drm/connector: store tile information from displayid (v3)
[deliverable/linux.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 struct dm_table {
30 struct mapped_device *md;
31 unsigned type;
32
33 /* btree table */
34 unsigned int depth;
35 unsigned int counts[MAX_DEPTH]; /* in nodes */
36 sector_t *index[MAX_DEPTH];
37
38 unsigned int num_targets;
39 unsigned int num_allocated;
40 sector_t *highs;
41 struct dm_target *targets;
42
43 struct target_type *immutable_target_type;
44 unsigned integrity_supported:1;
45 unsigned singleton:1;
46
47 /*
48 * Indicates the rw permissions for the new logical
49 * device. This should be a combination of FMODE_READ
50 * and FMODE_WRITE.
51 */
52 fmode_t mode;
53
54 /* a list of devices used by this table */
55 struct list_head devices;
56
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
60
61 struct dm_md_mempools *mempools;
62
63 struct list_head target_callbacks;
64 };
65
66 /*
67 * Similar to ceiling(log_size(n))
68 */
69 static unsigned int int_log(unsigned int n, unsigned int base)
70 {
71 int result = 0;
72
73 while (n > 1) {
74 n = dm_div_up(n, base);
75 result++;
76 }
77
78 return result;
79 }
80
81 /*
82 * Calculate the index of the child node of the n'th node k'th key.
83 */
84 static inline unsigned int get_child(unsigned int n, unsigned int k)
85 {
86 return (n * CHILDREN_PER_NODE) + k;
87 }
88
89 /*
90 * Return the n'th node of level l from table t.
91 */
92 static inline sector_t *get_node(struct dm_table *t,
93 unsigned int l, unsigned int n)
94 {
95 return t->index[l] + (n * KEYS_PER_NODE);
96 }
97
98 /*
99 * Return the highest key that you could lookup from the n'th
100 * node on level l of the btree.
101 */
102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103 {
104 for (; l < t->depth - 1; l++)
105 n = get_child(n, CHILDREN_PER_NODE - 1);
106
107 if (n >= t->counts[l])
108 return (sector_t) - 1;
109
110 return get_node(t, l, n)[KEYS_PER_NODE - 1];
111 }
112
113 /*
114 * Fills in a level of the btree based on the highs of the level
115 * below it.
116 */
117 static int setup_btree_index(unsigned int l, struct dm_table *t)
118 {
119 unsigned int n, k;
120 sector_t *node;
121
122 for (n = 0U; n < t->counts[l]; n++) {
123 node = get_node(t, l, n);
124
125 for (k = 0U; k < KEYS_PER_NODE; k++)
126 node[k] = high(t, l + 1, get_child(n, k));
127 }
128
129 return 0;
130 }
131
132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133 {
134 unsigned long size;
135 void *addr;
136
137 /*
138 * Check that we're not going to overflow.
139 */
140 if (nmemb > (ULONG_MAX / elem_size))
141 return NULL;
142
143 size = nmemb * elem_size;
144 addr = vzalloc(size);
145
146 return addr;
147 }
148 EXPORT_SYMBOL(dm_vcalloc);
149
150 /*
151 * highs, and targets are managed as dynamic arrays during a
152 * table load.
153 */
154 static int alloc_targets(struct dm_table *t, unsigned int num)
155 {
156 sector_t *n_highs;
157 struct dm_target *n_targets;
158
159 /*
160 * Allocate both the target array and offset array at once.
161 * Append an empty entry to catch sectors beyond the end of
162 * the device.
163 */
164 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
165 sizeof(sector_t));
166 if (!n_highs)
167 return -ENOMEM;
168
169 n_targets = (struct dm_target *) (n_highs + num);
170
171 memset(n_highs, -1, sizeof(*n_highs) * num);
172 vfree(t->highs);
173
174 t->num_allocated = num;
175 t->highs = n_highs;
176 t->targets = n_targets;
177
178 return 0;
179 }
180
181 int dm_table_create(struct dm_table **result, fmode_t mode,
182 unsigned num_targets, struct mapped_device *md)
183 {
184 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
185
186 if (!t)
187 return -ENOMEM;
188
189 INIT_LIST_HEAD(&t->devices);
190 INIT_LIST_HEAD(&t->target_callbacks);
191
192 if (!num_targets)
193 num_targets = KEYS_PER_NODE;
194
195 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196
197 if (!num_targets) {
198 kfree(t);
199 return -ENOMEM;
200 }
201
202 if (alloc_targets(t, num_targets)) {
203 kfree(t);
204 return -ENOMEM;
205 }
206
207 t->mode = mode;
208 t->md = md;
209 *result = t;
210 return 0;
211 }
212
213 static void free_devices(struct list_head *devices, struct mapped_device *md)
214 {
215 struct list_head *tmp, *next;
216
217 list_for_each_safe(tmp, next, devices) {
218 struct dm_dev_internal *dd =
219 list_entry(tmp, struct dm_dev_internal, list);
220 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
221 dm_device_name(md), dd->dm_dev->name);
222 dm_put_table_device(md, dd->dm_dev);
223 kfree(dd);
224 }
225 }
226
227 void dm_table_destroy(struct dm_table *t)
228 {
229 unsigned int i;
230
231 if (!t)
232 return;
233
234 /* free the indexes */
235 if (t->depth >= 2)
236 vfree(t->index[t->depth - 2]);
237
238 /* free the targets */
239 for (i = 0; i < t->num_targets; i++) {
240 struct dm_target *tgt = t->targets + i;
241
242 if (tgt->type->dtr)
243 tgt->type->dtr(tgt);
244
245 dm_put_target_type(tgt->type);
246 }
247
248 vfree(t->highs);
249
250 /* free the device list */
251 free_devices(&t->devices, t->md);
252
253 dm_free_md_mempools(t->mempools);
254
255 kfree(t);
256 }
257
258 /*
259 * See if we've already got a device in the list.
260 */
261 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
262 {
263 struct dm_dev_internal *dd;
264
265 list_for_each_entry (dd, l, list)
266 if (dd->dm_dev->bdev->bd_dev == dev)
267 return dd;
268
269 return NULL;
270 }
271
272 /*
273 * If possible, this checks an area of a destination device is invalid.
274 */
275 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
276 sector_t start, sector_t len, void *data)
277 {
278 struct request_queue *q;
279 struct queue_limits *limits = data;
280 struct block_device *bdev = dev->bdev;
281 sector_t dev_size =
282 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
283 unsigned short logical_block_size_sectors =
284 limits->logical_block_size >> SECTOR_SHIFT;
285 char b[BDEVNAME_SIZE];
286
287 /*
288 * Some devices exist without request functions,
289 * such as loop devices not yet bound to backing files.
290 * Forbid the use of such devices.
291 */
292 q = bdev_get_queue(bdev);
293 if (!q || !q->make_request_fn) {
294 DMWARN("%s: %s is not yet initialised: "
295 "start=%llu, len=%llu, dev_size=%llu",
296 dm_device_name(ti->table->md), bdevname(bdev, b),
297 (unsigned long long)start,
298 (unsigned long long)len,
299 (unsigned long long)dev_size);
300 return 1;
301 }
302
303 if (!dev_size)
304 return 0;
305
306 if ((start >= dev_size) || (start + len > dev_size)) {
307 DMWARN("%s: %s too small for target: "
308 "start=%llu, len=%llu, dev_size=%llu",
309 dm_device_name(ti->table->md), bdevname(bdev, b),
310 (unsigned long long)start,
311 (unsigned long long)len,
312 (unsigned long long)dev_size);
313 return 1;
314 }
315
316 if (logical_block_size_sectors <= 1)
317 return 0;
318
319 if (start & (logical_block_size_sectors - 1)) {
320 DMWARN("%s: start=%llu not aligned to h/w "
321 "logical block size %u of %s",
322 dm_device_name(ti->table->md),
323 (unsigned long long)start,
324 limits->logical_block_size, bdevname(bdev, b));
325 return 1;
326 }
327
328 if (len & (logical_block_size_sectors - 1)) {
329 DMWARN("%s: len=%llu not aligned to h/w "
330 "logical block size %u of %s",
331 dm_device_name(ti->table->md),
332 (unsigned long long)len,
333 limits->logical_block_size, bdevname(bdev, b));
334 return 1;
335 }
336
337 return 0;
338 }
339
340 /*
341 * This upgrades the mode on an already open dm_dev, being
342 * careful to leave things as they were if we fail to reopen the
343 * device and not to touch the existing bdev field in case
344 * it is accessed concurrently inside dm_table_any_congested().
345 */
346 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
347 struct mapped_device *md)
348 {
349 int r;
350 struct dm_dev *old_dev, *new_dev;
351
352 old_dev = dd->dm_dev;
353
354 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
355 dd->dm_dev->mode | new_mode, &new_dev);
356 if (r)
357 return r;
358
359 dd->dm_dev = new_dev;
360 dm_put_table_device(md, old_dev);
361
362 return 0;
363 }
364
365 /*
366 * Add a device to the list, or just increment the usage count if
367 * it's already present.
368 */
369 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
370 struct dm_dev **result)
371 {
372 int r;
373 dev_t uninitialized_var(dev);
374 struct dm_dev_internal *dd;
375 unsigned int major, minor;
376 struct dm_table *t = ti->table;
377 char dummy;
378
379 BUG_ON(!t);
380
381 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
382 /* Extract the major/minor numbers */
383 dev = MKDEV(major, minor);
384 if (MAJOR(dev) != major || MINOR(dev) != minor)
385 return -EOVERFLOW;
386 } else {
387 /* convert the path to a device */
388 struct block_device *bdev = lookup_bdev(path);
389
390 if (IS_ERR(bdev))
391 return PTR_ERR(bdev);
392 dev = bdev->bd_dev;
393 bdput(bdev);
394 }
395
396 dd = find_device(&t->devices, dev);
397 if (!dd) {
398 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
399 if (!dd)
400 return -ENOMEM;
401
402 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
403 kfree(dd);
404 return r;
405 }
406
407 atomic_set(&dd->count, 0);
408 list_add(&dd->list, &t->devices);
409
410 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
411 r = upgrade_mode(dd, mode, t->md);
412 if (r)
413 return r;
414 }
415 atomic_inc(&dd->count);
416
417 *result = dd->dm_dev;
418 return 0;
419 }
420 EXPORT_SYMBOL(dm_get_device);
421
422 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
423 sector_t start, sector_t len, void *data)
424 {
425 struct queue_limits *limits = data;
426 struct block_device *bdev = dev->bdev;
427 struct request_queue *q = bdev_get_queue(bdev);
428 char b[BDEVNAME_SIZE];
429
430 if (unlikely(!q)) {
431 DMWARN("%s: Cannot set limits for nonexistent device %s",
432 dm_device_name(ti->table->md), bdevname(bdev, b));
433 return 0;
434 }
435
436 if (bdev_stack_limits(limits, bdev, start) < 0)
437 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
438 "physical_block_size=%u, logical_block_size=%u, "
439 "alignment_offset=%u, start=%llu",
440 dm_device_name(ti->table->md), bdevname(bdev, b),
441 q->limits.physical_block_size,
442 q->limits.logical_block_size,
443 q->limits.alignment_offset,
444 (unsigned long long) start << SECTOR_SHIFT);
445
446 /*
447 * Check if merge fn is supported.
448 * If not we'll force DM to use PAGE_SIZE or
449 * smaller I/O, just to be safe.
450 */
451 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
452 blk_limits_max_hw_sectors(limits,
453 (unsigned int) (PAGE_SIZE >> 9));
454 return 0;
455 }
456
457 /*
458 * Decrement a device's use count and remove it if necessary.
459 */
460 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
461 {
462 int found = 0;
463 struct list_head *devices = &ti->table->devices;
464 struct dm_dev_internal *dd;
465
466 list_for_each_entry(dd, devices, list) {
467 if (dd->dm_dev == d) {
468 found = 1;
469 break;
470 }
471 }
472 if (!found) {
473 DMWARN("%s: device %s not in table devices list",
474 dm_device_name(ti->table->md), d->name);
475 return;
476 }
477 if (atomic_dec_and_test(&dd->count)) {
478 dm_put_table_device(ti->table->md, d);
479 list_del(&dd->list);
480 kfree(dd);
481 }
482 }
483 EXPORT_SYMBOL(dm_put_device);
484
485 /*
486 * Checks to see if the target joins onto the end of the table.
487 */
488 static int adjoin(struct dm_table *table, struct dm_target *ti)
489 {
490 struct dm_target *prev;
491
492 if (!table->num_targets)
493 return !ti->begin;
494
495 prev = &table->targets[table->num_targets - 1];
496 return (ti->begin == (prev->begin + prev->len));
497 }
498
499 /*
500 * Used to dynamically allocate the arg array.
501 *
502 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
503 * process messages even if some device is suspended. These messages have a
504 * small fixed number of arguments.
505 *
506 * On the other hand, dm-switch needs to process bulk data using messages and
507 * excessive use of GFP_NOIO could cause trouble.
508 */
509 static char **realloc_argv(unsigned *array_size, char **old_argv)
510 {
511 char **argv;
512 unsigned new_size;
513 gfp_t gfp;
514
515 if (*array_size) {
516 new_size = *array_size * 2;
517 gfp = GFP_KERNEL;
518 } else {
519 new_size = 8;
520 gfp = GFP_NOIO;
521 }
522 argv = kmalloc(new_size * sizeof(*argv), gfp);
523 if (argv) {
524 memcpy(argv, old_argv, *array_size * sizeof(*argv));
525 *array_size = new_size;
526 }
527
528 kfree(old_argv);
529 return argv;
530 }
531
532 /*
533 * Destructively splits up the argument list to pass to ctr.
534 */
535 int dm_split_args(int *argc, char ***argvp, char *input)
536 {
537 char *start, *end = input, *out, **argv = NULL;
538 unsigned array_size = 0;
539
540 *argc = 0;
541
542 if (!input) {
543 *argvp = NULL;
544 return 0;
545 }
546
547 argv = realloc_argv(&array_size, argv);
548 if (!argv)
549 return -ENOMEM;
550
551 while (1) {
552 /* Skip whitespace */
553 start = skip_spaces(end);
554
555 if (!*start)
556 break; /* success, we hit the end */
557
558 /* 'out' is used to remove any back-quotes */
559 end = out = start;
560 while (*end) {
561 /* Everything apart from '\0' can be quoted */
562 if (*end == '\\' && *(end + 1)) {
563 *out++ = *(end + 1);
564 end += 2;
565 continue;
566 }
567
568 if (isspace(*end))
569 break; /* end of token */
570
571 *out++ = *end++;
572 }
573
574 /* have we already filled the array ? */
575 if ((*argc + 1) > array_size) {
576 argv = realloc_argv(&array_size, argv);
577 if (!argv)
578 return -ENOMEM;
579 }
580
581 /* we know this is whitespace */
582 if (*end)
583 end++;
584
585 /* terminate the string and put it in the array */
586 *out = '\0';
587 argv[*argc] = start;
588 (*argc)++;
589 }
590
591 *argvp = argv;
592 return 0;
593 }
594
595 /*
596 * Impose necessary and sufficient conditions on a devices's table such
597 * that any incoming bio which respects its logical_block_size can be
598 * processed successfully. If it falls across the boundary between
599 * two or more targets, the size of each piece it gets split into must
600 * be compatible with the logical_block_size of the target processing it.
601 */
602 static int validate_hardware_logical_block_alignment(struct dm_table *table,
603 struct queue_limits *limits)
604 {
605 /*
606 * This function uses arithmetic modulo the logical_block_size
607 * (in units of 512-byte sectors).
608 */
609 unsigned short device_logical_block_size_sects =
610 limits->logical_block_size >> SECTOR_SHIFT;
611
612 /*
613 * Offset of the start of the next table entry, mod logical_block_size.
614 */
615 unsigned short next_target_start = 0;
616
617 /*
618 * Given an aligned bio that extends beyond the end of a
619 * target, how many sectors must the next target handle?
620 */
621 unsigned short remaining = 0;
622
623 struct dm_target *uninitialized_var(ti);
624 struct queue_limits ti_limits;
625 unsigned i = 0;
626
627 /*
628 * Check each entry in the table in turn.
629 */
630 while (i < dm_table_get_num_targets(table)) {
631 ti = dm_table_get_target(table, i++);
632
633 blk_set_stacking_limits(&ti_limits);
634
635 /* combine all target devices' limits */
636 if (ti->type->iterate_devices)
637 ti->type->iterate_devices(ti, dm_set_device_limits,
638 &ti_limits);
639
640 /*
641 * If the remaining sectors fall entirely within this
642 * table entry are they compatible with its logical_block_size?
643 */
644 if (remaining < ti->len &&
645 remaining & ((ti_limits.logical_block_size >>
646 SECTOR_SHIFT) - 1))
647 break; /* Error */
648
649 next_target_start =
650 (unsigned short) ((next_target_start + ti->len) &
651 (device_logical_block_size_sects - 1));
652 remaining = next_target_start ?
653 device_logical_block_size_sects - next_target_start : 0;
654 }
655
656 if (remaining) {
657 DMWARN("%s: table line %u (start sect %llu len %llu) "
658 "not aligned to h/w logical block size %u",
659 dm_device_name(table->md), i,
660 (unsigned long long) ti->begin,
661 (unsigned long long) ti->len,
662 limits->logical_block_size);
663 return -EINVAL;
664 }
665
666 return 0;
667 }
668
669 int dm_table_add_target(struct dm_table *t, const char *type,
670 sector_t start, sector_t len, char *params)
671 {
672 int r = -EINVAL, argc;
673 char **argv;
674 struct dm_target *tgt;
675
676 if (t->singleton) {
677 DMERR("%s: target type %s must appear alone in table",
678 dm_device_name(t->md), t->targets->type->name);
679 return -EINVAL;
680 }
681
682 BUG_ON(t->num_targets >= t->num_allocated);
683
684 tgt = t->targets + t->num_targets;
685 memset(tgt, 0, sizeof(*tgt));
686
687 if (!len) {
688 DMERR("%s: zero-length target", dm_device_name(t->md));
689 return -EINVAL;
690 }
691
692 tgt->type = dm_get_target_type(type);
693 if (!tgt->type) {
694 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
695 type);
696 return -EINVAL;
697 }
698
699 if (dm_target_needs_singleton(tgt->type)) {
700 if (t->num_targets) {
701 DMERR("%s: target type %s must appear alone in table",
702 dm_device_name(t->md), type);
703 return -EINVAL;
704 }
705 t->singleton = 1;
706 }
707
708 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
709 DMERR("%s: target type %s may not be included in read-only tables",
710 dm_device_name(t->md), type);
711 return -EINVAL;
712 }
713
714 if (t->immutable_target_type) {
715 if (t->immutable_target_type != tgt->type) {
716 DMERR("%s: immutable target type %s cannot be mixed with other target types",
717 dm_device_name(t->md), t->immutable_target_type->name);
718 return -EINVAL;
719 }
720 } else if (dm_target_is_immutable(tgt->type)) {
721 if (t->num_targets) {
722 DMERR("%s: immutable target type %s cannot be mixed with other target types",
723 dm_device_name(t->md), tgt->type->name);
724 return -EINVAL;
725 }
726 t->immutable_target_type = tgt->type;
727 }
728
729 tgt->table = t;
730 tgt->begin = start;
731 tgt->len = len;
732 tgt->error = "Unknown error";
733
734 /*
735 * Does this target adjoin the previous one ?
736 */
737 if (!adjoin(t, tgt)) {
738 tgt->error = "Gap in table";
739 r = -EINVAL;
740 goto bad;
741 }
742
743 r = dm_split_args(&argc, &argv, params);
744 if (r) {
745 tgt->error = "couldn't split parameters (insufficient memory)";
746 goto bad;
747 }
748
749 r = tgt->type->ctr(tgt, argc, argv);
750 kfree(argv);
751 if (r)
752 goto bad;
753
754 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
755
756 if (!tgt->num_discard_bios && tgt->discards_supported)
757 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
758 dm_device_name(t->md), type);
759
760 return 0;
761
762 bad:
763 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
764 dm_put_target_type(tgt->type);
765 return r;
766 }
767
768 /*
769 * Target argument parsing helpers.
770 */
771 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
772 unsigned *value, char **error, unsigned grouped)
773 {
774 const char *arg_str = dm_shift_arg(arg_set);
775 char dummy;
776
777 if (!arg_str ||
778 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
779 (*value < arg->min) ||
780 (*value > arg->max) ||
781 (grouped && arg_set->argc < *value)) {
782 *error = arg->error;
783 return -EINVAL;
784 }
785
786 return 0;
787 }
788
789 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
790 unsigned *value, char **error)
791 {
792 return validate_next_arg(arg, arg_set, value, error, 0);
793 }
794 EXPORT_SYMBOL(dm_read_arg);
795
796 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
797 unsigned *value, char **error)
798 {
799 return validate_next_arg(arg, arg_set, value, error, 1);
800 }
801 EXPORT_SYMBOL(dm_read_arg_group);
802
803 const char *dm_shift_arg(struct dm_arg_set *as)
804 {
805 char *r;
806
807 if (as->argc) {
808 as->argc--;
809 r = *as->argv;
810 as->argv++;
811 return r;
812 }
813
814 return NULL;
815 }
816 EXPORT_SYMBOL(dm_shift_arg);
817
818 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
819 {
820 BUG_ON(as->argc < num_args);
821 as->argc -= num_args;
822 as->argv += num_args;
823 }
824 EXPORT_SYMBOL(dm_consume_args);
825
826 static int dm_table_set_type(struct dm_table *t)
827 {
828 unsigned i;
829 unsigned bio_based = 0, request_based = 0, hybrid = 0;
830 struct dm_target *tgt;
831 struct dm_dev_internal *dd;
832 struct list_head *devices;
833 unsigned live_md_type;
834
835 for (i = 0; i < t->num_targets; i++) {
836 tgt = t->targets + i;
837 if (dm_target_hybrid(tgt))
838 hybrid = 1;
839 else if (dm_target_request_based(tgt))
840 request_based = 1;
841 else
842 bio_based = 1;
843
844 if (bio_based && request_based) {
845 DMWARN("Inconsistent table: different target types"
846 " can't be mixed up");
847 return -EINVAL;
848 }
849 }
850
851 if (hybrid && !bio_based && !request_based) {
852 /*
853 * The targets can work either way.
854 * Determine the type from the live device.
855 * Default to bio-based if device is new.
856 */
857 live_md_type = dm_get_md_type(t->md);
858 if (live_md_type == DM_TYPE_REQUEST_BASED)
859 request_based = 1;
860 else
861 bio_based = 1;
862 }
863
864 if (bio_based) {
865 /* We must use this table as bio-based */
866 t->type = DM_TYPE_BIO_BASED;
867 return 0;
868 }
869
870 BUG_ON(!request_based); /* No targets in this table */
871
872 /* Non-request-stackable devices can't be used for request-based dm */
873 devices = dm_table_get_devices(t);
874 list_for_each_entry(dd, devices, list) {
875 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev->bdev))) {
876 DMWARN("table load rejected: including"
877 " non-request-stackable devices");
878 return -EINVAL;
879 }
880 }
881
882 /*
883 * Request-based dm supports only tables that have a single target now.
884 * To support multiple targets, request splitting support is needed,
885 * and that needs lots of changes in the block-layer.
886 * (e.g. request completion process for partial completion.)
887 */
888 if (t->num_targets > 1) {
889 DMWARN("Request-based dm doesn't support multiple targets yet");
890 return -EINVAL;
891 }
892
893 t->type = DM_TYPE_REQUEST_BASED;
894
895 return 0;
896 }
897
898 unsigned dm_table_get_type(struct dm_table *t)
899 {
900 return t->type;
901 }
902
903 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
904 {
905 return t->immutable_target_type;
906 }
907
908 bool dm_table_request_based(struct dm_table *t)
909 {
910 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
911 }
912
913 static int dm_table_alloc_md_mempools(struct dm_table *t)
914 {
915 unsigned type = dm_table_get_type(t);
916 unsigned per_bio_data_size = 0;
917 struct dm_target *tgt;
918 unsigned i;
919
920 if (unlikely(type == DM_TYPE_NONE)) {
921 DMWARN("no table type is set, can't allocate mempools");
922 return -EINVAL;
923 }
924
925 if (type == DM_TYPE_BIO_BASED)
926 for (i = 0; i < t->num_targets; i++) {
927 tgt = t->targets + i;
928 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
929 }
930
931 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
932 if (!t->mempools)
933 return -ENOMEM;
934
935 return 0;
936 }
937
938 void dm_table_free_md_mempools(struct dm_table *t)
939 {
940 dm_free_md_mempools(t->mempools);
941 t->mempools = NULL;
942 }
943
944 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
945 {
946 return t->mempools;
947 }
948
949 static int setup_indexes(struct dm_table *t)
950 {
951 int i;
952 unsigned int total = 0;
953 sector_t *indexes;
954
955 /* allocate the space for *all* the indexes */
956 for (i = t->depth - 2; i >= 0; i--) {
957 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
958 total += t->counts[i];
959 }
960
961 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
962 if (!indexes)
963 return -ENOMEM;
964
965 /* set up internal nodes, bottom-up */
966 for (i = t->depth - 2; i >= 0; i--) {
967 t->index[i] = indexes;
968 indexes += (KEYS_PER_NODE * t->counts[i]);
969 setup_btree_index(i, t);
970 }
971
972 return 0;
973 }
974
975 /*
976 * Builds the btree to index the map.
977 */
978 static int dm_table_build_index(struct dm_table *t)
979 {
980 int r = 0;
981 unsigned int leaf_nodes;
982
983 /* how many indexes will the btree have ? */
984 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
985 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
986
987 /* leaf layer has already been set up */
988 t->counts[t->depth - 1] = leaf_nodes;
989 t->index[t->depth - 1] = t->highs;
990
991 if (t->depth >= 2)
992 r = setup_indexes(t);
993
994 return r;
995 }
996
997 /*
998 * Get a disk whose integrity profile reflects the table's profile.
999 * If %match_all is true, all devices' profiles must match.
1000 * If %match_all is false, all devices must at least have an
1001 * allocated integrity profile; but uninitialized is ok.
1002 * Returns NULL if integrity support was inconsistent or unavailable.
1003 */
1004 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1005 bool match_all)
1006 {
1007 struct list_head *devices = dm_table_get_devices(t);
1008 struct dm_dev_internal *dd = NULL;
1009 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1010
1011 list_for_each_entry(dd, devices, list) {
1012 template_disk = dd->dm_dev->bdev->bd_disk;
1013 if (!blk_get_integrity(template_disk))
1014 goto no_integrity;
1015 if (!match_all && !blk_integrity_is_initialized(template_disk))
1016 continue; /* skip uninitialized profiles */
1017 else if (prev_disk &&
1018 blk_integrity_compare(prev_disk, template_disk) < 0)
1019 goto no_integrity;
1020 prev_disk = template_disk;
1021 }
1022
1023 return template_disk;
1024
1025 no_integrity:
1026 if (prev_disk)
1027 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1028 dm_device_name(t->md),
1029 prev_disk->disk_name,
1030 template_disk->disk_name);
1031 return NULL;
1032 }
1033
1034 /*
1035 * Register the mapped device for blk_integrity support if
1036 * the underlying devices have an integrity profile. But all devices
1037 * may not have matching profiles (checking all devices isn't reliable
1038 * during table load because this table may use other DM device(s) which
1039 * must be resumed before they will have an initialized integity profile).
1040 * Stacked DM devices force a 2 stage integrity profile validation:
1041 * 1 - during load, validate all initialized integrity profiles match
1042 * 2 - during resume, validate all integrity profiles match
1043 */
1044 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1045 {
1046 struct gendisk *template_disk = NULL;
1047
1048 template_disk = dm_table_get_integrity_disk(t, false);
1049 if (!template_disk)
1050 return 0;
1051
1052 if (!blk_integrity_is_initialized(dm_disk(md))) {
1053 t->integrity_supported = 1;
1054 return blk_integrity_register(dm_disk(md), NULL);
1055 }
1056
1057 /*
1058 * If DM device already has an initalized integrity
1059 * profile the new profile should not conflict.
1060 */
1061 if (blk_integrity_is_initialized(template_disk) &&
1062 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1063 DMWARN("%s: conflict with existing integrity profile: "
1064 "%s profile mismatch",
1065 dm_device_name(t->md),
1066 template_disk->disk_name);
1067 return 1;
1068 }
1069
1070 /* Preserve existing initialized integrity profile */
1071 t->integrity_supported = 1;
1072 return 0;
1073 }
1074
1075 /*
1076 * Prepares the table for use by building the indices,
1077 * setting the type, and allocating mempools.
1078 */
1079 int dm_table_complete(struct dm_table *t)
1080 {
1081 int r;
1082
1083 r = dm_table_set_type(t);
1084 if (r) {
1085 DMERR("unable to set table type");
1086 return r;
1087 }
1088
1089 r = dm_table_build_index(t);
1090 if (r) {
1091 DMERR("unable to build btrees");
1092 return r;
1093 }
1094
1095 r = dm_table_prealloc_integrity(t, t->md);
1096 if (r) {
1097 DMERR("could not register integrity profile.");
1098 return r;
1099 }
1100
1101 r = dm_table_alloc_md_mempools(t);
1102 if (r)
1103 DMERR("unable to allocate mempools");
1104
1105 return r;
1106 }
1107
1108 static DEFINE_MUTEX(_event_lock);
1109 void dm_table_event_callback(struct dm_table *t,
1110 void (*fn)(void *), void *context)
1111 {
1112 mutex_lock(&_event_lock);
1113 t->event_fn = fn;
1114 t->event_context = context;
1115 mutex_unlock(&_event_lock);
1116 }
1117
1118 void dm_table_event(struct dm_table *t)
1119 {
1120 /*
1121 * You can no longer call dm_table_event() from interrupt
1122 * context, use a bottom half instead.
1123 */
1124 BUG_ON(in_interrupt());
1125
1126 mutex_lock(&_event_lock);
1127 if (t->event_fn)
1128 t->event_fn(t->event_context);
1129 mutex_unlock(&_event_lock);
1130 }
1131 EXPORT_SYMBOL(dm_table_event);
1132
1133 sector_t dm_table_get_size(struct dm_table *t)
1134 {
1135 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1136 }
1137 EXPORT_SYMBOL(dm_table_get_size);
1138
1139 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1140 {
1141 if (index >= t->num_targets)
1142 return NULL;
1143
1144 return t->targets + index;
1145 }
1146
1147 /*
1148 * Search the btree for the correct target.
1149 *
1150 * Caller should check returned pointer with dm_target_is_valid()
1151 * to trap I/O beyond end of device.
1152 */
1153 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1154 {
1155 unsigned int l, n = 0, k = 0;
1156 sector_t *node;
1157
1158 for (l = 0; l < t->depth; l++) {
1159 n = get_child(n, k);
1160 node = get_node(t, l, n);
1161
1162 for (k = 0; k < KEYS_PER_NODE; k++)
1163 if (node[k] >= sector)
1164 break;
1165 }
1166
1167 return &t->targets[(KEYS_PER_NODE * n) + k];
1168 }
1169
1170 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1171 sector_t start, sector_t len, void *data)
1172 {
1173 unsigned *num_devices = data;
1174
1175 (*num_devices)++;
1176
1177 return 0;
1178 }
1179
1180 /*
1181 * Check whether a table has no data devices attached using each
1182 * target's iterate_devices method.
1183 * Returns false if the result is unknown because a target doesn't
1184 * support iterate_devices.
1185 */
1186 bool dm_table_has_no_data_devices(struct dm_table *table)
1187 {
1188 struct dm_target *uninitialized_var(ti);
1189 unsigned i = 0, num_devices = 0;
1190
1191 while (i < dm_table_get_num_targets(table)) {
1192 ti = dm_table_get_target(table, i++);
1193
1194 if (!ti->type->iterate_devices)
1195 return false;
1196
1197 ti->type->iterate_devices(ti, count_device, &num_devices);
1198 if (num_devices)
1199 return false;
1200 }
1201
1202 return true;
1203 }
1204
1205 /*
1206 * Establish the new table's queue_limits and validate them.
1207 */
1208 int dm_calculate_queue_limits(struct dm_table *table,
1209 struct queue_limits *limits)
1210 {
1211 struct dm_target *uninitialized_var(ti);
1212 struct queue_limits ti_limits;
1213 unsigned i = 0;
1214
1215 blk_set_stacking_limits(limits);
1216
1217 while (i < dm_table_get_num_targets(table)) {
1218 blk_set_stacking_limits(&ti_limits);
1219
1220 ti = dm_table_get_target(table, i++);
1221
1222 if (!ti->type->iterate_devices)
1223 goto combine_limits;
1224
1225 /*
1226 * Combine queue limits of all the devices this target uses.
1227 */
1228 ti->type->iterate_devices(ti, dm_set_device_limits,
1229 &ti_limits);
1230
1231 /* Set I/O hints portion of queue limits */
1232 if (ti->type->io_hints)
1233 ti->type->io_hints(ti, &ti_limits);
1234
1235 /*
1236 * Check each device area is consistent with the target's
1237 * overall queue limits.
1238 */
1239 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1240 &ti_limits))
1241 return -EINVAL;
1242
1243 combine_limits:
1244 /*
1245 * Merge this target's queue limits into the overall limits
1246 * for the table.
1247 */
1248 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1249 DMWARN("%s: adding target device "
1250 "(start sect %llu len %llu) "
1251 "caused an alignment inconsistency",
1252 dm_device_name(table->md),
1253 (unsigned long long) ti->begin,
1254 (unsigned long long) ti->len);
1255 }
1256
1257 return validate_hardware_logical_block_alignment(table, limits);
1258 }
1259
1260 /*
1261 * Set the integrity profile for this device if all devices used have
1262 * matching profiles. We're quite deep in the resume path but still
1263 * don't know if all devices (particularly DM devices this device
1264 * may be stacked on) have matching profiles. Even if the profiles
1265 * don't match we have no way to fail (to resume) at this point.
1266 */
1267 static void dm_table_set_integrity(struct dm_table *t)
1268 {
1269 struct gendisk *template_disk = NULL;
1270
1271 if (!blk_get_integrity(dm_disk(t->md)))
1272 return;
1273
1274 template_disk = dm_table_get_integrity_disk(t, true);
1275 if (template_disk)
1276 blk_integrity_register(dm_disk(t->md),
1277 blk_get_integrity(template_disk));
1278 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1279 DMWARN("%s: device no longer has a valid integrity profile",
1280 dm_device_name(t->md));
1281 else
1282 DMWARN("%s: unable to establish an integrity profile",
1283 dm_device_name(t->md));
1284 }
1285
1286 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1287 sector_t start, sector_t len, void *data)
1288 {
1289 unsigned flush = (*(unsigned *)data);
1290 struct request_queue *q = bdev_get_queue(dev->bdev);
1291
1292 return q && (q->flush_flags & flush);
1293 }
1294
1295 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1296 {
1297 struct dm_target *ti;
1298 unsigned i = 0;
1299
1300 /*
1301 * Require at least one underlying device to support flushes.
1302 * t->devices includes internal dm devices such as mirror logs
1303 * so we need to use iterate_devices here, which targets
1304 * supporting flushes must provide.
1305 */
1306 while (i < dm_table_get_num_targets(t)) {
1307 ti = dm_table_get_target(t, i++);
1308
1309 if (!ti->num_flush_bios)
1310 continue;
1311
1312 if (ti->flush_supported)
1313 return 1;
1314
1315 if (ti->type->iterate_devices &&
1316 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1317 return 1;
1318 }
1319
1320 return 0;
1321 }
1322
1323 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1324 {
1325 struct dm_target *ti;
1326 unsigned i = 0;
1327
1328 /* Ensure that all targets supports discard_zeroes_data. */
1329 while (i < dm_table_get_num_targets(t)) {
1330 ti = dm_table_get_target(t, i++);
1331
1332 if (ti->discard_zeroes_data_unsupported)
1333 return 0;
1334 }
1335
1336 return 1;
1337 }
1338
1339 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1340 sector_t start, sector_t len, void *data)
1341 {
1342 struct request_queue *q = bdev_get_queue(dev->bdev);
1343
1344 return q && blk_queue_nonrot(q);
1345 }
1346
1347 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1348 sector_t start, sector_t len, void *data)
1349 {
1350 struct request_queue *q = bdev_get_queue(dev->bdev);
1351
1352 return q && !blk_queue_add_random(q);
1353 }
1354
1355 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1356 sector_t start, sector_t len, void *data)
1357 {
1358 struct request_queue *q = bdev_get_queue(dev->bdev);
1359
1360 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1361 }
1362
1363 static bool dm_table_all_devices_attribute(struct dm_table *t,
1364 iterate_devices_callout_fn func)
1365 {
1366 struct dm_target *ti;
1367 unsigned i = 0;
1368
1369 while (i < dm_table_get_num_targets(t)) {
1370 ti = dm_table_get_target(t, i++);
1371
1372 if (!ti->type->iterate_devices ||
1373 !ti->type->iterate_devices(ti, func, NULL))
1374 return 0;
1375 }
1376
1377 return 1;
1378 }
1379
1380 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1381 sector_t start, sector_t len, void *data)
1382 {
1383 struct request_queue *q = bdev_get_queue(dev->bdev);
1384
1385 return q && !q->limits.max_write_same_sectors;
1386 }
1387
1388 static bool dm_table_supports_write_same(struct dm_table *t)
1389 {
1390 struct dm_target *ti;
1391 unsigned i = 0;
1392
1393 while (i < dm_table_get_num_targets(t)) {
1394 ti = dm_table_get_target(t, i++);
1395
1396 if (!ti->num_write_same_bios)
1397 return false;
1398
1399 if (!ti->type->iterate_devices ||
1400 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1401 return false;
1402 }
1403
1404 return true;
1405 }
1406
1407 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1408 sector_t start, sector_t len, void *data)
1409 {
1410 struct request_queue *q = bdev_get_queue(dev->bdev);
1411
1412 return q && blk_queue_discard(q);
1413 }
1414
1415 static bool dm_table_supports_discards(struct dm_table *t)
1416 {
1417 struct dm_target *ti;
1418 unsigned i = 0;
1419
1420 /*
1421 * Unless any target used by the table set discards_supported,
1422 * require at least one underlying device to support discards.
1423 * t->devices includes internal dm devices such as mirror logs
1424 * so we need to use iterate_devices here, which targets
1425 * supporting discard selectively must provide.
1426 */
1427 while (i < dm_table_get_num_targets(t)) {
1428 ti = dm_table_get_target(t, i++);
1429
1430 if (!ti->num_discard_bios)
1431 continue;
1432
1433 if (ti->discards_supported)
1434 return 1;
1435
1436 if (ti->type->iterate_devices &&
1437 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1438 return 1;
1439 }
1440
1441 return 0;
1442 }
1443
1444 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1445 struct queue_limits *limits)
1446 {
1447 unsigned flush = 0;
1448
1449 /*
1450 * Copy table's limits to the DM device's request_queue
1451 */
1452 q->limits = *limits;
1453
1454 if (!dm_table_supports_discards(t))
1455 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1456 else
1457 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1458
1459 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1460 flush |= REQ_FLUSH;
1461 if (dm_table_supports_flush(t, REQ_FUA))
1462 flush |= REQ_FUA;
1463 }
1464 blk_queue_flush(q, flush);
1465
1466 if (!dm_table_discard_zeroes_data(t))
1467 q->limits.discard_zeroes_data = 0;
1468
1469 /* Ensure that all underlying devices are non-rotational. */
1470 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1471 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1472 else
1473 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1474
1475 if (!dm_table_supports_write_same(t))
1476 q->limits.max_write_same_sectors = 0;
1477
1478 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1479 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1480 else
1481 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1482
1483 dm_table_set_integrity(t);
1484
1485 /*
1486 * Determine whether or not this queue's I/O timings contribute
1487 * to the entropy pool, Only request-based targets use this.
1488 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1489 * have it set.
1490 */
1491 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1492 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1493
1494 /*
1495 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1496 * visible to other CPUs because, once the flag is set, incoming bios
1497 * are processed by request-based dm, which refers to the queue
1498 * settings.
1499 * Until the flag set, bios are passed to bio-based dm and queued to
1500 * md->deferred where queue settings are not needed yet.
1501 * Those bios are passed to request-based dm at the resume time.
1502 */
1503 smp_mb();
1504 if (dm_table_request_based(t))
1505 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1506 }
1507
1508 unsigned int dm_table_get_num_targets(struct dm_table *t)
1509 {
1510 return t->num_targets;
1511 }
1512
1513 struct list_head *dm_table_get_devices(struct dm_table *t)
1514 {
1515 return &t->devices;
1516 }
1517
1518 fmode_t dm_table_get_mode(struct dm_table *t)
1519 {
1520 return t->mode;
1521 }
1522 EXPORT_SYMBOL(dm_table_get_mode);
1523
1524 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1525 {
1526 int i = t->num_targets;
1527 struct dm_target *ti = t->targets;
1528
1529 while (i--) {
1530 if (postsuspend) {
1531 if (ti->type->postsuspend)
1532 ti->type->postsuspend(ti);
1533 } else if (ti->type->presuspend)
1534 ti->type->presuspend(ti);
1535
1536 ti++;
1537 }
1538 }
1539
1540 void dm_table_presuspend_targets(struct dm_table *t)
1541 {
1542 if (!t)
1543 return;
1544
1545 suspend_targets(t, 0);
1546 }
1547
1548 void dm_table_postsuspend_targets(struct dm_table *t)
1549 {
1550 if (!t)
1551 return;
1552
1553 suspend_targets(t, 1);
1554 }
1555
1556 int dm_table_resume_targets(struct dm_table *t)
1557 {
1558 int i, r = 0;
1559
1560 for (i = 0; i < t->num_targets; i++) {
1561 struct dm_target *ti = t->targets + i;
1562
1563 if (!ti->type->preresume)
1564 continue;
1565
1566 r = ti->type->preresume(ti);
1567 if (r) {
1568 DMERR("%s: %s: preresume failed, error = %d",
1569 dm_device_name(t->md), ti->type->name, r);
1570 return r;
1571 }
1572 }
1573
1574 for (i = 0; i < t->num_targets; i++) {
1575 struct dm_target *ti = t->targets + i;
1576
1577 if (ti->type->resume)
1578 ti->type->resume(ti);
1579 }
1580
1581 return 0;
1582 }
1583
1584 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1585 {
1586 list_add(&cb->list, &t->target_callbacks);
1587 }
1588 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1589
1590 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1591 {
1592 struct dm_dev_internal *dd;
1593 struct list_head *devices = dm_table_get_devices(t);
1594 struct dm_target_callbacks *cb;
1595 int r = 0;
1596
1597 list_for_each_entry(dd, devices, list) {
1598 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1599 char b[BDEVNAME_SIZE];
1600
1601 if (likely(q))
1602 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1603 else
1604 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1605 dm_device_name(t->md),
1606 bdevname(dd->dm_dev->bdev, b));
1607 }
1608
1609 list_for_each_entry(cb, &t->target_callbacks, list)
1610 if (cb->congested_fn)
1611 r |= cb->congested_fn(cb, bdi_bits);
1612
1613 return r;
1614 }
1615
1616 int dm_table_any_busy_target(struct dm_table *t)
1617 {
1618 unsigned i;
1619 struct dm_target *ti;
1620
1621 for (i = 0; i < t->num_targets; i++) {
1622 ti = t->targets + i;
1623 if (ti->type->busy && ti->type->busy(ti))
1624 return 1;
1625 }
1626
1627 return 0;
1628 }
1629
1630 struct mapped_device *dm_table_get_md(struct dm_table *t)
1631 {
1632 return t->md;
1633 }
1634 EXPORT_SYMBOL(dm_table_get_md);
1635
1636 void dm_table_run_md_queue_async(struct dm_table *t)
1637 {
1638 struct mapped_device *md;
1639 struct request_queue *queue;
1640 unsigned long flags;
1641
1642 if (!dm_table_request_based(t))
1643 return;
1644
1645 md = dm_table_get_md(t);
1646 queue = dm_get_md_queue(md);
1647 if (queue) {
1648 spin_lock_irqsave(queue->queue_lock, flags);
1649 blk_run_queue_async(queue);
1650 spin_unlock_irqrestore(queue->queue_lock, flags);
1651 }
1652 }
1653 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1654
This page took 0.102292 seconds and 5 git commands to generate.