block: Generic bio chaining
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154 struct list_head list;
155 struct dm_target *ti; /* Only set if a pool target is bound */
156
157 struct mapped_device *pool_md;
158 struct block_device *md_dev;
159 struct dm_pool_metadata *pmd;
160
161 dm_block_t low_water_blocks;
162 uint32_t sectors_per_block;
163 int sectors_per_block_shift;
164
165 struct pool_features pf;
166 unsigned low_water_triggered:1; /* A dm event has been sent */
167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204 * Target context for a pool.
205 */
206 struct pool_c {
207 struct dm_target *ti;
208 struct pool *pool;
209 struct dm_dev *data_dev;
210 struct dm_dev *metadata_dev;
211 struct dm_target_callbacks callbacks;
212
213 dm_block_t low_water_blocks;
214 struct pool_features requested_pf; /* Features requested during table load */
215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219 * Target context for a thin.
220 */
221 struct thin_c {
222 struct dm_dev *pool_dev;
223 struct dm_dev *origin_dev;
224 dm_thin_id dev_id;
225
226 struct pool *pool;
227 struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233 * wake_worker() is used when new work is queued and when pool_resume is
234 * ready to continue deferred IO processing.
235 */
236 static void wake_worker(struct pool *pool)
237 {
238 queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 struct dm_bio_prison_cell **cell_result)
245 {
246 int r;
247 struct dm_bio_prison_cell *cell_prealloc;
248
249 /*
250 * Allocate a cell from the prison's mempool.
251 * This might block but it can't fail.
252 */
253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 if (r)
257 /*
258 * We reused an old cell; we can get rid of
259 * the new one.
260 */
261 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263 return r;
264 }
265
266 static void cell_release(struct pool *pool,
267 struct dm_bio_prison_cell *cell,
268 struct bio_list *bios)
269 {
270 dm_cell_release(pool->prison, cell, bios);
271 dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275 struct dm_bio_prison_cell *cell,
276 struct bio_list *bios)
277 {
278 dm_cell_release_no_holder(pool->prison, cell, bios);
279 dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 struct dm_bio_prison_cell *cell)
284 {
285 struct pool *pool = tc->pool;
286 unsigned long flags;
287
288 spin_lock_irqsave(&pool->lock, flags);
289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 spin_unlock_irqrestore(&pool->lock, flags);
291
292 wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296 struct dm_bio_prison_cell *cell)
297 {
298 dm_cell_error(pool->prison, cell);
299 dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305 * A global list of pools that uses a struct mapped_device as a key.
306 */
307 static struct dm_thin_pool_table {
308 struct mutex mutex;
309 struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314 mutex_init(&dm_thin_pool_table.mutex);
315 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 struct pool *pool = NULL, *tmp;
333
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 if (tmp->pool_md == md) {
338 pool = tmp;
339 break;
340 }
341 }
342
343 return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 struct pool *pool = NULL, *tmp;
349
350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 if (tmp->md_dev == md_dev) {
354 pool = tmp;
355 break;
356 }
357 }
358
359 return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365 struct thin_c *tc;
366 struct dm_deferred_entry *shared_read_entry;
367 struct dm_deferred_entry *all_io_entry;
368 struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 struct bio *bio;
374 struct bio_list bios;
375
376 bio_list_init(&bios);
377 bio_list_merge(&bios, master);
378 bio_list_init(master);
379
380 while ((bio = bio_list_pop(&bios))) {
381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383 if (h->tc == tc)
384 bio_endio(bio, DM_ENDIO_REQUEUE);
385 else
386 bio_list_add(master, bio);
387 }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392 struct pool *pool = tc->pool;
393 unsigned long flags;
394
395 spin_lock_irqsave(&pool->lock, flags);
396 __requeue_bio_list(tc, &pool->deferred_bios);
397 __requeue_bio_list(tc, &pool->retry_on_resume_list);
398 spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402 * This section of code contains the logic for processing a thin device's IO.
403 * Much of the code depends on pool object resources (lists, workqueues, etc)
404 * but most is exclusively called from the thin target rather than the thin-pool
405 * target.
406 */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 struct pool *pool = tc->pool;
416 sector_t block_nr = bio->bi_iter.bi_sector;
417
418 if (block_size_is_power_of_two(pool))
419 block_nr >>= pool->sectors_per_block_shift;
420 else
421 (void) sector_div(block_nr, pool->sectors_per_block);
422
423 return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 struct pool *pool = tc->pool;
429 sector_t bi_sector = bio->bi_iter.bi_sector;
430
431 bio->bi_bdev = tc->pool_dev->bdev;
432 if (block_size_is_power_of_two(pool))
433 bio->bi_iter.bi_sector =
434 (block << pool->sectors_per_block_shift) |
435 (bi_sector & (pool->sectors_per_block - 1));
436 else
437 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
438 sector_div(bi_sector, pool->sectors_per_block);
439 }
440
441 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
442 {
443 bio->bi_bdev = tc->origin_dev->bdev;
444 }
445
446 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
447 {
448 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
449 dm_thin_changed_this_transaction(tc->td);
450 }
451
452 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
453 {
454 struct dm_thin_endio_hook *h;
455
456 if (bio->bi_rw & REQ_DISCARD)
457 return;
458
459 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
460 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
461 }
462
463 static void issue(struct thin_c *tc, struct bio *bio)
464 {
465 struct pool *pool = tc->pool;
466 unsigned long flags;
467
468 if (!bio_triggers_commit(tc, bio)) {
469 generic_make_request(bio);
470 return;
471 }
472
473 /*
474 * Complete bio with an error if earlier I/O caused changes to
475 * the metadata that can't be committed e.g, due to I/O errors
476 * on the metadata device.
477 */
478 if (dm_thin_aborted_changes(tc->td)) {
479 bio_io_error(bio);
480 return;
481 }
482
483 /*
484 * Batch together any bios that trigger commits and then issue a
485 * single commit for them in process_deferred_bios().
486 */
487 spin_lock_irqsave(&pool->lock, flags);
488 bio_list_add(&pool->deferred_flush_bios, bio);
489 spin_unlock_irqrestore(&pool->lock, flags);
490 }
491
492 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
493 {
494 remap_to_origin(tc, bio);
495 issue(tc, bio);
496 }
497
498 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
499 dm_block_t block)
500 {
501 remap(tc, bio, block);
502 issue(tc, bio);
503 }
504
505 /*----------------------------------------------------------------*/
506
507 /*
508 * Bio endio functions.
509 */
510 struct dm_thin_new_mapping {
511 struct list_head list;
512
513 unsigned quiesced:1;
514 unsigned prepared:1;
515 unsigned pass_discard:1;
516
517 struct thin_c *tc;
518 dm_block_t virt_block;
519 dm_block_t data_block;
520 struct dm_bio_prison_cell *cell, *cell2;
521 int err;
522
523 /*
524 * If the bio covers the whole area of a block then we can avoid
525 * zeroing or copying. Instead this bio is hooked. The bio will
526 * still be in the cell, so care has to be taken to avoid issuing
527 * the bio twice.
528 */
529 struct bio *bio;
530 bio_end_io_t *saved_bi_end_io;
531 };
532
533 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
534 {
535 struct pool *pool = m->tc->pool;
536
537 if (m->quiesced && m->prepared) {
538 list_add(&m->list, &pool->prepared_mappings);
539 wake_worker(pool);
540 }
541 }
542
543 static void copy_complete(int read_err, unsigned long write_err, void *context)
544 {
545 unsigned long flags;
546 struct dm_thin_new_mapping *m = context;
547 struct pool *pool = m->tc->pool;
548
549 m->err = read_err || write_err ? -EIO : 0;
550
551 spin_lock_irqsave(&pool->lock, flags);
552 m->prepared = 1;
553 __maybe_add_mapping(m);
554 spin_unlock_irqrestore(&pool->lock, flags);
555 }
556
557 static void overwrite_endio(struct bio *bio, int err)
558 {
559 unsigned long flags;
560 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
561 struct dm_thin_new_mapping *m = h->overwrite_mapping;
562 struct pool *pool = m->tc->pool;
563
564 m->err = err;
565
566 spin_lock_irqsave(&pool->lock, flags);
567 m->prepared = 1;
568 __maybe_add_mapping(m);
569 spin_unlock_irqrestore(&pool->lock, flags);
570 }
571
572 /*----------------------------------------------------------------*/
573
574 /*
575 * Workqueue.
576 */
577
578 /*
579 * Prepared mapping jobs.
580 */
581
582 /*
583 * This sends the bios in the cell back to the deferred_bios list.
584 */
585 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
586 {
587 struct pool *pool = tc->pool;
588 unsigned long flags;
589
590 spin_lock_irqsave(&pool->lock, flags);
591 cell_release(pool, cell, &pool->deferred_bios);
592 spin_unlock_irqrestore(&tc->pool->lock, flags);
593
594 wake_worker(pool);
595 }
596
597 /*
598 * Same as cell_defer above, except it omits the original holder of the cell.
599 */
600 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
601 {
602 struct pool *pool = tc->pool;
603 unsigned long flags;
604
605 spin_lock_irqsave(&pool->lock, flags);
606 cell_release_no_holder(pool, cell, &pool->deferred_bios);
607 spin_unlock_irqrestore(&pool->lock, flags);
608
609 wake_worker(pool);
610 }
611
612 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
613 {
614 if (m->bio) {
615 m->bio->bi_end_io = m->saved_bi_end_io;
616 atomic_inc(&m->bio->bi_remaining);
617 }
618 cell_error(m->tc->pool, m->cell);
619 list_del(&m->list);
620 mempool_free(m, m->tc->pool->mapping_pool);
621 }
622
623 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
624 {
625 struct thin_c *tc = m->tc;
626 struct pool *pool = tc->pool;
627 struct bio *bio;
628 int r;
629
630 bio = m->bio;
631 if (bio) {
632 bio->bi_end_io = m->saved_bi_end_io;
633 atomic_inc(&bio->bi_remaining);
634 }
635
636 if (m->err) {
637 cell_error(pool, m->cell);
638 goto out;
639 }
640
641 /*
642 * Commit the prepared block into the mapping btree.
643 * Any I/O for this block arriving after this point will get
644 * remapped to it directly.
645 */
646 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
647 if (r) {
648 DMERR_LIMIT("dm_thin_insert_block() failed");
649 cell_error(pool, m->cell);
650 goto out;
651 }
652
653 /*
654 * Release any bios held while the block was being provisioned.
655 * If we are processing a write bio that completely covers the block,
656 * we already processed it so can ignore it now when processing
657 * the bios in the cell.
658 */
659 if (bio) {
660 cell_defer_no_holder(tc, m->cell);
661 bio_endio(bio, 0);
662 } else
663 cell_defer(tc, m->cell);
664
665 out:
666 list_del(&m->list);
667 mempool_free(m, pool->mapping_pool);
668 }
669
670 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
671 {
672 struct thin_c *tc = m->tc;
673
674 bio_io_error(m->bio);
675 cell_defer_no_holder(tc, m->cell);
676 cell_defer_no_holder(tc, m->cell2);
677 mempool_free(m, tc->pool->mapping_pool);
678 }
679
680 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
681 {
682 struct thin_c *tc = m->tc;
683
684 inc_all_io_entry(tc->pool, m->bio);
685 cell_defer_no_holder(tc, m->cell);
686 cell_defer_no_holder(tc, m->cell2);
687
688 if (m->pass_discard)
689 remap_and_issue(tc, m->bio, m->data_block);
690 else
691 bio_endio(m->bio, 0);
692
693 mempool_free(m, tc->pool->mapping_pool);
694 }
695
696 static void process_prepared_discard(struct dm_thin_new_mapping *m)
697 {
698 int r;
699 struct thin_c *tc = m->tc;
700
701 r = dm_thin_remove_block(tc->td, m->virt_block);
702 if (r)
703 DMERR_LIMIT("dm_thin_remove_block() failed");
704
705 process_prepared_discard_passdown(m);
706 }
707
708 static void process_prepared(struct pool *pool, struct list_head *head,
709 process_mapping_fn *fn)
710 {
711 unsigned long flags;
712 struct list_head maps;
713 struct dm_thin_new_mapping *m, *tmp;
714
715 INIT_LIST_HEAD(&maps);
716 spin_lock_irqsave(&pool->lock, flags);
717 list_splice_init(head, &maps);
718 spin_unlock_irqrestore(&pool->lock, flags);
719
720 list_for_each_entry_safe(m, tmp, &maps, list)
721 (*fn)(m);
722 }
723
724 /*
725 * Deferred bio jobs.
726 */
727 static int io_overlaps_block(struct pool *pool, struct bio *bio)
728 {
729 return bio->bi_iter.bi_size ==
730 (pool->sectors_per_block << SECTOR_SHIFT);
731 }
732
733 static int io_overwrites_block(struct pool *pool, struct bio *bio)
734 {
735 return (bio_data_dir(bio) == WRITE) &&
736 io_overlaps_block(pool, bio);
737 }
738
739 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
740 bio_end_io_t *fn)
741 {
742 *save = bio->bi_end_io;
743 bio->bi_end_io = fn;
744 }
745
746 static int ensure_next_mapping(struct pool *pool)
747 {
748 if (pool->next_mapping)
749 return 0;
750
751 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
752
753 return pool->next_mapping ? 0 : -ENOMEM;
754 }
755
756 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
757 {
758 struct dm_thin_new_mapping *r = pool->next_mapping;
759
760 BUG_ON(!pool->next_mapping);
761
762 pool->next_mapping = NULL;
763
764 return r;
765 }
766
767 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
768 struct dm_dev *origin, dm_block_t data_origin,
769 dm_block_t data_dest,
770 struct dm_bio_prison_cell *cell, struct bio *bio)
771 {
772 int r;
773 struct pool *pool = tc->pool;
774 struct dm_thin_new_mapping *m = get_next_mapping(pool);
775
776 INIT_LIST_HEAD(&m->list);
777 m->quiesced = 0;
778 m->prepared = 0;
779 m->tc = tc;
780 m->virt_block = virt_block;
781 m->data_block = data_dest;
782 m->cell = cell;
783 m->err = 0;
784 m->bio = NULL;
785
786 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
787 m->quiesced = 1;
788
789 /*
790 * IO to pool_dev remaps to the pool target's data_dev.
791 *
792 * If the whole block of data is being overwritten, we can issue the
793 * bio immediately. Otherwise we use kcopyd to clone the data first.
794 */
795 if (io_overwrites_block(pool, bio)) {
796 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
797
798 h->overwrite_mapping = m;
799 m->bio = bio;
800 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
801 inc_all_io_entry(pool, bio);
802 remap_and_issue(tc, bio, data_dest);
803 } else {
804 struct dm_io_region from, to;
805
806 from.bdev = origin->bdev;
807 from.sector = data_origin * pool->sectors_per_block;
808 from.count = pool->sectors_per_block;
809
810 to.bdev = tc->pool_dev->bdev;
811 to.sector = data_dest * pool->sectors_per_block;
812 to.count = pool->sectors_per_block;
813
814 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
815 0, copy_complete, m);
816 if (r < 0) {
817 mempool_free(m, pool->mapping_pool);
818 DMERR_LIMIT("dm_kcopyd_copy() failed");
819 cell_error(pool, cell);
820 }
821 }
822 }
823
824 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
825 dm_block_t data_origin, dm_block_t data_dest,
826 struct dm_bio_prison_cell *cell, struct bio *bio)
827 {
828 schedule_copy(tc, virt_block, tc->pool_dev,
829 data_origin, data_dest, cell, bio);
830 }
831
832 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
833 dm_block_t data_dest,
834 struct dm_bio_prison_cell *cell, struct bio *bio)
835 {
836 schedule_copy(tc, virt_block, tc->origin_dev,
837 virt_block, data_dest, cell, bio);
838 }
839
840 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
841 dm_block_t data_block, struct dm_bio_prison_cell *cell,
842 struct bio *bio)
843 {
844 struct pool *pool = tc->pool;
845 struct dm_thin_new_mapping *m = get_next_mapping(pool);
846
847 INIT_LIST_HEAD(&m->list);
848 m->quiesced = 1;
849 m->prepared = 0;
850 m->tc = tc;
851 m->virt_block = virt_block;
852 m->data_block = data_block;
853 m->cell = cell;
854 m->err = 0;
855 m->bio = NULL;
856
857 /*
858 * If the whole block of data is being overwritten or we are not
859 * zeroing pre-existing data, we can issue the bio immediately.
860 * Otherwise we use kcopyd to zero the data first.
861 */
862 if (!pool->pf.zero_new_blocks)
863 process_prepared_mapping(m);
864
865 else if (io_overwrites_block(pool, bio)) {
866 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
867
868 h->overwrite_mapping = m;
869 m->bio = bio;
870 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
871 inc_all_io_entry(pool, bio);
872 remap_and_issue(tc, bio, data_block);
873 } else {
874 int r;
875 struct dm_io_region to;
876
877 to.bdev = tc->pool_dev->bdev;
878 to.sector = data_block * pool->sectors_per_block;
879 to.count = pool->sectors_per_block;
880
881 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
882 if (r < 0) {
883 mempool_free(m, pool->mapping_pool);
884 DMERR_LIMIT("dm_kcopyd_zero() failed");
885 cell_error(pool, cell);
886 }
887 }
888 }
889
890 static int commit(struct pool *pool)
891 {
892 int r;
893
894 r = dm_pool_commit_metadata(pool->pmd);
895 if (r)
896 DMERR_LIMIT("%s: commit failed: error = %d",
897 dm_device_name(pool->pool_md), r);
898
899 return r;
900 }
901
902 /*
903 * A non-zero return indicates read_only or fail_io mode.
904 * Many callers don't care about the return value.
905 */
906 static int commit_or_fallback(struct pool *pool)
907 {
908 int r;
909
910 if (get_pool_mode(pool) != PM_WRITE)
911 return -EINVAL;
912
913 r = commit(pool);
914 if (r)
915 set_pool_mode(pool, PM_READ_ONLY);
916
917 return r;
918 }
919
920 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
921 {
922 int r;
923 dm_block_t free_blocks;
924 unsigned long flags;
925 struct pool *pool = tc->pool;
926
927 /*
928 * Once no_free_space is set we must not allow allocation to succeed.
929 * Otherwise it is difficult to explain, debug, test and support.
930 */
931 if (pool->no_free_space)
932 return -ENOSPC;
933
934 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
935 if (r)
936 return r;
937
938 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
939 DMWARN("%s: reached low water mark for data device: sending event.",
940 dm_device_name(pool->pool_md));
941 spin_lock_irqsave(&pool->lock, flags);
942 pool->low_water_triggered = 1;
943 spin_unlock_irqrestore(&pool->lock, flags);
944 dm_table_event(pool->ti->table);
945 }
946
947 if (!free_blocks) {
948 /*
949 * Try to commit to see if that will free up some
950 * more space.
951 */
952 (void) commit_or_fallback(pool);
953
954 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
955 if (r)
956 return r;
957
958 /*
959 * If we still have no space we set a flag to avoid
960 * doing all this checking and return -ENOSPC. This
961 * flag serves as a latch that disallows allocations from
962 * this pool until the admin takes action (e.g. resize or
963 * table reload).
964 */
965 if (!free_blocks) {
966 DMWARN("%s: no free space available.",
967 dm_device_name(pool->pool_md));
968 spin_lock_irqsave(&pool->lock, flags);
969 pool->no_free_space = 1;
970 spin_unlock_irqrestore(&pool->lock, flags);
971 return -ENOSPC;
972 }
973 }
974
975 r = dm_pool_alloc_data_block(pool->pmd, result);
976 if (r)
977 return r;
978
979 return 0;
980 }
981
982 /*
983 * If we have run out of space, queue bios until the device is
984 * resumed, presumably after having been reloaded with more space.
985 */
986 static void retry_on_resume(struct bio *bio)
987 {
988 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
989 struct thin_c *tc = h->tc;
990 struct pool *pool = tc->pool;
991 unsigned long flags;
992
993 spin_lock_irqsave(&pool->lock, flags);
994 bio_list_add(&pool->retry_on_resume_list, bio);
995 spin_unlock_irqrestore(&pool->lock, flags);
996 }
997
998 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
999 {
1000 struct bio *bio;
1001 struct bio_list bios;
1002
1003 bio_list_init(&bios);
1004 cell_release(pool, cell, &bios);
1005
1006 while ((bio = bio_list_pop(&bios)))
1007 retry_on_resume(bio);
1008 }
1009
1010 static void process_discard(struct thin_c *tc, struct bio *bio)
1011 {
1012 int r;
1013 unsigned long flags;
1014 struct pool *pool = tc->pool;
1015 struct dm_bio_prison_cell *cell, *cell2;
1016 struct dm_cell_key key, key2;
1017 dm_block_t block = get_bio_block(tc, bio);
1018 struct dm_thin_lookup_result lookup_result;
1019 struct dm_thin_new_mapping *m;
1020
1021 build_virtual_key(tc->td, block, &key);
1022 if (bio_detain(tc->pool, &key, bio, &cell))
1023 return;
1024
1025 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1026 switch (r) {
1027 case 0:
1028 /*
1029 * Check nobody is fiddling with this pool block. This can
1030 * happen if someone's in the process of breaking sharing
1031 * on this block.
1032 */
1033 build_data_key(tc->td, lookup_result.block, &key2);
1034 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1035 cell_defer_no_holder(tc, cell);
1036 break;
1037 }
1038
1039 if (io_overlaps_block(pool, bio)) {
1040 /*
1041 * IO may still be going to the destination block. We must
1042 * quiesce before we can do the removal.
1043 */
1044 m = get_next_mapping(pool);
1045 m->tc = tc;
1046 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1047 m->virt_block = block;
1048 m->data_block = lookup_result.block;
1049 m->cell = cell;
1050 m->cell2 = cell2;
1051 m->err = 0;
1052 m->bio = bio;
1053
1054 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1055 spin_lock_irqsave(&pool->lock, flags);
1056 list_add(&m->list, &pool->prepared_discards);
1057 spin_unlock_irqrestore(&pool->lock, flags);
1058 wake_worker(pool);
1059 }
1060 } else {
1061 inc_all_io_entry(pool, bio);
1062 cell_defer_no_holder(tc, cell);
1063 cell_defer_no_holder(tc, cell2);
1064
1065 /*
1066 * The DM core makes sure that the discard doesn't span
1067 * a block boundary. So we submit the discard of a
1068 * partial block appropriately.
1069 */
1070 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1071 remap_and_issue(tc, bio, lookup_result.block);
1072 else
1073 bio_endio(bio, 0);
1074 }
1075 break;
1076
1077 case -ENODATA:
1078 /*
1079 * It isn't provisioned, just forget it.
1080 */
1081 cell_defer_no_holder(tc, cell);
1082 bio_endio(bio, 0);
1083 break;
1084
1085 default:
1086 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1087 __func__, r);
1088 cell_defer_no_holder(tc, cell);
1089 bio_io_error(bio);
1090 break;
1091 }
1092 }
1093
1094 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1095 struct dm_cell_key *key,
1096 struct dm_thin_lookup_result *lookup_result,
1097 struct dm_bio_prison_cell *cell)
1098 {
1099 int r;
1100 dm_block_t data_block;
1101 struct pool *pool = tc->pool;
1102
1103 r = alloc_data_block(tc, &data_block);
1104 switch (r) {
1105 case 0:
1106 schedule_internal_copy(tc, block, lookup_result->block,
1107 data_block, cell, bio);
1108 break;
1109
1110 case -ENOSPC:
1111 no_space(pool, cell);
1112 break;
1113
1114 default:
1115 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1116 __func__, r);
1117 set_pool_mode(pool, PM_READ_ONLY);
1118 cell_error(pool, cell);
1119 break;
1120 }
1121 }
1122
1123 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1124 dm_block_t block,
1125 struct dm_thin_lookup_result *lookup_result)
1126 {
1127 struct dm_bio_prison_cell *cell;
1128 struct pool *pool = tc->pool;
1129 struct dm_cell_key key;
1130
1131 /*
1132 * If cell is already occupied, then sharing is already in the process
1133 * of being broken so we have nothing further to do here.
1134 */
1135 build_data_key(tc->td, lookup_result->block, &key);
1136 if (bio_detain(pool, &key, bio, &cell))
1137 return;
1138
1139 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1140 break_sharing(tc, bio, block, &key, lookup_result, cell);
1141 else {
1142 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1143
1144 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1145 inc_all_io_entry(pool, bio);
1146 cell_defer_no_holder(tc, cell);
1147
1148 remap_and_issue(tc, bio, lookup_result->block);
1149 }
1150 }
1151
1152 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1153 struct dm_bio_prison_cell *cell)
1154 {
1155 int r;
1156 dm_block_t data_block;
1157 struct pool *pool = tc->pool;
1158
1159 /*
1160 * Remap empty bios (flushes) immediately, without provisioning.
1161 */
1162 if (!bio->bi_iter.bi_size) {
1163 inc_all_io_entry(pool, bio);
1164 cell_defer_no_holder(tc, cell);
1165
1166 remap_and_issue(tc, bio, 0);
1167 return;
1168 }
1169
1170 /*
1171 * Fill read bios with zeroes and complete them immediately.
1172 */
1173 if (bio_data_dir(bio) == READ) {
1174 zero_fill_bio(bio);
1175 cell_defer_no_holder(tc, cell);
1176 bio_endio(bio, 0);
1177 return;
1178 }
1179
1180 r = alloc_data_block(tc, &data_block);
1181 switch (r) {
1182 case 0:
1183 if (tc->origin_dev)
1184 schedule_external_copy(tc, block, data_block, cell, bio);
1185 else
1186 schedule_zero(tc, block, data_block, cell, bio);
1187 break;
1188
1189 case -ENOSPC:
1190 no_space(pool, cell);
1191 break;
1192
1193 default:
1194 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1195 __func__, r);
1196 set_pool_mode(pool, PM_READ_ONLY);
1197 cell_error(pool, cell);
1198 break;
1199 }
1200 }
1201
1202 static void process_bio(struct thin_c *tc, struct bio *bio)
1203 {
1204 int r;
1205 struct pool *pool = tc->pool;
1206 dm_block_t block = get_bio_block(tc, bio);
1207 struct dm_bio_prison_cell *cell;
1208 struct dm_cell_key key;
1209 struct dm_thin_lookup_result lookup_result;
1210
1211 /*
1212 * If cell is already occupied, then the block is already
1213 * being provisioned so we have nothing further to do here.
1214 */
1215 build_virtual_key(tc->td, block, &key);
1216 if (bio_detain(pool, &key, bio, &cell))
1217 return;
1218
1219 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1220 switch (r) {
1221 case 0:
1222 if (lookup_result.shared) {
1223 process_shared_bio(tc, bio, block, &lookup_result);
1224 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1225 } else {
1226 inc_all_io_entry(pool, bio);
1227 cell_defer_no_holder(tc, cell);
1228
1229 remap_and_issue(tc, bio, lookup_result.block);
1230 }
1231 break;
1232
1233 case -ENODATA:
1234 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1235 inc_all_io_entry(pool, bio);
1236 cell_defer_no_holder(tc, cell);
1237
1238 remap_to_origin_and_issue(tc, bio);
1239 } else
1240 provision_block(tc, bio, block, cell);
1241 break;
1242
1243 default:
1244 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1245 __func__, r);
1246 cell_defer_no_holder(tc, cell);
1247 bio_io_error(bio);
1248 break;
1249 }
1250 }
1251
1252 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1253 {
1254 int r;
1255 int rw = bio_data_dir(bio);
1256 dm_block_t block = get_bio_block(tc, bio);
1257 struct dm_thin_lookup_result lookup_result;
1258
1259 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1260 switch (r) {
1261 case 0:
1262 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1263 bio_io_error(bio);
1264 else {
1265 inc_all_io_entry(tc->pool, bio);
1266 remap_and_issue(tc, bio, lookup_result.block);
1267 }
1268 break;
1269
1270 case -ENODATA:
1271 if (rw != READ) {
1272 bio_io_error(bio);
1273 break;
1274 }
1275
1276 if (tc->origin_dev) {
1277 inc_all_io_entry(tc->pool, bio);
1278 remap_to_origin_and_issue(tc, bio);
1279 break;
1280 }
1281
1282 zero_fill_bio(bio);
1283 bio_endio(bio, 0);
1284 break;
1285
1286 default:
1287 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1288 __func__, r);
1289 bio_io_error(bio);
1290 break;
1291 }
1292 }
1293
1294 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1295 {
1296 bio_io_error(bio);
1297 }
1298
1299 /*
1300 * FIXME: should we also commit due to size of transaction, measured in
1301 * metadata blocks?
1302 */
1303 static int need_commit_due_to_time(struct pool *pool)
1304 {
1305 return jiffies < pool->last_commit_jiffies ||
1306 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1307 }
1308
1309 static void process_deferred_bios(struct pool *pool)
1310 {
1311 unsigned long flags;
1312 struct bio *bio;
1313 struct bio_list bios;
1314
1315 bio_list_init(&bios);
1316
1317 spin_lock_irqsave(&pool->lock, flags);
1318 bio_list_merge(&bios, &pool->deferred_bios);
1319 bio_list_init(&pool->deferred_bios);
1320 spin_unlock_irqrestore(&pool->lock, flags);
1321
1322 while ((bio = bio_list_pop(&bios))) {
1323 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1324 struct thin_c *tc = h->tc;
1325
1326 /*
1327 * If we've got no free new_mapping structs, and processing
1328 * this bio might require one, we pause until there are some
1329 * prepared mappings to process.
1330 */
1331 if (ensure_next_mapping(pool)) {
1332 spin_lock_irqsave(&pool->lock, flags);
1333 bio_list_merge(&pool->deferred_bios, &bios);
1334 spin_unlock_irqrestore(&pool->lock, flags);
1335
1336 break;
1337 }
1338
1339 if (bio->bi_rw & REQ_DISCARD)
1340 pool->process_discard(tc, bio);
1341 else
1342 pool->process_bio(tc, bio);
1343 }
1344
1345 /*
1346 * If there are any deferred flush bios, we must commit
1347 * the metadata before issuing them.
1348 */
1349 bio_list_init(&bios);
1350 spin_lock_irqsave(&pool->lock, flags);
1351 bio_list_merge(&bios, &pool->deferred_flush_bios);
1352 bio_list_init(&pool->deferred_flush_bios);
1353 spin_unlock_irqrestore(&pool->lock, flags);
1354
1355 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1356 return;
1357
1358 if (commit_or_fallback(pool)) {
1359 while ((bio = bio_list_pop(&bios)))
1360 bio_io_error(bio);
1361 return;
1362 }
1363 pool->last_commit_jiffies = jiffies;
1364
1365 while ((bio = bio_list_pop(&bios)))
1366 generic_make_request(bio);
1367 }
1368
1369 static void do_worker(struct work_struct *ws)
1370 {
1371 struct pool *pool = container_of(ws, struct pool, worker);
1372
1373 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1374 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1375 process_deferred_bios(pool);
1376 }
1377
1378 /*
1379 * We want to commit periodically so that not too much
1380 * unwritten data builds up.
1381 */
1382 static void do_waker(struct work_struct *ws)
1383 {
1384 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1385 wake_worker(pool);
1386 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1387 }
1388
1389 /*----------------------------------------------------------------*/
1390
1391 static enum pool_mode get_pool_mode(struct pool *pool)
1392 {
1393 return pool->pf.mode;
1394 }
1395
1396 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1397 {
1398 int r;
1399
1400 pool->pf.mode = mode;
1401
1402 switch (mode) {
1403 case PM_FAIL:
1404 DMERR("%s: switching pool to failure mode",
1405 dm_device_name(pool->pool_md));
1406 pool->process_bio = process_bio_fail;
1407 pool->process_discard = process_bio_fail;
1408 pool->process_prepared_mapping = process_prepared_mapping_fail;
1409 pool->process_prepared_discard = process_prepared_discard_fail;
1410 break;
1411
1412 case PM_READ_ONLY:
1413 DMERR("%s: switching pool to read-only mode",
1414 dm_device_name(pool->pool_md));
1415 r = dm_pool_abort_metadata(pool->pmd);
1416 if (r) {
1417 DMERR("%s: aborting transaction failed",
1418 dm_device_name(pool->pool_md));
1419 set_pool_mode(pool, PM_FAIL);
1420 } else {
1421 dm_pool_metadata_read_only(pool->pmd);
1422 pool->process_bio = process_bio_read_only;
1423 pool->process_discard = process_discard;
1424 pool->process_prepared_mapping = process_prepared_mapping_fail;
1425 pool->process_prepared_discard = process_prepared_discard_passdown;
1426 }
1427 break;
1428
1429 case PM_WRITE:
1430 pool->process_bio = process_bio;
1431 pool->process_discard = process_discard;
1432 pool->process_prepared_mapping = process_prepared_mapping;
1433 pool->process_prepared_discard = process_prepared_discard;
1434 break;
1435 }
1436 }
1437
1438 /*----------------------------------------------------------------*/
1439
1440 /*
1441 * Mapping functions.
1442 */
1443
1444 /*
1445 * Called only while mapping a thin bio to hand it over to the workqueue.
1446 */
1447 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1448 {
1449 unsigned long flags;
1450 struct pool *pool = tc->pool;
1451
1452 spin_lock_irqsave(&pool->lock, flags);
1453 bio_list_add(&pool->deferred_bios, bio);
1454 spin_unlock_irqrestore(&pool->lock, flags);
1455
1456 wake_worker(pool);
1457 }
1458
1459 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1460 {
1461 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1462
1463 h->tc = tc;
1464 h->shared_read_entry = NULL;
1465 h->all_io_entry = NULL;
1466 h->overwrite_mapping = NULL;
1467 }
1468
1469 /*
1470 * Non-blocking function called from the thin target's map function.
1471 */
1472 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1473 {
1474 int r;
1475 struct thin_c *tc = ti->private;
1476 dm_block_t block = get_bio_block(tc, bio);
1477 struct dm_thin_device *td = tc->td;
1478 struct dm_thin_lookup_result result;
1479 struct dm_bio_prison_cell cell1, cell2;
1480 struct dm_bio_prison_cell *cell_result;
1481 struct dm_cell_key key;
1482
1483 thin_hook_bio(tc, bio);
1484
1485 if (get_pool_mode(tc->pool) == PM_FAIL) {
1486 bio_io_error(bio);
1487 return DM_MAPIO_SUBMITTED;
1488 }
1489
1490 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1491 thin_defer_bio(tc, bio);
1492 return DM_MAPIO_SUBMITTED;
1493 }
1494
1495 r = dm_thin_find_block(td, block, 0, &result);
1496
1497 /*
1498 * Note that we defer readahead too.
1499 */
1500 switch (r) {
1501 case 0:
1502 if (unlikely(result.shared)) {
1503 /*
1504 * We have a race condition here between the
1505 * result.shared value returned by the lookup and
1506 * snapshot creation, which may cause new
1507 * sharing.
1508 *
1509 * To avoid this always quiesce the origin before
1510 * taking the snap. You want to do this anyway to
1511 * ensure a consistent application view
1512 * (i.e. lockfs).
1513 *
1514 * More distant ancestors are irrelevant. The
1515 * shared flag will be set in their case.
1516 */
1517 thin_defer_bio(tc, bio);
1518 return DM_MAPIO_SUBMITTED;
1519 }
1520
1521 build_virtual_key(tc->td, block, &key);
1522 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1523 return DM_MAPIO_SUBMITTED;
1524
1525 build_data_key(tc->td, result.block, &key);
1526 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1527 cell_defer_no_holder_no_free(tc, &cell1);
1528 return DM_MAPIO_SUBMITTED;
1529 }
1530
1531 inc_all_io_entry(tc->pool, bio);
1532 cell_defer_no_holder_no_free(tc, &cell2);
1533 cell_defer_no_holder_no_free(tc, &cell1);
1534
1535 remap(tc, bio, result.block);
1536 return DM_MAPIO_REMAPPED;
1537
1538 case -ENODATA:
1539 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1540 /*
1541 * This block isn't provisioned, and we have no way
1542 * of doing so. Just error it.
1543 */
1544 bio_io_error(bio);
1545 return DM_MAPIO_SUBMITTED;
1546 }
1547 /* fall through */
1548
1549 case -EWOULDBLOCK:
1550 /*
1551 * In future, the failed dm_thin_find_block above could
1552 * provide the hint to load the metadata into cache.
1553 */
1554 thin_defer_bio(tc, bio);
1555 return DM_MAPIO_SUBMITTED;
1556
1557 default:
1558 /*
1559 * Must always call bio_io_error on failure.
1560 * dm_thin_find_block can fail with -EINVAL if the
1561 * pool is switched to fail-io mode.
1562 */
1563 bio_io_error(bio);
1564 return DM_MAPIO_SUBMITTED;
1565 }
1566 }
1567
1568 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1569 {
1570 int r;
1571 unsigned long flags;
1572 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1573
1574 spin_lock_irqsave(&pt->pool->lock, flags);
1575 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1576 spin_unlock_irqrestore(&pt->pool->lock, flags);
1577
1578 if (!r) {
1579 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1580 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1581 }
1582
1583 return r;
1584 }
1585
1586 static void __requeue_bios(struct pool *pool)
1587 {
1588 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1589 bio_list_init(&pool->retry_on_resume_list);
1590 }
1591
1592 /*----------------------------------------------------------------
1593 * Binding of control targets to a pool object
1594 *--------------------------------------------------------------*/
1595 static bool data_dev_supports_discard(struct pool_c *pt)
1596 {
1597 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1598
1599 return q && blk_queue_discard(q);
1600 }
1601
1602 static bool is_factor(sector_t block_size, uint32_t n)
1603 {
1604 return !sector_div(block_size, n);
1605 }
1606
1607 /*
1608 * If discard_passdown was enabled verify that the data device
1609 * supports discards. Disable discard_passdown if not.
1610 */
1611 static void disable_passdown_if_not_supported(struct pool_c *pt)
1612 {
1613 struct pool *pool = pt->pool;
1614 struct block_device *data_bdev = pt->data_dev->bdev;
1615 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1616 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1617 const char *reason = NULL;
1618 char buf[BDEVNAME_SIZE];
1619
1620 if (!pt->adjusted_pf.discard_passdown)
1621 return;
1622
1623 if (!data_dev_supports_discard(pt))
1624 reason = "discard unsupported";
1625
1626 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1627 reason = "max discard sectors smaller than a block";
1628
1629 else if (data_limits->discard_granularity > block_size)
1630 reason = "discard granularity larger than a block";
1631
1632 else if (!is_factor(block_size, data_limits->discard_granularity))
1633 reason = "discard granularity not a factor of block size";
1634
1635 if (reason) {
1636 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1637 pt->adjusted_pf.discard_passdown = false;
1638 }
1639 }
1640
1641 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1642 {
1643 struct pool_c *pt = ti->private;
1644
1645 /*
1646 * We want to make sure that degraded pools are never upgraded.
1647 */
1648 enum pool_mode old_mode = pool->pf.mode;
1649 enum pool_mode new_mode = pt->adjusted_pf.mode;
1650
1651 if (old_mode > new_mode)
1652 new_mode = old_mode;
1653
1654 pool->ti = ti;
1655 pool->low_water_blocks = pt->low_water_blocks;
1656 pool->pf = pt->adjusted_pf;
1657
1658 set_pool_mode(pool, new_mode);
1659
1660 return 0;
1661 }
1662
1663 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1664 {
1665 if (pool->ti == ti)
1666 pool->ti = NULL;
1667 }
1668
1669 /*----------------------------------------------------------------
1670 * Pool creation
1671 *--------------------------------------------------------------*/
1672 /* Initialize pool features. */
1673 static void pool_features_init(struct pool_features *pf)
1674 {
1675 pf->mode = PM_WRITE;
1676 pf->zero_new_blocks = true;
1677 pf->discard_enabled = true;
1678 pf->discard_passdown = true;
1679 }
1680
1681 static void __pool_destroy(struct pool *pool)
1682 {
1683 __pool_table_remove(pool);
1684
1685 if (dm_pool_metadata_close(pool->pmd) < 0)
1686 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1687
1688 dm_bio_prison_destroy(pool->prison);
1689 dm_kcopyd_client_destroy(pool->copier);
1690
1691 if (pool->wq)
1692 destroy_workqueue(pool->wq);
1693
1694 if (pool->next_mapping)
1695 mempool_free(pool->next_mapping, pool->mapping_pool);
1696 mempool_destroy(pool->mapping_pool);
1697 dm_deferred_set_destroy(pool->shared_read_ds);
1698 dm_deferred_set_destroy(pool->all_io_ds);
1699 kfree(pool);
1700 }
1701
1702 static struct kmem_cache *_new_mapping_cache;
1703
1704 static struct pool *pool_create(struct mapped_device *pool_md,
1705 struct block_device *metadata_dev,
1706 unsigned long block_size,
1707 int read_only, char **error)
1708 {
1709 int r;
1710 void *err_p;
1711 struct pool *pool;
1712 struct dm_pool_metadata *pmd;
1713 bool format_device = read_only ? false : true;
1714
1715 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1716 if (IS_ERR(pmd)) {
1717 *error = "Error creating metadata object";
1718 return (struct pool *)pmd;
1719 }
1720
1721 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1722 if (!pool) {
1723 *error = "Error allocating memory for pool";
1724 err_p = ERR_PTR(-ENOMEM);
1725 goto bad_pool;
1726 }
1727
1728 pool->pmd = pmd;
1729 pool->sectors_per_block = block_size;
1730 if (block_size & (block_size - 1))
1731 pool->sectors_per_block_shift = -1;
1732 else
1733 pool->sectors_per_block_shift = __ffs(block_size);
1734 pool->low_water_blocks = 0;
1735 pool_features_init(&pool->pf);
1736 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1737 if (!pool->prison) {
1738 *error = "Error creating pool's bio prison";
1739 err_p = ERR_PTR(-ENOMEM);
1740 goto bad_prison;
1741 }
1742
1743 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1744 if (IS_ERR(pool->copier)) {
1745 r = PTR_ERR(pool->copier);
1746 *error = "Error creating pool's kcopyd client";
1747 err_p = ERR_PTR(r);
1748 goto bad_kcopyd_client;
1749 }
1750
1751 /*
1752 * Create singlethreaded workqueue that will service all devices
1753 * that use this metadata.
1754 */
1755 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1756 if (!pool->wq) {
1757 *error = "Error creating pool's workqueue";
1758 err_p = ERR_PTR(-ENOMEM);
1759 goto bad_wq;
1760 }
1761
1762 INIT_WORK(&pool->worker, do_worker);
1763 INIT_DELAYED_WORK(&pool->waker, do_waker);
1764 spin_lock_init(&pool->lock);
1765 bio_list_init(&pool->deferred_bios);
1766 bio_list_init(&pool->deferred_flush_bios);
1767 INIT_LIST_HEAD(&pool->prepared_mappings);
1768 INIT_LIST_HEAD(&pool->prepared_discards);
1769 pool->low_water_triggered = 0;
1770 pool->no_free_space = 0;
1771 bio_list_init(&pool->retry_on_resume_list);
1772
1773 pool->shared_read_ds = dm_deferred_set_create();
1774 if (!pool->shared_read_ds) {
1775 *error = "Error creating pool's shared read deferred set";
1776 err_p = ERR_PTR(-ENOMEM);
1777 goto bad_shared_read_ds;
1778 }
1779
1780 pool->all_io_ds = dm_deferred_set_create();
1781 if (!pool->all_io_ds) {
1782 *error = "Error creating pool's all io deferred set";
1783 err_p = ERR_PTR(-ENOMEM);
1784 goto bad_all_io_ds;
1785 }
1786
1787 pool->next_mapping = NULL;
1788 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1789 _new_mapping_cache);
1790 if (!pool->mapping_pool) {
1791 *error = "Error creating pool's mapping mempool";
1792 err_p = ERR_PTR(-ENOMEM);
1793 goto bad_mapping_pool;
1794 }
1795
1796 pool->ref_count = 1;
1797 pool->last_commit_jiffies = jiffies;
1798 pool->pool_md = pool_md;
1799 pool->md_dev = metadata_dev;
1800 __pool_table_insert(pool);
1801
1802 return pool;
1803
1804 bad_mapping_pool:
1805 dm_deferred_set_destroy(pool->all_io_ds);
1806 bad_all_io_ds:
1807 dm_deferred_set_destroy(pool->shared_read_ds);
1808 bad_shared_read_ds:
1809 destroy_workqueue(pool->wq);
1810 bad_wq:
1811 dm_kcopyd_client_destroy(pool->copier);
1812 bad_kcopyd_client:
1813 dm_bio_prison_destroy(pool->prison);
1814 bad_prison:
1815 kfree(pool);
1816 bad_pool:
1817 if (dm_pool_metadata_close(pmd))
1818 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1819
1820 return err_p;
1821 }
1822
1823 static void __pool_inc(struct pool *pool)
1824 {
1825 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1826 pool->ref_count++;
1827 }
1828
1829 static void __pool_dec(struct pool *pool)
1830 {
1831 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1832 BUG_ON(!pool->ref_count);
1833 if (!--pool->ref_count)
1834 __pool_destroy(pool);
1835 }
1836
1837 static struct pool *__pool_find(struct mapped_device *pool_md,
1838 struct block_device *metadata_dev,
1839 unsigned long block_size, int read_only,
1840 char **error, int *created)
1841 {
1842 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1843
1844 if (pool) {
1845 if (pool->pool_md != pool_md) {
1846 *error = "metadata device already in use by a pool";
1847 return ERR_PTR(-EBUSY);
1848 }
1849 __pool_inc(pool);
1850
1851 } else {
1852 pool = __pool_table_lookup(pool_md);
1853 if (pool) {
1854 if (pool->md_dev != metadata_dev) {
1855 *error = "different pool cannot replace a pool";
1856 return ERR_PTR(-EINVAL);
1857 }
1858 __pool_inc(pool);
1859
1860 } else {
1861 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1862 *created = 1;
1863 }
1864 }
1865
1866 return pool;
1867 }
1868
1869 /*----------------------------------------------------------------
1870 * Pool target methods
1871 *--------------------------------------------------------------*/
1872 static void pool_dtr(struct dm_target *ti)
1873 {
1874 struct pool_c *pt = ti->private;
1875
1876 mutex_lock(&dm_thin_pool_table.mutex);
1877
1878 unbind_control_target(pt->pool, ti);
1879 __pool_dec(pt->pool);
1880 dm_put_device(ti, pt->metadata_dev);
1881 dm_put_device(ti, pt->data_dev);
1882 kfree(pt);
1883
1884 mutex_unlock(&dm_thin_pool_table.mutex);
1885 }
1886
1887 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1888 struct dm_target *ti)
1889 {
1890 int r;
1891 unsigned argc;
1892 const char *arg_name;
1893
1894 static struct dm_arg _args[] = {
1895 {0, 3, "Invalid number of pool feature arguments"},
1896 };
1897
1898 /*
1899 * No feature arguments supplied.
1900 */
1901 if (!as->argc)
1902 return 0;
1903
1904 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1905 if (r)
1906 return -EINVAL;
1907
1908 while (argc && !r) {
1909 arg_name = dm_shift_arg(as);
1910 argc--;
1911
1912 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1913 pf->zero_new_blocks = false;
1914
1915 else if (!strcasecmp(arg_name, "ignore_discard"))
1916 pf->discard_enabled = false;
1917
1918 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1919 pf->discard_passdown = false;
1920
1921 else if (!strcasecmp(arg_name, "read_only"))
1922 pf->mode = PM_READ_ONLY;
1923
1924 else {
1925 ti->error = "Unrecognised pool feature requested";
1926 r = -EINVAL;
1927 break;
1928 }
1929 }
1930
1931 return r;
1932 }
1933
1934 static void metadata_low_callback(void *context)
1935 {
1936 struct pool *pool = context;
1937
1938 DMWARN("%s: reached low water mark for metadata device: sending event.",
1939 dm_device_name(pool->pool_md));
1940
1941 dm_table_event(pool->ti->table);
1942 }
1943
1944 static sector_t get_metadata_dev_size(struct block_device *bdev)
1945 {
1946 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1947 char buffer[BDEVNAME_SIZE];
1948
1949 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1950 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1951 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1952 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1953 }
1954
1955 return metadata_dev_size;
1956 }
1957
1958 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1959 {
1960 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1961
1962 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1963
1964 return metadata_dev_size;
1965 }
1966
1967 /*
1968 * When a metadata threshold is crossed a dm event is triggered, and
1969 * userland should respond by growing the metadata device. We could let
1970 * userland set the threshold, like we do with the data threshold, but I'm
1971 * not sure they know enough to do this well.
1972 */
1973 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1974 {
1975 /*
1976 * 4M is ample for all ops with the possible exception of thin
1977 * device deletion which is harmless if it fails (just retry the
1978 * delete after you've grown the device).
1979 */
1980 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1981 return min((dm_block_t)1024ULL /* 4M */, quarter);
1982 }
1983
1984 /*
1985 * thin-pool <metadata dev> <data dev>
1986 * <data block size (sectors)>
1987 * <low water mark (blocks)>
1988 * [<#feature args> [<arg>]*]
1989 *
1990 * Optional feature arguments are:
1991 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1992 * ignore_discard: disable discard
1993 * no_discard_passdown: don't pass discards down to the data device
1994 */
1995 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1996 {
1997 int r, pool_created = 0;
1998 struct pool_c *pt;
1999 struct pool *pool;
2000 struct pool_features pf;
2001 struct dm_arg_set as;
2002 struct dm_dev *data_dev;
2003 unsigned long block_size;
2004 dm_block_t low_water_blocks;
2005 struct dm_dev *metadata_dev;
2006 fmode_t metadata_mode;
2007
2008 /*
2009 * FIXME Remove validation from scope of lock.
2010 */
2011 mutex_lock(&dm_thin_pool_table.mutex);
2012
2013 if (argc < 4) {
2014 ti->error = "Invalid argument count";
2015 r = -EINVAL;
2016 goto out_unlock;
2017 }
2018
2019 as.argc = argc;
2020 as.argv = argv;
2021
2022 /*
2023 * Set default pool features.
2024 */
2025 pool_features_init(&pf);
2026
2027 dm_consume_args(&as, 4);
2028 r = parse_pool_features(&as, &pf, ti);
2029 if (r)
2030 goto out_unlock;
2031
2032 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2033 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2034 if (r) {
2035 ti->error = "Error opening metadata block device";
2036 goto out_unlock;
2037 }
2038
2039 /*
2040 * Run for the side-effect of possibly issuing a warning if the
2041 * device is too big.
2042 */
2043 (void) get_metadata_dev_size(metadata_dev->bdev);
2044
2045 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2046 if (r) {
2047 ti->error = "Error getting data device";
2048 goto out_metadata;
2049 }
2050
2051 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2052 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2053 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2054 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2055 ti->error = "Invalid block size";
2056 r = -EINVAL;
2057 goto out;
2058 }
2059
2060 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2061 ti->error = "Invalid low water mark";
2062 r = -EINVAL;
2063 goto out;
2064 }
2065
2066 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2067 if (!pt) {
2068 r = -ENOMEM;
2069 goto out;
2070 }
2071
2072 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2073 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2074 if (IS_ERR(pool)) {
2075 r = PTR_ERR(pool);
2076 goto out_free_pt;
2077 }
2078
2079 /*
2080 * 'pool_created' reflects whether this is the first table load.
2081 * Top level discard support is not allowed to be changed after
2082 * initial load. This would require a pool reload to trigger thin
2083 * device changes.
2084 */
2085 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2086 ti->error = "Discard support cannot be disabled once enabled";
2087 r = -EINVAL;
2088 goto out_flags_changed;
2089 }
2090
2091 pt->pool = pool;
2092 pt->ti = ti;
2093 pt->metadata_dev = metadata_dev;
2094 pt->data_dev = data_dev;
2095 pt->low_water_blocks = low_water_blocks;
2096 pt->adjusted_pf = pt->requested_pf = pf;
2097 ti->num_flush_bios = 1;
2098
2099 /*
2100 * Only need to enable discards if the pool should pass
2101 * them down to the data device. The thin device's discard
2102 * processing will cause mappings to be removed from the btree.
2103 */
2104 ti->discard_zeroes_data_unsupported = true;
2105 if (pf.discard_enabled && pf.discard_passdown) {
2106 ti->num_discard_bios = 1;
2107
2108 /*
2109 * Setting 'discards_supported' circumvents the normal
2110 * stacking of discard limits (this keeps the pool and
2111 * thin devices' discard limits consistent).
2112 */
2113 ti->discards_supported = true;
2114 }
2115 ti->private = pt;
2116
2117 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2118 calc_metadata_threshold(pt),
2119 metadata_low_callback,
2120 pool);
2121 if (r)
2122 goto out_free_pt;
2123
2124 pt->callbacks.congested_fn = pool_is_congested;
2125 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2126
2127 mutex_unlock(&dm_thin_pool_table.mutex);
2128
2129 return 0;
2130
2131 out_flags_changed:
2132 __pool_dec(pool);
2133 out_free_pt:
2134 kfree(pt);
2135 out:
2136 dm_put_device(ti, data_dev);
2137 out_metadata:
2138 dm_put_device(ti, metadata_dev);
2139 out_unlock:
2140 mutex_unlock(&dm_thin_pool_table.mutex);
2141
2142 return r;
2143 }
2144
2145 static int pool_map(struct dm_target *ti, struct bio *bio)
2146 {
2147 int r;
2148 struct pool_c *pt = ti->private;
2149 struct pool *pool = pt->pool;
2150 unsigned long flags;
2151
2152 /*
2153 * As this is a singleton target, ti->begin is always zero.
2154 */
2155 spin_lock_irqsave(&pool->lock, flags);
2156 bio->bi_bdev = pt->data_dev->bdev;
2157 r = DM_MAPIO_REMAPPED;
2158 spin_unlock_irqrestore(&pool->lock, flags);
2159
2160 return r;
2161 }
2162
2163 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2164 {
2165 int r;
2166 struct pool_c *pt = ti->private;
2167 struct pool *pool = pt->pool;
2168 sector_t data_size = ti->len;
2169 dm_block_t sb_data_size;
2170
2171 *need_commit = false;
2172
2173 (void) sector_div(data_size, pool->sectors_per_block);
2174
2175 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2176 if (r) {
2177 DMERR("%s: failed to retrieve data device size",
2178 dm_device_name(pool->pool_md));
2179 return r;
2180 }
2181
2182 if (data_size < sb_data_size) {
2183 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2184 dm_device_name(pool->pool_md),
2185 (unsigned long long)data_size, sb_data_size);
2186 return -EINVAL;
2187
2188 } else if (data_size > sb_data_size) {
2189 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2190 if (r) {
2191 DMERR("%s: failed to resize data device",
2192 dm_device_name(pool->pool_md));
2193 set_pool_mode(pool, PM_READ_ONLY);
2194 return r;
2195 }
2196
2197 *need_commit = true;
2198 }
2199
2200 return 0;
2201 }
2202
2203 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2204 {
2205 int r;
2206 struct pool_c *pt = ti->private;
2207 struct pool *pool = pt->pool;
2208 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2209
2210 *need_commit = false;
2211
2212 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2213
2214 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2215 if (r) {
2216 DMERR("%s: failed to retrieve metadata device size",
2217 dm_device_name(pool->pool_md));
2218 return r;
2219 }
2220
2221 if (metadata_dev_size < sb_metadata_dev_size) {
2222 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2223 dm_device_name(pool->pool_md),
2224 metadata_dev_size, sb_metadata_dev_size);
2225 return -EINVAL;
2226
2227 } else if (metadata_dev_size > sb_metadata_dev_size) {
2228 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2229 if (r) {
2230 DMERR("%s: failed to resize metadata device",
2231 dm_device_name(pool->pool_md));
2232 return r;
2233 }
2234
2235 *need_commit = true;
2236 }
2237
2238 return 0;
2239 }
2240
2241 /*
2242 * Retrieves the number of blocks of the data device from
2243 * the superblock and compares it to the actual device size,
2244 * thus resizing the data device in case it has grown.
2245 *
2246 * This both copes with opening preallocated data devices in the ctr
2247 * being followed by a resume
2248 * -and-
2249 * calling the resume method individually after userspace has
2250 * grown the data device in reaction to a table event.
2251 */
2252 static int pool_preresume(struct dm_target *ti)
2253 {
2254 int r;
2255 bool need_commit1, need_commit2;
2256 struct pool_c *pt = ti->private;
2257 struct pool *pool = pt->pool;
2258
2259 /*
2260 * Take control of the pool object.
2261 */
2262 r = bind_control_target(pool, ti);
2263 if (r)
2264 return r;
2265
2266 r = maybe_resize_data_dev(ti, &need_commit1);
2267 if (r)
2268 return r;
2269
2270 r = maybe_resize_metadata_dev(ti, &need_commit2);
2271 if (r)
2272 return r;
2273
2274 if (need_commit1 || need_commit2)
2275 (void) commit_or_fallback(pool);
2276
2277 return 0;
2278 }
2279
2280 static void pool_resume(struct dm_target *ti)
2281 {
2282 struct pool_c *pt = ti->private;
2283 struct pool *pool = pt->pool;
2284 unsigned long flags;
2285
2286 spin_lock_irqsave(&pool->lock, flags);
2287 pool->low_water_triggered = 0;
2288 pool->no_free_space = 0;
2289 __requeue_bios(pool);
2290 spin_unlock_irqrestore(&pool->lock, flags);
2291
2292 do_waker(&pool->waker.work);
2293 }
2294
2295 static void pool_postsuspend(struct dm_target *ti)
2296 {
2297 struct pool_c *pt = ti->private;
2298 struct pool *pool = pt->pool;
2299
2300 cancel_delayed_work(&pool->waker);
2301 flush_workqueue(pool->wq);
2302 (void) commit_or_fallback(pool);
2303 }
2304
2305 static int check_arg_count(unsigned argc, unsigned args_required)
2306 {
2307 if (argc != args_required) {
2308 DMWARN("Message received with %u arguments instead of %u.",
2309 argc, args_required);
2310 return -EINVAL;
2311 }
2312
2313 return 0;
2314 }
2315
2316 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2317 {
2318 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2319 *dev_id <= MAX_DEV_ID)
2320 return 0;
2321
2322 if (warning)
2323 DMWARN("Message received with invalid device id: %s", arg);
2324
2325 return -EINVAL;
2326 }
2327
2328 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2329 {
2330 dm_thin_id dev_id;
2331 int r;
2332
2333 r = check_arg_count(argc, 2);
2334 if (r)
2335 return r;
2336
2337 r = read_dev_id(argv[1], &dev_id, 1);
2338 if (r)
2339 return r;
2340
2341 r = dm_pool_create_thin(pool->pmd, dev_id);
2342 if (r) {
2343 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2344 argv[1]);
2345 return r;
2346 }
2347
2348 return 0;
2349 }
2350
2351 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2352 {
2353 dm_thin_id dev_id;
2354 dm_thin_id origin_dev_id;
2355 int r;
2356
2357 r = check_arg_count(argc, 3);
2358 if (r)
2359 return r;
2360
2361 r = read_dev_id(argv[1], &dev_id, 1);
2362 if (r)
2363 return r;
2364
2365 r = read_dev_id(argv[2], &origin_dev_id, 1);
2366 if (r)
2367 return r;
2368
2369 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2370 if (r) {
2371 DMWARN("Creation of new snapshot %s of device %s failed.",
2372 argv[1], argv[2]);
2373 return r;
2374 }
2375
2376 return 0;
2377 }
2378
2379 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2380 {
2381 dm_thin_id dev_id;
2382 int r;
2383
2384 r = check_arg_count(argc, 2);
2385 if (r)
2386 return r;
2387
2388 r = read_dev_id(argv[1], &dev_id, 1);
2389 if (r)
2390 return r;
2391
2392 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2393 if (r)
2394 DMWARN("Deletion of thin device %s failed.", argv[1]);
2395
2396 return r;
2397 }
2398
2399 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2400 {
2401 dm_thin_id old_id, new_id;
2402 int r;
2403
2404 r = check_arg_count(argc, 3);
2405 if (r)
2406 return r;
2407
2408 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2409 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2410 return -EINVAL;
2411 }
2412
2413 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2414 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2415 return -EINVAL;
2416 }
2417
2418 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2419 if (r) {
2420 DMWARN("Failed to change transaction id from %s to %s.",
2421 argv[1], argv[2]);
2422 return r;
2423 }
2424
2425 return 0;
2426 }
2427
2428 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2429 {
2430 int r;
2431
2432 r = check_arg_count(argc, 1);
2433 if (r)
2434 return r;
2435
2436 (void) commit_or_fallback(pool);
2437
2438 r = dm_pool_reserve_metadata_snap(pool->pmd);
2439 if (r)
2440 DMWARN("reserve_metadata_snap message failed.");
2441
2442 return r;
2443 }
2444
2445 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2446 {
2447 int r;
2448
2449 r = check_arg_count(argc, 1);
2450 if (r)
2451 return r;
2452
2453 r = dm_pool_release_metadata_snap(pool->pmd);
2454 if (r)
2455 DMWARN("release_metadata_snap message failed.");
2456
2457 return r;
2458 }
2459
2460 /*
2461 * Messages supported:
2462 * create_thin <dev_id>
2463 * create_snap <dev_id> <origin_id>
2464 * delete <dev_id>
2465 * trim <dev_id> <new_size_in_sectors>
2466 * set_transaction_id <current_trans_id> <new_trans_id>
2467 * reserve_metadata_snap
2468 * release_metadata_snap
2469 */
2470 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2471 {
2472 int r = -EINVAL;
2473 struct pool_c *pt = ti->private;
2474 struct pool *pool = pt->pool;
2475
2476 if (!strcasecmp(argv[0], "create_thin"))
2477 r = process_create_thin_mesg(argc, argv, pool);
2478
2479 else if (!strcasecmp(argv[0], "create_snap"))
2480 r = process_create_snap_mesg(argc, argv, pool);
2481
2482 else if (!strcasecmp(argv[0], "delete"))
2483 r = process_delete_mesg(argc, argv, pool);
2484
2485 else if (!strcasecmp(argv[0], "set_transaction_id"))
2486 r = process_set_transaction_id_mesg(argc, argv, pool);
2487
2488 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2489 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2490
2491 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2492 r = process_release_metadata_snap_mesg(argc, argv, pool);
2493
2494 else
2495 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2496
2497 if (!r)
2498 (void) commit_or_fallback(pool);
2499
2500 return r;
2501 }
2502
2503 static void emit_flags(struct pool_features *pf, char *result,
2504 unsigned sz, unsigned maxlen)
2505 {
2506 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2507 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2508 DMEMIT("%u ", count);
2509
2510 if (!pf->zero_new_blocks)
2511 DMEMIT("skip_block_zeroing ");
2512
2513 if (!pf->discard_enabled)
2514 DMEMIT("ignore_discard ");
2515
2516 if (!pf->discard_passdown)
2517 DMEMIT("no_discard_passdown ");
2518
2519 if (pf->mode == PM_READ_ONLY)
2520 DMEMIT("read_only ");
2521 }
2522
2523 /*
2524 * Status line is:
2525 * <transaction id> <used metadata sectors>/<total metadata sectors>
2526 * <used data sectors>/<total data sectors> <held metadata root>
2527 */
2528 static void pool_status(struct dm_target *ti, status_type_t type,
2529 unsigned status_flags, char *result, unsigned maxlen)
2530 {
2531 int r;
2532 unsigned sz = 0;
2533 uint64_t transaction_id;
2534 dm_block_t nr_free_blocks_data;
2535 dm_block_t nr_free_blocks_metadata;
2536 dm_block_t nr_blocks_data;
2537 dm_block_t nr_blocks_metadata;
2538 dm_block_t held_root;
2539 char buf[BDEVNAME_SIZE];
2540 char buf2[BDEVNAME_SIZE];
2541 struct pool_c *pt = ti->private;
2542 struct pool *pool = pt->pool;
2543
2544 switch (type) {
2545 case STATUSTYPE_INFO:
2546 if (get_pool_mode(pool) == PM_FAIL) {
2547 DMEMIT("Fail");
2548 break;
2549 }
2550
2551 /* Commit to ensure statistics aren't out-of-date */
2552 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2553 (void) commit_or_fallback(pool);
2554
2555 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2556 if (r) {
2557 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2558 dm_device_name(pool->pool_md), r);
2559 goto err;
2560 }
2561
2562 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2563 if (r) {
2564 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2565 dm_device_name(pool->pool_md), r);
2566 goto err;
2567 }
2568
2569 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2570 if (r) {
2571 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2572 dm_device_name(pool->pool_md), r);
2573 goto err;
2574 }
2575
2576 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2577 if (r) {
2578 DMERR("%s: dm_pool_get_free_block_count returned %d",
2579 dm_device_name(pool->pool_md), r);
2580 goto err;
2581 }
2582
2583 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2584 if (r) {
2585 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2586 dm_device_name(pool->pool_md), r);
2587 goto err;
2588 }
2589
2590 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2591 if (r) {
2592 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2593 dm_device_name(pool->pool_md), r);
2594 goto err;
2595 }
2596
2597 DMEMIT("%llu %llu/%llu %llu/%llu ",
2598 (unsigned long long)transaction_id,
2599 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2600 (unsigned long long)nr_blocks_metadata,
2601 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2602 (unsigned long long)nr_blocks_data);
2603
2604 if (held_root)
2605 DMEMIT("%llu ", held_root);
2606 else
2607 DMEMIT("- ");
2608
2609 if (pool->pf.mode == PM_READ_ONLY)
2610 DMEMIT("ro ");
2611 else
2612 DMEMIT("rw ");
2613
2614 if (!pool->pf.discard_enabled)
2615 DMEMIT("ignore_discard");
2616 else if (pool->pf.discard_passdown)
2617 DMEMIT("discard_passdown");
2618 else
2619 DMEMIT("no_discard_passdown");
2620
2621 break;
2622
2623 case STATUSTYPE_TABLE:
2624 DMEMIT("%s %s %lu %llu ",
2625 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2626 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2627 (unsigned long)pool->sectors_per_block,
2628 (unsigned long long)pt->low_water_blocks);
2629 emit_flags(&pt->requested_pf, result, sz, maxlen);
2630 break;
2631 }
2632 return;
2633
2634 err:
2635 DMEMIT("Error");
2636 }
2637
2638 static int pool_iterate_devices(struct dm_target *ti,
2639 iterate_devices_callout_fn fn, void *data)
2640 {
2641 struct pool_c *pt = ti->private;
2642
2643 return fn(ti, pt->data_dev, 0, ti->len, data);
2644 }
2645
2646 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2647 struct bio_vec *biovec, int max_size)
2648 {
2649 struct pool_c *pt = ti->private;
2650 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2651
2652 if (!q->merge_bvec_fn)
2653 return max_size;
2654
2655 bvm->bi_bdev = pt->data_dev->bdev;
2656
2657 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2658 }
2659
2660 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2661 {
2662 struct pool *pool = pt->pool;
2663 struct queue_limits *data_limits;
2664
2665 limits->max_discard_sectors = pool->sectors_per_block;
2666
2667 /*
2668 * discard_granularity is just a hint, and not enforced.
2669 */
2670 if (pt->adjusted_pf.discard_passdown) {
2671 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2672 limits->discard_granularity = data_limits->discard_granularity;
2673 } else
2674 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2675 }
2676
2677 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2678 {
2679 struct pool_c *pt = ti->private;
2680 struct pool *pool = pt->pool;
2681 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2682
2683 /*
2684 * If the system-determined stacked limits are compatible with the
2685 * pool's blocksize (io_opt is a factor) do not override them.
2686 */
2687 if (io_opt_sectors < pool->sectors_per_block ||
2688 do_div(io_opt_sectors, pool->sectors_per_block)) {
2689 blk_limits_io_min(limits, 0);
2690 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2691 }
2692
2693 /*
2694 * pt->adjusted_pf is a staging area for the actual features to use.
2695 * They get transferred to the live pool in bind_control_target()
2696 * called from pool_preresume().
2697 */
2698 if (!pt->adjusted_pf.discard_enabled) {
2699 /*
2700 * Must explicitly disallow stacking discard limits otherwise the
2701 * block layer will stack them if pool's data device has support.
2702 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2703 * user to see that, so make sure to set all discard limits to 0.
2704 */
2705 limits->discard_granularity = 0;
2706 return;
2707 }
2708
2709 disable_passdown_if_not_supported(pt);
2710
2711 set_discard_limits(pt, limits);
2712 }
2713
2714 static struct target_type pool_target = {
2715 .name = "thin-pool",
2716 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2717 DM_TARGET_IMMUTABLE,
2718 .version = {1, 9, 0},
2719 .module = THIS_MODULE,
2720 .ctr = pool_ctr,
2721 .dtr = pool_dtr,
2722 .map = pool_map,
2723 .postsuspend = pool_postsuspend,
2724 .preresume = pool_preresume,
2725 .resume = pool_resume,
2726 .message = pool_message,
2727 .status = pool_status,
2728 .merge = pool_merge,
2729 .iterate_devices = pool_iterate_devices,
2730 .io_hints = pool_io_hints,
2731 };
2732
2733 /*----------------------------------------------------------------
2734 * Thin target methods
2735 *--------------------------------------------------------------*/
2736 static void thin_dtr(struct dm_target *ti)
2737 {
2738 struct thin_c *tc = ti->private;
2739
2740 mutex_lock(&dm_thin_pool_table.mutex);
2741
2742 __pool_dec(tc->pool);
2743 dm_pool_close_thin_device(tc->td);
2744 dm_put_device(ti, tc->pool_dev);
2745 if (tc->origin_dev)
2746 dm_put_device(ti, tc->origin_dev);
2747 kfree(tc);
2748
2749 mutex_unlock(&dm_thin_pool_table.mutex);
2750 }
2751
2752 /*
2753 * Thin target parameters:
2754 *
2755 * <pool_dev> <dev_id> [origin_dev]
2756 *
2757 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2758 * dev_id: the internal device identifier
2759 * origin_dev: a device external to the pool that should act as the origin
2760 *
2761 * If the pool device has discards disabled, they get disabled for the thin
2762 * device as well.
2763 */
2764 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2765 {
2766 int r;
2767 struct thin_c *tc;
2768 struct dm_dev *pool_dev, *origin_dev;
2769 struct mapped_device *pool_md;
2770
2771 mutex_lock(&dm_thin_pool_table.mutex);
2772
2773 if (argc != 2 && argc != 3) {
2774 ti->error = "Invalid argument count";
2775 r = -EINVAL;
2776 goto out_unlock;
2777 }
2778
2779 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2780 if (!tc) {
2781 ti->error = "Out of memory";
2782 r = -ENOMEM;
2783 goto out_unlock;
2784 }
2785
2786 if (argc == 3) {
2787 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2788 if (r) {
2789 ti->error = "Error opening origin device";
2790 goto bad_origin_dev;
2791 }
2792 tc->origin_dev = origin_dev;
2793 }
2794
2795 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2796 if (r) {
2797 ti->error = "Error opening pool device";
2798 goto bad_pool_dev;
2799 }
2800 tc->pool_dev = pool_dev;
2801
2802 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2803 ti->error = "Invalid device id";
2804 r = -EINVAL;
2805 goto bad_common;
2806 }
2807
2808 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2809 if (!pool_md) {
2810 ti->error = "Couldn't get pool mapped device";
2811 r = -EINVAL;
2812 goto bad_common;
2813 }
2814
2815 tc->pool = __pool_table_lookup(pool_md);
2816 if (!tc->pool) {
2817 ti->error = "Couldn't find pool object";
2818 r = -EINVAL;
2819 goto bad_pool_lookup;
2820 }
2821 __pool_inc(tc->pool);
2822
2823 if (get_pool_mode(tc->pool) == PM_FAIL) {
2824 ti->error = "Couldn't open thin device, Pool is in fail mode";
2825 goto bad_thin_open;
2826 }
2827
2828 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2829 if (r) {
2830 ti->error = "Couldn't open thin internal device";
2831 goto bad_thin_open;
2832 }
2833
2834 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2835 if (r)
2836 goto bad_thin_open;
2837
2838 ti->num_flush_bios = 1;
2839 ti->flush_supported = true;
2840 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2841
2842 /* In case the pool supports discards, pass them on. */
2843 ti->discard_zeroes_data_unsupported = true;
2844 if (tc->pool->pf.discard_enabled) {
2845 ti->discards_supported = true;
2846 ti->num_discard_bios = 1;
2847 /* Discard bios must be split on a block boundary */
2848 ti->split_discard_bios = true;
2849 }
2850
2851 dm_put(pool_md);
2852
2853 mutex_unlock(&dm_thin_pool_table.mutex);
2854
2855 return 0;
2856
2857 bad_thin_open:
2858 __pool_dec(tc->pool);
2859 bad_pool_lookup:
2860 dm_put(pool_md);
2861 bad_common:
2862 dm_put_device(ti, tc->pool_dev);
2863 bad_pool_dev:
2864 if (tc->origin_dev)
2865 dm_put_device(ti, tc->origin_dev);
2866 bad_origin_dev:
2867 kfree(tc);
2868 out_unlock:
2869 mutex_unlock(&dm_thin_pool_table.mutex);
2870
2871 return r;
2872 }
2873
2874 static int thin_map(struct dm_target *ti, struct bio *bio)
2875 {
2876 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2877
2878 return thin_bio_map(ti, bio);
2879 }
2880
2881 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2882 {
2883 unsigned long flags;
2884 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2885 struct list_head work;
2886 struct dm_thin_new_mapping *m, *tmp;
2887 struct pool *pool = h->tc->pool;
2888
2889 if (h->shared_read_entry) {
2890 INIT_LIST_HEAD(&work);
2891 dm_deferred_entry_dec(h->shared_read_entry, &work);
2892
2893 spin_lock_irqsave(&pool->lock, flags);
2894 list_for_each_entry_safe(m, tmp, &work, list) {
2895 list_del(&m->list);
2896 m->quiesced = 1;
2897 __maybe_add_mapping(m);
2898 }
2899 spin_unlock_irqrestore(&pool->lock, flags);
2900 }
2901
2902 if (h->all_io_entry) {
2903 INIT_LIST_HEAD(&work);
2904 dm_deferred_entry_dec(h->all_io_entry, &work);
2905 if (!list_empty(&work)) {
2906 spin_lock_irqsave(&pool->lock, flags);
2907 list_for_each_entry_safe(m, tmp, &work, list)
2908 list_add(&m->list, &pool->prepared_discards);
2909 spin_unlock_irqrestore(&pool->lock, flags);
2910 wake_worker(pool);
2911 }
2912 }
2913
2914 return 0;
2915 }
2916
2917 static void thin_postsuspend(struct dm_target *ti)
2918 {
2919 if (dm_noflush_suspending(ti))
2920 requeue_io((struct thin_c *)ti->private);
2921 }
2922
2923 /*
2924 * <nr mapped sectors> <highest mapped sector>
2925 */
2926 static void thin_status(struct dm_target *ti, status_type_t type,
2927 unsigned status_flags, char *result, unsigned maxlen)
2928 {
2929 int r;
2930 ssize_t sz = 0;
2931 dm_block_t mapped, highest;
2932 char buf[BDEVNAME_SIZE];
2933 struct thin_c *tc = ti->private;
2934
2935 if (get_pool_mode(tc->pool) == PM_FAIL) {
2936 DMEMIT("Fail");
2937 return;
2938 }
2939
2940 if (!tc->td)
2941 DMEMIT("-");
2942 else {
2943 switch (type) {
2944 case STATUSTYPE_INFO:
2945 r = dm_thin_get_mapped_count(tc->td, &mapped);
2946 if (r) {
2947 DMERR("dm_thin_get_mapped_count returned %d", r);
2948 goto err;
2949 }
2950
2951 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2952 if (r < 0) {
2953 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2954 goto err;
2955 }
2956
2957 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2958 if (r)
2959 DMEMIT("%llu", ((highest + 1) *
2960 tc->pool->sectors_per_block) - 1);
2961 else
2962 DMEMIT("-");
2963 break;
2964
2965 case STATUSTYPE_TABLE:
2966 DMEMIT("%s %lu",
2967 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2968 (unsigned long) tc->dev_id);
2969 if (tc->origin_dev)
2970 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2971 break;
2972 }
2973 }
2974
2975 return;
2976
2977 err:
2978 DMEMIT("Error");
2979 }
2980
2981 static int thin_iterate_devices(struct dm_target *ti,
2982 iterate_devices_callout_fn fn, void *data)
2983 {
2984 sector_t blocks;
2985 struct thin_c *tc = ti->private;
2986 struct pool *pool = tc->pool;
2987
2988 /*
2989 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2990 * we follow a more convoluted path through to the pool's target.
2991 */
2992 if (!pool->ti)
2993 return 0; /* nothing is bound */
2994
2995 blocks = pool->ti->len;
2996 (void) sector_div(blocks, pool->sectors_per_block);
2997 if (blocks)
2998 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2999
3000 return 0;
3001 }
3002
3003 static struct target_type thin_target = {
3004 .name = "thin",
3005 .version = {1, 9, 0},
3006 .module = THIS_MODULE,
3007 .ctr = thin_ctr,
3008 .dtr = thin_dtr,
3009 .map = thin_map,
3010 .end_io = thin_endio,
3011 .postsuspend = thin_postsuspend,
3012 .status = thin_status,
3013 .iterate_devices = thin_iterate_devices,
3014 };
3015
3016 /*----------------------------------------------------------------*/
3017
3018 static int __init dm_thin_init(void)
3019 {
3020 int r;
3021
3022 pool_table_init();
3023
3024 r = dm_register_target(&thin_target);
3025 if (r)
3026 return r;
3027
3028 r = dm_register_target(&pool_target);
3029 if (r)
3030 goto bad_pool_target;
3031
3032 r = -ENOMEM;
3033
3034 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3035 if (!_new_mapping_cache)
3036 goto bad_new_mapping_cache;
3037
3038 return 0;
3039
3040 bad_new_mapping_cache:
3041 dm_unregister_target(&pool_target);
3042 bad_pool_target:
3043 dm_unregister_target(&thin_target);
3044
3045 return r;
3046 }
3047
3048 static void dm_thin_exit(void)
3049 {
3050 dm_unregister_target(&thin_target);
3051 dm_unregister_target(&pool_target);
3052
3053 kmem_cache_destroy(_new_mapping_cache);
3054 }
3055
3056 module_init(dm_thin_init);
3057 module_exit(dm_thin_exit);
3058
3059 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3060 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3061 MODULE_LICENSE("GPL");
This page took 0.096106 seconds and 5 git commands to generate.