dm thin metadata: factor __setup_btree_details out of init_pmd
[deliverable/linux.git] / drivers / md / dm-thin-metadata.c
1 /*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82
83 /*
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 */
87 #define THIN_MAX_CONCURRENT_LOCKS 5
88
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
91
92 /*
93 * Little endian on-disk superblock and device details.
94 */
95 struct thin_disk_superblock {
96 __le32 csum; /* Checksum of superblock except for this field. */
97 __le32 flags;
98 __le64 blocknr; /* This block number, dm_block_t. */
99
100 __u8 uuid[16];
101 __le64 magic;
102 __le32 version;
103 __le32 time;
104
105 __le64 trans_id;
106
107 /*
108 * Root held by userspace transactions.
109 */
110 __le64 held_root;
111
112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
114
115 /*
116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117 */
118 __le64 data_mapping_root;
119
120 /*
121 * Device detail root mapping dev_id -> device_details
122 */
123 __le64 device_details_root;
124
125 __le32 data_block_size; /* In 512-byte sectors. */
126
127 __le32 metadata_block_size; /* In 512-byte sectors. */
128 __le64 metadata_nr_blocks;
129
130 __le32 compat_flags;
131 __le32 compat_ro_flags;
132 __le32 incompat_flags;
133 } __packed;
134
135 struct disk_device_details {
136 __le64 mapped_blocks;
137 __le64 transaction_id; /* When created. */
138 __le32 creation_time;
139 __le32 snapshotted_time;
140 } __packed;
141
142 struct dm_pool_metadata {
143 struct hlist_node hash;
144
145 struct block_device *bdev;
146 struct dm_block_manager *bm;
147 struct dm_space_map *metadata_sm;
148 struct dm_space_map *data_sm;
149 struct dm_transaction_manager *tm;
150 struct dm_transaction_manager *nb_tm;
151
152 /*
153 * Two-level btree.
154 * First level holds thin_dev_t.
155 * Second level holds mappings.
156 */
157 struct dm_btree_info info;
158
159 /*
160 * Non-blocking version of the above.
161 */
162 struct dm_btree_info nb_info;
163
164 /*
165 * Just the top level for deleting whole devices.
166 */
167 struct dm_btree_info tl_info;
168
169 /*
170 * Just the bottom level for creating new devices.
171 */
172 struct dm_btree_info bl_info;
173
174 /*
175 * Describes the device details btree.
176 */
177 struct dm_btree_info details_info;
178
179 struct rw_semaphore root_lock;
180 uint32_t time;
181 int need_commit;
182 dm_block_t root;
183 dm_block_t details_root;
184 struct list_head thin_devices;
185 uint64_t trans_id;
186 unsigned long flags;
187 sector_t data_block_size;
188 };
189
190 struct dm_thin_device {
191 struct list_head list;
192 struct dm_pool_metadata *pmd;
193 dm_thin_id id;
194
195 int open_count;
196 int changed;
197 uint64_t mapped_blocks;
198 uint64_t transaction_id;
199 uint32_t creation_time;
200 uint32_t snapshotted_time;
201 };
202
203 /*----------------------------------------------------------------
204 * superblock validator
205 *--------------------------------------------------------------*/
206
207 #define SUPERBLOCK_CSUM_XOR 160774
208
209 static void sb_prepare_for_write(struct dm_block_validator *v,
210 struct dm_block *b,
211 size_t block_size)
212 {
213 struct thin_disk_superblock *disk_super = dm_block_data(b);
214
215 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
216 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
217 block_size - sizeof(__le32),
218 SUPERBLOCK_CSUM_XOR));
219 }
220
221 static int sb_check(struct dm_block_validator *v,
222 struct dm_block *b,
223 size_t block_size)
224 {
225 struct thin_disk_superblock *disk_super = dm_block_data(b);
226 __le32 csum_le;
227
228 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
229 DMERR("sb_check failed: blocknr %llu: "
230 "wanted %llu", le64_to_cpu(disk_super->blocknr),
231 (unsigned long long)dm_block_location(b));
232 return -ENOTBLK;
233 }
234
235 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
236 DMERR("sb_check failed: magic %llu: "
237 "wanted %llu", le64_to_cpu(disk_super->magic),
238 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
239 return -EILSEQ;
240 }
241
242 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
243 block_size - sizeof(__le32),
244 SUPERBLOCK_CSUM_XOR));
245 if (csum_le != disk_super->csum) {
246 DMERR("sb_check failed: csum %u: wanted %u",
247 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
248 return -EILSEQ;
249 }
250
251 return 0;
252 }
253
254 static struct dm_block_validator sb_validator = {
255 .name = "superblock",
256 .prepare_for_write = sb_prepare_for_write,
257 .check = sb_check
258 };
259
260 /*----------------------------------------------------------------
261 * Methods for the btree value types
262 *--------------------------------------------------------------*/
263
264 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
265 {
266 return (b << 24) | t;
267 }
268
269 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
270 {
271 *b = v >> 24;
272 *t = v & ((1 << 24) - 1);
273 }
274
275 static void data_block_inc(void *context, void *value_le)
276 {
277 struct dm_space_map *sm = context;
278 __le64 v_le;
279 uint64_t b;
280 uint32_t t;
281
282 memcpy(&v_le, value_le, sizeof(v_le));
283 unpack_block_time(le64_to_cpu(v_le), &b, &t);
284 dm_sm_inc_block(sm, b);
285 }
286
287 static void data_block_dec(void *context, void *value_le)
288 {
289 struct dm_space_map *sm = context;
290 __le64 v_le;
291 uint64_t b;
292 uint32_t t;
293
294 memcpy(&v_le, value_le, sizeof(v_le));
295 unpack_block_time(le64_to_cpu(v_le), &b, &t);
296 dm_sm_dec_block(sm, b);
297 }
298
299 static int data_block_equal(void *context, void *value1_le, void *value2_le)
300 {
301 __le64 v1_le, v2_le;
302 uint64_t b1, b2;
303 uint32_t t;
304
305 memcpy(&v1_le, value1_le, sizeof(v1_le));
306 memcpy(&v2_le, value2_le, sizeof(v2_le));
307 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
308 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
309
310 return b1 == b2;
311 }
312
313 static void subtree_inc(void *context, void *value)
314 {
315 struct dm_btree_info *info = context;
316 __le64 root_le;
317 uint64_t root;
318
319 memcpy(&root_le, value, sizeof(root_le));
320 root = le64_to_cpu(root_le);
321 dm_tm_inc(info->tm, root);
322 }
323
324 static void subtree_dec(void *context, void *value)
325 {
326 struct dm_btree_info *info = context;
327 __le64 root_le;
328 uint64_t root;
329
330 memcpy(&root_le, value, sizeof(root_le));
331 root = le64_to_cpu(root_le);
332 if (dm_btree_del(info, root))
333 DMERR("btree delete failed\n");
334 }
335
336 static int subtree_equal(void *context, void *value1_le, void *value2_le)
337 {
338 __le64 v1_le, v2_le;
339 memcpy(&v1_le, value1_le, sizeof(v1_le));
340 memcpy(&v2_le, value2_le, sizeof(v2_le));
341
342 return v1_le == v2_le;
343 }
344
345 /*----------------------------------------------------------------*/
346
347 static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
348 {
349 int r;
350 unsigned i;
351 struct dm_block *b;
352 __le64 *data_le, zero = cpu_to_le64(0);
353 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
354
355 /*
356 * We can't use a validator here - it may be all zeroes.
357 */
358 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
359 if (r)
360 return r;
361
362 data_le = dm_block_data(b);
363 *result = 1;
364 for (i = 0; i < block_size; i++) {
365 if (data_le[i] != zero) {
366 *result = 0;
367 break;
368 }
369 }
370
371 return dm_bm_unlock(b);
372 }
373
374 static void __setup_btree_details(struct dm_pool_metadata *pmd)
375 {
376 pmd->info.tm = pmd->tm;
377 pmd->info.levels = 2;
378 pmd->info.value_type.context = pmd->data_sm;
379 pmd->info.value_type.size = sizeof(__le64);
380 pmd->info.value_type.inc = data_block_inc;
381 pmd->info.value_type.dec = data_block_dec;
382 pmd->info.value_type.equal = data_block_equal;
383
384 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
385 pmd->nb_info.tm = pmd->nb_tm;
386
387 pmd->tl_info.tm = pmd->tm;
388 pmd->tl_info.levels = 1;
389 pmd->tl_info.value_type.context = &pmd->info;
390 pmd->tl_info.value_type.size = sizeof(__le64);
391 pmd->tl_info.value_type.inc = subtree_inc;
392 pmd->tl_info.value_type.dec = subtree_dec;
393 pmd->tl_info.value_type.equal = subtree_equal;
394
395 pmd->bl_info.tm = pmd->tm;
396 pmd->bl_info.levels = 1;
397 pmd->bl_info.value_type.context = pmd->data_sm;
398 pmd->bl_info.value_type.size = sizeof(__le64);
399 pmd->bl_info.value_type.inc = data_block_inc;
400 pmd->bl_info.value_type.dec = data_block_dec;
401 pmd->bl_info.value_type.equal = data_block_equal;
402
403 pmd->details_info.tm = pmd->tm;
404 pmd->details_info.levels = 1;
405 pmd->details_info.value_type.context = NULL;
406 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
407 pmd->details_info.value_type.inc = NULL;
408 pmd->details_info.value_type.dec = NULL;
409 pmd->details_info.value_type.equal = NULL;
410 }
411
412 static int init_pmd(struct dm_pool_metadata *pmd,
413 struct dm_block_manager *bm,
414 dm_block_t nr_blocks, int create)
415 {
416 int r;
417 struct dm_space_map *sm, *data_sm;
418 struct dm_transaction_manager *tm;
419 struct dm_block *sblock;
420
421 if (create) {
422 r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
423 &sb_validator, &tm, &sm, &sblock);
424 if (r < 0) {
425 DMERR("tm_create_with_sm failed");
426 return r;
427 }
428
429 data_sm = dm_sm_disk_create(tm, nr_blocks);
430 if (IS_ERR(data_sm)) {
431 DMERR("sm_disk_create failed");
432 dm_tm_unlock(tm, sblock);
433 r = PTR_ERR(data_sm);
434 goto bad;
435 }
436 } else {
437 struct thin_disk_superblock *disk_super = NULL;
438 size_t space_map_root_offset =
439 offsetof(struct thin_disk_superblock, metadata_space_map_root);
440
441 r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
442 &sb_validator, space_map_root_offset,
443 SPACE_MAP_ROOT_SIZE, &tm, &sm, &sblock);
444 if (r < 0) {
445 DMERR("tm_open_with_sm failed");
446 return r;
447 }
448
449 disk_super = dm_block_data(sblock);
450 data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
451 sizeof(disk_super->data_space_map_root));
452 if (IS_ERR(data_sm)) {
453 DMERR("sm_disk_open failed");
454 r = PTR_ERR(data_sm);
455 goto bad;
456 }
457 }
458
459
460 r = dm_tm_unlock(tm, sblock);
461 if (r < 0) {
462 DMERR("couldn't unlock superblock");
463 goto bad_data_sm;
464 }
465
466 pmd->bm = bm;
467 pmd->metadata_sm = sm;
468 pmd->data_sm = data_sm;
469 pmd->tm = tm;
470 pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
471 if (!pmd->nb_tm) {
472 DMERR("could not create clone tm");
473 r = -ENOMEM;
474 goto bad_data_sm;
475 }
476
477 __setup_btree_details(pmd);
478 pmd->root = 0;
479
480 init_rwsem(&pmd->root_lock);
481 pmd->time = 0;
482 pmd->need_commit = 0;
483 pmd->details_root = 0;
484 pmd->trans_id = 0;
485 pmd->flags = 0;
486 INIT_LIST_HEAD(&pmd->thin_devices);
487
488 return 0;
489
490 bad_data_sm:
491 dm_sm_destroy(data_sm);
492 bad:
493 dm_tm_destroy(tm);
494 dm_sm_destroy(sm);
495
496 return r;
497 }
498
499 static int __begin_transaction(struct dm_pool_metadata *pmd)
500 {
501 int r;
502 u32 features;
503 struct thin_disk_superblock *disk_super;
504 struct dm_block *sblock;
505
506 /*
507 * __maybe_commit_transaction() resets these
508 */
509 WARN_ON(pmd->need_commit);
510
511 /*
512 * We re-read the superblock every time. Shouldn't need to do this
513 * really.
514 */
515 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
516 &sb_validator, &sblock);
517 if (r)
518 return r;
519
520 disk_super = dm_block_data(sblock);
521 pmd->time = le32_to_cpu(disk_super->time);
522 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
523 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
524 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
525 pmd->flags = le32_to_cpu(disk_super->flags);
526 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
527
528 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
529 if (features) {
530 DMERR("could not access metadata due to "
531 "unsupported optional features (%lx).",
532 (unsigned long)features);
533 r = -EINVAL;
534 goto out;
535 }
536
537 /*
538 * Check for read-only metadata to skip the following RDWR checks.
539 */
540 if (get_disk_ro(pmd->bdev->bd_disk))
541 goto out;
542
543 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
544 if (features) {
545 DMERR("could not access metadata RDWR due to "
546 "unsupported optional features (%lx).",
547 (unsigned long)features);
548 r = -EINVAL;
549 }
550
551 out:
552 dm_bm_unlock(sblock);
553 return r;
554 }
555
556 static int __write_changed_details(struct dm_pool_metadata *pmd)
557 {
558 int r;
559 struct dm_thin_device *td, *tmp;
560 struct disk_device_details details;
561 uint64_t key;
562
563 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
564 if (!td->changed)
565 continue;
566
567 key = td->id;
568
569 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
570 details.transaction_id = cpu_to_le64(td->transaction_id);
571 details.creation_time = cpu_to_le32(td->creation_time);
572 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
573 __dm_bless_for_disk(&details);
574
575 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
576 &key, &details, &pmd->details_root);
577 if (r)
578 return r;
579
580 if (td->open_count)
581 td->changed = 0;
582 else {
583 list_del(&td->list);
584 kfree(td);
585 }
586
587 pmd->need_commit = 1;
588 }
589
590 return 0;
591 }
592
593 static int __commit_transaction(struct dm_pool_metadata *pmd)
594 {
595 /*
596 * FIXME: Associated pool should be made read-only on failure.
597 */
598 int r;
599 size_t metadata_len, data_len;
600 struct thin_disk_superblock *disk_super;
601 struct dm_block *sblock;
602
603 /*
604 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
605 */
606 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
607
608 r = __write_changed_details(pmd);
609 if (r < 0)
610 return r;
611
612 if (!pmd->need_commit)
613 return r;
614
615 r = dm_sm_commit(pmd->data_sm);
616 if (r < 0)
617 return r;
618
619 r = dm_tm_pre_commit(pmd->tm);
620 if (r < 0)
621 return r;
622
623 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
624 if (r < 0)
625 return r;
626
627 r = dm_sm_root_size(pmd->data_sm, &data_len);
628 if (r < 0)
629 return r;
630
631 r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
632 &sb_validator, &sblock);
633 if (r)
634 return r;
635
636 disk_super = dm_block_data(sblock);
637 disk_super->time = cpu_to_le32(pmd->time);
638 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
639 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
640 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
641 disk_super->flags = cpu_to_le32(pmd->flags);
642
643 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
644 metadata_len);
645 if (r < 0)
646 goto out_locked;
647
648 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
649 data_len);
650 if (r < 0)
651 goto out_locked;
652
653 r = dm_tm_commit(pmd->tm, sblock);
654 if (!r)
655 pmd->need_commit = 0;
656
657 return r;
658
659 out_locked:
660 dm_bm_unlock(sblock);
661 return r;
662 }
663
664 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
665 sector_t data_block_size)
666 {
667 int r;
668 struct thin_disk_superblock *disk_super;
669 struct dm_pool_metadata *pmd;
670 sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
671 struct dm_block_manager *bm;
672 int create;
673 struct dm_block *sblock;
674
675 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
676 if (!pmd) {
677 DMERR("could not allocate metadata struct");
678 return ERR_PTR(-ENOMEM);
679 }
680
681 bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
682 THIN_METADATA_CACHE_SIZE,
683 THIN_MAX_CONCURRENT_LOCKS);
684 if (!bm) {
685 DMERR("could not create block manager");
686 kfree(pmd);
687 return ERR_PTR(-ENOMEM);
688 }
689
690 r = superblock_all_zeroes(bm, &create);
691 if (r) {
692 dm_block_manager_destroy(bm);
693 kfree(pmd);
694 return ERR_PTR(r);
695 }
696
697
698 r = init_pmd(pmd, bm, 0, create);
699 if (r) {
700 dm_block_manager_destroy(bm);
701 kfree(pmd);
702 return ERR_PTR(r);
703 }
704 pmd->bdev = bdev;
705
706 if (!create) {
707 r = __begin_transaction(pmd);
708 if (r < 0)
709 goto bad;
710 return pmd;
711 }
712
713 /*
714 * Create.
715 */
716 r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
717 &sb_validator, &sblock);
718 if (r)
719 goto bad;
720
721 if (bdev_size > THIN_METADATA_MAX_SECTORS)
722 bdev_size = THIN_METADATA_MAX_SECTORS;
723
724 disk_super = dm_block_data(sblock);
725 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
726 disk_super->version = cpu_to_le32(THIN_VERSION);
727 disk_super->time = 0;
728 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
729 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
730 disk_super->data_block_size = cpu_to_le32(data_block_size);
731
732 r = dm_bm_unlock(sblock);
733 if (r < 0)
734 goto bad;
735
736 r = dm_btree_empty(&pmd->info, &pmd->root);
737 if (r < 0)
738 goto bad;
739
740 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
741 if (r < 0) {
742 DMERR("couldn't create devices root");
743 goto bad;
744 }
745
746 pmd->flags = 0;
747 pmd->need_commit = 1;
748 r = dm_pool_commit_metadata(pmd);
749 if (r < 0) {
750 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
751 __func__, r);
752 goto bad;
753 }
754
755 return pmd;
756
757 bad:
758 if (dm_pool_metadata_close(pmd) < 0)
759 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
760 return ERR_PTR(r);
761 }
762
763 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
764 {
765 int r;
766 unsigned open_devices = 0;
767 struct dm_thin_device *td, *tmp;
768
769 down_read(&pmd->root_lock);
770 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
771 if (td->open_count)
772 open_devices++;
773 else {
774 list_del(&td->list);
775 kfree(td);
776 }
777 }
778 up_read(&pmd->root_lock);
779
780 if (open_devices) {
781 DMERR("attempt to close pmd when %u device(s) are still open",
782 open_devices);
783 return -EBUSY;
784 }
785
786 r = __commit_transaction(pmd);
787 if (r < 0)
788 DMWARN("%s: __commit_transaction() failed, error = %d",
789 __func__, r);
790
791 dm_tm_destroy(pmd->tm);
792 dm_tm_destroy(pmd->nb_tm);
793 dm_block_manager_destroy(pmd->bm);
794 dm_sm_destroy(pmd->metadata_sm);
795 dm_sm_destroy(pmd->data_sm);
796 kfree(pmd);
797
798 return 0;
799 }
800
801 /*
802 * __open_device: Returns @td corresponding to device with id @dev,
803 * creating it if @create is set and incrementing @td->open_count.
804 * On failure, @td is undefined.
805 */
806 static int __open_device(struct dm_pool_metadata *pmd,
807 dm_thin_id dev, int create,
808 struct dm_thin_device **td)
809 {
810 int r, changed = 0;
811 struct dm_thin_device *td2;
812 uint64_t key = dev;
813 struct disk_device_details details_le;
814
815 /*
816 * If the device is already open, return it.
817 */
818 list_for_each_entry(td2, &pmd->thin_devices, list)
819 if (td2->id == dev) {
820 /*
821 * May not create an already-open device.
822 */
823 if (create)
824 return -EEXIST;
825
826 td2->open_count++;
827 *td = td2;
828 return 0;
829 }
830
831 /*
832 * Check the device exists.
833 */
834 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
835 &key, &details_le);
836 if (r) {
837 if (r != -ENODATA || !create)
838 return r;
839
840 /*
841 * Create new device.
842 */
843 changed = 1;
844 details_le.mapped_blocks = 0;
845 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
846 details_le.creation_time = cpu_to_le32(pmd->time);
847 details_le.snapshotted_time = cpu_to_le32(pmd->time);
848 }
849
850 *td = kmalloc(sizeof(**td), GFP_NOIO);
851 if (!*td)
852 return -ENOMEM;
853
854 (*td)->pmd = pmd;
855 (*td)->id = dev;
856 (*td)->open_count = 1;
857 (*td)->changed = changed;
858 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
859 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
860 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
861 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
862
863 list_add(&(*td)->list, &pmd->thin_devices);
864
865 return 0;
866 }
867
868 static void __close_device(struct dm_thin_device *td)
869 {
870 --td->open_count;
871 }
872
873 static int __create_thin(struct dm_pool_metadata *pmd,
874 dm_thin_id dev)
875 {
876 int r;
877 dm_block_t dev_root;
878 uint64_t key = dev;
879 struct disk_device_details details_le;
880 struct dm_thin_device *td;
881 __le64 value;
882
883 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
884 &key, &details_le);
885 if (!r)
886 return -EEXIST;
887
888 /*
889 * Create an empty btree for the mappings.
890 */
891 r = dm_btree_empty(&pmd->bl_info, &dev_root);
892 if (r)
893 return r;
894
895 /*
896 * Insert it into the main mapping tree.
897 */
898 value = cpu_to_le64(dev_root);
899 __dm_bless_for_disk(&value);
900 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
901 if (r) {
902 dm_btree_del(&pmd->bl_info, dev_root);
903 return r;
904 }
905
906 r = __open_device(pmd, dev, 1, &td);
907 if (r) {
908 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
909 dm_btree_del(&pmd->bl_info, dev_root);
910 return r;
911 }
912 __close_device(td);
913
914 return r;
915 }
916
917 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
918 {
919 int r;
920
921 down_write(&pmd->root_lock);
922 r = __create_thin(pmd, dev);
923 up_write(&pmd->root_lock);
924
925 return r;
926 }
927
928 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
929 struct dm_thin_device *snap,
930 dm_thin_id origin, uint32_t time)
931 {
932 int r;
933 struct dm_thin_device *td;
934
935 r = __open_device(pmd, origin, 0, &td);
936 if (r)
937 return r;
938
939 td->changed = 1;
940 td->snapshotted_time = time;
941
942 snap->mapped_blocks = td->mapped_blocks;
943 snap->snapshotted_time = time;
944 __close_device(td);
945
946 return 0;
947 }
948
949 static int __create_snap(struct dm_pool_metadata *pmd,
950 dm_thin_id dev, dm_thin_id origin)
951 {
952 int r;
953 dm_block_t origin_root;
954 uint64_t key = origin, dev_key = dev;
955 struct dm_thin_device *td;
956 struct disk_device_details details_le;
957 __le64 value;
958
959 /* check this device is unused */
960 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
961 &dev_key, &details_le);
962 if (!r)
963 return -EEXIST;
964
965 /* find the mapping tree for the origin */
966 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
967 if (r)
968 return r;
969 origin_root = le64_to_cpu(value);
970
971 /* clone the origin, an inc will do */
972 dm_tm_inc(pmd->tm, origin_root);
973
974 /* insert into the main mapping tree */
975 value = cpu_to_le64(origin_root);
976 __dm_bless_for_disk(&value);
977 key = dev;
978 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
979 if (r) {
980 dm_tm_dec(pmd->tm, origin_root);
981 return r;
982 }
983
984 pmd->time++;
985
986 r = __open_device(pmd, dev, 1, &td);
987 if (r)
988 goto bad;
989
990 r = __set_snapshot_details(pmd, td, origin, pmd->time);
991 __close_device(td);
992
993 if (r)
994 goto bad;
995
996 return 0;
997
998 bad:
999 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1000 dm_btree_remove(&pmd->details_info, pmd->details_root,
1001 &key, &pmd->details_root);
1002 return r;
1003 }
1004
1005 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1006 dm_thin_id dev,
1007 dm_thin_id origin)
1008 {
1009 int r;
1010
1011 down_write(&pmd->root_lock);
1012 r = __create_snap(pmd, dev, origin);
1013 up_write(&pmd->root_lock);
1014
1015 return r;
1016 }
1017
1018 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1019 {
1020 int r;
1021 uint64_t key = dev;
1022 struct dm_thin_device *td;
1023
1024 /* TODO: failure should mark the transaction invalid */
1025 r = __open_device(pmd, dev, 0, &td);
1026 if (r)
1027 return r;
1028
1029 if (td->open_count > 1) {
1030 __close_device(td);
1031 return -EBUSY;
1032 }
1033
1034 list_del(&td->list);
1035 kfree(td);
1036 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1037 &key, &pmd->details_root);
1038 if (r)
1039 return r;
1040
1041 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1042 if (r)
1043 return r;
1044
1045 pmd->need_commit = 1;
1046
1047 return 0;
1048 }
1049
1050 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1051 dm_thin_id dev)
1052 {
1053 int r;
1054
1055 down_write(&pmd->root_lock);
1056 r = __delete_device(pmd, dev);
1057 up_write(&pmd->root_lock);
1058
1059 return r;
1060 }
1061
1062 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1063 uint64_t current_id,
1064 uint64_t new_id)
1065 {
1066 down_write(&pmd->root_lock);
1067 if (pmd->trans_id != current_id) {
1068 up_write(&pmd->root_lock);
1069 DMERR("mismatched transaction id");
1070 return -EINVAL;
1071 }
1072
1073 pmd->trans_id = new_id;
1074 pmd->need_commit = 1;
1075 up_write(&pmd->root_lock);
1076
1077 return 0;
1078 }
1079
1080 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1081 uint64_t *result)
1082 {
1083 down_read(&pmd->root_lock);
1084 *result = pmd->trans_id;
1085 up_read(&pmd->root_lock);
1086
1087 return 0;
1088 }
1089
1090 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1091 {
1092 int r, inc;
1093 struct thin_disk_superblock *disk_super;
1094 struct dm_block *copy, *sblock;
1095 dm_block_t held_root;
1096
1097 /*
1098 * Copy the superblock.
1099 */
1100 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1101 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1102 &sb_validator, &copy, &inc);
1103 if (r)
1104 return r;
1105
1106 BUG_ON(!inc);
1107
1108 held_root = dm_block_location(copy);
1109 disk_super = dm_block_data(copy);
1110
1111 if (le64_to_cpu(disk_super->held_root)) {
1112 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1113
1114 dm_tm_dec(pmd->tm, held_root);
1115 dm_tm_unlock(pmd->tm, copy);
1116 pmd->need_commit = 1;
1117
1118 return -EBUSY;
1119 }
1120
1121 /*
1122 * Wipe the spacemap since we're not publishing this.
1123 */
1124 memset(&disk_super->data_space_map_root, 0,
1125 sizeof(disk_super->data_space_map_root));
1126 memset(&disk_super->metadata_space_map_root, 0,
1127 sizeof(disk_super->metadata_space_map_root));
1128
1129 /*
1130 * Increment the data structures that need to be preserved.
1131 */
1132 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1133 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1134 dm_tm_unlock(pmd->tm, copy);
1135
1136 /*
1137 * Write the held root into the superblock.
1138 */
1139 r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1140 &sb_validator, &sblock);
1141 if (r) {
1142 dm_tm_dec(pmd->tm, held_root);
1143 pmd->need_commit = 1;
1144 return r;
1145 }
1146
1147 disk_super = dm_block_data(sblock);
1148 disk_super->held_root = cpu_to_le64(held_root);
1149 dm_bm_unlock(sblock);
1150
1151 pmd->need_commit = 1;
1152
1153 return 0;
1154 }
1155
1156 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1157 {
1158 int r;
1159
1160 down_write(&pmd->root_lock);
1161 r = __reserve_metadata_snap(pmd);
1162 up_write(&pmd->root_lock);
1163
1164 return r;
1165 }
1166
1167 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1168 {
1169 int r;
1170 struct thin_disk_superblock *disk_super;
1171 struct dm_block *sblock, *copy;
1172 dm_block_t held_root;
1173
1174 r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1175 &sb_validator, &sblock);
1176 if (r)
1177 return r;
1178
1179 disk_super = dm_block_data(sblock);
1180 held_root = le64_to_cpu(disk_super->held_root);
1181 disk_super->held_root = cpu_to_le64(0);
1182 pmd->need_commit = 1;
1183
1184 dm_bm_unlock(sblock);
1185
1186 if (!held_root) {
1187 DMWARN("No pool metadata snapshot found: nothing to release.");
1188 return -EINVAL;
1189 }
1190
1191 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1192 if (r)
1193 return r;
1194
1195 disk_super = dm_block_data(copy);
1196 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1197 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1198 dm_sm_dec_block(pmd->metadata_sm, held_root);
1199
1200 return dm_tm_unlock(pmd->tm, copy);
1201 }
1202
1203 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1204 {
1205 int r;
1206
1207 down_write(&pmd->root_lock);
1208 r = __release_metadata_snap(pmd);
1209 up_write(&pmd->root_lock);
1210
1211 return r;
1212 }
1213
1214 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1215 dm_block_t *result)
1216 {
1217 int r;
1218 struct thin_disk_superblock *disk_super;
1219 struct dm_block *sblock;
1220
1221 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1222 &sb_validator, &sblock);
1223 if (r)
1224 return r;
1225
1226 disk_super = dm_block_data(sblock);
1227 *result = le64_to_cpu(disk_super->held_root);
1228
1229 return dm_bm_unlock(sblock);
1230 }
1231
1232 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1233 dm_block_t *result)
1234 {
1235 int r;
1236
1237 down_read(&pmd->root_lock);
1238 r = __get_metadata_snap(pmd, result);
1239 up_read(&pmd->root_lock);
1240
1241 return r;
1242 }
1243
1244 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1245 struct dm_thin_device **td)
1246 {
1247 int r;
1248
1249 down_write(&pmd->root_lock);
1250 r = __open_device(pmd, dev, 0, td);
1251 up_write(&pmd->root_lock);
1252
1253 return r;
1254 }
1255
1256 int dm_pool_close_thin_device(struct dm_thin_device *td)
1257 {
1258 down_write(&td->pmd->root_lock);
1259 __close_device(td);
1260 up_write(&td->pmd->root_lock);
1261
1262 return 0;
1263 }
1264
1265 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1266 {
1267 return td->id;
1268 }
1269
1270 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1271 {
1272 return td->snapshotted_time > time;
1273 }
1274
1275 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1276 int can_block, struct dm_thin_lookup_result *result)
1277 {
1278 int r;
1279 uint64_t block_time = 0;
1280 __le64 value;
1281 struct dm_pool_metadata *pmd = td->pmd;
1282 dm_block_t keys[2] = { td->id, block };
1283
1284 if (can_block) {
1285 down_read(&pmd->root_lock);
1286 r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1287 if (!r)
1288 block_time = le64_to_cpu(value);
1289 up_read(&pmd->root_lock);
1290
1291 } else if (down_read_trylock(&pmd->root_lock)) {
1292 r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1293 if (!r)
1294 block_time = le64_to_cpu(value);
1295 up_read(&pmd->root_lock);
1296
1297 } else
1298 return -EWOULDBLOCK;
1299
1300 if (!r) {
1301 dm_block_t exception_block;
1302 uint32_t exception_time;
1303 unpack_block_time(block_time, &exception_block,
1304 &exception_time);
1305 result->block = exception_block;
1306 result->shared = __snapshotted_since(td, exception_time);
1307 }
1308
1309 return r;
1310 }
1311
1312 static int __insert(struct dm_thin_device *td, dm_block_t block,
1313 dm_block_t data_block)
1314 {
1315 int r, inserted;
1316 __le64 value;
1317 struct dm_pool_metadata *pmd = td->pmd;
1318 dm_block_t keys[2] = { td->id, block };
1319
1320 pmd->need_commit = 1;
1321 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1322 __dm_bless_for_disk(&value);
1323
1324 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1325 &pmd->root, &inserted);
1326 if (r)
1327 return r;
1328
1329 if (inserted) {
1330 td->mapped_blocks++;
1331 td->changed = 1;
1332 }
1333
1334 return 0;
1335 }
1336
1337 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1338 dm_block_t data_block)
1339 {
1340 int r;
1341
1342 down_write(&td->pmd->root_lock);
1343 r = __insert(td, block, data_block);
1344 up_write(&td->pmd->root_lock);
1345
1346 return r;
1347 }
1348
1349 static int __remove(struct dm_thin_device *td, dm_block_t block)
1350 {
1351 int r;
1352 struct dm_pool_metadata *pmd = td->pmd;
1353 dm_block_t keys[2] = { td->id, block };
1354
1355 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1356 if (r)
1357 return r;
1358
1359 td->mapped_blocks--;
1360 td->changed = 1;
1361 pmd->need_commit = 1;
1362
1363 return 0;
1364 }
1365
1366 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1367 {
1368 int r;
1369
1370 down_write(&td->pmd->root_lock);
1371 r = __remove(td, block);
1372 up_write(&td->pmd->root_lock);
1373
1374 return r;
1375 }
1376
1377 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1378 {
1379 int r;
1380
1381 down_write(&pmd->root_lock);
1382
1383 r = dm_sm_new_block(pmd->data_sm, result);
1384 pmd->need_commit = 1;
1385
1386 up_write(&pmd->root_lock);
1387
1388 return r;
1389 }
1390
1391 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1392 {
1393 int r;
1394
1395 down_write(&pmd->root_lock);
1396
1397 r = __commit_transaction(pmd);
1398 if (r <= 0)
1399 goto out;
1400
1401 /*
1402 * Open the next transaction.
1403 */
1404 r = __begin_transaction(pmd);
1405 out:
1406 up_write(&pmd->root_lock);
1407 return r;
1408 }
1409
1410 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1411 {
1412 int r;
1413
1414 down_read(&pmd->root_lock);
1415 r = dm_sm_get_nr_free(pmd->data_sm, result);
1416 up_read(&pmd->root_lock);
1417
1418 return r;
1419 }
1420
1421 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1422 dm_block_t *result)
1423 {
1424 int r;
1425
1426 down_read(&pmd->root_lock);
1427 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1428 up_read(&pmd->root_lock);
1429
1430 return r;
1431 }
1432
1433 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1434 dm_block_t *result)
1435 {
1436 int r;
1437
1438 down_read(&pmd->root_lock);
1439 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1440 up_read(&pmd->root_lock);
1441
1442 return r;
1443 }
1444
1445 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1446 {
1447 down_read(&pmd->root_lock);
1448 *result = pmd->data_block_size;
1449 up_read(&pmd->root_lock);
1450
1451 return 0;
1452 }
1453
1454 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1455 {
1456 int r;
1457
1458 down_read(&pmd->root_lock);
1459 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1460 up_read(&pmd->root_lock);
1461
1462 return r;
1463 }
1464
1465 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1466 {
1467 struct dm_pool_metadata *pmd = td->pmd;
1468
1469 down_read(&pmd->root_lock);
1470 *result = td->mapped_blocks;
1471 up_read(&pmd->root_lock);
1472
1473 return 0;
1474 }
1475
1476 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1477 {
1478 int r;
1479 __le64 value_le;
1480 dm_block_t thin_root;
1481 struct dm_pool_metadata *pmd = td->pmd;
1482
1483 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1484 if (r)
1485 return r;
1486
1487 thin_root = le64_to_cpu(value_le);
1488
1489 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1490 }
1491
1492 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1493 dm_block_t *result)
1494 {
1495 int r;
1496 struct dm_pool_metadata *pmd = td->pmd;
1497
1498 down_read(&pmd->root_lock);
1499 r = __highest_block(td, result);
1500 up_read(&pmd->root_lock);
1501
1502 return r;
1503 }
1504
1505 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1506 {
1507 int r;
1508 dm_block_t old_count;
1509
1510 r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1511 if (r)
1512 return r;
1513
1514 if (new_count == old_count)
1515 return 0;
1516
1517 if (new_count < old_count) {
1518 DMERR("cannot reduce size of data device");
1519 return -EINVAL;
1520 }
1521
1522 r = dm_sm_extend(pmd->data_sm, new_count - old_count);
1523 if (!r)
1524 pmd->need_commit = 1;
1525
1526 return r;
1527 }
1528
1529 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1530 {
1531 int r;
1532
1533 down_write(&pmd->root_lock);
1534 r = __resize_data_dev(pmd, new_count);
1535 up_write(&pmd->root_lock);
1536
1537 return r;
1538 }
This page took 0.082232 seconds and 6 git commands to generate.