
994 return t->mempools;
995 }
996
997 static int setup_indexes(struct dm_table *t)
998 {
999 int i;
1000 unsigned int total = 0;
1001 sector_t *indexes;
1002
1003 /* allocate the space for *all* the indexes */
1004 for (i = t->depth - 2; i >= 0; i--) {
1005 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1006 total += t->counts[i];
1007 }
1008
1009 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1010 if (!indexes)
1011 return -ENOMEM;
1012
1013 /* set up internal nodes, bottom-up */
1014 for (i = t->depth - 2; i >= 0; i--) {
1015 t->index[i] = indexes;
1016 indexes += (KEYS_PER_NODE * t->counts[i]);
1017 setup_btree_index(i, t);
1018 }
1019
1020 return 0;
1021 }
1022
1023 /*
1024 * Builds the btree to index the map.
1025 */
1026 static int dm_table_build_index(struct dm_table *t)
1027 {
1028 int r = 0;
1029 unsigned int leaf_nodes;
1030
1031 /* how many indexes will the btree have ? */
1032 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1033 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1034
1035 /* leaf layer has already been set up */
1036 t->counts[t->depth - 1] = leaf_nodes;
1037 t->index[t->depth - 1] = t->highs;
1038
1039 if (t->depth >= 2)
1040 r = setup_indexes(t);
1041
1042 return r;
1043 }
1044
1045 /*
1046 * Get a disk whose integrity profile reflects the table's profile.
1047 * If %match_all is true, all devices' profiles must match.
1048 * If %match_all is false, all devices must at least have an
1049 * allocated integrity profile; but uninitialized is ok.
1050 * Returns NULL if integrity support was inconsistent or unavailable.
1051 */
1052 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1053 bool match_all)
1054 {
1055 struct list_head *devices = dm_table_get_devices(t);
1056 struct dm_dev_internal *dd = NULL;
1057 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1058
1059 list_for_each_entry(dd, devices, list) {
1060 template_disk = dd->dm_dev.bdev->bd_disk;
1061 if (!blk_get_integrity(template_disk))
1062 goto no_integrity;
1063 if (!match_all && !blk_integrity_is_initialized(template_disk))
1064 continue; /* skip uninitialized profiles */
1065 else if (prev_disk &&
1066 blk_integrity_compare(prev_disk, template_disk) < 0)
1067 goto no_integrity;
1068 prev_disk = template_disk;
1069 }
1070
1071 return template_disk;
1072
1073 no_integrity:
1074 if (prev_disk)
1075 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1076 dm_device_name(t->md),
1077 prev_disk->disk_name,
1078 template_disk->disk_name);
1079 return NULL;
1080 }
1081
1082 /*
1083 * Register the mapped device for blk_integrity support if
1084 * the underlying devices have an integrity profile. But all devices
1085 * may not have matching profiles (checking all devices isn't reliable
1086 * during table load because this table may use other DM device(s) which
1087 * must be resumed before they will have an initialized integity profile).
1088 * Stacked DM devices force a 2 stage integrity profile validation:
1089 * 1 - during load, validate all initialized integrity profiles match
1090 * 2 - during resume, validate all integrity profiles match
1091 */
1092 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1093 {
1094 struct gendisk *template_disk = NULL;
1095
1096 template_disk = dm_table_get_integrity_disk(t, false);
1097 if (!template_disk)
1098 return 0;
1099
1100 if (!blk_integrity_is_initialized(dm_disk(md))) {
1101 t->integrity_supported = 1;
1102 return blk_integrity_register(dm_disk(md), NULL);
1103 }
1104
1105 /*
1106 * If DM device already has an initalized integrity
1107 * profile the new profile should not conflict.
1108 */
1109 if (blk_integrity_is_initialized(template_disk) &&
1110 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1111 DMWARN("%s: conflict with existing integrity profile: "
1112 "%s profile mismatch",
1113 dm_device_name(t->md),
1114 template_disk->disk_name);
1115 return 1;
1116 }
1117
1118 /* Preserve existing initialized integrity profile */
1119 t->integrity_supported = 1;
1120 return 0;
1121 }
1122
1123 /*
1124 * Prepares the table for use by building the indices,
1125 * setting the type, and allocating mempools.
1126 */
1127 int dm_table_complete(struct dm_table *t)
1128 {
1129 int r;
1130
1131 r = dm_table_set_type(t);
1132 if (r) {
1133 DMERR("unable to set table type");
1134 return r;
1135 }
1136
1137 r = dm_table_build_index(t);
1138 if (r) {
1139 DMERR("unable to build btrees");
1140 return r;
1141 }
1142
1143 r = dm_table_prealloc_integrity(t, t->md);
1144 if (r) {
1145 DMERR("could not register integrity profile.");
1146 return r;
1147 }
1148
1149 r = dm_table_alloc_md_mempools(t);
1150 if (r)
1151 DMERR("unable to allocate mempools");
1152
1153 return r;
1154 }
1155
1156 static DEFINE_MUTEX(_event_lock);
1157 void dm_table_event_callback(struct dm_table *t,
1158 void (*fn)(void *), void *context)
1159 {
1160 mutex_lock(&_event_lock);
1161 t->event_fn = fn;
1162 t->event_context = context;
1163 mutex_unlock(&_event_lock);
1164 }
1165
1166 void dm_table_event(struct dm_table *t)
1167 {
1168 /*
1169 * You can no longer call dm_table_event() from interrupt
1170 * context, use a bottom half instead.
1171 */
1172 BUG_ON(in_interrupt());
1173
1174 mutex_lock(&_event_lock);
1175 if (t->event_fn)
1176 t->event_fn(t->event_context);
1177 mutex_unlock(&_event_lock);
1178 }
1179 EXPORT_SYMBOL(dm_table_event);
1180
1181 sector_t dm_table_get_size(struct dm_table *t)
1182 {
1183 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1184 }
1185 EXPORT_SYMBOL(dm_table_get_size);
1186
1187 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1188 {
1189 if (index >= t->num_targets)
1190 return NULL;
1191
1192 return t->targets + index;
1193 }
1194
1195 /*
1196 * Search the btree for the correct target.
1197 *
1198 * Caller should check returned pointer with dm_target_is_valid()
1199 * to trap I/O beyond end of device.
1200 */
1201 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1202 {
1203 unsigned int l, n = 0, k = 0;
1204 sector_t *node;
1205
1206 for (l = 0; l < t->depth; l++) {
1207 n = get_child(n, k);
1208 node = get_node(t, l, n);
1209
1210 for (k = 0; k < KEYS_PER_NODE; k++)
1211 if (node[k] >= sector)
1212 break;
1213 }
1214
1215 return &t->targets[(KEYS_PER_NODE * n) + k];
1216 }
1217
1218 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1219 sector_t start, sector_t len, void *data)
1220 {
1221 unsigned *num_devices = data;
1222
1223 (*num_devices)++;
1224
1225 return 0;
1226 }
1227
1228 /*
1229 * Check whether a table has no data devices attached using each
1230 * target's iterate_devices method.
1231 * Returns false if the result is unknown because a target doesn't
1232 * support iterate_devices.
1233 */
1234 bool dm_table_has_no_data_devices(struct dm_table *table)
1235 {
1236 struct dm_target *uninitialized_var(ti);
1237 unsigned i = 0, num_devices = 0;
1238
1239 while (i < dm_table_get_num_targets(table)) {
1240 ti = dm_table_get_target(table, i++);
1241
1242 if (!ti->type->iterate_devices)
1243 return false;
1244
1245 ti->type->iterate_devices(ti, count_device, &num_devices);
1246 if (num_devices)
1247 return false;
1248 }
1249
1250 return true;
1251 }
1252
1253 /*
1254 * Establish the new table's queue_limits and validate them.
1255 */
1256 int dm_calculate_queue_limits(struct dm_table *table,
1257 struct queue_limits *limits)
1258 {
1259 struct dm_target *uninitialized_var(ti);
1260 struct queue_limits ti_limits;
1261 unsigned i = 0;
1262
1263 blk_set_stacking_limits(limits);
1264
1265 while (i < dm_table_get_num_targets(table)) {
1266 blk_set_stacking_limits(&ti_limits);
1267
1268 ti = dm_table_get_target(table, i++);
1269
1270 if (!ti->type->iterate_devices)
1271 goto combine_limits;
1272
1273 /*
1274 * Combine queue limits of all the devices this target uses.
1275 */
1276 ti->type->iterate_devices(ti, dm_set_device_limits,
1277 &ti_limits);
1278
1279 /* Set I/O hints portion of queue limits */
1280 if (ti->type->io_hints)
1281 ti->type->io_hints(ti, &ti_limits);
1282
1283 /*
1284 * Check each device area is consistent with the target's
1285 * overall queue limits.
1286 */
1287 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1288 &ti_limits))
1289 return -EINVAL;
1290
1291 combine_limits:
1292 /*
1293 * Merge this target's queue limits into the overall limits
1294 * for the table.
1295 */
1296 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1297 DMWARN("%s: adding target device "
1298 "(start sect %llu len %llu) "
1299 "caused an alignment inconsistency",
1300 dm_device_name(table->md),
1301 (unsigned long long) ti->begin,
1302 (unsigned long long) ti->len);
1303 }
1304
1305 return validate_hardware_logical_block_alignment(table, limits);
1306 }
1307
1308 /*
1309 * Set the integrity profile for this device if all devices used have
1310 * matching profiles. We're quite deep in the resume path but still
1311 * don't know if all devices (particularly DM devices this device
1312 * may be stacked on) have matching profiles. Even if the profiles
1313 * don't match we have no way to fail (to resume) at this point.
1314 */
1315 static void dm_table_set_integrity(struct dm_table *t)
1316 {
1317 struct gendisk *template_disk = NULL;
1318
1319 if (!blk_get_integrity(dm_disk(t->md)))
1320 return;
1321
1322 template_disk = dm_table_get_integrity_disk(t, true);
1323 if (template_disk)
1324 blk_integrity_register(dm_disk(t->md),
1325 blk_get_integrity(template_disk));
1326 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1327 DMWARN("%s: device no longer has a valid integrity profile",
1328 dm_device_name(t->md));
1329 else
1330 DMWARN("%s: unable to establish an integrity profile",
1331 dm_device_name(t->md));
1332 }
1333
1334 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1335 sector_t start, sector_t len, void *data)
1336 {
1337 unsigned flush = (*(unsigned *)data);
1338 struct request_queue *q = bdev_get_queue(dev->bdev);
1339
1340 return q && (q->flush_flags & flush);
1341 }
1342
1343 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1344 {
1345 struct dm_target *ti;
1346 unsigned i = 0;
1347
1348 /*
1349 * Require at least one underlying device to support flushes.
1350 * t->devices includes internal dm devices such as mirror logs
1351 * so we need to use iterate_devices here, which targets
1352 * supporting flushes must provide.
1353 */
1354 while (i < dm_table_get_num_targets(t)) {
1355 ti = dm_table_get_target(t, i++);
1356
1357 if (!ti->num_flush_bios)
1358 continue;
1359
1360 if (ti->flush_supported)
1361 return 1;
1362
1363 if (ti->type->iterate_devices &&
1364 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1365 return 1;
1366 }
1367
1368 return 0;
1369 }
1370
1371 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1372 {
1373 struct dm_target *ti;
1374 unsigned i = 0;
1375
1376 /* Ensure that all targets supports discard_zeroes_data. */
1377 while (i < dm_table_get_num_targets(t)) {
1378 ti = dm_table_get_target(t, i++);
1379
1380 if (ti->discard_zeroes_data_unsupported)
1381 return 0;
1382 }
1383
1384 return 1;
1385 }
1386
1387 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1388 sector_t start, sector_t len, void *data)
1389 {
1390 struct request_queue *q = bdev_get_queue(dev->bdev);
1391
1392 return q && blk_queue_nonrot(q);
1393 }
1394
1395 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1396 sector_t start, sector_t len, void *data)
1397 {
1398 struct request_queue *q = bdev_get_queue(dev->bdev);
1399
1400 return q && !blk_queue_add_random(q);
1401 }
1402
1403 static bool dm_table_all_devices_attribute(struct dm_table *t,
1404 iterate_devices_callout_fn func)
1405 {
1406 struct dm_target *ti;
1407 unsigned i = 0;
1408
1409 while (i < dm_table_get_num_targets(t)) {
1410 ti = dm_table_get_target(t, i++);
1411
1412 if (!ti->type->iterate_devices ||
1413 !ti->type->iterate_devices(ti, func, NULL))
1414 return 0;
1415 }
1416
1417 return 1;
1418 }
1419
1420 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1421 sector_t start, sector_t len, void *data)
1422 {
1423 struct request_queue *q = bdev_get_queue(dev->bdev);
1424
1425 return q && !q->limits.max_write_same_sectors;
1426 }
1427
1428 static bool dm_table_supports_write_same(struct dm_table *t)
1429 {
1430 struct dm_target *ti;
1431 unsigned i = 0;
1432
1433 while (i < dm_table_get_num_targets(t)) {
1434 ti = dm_table_get_target(t, i++);
1435
1436 if (!ti->num_write_same_bios)
1437 return false;
1438
1439 if (!ti->type->iterate_devices ||
1440 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1441 return false;
1442 }
1443
1444 return true;
1445 }
1446
1447 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1448 struct queue_limits *limits)
1449 {
1450 unsigned flush = 0;
1451
1452 /*
1453 * Copy table's limits to the DM device's request_queue
1454 */
1455 q->limits = *limits;
1456
1457 if (!dm_table_supports_discards(t))
1458 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1459 else
1460 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1461
1462 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1463 flush |= REQ_FLUSH;
1464 if (dm_table_supports_flush(t, REQ_FUA))
1465 flush |= REQ_FUA;
1466 }
1467 blk_queue_flush(q, flush);
1468
1469 if (!dm_table_discard_zeroes_data(t))
1470 q->limits.discard_zeroes_data = 0;
1471
1472 /* Ensure that all underlying devices are non-rotational. */
1473 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1474 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1475 else
1476 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1477
1478 if (!dm_table_supports_write_same(t))
1479 q->limits.max_write_same_sectors = 0;
1480
1481 dm_table_set_integrity(t);
1482
1483 /*
1484 * Determine whether or not this queue's I/O timings contribute
1485 * to the entropy pool, Only request-based targets use this.
1486 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1487 * have it set.
1488 */
1489 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1490 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1491
1492 /*
1493 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1494 * visible to other CPUs because, once the flag is set, incoming bios
1495 * are processed by request-based dm, which refers to the queue
1496 * settings.
1497 * Until the flag set, bios are passed to bio-based dm and queued to
1498 * md->deferred where queue settings are not needed yet.
1499 * Those bios are passed to request-based dm at the resume time.
1500 */
1501 smp_mb();
1502 if (dm_table_request_based(t))
1503 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1504 }
1505
1506 unsigned int dm_table_get_num_targets(struct dm_table *t)
1507 {
1508 return t->num_targets;
1509 }
1510
1511 struct list_head *dm_table_get_devices(struct dm_table *t)
1512 {
1513 return &t->devices;
1514 }
1515
1516 fmode_t dm_table_get_mode(struct dm_table *t)
1517 {
1518 return t->mode;
1519 }
1520 EXPORT_SYMBOL(dm_table_get_mode);
1521
1522 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1523 {
1524 int i = t->num_targets;
1525 struct dm_target *ti = t->targets;
1526
1527 while (i--) {
1528 if (postsuspend) {
1529 if (ti->type->postsuspend)
1530 ti->type->postsuspend(ti);
1531 } else if (ti->type->presuspend)
1532 ti->type->presuspend(ti);
1533
1534 ti++;
1535 }
1536 }
1537
1538 void dm_table_presuspend_targets(struct dm_table *t)
1539 {
1540 if (!t)
1541 return;
1542
1543 suspend_targets(t, 0);
1544 }
1545
1546 void dm_table_postsuspend_targets(struct dm_table *t)
1547 {
1548 if (!t)
1549 return;
1550
1551 suspend_targets(t, 1);
1552 }
1553
1554 int dm_table_resume_targets(struct dm_table *t)
1555 {
1556 int i, r = 0;
1557
1558 for (i = 0; i < t->num_targets; i++) {
1559 struct dm_target *ti = t->targets + i;
1560
1561 if (!ti->type->preresume)
1562 continue;
1563
1564 r = ti->type->preresume(ti);
1565 if (r)
1566 return r;
1567 }
1568
1569 for (i = 0; i < t->num_targets; i++) {
1570 struct dm_target *ti = t->targets + i;
1571
1572 if (ti->type->resume)
1573 ti->type->resume(ti);
1574 }
1575
1576 return 0;
1577 }
1578
1579 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1580 {
1581 list_add(&cb->list, &t->target_callbacks);
1582 }
1583 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1584
1585 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1586 {
1587 struct dm_dev_internal *dd;
1588 struct list_head *devices = dm_table_get_devices(t);
1589 struct dm_target_callbacks *cb;
1590 int r = 0;
1591
1592 list_for_each_entry(dd, devices, list) {
1593 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1594 char b[BDEVNAME_SIZE];
1595
1596 if (likely(q))
1597 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1598 else
1599 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1600 dm_device_name(t->md),
1601 bdevname(dd->dm_dev.bdev, b));
1602 }
1603
1604 list_for_each_entry(cb, &t->target_callbacks, list)
1605 if (cb->congested_fn)
1606 r |= cb->congested_fn(cb, bdi_bits);
1607
1608 return r;
1609 }
1610
1611 int dm_table_any_busy_target(struct dm_table *t)
1612 {
1613 unsigned i;
1614 struct dm_target *ti;
1615
1616 for (i = 0; i < t->num_targets; i++) {
1617 ti = t->targets + i;
1618 if (ti->type->busy && ti->type->busy(ti))
1619 return 1;
1620 }
1621
1622 return 0;
1623 }
1624
1625 struct mapped_device *dm_table_get_md(struct dm_table *t)
1626 {
1627 return t->md;
1628 }
1629 EXPORT_SYMBOL(dm_table_get_md);
1630
1631 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1632 sector_t start, sector_t len, void *data)
1633 {
1634 struct request_queue *q = bdev_get_queue(dev->bdev);
1635
1636 return q && blk_queue_discard(q);
1637 }
1638
1639 bool dm_table_supports_discards(struct dm_table *t)
1640 {
1641 struct dm_target *ti;
1642 unsigned i = 0;
1643
1644 /*
1645 * Unless any target used by the table set discards_supported,
1646 * require at least one underlying device to support discards.
1647 * t->devices includes internal dm devices such as mirror logs
1648 * so we need to use iterate_devices here, which targets
1649 * supporting discard selectively must provide.
1650 */
1651 while (i < dm_table_get_num_targets(t)) {
1652 ti = dm_table_get_target(t, i++);
1653
1654 if (!ti->num_discard_bios)
1655 continue;
1656
1657 if (ti->discards_supported)
1658 return 1;
1659
1660 if (ti->type->iterate_devices &&
1661 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1662 return 1;
1663 }
1664
1665 return 0;
1666 }
This page took 0.128818 seconds and 5 git commands to generate.