dm thin metadata: add format option to dm_pool_metadata_open
[deliverable/linux.git] / drivers / md / dm-thin-metadata.c
1 /*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82
83 /*
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 */
87 #define THIN_MAX_CONCURRENT_LOCKS 5
88
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
91
92 /*
93 * Little endian on-disk superblock and device details.
94 */
95 struct thin_disk_superblock {
96 __le32 csum; /* Checksum of superblock except for this field. */
97 __le32 flags;
98 __le64 blocknr; /* This block number, dm_block_t. */
99
100 __u8 uuid[16];
101 __le64 magic;
102 __le32 version;
103 __le32 time;
104
105 __le64 trans_id;
106
107 /*
108 * Root held by userspace transactions.
109 */
110 __le64 held_root;
111
112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
114
115 /*
116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117 */
118 __le64 data_mapping_root;
119
120 /*
121 * Device detail root mapping dev_id -> device_details
122 */
123 __le64 device_details_root;
124
125 __le32 data_block_size; /* In 512-byte sectors. */
126
127 __le32 metadata_block_size; /* In 512-byte sectors. */
128 __le64 metadata_nr_blocks;
129
130 __le32 compat_flags;
131 __le32 compat_ro_flags;
132 __le32 incompat_flags;
133 } __packed;
134
135 struct disk_device_details {
136 __le64 mapped_blocks;
137 __le64 transaction_id; /* When created. */
138 __le32 creation_time;
139 __le32 snapshotted_time;
140 } __packed;
141
142 struct dm_pool_metadata {
143 struct hlist_node hash;
144
145 struct block_device *bdev;
146 struct dm_block_manager *bm;
147 struct dm_space_map *metadata_sm;
148 struct dm_space_map *data_sm;
149 struct dm_transaction_manager *tm;
150 struct dm_transaction_manager *nb_tm;
151
152 /*
153 * Two-level btree.
154 * First level holds thin_dev_t.
155 * Second level holds mappings.
156 */
157 struct dm_btree_info info;
158
159 /*
160 * Non-blocking version of the above.
161 */
162 struct dm_btree_info nb_info;
163
164 /*
165 * Just the top level for deleting whole devices.
166 */
167 struct dm_btree_info tl_info;
168
169 /*
170 * Just the bottom level for creating new devices.
171 */
172 struct dm_btree_info bl_info;
173
174 /*
175 * Describes the device details btree.
176 */
177 struct dm_btree_info details_info;
178
179 struct rw_semaphore root_lock;
180 uint32_t time;
181 dm_block_t root;
182 dm_block_t details_root;
183 struct list_head thin_devices;
184 uint64_t trans_id;
185 unsigned long flags;
186 sector_t data_block_size;
187 };
188
189 struct dm_thin_device {
190 struct list_head list;
191 struct dm_pool_metadata *pmd;
192 dm_thin_id id;
193
194 int open_count;
195 int changed;
196 uint64_t mapped_blocks;
197 uint64_t transaction_id;
198 uint32_t creation_time;
199 uint32_t snapshotted_time;
200 };
201
202 /*----------------------------------------------------------------
203 * superblock validator
204 *--------------------------------------------------------------*/
205
206 #define SUPERBLOCK_CSUM_XOR 160774
207
208 static void sb_prepare_for_write(struct dm_block_validator *v,
209 struct dm_block *b,
210 size_t block_size)
211 {
212 struct thin_disk_superblock *disk_super = dm_block_data(b);
213
214 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
215 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
216 block_size - sizeof(__le32),
217 SUPERBLOCK_CSUM_XOR));
218 }
219
220 static int sb_check(struct dm_block_validator *v,
221 struct dm_block *b,
222 size_t block_size)
223 {
224 struct thin_disk_superblock *disk_super = dm_block_data(b);
225 __le32 csum_le;
226
227 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
228 DMERR("sb_check failed: blocknr %llu: "
229 "wanted %llu", le64_to_cpu(disk_super->blocknr),
230 (unsigned long long)dm_block_location(b));
231 return -ENOTBLK;
232 }
233
234 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
235 DMERR("sb_check failed: magic %llu: "
236 "wanted %llu", le64_to_cpu(disk_super->magic),
237 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
238 return -EILSEQ;
239 }
240
241 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
242 block_size - sizeof(__le32),
243 SUPERBLOCK_CSUM_XOR));
244 if (csum_le != disk_super->csum) {
245 DMERR("sb_check failed: csum %u: wanted %u",
246 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
247 return -EILSEQ;
248 }
249
250 return 0;
251 }
252
253 static struct dm_block_validator sb_validator = {
254 .name = "superblock",
255 .prepare_for_write = sb_prepare_for_write,
256 .check = sb_check
257 };
258
259 /*----------------------------------------------------------------
260 * Methods for the btree value types
261 *--------------------------------------------------------------*/
262
263 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
264 {
265 return (b << 24) | t;
266 }
267
268 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
269 {
270 *b = v >> 24;
271 *t = v & ((1 << 24) - 1);
272 }
273
274 static void data_block_inc(void *context, void *value_le)
275 {
276 struct dm_space_map *sm = context;
277 __le64 v_le;
278 uint64_t b;
279 uint32_t t;
280
281 memcpy(&v_le, value_le, sizeof(v_le));
282 unpack_block_time(le64_to_cpu(v_le), &b, &t);
283 dm_sm_inc_block(sm, b);
284 }
285
286 static void data_block_dec(void *context, void *value_le)
287 {
288 struct dm_space_map *sm = context;
289 __le64 v_le;
290 uint64_t b;
291 uint32_t t;
292
293 memcpy(&v_le, value_le, sizeof(v_le));
294 unpack_block_time(le64_to_cpu(v_le), &b, &t);
295 dm_sm_dec_block(sm, b);
296 }
297
298 static int data_block_equal(void *context, void *value1_le, void *value2_le)
299 {
300 __le64 v1_le, v2_le;
301 uint64_t b1, b2;
302 uint32_t t;
303
304 memcpy(&v1_le, value1_le, sizeof(v1_le));
305 memcpy(&v2_le, value2_le, sizeof(v2_le));
306 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
307 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
308
309 return b1 == b2;
310 }
311
312 static void subtree_inc(void *context, void *value)
313 {
314 struct dm_btree_info *info = context;
315 __le64 root_le;
316 uint64_t root;
317
318 memcpy(&root_le, value, sizeof(root_le));
319 root = le64_to_cpu(root_le);
320 dm_tm_inc(info->tm, root);
321 }
322
323 static void subtree_dec(void *context, void *value)
324 {
325 struct dm_btree_info *info = context;
326 __le64 root_le;
327 uint64_t root;
328
329 memcpy(&root_le, value, sizeof(root_le));
330 root = le64_to_cpu(root_le);
331 if (dm_btree_del(info, root))
332 DMERR("btree delete failed\n");
333 }
334
335 static int subtree_equal(void *context, void *value1_le, void *value2_le)
336 {
337 __le64 v1_le, v2_le;
338 memcpy(&v1_le, value1_le, sizeof(v1_le));
339 memcpy(&v2_le, value2_le, sizeof(v2_le));
340
341 return v1_le == v2_le;
342 }
343
344 /*----------------------------------------------------------------*/
345
346 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
347 struct dm_block **sblock)
348 {
349 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
350 &sb_validator, sblock);
351 }
352
353 static int superblock_lock(struct dm_pool_metadata *pmd,
354 struct dm_block **sblock)
355 {
356 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
357 &sb_validator, sblock);
358 }
359
360 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
361 {
362 int r;
363 unsigned i;
364 struct dm_block *b;
365 __le64 *data_le, zero = cpu_to_le64(0);
366 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
367
368 /*
369 * We can't use a validator here - it may be all zeroes.
370 */
371 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
372 if (r)
373 return r;
374
375 data_le = dm_block_data(b);
376 *result = 1;
377 for (i = 0; i < block_size; i++) {
378 if (data_le[i] != zero) {
379 *result = 0;
380 break;
381 }
382 }
383
384 return dm_bm_unlock(b);
385 }
386
387 static void __setup_btree_details(struct dm_pool_metadata *pmd)
388 {
389 pmd->info.tm = pmd->tm;
390 pmd->info.levels = 2;
391 pmd->info.value_type.context = pmd->data_sm;
392 pmd->info.value_type.size = sizeof(__le64);
393 pmd->info.value_type.inc = data_block_inc;
394 pmd->info.value_type.dec = data_block_dec;
395 pmd->info.value_type.equal = data_block_equal;
396
397 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
398 pmd->nb_info.tm = pmd->nb_tm;
399
400 pmd->tl_info.tm = pmd->tm;
401 pmd->tl_info.levels = 1;
402 pmd->tl_info.value_type.context = &pmd->info;
403 pmd->tl_info.value_type.size = sizeof(__le64);
404 pmd->tl_info.value_type.inc = subtree_inc;
405 pmd->tl_info.value_type.dec = subtree_dec;
406 pmd->tl_info.value_type.equal = subtree_equal;
407
408 pmd->bl_info.tm = pmd->tm;
409 pmd->bl_info.levels = 1;
410 pmd->bl_info.value_type.context = pmd->data_sm;
411 pmd->bl_info.value_type.size = sizeof(__le64);
412 pmd->bl_info.value_type.inc = data_block_inc;
413 pmd->bl_info.value_type.dec = data_block_dec;
414 pmd->bl_info.value_type.equal = data_block_equal;
415
416 pmd->details_info.tm = pmd->tm;
417 pmd->details_info.levels = 1;
418 pmd->details_info.value_type.context = NULL;
419 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
420 pmd->details_info.value_type.inc = NULL;
421 pmd->details_info.value_type.dec = NULL;
422 pmd->details_info.value_type.equal = NULL;
423 }
424
425 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
426 {
427 int r;
428 struct dm_block *sblock;
429 size_t metadata_len, data_len;
430 struct thin_disk_superblock *disk_super;
431 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
432
433 if (bdev_size > THIN_METADATA_MAX_SECTORS)
434 bdev_size = THIN_METADATA_MAX_SECTORS;
435
436 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
437 if (r < 0)
438 return r;
439
440 r = dm_sm_root_size(pmd->data_sm, &data_len);
441 if (r < 0)
442 return r;
443
444 r = dm_sm_commit(pmd->data_sm);
445 if (r < 0)
446 return r;
447
448 r = dm_tm_pre_commit(pmd->tm);
449 if (r < 0)
450 return r;
451
452 r = superblock_lock_zero(pmd, &sblock);
453 if (r)
454 return r;
455
456 disk_super = dm_block_data(sblock);
457 disk_super->flags = 0;
458 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
459 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
460 disk_super->version = cpu_to_le32(THIN_VERSION);
461 disk_super->time = 0;
462 disk_super->trans_id = 0;
463 disk_super->held_root = 0;
464
465 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
466 metadata_len);
467 if (r < 0)
468 goto bad_locked;
469
470 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
471 data_len);
472 if (r < 0)
473 goto bad_locked;
474
475 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
476 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
477 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
478 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
479 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
480
481 return dm_tm_commit(pmd->tm, sblock);
482
483 bad_locked:
484 dm_bm_unlock(sblock);
485 return r;
486 }
487
488 static int __format_metadata(struct dm_pool_metadata *pmd)
489 {
490 int r;
491
492 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
493 &pmd->tm, &pmd->metadata_sm);
494 if (r < 0) {
495 DMERR("tm_create_with_sm failed");
496 return r;
497 }
498
499 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
500 if (IS_ERR(pmd->data_sm)) {
501 DMERR("sm_disk_create failed");
502 r = PTR_ERR(pmd->data_sm);
503 goto bad_cleanup_tm;
504 }
505
506 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
507 if (!pmd->nb_tm) {
508 DMERR("could not create non-blocking clone tm");
509 r = -ENOMEM;
510 goto bad_cleanup_data_sm;
511 }
512
513 __setup_btree_details(pmd);
514
515 r = dm_btree_empty(&pmd->info, &pmd->root);
516 if (r < 0)
517 goto bad_cleanup_nb_tm;
518
519 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
520 if (r < 0) {
521 DMERR("couldn't create devices root");
522 goto bad_cleanup_nb_tm;
523 }
524
525 r = __write_initial_superblock(pmd);
526 if (r)
527 goto bad_cleanup_nb_tm;
528
529 return 0;
530
531 bad_cleanup_nb_tm:
532 dm_tm_destroy(pmd->nb_tm);
533 bad_cleanup_data_sm:
534 dm_sm_destroy(pmd->data_sm);
535 bad_cleanup_tm:
536 dm_tm_destroy(pmd->tm);
537 dm_sm_destroy(pmd->metadata_sm);
538
539 return r;
540 }
541
542 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
543 struct dm_pool_metadata *pmd)
544 {
545 uint32_t features;
546
547 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
548 if (features) {
549 DMERR("could not access metadata due to unsupported optional features (%lx).",
550 (unsigned long)features);
551 return -EINVAL;
552 }
553
554 /*
555 * Check for read-only metadata to skip the following RDWR checks.
556 */
557 if (get_disk_ro(pmd->bdev->bd_disk))
558 return 0;
559
560 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
561 if (features) {
562 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
563 (unsigned long)features);
564 return -EINVAL;
565 }
566
567 return 0;
568 }
569
570 static int __open_metadata(struct dm_pool_metadata *pmd)
571 {
572 int r;
573 struct dm_block *sblock;
574 struct thin_disk_superblock *disk_super;
575
576 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
577 &sb_validator, &sblock);
578 if (r < 0) {
579 DMERR("couldn't read superblock");
580 return r;
581 }
582
583 disk_super = dm_block_data(sblock);
584
585 r = __check_incompat_features(disk_super, pmd);
586 if (r < 0)
587 goto bad_unlock_sblock;
588
589 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
590 disk_super->metadata_space_map_root,
591 sizeof(disk_super->metadata_space_map_root),
592 &pmd->tm, &pmd->metadata_sm);
593 if (r < 0) {
594 DMERR("tm_open_with_sm failed");
595 goto bad_unlock_sblock;
596 }
597
598 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
599 sizeof(disk_super->data_space_map_root));
600 if (IS_ERR(pmd->data_sm)) {
601 DMERR("sm_disk_open failed");
602 r = PTR_ERR(pmd->data_sm);
603 goto bad_cleanup_tm;
604 }
605
606 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
607 if (!pmd->nb_tm) {
608 DMERR("could not create non-blocking clone tm");
609 r = -ENOMEM;
610 goto bad_cleanup_data_sm;
611 }
612
613 __setup_btree_details(pmd);
614 return dm_bm_unlock(sblock);
615
616 bad_cleanup_data_sm:
617 dm_sm_destroy(pmd->data_sm);
618 bad_cleanup_tm:
619 dm_tm_destroy(pmd->tm);
620 dm_sm_destroy(pmd->metadata_sm);
621 bad_unlock_sblock:
622 dm_bm_unlock(sblock);
623
624 return r;
625 }
626
627 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
628 {
629 int r, unformatted;
630
631 r = __superblock_all_zeroes(pmd->bm, &unformatted);
632 if (r)
633 return r;
634
635 if (unformatted)
636 return format_device ? __format_metadata(pmd) : -EPERM;
637
638 return __open_metadata(pmd);
639 }
640
641 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
642 {
643 int r;
644
645 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
646 THIN_METADATA_CACHE_SIZE,
647 THIN_MAX_CONCURRENT_LOCKS);
648 if (IS_ERR(pmd->bm)) {
649 DMERR("could not create block manager");
650 return PTR_ERR(pmd->bm);
651 }
652
653 r = __open_or_format_metadata(pmd, format_device);
654 if (r)
655 dm_block_manager_destroy(pmd->bm);
656
657 return r;
658 }
659
660 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
661 {
662 dm_sm_destroy(pmd->data_sm);
663 dm_sm_destroy(pmd->metadata_sm);
664 dm_tm_destroy(pmd->nb_tm);
665 dm_tm_destroy(pmd->tm);
666 dm_block_manager_destroy(pmd->bm);
667 }
668
669 static int __begin_transaction(struct dm_pool_metadata *pmd)
670 {
671 int r;
672 struct thin_disk_superblock *disk_super;
673 struct dm_block *sblock;
674
675 /*
676 * We re-read the superblock every time. Shouldn't need to do this
677 * really.
678 */
679 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
680 &sb_validator, &sblock);
681 if (r)
682 return r;
683
684 disk_super = dm_block_data(sblock);
685 pmd->time = le32_to_cpu(disk_super->time);
686 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
687 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
688 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
689 pmd->flags = le32_to_cpu(disk_super->flags);
690 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
691
692 dm_bm_unlock(sblock);
693 return 0;
694 }
695
696 static int __write_changed_details(struct dm_pool_metadata *pmd)
697 {
698 int r;
699 struct dm_thin_device *td, *tmp;
700 struct disk_device_details details;
701 uint64_t key;
702
703 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
704 if (!td->changed)
705 continue;
706
707 key = td->id;
708
709 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
710 details.transaction_id = cpu_to_le64(td->transaction_id);
711 details.creation_time = cpu_to_le32(td->creation_time);
712 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
713 __dm_bless_for_disk(&details);
714
715 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
716 &key, &details, &pmd->details_root);
717 if (r)
718 return r;
719
720 if (td->open_count)
721 td->changed = 0;
722 else {
723 list_del(&td->list);
724 kfree(td);
725 }
726 }
727
728 return 0;
729 }
730
731 static int __commit_transaction(struct dm_pool_metadata *pmd)
732 {
733 /*
734 * FIXME: Associated pool should be made read-only on failure.
735 */
736 int r;
737 size_t metadata_len, data_len;
738 struct thin_disk_superblock *disk_super;
739 struct dm_block *sblock;
740
741 /*
742 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
743 */
744 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
745
746 r = __write_changed_details(pmd);
747 if (r < 0)
748 return r;
749
750 r = dm_sm_commit(pmd->data_sm);
751 if (r < 0)
752 return r;
753
754 r = dm_tm_pre_commit(pmd->tm);
755 if (r < 0)
756 return r;
757
758 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
759 if (r < 0)
760 return r;
761
762 r = dm_sm_root_size(pmd->data_sm, &data_len);
763 if (r < 0)
764 return r;
765
766 r = superblock_lock(pmd, &sblock);
767 if (r)
768 return r;
769
770 disk_super = dm_block_data(sblock);
771 disk_super->time = cpu_to_le32(pmd->time);
772 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
773 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
774 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
775 disk_super->flags = cpu_to_le32(pmd->flags);
776
777 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
778 metadata_len);
779 if (r < 0)
780 goto out_locked;
781
782 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
783 data_len);
784 if (r < 0)
785 goto out_locked;
786
787 return dm_tm_commit(pmd->tm, sblock);
788
789 out_locked:
790 dm_bm_unlock(sblock);
791 return r;
792 }
793
794 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
795 sector_t data_block_size,
796 bool format_device)
797 {
798 int r;
799 struct dm_pool_metadata *pmd;
800
801 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
802 if (!pmd) {
803 DMERR("could not allocate metadata struct");
804 return ERR_PTR(-ENOMEM);
805 }
806
807 init_rwsem(&pmd->root_lock);
808 pmd->time = 0;
809 INIT_LIST_HEAD(&pmd->thin_devices);
810 pmd->bdev = bdev;
811 pmd->data_block_size = data_block_size;
812
813 r = __create_persistent_data_objects(pmd, format_device);
814 if (r) {
815 kfree(pmd);
816 return ERR_PTR(r);
817 }
818
819 r = __begin_transaction(pmd);
820 if (r < 0) {
821 if (dm_pool_metadata_close(pmd) < 0)
822 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
823 return ERR_PTR(r);
824 }
825
826 return pmd;
827 }
828
829 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
830 {
831 int r;
832 unsigned open_devices = 0;
833 struct dm_thin_device *td, *tmp;
834
835 down_read(&pmd->root_lock);
836 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
837 if (td->open_count)
838 open_devices++;
839 else {
840 list_del(&td->list);
841 kfree(td);
842 }
843 }
844 up_read(&pmd->root_lock);
845
846 if (open_devices) {
847 DMERR("attempt to close pmd when %u device(s) are still open",
848 open_devices);
849 return -EBUSY;
850 }
851
852 r = __commit_transaction(pmd);
853 if (r < 0)
854 DMWARN("%s: __commit_transaction() failed, error = %d",
855 __func__, r);
856
857 __destroy_persistent_data_objects(pmd);
858 kfree(pmd);
859
860 return 0;
861 }
862
863 /*
864 * __open_device: Returns @td corresponding to device with id @dev,
865 * creating it if @create is set and incrementing @td->open_count.
866 * On failure, @td is undefined.
867 */
868 static int __open_device(struct dm_pool_metadata *pmd,
869 dm_thin_id dev, int create,
870 struct dm_thin_device **td)
871 {
872 int r, changed = 0;
873 struct dm_thin_device *td2;
874 uint64_t key = dev;
875 struct disk_device_details details_le;
876
877 /*
878 * If the device is already open, return it.
879 */
880 list_for_each_entry(td2, &pmd->thin_devices, list)
881 if (td2->id == dev) {
882 /*
883 * May not create an already-open device.
884 */
885 if (create)
886 return -EEXIST;
887
888 td2->open_count++;
889 *td = td2;
890 return 0;
891 }
892
893 /*
894 * Check the device exists.
895 */
896 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
897 &key, &details_le);
898 if (r) {
899 if (r != -ENODATA || !create)
900 return r;
901
902 /*
903 * Create new device.
904 */
905 changed = 1;
906 details_le.mapped_blocks = 0;
907 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
908 details_le.creation_time = cpu_to_le32(pmd->time);
909 details_le.snapshotted_time = cpu_to_le32(pmd->time);
910 }
911
912 *td = kmalloc(sizeof(**td), GFP_NOIO);
913 if (!*td)
914 return -ENOMEM;
915
916 (*td)->pmd = pmd;
917 (*td)->id = dev;
918 (*td)->open_count = 1;
919 (*td)->changed = changed;
920 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
921 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
922 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
923 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
924
925 list_add(&(*td)->list, &pmd->thin_devices);
926
927 return 0;
928 }
929
930 static void __close_device(struct dm_thin_device *td)
931 {
932 --td->open_count;
933 }
934
935 static int __create_thin(struct dm_pool_metadata *pmd,
936 dm_thin_id dev)
937 {
938 int r;
939 dm_block_t dev_root;
940 uint64_t key = dev;
941 struct disk_device_details details_le;
942 struct dm_thin_device *td;
943 __le64 value;
944
945 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
946 &key, &details_le);
947 if (!r)
948 return -EEXIST;
949
950 /*
951 * Create an empty btree for the mappings.
952 */
953 r = dm_btree_empty(&pmd->bl_info, &dev_root);
954 if (r)
955 return r;
956
957 /*
958 * Insert it into the main mapping tree.
959 */
960 value = cpu_to_le64(dev_root);
961 __dm_bless_for_disk(&value);
962 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
963 if (r) {
964 dm_btree_del(&pmd->bl_info, dev_root);
965 return r;
966 }
967
968 r = __open_device(pmd, dev, 1, &td);
969 if (r) {
970 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
971 dm_btree_del(&pmd->bl_info, dev_root);
972 return r;
973 }
974 __close_device(td);
975
976 return r;
977 }
978
979 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
980 {
981 int r;
982
983 down_write(&pmd->root_lock);
984 r = __create_thin(pmd, dev);
985 up_write(&pmd->root_lock);
986
987 return r;
988 }
989
990 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
991 struct dm_thin_device *snap,
992 dm_thin_id origin, uint32_t time)
993 {
994 int r;
995 struct dm_thin_device *td;
996
997 r = __open_device(pmd, origin, 0, &td);
998 if (r)
999 return r;
1000
1001 td->changed = 1;
1002 td->snapshotted_time = time;
1003
1004 snap->mapped_blocks = td->mapped_blocks;
1005 snap->snapshotted_time = time;
1006 __close_device(td);
1007
1008 return 0;
1009 }
1010
1011 static int __create_snap(struct dm_pool_metadata *pmd,
1012 dm_thin_id dev, dm_thin_id origin)
1013 {
1014 int r;
1015 dm_block_t origin_root;
1016 uint64_t key = origin, dev_key = dev;
1017 struct dm_thin_device *td;
1018 struct disk_device_details details_le;
1019 __le64 value;
1020
1021 /* check this device is unused */
1022 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1023 &dev_key, &details_le);
1024 if (!r)
1025 return -EEXIST;
1026
1027 /* find the mapping tree for the origin */
1028 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1029 if (r)
1030 return r;
1031 origin_root = le64_to_cpu(value);
1032
1033 /* clone the origin, an inc will do */
1034 dm_tm_inc(pmd->tm, origin_root);
1035
1036 /* insert into the main mapping tree */
1037 value = cpu_to_le64(origin_root);
1038 __dm_bless_for_disk(&value);
1039 key = dev;
1040 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1041 if (r) {
1042 dm_tm_dec(pmd->tm, origin_root);
1043 return r;
1044 }
1045
1046 pmd->time++;
1047
1048 r = __open_device(pmd, dev, 1, &td);
1049 if (r)
1050 goto bad;
1051
1052 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1053 __close_device(td);
1054
1055 if (r)
1056 goto bad;
1057
1058 return 0;
1059
1060 bad:
1061 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1062 dm_btree_remove(&pmd->details_info, pmd->details_root,
1063 &key, &pmd->details_root);
1064 return r;
1065 }
1066
1067 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1068 dm_thin_id dev,
1069 dm_thin_id origin)
1070 {
1071 int r;
1072
1073 down_write(&pmd->root_lock);
1074 r = __create_snap(pmd, dev, origin);
1075 up_write(&pmd->root_lock);
1076
1077 return r;
1078 }
1079
1080 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1081 {
1082 int r;
1083 uint64_t key = dev;
1084 struct dm_thin_device *td;
1085
1086 /* TODO: failure should mark the transaction invalid */
1087 r = __open_device(pmd, dev, 0, &td);
1088 if (r)
1089 return r;
1090
1091 if (td->open_count > 1) {
1092 __close_device(td);
1093 return -EBUSY;
1094 }
1095
1096 list_del(&td->list);
1097 kfree(td);
1098 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1099 &key, &pmd->details_root);
1100 if (r)
1101 return r;
1102
1103 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1104 if (r)
1105 return r;
1106
1107 return 0;
1108 }
1109
1110 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1111 dm_thin_id dev)
1112 {
1113 int r;
1114
1115 down_write(&pmd->root_lock);
1116 r = __delete_device(pmd, dev);
1117 up_write(&pmd->root_lock);
1118
1119 return r;
1120 }
1121
1122 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1123 uint64_t current_id,
1124 uint64_t new_id)
1125 {
1126 down_write(&pmd->root_lock);
1127 if (pmd->trans_id != current_id) {
1128 up_write(&pmd->root_lock);
1129 DMERR("mismatched transaction id");
1130 return -EINVAL;
1131 }
1132
1133 pmd->trans_id = new_id;
1134 up_write(&pmd->root_lock);
1135
1136 return 0;
1137 }
1138
1139 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1140 uint64_t *result)
1141 {
1142 down_read(&pmd->root_lock);
1143 *result = pmd->trans_id;
1144 up_read(&pmd->root_lock);
1145
1146 return 0;
1147 }
1148
1149 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1150 {
1151 int r, inc;
1152 struct thin_disk_superblock *disk_super;
1153 struct dm_block *copy, *sblock;
1154 dm_block_t held_root;
1155
1156 /*
1157 * Copy the superblock.
1158 */
1159 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1160 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1161 &sb_validator, &copy, &inc);
1162 if (r)
1163 return r;
1164
1165 BUG_ON(!inc);
1166
1167 held_root = dm_block_location(copy);
1168 disk_super = dm_block_data(copy);
1169
1170 if (le64_to_cpu(disk_super->held_root)) {
1171 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1172
1173 dm_tm_dec(pmd->tm, held_root);
1174 dm_tm_unlock(pmd->tm, copy);
1175 return -EBUSY;
1176 }
1177
1178 /*
1179 * Wipe the spacemap since we're not publishing this.
1180 */
1181 memset(&disk_super->data_space_map_root, 0,
1182 sizeof(disk_super->data_space_map_root));
1183 memset(&disk_super->metadata_space_map_root, 0,
1184 sizeof(disk_super->metadata_space_map_root));
1185
1186 /*
1187 * Increment the data structures that need to be preserved.
1188 */
1189 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1190 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1191 dm_tm_unlock(pmd->tm, copy);
1192
1193 /*
1194 * Write the held root into the superblock.
1195 */
1196 r = superblock_lock(pmd, &sblock);
1197 if (r) {
1198 dm_tm_dec(pmd->tm, held_root);
1199 return r;
1200 }
1201
1202 disk_super = dm_block_data(sblock);
1203 disk_super->held_root = cpu_to_le64(held_root);
1204 dm_bm_unlock(sblock);
1205 return 0;
1206 }
1207
1208 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1209 {
1210 int r;
1211
1212 down_write(&pmd->root_lock);
1213 r = __reserve_metadata_snap(pmd);
1214 up_write(&pmd->root_lock);
1215
1216 return r;
1217 }
1218
1219 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1220 {
1221 int r;
1222 struct thin_disk_superblock *disk_super;
1223 struct dm_block *sblock, *copy;
1224 dm_block_t held_root;
1225
1226 r = superblock_lock(pmd, &sblock);
1227 if (r)
1228 return r;
1229
1230 disk_super = dm_block_data(sblock);
1231 held_root = le64_to_cpu(disk_super->held_root);
1232 disk_super->held_root = cpu_to_le64(0);
1233
1234 dm_bm_unlock(sblock);
1235
1236 if (!held_root) {
1237 DMWARN("No pool metadata snapshot found: nothing to release.");
1238 return -EINVAL;
1239 }
1240
1241 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1242 if (r)
1243 return r;
1244
1245 disk_super = dm_block_data(copy);
1246 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1247 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1248 dm_sm_dec_block(pmd->metadata_sm, held_root);
1249
1250 return dm_tm_unlock(pmd->tm, copy);
1251 }
1252
1253 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1254 {
1255 int r;
1256
1257 down_write(&pmd->root_lock);
1258 r = __release_metadata_snap(pmd);
1259 up_write(&pmd->root_lock);
1260
1261 return r;
1262 }
1263
1264 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1265 dm_block_t *result)
1266 {
1267 int r;
1268 struct thin_disk_superblock *disk_super;
1269 struct dm_block *sblock;
1270
1271 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1272 &sb_validator, &sblock);
1273 if (r)
1274 return r;
1275
1276 disk_super = dm_block_data(sblock);
1277 *result = le64_to_cpu(disk_super->held_root);
1278
1279 return dm_bm_unlock(sblock);
1280 }
1281
1282 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1283 dm_block_t *result)
1284 {
1285 int r;
1286
1287 down_read(&pmd->root_lock);
1288 r = __get_metadata_snap(pmd, result);
1289 up_read(&pmd->root_lock);
1290
1291 return r;
1292 }
1293
1294 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1295 struct dm_thin_device **td)
1296 {
1297 int r;
1298
1299 down_write(&pmd->root_lock);
1300 r = __open_device(pmd, dev, 0, td);
1301 up_write(&pmd->root_lock);
1302
1303 return r;
1304 }
1305
1306 int dm_pool_close_thin_device(struct dm_thin_device *td)
1307 {
1308 down_write(&td->pmd->root_lock);
1309 __close_device(td);
1310 up_write(&td->pmd->root_lock);
1311
1312 return 0;
1313 }
1314
1315 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1316 {
1317 return td->id;
1318 }
1319
1320 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1321 {
1322 return td->snapshotted_time > time;
1323 }
1324
1325 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1326 int can_block, struct dm_thin_lookup_result *result)
1327 {
1328 int r;
1329 uint64_t block_time = 0;
1330 __le64 value;
1331 struct dm_pool_metadata *pmd = td->pmd;
1332 dm_block_t keys[2] = { td->id, block };
1333
1334 if (can_block) {
1335 down_read(&pmd->root_lock);
1336 r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1337 if (!r)
1338 block_time = le64_to_cpu(value);
1339 up_read(&pmd->root_lock);
1340
1341 } else if (down_read_trylock(&pmd->root_lock)) {
1342 r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1343 if (!r)
1344 block_time = le64_to_cpu(value);
1345 up_read(&pmd->root_lock);
1346
1347 } else
1348 return -EWOULDBLOCK;
1349
1350 if (!r) {
1351 dm_block_t exception_block;
1352 uint32_t exception_time;
1353 unpack_block_time(block_time, &exception_block,
1354 &exception_time);
1355 result->block = exception_block;
1356 result->shared = __snapshotted_since(td, exception_time);
1357 }
1358
1359 return r;
1360 }
1361
1362 static int __insert(struct dm_thin_device *td, dm_block_t block,
1363 dm_block_t data_block)
1364 {
1365 int r, inserted;
1366 __le64 value;
1367 struct dm_pool_metadata *pmd = td->pmd;
1368 dm_block_t keys[2] = { td->id, block };
1369
1370 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1371 __dm_bless_for_disk(&value);
1372
1373 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1374 &pmd->root, &inserted);
1375 if (r)
1376 return r;
1377
1378 if (inserted) {
1379 td->mapped_blocks++;
1380 td->changed = 1;
1381 }
1382
1383 return 0;
1384 }
1385
1386 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1387 dm_block_t data_block)
1388 {
1389 int r;
1390
1391 down_write(&td->pmd->root_lock);
1392 r = __insert(td, block, data_block);
1393 up_write(&td->pmd->root_lock);
1394
1395 return r;
1396 }
1397
1398 static int __remove(struct dm_thin_device *td, dm_block_t block)
1399 {
1400 int r;
1401 struct dm_pool_metadata *pmd = td->pmd;
1402 dm_block_t keys[2] = { td->id, block };
1403
1404 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1405 if (r)
1406 return r;
1407
1408 td->mapped_blocks--;
1409 td->changed = 1;
1410
1411 return 0;
1412 }
1413
1414 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1415 {
1416 int r;
1417
1418 down_write(&td->pmd->root_lock);
1419 r = __remove(td, block);
1420 up_write(&td->pmd->root_lock);
1421
1422 return r;
1423 }
1424
1425 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1426 {
1427 int r;
1428
1429 down_write(&pmd->root_lock);
1430 r = dm_sm_new_block(pmd->data_sm, result);
1431 up_write(&pmd->root_lock);
1432
1433 return r;
1434 }
1435
1436 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1437 {
1438 int r;
1439
1440 down_write(&pmd->root_lock);
1441
1442 r = __commit_transaction(pmd);
1443 if (r <= 0)
1444 goto out;
1445
1446 /*
1447 * Open the next transaction.
1448 */
1449 r = __begin_transaction(pmd);
1450 out:
1451 up_write(&pmd->root_lock);
1452 return r;
1453 }
1454
1455 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1456 {
1457 int r;
1458
1459 down_read(&pmd->root_lock);
1460 r = dm_sm_get_nr_free(pmd->data_sm, result);
1461 up_read(&pmd->root_lock);
1462
1463 return r;
1464 }
1465
1466 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1467 dm_block_t *result)
1468 {
1469 int r;
1470
1471 down_read(&pmd->root_lock);
1472 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1473 up_read(&pmd->root_lock);
1474
1475 return r;
1476 }
1477
1478 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1479 dm_block_t *result)
1480 {
1481 int r;
1482
1483 down_read(&pmd->root_lock);
1484 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1485 up_read(&pmd->root_lock);
1486
1487 return r;
1488 }
1489
1490 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1491 {
1492 down_read(&pmd->root_lock);
1493 *result = pmd->data_block_size;
1494 up_read(&pmd->root_lock);
1495
1496 return 0;
1497 }
1498
1499 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1500 {
1501 int r;
1502
1503 down_read(&pmd->root_lock);
1504 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1505 up_read(&pmd->root_lock);
1506
1507 return r;
1508 }
1509
1510 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1511 {
1512 struct dm_pool_metadata *pmd = td->pmd;
1513
1514 down_read(&pmd->root_lock);
1515 *result = td->mapped_blocks;
1516 up_read(&pmd->root_lock);
1517
1518 return 0;
1519 }
1520
1521 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1522 {
1523 int r;
1524 __le64 value_le;
1525 dm_block_t thin_root;
1526 struct dm_pool_metadata *pmd = td->pmd;
1527
1528 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1529 if (r)
1530 return r;
1531
1532 thin_root = le64_to_cpu(value_le);
1533
1534 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1535 }
1536
1537 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1538 dm_block_t *result)
1539 {
1540 int r;
1541 struct dm_pool_metadata *pmd = td->pmd;
1542
1543 down_read(&pmd->root_lock);
1544 r = __highest_block(td, result);
1545 up_read(&pmd->root_lock);
1546
1547 return r;
1548 }
1549
1550 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1551 {
1552 int r;
1553 dm_block_t old_count;
1554
1555 r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1556 if (r)
1557 return r;
1558
1559 if (new_count == old_count)
1560 return 0;
1561
1562 if (new_count < old_count) {
1563 DMERR("cannot reduce size of data device");
1564 return -EINVAL;
1565 }
1566
1567 return dm_sm_extend(pmd->data_sm, new_count - old_count);
1568 }
1569
1570 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1571 {
1572 int r;
1573
1574 down_write(&pmd->root_lock);
1575 r = __resize_data_dev(pmd, new_count);
1576 up_write(&pmd->root_lock);
1577
1578 return r;
1579 }
This page took 0.071175 seconds and 6 git commands to generate.