Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[deliverable/linux.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
19
20 #define DM_MSG_PREFIX "table"
21
22 #define MAX_DEPTH 16
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
26
27 struct dm_table {
28 struct mapped_device *md;
29 atomic_t holders;
30
31 /* btree table */
32 unsigned int depth;
33 unsigned int counts[MAX_DEPTH]; /* in nodes */
34 sector_t *index[MAX_DEPTH];
35
36 unsigned int num_targets;
37 unsigned int num_allocated;
38 sector_t *highs;
39 struct dm_target *targets;
40
41 /*
42 * Indicates the rw permissions for the new logical
43 * device. This should be a combination of FMODE_READ
44 * and FMODE_WRITE.
45 */
46 int mode;
47
48 /* a list of devices used by this table */
49 struct list_head devices;
50
51 /*
52 * These are optimistic limits taken from all the
53 * targets, some targets will need smaller limits.
54 */
55 struct io_restrictions limits;
56
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
60 };
61
62 /*
63 * Similar to ceiling(log_size(n))
64 */
65 static unsigned int int_log(unsigned int n, unsigned int base)
66 {
67 int result = 0;
68
69 while (n > 1) {
70 n = dm_div_up(n, base);
71 result++;
72 }
73
74 return result;
75 }
76
77 /*
78 * Returns the minimum that is _not_ zero, unless both are zero.
79 */
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
81
82 /*
83 * Combine two io_restrictions, always taking the lower value.
84 */
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 struct io_restrictions *rhs)
87 {
88 lhs->max_sectors =
89 min_not_zero(lhs->max_sectors, rhs->max_sectors);
90
91 lhs->max_phys_segments =
92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
93
94 lhs->max_hw_segments =
95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
96
97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
98
99 lhs->max_segment_size =
100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
101
102 lhs->max_hw_sectors =
103 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
104
105 lhs->seg_boundary_mask =
106 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
107
108 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
109
110 lhs->no_cluster |= rhs->no_cluster;
111 }
112
113 /*
114 * Calculate the index of the child node of the n'th node k'th key.
115 */
116 static inline unsigned int get_child(unsigned int n, unsigned int k)
117 {
118 return (n * CHILDREN_PER_NODE) + k;
119 }
120
121 /*
122 * Return the n'th node of level l from table t.
123 */
124 static inline sector_t *get_node(struct dm_table *t,
125 unsigned int l, unsigned int n)
126 {
127 return t->index[l] + (n * KEYS_PER_NODE);
128 }
129
130 /*
131 * Return the highest key that you could lookup from the n'th
132 * node on level l of the btree.
133 */
134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
135 {
136 for (; l < t->depth - 1; l++)
137 n = get_child(n, CHILDREN_PER_NODE - 1);
138
139 if (n >= t->counts[l])
140 return (sector_t) - 1;
141
142 return get_node(t, l, n)[KEYS_PER_NODE - 1];
143 }
144
145 /*
146 * Fills in a level of the btree based on the highs of the level
147 * below it.
148 */
149 static int setup_btree_index(unsigned int l, struct dm_table *t)
150 {
151 unsigned int n, k;
152 sector_t *node;
153
154 for (n = 0U; n < t->counts[l]; n++) {
155 node = get_node(t, l, n);
156
157 for (k = 0U; k < KEYS_PER_NODE; k++)
158 node[k] = high(t, l + 1, get_child(n, k));
159 }
160
161 return 0;
162 }
163
164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
165 {
166 unsigned long size;
167 void *addr;
168
169 /*
170 * Check that we're not going to overflow.
171 */
172 if (nmemb > (ULONG_MAX / elem_size))
173 return NULL;
174
175 size = nmemb * elem_size;
176 addr = vmalloc(size);
177 if (addr)
178 memset(addr, 0, size);
179
180 return addr;
181 }
182
183 /*
184 * highs, and targets are managed as dynamic arrays during a
185 * table load.
186 */
187 static int alloc_targets(struct dm_table *t, unsigned int num)
188 {
189 sector_t *n_highs;
190 struct dm_target *n_targets;
191 int n = t->num_targets;
192
193 /*
194 * Allocate both the target array and offset array at once.
195 * Append an empty entry to catch sectors beyond the end of
196 * the device.
197 */
198 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
199 sizeof(sector_t));
200 if (!n_highs)
201 return -ENOMEM;
202
203 n_targets = (struct dm_target *) (n_highs + num);
204
205 if (n) {
206 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
207 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
208 }
209
210 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
211 vfree(t->highs);
212
213 t->num_allocated = num;
214 t->highs = n_highs;
215 t->targets = n_targets;
216
217 return 0;
218 }
219
220 int dm_table_create(struct dm_table **result, int mode,
221 unsigned num_targets, struct mapped_device *md)
222 {
223 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
224
225 if (!t)
226 return -ENOMEM;
227
228 INIT_LIST_HEAD(&t->devices);
229 atomic_set(&t->holders, 1);
230
231 if (!num_targets)
232 num_targets = KEYS_PER_NODE;
233
234 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
235
236 if (alloc_targets(t, num_targets)) {
237 kfree(t);
238 t = NULL;
239 return -ENOMEM;
240 }
241
242 t->mode = mode;
243 t->md = md;
244 *result = t;
245 return 0;
246 }
247
248 static void free_devices(struct list_head *devices)
249 {
250 struct list_head *tmp, *next;
251
252 list_for_each_safe(tmp, next, devices) {
253 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
254 kfree(dd);
255 }
256 }
257
258 static void table_destroy(struct dm_table *t)
259 {
260 unsigned int i;
261
262 /* free the indexes (see dm_table_complete) */
263 if (t->depth >= 2)
264 vfree(t->index[t->depth - 2]);
265
266 /* free the targets */
267 for (i = 0; i < t->num_targets; i++) {
268 struct dm_target *tgt = t->targets + i;
269
270 if (tgt->type->dtr)
271 tgt->type->dtr(tgt);
272
273 dm_put_target_type(tgt->type);
274 }
275
276 vfree(t->highs);
277
278 /* free the device list */
279 if (t->devices.next != &t->devices) {
280 DMWARN("devices still present during destroy: "
281 "dm_table_remove_device calls missing");
282
283 free_devices(&t->devices);
284 }
285
286 kfree(t);
287 }
288
289 void dm_table_get(struct dm_table *t)
290 {
291 atomic_inc(&t->holders);
292 }
293
294 void dm_table_put(struct dm_table *t)
295 {
296 if (!t)
297 return;
298
299 if (atomic_dec_and_test(&t->holders))
300 table_destroy(t);
301 }
302
303 /*
304 * Checks to see if we need to extend highs or targets.
305 */
306 static inline int check_space(struct dm_table *t)
307 {
308 if (t->num_targets >= t->num_allocated)
309 return alloc_targets(t, t->num_allocated * 2);
310
311 return 0;
312 }
313
314 /*
315 * Convert a device path to a dev_t.
316 */
317 static int lookup_device(const char *path, dev_t *dev)
318 {
319 int r;
320 struct nameidata nd;
321 struct inode *inode;
322
323 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
324 return r;
325
326 inode = nd.path.dentry->d_inode;
327 if (!inode) {
328 r = -ENOENT;
329 goto out;
330 }
331
332 if (!S_ISBLK(inode->i_mode)) {
333 r = -ENOTBLK;
334 goto out;
335 }
336
337 *dev = inode->i_rdev;
338
339 out:
340 path_put(&nd.path);
341 return r;
342 }
343
344 /*
345 * See if we've already got a device in the list.
346 */
347 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
348 {
349 struct dm_dev *dd;
350
351 list_for_each_entry (dd, l, list)
352 if (dd->bdev->bd_dev == dev)
353 return dd;
354
355 return NULL;
356 }
357
358 /*
359 * Open a device so we can use it as a map destination.
360 */
361 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
362 {
363 static char *_claim_ptr = "I belong to device-mapper";
364 struct block_device *bdev;
365
366 int r;
367
368 BUG_ON(d->bdev);
369
370 bdev = open_by_devnum(dev, d->mode);
371 if (IS_ERR(bdev))
372 return PTR_ERR(bdev);
373 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
374 if (r)
375 blkdev_put(bdev);
376 else
377 d->bdev = bdev;
378 return r;
379 }
380
381 /*
382 * Close a device that we've been using.
383 */
384 static void close_dev(struct dm_dev *d, struct mapped_device *md)
385 {
386 if (!d->bdev)
387 return;
388
389 bd_release_from_disk(d->bdev, dm_disk(md));
390 blkdev_put(d->bdev);
391 d->bdev = NULL;
392 }
393
394 /*
395 * If possible, this checks an area of a destination device is valid.
396 */
397 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
398 {
399 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
400
401 if (!dev_size)
402 return 1;
403
404 return ((start < dev_size) && (len <= (dev_size - start)));
405 }
406
407 /*
408 * This upgrades the mode on an already open dm_dev. Being
409 * careful to leave things as they were if we fail to reopen the
410 * device.
411 */
412 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
413 {
414 int r;
415 struct dm_dev dd_copy;
416 dev_t dev = dd->bdev->bd_dev;
417
418 dd_copy = *dd;
419
420 dd->mode |= new_mode;
421 dd->bdev = NULL;
422 r = open_dev(dd, dev, md);
423 if (!r)
424 close_dev(&dd_copy, md);
425 else
426 *dd = dd_copy;
427
428 return r;
429 }
430
431 /*
432 * Add a device to the list, or just increment the usage count if
433 * it's already present.
434 */
435 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
436 const char *path, sector_t start, sector_t len,
437 int mode, struct dm_dev **result)
438 {
439 int r;
440 dev_t uninitialized_var(dev);
441 struct dm_dev *dd;
442 unsigned int major, minor;
443
444 BUG_ON(!t);
445
446 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
447 /* Extract the major/minor numbers */
448 dev = MKDEV(major, minor);
449 if (MAJOR(dev) != major || MINOR(dev) != minor)
450 return -EOVERFLOW;
451 } else {
452 /* convert the path to a device */
453 if ((r = lookup_device(path, &dev)))
454 return r;
455 }
456
457 dd = find_device(&t->devices, dev);
458 if (!dd) {
459 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
460 if (!dd)
461 return -ENOMEM;
462
463 dd->mode = mode;
464 dd->bdev = NULL;
465
466 if ((r = open_dev(dd, dev, t->md))) {
467 kfree(dd);
468 return r;
469 }
470
471 format_dev_t(dd->name, dev);
472
473 atomic_set(&dd->count, 0);
474 list_add(&dd->list, &t->devices);
475
476 } else if (dd->mode != (mode | dd->mode)) {
477 r = upgrade_mode(dd, mode, t->md);
478 if (r)
479 return r;
480 }
481 atomic_inc(&dd->count);
482
483 if (!check_device_area(dd, start, len)) {
484 DMWARN("device %s too small for target", path);
485 dm_put_device(ti, dd);
486 return -EINVAL;
487 }
488
489 *result = dd;
490
491 return 0;
492 }
493
494 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
495 {
496 struct request_queue *q = bdev_get_queue(bdev);
497 struct io_restrictions *rs = &ti->limits;
498
499 /*
500 * Combine the device limits low.
501 *
502 * FIXME: if we move an io_restriction struct
503 * into q this would just be a call to
504 * combine_restrictions_low()
505 */
506 rs->max_sectors =
507 min_not_zero(rs->max_sectors, q->max_sectors);
508
509 /*
510 * Check if merge fn is supported.
511 * If not we'll force DM to use PAGE_SIZE or
512 * smaller I/O, just to be safe.
513 */
514
515 if (q->merge_bvec_fn && !ti->type->merge)
516 rs->max_sectors =
517 min_not_zero(rs->max_sectors,
518 (unsigned int) (PAGE_SIZE >> 9));
519
520 rs->max_phys_segments =
521 min_not_zero(rs->max_phys_segments,
522 q->max_phys_segments);
523
524 rs->max_hw_segments =
525 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
526
527 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
528
529 rs->max_segment_size =
530 min_not_zero(rs->max_segment_size, q->max_segment_size);
531
532 rs->max_hw_sectors =
533 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
534
535 rs->seg_boundary_mask =
536 min_not_zero(rs->seg_boundary_mask,
537 q->seg_boundary_mask);
538
539 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
540
541 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
542 }
543 EXPORT_SYMBOL_GPL(dm_set_device_limits);
544
545 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
546 sector_t len, int mode, struct dm_dev **result)
547 {
548 int r = __table_get_device(ti->table, ti, path,
549 start, len, mode, result);
550
551 if (!r)
552 dm_set_device_limits(ti, (*result)->bdev);
553
554 return r;
555 }
556
557 /*
558 * Decrement a devices use count and remove it if necessary.
559 */
560 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
561 {
562 if (atomic_dec_and_test(&dd->count)) {
563 close_dev(dd, ti->table->md);
564 list_del(&dd->list);
565 kfree(dd);
566 }
567 }
568
569 /*
570 * Checks to see if the target joins onto the end of the table.
571 */
572 static int adjoin(struct dm_table *table, struct dm_target *ti)
573 {
574 struct dm_target *prev;
575
576 if (!table->num_targets)
577 return !ti->begin;
578
579 prev = &table->targets[table->num_targets - 1];
580 return (ti->begin == (prev->begin + prev->len));
581 }
582
583 /*
584 * Used to dynamically allocate the arg array.
585 */
586 static char **realloc_argv(unsigned *array_size, char **old_argv)
587 {
588 char **argv;
589 unsigned new_size;
590
591 new_size = *array_size ? *array_size * 2 : 64;
592 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
593 if (argv) {
594 memcpy(argv, old_argv, *array_size * sizeof(*argv));
595 *array_size = new_size;
596 }
597
598 kfree(old_argv);
599 return argv;
600 }
601
602 /*
603 * Destructively splits up the argument list to pass to ctr.
604 */
605 int dm_split_args(int *argc, char ***argvp, char *input)
606 {
607 char *start, *end = input, *out, **argv = NULL;
608 unsigned array_size = 0;
609
610 *argc = 0;
611
612 if (!input) {
613 *argvp = NULL;
614 return 0;
615 }
616
617 argv = realloc_argv(&array_size, argv);
618 if (!argv)
619 return -ENOMEM;
620
621 while (1) {
622 start = end;
623
624 /* Skip whitespace */
625 while (*start && isspace(*start))
626 start++;
627
628 if (!*start)
629 break; /* success, we hit the end */
630
631 /* 'out' is used to remove any back-quotes */
632 end = out = start;
633 while (*end) {
634 /* Everything apart from '\0' can be quoted */
635 if (*end == '\\' && *(end + 1)) {
636 *out++ = *(end + 1);
637 end += 2;
638 continue;
639 }
640
641 if (isspace(*end))
642 break; /* end of token */
643
644 *out++ = *end++;
645 }
646
647 /* have we already filled the array ? */
648 if ((*argc + 1) > array_size) {
649 argv = realloc_argv(&array_size, argv);
650 if (!argv)
651 return -ENOMEM;
652 }
653
654 /* we know this is whitespace */
655 if (*end)
656 end++;
657
658 /* terminate the string and put it in the array */
659 *out = '\0';
660 argv[*argc] = start;
661 (*argc)++;
662 }
663
664 *argvp = argv;
665 return 0;
666 }
667
668 static void check_for_valid_limits(struct io_restrictions *rs)
669 {
670 if (!rs->max_sectors)
671 rs->max_sectors = SAFE_MAX_SECTORS;
672 if (!rs->max_hw_sectors)
673 rs->max_hw_sectors = SAFE_MAX_SECTORS;
674 if (!rs->max_phys_segments)
675 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
676 if (!rs->max_hw_segments)
677 rs->max_hw_segments = MAX_HW_SEGMENTS;
678 if (!rs->hardsect_size)
679 rs->hardsect_size = 1 << SECTOR_SHIFT;
680 if (!rs->max_segment_size)
681 rs->max_segment_size = MAX_SEGMENT_SIZE;
682 if (!rs->seg_boundary_mask)
683 rs->seg_boundary_mask = -1;
684 if (!rs->bounce_pfn)
685 rs->bounce_pfn = -1;
686 }
687
688 int dm_table_add_target(struct dm_table *t, const char *type,
689 sector_t start, sector_t len, char *params)
690 {
691 int r = -EINVAL, argc;
692 char **argv;
693 struct dm_target *tgt;
694
695 if ((r = check_space(t)))
696 return r;
697
698 tgt = t->targets + t->num_targets;
699 memset(tgt, 0, sizeof(*tgt));
700
701 if (!len) {
702 DMERR("%s: zero-length target", dm_device_name(t->md));
703 return -EINVAL;
704 }
705
706 tgt->type = dm_get_target_type(type);
707 if (!tgt->type) {
708 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
709 type);
710 return -EINVAL;
711 }
712
713 tgt->table = t;
714 tgt->begin = start;
715 tgt->len = len;
716 tgt->error = "Unknown error";
717
718 /*
719 * Does this target adjoin the previous one ?
720 */
721 if (!adjoin(t, tgt)) {
722 tgt->error = "Gap in table";
723 r = -EINVAL;
724 goto bad;
725 }
726
727 r = dm_split_args(&argc, &argv, params);
728 if (r) {
729 tgt->error = "couldn't split parameters (insufficient memory)";
730 goto bad;
731 }
732
733 r = tgt->type->ctr(tgt, argc, argv);
734 kfree(argv);
735 if (r)
736 goto bad;
737
738 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
739
740 /* FIXME: the plan is to combine high here and then have
741 * the merge fn apply the target level restrictions. */
742 combine_restrictions_low(&t->limits, &tgt->limits);
743 return 0;
744
745 bad:
746 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
747 dm_put_target_type(tgt->type);
748 return r;
749 }
750
751 static int setup_indexes(struct dm_table *t)
752 {
753 int i;
754 unsigned int total = 0;
755 sector_t *indexes;
756
757 /* allocate the space for *all* the indexes */
758 for (i = t->depth - 2; i >= 0; i--) {
759 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
760 total += t->counts[i];
761 }
762
763 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
764 if (!indexes)
765 return -ENOMEM;
766
767 /* set up internal nodes, bottom-up */
768 for (i = t->depth - 2; i >= 0; i--) {
769 t->index[i] = indexes;
770 indexes += (KEYS_PER_NODE * t->counts[i]);
771 setup_btree_index(i, t);
772 }
773
774 return 0;
775 }
776
777 /*
778 * Builds the btree to index the map.
779 */
780 int dm_table_complete(struct dm_table *t)
781 {
782 int r = 0;
783 unsigned int leaf_nodes;
784
785 check_for_valid_limits(&t->limits);
786
787 /* how many indexes will the btree have ? */
788 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
789 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
790
791 /* leaf layer has already been set up */
792 t->counts[t->depth - 1] = leaf_nodes;
793 t->index[t->depth - 1] = t->highs;
794
795 if (t->depth >= 2)
796 r = setup_indexes(t);
797
798 return r;
799 }
800
801 static DEFINE_MUTEX(_event_lock);
802 void dm_table_event_callback(struct dm_table *t,
803 void (*fn)(void *), void *context)
804 {
805 mutex_lock(&_event_lock);
806 t->event_fn = fn;
807 t->event_context = context;
808 mutex_unlock(&_event_lock);
809 }
810
811 void dm_table_event(struct dm_table *t)
812 {
813 /*
814 * You can no longer call dm_table_event() from interrupt
815 * context, use a bottom half instead.
816 */
817 BUG_ON(in_interrupt());
818
819 mutex_lock(&_event_lock);
820 if (t->event_fn)
821 t->event_fn(t->event_context);
822 mutex_unlock(&_event_lock);
823 }
824
825 sector_t dm_table_get_size(struct dm_table *t)
826 {
827 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
828 }
829
830 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
831 {
832 if (index >= t->num_targets)
833 return NULL;
834
835 return t->targets + index;
836 }
837
838 /*
839 * Search the btree for the correct target.
840 *
841 * Caller should check returned pointer with dm_target_is_valid()
842 * to trap I/O beyond end of device.
843 */
844 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
845 {
846 unsigned int l, n = 0, k = 0;
847 sector_t *node;
848
849 for (l = 0; l < t->depth; l++) {
850 n = get_child(n, k);
851 node = get_node(t, l, n);
852
853 for (k = 0; k < KEYS_PER_NODE; k++)
854 if (node[k] >= sector)
855 break;
856 }
857
858 return &t->targets[(KEYS_PER_NODE * n) + k];
859 }
860
861 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
862 {
863 /*
864 * Make sure we obey the optimistic sub devices
865 * restrictions.
866 */
867 blk_queue_max_sectors(q, t->limits.max_sectors);
868 q->max_phys_segments = t->limits.max_phys_segments;
869 q->max_hw_segments = t->limits.max_hw_segments;
870 q->hardsect_size = t->limits.hardsect_size;
871 q->max_segment_size = t->limits.max_segment_size;
872 q->max_hw_sectors = t->limits.max_hw_sectors;
873 q->seg_boundary_mask = t->limits.seg_boundary_mask;
874 q->bounce_pfn = t->limits.bounce_pfn;
875
876 if (t->limits.no_cluster)
877 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
878 else
879 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
880
881 }
882
883 unsigned int dm_table_get_num_targets(struct dm_table *t)
884 {
885 return t->num_targets;
886 }
887
888 struct list_head *dm_table_get_devices(struct dm_table *t)
889 {
890 return &t->devices;
891 }
892
893 int dm_table_get_mode(struct dm_table *t)
894 {
895 return t->mode;
896 }
897
898 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
899 {
900 int i = t->num_targets;
901 struct dm_target *ti = t->targets;
902
903 while (i--) {
904 if (postsuspend) {
905 if (ti->type->postsuspend)
906 ti->type->postsuspend(ti);
907 } else if (ti->type->presuspend)
908 ti->type->presuspend(ti);
909
910 ti++;
911 }
912 }
913
914 void dm_table_presuspend_targets(struct dm_table *t)
915 {
916 if (!t)
917 return;
918
919 suspend_targets(t, 0);
920 }
921
922 void dm_table_postsuspend_targets(struct dm_table *t)
923 {
924 if (!t)
925 return;
926
927 suspend_targets(t, 1);
928 }
929
930 int dm_table_resume_targets(struct dm_table *t)
931 {
932 int i, r = 0;
933
934 for (i = 0; i < t->num_targets; i++) {
935 struct dm_target *ti = t->targets + i;
936
937 if (!ti->type->preresume)
938 continue;
939
940 r = ti->type->preresume(ti);
941 if (r)
942 return r;
943 }
944
945 for (i = 0; i < t->num_targets; i++) {
946 struct dm_target *ti = t->targets + i;
947
948 if (ti->type->resume)
949 ti->type->resume(ti);
950 }
951
952 return 0;
953 }
954
955 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
956 {
957 struct dm_dev *dd;
958 struct list_head *devices = dm_table_get_devices(t);
959 int r = 0;
960
961 list_for_each_entry(dd, devices, list) {
962 struct request_queue *q = bdev_get_queue(dd->bdev);
963 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
964 }
965
966 return r;
967 }
968
969 void dm_table_unplug_all(struct dm_table *t)
970 {
971 struct dm_dev *dd;
972 struct list_head *devices = dm_table_get_devices(t);
973
974 list_for_each_entry(dd, devices, list) {
975 struct request_queue *q = bdev_get_queue(dd->bdev);
976
977 blk_unplug(q);
978 }
979 }
980
981 struct mapped_device *dm_table_get_md(struct dm_table *t)
982 {
983 dm_get(t->md);
984
985 return t->md;
986 }
987
988 EXPORT_SYMBOL(dm_vcalloc);
989 EXPORT_SYMBOL(dm_get_device);
990 EXPORT_SYMBOL(dm_put_device);
991 EXPORT_SYMBOL(dm_table_event);
992 EXPORT_SYMBOL(dm_table_get_size);
993 EXPORT_SYMBOL(dm_table_get_mode);
994 EXPORT_SYMBOL(dm_table_get_md);
995 EXPORT_SYMBOL(dm_table_put);
996 EXPORT_SYMBOL(dm_table_get);
997 EXPORT_SYMBOL(dm_table_unplug_all);
This page took 0.051448 seconds and 5 git commands to generate.