dm thin: add error_if_no_space feature
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 bool error_if_no_space:1;
148 };
149
150 struct thin_c;
151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
153
154 struct pool {
155 struct list_head list;
156 struct dm_target *ti; /* Only set if a pool target is bound */
157
158 struct mapped_device *pool_md;
159 struct block_device *md_dev;
160 struct dm_pool_metadata *pmd;
161
162 dm_block_t low_water_blocks;
163 uint32_t sectors_per_block;
164 int sectors_per_block_shift;
165
166 struct pool_features pf;
167 bool low_water_triggered:1; /* A dm event has been sent */
168 bool no_free_space:1; /* bios will be requeued if set */
169
170 struct dm_bio_prison *prison;
171 struct dm_kcopyd_client *copier;
172
173 struct workqueue_struct *wq;
174 struct work_struct worker;
175 struct delayed_work waker;
176
177 unsigned long last_commit_jiffies;
178 unsigned ref_count;
179
180 spinlock_t lock;
181 struct bio_list deferred_bios;
182 struct bio_list deferred_flush_bios;
183 struct list_head prepared_mappings;
184 struct list_head prepared_discards;
185
186 struct bio_list retry_on_resume_list;
187
188 struct dm_deferred_set *shared_read_ds;
189 struct dm_deferred_set *all_io_ds;
190
191 struct dm_thin_new_mapping *next_mapping;
192 mempool_t *mapping_pool;
193
194 process_bio_fn process_bio;
195 process_bio_fn process_discard;
196
197 process_mapping_fn process_prepared_mapping;
198 process_mapping_fn process_prepared_discard;
199 };
200
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void out_of_data_space(struct pool *pool);
203 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
204
205 /*
206 * Target context for a pool.
207 */
208 struct pool_c {
209 struct dm_target *ti;
210 struct pool *pool;
211 struct dm_dev *data_dev;
212 struct dm_dev *metadata_dev;
213 struct dm_target_callbacks callbacks;
214
215 dm_block_t low_water_blocks;
216 struct pool_features requested_pf; /* Features requested during table load */
217 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
218 };
219
220 /*
221 * Target context for a thin.
222 */
223 struct thin_c {
224 struct dm_dev *pool_dev;
225 struct dm_dev *origin_dev;
226 dm_thin_id dev_id;
227
228 struct pool *pool;
229 struct dm_thin_device *td;
230 };
231
232 /*----------------------------------------------------------------*/
233
234 /*
235 * wake_worker() is used when new work is queued and when pool_resume is
236 * ready to continue deferred IO processing.
237 */
238 static void wake_worker(struct pool *pool)
239 {
240 queue_work(pool->wq, &pool->worker);
241 }
242
243 /*----------------------------------------------------------------*/
244
245 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
246 struct dm_bio_prison_cell **cell_result)
247 {
248 int r;
249 struct dm_bio_prison_cell *cell_prealloc;
250
251 /*
252 * Allocate a cell from the prison's mempool.
253 * This might block but it can't fail.
254 */
255 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
256
257 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
258 if (r)
259 /*
260 * We reused an old cell; we can get rid of
261 * the new one.
262 */
263 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
264
265 return r;
266 }
267
268 static void cell_release(struct pool *pool,
269 struct dm_bio_prison_cell *cell,
270 struct bio_list *bios)
271 {
272 dm_cell_release(pool->prison, cell, bios);
273 dm_bio_prison_free_cell(pool->prison, cell);
274 }
275
276 static void cell_release_no_holder(struct pool *pool,
277 struct dm_bio_prison_cell *cell,
278 struct bio_list *bios)
279 {
280 dm_cell_release_no_holder(pool->prison, cell, bios);
281 dm_bio_prison_free_cell(pool->prison, cell);
282 }
283
284 static void cell_defer_no_holder_no_free(struct thin_c *tc,
285 struct dm_bio_prison_cell *cell)
286 {
287 struct pool *pool = tc->pool;
288 unsigned long flags;
289
290 spin_lock_irqsave(&pool->lock, flags);
291 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
292 spin_unlock_irqrestore(&pool->lock, flags);
293
294 wake_worker(pool);
295 }
296
297 static void cell_error(struct pool *pool,
298 struct dm_bio_prison_cell *cell)
299 {
300 dm_cell_error(pool->prison, cell);
301 dm_bio_prison_free_cell(pool->prison, cell);
302 }
303
304 /*----------------------------------------------------------------*/
305
306 /*
307 * A global list of pools that uses a struct mapped_device as a key.
308 */
309 static struct dm_thin_pool_table {
310 struct mutex mutex;
311 struct list_head pools;
312 } dm_thin_pool_table;
313
314 static void pool_table_init(void)
315 {
316 mutex_init(&dm_thin_pool_table.mutex);
317 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
318 }
319
320 static void __pool_table_insert(struct pool *pool)
321 {
322 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
323 list_add(&pool->list, &dm_thin_pool_table.pools);
324 }
325
326 static void __pool_table_remove(struct pool *pool)
327 {
328 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
329 list_del(&pool->list);
330 }
331
332 static struct pool *__pool_table_lookup(struct mapped_device *md)
333 {
334 struct pool *pool = NULL, *tmp;
335
336 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
337
338 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
339 if (tmp->pool_md == md) {
340 pool = tmp;
341 break;
342 }
343 }
344
345 return pool;
346 }
347
348 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
349 {
350 struct pool *pool = NULL, *tmp;
351
352 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
353
354 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
355 if (tmp->md_dev == md_dev) {
356 pool = tmp;
357 break;
358 }
359 }
360
361 return pool;
362 }
363
364 /*----------------------------------------------------------------*/
365
366 struct dm_thin_endio_hook {
367 struct thin_c *tc;
368 struct dm_deferred_entry *shared_read_entry;
369 struct dm_deferred_entry *all_io_entry;
370 struct dm_thin_new_mapping *overwrite_mapping;
371 };
372
373 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
374 {
375 struct bio *bio;
376 struct bio_list bios;
377
378 bio_list_init(&bios);
379 bio_list_merge(&bios, master);
380 bio_list_init(master);
381
382 while ((bio = bio_list_pop(&bios))) {
383 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
384
385 if (h->tc == tc)
386 bio_endio(bio, DM_ENDIO_REQUEUE);
387 else
388 bio_list_add(master, bio);
389 }
390 }
391
392 static void requeue_io(struct thin_c *tc)
393 {
394 struct pool *pool = tc->pool;
395 unsigned long flags;
396
397 spin_lock_irqsave(&pool->lock, flags);
398 __requeue_bio_list(tc, &pool->deferred_bios);
399 __requeue_bio_list(tc, &pool->retry_on_resume_list);
400 spin_unlock_irqrestore(&pool->lock, flags);
401 }
402
403 /*
404 * This section of code contains the logic for processing a thin device's IO.
405 * Much of the code depends on pool object resources (lists, workqueues, etc)
406 * but most is exclusively called from the thin target rather than the thin-pool
407 * target.
408 */
409
410 static bool block_size_is_power_of_two(struct pool *pool)
411 {
412 return pool->sectors_per_block_shift >= 0;
413 }
414
415 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
416 {
417 struct pool *pool = tc->pool;
418 sector_t block_nr = bio->bi_sector;
419
420 if (block_size_is_power_of_two(pool))
421 block_nr >>= pool->sectors_per_block_shift;
422 else
423 (void) sector_div(block_nr, pool->sectors_per_block);
424
425 return block_nr;
426 }
427
428 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
429 {
430 struct pool *pool = tc->pool;
431 sector_t bi_sector = bio->bi_sector;
432
433 bio->bi_bdev = tc->pool_dev->bdev;
434 if (block_size_is_power_of_two(pool))
435 bio->bi_sector = (block << pool->sectors_per_block_shift) |
436 (bi_sector & (pool->sectors_per_block - 1));
437 else
438 bio->bi_sector = (block * pool->sectors_per_block) +
439 sector_div(bi_sector, pool->sectors_per_block);
440 }
441
442 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
443 {
444 bio->bi_bdev = tc->origin_dev->bdev;
445 }
446
447 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
448 {
449 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
450 dm_thin_changed_this_transaction(tc->td);
451 }
452
453 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
454 {
455 struct dm_thin_endio_hook *h;
456
457 if (bio->bi_rw & REQ_DISCARD)
458 return;
459
460 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
461 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
462 }
463
464 static void issue(struct thin_c *tc, struct bio *bio)
465 {
466 struct pool *pool = tc->pool;
467 unsigned long flags;
468
469 if (!bio_triggers_commit(tc, bio)) {
470 generic_make_request(bio);
471 return;
472 }
473
474 /*
475 * Complete bio with an error if earlier I/O caused changes to
476 * the metadata that can't be committed e.g, due to I/O errors
477 * on the metadata device.
478 */
479 if (dm_thin_aborted_changes(tc->td)) {
480 bio_io_error(bio);
481 return;
482 }
483
484 /*
485 * Batch together any bios that trigger commits and then issue a
486 * single commit for them in process_deferred_bios().
487 */
488 spin_lock_irqsave(&pool->lock, flags);
489 bio_list_add(&pool->deferred_flush_bios, bio);
490 spin_unlock_irqrestore(&pool->lock, flags);
491 }
492
493 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
494 {
495 remap_to_origin(tc, bio);
496 issue(tc, bio);
497 }
498
499 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500 dm_block_t block)
501 {
502 remap(tc, bio, block);
503 issue(tc, bio);
504 }
505
506 /*----------------------------------------------------------------*/
507
508 /*
509 * Bio endio functions.
510 */
511 struct dm_thin_new_mapping {
512 struct list_head list;
513
514 bool quiesced:1;
515 bool prepared:1;
516 bool pass_discard:1;
517 bool definitely_not_shared:1;
518
519 int err;
520 struct thin_c *tc;
521 dm_block_t virt_block;
522 dm_block_t data_block;
523 struct dm_bio_prison_cell *cell, *cell2;
524
525 /*
526 * If the bio covers the whole area of a block then we can avoid
527 * zeroing or copying. Instead this bio is hooked. The bio will
528 * still be in the cell, so care has to be taken to avoid issuing
529 * the bio twice.
530 */
531 struct bio *bio;
532 bio_end_io_t *saved_bi_end_io;
533 };
534
535 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
536 {
537 struct pool *pool = m->tc->pool;
538
539 if (m->quiesced && m->prepared) {
540 list_add_tail(&m->list, &pool->prepared_mappings);
541 wake_worker(pool);
542 }
543 }
544
545 static void copy_complete(int read_err, unsigned long write_err, void *context)
546 {
547 unsigned long flags;
548 struct dm_thin_new_mapping *m = context;
549 struct pool *pool = m->tc->pool;
550
551 m->err = read_err || write_err ? -EIO : 0;
552
553 spin_lock_irqsave(&pool->lock, flags);
554 m->prepared = true;
555 __maybe_add_mapping(m);
556 spin_unlock_irqrestore(&pool->lock, flags);
557 }
558
559 static void overwrite_endio(struct bio *bio, int err)
560 {
561 unsigned long flags;
562 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
563 struct dm_thin_new_mapping *m = h->overwrite_mapping;
564 struct pool *pool = m->tc->pool;
565
566 m->err = err;
567
568 spin_lock_irqsave(&pool->lock, flags);
569 m->prepared = true;
570 __maybe_add_mapping(m);
571 spin_unlock_irqrestore(&pool->lock, flags);
572 }
573
574 /*----------------------------------------------------------------*/
575
576 /*
577 * Workqueue.
578 */
579
580 /*
581 * Prepared mapping jobs.
582 */
583
584 /*
585 * This sends the bios in the cell back to the deferred_bios list.
586 */
587 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
588 {
589 struct pool *pool = tc->pool;
590 unsigned long flags;
591
592 spin_lock_irqsave(&pool->lock, flags);
593 cell_release(pool, cell, &pool->deferred_bios);
594 spin_unlock_irqrestore(&tc->pool->lock, flags);
595
596 wake_worker(pool);
597 }
598
599 /*
600 * Same as cell_defer above, except it omits the original holder of the cell.
601 */
602 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
603 {
604 struct pool *pool = tc->pool;
605 unsigned long flags;
606
607 spin_lock_irqsave(&pool->lock, flags);
608 cell_release_no_holder(pool, cell, &pool->deferred_bios);
609 spin_unlock_irqrestore(&pool->lock, flags);
610
611 wake_worker(pool);
612 }
613
614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
615 {
616 if (m->bio)
617 m->bio->bi_end_io = m->saved_bi_end_io;
618 cell_error(m->tc->pool, m->cell);
619 list_del(&m->list);
620 mempool_free(m, m->tc->pool->mapping_pool);
621 }
622
623 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
624 {
625 struct thin_c *tc = m->tc;
626 struct pool *pool = tc->pool;
627 struct bio *bio;
628 int r;
629
630 bio = m->bio;
631 if (bio)
632 bio->bi_end_io = m->saved_bi_end_io;
633
634 if (m->err) {
635 cell_error(pool, m->cell);
636 goto out;
637 }
638
639 /*
640 * Commit the prepared block into the mapping btree.
641 * Any I/O for this block arriving after this point will get
642 * remapped to it directly.
643 */
644 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
645 if (r) {
646 metadata_operation_failed(pool, "dm_thin_insert_block", r);
647 cell_error(pool, m->cell);
648 goto out;
649 }
650
651 /*
652 * Release any bios held while the block was being provisioned.
653 * If we are processing a write bio that completely covers the block,
654 * we already processed it so can ignore it now when processing
655 * the bios in the cell.
656 */
657 if (bio) {
658 cell_defer_no_holder(tc, m->cell);
659 bio_endio(bio, 0);
660 } else
661 cell_defer(tc, m->cell);
662
663 out:
664 list_del(&m->list);
665 mempool_free(m, pool->mapping_pool);
666 }
667
668 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
669 {
670 struct thin_c *tc = m->tc;
671
672 bio_io_error(m->bio);
673 cell_defer_no_holder(tc, m->cell);
674 cell_defer_no_holder(tc, m->cell2);
675 mempool_free(m, tc->pool->mapping_pool);
676 }
677
678 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
679 {
680 struct thin_c *tc = m->tc;
681
682 inc_all_io_entry(tc->pool, m->bio);
683 cell_defer_no_holder(tc, m->cell);
684 cell_defer_no_holder(tc, m->cell2);
685
686 if (m->pass_discard)
687 if (m->definitely_not_shared)
688 remap_and_issue(tc, m->bio, m->data_block);
689 else {
690 bool used = false;
691 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
692 bio_endio(m->bio, 0);
693 else
694 remap_and_issue(tc, m->bio, m->data_block);
695 }
696 else
697 bio_endio(m->bio, 0);
698
699 mempool_free(m, tc->pool->mapping_pool);
700 }
701
702 static void process_prepared_discard(struct dm_thin_new_mapping *m)
703 {
704 int r;
705 struct thin_c *tc = m->tc;
706
707 r = dm_thin_remove_block(tc->td, m->virt_block);
708 if (r)
709 DMERR_LIMIT("dm_thin_remove_block() failed");
710
711 process_prepared_discard_passdown(m);
712 }
713
714 static void process_prepared(struct pool *pool, struct list_head *head,
715 process_mapping_fn *fn)
716 {
717 unsigned long flags;
718 struct list_head maps;
719 struct dm_thin_new_mapping *m, *tmp;
720
721 INIT_LIST_HEAD(&maps);
722 spin_lock_irqsave(&pool->lock, flags);
723 list_splice_init(head, &maps);
724 spin_unlock_irqrestore(&pool->lock, flags);
725
726 list_for_each_entry_safe(m, tmp, &maps, list)
727 (*fn)(m);
728 }
729
730 /*
731 * Deferred bio jobs.
732 */
733 static int io_overlaps_block(struct pool *pool, struct bio *bio)
734 {
735 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
736 }
737
738 static int io_overwrites_block(struct pool *pool, struct bio *bio)
739 {
740 return (bio_data_dir(bio) == WRITE) &&
741 io_overlaps_block(pool, bio);
742 }
743
744 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
745 bio_end_io_t *fn)
746 {
747 *save = bio->bi_end_io;
748 bio->bi_end_io = fn;
749 }
750
751 static int ensure_next_mapping(struct pool *pool)
752 {
753 if (pool->next_mapping)
754 return 0;
755
756 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
757
758 return pool->next_mapping ? 0 : -ENOMEM;
759 }
760
761 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
762 {
763 struct dm_thin_new_mapping *m = pool->next_mapping;
764
765 BUG_ON(!pool->next_mapping);
766
767 memset(m, 0, sizeof(struct dm_thin_new_mapping));
768 INIT_LIST_HEAD(&m->list);
769 m->bio = NULL;
770
771 pool->next_mapping = NULL;
772
773 return m;
774 }
775
776 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
777 struct dm_dev *origin, dm_block_t data_origin,
778 dm_block_t data_dest,
779 struct dm_bio_prison_cell *cell, struct bio *bio)
780 {
781 int r;
782 struct pool *pool = tc->pool;
783 struct dm_thin_new_mapping *m = get_next_mapping(pool);
784
785 m->tc = tc;
786 m->virt_block = virt_block;
787 m->data_block = data_dest;
788 m->cell = cell;
789
790 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
791 m->quiesced = true;
792
793 /*
794 * IO to pool_dev remaps to the pool target's data_dev.
795 *
796 * If the whole block of data is being overwritten, we can issue the
797 * bio immediately. Otherwise we use kcopyd to clone the data first.
798 */
799 if (io_overwrites_block(pool, bio)) {
800 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
801
802 h->overwrite_mapping = m;
803 m->bio = bio;
804 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
805 inc_all_io_entry(pool, bio);
806 remap_and_issue(tc, bio, data_dest);
807 } else {
808 struct dm_io_region from, to;
809
810 from.bdev = origin->bdev;
811 from.sector = data_origin * pool->sectors_per_block;
812 from.count = pool->sectors_per_block;
813
814 to.bdev = tc->pool_dev->bdev;
815 to.sector = data_dest * pool->sectors_per_block;
816 to.count = pool->sectors_per_block;
817
818 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
819 0, copy_complete, m);
820 if (r < 0) {
821 mempool_free(m, pool->mapping_pool);
822 DMERR_LIMIT("dm_kcopyd_copy() failed");
823 cell_error(pool, cell);
824 }
825 }
826 }
827
828 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
829 dm_block_t data_origin, dm_block_t data_dest,
830 struct dm_bio_prison_cell *cell, struct bio *bio)
831 {
832 schedule_copy(tc, virt_block, tc->pool_dev,
833 data_origin, data_dest, cell, bio);
834 }
835
836 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
837 dm_block_t data_dest,
838 struct dm_bio_prison_cell *cell, struct bio *bio)
839 {
840 schedule_copy(tc, virt_block, tc->origin_dev,
841 virt_block, data_dest, cell, bio);
842 }
843
844 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
845 dm_block_t data_block, struct dm_bio_prison_cell *cell,
846 struct bio *bio)
847 {
848 struct pool *pool = tc->pool;
849 struct dm_thin_new_mapping *m = get_next_mapping(pool);
850
851 m->quiesced = true;
852 m->prepared = false;
853 m->tc = tc;
854 m->virt_block = virt_block;
855 m->data_block = data_block;
856 m->cell = cell;
857
858 /*
859 * If the whole block of data is being overwritten or we are not
860 * zeroing pre-existing data, we can issue the bio immediately.
861 * Otherwise we use kcopyd to zero the data first.
862 */
863 if (!pool->pf.zero_new_blocks)
864 process_prepared_mapping(m);
865
866 else if (io_overwrites_block(pool, bio)) {
867 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
868
869 h->overwrite_mapping = m;
870 m->bio = bio;
871 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
872 inc_all_io_entry(pool, bio);
873 remap_and_issue(tc, bio, data_block);
874 } else {
875 int r;
876 struct dm_io_region to;
877
878 to.bdev = tc->pool_dev->bdev;
879 to.sector = data_block * pool->sectors_per_block;
880 to.count = pool->sectors_per_block;
881
882 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
883 if (r < 0) {
884 mempool_free(m, pool->mapping_pool);
885 DMERR_LIMIT("dm_kcopyd_zero() failed");
886 cell_error(pool, cell);
887 }
888 }
889 }
890
891 /*
892 * A non-zero return indicates read_only or fail_io mode.
893 * Many callers don't care about the return value.
894 */
895 static int commit(struct pool *pool)
896 {
897 int r;
898
899 if (get_pool_mode(pool) != PM_WRITE)
900 return -EINVAL;
901
902 r = dm_pool_commit_metadata(pool->pmd);
903 if (r)
904 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
905
906 return r;
907 }
908
909 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
910 {
911 unsigned long flags;
912
913 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
914 DMWARN("%s: reached low water mark for data device: sending event.",
915 dm_device_name(pool->pool_md));
916 spin_lock_irqsave(&pool->lock, flags);
917 pool->low_water_triggered = true;
918 spin_unlock_irqrestore(&pool->lock, flags);
919 dm_table_event(pool->ti->table);
920 }
921 }
922
923 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
924 {
925 int r;
926 dm_block_t free_blocks;
927 struct pool *pool = tc->pool;
928
929 if (get_pool_mode(pool) != PM_WRITE)
930 return -EINVAL;
931
932 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
933 if (r) {
934 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
935 return r;
936 }
937
938 check_low_water_mark(pool, free_blocks);
939
940 if (!free_blocks) {
941 /*
942 * Try to commit to see if that will free up some
943 * more space.
944 */
945 r = commit(pool);
946 if (r)
947 return r;
948
949 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
950 if (r) {
951 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
952 return r;
953 }
954
955 if (!free_blocks) {
956 out_of_data_space(pool);
957 return -ENOSPC;
958 }
959 }
960
961 r = dm_pool_alloc_data_block(pool->pmd, result);
962 if (r) {
963 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
964 return r;
965 }
966
967 return 0;
968 }
969
970 /*
971 * If we have run out of space, queue bios until the device is
972 * resumed, presumably after having been reloaded with more space.
973 */
974 static void retry_on_resume(struct bio *bio)
975 {
976 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
977 struct thin_c *tc = h->tc;
978 struct pool *pool = tc->pool;
979 unsigned long flags;
980
981 spin_lock_irqsave(&pool->lock, flags);
982 bio_list_add(&pool->retry_on_resume_list, bio);
983 spin_unlock_irqrestore(&pool->lock, flags);
984 }
985
986 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
987 {
988 /*
989 * When pool is read-only, no cell locking is needed because
990 * nothing is changing.
991 */
992 WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
993
994 if (pool->no_free_space)
995 retry_on_resume(bio);
996 else
997 bio_io_error(bio);
998 }
999
1000 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1001 {
1002 struct bio *bio;
1003 struct bio_list bios;
1004
1005 bio_list_init(&bios);
1006 cell_release(pool, cell, &bios);
1007
1008 while ((bio = bio_list_pop(&bios)))
1009 handle_unserviceable_bio(pool, bio);
1010 }
1011
1012 static void process_discard(struct thin_c *tc, struct bio *bio)
1013 {
1014 int r;
1015 unsigned long flags;
1016 struct pool *pool = tc->pool;
1017 struct dm_bio_prison_cell *cell, *cell2;
1018 struct dm_cell_key key, key2;
1019 dm_block_t block = get_bio_block(tc, bio);
1020 struct dm_thin_lookup_result lookup_result;
1021 struct dm_thin_new_mapping *m;
1022
1023 build_virtual_key(tc->td, block, &key);
1024 if (bio_detain(tc->pool, &key, bio, &cell))
1025 return;
1026
1027 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1028 switch (r) {
1029 case 0:
1030 /*
1031 * Check nobody is fiddling with this pool block. This can
1032 * happen if someone's in the process of breaking sharing
1033 * on this block.
1034 */
1035 build_data_key(tc->td, lookup_result.block, &key2);
1036 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1037 cell_defer_no_holder(tc, cell);
1038 break;
1039 }
1040
1041 if (io_overlaps_block(pool, bio)) {
1042 /*
1043 * IO may still be going to the destination block. We must
1044 * quiesce before we can do the removal.
1045 */
1046 m = get_next_mapping(pool);
1047 m->tc = tc;
1048 m->pass_discard = pool->pf.discard_passdown;
1049 m->definitely_not_shared = !lookup_result.shared;
1050 m->virt_block = block;
1051 m->data_block = lookup_result.block;
1052 m->cell = cell;
1053 m->cell2 = cell2;
1054 m->bio = bio;
1055
1056 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1057 spin_lock_irqsave(&pool->lock, flags);
1058 list_add_tail(&m->list, &pool->prepared_discards);
1059 spin_unlock_irqrestore(&pool->lock, flags);
1060 wake_worker(pool);
1061 }
1062 } else {
1063 inc_all_io_entry(pool, bio);
1064 cell_defer_no_holder(tc, cell);
1065 cell_defer_no_holder(tc, cell2);
1066
1067 /*
1068 * The DM core makes sure that the discard doesn't span
1069 * a block boundary. So we submit the discard of a
1070 * partial block appropriately.
1071 */
1072 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1073 remap_and_issue(tc, bio, lookup_result.block);
1074 else
1075 bio_endio(bio, 0);
1076 }
1077 break;
1078
1079 case -ENODATA:
1080 /*
1081 * It isn't provisioned, just forget it.
1082 */
1083 cell_defer_no_holder(tc, cell);
1084 bio_endio(bio, 0);
1085 break;
1086
1087 default:
1088 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1089 __func__, r);
1090 cell_defer_no_holder(tc, cell);
1091 bio_io_error(bio);
1092 break;
1093 }
1094 }
1095
1096 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1097 struct dm_cell_key *key,
1098 struct dm_thin_lookup_result *lookup_result,
1099 struct dm_bio_prison_cell *cell)
1100 {
1101 int r;
1102 dm_block_t data_block;
1103 struct pool *pool = tc->pool;
1104
1105 r = alloc_data_block(tc, &data_block);
1106 switch (r) {
1107 case 0:
1108 schedule_internal_copy(tc, block, lookup_result->block,
1109 data_block, cell, bio);
1110 break;
1111
1112 case -ENOSPC:
1113 retry_bios_on_resume(pool, cell);
1114 break;
1115
1116 default:
1117 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1118 __func__, r);
1119 cell_error(pool, cell);
1120 break;
1121 }
1122 }
1123
1124 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1125 dm_block_t block,
1126 struct dm_thin_lookup_result *lookup_result)
1127 {
1128 struct dm_bio_prison_cell *cell;
1129 struct pool *pool = tc->pool;
1130 struct dm_cell_key key;
1131
1132 /*
1133 * If cell is already occupied, then sharing is already in the process
1134 * of being broken so we have nothing further to do here.
1135 */
1136 build_data_key(tc->td, lookup_result->block, &key);
1137 if (bio_detain(pool, &key, bio, &cell))
1138 return;
1139
1140 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1141 break_sharing(tc, bio, block, &key, lookup_result, cell);
1142 else {
1143 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1144
1145 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1146 inc_all_io_entry(pool, bio);
1147 cell_defer_no_holder(tc, cell);
1148
1149 remap_and_issue(tc, bio, lookup_result->block);
1150 }
1151 }
1152
1153 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1154 struct dm_bio_prison_cell *cell)
1155 {
1156 int r;
1157 dm_block_t data_block;
1158 struct pool *pool = tc->pool;
1159
1160 /*
1161 * Remap empty bios (flushes) immediately, without provisioning.
1162 */
1163 if (!bio->bi_size) {
1164 inc_all_io_entry(pool, bio);
1165 cell_defer_no_holder(tc, cell);
1166
1167 remap_and_issue(tc, bio, 0);
1168 return;
1169 }
1170
1171 /*
1172 * Fill read bios with zeroes and complete them immediately.
1173 */
1174 if (bio_data_dir(bio) == READ) {
1175 zero_fill_bio(bio);
1176 cell_defer_no_holder(tc, cell);
1177 bio_endio(bio, 0);
1178 return;
1179 }
1180
1181 r = alloc_data_block(tc, &data_block);
1182 switch (r) {
1183 case 0:
1184 if (tc->origin_dev)
1185 schedule_external_copy(tc, block, data_block, cell, bio);
1186 else
1187 schedule_zero(tc, block, data_block, cell, bio);
1188 break;
1189
1190 case -ENOSPC:
1191 retry_bios_on_resume(pool, cell);
1192 break;
1193
1194 default:
1195 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1196 __func__, r);
1197 cell_error(pool, cell);
1198 break;
1199 }
1200 }
1201
1202 static void process_bio(struct thin_c *tc, struct bio *bio)
1203 {
1204 int r;
1205 struct pool *pool = tc->pool;
1206 dm_block_t block = get_bio_block(tc, bio);
1207 struct dm_bio_prison_cell *cell;
1208 struct dm_cell_key key;
1209 struct dm_thin_lookup_result lookup_result;
1210
1211 /*
1212 * If cell is already occupied, then the block is already
1213 * being provisioned so we have nothing further to do here.
1214 */
1215 build_virtual_key(tc->td, block, &key);
1216 if (bio_detain(pool, &key, bio, &cell))
1217 return;
1218
1219 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1220 switch (r) {
1221 case 0:
1222 if (lookup_result.shared) {
1223 process_shared_bio(tc, bio, block, &lookup_result);
1224 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1225 } else {
1226 inc_all_io_entry(pool, bio);
1227 cell_defer_no_holder(tc, cell);
1228
1229 remap_and_issue(tc, bio, lookup_result.block);
1230 }
1231 break;
1232
1233 case -ENODATA:
1234 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1235 inc_all_io_entry(pool, bio);
1236 cell_defer_no_holder(tc, cell);
1237
1238 remap_to_origin_and_issue(tc, bio);
1239 } else
1240 provision_block(tc, bio, block, cell);
1241 break;
1242
1243 default:
1244 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1245 __func__, r);
1246 cell_defer_no_holder(tc, cell);
1247 bio_io_error(bio);
1248 break;
1249 }
1250 }
1251
1252 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1253 {
1254 int r;
1255 int rw = bio_data_dir(bio);
1256 dm_block_t block = get_bio_block(tc, bio);
1257 struct dm_thin_lookup_result lookup_result;
1258
1259 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1260 switch (r) {
1261 case 0:
1262 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1263 handle_unserviceable_bio(tc->pool, bio);
1264 else {
1265 inc_all_io_entry(tc->pool, bio);
1266 remap_and_issue(tc, bio, lookup_result.block);
1267 }
1268 break;
1269
1270 case -ENODATA:
1271 if (rw != READ) {
1272 handle_unserviceable_bio(tc->pool, bio);
1273 break;
1274 }
1275
1276 if (tc->origin_dev) {
1277 inc_all_io_entry(tc->pool, bio);
1278 remap_to_origin_and_issue(tc, bio);
1279 break;
1280 }
1281
1282 zero_fill_bio(bio);
1283 bio_endio(bio, 0);
1284 break;
1285
1286 default:
1287 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1288 __func__, r);
1289 bio_io_error(bio);
1290 break;
1291 }
1292 }
1293
1294 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1295 {
1296 bio_io_error(bio);
1297 }
1298
1299 /*
1300 * FIXME: should we also commit due to size of transaction, measured in
1301 * metadata blocks?
1302 */
1303 static int need_commit_due_to_time(struct pool *pool)
1304 {
1305 return jiffies < pool->last_commit_jiffies ||
1306 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1307 }
1308
1309 static void process_deferred_bios(struct pool *pool)
1310 {
1311 unsigned long flags;
1312 struct bio *bio;
1313 struct bio_list bios;
1314
1315 bio_list_init(&bios);
1316
1317 spin_lock_irqsave(&pool->lock, flags);
1318 bio_list_merge(&bios, &pool->deferred_bios);
1319 bio_list_init(&pool->deferred_bios);
1320 spin_unlock_irqrestore(&pool->lock, flags);
1321
1322 while ((bio = bio_list_pop(&bios))) {
1323 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1324 struct thin_c *tc = h->tc;
1325
1326 /*
1327 * If we've got no free new_mapping structs, and processing
1328 * this bio might require one, we pause until there are some
1329 * prepared mappings to process.
1330 */
1331 if (ensure_next_mapping(pool)) {
1332 spin_lock_irqsave(&pool->lock, flags);
1333 bio_list_merge(&pool->deferred_bios, &bios);
1334 spin_unlock_irqrestore(&pool->lock, flags);
1335
1336 break;
1337 }
1338
1339 if (bio->bi_rw & REQ_DISCARD)
1340 pool->process_discard(tc, bio);
1341 else
1342 pool->process_bio(tc, bio);
1343 }
1344
1345 /*
1346 * If there are any deferred flush bios, we must commit
1347 * the metadata before issuing them.
1348 */
1349 bio_list_init(&bios);
1350 spin_lock_irqsave(&pool->lock, flags);
1351 bio_list_merge(&bios, &pool->deferred_flush_bios);
1352 bio_list_init(&pool->deferred_flush_bios);
1353 spin_unlock_irqrestore(&pool->lock, flags);
1354
1355 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1356 return;
1357
1358 if (commit(pool)) {
1359 while ((bio = bio_list_pop(&bios)))
1360 bio_io_error(bio);
1361 return;
1362 }
1363 pool->last_commit_jiffies = jiffies;
1364
1365 while ((bio = bio_list_pop(&bios)))
1366 generic_make_request(bio);
1367 }
1368
1369 static void do_worker(struct work_struct *ws)
1370 {
1371 struct pool *pool = container_of(ws, struct pool, worker);
1372
1373 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1374 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1375 process_deferred_bios(pool);
1376 }
1377
1378 /*
1379 * We want to commit periodically so that not too much
1380 * unwritten data builds up.
1381 */
1382 static void do_waker(struct work_struct *ws)
1383 {
1384 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1385 wake_worker(pool);
1386 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1387 }
1388
1389 /*----------------------------------------------------------------*/
1390
1391 static enum pool_mode get_pool_mode(struct pool *pool)
1392 {
1393 return pool->pf.mode;
1394 }
1395
1396 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1397 {
1398 int r;
1399
1400 pool->pf.mode = mode;
1401
1402 switch (mode) {
1403 case PM_FAIL:
1404 DMERR("%s: switching pool to failure mode",
1405 dm_device_name(pool->pool_md));
1406 dm_pool_metadata_read_only(pool->pmd);
1407 pool->process_bio = process_bio_fail;
1408 pool->process_discard = process_bio_fail;
1409 pool->process_prepared_mapping = process_prepared_mapping_fail;
1410 pool->process_prepared_discard = process_prepared_discard_fail;
1411 break;
1412
1413 case PM_READ_ONLY:
1414 DMERR("%s: switching pool to read-only mode",
1415 dm_device_name(pool->pool_md));
1416 r = dm_pool_abort_metadata(pool->pmd);
1417 if (r) {
1418 DMERR("%s: aborting transaction failed",
1419 dm_device_name(pool->pool_md));
1420 set_pool_mode(pool, PM_FAIL);
1421 } else {
1422 dm_pool_metadata_read_only(pool->pmd);
1423 pool->process_bio = process_bio_read_only;
1424 pool->process_discard = process_discard;
1425 pool->process_prepared_mapping = process_prepared_mapping_fail;
1426 pool->process_prepared_discard = process_prepared_discard_passdown;
1427 }
1428 break;
1429
1430 case PM_WRITE:
1431 dm_pool_metadata_read_write(pool->pmd);
1432 pool->process_bio = process_bio;
1433 pool->process_discard = process_discard;
1434 pool->process_prepared_mapping = process_prepared_mapping;
1435 pool->process_prepared_discard = process_prepared_discard;
1436 break;
1437 }
1438 }
1439
1440 static void set_no_free_space(struct pool *pool)
1441 {
1442 unsigned long flags;
1443
1444 if (pool->pf.error_if_no_space)
1445 return;
1446
1447 spin_lock_irqsave(&pool->lock, flags);
1448 pool->no_free_space = true;
1449 spin_unlock_irqrestore(&pool->lock, flags);
1450 }
1451
1452 /*
1453 * Rather than calling set_pool_mode directly, use these which describe the
1454 * reason for mode degradation.
1455 */
1456 static void out_of_data_space(struct pool *pool)
1457 {
1458 DMERR_LIMIT("%s: no free data space available.",
1459 dm_device_name(pool->pool_md));
1460 set_no_free_space(pool);
1461 set_pool_mode(pool, PM_READ_ONLY);
1462 }
1463
1464 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1465 {
1466 dm_block_t free_blocks;
1467
1468 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1469 dm_device_name(pool->pool_md), op, r);
1470
1471 if (r == -ENOSPC &&
1472 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1473 !free_blocks) {
1474 DMERR_LIMIT("%s: no free metadata space available.",
1475 dm_device_name(pool->pool_md));
1476 set_no_free_space(pool);
1477 }
1478
1479 set_pool_mode(pool, PM_READ_ONLY);
1480 }
1481
1482 /*----------------------------------------------------------------*/
1483
1484 /*
1485 * Mapping functions.
1486 */
1487
1488 /*
1489 * Called only while mapping a thin bio to hand it over to the workqueue.
1490 */
1491 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1492 {
1493 unsigned long flags;
1494 struct pool *pool = tc->pool;
1495
1496 spin_lock_irqsave(&pool->lock, flags);
1497 bio_list_add(&pool->deferred_bios, bio);
1498 spin_unlock_irqrestore(&pool->lock, flags);
1499
1500 wake_worker(pool);
1501 }
1502
1503 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1504 {
1505 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1506
1507 h->tc = tc;
1508 h->shared_read_entry = NULL;
1509 h->all_io_entry = NULL;
1510 h->overwrite_mapping = NULL;
1511 }
1512
1513 /*
1514 * Non-blocking function called from the thin target's map function.
1515 */
1516 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1517 {
1518 int r;
1519 struct thin_c *tc = ti->private;
1520 dm_block_t block = get_bio_block(tc, bio);
1521 struct dm_thin_device *td = tc->td;
1522 struct dm_thin_lookup_result result;
1523 struct dm_bio_prison_cell cell1, cell2;
1524 struct dm_bio_prison_cell *cell_result;
1525 struct dm_cell_key key;
1526
1527 thin_hook_bio(tc, bio);
1528
1529 if (get_pool_mode(tc->pool) == PM_FAIL) {
1530 bio_io_error(bio);
1531 return DM_MAPIO_SUBMITTED;
1532 }
1533
1534 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1535 thin_defer_bio(tc, bio);
1536 return DM_MAPIO_SUBMITTED;
1537 }
1538
1539 r = dm_thin_find_block(td, block, 0, &result);
1540
1541 /*
1542 * Note that we defer readahead too.
1543 */
1544 switch (r) {
1545 case 0:
1546 if (unlikely(result.shared)) {
1547 /*
1548 * We have a race condition here between the
1549 * result.shared value returned by the lookup and
1550 * snapshot creation, which may cause new
1551 * sharing.
1552 *
1553 * To avoid this always quiesce the origin before
1554 * taking the snap. You want to do this anyway to
1555 * ensure a consistent application view
1556 * (i.e. lockfs).
1557 *
1558 * More distant ancestors are irrelevant. The
1559 * shared flag will be set in their case.
1560 */
1561 thin_defer_bio(tc, bio);
1562 return DM_MAPIO_SUBMITTED;
1563 }
1564
1565 build_virtual_key(tc->td, block, &key);
1566 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1567 return DM_MAPIO_SUBMITTED;
1568
1569 build_data_key(tc->td, result.block, &key);
1570 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1571 cell_defer_no_holder_no_free(tc, &cell1);
1572 return DM_MAPIO_SUBMITTED;
1573 }
1574
1575 inc_all_io_entry(tc->pool, bio);
1576 cell_defer_no_holder_no_free(tc, &cell2);
1577 cell_defer_no_holder_no_free(tc, &cell1);
1578
1579 remap(tc, bio, result.block);
1580 return DM_MAPIO_REMAPPED;
1581
1582 case -ENODATA:
1583 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1584 /*
1585 * This block isn't provisioned, and we have no way
1586 * of doing so.
1587 */
1588 handle_unserviceable_bio(tc->pool, bio);
1589 return DM_MAPIO_SUBMITTED;
1590 }
1591 /* fall through */
1592
1593 case -EWOULDBLOCK:
1594 /*
1595 * In future, the failed dm_thin_find_block above could
1596 * provide the hint to load the metadata into cache.
1597 */
1598 thin_defer_bio(tc, bio);
1599 return DM_MAPIO_SUBMITTED;
1600
1601 default:
1602 /*
1603 * Must always call bio_io_error on failure.
1604 * dm_thin_find_block can fail with -EINVAL if the
1605 * pool is switched to fail-io mode.
1606 */
1607 bio_io_error(bio);
1608 return DM_MAPIO_SUBMITTED;
1609 }
1610 }
1611
1612 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1613 {
1614 int r;
1615 unsigned long flags;
1616 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1617
1618 spin_lock_irqsave(&pt->pool->lock, flags);
1619 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1620 spin_unlock_irqrestore(&pt->pool->lock, flags);
1621
1622 if (!r) {
1623 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1624 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1625 }
1626
1627 return r;
1628 }
1629
1630 static void __requeue_bios(struct pool *pool)
1631 {
1632 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1633 bio_list_init(&pool->retry_on_resume_list);
1634 }
1635
1636 /*----------------------------------------------------------------
1637 * Binding of control targets to a pool object
1638 *--------------------------------------------------------------*/
1639 static bool data_dev_supports_discard(struct pool_c *pt)
1640 {
1641 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1642
1643 return q && blk_queue_discard(q);
1644 }
1645
1646 static bool is_factor(sector_t block_size, uint32_t n)
1647 {
1648 return !sector_div(block_size, n);
1649 }
1650
1651 /*
1652 * If discard_passdown was enabled verify that the data device
1653 * supports discards. Disable discard_passdown if not.
1654 */
1655 static void disable_passdown_if_not_supported(struct pool_c *pt)
1656 {
1657 struct pool *pool = pt->pool;
1658 struct block_device *data_bdev = pt->data_dev->bdev;
1659 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1660 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1661 const char *reason = NULL;
1662 char buf[BDEVNAME_SIZE];
1663
1664 if (!pt->adjusted_pf.discard_passdown)
1665 return;
1666
1667 if (!data_dev_supports_discard(pt))
1668 reason = "discard unsupported";
1669
1670 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1671 reason = "max discard sectors smaller than a block";
1672
1673 else if (data_limits->discard_granularity > block_size)
1674 reason = "discard granularity larger than a block";
1675
1676 else if (!is_factor(block_size, data_limits->discard_granularity))
1677 reason = "discard granularity not a factor of block size";
1678
1679 if (reason) {
1680 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1681 pt->adjusted_pf.discard_passdown = false;
1682 }
1683 }
1684
1685 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1686 {
1687 struct pool_c *pt = ti->private;
1688
1689 /*
1690 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1691 */
1692 enum pool_mode old_mode = pool->pf.mode;
1693 enum pool_mode new_mode = pt->adjusted_pf.mode;
1694
1695 /*
1696 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1697 * not going to recover without a thin_repair. So we never let the
1698 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1699 * may have been due to a lack of metadata or data space, and may
1700 * now work (ie. if the underlying devices have been resized).
1701 */
1702 if (old_mode == PM_FAIL)
1703 new_mode = old_mode;
1704
1705 pool->ti = ti;
1706 pool->low_water_blocks = pt->low_water_blocks;
1707 pool->pf = pt->adjusted_pf;
1708
1709 set_pool_mode(pool, new_mode);
1710
1711 return 0;
1712 }
1713
1714 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1715 {
1716 if (pool->ti == ti)
1717 pool->ti = NULL;
1718 }
1719
1720 /*----------------------------------------------------------------
1721 * Pool creation
1722 *--------------------------------------------------------------*/
1723 /* Initialize pool features. */
1724 static void pool_features_init(struct pool_features *pf)
1725 {
1726 pf->mode = PM_WRITE;
1727 pf->zero_new_blocks = true;
1728 pf->discard_enabled = true;
1729 pf->discard_passdown = true;
1730 pf->error_if_no_space = false;
1731 }
1732
1733 static void __pool_destroy(struct pool *pool)
1734 {
1735 __pool_table_remove(pool);
1736
1737 if (dm_pool_metadata_close(pool->pmd) < 0)
1738 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1739
1740 dm_bio_prison_destroy(pool->prison);
1741 dm_kcopyd_client_destroy(pool->copier);
1742
1743 if (pool->wq)
1744 destroy_workqueue(pool->wq);
1745
1746 if (pool->next_mapping)
1747 mempool_free(pool->next_mapping, pool->mapping_pool);
1748 mempool_destroy(pool->mapping_pool);
1749 dm_deferred_set_destroy(pool->shared_read_ds);
1750 dm_deferred_set_destroy(pool->all_io_ds);
1751 kfree(pool);
1752 }
1753
1754 static struct kmem_cache *_new_mapping_cache;
1755
1756 static struct pool *pool_create(struct mapped_device *pool_md,
1757 struct block_device *metadata_dev,
1758 unsigned long block_size,
1759 int read_only, char **error)
1760 {
1761 int r;
1762 void *err_p;
1763 struct pool *pool;
1764 struct dm_pool_metadata *pmd;
1765 bool format_device = read_only ? false : true;
1766
1767 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1768 if (IS_ERR(pmd)) {
1769 *error = "Error creating metadata object";
1770 return (struct pool *)pmd;
1771 }
1772
1773 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1774 if (!pool) {
1775 *error = "Error allocating memory for pool";
1776 err_p = ERR_PTR(-ENOMEM);
1777 goto bad_pool;
1778 }
1779
1780 pool->pmd = pmd;
1781 pool->sectors_per_block = block_size;
1782 if (block_size & (block_size - 1))
1783 pool->sectors_per_block_shift = -1;
1784 else
1785 pool->sectors_per_block_shift = __ffs(block_size);
1786 pool->low_water_blocks = 0;
1787 pool_features_init(&pool->pf);
1788 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1789 if (!pool->prison) {
1790 *error = "Error creating pool's bio prison";
1791 err_p = ERR_PTR(-ENOMEM);
1792 goto bad_prison;
1793 }
1794
1795 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1796 if (IS_ERR(pool->copier)) {
1797 r = PTR_ERR(pool->copier);
1798 *error = "Error creating pool's kcopyd client";
1799 err_p = ERR_PTR(r);
1800 goto bad_kcopyd_client;
1801 }
1802
1803 /*
1804 * Create singlethreaded workqueue that will service all devices
1805 * that use this metadata.
1806 */
1807 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1808 if (!pool->wq) {
1809 *error = "Error creating pool's workqueue";
1810 err_p = ERR_PTR(-ENOMEM);
1811 goto bad_wq;
1812 }
1813
1814 INIT_WORK(&pool->worker, do_worker);
1815 INIT_DELAYED_WORK(&pool->waker, do_waker);
1816 spin_lock_init(&pool->lock);
1817 bio_list_init(&pool->deferred_bios);
1818 bio_list_init(&pool->deferred_flush_bios);
1819 INIT_LIST_HEAD(&pool->prepared_mappings);
1820 INIT_LIST_HEAD(&pool->prepared_discards);
1821 pool->low_water_triggered = false;
1822 pool->no_free_space = false;
1823 bio_list_init(&pool->retry_on_resume_list);
1824
1825 pool->shared_read_ds = dm_deferred_set_create();
1826 if (!pool->shared_read_ds) {
1827 *error = "Error creating pool's shared read deferred set";
1828 err_p = ERR_PTR(-ENOMEM);
1829 goto bad_shared_read_ds;
1830 }
1831
1832 pool->all_io_ds = dm_deferred_set_create();
1833 if (!pool->all_io_ds) {
1834 *error = "Error creating pool's all io deferred set";
1835 err_p = ERR_PTR(-ENOMEM);
1836 goto bad_all_io_ds;
1837 }
1838
1839 pool->next_mapping = NULL;
1840 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1841 _new_mapping_cache);
1842 if (!pool->mapping_pool) {
1843 *error = "Error creating pool's mapping mempool";
1844 err_p = ERR_PTR(-ENOMEM);
1845 goto bad_mapping_pool;
1846 }
1847
1848 pool->ref_count = 1;
1849 pool->last_commit_jiffies = jiffies;
1850 pool->pool_md = pool_md;
1851 pool->md_dev = metadata_dev;
1852 __pool_table_insert(pool);
1853
1854 return pool;
1855
1856 bad_mapping_pool:
1857 dm_deferred_set_destroy(pool->all_io_ds);
1858 bad_all_io_ds:
1859 dm_deferred_set_destroy(pool->shared_read_ds);
1860 bad_shared_read_ds:
1861 destroy_workqueue(pool->wq);
1862 bad_wq:
1863 dm_kcopyd_client_destroy(pool->copier);
1864 bad_kcopyd_client:
1865 dm_bio_prison_destroy(pool->prison);
1866 bad_prison:
1867 kfree(pool);
1868 bad_pool:
1869 if (dm_pool_metadata_close(pmd))
1870 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1871
1872 return err_p;
1873 }
1874
1875 static void __pool_inc(struct pool *pool)
1876 {
1877 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1878 pool->ref_count++;
1879 }
1880
1881 static void __pool_dec(struct pool *pool)
1882 {
1883 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1884 BUG_ON(!pool->ref_count);
1885 if (!--pool->ref_count)
1886 __pool_destroy(pool);
1887 }
1888
1889 static struct pool *__pool_find(struct mapped_device *pool_md,
1890 struct block_device *metadata_dev,
1891 unsigned long block_size, int read_only,
1892 char **error, int *created)
1893 {
1894 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1895
1896 if (pool) {
1897 if (pool->pool_md != pool_md) {
1898 *error = "metadata device already in use by a pool";
1899 return ERR_PTR(-EBUSY);
1900 }
1901 __pool_inc(pool);
1902
1903 } else {
1904 pool = __pool_table_lookup(pool_md);
1905 if (pool) {
1906 if (pool->md_dev != metadata_dev) {
1907 *error = "different pool cannot replace a pool";
1908 return ERR_PTR(-EINVAL);
1909 }
1910 __pool_inc(pool);
1911
1912 } else {
1913 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1914 *created = 1;
1915 }
1916 }
1917
1918 return pool;
1919 }
1920
1921 /*----------------------------------------------------------------
1922 * Pool target methods
1923 *--------------------------------------------------------------*/
1924 static void pool_dtr(struct dm_target *ti)
1925 {
1926 struct pool_c *pt = ti->private;
1927
1928 mutex_lock(&dm_thin_pool_table.mutex);
1929
1930 unbind_control_target(pt->pool, ti);
1931 __pool_dec(pt->pool);
1932 dm_put_device(ti, pt->metadata_dev);
1933 dm_put_device(ti, pt->data_dev);
1934 kfree(pt);
1935
1936 mutex_unlock(&dm_thin_pool_table.mutex);
1937 }
1938
1939 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1940 struct dm_target *ti)
1941 {
1942 int r;
1943 unsigned argc;
1944 const char *arg_name;
1945
1946 static struct dm_arg _args[] = {
1947 {0, 3, "Invalid number of pool feature arguments"},
1948 };
1949
1950 /*
1951 * No feature arguments supplied.
1952 */
1953 if (!as->argc)
1954 return 0;
1955
1956 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1957 if (r)
1958 return -EINVAL;
1959
1960 while (argc && !r) {
1961 arg_name = dm_shift_arg(as);
1962 argc--;
1963
1964 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1965 pf->zero_new_blocks = false;
1966
1967 else if (!strcasecmp(arg_name, "ignore_discard"))
1968 pf->discard_enabled = false;
1969
1970 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1971 pf->discard_passdown = false;
1972
1973 else if (!strcasecmp(arg_name, "read_only"))
1974 pf->mode = PM_READ_ONLY;
1975
1976 else if (!strcasecmp(arg_name, "error_if_no_space"))
1977 pf->error_if_no_space = true;
1978
1979 else {
1980 ti->error = "Unrecognised pool feature requested";
1981 r = -EINVAL;
1982 break;
1983 }
1984 }
1985
1986 return r;
1987 }
1988
1989 static void metadata_low_callback(void *context)
1990 {
1991 struct pool *pool = context;
1992
1993 DMWARN("%s: reached low water mark for metadata device: sending event.",
1994 dm_device_name(pool->pool_md));
1995
1996 dm_table_event(pool->ti->table);
1997 }
1998
1999 static sector_t get_metadata_dev_size(struct block_device *bdev)
2000 {
2001 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2002 char buffer[BDEVNAME_SIZE];
2003
2004 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
2005 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2006 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2007 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
2008 }
2009
2010 return metadata_dev_size;
2011 }
2012
2013 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2014 {
2015 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2016
2017 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
2018
2019 return metadata_dev_size;
2020 }
2021
2022 /*
2023 * When a metadata threshold is crossed a dm event is triggered, and
2024 * userland should respond by growing the metadata device. We could let
2025 * userland set the threshold, like we do with the data threshold, but I'm
2026 * not sure they know enough to do this well.
2027 */
2028 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2029 {
2030 /*
2031 * 4M is ample for all ops with the possible exception of thin
2032 * device deletion which is harmless if it fails (just retry the
2033 * delete after you've grown the device).
2034 */
2035 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2036 return min((dm_block_t)1024ULL /* 4M */, quarter);
2037 }
2038
2039 /*
2040 * thin-pool <metadata dev> <data dev>
2041 * <data block size (sectors)>
2042 * <low water mark (blocks)>
2043 * [<#feature args> [<arg>]*]
2044 *
2045 * Optional feature arguments are:
2046 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2047 * ignore_discard: disable discard
2048 * no_discard_passdown: don't pass discards down to the data device
2049 * read_only: Don't allow any changes to be made to the pool metadata.
2050 * error_if_no_space: error IOs, instead of queueing, if no space.
2051 */
2052 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2053 {
2054 int r, pool_created = 0;
2055 struct pool_c *pt;
2056 struct pool *pool;
2057 struct pool_features pf;
2058 struct dm_arg_set as;
2059 struct dm_dev *data_dev;
2060 unsigned long block_size;
2061 dm_block_t low_water_blocks;
2062 struct dm_dev *metadata_dev;
2063 fmode_t metadata_mode;
2064
2065 /*
2066 * FIXME Remove validation from scope of lock.
2067 */
2068 mutex_lock(&dm_thin_pool_table.mutex);
2069
2070 if (argc < 4) {
2071 ti->error = "Invalid argument count";
2072 r = -EINVAL;
2073 goto out_unlock;
2074 }
2075
2076 as.argc = argc;
2077 as.argv = argv;
2078
2079 /*
2080 * Set default pool features.
2081 */
2082 pool_features_init(&pf);
2083
2084 dm_consume_args(&as, 4);
2085 r = parse_pool_features(&as, &pf, ti);
2086 if (r)
2087 goto out_unlock;
2088
2089 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2090 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2091 if (r) {
2092 ti->error = "Error opening metadata block device";
2093 goto out_unlock;
2094 }
2095
2096 /*
2097 * Run for the side-effect of possibly issuing a warning if the
2098 * device is too big.
2099 */
2100 (void) get_metadata_dev_size(metadata_dev->bdev);
2101
2102 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2103 if (r) {
2104 ti->error = "Error getting data device";
2105 goto out_metadata;
2106 }
2107
2108 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2109 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2110 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2111 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2112 ti->error = "Invalid block size";
2113 r = -EINVAL;
2114 goto out;
2115 }
2116
2117 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2118 ti->error = "Invalid low water mark";
2119 r = -EINVAL;
2120 goto out;
2121 }
2122
2123 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2124 if (!pt) {
2125 r = -ENOMEM;
2126 goto out;
2127 }
2128
2129 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2130 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2131 if (IS_ERR(pool)) {
2132 r = PTR_ERR(pool);
2133 goto out_free_pt;
2134 }
2135
2136 /*
2137 * 'pool_created' reflects whether this is the first table load.
2138 * Top level discard support is not allowed to be changed after
2139 * initial load. This would require a pool reload to trigger thin
2140 * device changes.
2141 */
2142 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2143 ti->error = "Discard support cannot be disabled once enabled";
2144 r = -EINVAL;
2145 goto out_flags_changed;
2146 }
2147
2148 pt->pool = pool;
2149 pt->ti = ti;
2150 pt->metadata_dev = metadata_dev;
2151 pt->data_dev = data_dev;
2152 pt->low_water_blocks = low_water_blocks;
2153 pt->adjusted_pf = pt->requested_pf = pf;
2154 ti->num_flush_bios = 1;
2155
2156 /*
2157 * Only need to enable discards if the pool should pass
2158 * them down to the data device. The thin device's discard
2159 * processing will cause mappings to be removed from the btree.
2160 */
2161 ti->discard_zeroes_data_unsupported = true;
2162 if (pf.discard_enabled && pf.discard_passdown) {
2163 ti->num_discard_bios = 1;
2164
2165 /*
2166 * Setting 'discards_supported' circumvents the normal
2167 * stacking of discard limits (this keeps the pool and
2168 * thin devices' discard limits consistent).
2169 */
2170 ti->discards_supported = true;
2171 }
2172 ti->private = pt;
2173
2174 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2175 calc_metadata_threshold(pt),
2176 metadata_low_callback,
2177 pool);
2178 if (r)
2179 goto out_free_pt;
2180
2181 pt->callbacks.congested_fn = pool_is_congested;
2182 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2183
2184 mutex_unlock(&dm_thin_pool_table.mutex);
2185
2186 return 0;
2187
2188 out_flags_changed:
2189 __pool_dec(pool);
2190 out_free_pt:
2191 kfree(pt);
2192 out:
2193 dm_put_device(ti, data_dev);
2194 out_metadata:
2195 dm_put_device(ti, metadata_dev);
2196 out_unlock:
2197 mutex_unlock(&dm_thin_pool_table.mutex);
2198
2199 return r;
2200 }
2201
2202 static int pool_map(struct dm_target *ti, struct bio *bio)
2203 {
2204 int r;
2205 struct pool_c *pt = ti->private;
2206 struct pool *pool = pt->pool;
2207 unsigned long flags;
2208
2209 /*
2210 * As this is a singleton target, ti->begin is always zero.
2211 */
2212 spin_lock_irqsave(&pool->lock, flags);
2213 bio->bi_bdev = pt->data_dev->bdev;
2214 r = DM_MAPIO_REMAPPED;
2215 spin_unlock_irqrestore(&pool->lock, flags);
2216
2217 return r;
2218 }
2219
2220 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2221 {
2222 int r;
2223 struct pool_c *pt = ti->private;
2224 struct pool *pool = pt->pool;
2225 sector_t data_size = ti->len;
2226 dm_block_t sb_data_size;
2227
2228 *need_commit = false;
2229
2230 (void) sector_div(data_size, pool->sectors_per_block);
2231
2232 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2233 if (r) {
2234 DMERR("%s: failed to retrieve data device size",
2235 dm_device_name(pool->pool_md));
2236 return r;
2237 }
2238
2239 if (data_size < sb_data_size) {
2240 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2241 dm_device_name(pool->pool_md),
2242 (unsigned long long)data_size, sb_data_size);
2243 return -EINVAL;
2244
2245 } else if (data_size > sb_data_size) {
2246 if (sb_data_size)
2247 DMINFO("%s: growing the data device from %llu to %llu blocks",
2248 dm_device_name(pool->pool_md),
2249 sb_data_size, (unsigned long long)data_size);
2250 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2251 if (r) {
2252 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2253 return r;
2254 }
2255
2256 *need_commit = true;
2257 }
2258
2259 return 0;
2260 }
2261
2262 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2263 {
2264 int r;
2265 struct pool_c *pt = ti->private;
2266 struct pool *pool = pt->pool;
2267 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2268
2269 *need_commit = false;
2270
2271 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2272
2273 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2274 if (r) {
2275 DMERR("%s: failed to retrieve metadata device size",
2276 dm_device_name(pool->pool_md));
2277 return r;
2278 }
2279
2280 if (metadata_dev_size < sb_metadata_dev_size) {
2281 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2282 dm_device_name(pool->pool_md),
2283 metadata_dev_size, sb_metadata_dev_size);
2284 return -EINVAL;
2285
2286 } else if (metadata_dev_size > sb_metadata_dev_size) {
2287 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2288 dm_device_name(pool->pool_md),
2289 sb_metadata_dev_size, metadata_dev_size);
2290 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2291 if (r) {
2292 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2293 return r;
2294 }
2295
2296 *need_commit = true;
2297 }
2298
2299 return 0;
2300 }
2301
2302 /*
2303 * Retrieves the number of blocks of the data device from
2304 * the superblock and compares it to the actual device size,
2305 * thus resizing the data device in case it has grown.
2306 *
2307 * This both copes with opening preallocated data devices in the ctr
2308 * being followed by a resume
2309 * -and-
2310 * calling the resume method individually after userspace has
2311 * grown the data device in reaction to a table event.
2312 */
2313 static int pool_preresume(struct dm_target *ti)
2314 {
2315 int r;
2316 bool need_commit1, need_commit2;
2317 struct pool_c *pt = ti->private;
2318 struct pool *pool = pt->pool;
2319
2320 /*
2321 * Take control of the pool object.
2322 */
2323 r = bind_control_target(pool, ti);
2324 if (r)
2325 return r;
2326
2327 r = maybe_resize_data_dev(ti, &need_commit1);
2328 if (r)
2329 return r;
2330
2331 r = maybe_resize_metadata_dev(ti, &need_commit2);
2332 if (r)
2333 return r;
2334
2335 if (need_commit1 || need_commit2)
2336 (void) commit(pool);
2337
2338 return 0;
2339 }
2340
2341 static void pool_resume(struct dm_target *ti)
2342 {
2343 struct pool_c *pt = ti->private;
2344 struct pool *pool = pt->pool;
2345 unsigned long flags;
2346
2347 spin_lock_irqsave(&pool->lock, flags);
2348 pool->low_water_triggered = false;
2349 pool->no_free_space = false;
2350 __requeue_bios(pool);
2351 spin_unlock_irqrestore(&pool->lock, flags);
2352
2353 do_waker(&pool->waker.work);
2354 }
2355
2356 static void pool_postsuspend(struct dm_target *ti)
2357 {
2358 struct pool_c *pt = ti->private;
2359 struct pool *pool = pt->pool;
2360
2361 cancel_delayed_work(&pool->waker);
2362 flush_workqueue(pool->wq);
2363 (void) commit(pool);
2364 }
2365
2366 static int check_arg_count(unsigned argc, unsigned args_required)
2367 {
2368 if (argc != args_required) {
2369 DMWARN("Message received with %u arguments instead of %u.",
2370 argc, args_required);
2371 return -EINVAL;
2372 }
2373
2374 return 0;
2375 }
2376
2377 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2378 {
2379 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2380 *dev_id <= MAX_DEV_ID)
2381 return 0;
2382
2383 if (warning)
2384 DMWARN("Message received with invalid device id: %s", arg);
2385
2386 return -EINVAL;
2387 }
2388
2389 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2390 {
2391 dm_thin_id dev_id;
2392 int r;
2393
2394 r = check_arg_count(argc, 2);
2395 if (r)
2396 return r;
2397
2398 r = read_dev_id(argv[1], &dev_id, 1);
2399 if (r)
2400 return r;
2401
2402 r = dm_pool_create_thin(pool->pmd, dev_id);
2403 if (r) {
2404 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2405 argv[1]);
2406 return r;
2407 }
2408
2409 return 0;
2410 }
2411
2412 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2413 {
2414 dm_thin_id dev_id;
2415 dm_thin_id origin_dev_id;
2416 int r;
2417
2418 r = check_arg_count(argc, 3);
2419 if (r)
2420 return r;
2421
2422 r = read_dev_id(argv[1], &dev_id, 1);
2423 if (r)
2424 return r;
2425
2426 r = read_dev_id(argv[2], &origin_dev_id, 1);
2427 if (r)
2428 return r;
2429
2430 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2431 if (r) {
2432 DMWARN("Creation of new snapshot %s of device %s failed.",
2433 argv[1], argv[2]);
2434 return r;
2435 }
2436
2437 return 0;
2438 }
2439
2440 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2441 {
2442 dm_thin_id dev_id;
2443 int r;
2444
2445 r = check_arg_count(argc, 2);
2446 if (r)
2447 return r;
2448
2449 r = read_dev_id(argv[1], &dev_id, 1);
2450 if (r)
2451 return r;
2452
2453 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2454 if (r)
2455 DMWARN("Deletion of thin device %s failed.", argv[1]);
2456
2457 return r;
2458 }
2459
2460 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2461 {
2462 dm_thin_id old_id, new_id;
2463 int r;
2464
2465 r = check_arg_count(argc, 3);
2466 if (r)
2467 return r;
2468
2469 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2470 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2471 return -EINVAL;
2472 }
2473
2474 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2475 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2476 return -EINVAL;
2477 }
2478
2479 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2480 if (r) {
2481 DMWARN("Failed to change transaction id from %s to %s.",
2482 argv[1], argv[2]);
2483 return r;
2484 }
2485
2486 return 0;
2487 }
2488
2489 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2490 {
2491 int r;
2492
2493 r = check_arg_count(argc, 1);
2494 if (r)
2495 return r;
2496
2497 (void) commit(pool);
2498
2499 r = dm_pool_reserve_metadata_snap(pool->pmd);
2500 if (r)
2501 DMWARN("reserve_metadata_snap message failed.");
2502
2503 return r;
2504 }
2505
2506 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2507 {
2508 int r;
2509
2510 r = check_arg_count(argc, 1);
2511 if (r)
2512 return r;
2513
2514 r = dm_pool_release_metadata_snap(pool->pmd);
2515 if (r)
2516 DMWARN("release_metadata_snap message failed.");
2517
2518 return r;
2519 }
2520
2521 /*
2522 * Messages supported:
2523 * create_thin <dev_id>
2524 * create_snap <dev_id> <origin_id>
2525 * delete <dev_id>
2526 * trim <dev_id> <new_size_in_sectors>
2527 * set_transaction_id <current_trans_id> <new_trans_id>
2528 * reserve_metadata_snap
2529 * release_metadata_snap
2530 */
2531 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2532 {
2533 int r = -EINVAL;
2534 struct pool_c *pt = ti->private;
2535 struct pool *pool = pt->pool;
2536
2537 if (!strcasecmp(argv[0], "create_thin"))
2538 r = process_create_thin_mesg(argc, argv, pool);
2539
2540 else if (!strcasecmp(argv[0], "create_snap"))
2541 r = process_create_snap_mesg(argc, argv, pool);
2542
2543 else if (!strcasecmp(argv[0], "delete"))
2544 r = process_delete_mesg(argc, argv, pool);
2545
2546 else if (!strcasecmp(argv[0], "set_transaction_id"))
2547 r = process_set_transaction_id_mesg(argc, argv, pool);
2548
2549 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2550 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2551
2552 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2553 r = process_release_metadata_snap_mesg(argc, argv, pool);
2554
2555 else
2556 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2557
2558 if (!r)
2559 (void) commit(pool);
2560
2561 return r;
2562 }
2563
2564 static void emit_flags(struct pool_features *pf, char *result,
2565 unsigned sz, unsigned maxlen)
2566 {
2567 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2568 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2569 pf->error_if_no_space;
2570 DMEMIT("%u ", count);
2571
2572 if (!pf->zero_new_blocks)
2573 DMEMIT("skip_block_zeroing ");
2574
2575 if (!pf->discard_enabled)
2576 DMEMIT("ignore_discard ");
2577
2578 if (!pf->discard_passdown)
2579 DMEMIT("no_discard_passdown ");
2580
2581 if (pf->mode == PM_READ_ONLY)
2582 DMEMIT("read_only ");
2583
2584 if (pf->error_if_no_space)
2585 DMEMIT("error_if_no_space ");
2586 }
2587
2588 /*
2589 * Status line is:
2590 * <transaction id> <used metadata sectors>/<total metadata sectors>
2591 * <used data sectors>/<total data sectors> <held metadata root>
2592 */
2593 static void pool_status(struct dm_target *ti, status_type_t type,
2594 unsigned status_flags, char *result, unsigned maxlen)
2595 {
2596 int r;
2597 unsigned sz = 0;
2598 uint64_t transaction_id;
2599 dm_block_t nr_free_blocks_data;
2600 dm_block_t nr_free_blocks_metadata;
2601 dm_block_t nr_blocks_data;
2602 dm_block_t nr_blocks_metadata;
2603 dm_block_t held_root;
2604 char buf[BDEVNAME_SIZE];
2605 char buf2[BDEVNAME_SIZE];
2606 struct pool_c *pt = ti->private;
2607 struct pool *pool = pt->pool;
2608
2609 switch (type) {
2610 case STATUSTYPE_INFO:
2611 if (get_pool_mode(pool) == PM_FAIL) {
2612 DMEMIT("Fail");
2613 break;
2614 }
2615
2616 /* Commit to ensure statistics aren't out-of-date */
2617 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2618 (void) commit(pool);
2619
2620 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2621 if (r) {
2622 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2623 dm_device_name(pool->pool_md), r);
2624 goto err;
2625 }
2626
2627 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2628 if (r) {
2629 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2630 dm_device_name(pool->pool_md), r);
2631 goto err;
2632 }
2633
2634 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2635 if (r) {
2636 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2637 dm_device_name(pool->pool_md), r);
2638 goto err;
2639 }
2640
2641 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2642 if (r) {
2643 DMERR("%s: dm_pool_get_free_block_count returned %d",
2644 dm_device_name(pool->pool_md), r);
2645 goto err;
2646 }
2647
2648 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2649 if (r) {
2650 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2651 dm_device_name(pool->pool_md), r);
2652 goto err;
2653 }
2654
2655 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2656 if (r) {
2657 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2658 dm_device_name(pool->pool_md), r);
2659 goto err;
2660 }
2661
2662 DMEMIT("%llu %llu/%llu %llu/%llu ",
2663 (unsigned long long)transaction_id,
2664 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2665 (unsigned long long)nr_blocks_metadata,
2666 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2667 (unsigned long long)nr_blocks_data);
2668
2669 if (held_root)
2670 DMEMIT("%llu ", held_root);
2671 else
2672 DMEMIT("- ");
2673
2674 if (pool->pf.mode == PM_READ_ONLY)
2675 DMEMIT("ro ");
2676 else
2677 DMEMIT("rw ");
2678
2679 if (!pool->pf.discard_enabled)
2680 DMEMIT("ignore_discard ");
2681 else if (pool->pf.discard_passdown)
2682 DMEMIT("discard_passdown ");
2683 else
2684 DMEMIT("no_discard_passdown ");
2685
2686 if (pool->pf.error_if_no_space)
2687 DMEMIT("error_if_no_space ");
2688 else
2689 DMEMIT("queue_if_no_space ");
2690
2691 break;
2692
2693 case STATUSTYPE_TABLE:
2694 DMEMIT("%s %s %lu %llu ",
2695 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2696 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2697 (unsigned long)pool->sectors_per_block,
2698 (unsigned long long)pt->low_water_blocks);
2699 emit_flags(&pt->requested_pf, result, sz, maxlen);
2700 break;
2701 }
2702 return;
2703
2704 err:
2705 DMEMIT("Error");
2706 }
2707
2708 static int pool_iterate_devices(struct dm_target *ti,
2709 iterate_devices_callout_fn fn, void *data)
2710 {
2711 struct pool_c *pt = ti->private;
2712
2713 return fn(ti, pt->data_dev, 0, ti->len, data);
2714 }
2715
2716 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2717 struct bio_vec *biovec, int max_size)
2718 {
2719 struct pool_c *pt = ti->private;
2720 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2721
2722 if (!q->merge_bvec_fn)
2723 return max_size;
2724
2725 bvm->bi_bdev = pt->data_dev->bdev;
2726
2727 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2728 }
2729
2730 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2731 {
2732 struct pool *pool = pt->pool;
2733 struct queue_limits *data_limits;
2734
2735 limits->max_discard_sectors = pool->sectors_per_block;
2736
2737 /*
2738 * discard_granularity is just a hint, and not enforced.
2739 */
2740 if (pt->adjusted_pf.discard_passdown) {
2741 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2742 limits->discard_granularity = data_limits->discard_granularity;
2743 } else
2744 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2745 }
2746
2747 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2748 {
2749 struct pool_c *pt = ti->private;
2750 struct pool *pool = pt->pool;
2751 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2752
2753 /*
2754 * If the system-determined stacked limits are compatible with the
2755 * pool's blocksize (io_opt is a factor) do not override them.
2756 */
2757 if (io_opt_sectors < pool->sectors_per_block ||
2758 do_div(io_opt_sectors, pool->sectors_per_block)) {
2759 blk_limits_io_min(limits, 0);
2760 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2761 }
2762
2763 /*
2764 * pt->adjusted_pf is a staging area for the actual features to use.
2765 * They get transferred to the live pool in bind_control_target()
2766 * called from pool_preresume().
2767 */
2768 if (!pt->adjusted_pf.discard_enabled) {
2769 /*
2770 * Must explicitly disallow stacking discard limits otherwise the
2771 * block layer will stack them if pool's data device has support.
2772 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2773 * user to see that, so make sure to set all discard limits to 0.
2774 */
2775 limits->discard_granularity = 0;
2776 return;
2777 }
2778
2779 disable_passdown_if_not_supported(pt);
2780
2781 set_discard_limits(pt, limits);
2782 }
2783
2784 static struct target_type pool_target = {
2785 .name = "thin-pool",
2786 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2787 DM_TARGET_IMMUTABLE,
2788 .version = {1, 10, 0},
2789 .module = THIS_MODULE,
2790 .ctr = pool_ctr,
2791 .dtr = pool_dtr,
2792 .map = pool_map,
2793 .postsuspend = pool_postsuspend,
2794 .preresume = pool_preresume,
2795 .resume = pool_resume,
2796 .message = pool_message,
2797 .status = pool_status,
2798 .merge = pool_merge,
2799 .iterate_devices = pool_iterate_devices,
2800 .io_hints = pool_io_hints,
2801 };
2802
2803 /*----------------------------------------------------------------
2804 * Thin target methods
2805 *--------------------------------------------------------------*/
2806 static void thin_dtr(struct dm_target *ti)
2807 {
2808 struct thin_c *tc = ti->private;
2809
2810 mutex_lock(&dm_thin_pool_table.mutex);
2811
2812 __pool_dec(tc->pool);
2813 dm_pool_close_thin_device(tc->td);
2814 dm_put_device(ti, tc->pool_dev);
2815 if (tc->origin_dev)
2816 dm_put_device(ti, tc->origin_dev);
2817 kfree(tc);
2818
2819 mutex_unlock(&dm_thin_pool_table.mutex);
2820 }
2821
2822 /*
2823 * Thin target parameters:
2824 *
2825 * <pool_dev> <dev_id> [origin_dev]
2826 *
2827 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2828 * dev_id: the internal device identifier
2829 * origin_dev: a device external to the pool that should act as the origin
2830 *
2831 * If the pool device has discards disabled, they get disabled for the thin
2832 * device as well.
2833 */
2834 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2835 {
2836 int r;
2837 struct thin_c *tc;
2838 struct dm_dev *pool_dev, *origin_dev;
2839 struct mapped_device *pool_md;
2840
2841 mutex_lock(&dm_thin_pool_table.mutex);
2842
2843 if (argc != 2 && argc != 3) {
2844 ti->error = "Invalid argument count";
2845 r = -EINVAL;
2846 goto out_unlock;
2847 }
2848
2849 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2850 if (!tc) {
2851 ti->error = "Out of memory";
2852 r = -ENOMEM;
2853 goto out_unlock;
2854 }
2855
2856 if (argc == 3) {
2857 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2858 if (r) {
2859 ti->error = "Error opening origin device";
2860 goto bad_origin_dev;
2861 }
2862 tc->origin_dev = origin_dev;
2863 }
2864
2865 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2866 if (r) {
2867 ti->error = "Error opening pool device";
2868 goto bad_pool_dev;
2869 }
2870 tc->pool_dev = pool_dev;
2871
2872 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2873 ti->error = "Invalid device id";
2874 r = -EINVAL;
2875 goto bad_common;
2876 }
2877
2878 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2879 if (!pool_md) {
2880 ti->error = "Couldn't get pool mapped device";
2881 r = -EINVAL;
2882 goto bad_common;
2883 }
2884
2885 tc->pool = __pool_table_lookup(pool_md);
2886 if (!tc->pool) {
2887 ti->error = "Couldn't find pool object";
2888 r = -EINVAL;
2889 goto bad_pool_lookup;
2890 }
2891 __pool_inc(tc->pool);
2892
2893 if (get_pool_mode(tc->pool) == PM_FAIL) {
2894 ti->error = "Couldn't open thin device, Pool is in fail mode";
2895 goto bad_thin_open;
2896 }
2897
2898 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2899 if (r) {
2900 ti->error = "Couldn't open thin internal device";
2901 goto bad_thin_open;
2902 }
2903
2904 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2905 if (r)
2906 goto bad_thin_open;
2907
2908 ti->num_flush_bios = 1;
2909 ti->flush_supported = true;
2910 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2911
2912 /* In case the pool supports discards, pass them on. */
2913 ti->discard_zeroes_data_unsupported = true;
2914 if (tc->pool->pf.discard_enabled) {
2915 ti->discards_supported = true;
2916 ti->num_discard_bios = 1;
2917 /* Discard bios must be split on a block boundary */
2918 ti->split_discard_bios = true;
2919 }
2920
2921 dm_put(pool_md);
2922
2923 mutex_unlock(&dm_thin_pool_table.mutex);
2924
2925 return 0;
2926
2927 bad_thin_open:
2928 __pool_dec(tc->pool);
2929 bad_pool_lookup:
2930 dm_put(pool_md);
2931 bad_common:
2932 dm_put_device(ti, tc->pool_dev);
2933 bad_pool_dev:
2934 if (tc->origin_dev)
2935 dm_put_device(ti, tc->origin_dev);
2936 bad_origin_dev:
2937 kfree(tc);
2938 out_unlock:
2939 mutex_unlock(&dm_thin_pool_table.mutex);
2940
2941 return r;
2942 }
2943
2944 static int thin_map(struct dm_target *ti, struct bio *bio)
2945 {
2946 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2947
2948 return thin_bio_map(ti, bio);
2949 }
2950
2951 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2952 {
2953 unsigned long flags;
2954 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2955 struct list_head work;
2956 struct dm_thin_new_mapping *m, *tmp;
2957 struct pool *pool = h->tc->pool;
2958
2959 if (h->shared_read_entry) {
2960 INIT_LIST_HEAD(&work);
2961 dm_deferred_entry_dec(h->shared_read_entry, &work);
2962
2963 spin_lock_irqsave(&pool->lock, flags);
2964 list_for_each_entry_safe(m, tmp, &work, list) {
2965 list_del(&m->list);
2966 m->quiesced = true;
2967 __maybe_add_mapping(m);
2968 }
2969 spin_unlock_irqrestore(&pool->lock, flags);
2970 }
2971
2972 if (h->all_io_entry) {
2973 INIT_LIST_HEAD(&work);
2974 dm_deferred_entry_dec(h->all_io_entry, &work);
2975 if (!list_empty(&work)) {
2976 spin_lock_irqsave(&pool->lock, flags);
2977 list_for_each_entry_safe(m, tmp, &work, list)
2978 list_add_tail(&m->list, &pool->prepared_discards);
2979 spin_unlock_irqrestore(&pool->lock, flags);
2980 wake_worker(pool);
2981 }
2982 }
2983
2984 return 0;
2985 }
2986
2987 static void thin_postsuspend(struct dm_target *ti)
2988 {
2989 if (dm_noflush_suspending(ti))
2990 requeue_io((struct thin_c *)ti->private);
2991 }
2992
2993 /*
2994 * <nr mapped sectors> <highest mapped sector>
2995 */
2996 static void thin_status(struct dm_target *ti, status_type_t type,
2997 unsigned status_flags, char *result, unsigned maxlen)
2998 {
2999 int r;
3000 ssize_t sz = 0;
3001 dm_block_t mapped, highest;
3002 char buf[BDEVNAME_SIZE];
3003 struct thin_c *tc = ti->private;
3004
3005 if (get_pool_mode(tc->pool) == PM_FAIL) {
3006 DMEMIT("Fail");
3007 return;
3008 }
3009
3010 if (!tc->td)
3011 DMEMIT("-");
3012 else {
3013 switch (type) {
3014 case STATUSTYPE_INFO:
3015 r = dm_thin_get_mapped_count(tc->td, &mapped);
3016 if (r) {
3017 DMERR("dm_thin_get_mapped_count returned %d", r);
3018 goto err;
3019 }
3020
3021 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3022 if (r < 0) {
3023 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3024 goto err;
3025 }
3026
3027 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3028 if (r)
3029 DMEMIT("%llu", ((highest + 1) *
3030 tc->pool->sectors_per_block) - 1);
3031 else
3032 DMEMIT("-");
3033 break;
3034
3035 case STATUSTYPE_TABLE:
3036 DMEMIT("%s %lu",
3037 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3038 (unsigned long) tc->dev_id);
3039 if (tc->origin_dev)
3040 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3041 break;
3042 }
3043 }
3044
3045 return;
3046
3047 err:
3048 DMEMIT("Error");
3049 }
3050
3051 static int thin_iterate_devices(struct dm_target *ti,
3052 iterate_devices_callout_fn fn, void *data)
3053 {
3054 sector_t blocks;
3055 struct thin_c *tc = ti->private;
3056 struct pool *pool = tc->pool;
3057
3058 /*
3059 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3060 * we follow a more convoluted path through to the pool's target.
3061 */
3062 if (!pool->ti)
3063 return 0; /* nothing is bound */
3064
3065 blocks = pool->ti->len;
3066 (void) sector_div(blocks, pool->sectors_per_block);
3067 if (blocks)
3068 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3069
3070 return 0;
3071 }
3072
3073 static struct target_type thin_target = {
3074 .name = "thin",
3075 .version = {1, 10, 0},
3076 .module = THIS_MODULE,
3077 .ctr = thin_ctr,
3078 .dtr = thin_dtr,
3079 .map = thin_map,
3080 .end_io = thin_endio,
3081 .postsuspend = thin_postsuspend,
3082 .status = thin_status,
3083 .iterate_devices = thin_iterate_devices,
3084 };
3085
3086 /*----------------------------------------------------------------*/
3087
3088 static int __init dm_thin_init(void)
3089 {
3090 int r;
3091
3092 pool_table_init();
3093
3094 r = dm_register_target(&thin_target);
3095 if (r)
3096 return r;
3097
3098 r = dm_register_target(&pool_target);
3099 if (r)
3100 goto bad_pool_target;
3101
3102 r = -ENOMEM;
3103
3104 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3105 if (!_new_mapping_cache)
3106 goto bad_new_mapping_cache;
3107
3108 return 0;
3109
3110 bad_new_mapping_cache:
3111 dm_unregister_target(&pool_target);
3112 bad_pool_target:
3113 dm_unregister_target(&thin_target);
3114
3115 return r;
3116 }
3117
3118 static void dm_thin_exit(void)
3119 {
3120 dm_unregister_target(&thin_target);
3121 dm_unregister_target(&pool_target);
3122
3123 kmem_cache_destroy(_new_mapping_cache);
3124 }
3125
3126 module_init(dm_thin_init);
3127 module_exit(dm_thin_exit);
3128
3129 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3130 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3131 MODULE_LICENSE("GPL");
This page took 0.136885 seconds and 5 git commands to generate.