dm thin: fix discard support to a previously shared block
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154 struct list_head list;
155 struct dm_target *ti; /* Only set if a pool target is bound */
156
157 struct mapped_device *pool_md;
158 struct block_device *md_dev;
159 struct dm_pool_metadata *pmd;
160
161 dm_block_t low_water_blocks;
162 uint32_t sectors_per_block;
163 int sectors_per_block_shift;
164
165 struct pool_features pf;
166 unsigned low_water_triggered:1; /* A dm event has been sent */
167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204 * Target context for a pool.
205 */
206 struct pool_c {
207 struct dm_target *ti;
208 struct pool *pool;
209 struct dm_dev *data_dev;
210 struct dm_dev *metadata_dev;
211 struct dm_target_callbacks callbacks;
212
213 dm_block_t low_water_blocks;
214 struct pool_features requested_pf; /* Features requested during table load */
215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219 * Target context for a thin.
220 */
221 struct thin_c {
222 struct dm_dev *pool_dev;
223 struct dm_dev *origin_dev;
224 dm_thin_id dev_id;
225
226 struct pool *pool;
227 struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233 * wake_worker() is used when new work is queued and when pool_resume is
234 * ready to continue deferred IO processing.
235 */
236 static void wake_worker(struct pool *pool)
237 {
238 queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 struct dm_bio_prison_cell **cell_result)
245 {
246 int r;
247 struct dm_bio_prison_cell *cell_prealloc;
248
249 /*
250 * Allocate a cell from the prison's mempool.
251 * This might block but it can't fail.
252 */
253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 if (r)
257 /*
258 * We reused an old cell; we can get rid of
259 * the new one.
260 */
261 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263 return r;
264 }
265
266 static void cell_release(struct pool *pool,
267 struct dm_bio_prison_cell *cell,
268 struct bio_list *bios)
269 {
270 dm_cell_release(pool->prison, cell, bios);
271 dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275 struct dm_bio_prison_cell *cell,
276 struct bio_list *bios)
277 {
278 dm_cell_release_no_holder(pool->prison, cell, bios);
279 dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 struct dm_bio_prison_cell *cell)
284 {
285 struct pool *pool = tc->pool;
286 unsigned long flags;
287
288 spin_lock_irqsave(&pool->lock, flags);
289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 spin_unlock_irqrestore(&pool->lock, flags);
291
292 wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296 struct dm_bio_prison_cell *cell)
297 {
298 dm_cell_error(pool->prison, cell);
299 dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305 * A global list of pools that uses a struct mapped_device as a key.
306 */
307 static struct dm_thin_pool_table {
308 struct mutex mutex;
309 struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314 mutex_init(&dm_thin_pool_table.mutex);
315 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 struct pool *pool = NULL, *tmp;
333
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 if (tmp->pool_md == md) {
338 pool = tmp;
339 break;
340 }
341 }
342
343 return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 struct pool *pool = NULL, *tmp;
349
350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 if (tmp->md_dev == md_dev) {
354 pool = tmp;
355 break;
356 }
357 }
358
359 return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365 struct thin_c *tc;
366 struct dm_deferred_entry *shared_read_entry;
367 struct dm_deferred_entry *all_io_entry;
368 struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 struct bio *bio;
374 struct bio_list bios;
375
376 bio_list_init(&bios);
377 bio_list_merge(&bios, master);
378 bio_list_init(master);
379
380 while ((bio = bio_list_pop(&bios))) {
381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383 if (h->tc == tc)
384 bio_endio(bio, DM_ENDIO_REQUEUE);
385 else
386 bio_list_add(master, bio);
387 }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392 struct pool *pool = tc->pool;
393 unsigned long flags;
394
395 spin_lock_irqsave(&pool->lock, flags);
396 __requeue_bio_list(tc, &pool->deferred_bios);
397 __requeue_bio_list(tc, &pool->retry_on_resume_list);
398 spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402 * This section of code contains the logic for processing a thin device's IO.
403 * Much of the code depends on pool object resources (lists, workqueues, etc)
404 * but most is exclusively called from the thin target rather than the thin-pool
405 * target.
406 */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 struct pool *pool = tc->pool;
416 sector_t block_nr = bio->bi_sector;
417
418 if (block_size_is_power_of_two(pool))
419 block_nr >>= pool->sectors_per_block_shift;
420 else
421 (void) sector_div(block_nr, pool->sectors_per_block);
422
423 return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 struct pool *pool = tc->pool;
429 sector_t bi_sector = bio->bi_sector;
430
431 bio->bi_bdev = tc->pool_dev->bdev;
432 if (block_size_is_power_of_two(pool))
433 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 (bi_sector & (pool->sectors_per_block - 1));
435 else
436 bio->bi_sector = (block * pool->sectors_per_block) +
437 sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 struct dm_thin_endio_hook *h;
454
455 if (bio->bi_rw & REQ_DISCARD)
456 return;
457
458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 struct pool *pool = tc->pool;
465 unsigned long flags;
466
467 if (!bio_triggers_commit(tc, bio)) {
468 generic_make_request(bio);
469 return;
470 }
471
472 /*
473 * Complete bio with an error if earlier I/O caused changes to
474 * the metadata that can't be committed e.g, due to I/O errors
475 * on the metadata device.
476 */
477 if (dm_thin_aborted_changes(tc->td)) {
478 bio_io_error(bio);
479 return;
480 }
481
482 /*
483 * Batch together any bios that trigger commits and then issue a
484 * single commit for them in process_deferred_bios().
485 */
486 spin_lock_irqsave(&pool->lock, flags);
487 bio_list_add(&pool->deferred_flush_bios, bio);
488 spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 remap_to_origin(tc, bio);
494 issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 dm_block_t block)
499 {
500 remap(tc, bio, block);
501 issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507 * Bio endio functions.
508 */
509 struct dm_thin_new_mapping {
510 struct list_head list;
511
512 unsigned quiesced:1;
513 unsigned prepared:1;
514 unsigned pass_discard:1;
515 unsigned definitely_not_shared:1;
516
517 struct thin_c *tc;
518 dm_block_t virt_block;
519 dm_block_t data_block;
520 struct dm_bio_prison_cell *cell, *cell2;
521 int err;
522
523 /*
524 * If the bio covers the whole area of a block then we can avoid
525 * zeroing or copying. Instead this bio is hooked. The bio will
526 * still be in the cell, so care has to be taken to avoid issuing
527 * the bio twice.
528 */
529 struct bio *bio;
530 bio_end_io_t *saved_bi_end_io;
531 };
532
533 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
534 {
535 struct pool *pool = m->tc->pool;
536
537 if (m->quiesced && m->prepared) {
538 list_add(&m->list, &pool->prepared_mappings);
539 wake_worker(pool);
540 }
541 }
542
543 static void copy_complete(int read_err, unsigned long write_err, void *context)
544 {
545 unsigned long flags;
546 struct dm_thin_new_mapping *m = context;
547 struct pool *pool = m->tc->pool;
548
549 m->err = read_err || write_err ? -EIO : 0;
550
551 spin_lock_irqsave(&pool->lock, flags);
552 m->prepared = 1;
553 __maybe_add_mapping(m);
554 spin_unlock_irqrestore(&pool->lock, flags);
555 }
556
557 static void overwrite_endio(struct bio *bio, int err)
558 {
559 unsigned long flags;
560 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
561 struct dm_thin_new_mapping *m = h->overwrite_mapping;
562 struct pool *pool = m->tc->pool;
563
564 m->err = err;
565
566 spin_lock_irqsave(&pool->lock, flags);
567 m->prepared = 1;
568 __maybe_add_mapping(m);
569 spin_unlock_irqrestore(&pool->lock, flags);
570 }
571
572 /*----------------------------------------------------------------*/
573
574 /*
575 * Workqueue.
576 */
577
578 /*
579 * Prepared mapping jobs.
580 */
581
582 /*
583 * This sends the bios in the cell back to the deferred_bios list.
584 */
585 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
586 {
587 struct pool *pool = tc->pool;
588 unsigned long flags;
589
590 spin_lock_irqsave(&pool->lock, flags);
591 cell_release(pool, cell, &pool->deferred_bios);
592 spin_unlock_irqrestore(&tc->pool->lock, flags);
593
594 wake_worker(pool);
595 }
596
597 /*
598 * Same as cell_defer above, except it omits the original holder of the cell.
599 */
600 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
601 {
602 struct pool *pool = tc->pool;
603 unsigned long flags;
604
605 spin_lock_irqsave(&pool->lock, flags);
606 cell_release_no_holder(pool, cell, &pool->deferred_bios);
607 spin_unlock_irqrestore(&pool->lock, flags);
608
609 wake_worker(pool);
610 }
611
612 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
613 {
614 if (m->bio)
615 m->bio->bi_end_io = m->saved_bi_end_io;
616 cell_error(m->tc->pool, m->cell);
617 list_del(&m->list);
618 mempool_free(m, m->tc->pool->mapping_pool);
619 }
620
621 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
622 {
623 struct thin_c *tc = m->tc;
624 struct pool *pool = tc->pool;
625 struct bio *bio;
626 int r;
627
628 bio = m->bio;
629 if (bio)
630 bio->bi_end_io = m->saved_bi_end_io;
631
632 if (m->err) {
633 cell_error(pool, m->cell);
634 goto out;
635 }
636
637 /*
638 * Commit the prepared block into the mapping btree.
639 * Any I/O for this block arriving after this point will get
640 * remapped to it directly.
641 */
642 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
643 if (r) {
644 DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
645 dm_device_name(pool->pool_md), r);
646 set_pool_mode(pool, PM_READ_ONLY);
647 cell_error(pool, m->cell);
648 goto out;
649 }
650
651 /*
652 * Release any bios held while the block was being provisioned.
653 * If we are processing a write bio that completely covers the block,
654 * we already processed it so can ignore it now when processing
655 * the bios in the cell.
656 */
657 if (bio) {
658 cell_defer_no_holder(tc, m->cell);
659 bio_endio(bio, 0);
660 } else
661 cell_defer(tc, m->cell);
662
663 out:
664 list_del(&m->list);
665 mempool_free(m, pool->mapping_pool);
666 }
667
668 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
669 {
670 struct thin_c *tc = m->tc;
671
672 bio_io_error(m->bio);
673 cell_defer_no_holder(tc, m->cell);
674 cell_defer_no_holder(tc, m->cell2);
675 mempool_free(m, tc->pool->mapping_pool);
676 }
677
678 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
679 {
680 struct thin_c *tc = m->tc;
681
682 inc_all_io_entry(tc->pool, m->bio);
683 cell_defer_no_holder(tc, m->cell);
684 cell_defer_no_holder(tc, m->cell2);
685
686 if (m->pass_discard)
687 if (m->definitely_not_shared)
688 remap_and_issue(tc, m->bio, m->data_block);
689 else {
690 bool used = false;
691 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
692 bio_endio(m->bio, 0);
693 else
694 remap_and_issue(tc, m->bio, m->data_block);
695 }
696 else
697 bio_endio(m->bio, 0);
698
699 mempool_free(m, tc->pool->mapping_pool);
700 }
701
702 static void process_prepared_discard(struct dm_thin_new_mapping *m)
703 {
704 int r;
705 struct thin_c *tc = m->tc;
706
707 r = dm_thin_remove_block(tc->td, m->virt_block);
708 if (r)
709 DMERR_LIMIT("dm_thin_remove_block() failed");
710
711 process_prepared_discard_passdown(m);
712 }
713
714 static void process_prepared(struct pool *pool, struct list_head *head,
715 process_mapping_fn *fn)
716 {
717 unsigned long flags;
718 struct list_head maps;
719 struct dm_thin_new_mapping *m, *tmp;
720
721 INIT_LIST_HEAD(&maps);
722 spin_lock_irqsave(&pool->lock, flags);
723 list_splice_init(head, &maps);
724 spin_unlock_irqrestore(&pool->lock, flags);
725
726 list_for_each_entry_safe(m, tmp, &maps, list)
727 (*fn)(m);
728 }
729
730 /*
731 * Deferred bio jobs.
732 */
733 static int io_overlaps_block(struct pool *pool, struct bio *bio)
734 {
735 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
736 }
737
738 static int io_overwrites_block(struct pool *pool, struct bio *bio)
739 {
740 return (bio_data_dir(bio) == WRITE) &&
741 io_overlaps_block(pool, bio);
742 }
743
744 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
745 bio_end_io_t *fn)
746 {
747 *save = bio->bi_end_io;
748 bio->bi_end_io = fn;
749 }
750
751 static int ensure_next_mapping(struct pool *pool)
752 {
753 if (pool->next_mapping)
754 return 0;
755
756 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
757
758 return pool->next_mapping ? 0 : -ENOMEM;
759 }
760
761 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
762 {
763 struct dm_thin_new_mapping *m = pool->next_mapping;
764
765 BUG_ON(!pool->next_mapping);
766
767 memset(m, 0, sizeof(struct dm_thin_new_mapping));
768 INIT_LIST_HEAD(&m->list);
769 m->bio = NULL;
770
771 pool->next_mapping = NULL;
772
773 return m;
774 }
775
776 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
777 struct dm_dev *origin, dm_block_t data_origin,
778 dm_block_t data_dest,
779 struct dm_bio_prison_cell *cell, struct bio *bio)
780 {
781 int r;
782 struct pool *pool = tc->pool;
783 struct dm_thin_new_mapping *m = get_next_mapping(pool);
784
785 m->tc = tc;
786 m->virt_block = virt_block;
787 m->data_block = data_dest;
788 m->cell = cell;
789
790 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
791 m->quiesced = 1;
792
793 /*
794 * IO to pool_dev remaps to the pool target's data_dev.
795 *
796 * If the whole block of data is being overwritten, we can issue the
797 * bio immediately. Otherwise we use kcopyd to clone the data first.
798 */
799 if (io_overwrites_block(pool, bio)) {
800 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
801
802 h->overwrite_mapping = m;
803 m->bio = bio;
804 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
805 inc_all_io_entry(pool, bio);
806 remap_and_issue(tc, bio, data_dest);
807 } else {
808 struct dm_io_region from, to;
809
810 from.bdev = origin->bdev;
811 from.sector = data_origin * pool->sectors_per_block;
812 from.count = pool->sectors_per_block;
813
814 to.bdev = tc->pool_dev->bdev;
815 to.sector = data_dest * pool->sectors_per_block;
816 to.count = pool->sectors_per_block;
817
818 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
819 0, copy_complete, m);
820 if (r < 0) {
821 mempool_free(m, pool->mapping_pool);
822 DMERR_LIMIT("dm_kcopyd_copy() failed");
823 cell_error(pool, cell);
824 }
825 }
826 }
827
828 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
829 dm_block_t data_origin, dm_block_t data_dest,
830 struct dm_bio_prison_cell *cell, struct bio *bio)
831 {
832 schedule_copy(tc, virt_block, tc->pool_dev,
833 data_origin, data_dest, cell, bio);
834 }
835
836 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
837 dm_block_t data_dest,
838 struct dm_bio_prison_cell *cell, struct bio *bio)
839 {
840 schedule_copy(tc, virt_block, tc->origin_dev,
841 virt_block, data_dest, cell, bio);
842 }
843
844 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
845 dm_block_t data_block, struct dm_bio_prison_cell *cell,
846 struct bio *bio)
847 {
848 struct pool *pool = tc->pool;
849 struct dm_thin_new_mapping *m = get_next_mapping(pool);
850
851 m->quiesced = 1;
852 m->prepared = 0;
853 m->tc = tc;
854 m->virt_block = virt_block;
855 m->data_block = data_block;
856 m->cell = cell;
857
858 /*
859 * If the whole block of data is being overwritten or we are not
860 * zeroing pre-existing data, we can issue the bio immediately.
861 * Otherwise we use kcopyd to zero the data first.
862 */
863 if (!pool->pf.zero_new_blocks)
864 process_prepared_mapping(m);
865
866 else if (io_overwrites_block(pool, bio)) {
867 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
868
869 h->overwrite_mapping = m;
870 m->bio = bio;
871 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
872 inc_all_io_entry(pool, bio);
873 remap_and_issue(tc, bio, data_block);
874 } else {
875 int r;
876 struct dm_io_region to;
877
878 to.bdev = tc->pool_dev->bdev;
879 to.sector = data_block * pool->sectors_per_block;
880 to.count = pool->sectors_per_block;
881
882 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
883 if (r < 0) {
884 mempool_free(m, pool->mapping_pool);
885 DMERR_LIMIT("dm_kcopyd_zero() failed");
886 cell_error(pool, cell);
887 }
888 }
889 }
890
891 /*
892 * A non-zero return indicates read_only or fail_io mode.
893 * Many callers don't care about the return value.
894 */
895 static int commit(struct pool *pool)
896 {
897 int r;
898
899 if (get_pool_mode(pool) != PM_WRITE)
900 return -EINVAL;
901
902 r = dm_pool_commit_metadata(pool->pmd);
903 if (r) {
904 DMERR_LIMIT("%s: dm_pool_commit_metadata failed: error = %d",
905 dm_device_name(pool->pool_md), r);
906 set_pool_mode(pool, PM_READ_ONLY);
907 }
908
909 return r;
910 }
911
912 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
913 {
914 int r;
915 dm_block_t free_blocks;
916 unsigned long flags;
917 struct pool *pool = tc->pool;
918
919 /*
920 * Once no_free_space is set we must not allow allocation to succeed.
921 * Otherwise it is difficult to explain, debug, test and support.
922 */
923 if (pool->no_free_space)
924 return -ENOSPC;
925
926 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
927 if (r)
928 return r;
929
930 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
931 DMWARN("%s: reached low water mark for data device: sending event.",
932 dm_device_name(pool->pool_md));
933 spin_lock_irqsave(&pool->lock, flags);
934 pool->low_water_triggered = 1;
935 spin_unlock_irqrestore(&pool->lock, flags);
936 dm_table_event(pool->ti->table);
937 }
938
939 if (!free_blocks) {
940 /*
941 * Try to commit to see if that will free up some
942 * more space.
943 */
944 r = commit(pool);
945 if (r)
946 return r;
947
948 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
949 if (r)
950 return r;
951
952 /*
953 * If we still have no space we set a flag to avoid
954 * doing all this checking and return -ENOSPC. This
955 * flag serves as a latch that disallows allocations from
956 * this pool until the admin takes action (e.g. resize or
957 * table reload).
958 */
959 if (!free_blocks) {
960 DMWARN("%s: no free data space available.",
961 dm_device_name(pool->pool_md));
962 spin_lock_irqsave(&pool->lock, flags);
963 pool->no_free_space = 1;
964 spin_unlock_irqrestore(&pool->lock, flags);
965 return -ENOSPC;
966 }
967 }
968
969 r = dm_pool_alloc_data_block(pool->pmd, result);
970 if (r) {
971 if (r == -ENOSPC &&
972 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
973 !free_blocks) {
974 DMWARN("%s: no free metadata space available.",
975 dm_device_name(pool->pool_md));
976 set_pool_mode(pool, PM_READ_ONLY);
977 }
978 return r;
979 }
980
981 return 0;
982 }
983
984 /*
985 * If we have run out of space, queue bios until the device is
986 * resumed, presumably after having been reloaded with more space.
987 */
988 static void retry_on_resume(struct bio *bio)
989 {
990 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
991 struct thin_c *tc = h->tc;
992 struct pool *pool = tc->pool;
993 unsigned long flags;
994
995 spin_lock_irqsave(&pool->lock, flags);
996 bio_list_add(&pool->retry_on_resume_list, bio);
997 spin_unlock_irqrestore(&pool->lock, flags);
998 }
999
1000 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
1001 {
1002 struct bio *bio;
1003 struct bio_list bios;
1004
1005 bio_list_init(&bios);
1006 cell_release(pool, cell, &bios);
1007
1008 while ((bio = bio_list_pop(&bios)))
1009 retry_on_resume(bio);
1010 }
1011
1012 static void process_discard(struct thin_c *tc, struct bio *bio)
1013 {
1014 int r;
1015 unsigned long flags;
1016 struct pool *pool = tc->pool;
1017 struct dm_bio_prison_cell *cell, *cell2;
1018 struct dm_cell_key key, key2;
1019 dm_block_t block = get_bio_block(tc, bio);
1020 struct dm_thin_lookup_result lookup_result;
1021 struct dm_thin_new_mapping *m;
1022
1023 build_virtual_key(tc->td, block, &key);
1024 if (bio_detain(tc->pool, &key, bio, &cell))
1025 return;
1026
1027 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1028 switch (r) {
1029 case 0:
1030 /*
1031 * Check nobody is fiddling with this pool block. This can
1032 * happen if someone's in the process of breaking sharing
1033 * on this block.
1034 */
1035 build_data_key(tc->td, lookup_result.block, &key2);
1036 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1037 cell_defer_no_holder(tc, cell);
1038 break;
1039 }
1040
1041 if (io_overlaps_block(pool, bio)) {
1042 /*
1043 * IO may still be going to the destination block. We must
1044 * quiesce before we can do the removal.
1045 */
1046 m = get_next_mapping(pool);
1047 m->tc = tc;
1048 m->pass_discard = pool->pf.discard_passdown;
1049 m->definitely_not_shared = !lookup_result.shared;
1050 m->virt_block = block;
1051 m->data_block = lookup_result.block;
1052 m->cell = cell;
1053 m->cell2 = cell2;
1054 m->bio = bio;
1055
1056 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1057 spin_lock_irqsave(&pool->lock, flags);
1058 list_add(&m->list, &pool->prepared_discards);
1059 spin_unlock_irqrestore(&pool->lock, flags);
1060 wake_worker(pool);
1061 }
1062 } else {
1063 inc_all_io_entry(pool, bio);
1064 cell_defer_no_holder(tc, cell);
1065 cell_defer_no_holder(tc, cell2);
1066
1067 /*
1068 * The DM core makes sure that the discard doesn't span
1069 * a block boundary. So we submit the discard of a
1070 * partial block appropriately.
1071 */
1072 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1073 remap_and_issue(tc, bio, lookup_result.block);
1074 else
1075 bio_endio(bio, 0);
1076 }
1077 break;
1078
1079 case -ENODATA:
1080 /*
1081 * It isn't provisioned, just forget it.
1082 */
1083 cell_defer_no_holder(tc, cell);
1084 bio_endio(bio, 0);
1085 break;
1086
1087 default:
1088 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1089 __func__, r);
1090 cell_defer_no_holder(tc, cell);
1091 bio_io_error(bio);
1092 break;
1093 }
1094 }
1095
1096 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1097 struct dm_cell_key *key,
1098 struct dm_thin_lookup_result *lookup_result,
1099 struct dm_bio_prison_cell *cell)
1100 {
1101 int r;
1102 dm_block_t data_block;
1103 struct pool *pool = tc->pool;
1104
1105 r = alloc_data_block(tc, &data_block);
1106 switch (r) {
1107 case 0:
1108 schedule_internal_copy(tc, block, lookup_result->block,
1109 data_block, cell, bio);
1110 break;
1111
1112 case -ENOSPC:
1113 no_space(pool, cell);
1114 break;
1115
1116 default:
1117 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1118 __func__, r);
1119 set_pool_mode(pool, PM_READ_ONLY);
1120 cell_error(pool, cell);
1121 break;
1122 }
1123 }
1124
1125 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1126 dm_block_t block,
1127 struct dm_thin_lookup_result *lookup_result)
1128 {
1129 struct dm_bio_prison_cell *cell;
1130 struct pool *pool = tc->pool;
1131 struct dm_cell_key key;
1132
1133 /*
1134 * If cell is already occupied, then sharing is already in the process
1135 * of being broken so we have nothing further to do here.
1136 */
1137 build_data_key(tc->td, lookup_result->block, &key);
1138 if (bio_detain(pool, &key, bio, &cell))
1139 return;
1140
1141 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1142 break_sharing(tc, bio, block, &key, lookup_result, cell);
1143 else {
1144 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1145
1146 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1147 inc_all_io_entry(pool, bio);
1148 cell_defer_no_holder(tc, cell);
1149
1150 remap_and_issue(tc, bio, lookup_result->block);
1151 }
1152 }
1153
1154 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1155 struct dm_bio_prison_cell *cell)
1156 {
1157 int r;
1158 dm_block_t data_block;
1159 struct pool *pool = tc->pool;
1160
1161 /*
1162 * Remap empty bios (flushes) immediately, without provisioning.
1163 */
1164 if (!bio->bi_size) {
1165 inc_all_io_entry(pool, bio);
1166 cell_defer_no_holder(tc, cell);
1167
1168 remap_and_issue(tc, bio, 0);
1169 return;
1170 }
1171
1172 /*
1173 * Fill read bios with zeroes and complete them immediately.
1174 */
1175 if (bio_data_dir(bio) == READ) {
1176 zero_fill_bio(bio);
1177 cell_defer_no_holder(tc, cell);
1178 bio_endio(bio, 0);
1179 return;
1180 }
1181
1182 r = alloc_data_block(tc, &data_block);
1183 switch (r) {
1184 case 0:
1185 if (tc->origin_dev)
1186 schedule_external_copy(tc, block, data_block, cell, bio);
1187 else
1188 schedule_zero(tc, block, data_block, cell, bio);
1189 break;
1190
1191 case -ENOSPC:
1192 no_space(pool, cell);
1193 break;
1194
1195 default:
1196 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1197 __func__, r);
1198 set_pool_mode(pool, PM_READ_ONLY);
1199 cell_error(pool, cell);
1200 break;
1201 }
1202 }
1203
1204 static void process_bio(struct thin_c *tc, struct bio *bio)
1205 {
1206 int r;
1207 struct pool *pool = tc->pool;
1208 dm_block_t block = get_bio_block(tc, bio);
1209 struct dm_bio_prison_cell *cell;
1210 struct dm_cell_key key;
1211 struct dm_thin_lookup_result lookup_result;
1212
1213 /*
1214 * If cell is already occupied, then the block is already
1215 * being provisioned so we have nothing further to do here.
1216 */
1217 build_virtual_key(tc->td, block, &key);
1218 if (bio_detain(pool, &key, bio, &cell))
1219 return;
1220
1221 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1222 switch (r) {
1223 case 0:
1224 if (lookup_result.shared) {
1225 process_shared_bio(tc, bio, block, &lookup_result);
1226 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1227 } else {
1228 inc_all_io_entry(pool, bio);
1229 cell_defer_no_holder(tc, cell);
1230
1231 remap_and_issue(tc, bio, lookup_result.block);
1232 }
1233 break;
1234
1235 case -ENODATA:
1236 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1237 inc_all_io_entry(pool, bio);
1238 cell_defer_no_holder(tc, cell);
1239
1240 remap_to_origin_and_issue(tc, bio);
1241 } else
1242 provision_block(tc, bio, block, cell);
1243 break;
1244
1245 default:
1246 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1247 __func__, r);
1248 cell_defer_no_holder(tc, cell);
1249 bio_io_error(bio);
1250 break;
1251 }
1252 }
1253
1254 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1255 {
1256 int r;
1257 int rw = bio_data_dir(bio);
1258 dm_block_t block = get_bio_block(tc, bio);
1259 struct dm_thin_lookup_result lookup_result;
1260
1261 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1262 switch (r) {
1263 case 0:
1264 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1265 bio_io_error(bio);
1266 else {
1267 inc_all_io_entry(tc->pool, bio);
1268 remap_and_issue(tc, bio, lookup_result.block);
1269 }
1270 break;
1271
1272 case -ENODATA:
1273 if (rw != READ) {
1274 bio_io_error(bio);
1275 break;
1276 }
1277
1278 if (tc->origin_dev) {
1279 inc_all_io_entry(tc->pool, bio);
1280 remap_to_origin_and_issue(tc, bio);
1281 break;
1282 }
1283
1284 zero_fill_bio(bio);
1285 bio_endio(bio, 0);
1286 break;
1287
1288 default:
1289 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1290 __func__, r);
1291 bio_io_error(bio);
1292 break;
1293 }
1294 }
1295
1296 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1297 {
1298 bio_io_error(bio);
1299 }
1300
1301 /*
1302 * FIXME: should we also commit due to size of transaction, measured in
1303 * metadata blocks?
1304 */
1305 static int need_commit_due_to_time(struct pool *pool)
1306 {
1307 return jiffies < pool->last_commit_jiffies ||
1308 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1309 }
1310
1311 static void process_deferred_bios(struct pool *pool)
1312 {
1313 unsigned long flags;
1314 struct bio *bio;
1315 struct bio_list bios;
1316
1317 bio_list_init(&bios);
1318
1319 spin_lock_irqsave(&pool->lock, flags);
1320 bio_list_merge(&bios, &pool->deferred_bios);
1321 bio_list_init(&pool->deferred_bios);
1322 spin_unlock_irqrestore(&pool->lock, flags);
1323
1324 while ((bio = bio_list_pop(&bios))) {
1325 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1326 struct thin_c *tc = h->tc;
1327
1328 /*
1329 * If we've got no free new_mapping structs, and processing
1330 * this bio might require one, we pause until there are some
1331 * prepared mappings to process.
1332 */
1333 if (ensure_next_mapping(pool)) {
1334 spin_lock_irqsave(&pool->lock, flags);
1335 bio_list_merge(&pool->deferred_bios, &bios);
1336 spin_unlock_irqrestore(&pool->lock, flags);
1337
1338 break;
1339 }
1340
1341 if (bio->bi_rw & REQ_DISCARD)
1342 pool->process_discard(tc, bio);
1343 else
1344 pool->process_bio(tc, bio);
1345 }
1346
1347 /*
1348 * If there are any deferred flush bios, we must commit
1349 * the metadata before issuing them.
1350 */
1351 bio_list_init(&bios);
1352 spin_lock_irqsave(&pool->lock, flags);
1353 bio_list_merge(&bios, &pool->deferred_flush_bios);
1354 bio_list_init(&pool->deferred_flush_bios);
1355 spin_unlock_irqrestore(&pool->lock, flags);
1356
1357 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1358 return;
1359
1360 if (commit(pool)) {
1361 while ((bio = bio_list_pop(&bios)))
1362 bio_io_error(bio);
1363 return;
1364 }
1365 pool->last_commit_jiffies = jiffies;
1366
1367 while ((bio = bio_list_pop(&bios)))
1368 generic_make_request(bio);
1369 }
1370
1371 static void do_worker(struct work_struct *ws)
1372 {
1373 struct pool *pool = container_of(ws, struct pool, worker);
1374
1375 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1376 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1377 process_deferred_bios(pool);
1378 }
1379
1380 /*
1381 * We want to commit periodically so that not too much
1382 * unwritten data builds up.
1383 */
1384 static void do_waker(struct work_struct *ws)
1385 {
1386 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1387 wake_worker(pool);
1388 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1389 }
1390
1391 /*----------------------------------------------------------------*/
1392
1393 static enum pool_mode get_pool_mode(struct pool *pool)
1394 {
1395 return pool->pf.mode;
1396 }
1397
1398 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1399 {
1400 int r;
1401
1402 pool->pf.mode = mode;
1403
1404 switch (mode) {
1405 case PM_FAIL:
1406 DMERR("%s: switching pool to failure mode",
1407 dm_device_name(pool->pool_md));
1408 dm_pool_metadata_read_only(pool->pmd);
1409 pool->process_bio = process_bio_fail;
1410 pool->process_discard = process_bio_fail;
1411 pool->process_prepared_mapping = process_prepared_mapping_fail;
1412 pool->process_prepared_discard = process_prepared_discard_fail;
1413 break;
1414
1415 case PM_READ_ONLY:
1416 DMERR("%s: switching pool to read-only mode",
1417 dm_device_name(pool->pool_md));
1418 r = dm_pool_abort_metadata(pool->pmd);
1419 if (r) {
1420 DMERR("%s: aborting transaction failed",
1421 dm_device_name(pool->pool_md));
1422 set_pool_mode(pool, PM_FAIL);
1423 } else {
1424 dm_pool_metadata_read_only(pool->pmd);
1425 pool->process_bio = process_bio_read_only;
1426 pool->process_discard = process_discard;
1427 pool->process_prepared_mapping = process_prepared_mapping_fail;
1428 pool->process_prepared_discard = process_prepared_discard_passdown;
1429 }
1430 break;
1431
1432 case PM_WRITE:
1433 dm_pool_metadata_read_write(pool->pmd);
1434 pool->process_bio = process_bio;
1435 pool->process_discard = process_discard;
1436 pool->process_prepared_mapping = process_prepared_mapping;
1437 pool->process_prepared_discard = process_prepared_discard;
1438 break;
1439 }
1440 }
1441
1442 /*----------------------------------------------------------------*/
1443
1444 /*
1445 * Mapping functions.
1446 */
1447
1448 /*
1449 * Called only while mapping a thin bio to hand it over to the workqueue.
1450 */
1451 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1452 {
1453 unsigned long flags;
1454 struct pool *pool = tc->pool;
1455
1456 spin_lock_irqsave(&pool->lock, flags);
1457 bio_list_add(&pool->deferred_bios, bio);
1458 spin_unlock_irqrestore(&pool->lock, flags);
1459
1460 wake_worker(pool);
1461 }
1462
1463 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1464 {
1465 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1466
1467 h->tc = tc;
1468 h->shared_read_entry = NULL;
1469 h->all_io_entry = NULL;
1470 h->overwrite_mapping = NULL;
1471 }
1472
1473 /*
1474 * Non-blocking function called from the thin target's map function.
1475 */
1476 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1477 {
1478 int r;
1479 struct thin_c *tc = ti->private;
1480 dm_block_t block = get_bio_block(tc, bio);
1481 struct dm_thin_device *td = tc->td;
1482 struct dm_thin_lookup_result result;
1483 struct dm_bio_prison_cell cell1, cell2;
1484 struct dm_bio_prison_cell *cell_result;
1485 struct dm_cell_key key;
1486
1487 thin_hook_bio(tc, bio);
1488
1489 if (get_pool_mode(tc->pool) == PM_FAIL) {
1490 bio_io_error(bio);
1491 return DM_MAPIO_SUBMITTED;
1492 }
1493
1494 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1495 thin_defer_bio(tc, bio);
1496 return DM_MAPIO_SUBMITTED;
1497 }
1498
1499 r = dm_thin_find_block(td, block, 0, &result);
1500
1501 /*
1502 * Note that we defer readahead too.
1503 */
1504 switch (r) {
1505 case 0:
1506 if (unlikely(result.shared)) {
1507 /*
1508 * We have a race condition here between the
1509 * result.shared value returned by the lookup and
1510 * snapshot creation, which may cause new
1511 * sharing.
1512 *
1513 * To avoid this always quiesce the origin before
1514 * taking the snap. You want to do this anyway to
1515 * ensure a consistent application view
1516 * (i.e. lockfs).
1517 *
1518 * More distant ancestors are irrelevant. The
1519 * shared flag will be set in their case.
1520 */
1521 thin_defer_bio(tc, bio);
1522 return DM_MAPIO_SUBMITTED;
1523 }
1524
1525 build_virtual_key(tc->td, block, &key);
1526 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1527 return DM_MAPIO_SUBMITTED;
1528
1529 build_data_key(tc->td, result.block, &key);
1530 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1531 cell_defer_no_holder_no_free(tc, &cell1);
1532 return DM_MAPIO_SUBMITTED;
1533 }
1534
1535 inc_all_io_entry(tc->pool, bio);
1536 cell_defer_no_holder_no_free(tc, &cell2);
1537 cell_defer_no_holder_no_free(tc, &cell1);
1538
1539 remap(tc, bio, result.block);
1540 return DM_MAPIO_REMAPPED;
1541
1542 case -ENODATA:
1543 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1544 /*
1545 * This block isn't provisioned, and we have no way
1546 * of doing so. Just error it.
1547 */
1548 bio_io_error(bio);
1549 return DM_MAPIO_SUBMITTED;
1550 }
1551 /* fall through */
1552
1553 case -EWOULDBLOCK:
1554 /*
1555 * In future, the failed dm_thin_find_block above could
1556 * provide the hint to load the metadata into cache.
1557 */
1558 thin_defer_bio(tc, bio);
1559 return DM_MAPIO_SUBMITTED;
1560
1561 default:
1562 /*
1563 * Must always call bio_io_error on failure.
1564 * dm_thin_find_block can fail with -EINVAL if the
1565 * pool is switched to fail-io mode.
1566 */
1567 bio_io_error(bio);
1568 return DM_MAPIO_SUBMITTED;
1569 }
1570 }
1571
1572 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1573 {
1574 int r;
1575 unsigned long flags;
1576 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1577
1578 spin_lock_irqsave(&pt->pool->lock, flags);
1579 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1580 spin_unlock_irqrestore(&pt->pool->lock, flags);
1581
1582 if (!r) {
1583 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1584 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1585 }
1586
1587 return r;
1588 }
1589
1590 static void __requeue_bios(struct pool *pool)
1591 {
1592 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1593 bio_list_init(&pool->retry_on_resume_list);
1594 }
1595
1596 /*----------------------------------------------------------------
1597 * Binding of control targets to a pool object
1598 *--------------------------------------------------------------*/
1599 static bool data_dev_supports_discard(struct pool_c *pt)
1600 {
1601 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1602
1603 return q && blk_queue_discard(q);
1604 }
1605
1606 static bool is_factor(sector_t block_size, uint32_t n)
1607 {
1608 return !sector_div(block_size, n);
1609 }
1610
1611 /*
1612 * If discard_passdown was enabled verify that the data device
1613 * supports discards. Disable discard_passdown if not.
1614 */
1615 static void disable_passdown_if_not_supported(struct pool_c *pt)
1616 {
1617 struct pool *pool = pt->pool;
1618 struct block_device *data_bdev = pt->data_dev->bdev;
1619 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1620 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1621 const char *reason = NULL;
1622 char buf[BDEVNAME_SIZE];
1623
1624 if (!pt->adjusted_pf.discard_passdown)
1625 return;
1626
1627 if (!data_dev_supports_discard(pt))
1628 reason = "discard unsupported";
1629
1630 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1631 reason = "max discard sectors smaller than a block";
1632
1633 else if (data_limits->discard_granularity > block_size)
1634 reason = "discard granularity larger than a block";
1635
1636 else if (!is_factor(block_size, data_limits->discard_granularity))
1637 reason = "discard granularity not a factor of block size";
1638
1639 if (reason) {
1640 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1641 pt->adjusted_pf.discard_passdown = false;
1642 }
1643 }
1644
1645 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1646 {
1647 struct pool_c *pt = ti->private;
1648
1649 /*
1650 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1651 */
1652 enum pool_mode old_mode = pool->pf.mode;
1653 enum pool_mode new_mode = pt->adjusted_pf.mode;
1654
1655 /*
1656 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1657 * not going to recover without a thin_repair. So we never let the
1658 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1659 * may have been due to a lack of metadata or data space, and may
1660 * now work (ie. if the underlying devices have been resized).
1661 */
1662 if (old_mode == PM_FAIL)
1663 new_mode = old_mode;
1664
1665 pool->ti = ti;
1666 pool->low_water_blocks = pt->low_water_blocks;
1667 pool->pf = pt->adjusted_pf;
1668
1669 set_pool_mode(pool, new_mode);
1670
1671 return 0;
1672 }
1673
1674 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1675 {
1676 if (pool->ti == ti)
1677 pool->ti = NULL;
1678 }
1679
1680 /*----------------------------------------------------------------
1681 * Pool creation
1682 *--------------------------------------------------------------*/
1683 /* Initialize pool features. */
1684 static void pool_features_init(struct pool_features *pf)
1685 {
1686 pf->mode = PM_WRITE;
1687 pf->zero_new_blocks = true;
1688 pf->discard_enabled = true;
1689 pf->discard_passdown = true;
1690 }
1691
1692 static void __pool_destroy(struct pool *pool)
1693 {
1694 __pool_table_remove(pool);
1695
1696 if (dm_pool_metadata_close(pool->pmd) < 0)
1697 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1698
1699 dm_bio_prison_destroy(pool->prison);
1700 dm_kcopyd_client_destroy(pool->copier);
1701
1702 if (pool->wq)
1703 destroy_workqueue(pool->wq);
1704
1705 if (pool->next_mapping)
1706 mempool_free(pool->next_mapping, pool->mapping_pool);
1707 mempool_destroy(pool->mapping_pool);
1708 dm_deferred_set_destroy(pool->shared_read_ds);
1709 dm_deferred_set_destroy(pool->all_io_ds);
1710 kfree(pool);
1711 }
1712
1713 static struct kmem_cache *_new_mapping_cache;
1714
1715 static struct pool *pool_create(struct mapped_device *pool_md,
1716 struct block_device *metadata_dev,
1717 unsigned long block_size,
1718 int read_only, char **error)
1719 {
1720 int r;
1721 void *err_p;
1722 struct pool *pool;
1723 struct dm_pool_metadata *pmd;
1724 bool format_device = read_only ? false : true;
1725
1726 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1727 if (IS_ERR(pmd)) {
1728 *error = "Error creating metadata object";
1729 return (struct pool *)pmd;
1730 }
1731
1732 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1733 if (!pool) {
1734 *error = "Error allocating memory for pool";
1735 err_p = ERR_PTR(-ENOMEM);
1736 goto bad_pool;
1737 }
1738
1739 pool->pmd = pmd;
1740 pool->sectors_per_block = block_size;
1741 if (block_size & (block_size - 1))
1742 pool->sectors_per_block_shift = -1;
1743 else
1744 pool->sectors_per_block_shift = __ffs(block_size);
1745 pool->low_water_blocks = 0;
1746 pool_features_init(&pool->pf);
1747 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1748 if (!pool->prison) {
1749 *error = "Error creating pool's bio prison";
1750 err_p = ERR_PTR(-ENOMEM);
1751 goto bad_prison;
1752 }
1753
1754 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1755 if (IS_ERR(pool->copier)) {
1756 r = PTR_ERR(pool->copier);
1757 *error = "Error creating pool's kcopyd client";
1758 err_p = ERR_PTR(r);
1759 goto bad_kcopyd_client;
1760 }
1761
1762 /*
1763 * Create singlethreaded workqueue that will service all devices
1764 * that use this metadata.
1765 */
1766 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1767 if (!pool->wq) {
1768 *error = "Error creating pool's workqueue";
1769 err_p = ERR_PTR(-ENOMEM);
1770 goto bad_wq;
1771 }
1772
1773 INIT_WORK(&pool->worker, do_worker);
1774 INIT_DELAYED_WORK(&pool->waker, do_waker);
1775 spin_lock_init(&pool->lock);
1776 bio_list_init(&pool->deferred_bios);
1777 bio_list_init(&pool->deferred_flush_bios);
1778 INIT_LIST_HEAD(&pool->prepared_mappings);
1779 INIT_LIST_HEAD(&pool->prepared_discards);
1780 pool->low_water_triggered = 0;
1781 pool->no_free_space = 0;
1782 bio_list_init(&pool->retry_on_resume_list);
1783
1784 pool->shared_read_ds = dm_deferred_set_create();
1785 if (!pool->shared_read_ds) {
1786 *error = "Error creating pool's shared read deferred set";
1787 err_p = ERR_PTR(-ENOMEM);
1788 goto bad_shared_read_ds;
1789 }
1790
1791 pool->all_io_ds = dm_deferred_set_create();
1792 if (!pool->all_io_ds) {
1793 *error = "Error creating pool's all io deferred set";
1794 err_p = ERR_PTR(-ENOMEM);
1795 goto bad_all_io_ds;
1796 }
1797
1798 pool->next_mapping = NULL;
1799 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1800 _new_mapping_cache);
1801 if (!pool->mapping_pool) {
1802 *error = "Error creating pool's mapping mempool";
1803 err_p = ERR_PTR(-ENOMEM);
1804 goto bad_mapping_pool;
1805 }
1806
1807 pool->ref_count = 1;
1808 pool->last_commit_jiffies = jiffies;
1809 pool->pool_md = pool_md;
1810 pool->md_dev = metadata_dev;
1811 __pool_table_insert(pool);
1812
1813 return pool;
1814
1815 bad_mapping_pool:
1816 dm_deferred_set_destroy(pool->all_io_ds);
1817 bad_all_io_ds:
1818 dm_deferred_set_destroy(pool->shared_read_ds);
1819 bad_shared_read_ds:
1820 destroy_workqueue(pool->wq);
1821 bad_wq:
1822 dm_kcopyd_client_destroy(pool->copier);
1823 bad_kcopyd_client:
1824 dm_bio_prison_destroy(pool->prison);
1825 bad_prison:
1826 kfree(pool);
1827 bad_pool:
1828 if (dm_pool_metadata_close(pmd))
1829 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1830
1831 return err_p;
1832 }
1833
1834 static void __pool_inc(struct pool *pool)
1835 {
1836 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1837 pool->ref_count++;
1838 }
1839
1840 static void __pool_dec(struct pool *pool)
1841 {
1842 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1843 BUG_ON(!pool->ref_count);
1844 if (!--pool->ref_count)
1845 __pool_destroy(pool);
1846 }
1847
1848 static struct pool *__pool_find(struct mapped_device *pool_md,
1849 struct block_device *metadata_dev,
1850 unsigned long block_size, int read_only,
1851 char **error, int *created)
1852 {
1853 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1854
1855 if (pool) {
1856 if (pool->pool_md != pool_md) {
1857 *error = "metadata device already in use by a pool";
1858 return ERR_PTR(-EBUSY);
1859 }
1860 __pool_inc(pool);
1861
1862 } else {
1863 pool = __pool_table_lookup(pool_md);
1864 if (pool) {
1865 if (pool->md_dev != metadata_dev) {
1866 *error = "different pool cannot replace a pool";
1867 return ERR_PTR(-EINVAL);
1868 }
1869 __pool_inc(pool);
1870
1871 } else {
1872 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1873 *created = 1;
1874 }
1875 }
1876
1877 return pool;
1878 }
1879
1880 /*----------------------------------------------------------------
1881 * Pool target methods
1882 *--------------------------------------------------------------*/
1883 static void pool_dtr(struct dm_target *ti)
1884 {
1885 struct pool_c *pt = ti->private;
1886
1887 mutex_lock(&dm_thin_pool_table.mutex);
1888
1889 unbind_control_target(pt->pool, ti);
1890 __pool_dec(pt->pool);
1891 dm_put_device(ti, pt->metadata_dev);
1892 dm_put_device(ti, pt->data_dev);
1893 kfree(pt);
1894
1895 mutex_unlock(&dm_thin_pool_table.mutex);
1896 }
1897
1898 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1899 struct dm_target *ti)
1900 {
1901 int r;
1902 unsigned argc;
1903 const char *arg_name;
1904
1905 static struct dm_arg _args[] = {
1906 {0, 3, "Invalid number of pool feature arguments"},
1907 };
1908
1909 /*
1910 * No feature arguments supplied.
1911 */
1912 if (!as->argc)
1913 return 0;
1914
1915 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1916 if (r)
1917 return -EINVAL;
1918
1919 while (argc && !r) {
1920 arg_name = dm_shift_arg(as);
1921 argc--;
1922
1923 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1924 pf->zero_new_blocks = false;
1925
1926 else if (!strcasecmp(arg_name, "ignore_discard"))
1927 pf->discard_enabled = false;
1928
1929 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1930 pf->discard_passdown = false;
1931
1932 else if (!strcasecmp(arg_name, "read_only"))
1933 pf->mode = PM_READ_ONLY;
1934
1935 else {
1936 ti->error = "Unrecognised pool feature requested";
1937 r = -EINVAL;
1938 break;
1939 }
1940 }
1941
1942 return r;
1943 }
1944
1945 static void metadata_low_callback(void *context)
1946 {
1947 struct pool *pool = context;
1948
1949 DMWARN("%s: reached low water mark for metadata device: sending event.",
1950 dm_device_name(pool->pool_md));
1951
1952 dm_table_event(pool->ti->table);
1953 }
1954
1955 static sector_t get_metadata_dev_size(struct block_device *bdev)
1956 {
1957 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1958 char buffer[BDEVNAME_SIZE];
1959
1960 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1961 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1962 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1963 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1964 }
1965
1966 return metadata_dev_size;
1967 }
1968
1969 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1970 {
1971 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1972
1973 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1974
1975 return metadata_dev_size;
1976 }
1977
1978 /*
1979 * When a metadata threshold is crossed a dm event is triggered, and
1980 * userland should respond by growing the metadata device. We could let
1981 * userland set the threshold, like we do with the data threshold, but I'm
1982 * not sure they know enough to do this well.
1983 */
1984 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1985 {
1986 /*
1987 * 4M is ample for all ops with the possible exception of thin
1988 * device deletion which is harmless if it fails (just retry the
1989 * delete after you've grown the device).
1990 */
1991 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1992 return min((dm_block_t)1024ULL /* 4M */, quarter);
1993 }
1994
1995 /*
1996 * thin-pool <metadata dev> <data dev>
1997 * <data block size (sectors)>
1998 * <low water mark (blocks)>
1999 * [<#feature args> [<arg>]*]
2000 *
2001 * Optional feature arguments are:
2002 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2003 * ignore_discard: disable discard
2004 * no_discard_passdown: don't pass discards down to the data device
2005 */
2006 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2007 {
2008 int r, pool_created = 0;
2009 struct pool_c *pt;
2010 struct pool *pool;
2011 struct pool_features pf;
2012 struct dm_arg_set as;
2013 struct dm_dev *data_dev;
2014 unsigned long block_size;
2015 dm_block_t low_water_blocks;
2016 struct dm_dev *metadata_dev;
2017 fmode_t metadata_mode;
2018
2019 /*
2020 * FIXME Remove validation from scope of lock.
2021 */
2022 mutex_lock(&dm_thin_pool_table.mutex);
2023
2024 if (argc < 4) {
2025 ti->error = "Invalid argument count";
2026 r = -EINVAL;
2027 goto out_unlock;
2028 }
2029
2030 as.argc = argc;
2031 as.argv = argv;
2032
2033 /*
2034 * Set default pool features.
2035 */
2036 pool_features_init(&pf);
2037
2038 dm_consume_args(&as, 4);
2039 r = parse_pool_features(&as, &pf, ti);
2040 if (r)
2041 goto out_unlock;
2042
2043 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2044 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2045 if (r) {
2046 ti->error = "Error opening metadata block device";
2047 goto out_unlock;
2048 }
2049
2050 /*
2051 * Run for the side-effect of possibly issuing a warning if the
2052 * device is too big.
2053 */
2054 (void) get_metadata_dev_size(metadata_dev->bdev);
2055
2056 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2057 if (r) {
2058 ti->error = "Error getting data device";
2059 goto out_metadata;
2060 }
2061
2062 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2063 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2064 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2065 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2066 ti->error = "Invalid block size";
2067 r = -EINVAL;
2068 goto out;
2069 }
2070
2071 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2072 ti->error = "Invalid low water mark";
2073 r = -EINVAL;
2074 goto out;
2075 }
2076
2077 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2078 if (!pt) {
2079 r = -ENOMEM;
2080 goto out;
2081 }
2082
2083 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2084 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2085 if (IS_ERR(pool)) {
2086 r = PTR_ERR(pool);
2087 goto out_free_pt;
2088 }
2089
2090 /*
2091 * 'pool_created' reflects whether this is the first table load.
2092 * Top level discard support is not allowed to be changed after
2093 * initial load. This would require a pool reload to trigger thin
2094 * device changes.
2095 */
2096 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2097 ti->error = "Discard support cannot be disabled once enabled";
2098 r = -EINVAL;
2099 goto out_flags_changed;
2100 }
2101
2102 pt->pool = pool;
2103 pt->ti = ti;
2104 pt->metadata_dev = metadata_dev;
2105 pt->data_dev = data_dev;
2106 pt->low_water_blocks = low_water_blocks;
2107 pt->adjusted_pf = pt->requested_pf = pf;
2108 ti->num_flush_bios = 1;
2109
2110 /*
2111 * Only need to enable discards if the pool should pass
2112 * them down to the data device. The thin device's discard
2113 * processing will cause mappings to be removed from the btree.
2114 */
2115 ti->discard_zeroes_data_unsupported = true;
2116 if (pf.discard_enabled && pf.discard_passdown) {
2117 ti->num_discard_bios = 1;
2118
2119 /*
2120 * Setting 'discards_supported' circumvents the normal
2121 * stacking of discard limits (this keeps the pool and
2122 * thin devices' discard limits consistent).
2123 */
2124 ti->discards_supported = true;
2125 }
2126 ti->private = pt;
2127
2128 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2129 calc_metadata_threshold(pt),
2130 metadata_low_callback,
2131 pool);
2132 if (r)
2133 goto out_free_pt;
2134
2135 pt->callbacks.congested_fn = pool_is_congested;
2136 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2137
2138 mutex_unlock(&dm_thin_pool_table.mutex);
2139
2140 return 0;
2141
2142 out_flags_changed:
2143 __pool_dec(pool);
2144 out_free_pt:
2145 kfree(pt);
2146 out:
2147 dm_put_device(ti, data_dev);
2148 out_metadata:
2149 dm_put_device(ti, metadata_dev);
2150 out_unlock:
2151 mutex_unlock(&dm_thin_pool_table.mutex);
2152
2153 return r;
2154 }
2155
2156 static int pool_map(struct dm_target *ti, struct bio *bio)
2157 {
2158 int r;
2159 struct pool_c *pt = ti->private;
2160 struct pool *pool = pt->pool;
2161 unsigned long flags;
2162
2163 /*
2164 * As this is a singleton target, ti->begin is always zero.
2165 */
2166 spin_lock_irqsave(&pool->lock, flags);
2167 bio->bi_bdev = pt->data_dev->bdev;
2168 r = DM_MAPIO_REMAPPED;
2169 spin_unlock_irqrestore(&pool->lock, flags);
2170
2171 return r;
2172 }
2173
2174 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2175 {
2176 int r;
2177 struct pool_c *pt = ti->private;
2178 struct pool *pool = pt->pool;
2179 sector_t data_size = ti->len;
2180 dm_block_t sb_data_size;
2181
2182 *need_commit = false;
2183
2184 (void) sector_div(data_size, pool->sectors_per_block);
2185
2186 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2187 if (r) {
2188 DMERR("%s: failed to retrieve data device size",
2189 dm_device_name(pool->pool_md));
2190 return r;
2191 }
2192
2193 if (data_size < sb_data_size) {
2194 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2195 dm_device_name(pool->pool_md),
2196 (unsigned long long)data_size, sb_data_size);
2197 return -EINVAL;
2198
2199 } else if (data_size > sb_data_size) {
2200 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2201 if (r) {
2202 DMERR("%s: failed to resize data device",
2203 dm_device_name(pool->pool_md));
2204 set_pool_mode(pool, PM_READ_ONLY);
2205 return r;
2206 }
2207
2208 *need_commit = true;
2209 }
2210
2211 return 0;
2212 }
2213
2214 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2215 {
2216 int r;
2217 struct pool_c *pt = ti->private;
2218 struct pool *pool = pt->pool;
2219 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2220
2221 *need_commit = false;
2222
2223 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2224
2225 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2226 if (r) {
2227 DMERR("%s: failed to retrieve metadata device size",
2228 dm_device_name(pool->pool_md));
2229 return r;
2230 }
2231
2232 if (metadata_dev_size < sb_metadata_dev_size) {
2233 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2234 dm_device_name(pool->pool_md),
2235 metadata_dev_size, sb_metadata_dev_size);
2236 return -EINVAL;
2237
2238 } else if (metadata_dev_size > sb_metadata_dev_size) {
2239 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2240 if (r) {
2241 DMERR("%s: failed to resize metadata device",
2242 dm_device_name(pool->pool_md));
2243 return r;
2244 }
2245
2246 *need_commit = true;
2247 }
2248
2249 return 0;
2250 }
2251
2252 /*
2253 * Retrieves the number of blocks of the data device from
2254 * the superblock and compares it to the actual device size,
2255 * thus resizing the data device in case it has grown.
2256 *
2257 * This both copes with opening preallocated data devices in the ctr
2258 * being followed by a resume
2259 * -and-
2260 * calling the resume method individually after userspace has
2261 * grown the data device in reaction to a table event.
2262 */
2263 static int pool_preresume(struct dm_target *ti)
2264 {
2265 int r;
2266 bool need_commit1, need_commit2;
2267 struct pool_c *pt = ti->private;
2268 struct pool *pool = pt->pool;
2269
2270 /*
2271 * Take control of the pool object.
2272 */
2273 r = bind_control_target(pool, ti);
2274 if (r)
2275 return r;
2276
2277 r = maybe_resize_data_dev(ti, &need_commit1);
2278 if (r)
2279 return r;
2280
2281 r = maybe_resize_metadata_dev(ti, &need_commit2);
2282 if (r)
2283 return r;
2284
2285 if (need_commit1 || need_commit2)
2286 (void) commit(pool);
2287
2288 return 0;
2289 }
2290
2291 static void pool_resume(struct dm_target *ti)
2292 {
2293 struct pool_c *pt = ti->private;
2294 struct pool *pool = pt->pool;
2295 unsigned long flags;
2296
2297 spin_lock_irqsave(&pool->lock, flags);
2298 pool->low_water_triggered = 0;
2299 pool->no_free_space = 0;
2300 __requeue_bios(pool);
2301 spin_unlock_irqrestore(&pool->lock, flags);
2302
2303 do_waker(&pool->waker.work);
2304 }
2305
2306 static void pool_postsuspend(struct dm_target *ti)
2307 {
2308 struct pool_c *pt = ti->private;
2309 struct pool *pool = pt->pool;
2310
2311 cancel_delayed_work(&pool->waker);
2312 flush_workqueue(pool->wq);
2313 (void) commit(pool);
2314 }
2315
2316 static int check_arg_count(unsigned argc, unsigned args_required)
2317 {
2318 if (argc != args_required) {
2319 DMWARN("Message received with %u arguments instead of %u.",
2320 argc, args_required);
2321 return -EINVAL;
2322 }
2323
2324 return 0;
2325 }
2326
2327 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2328 {
2329 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2330 *dev_id <= MAX_DEV_ID)
2331 return 0;
2332
2333 if (warning)
2334 DMWARN("Message received with invalid device id: %s", arg);
2335
2336 return -EINVAL;
2337 }
2338
2339 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2340 {
2341 dm_thin_id dev_id;
2342 int r;
2343
2344 r = check_arg_count(argc, 2);
2345 if (r)
2346 return r;
2347
2348 r = read_dev_id(argv[1], &dev_id, 1);
2349 if (r)
2350 return r;
2351
2352 r = dm_pool_create_thin(pool->pmd, dev_id);
2353 if (r) {
2354 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2355 argv[1]);
2356 return r;
2357 }
2358
2359 return 0;
2360 }
2361
2362 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2363 {
2364 dm_thin_id dev_id;
2365 dm_thin_id origin_dev_id;
2366 int r;
2367
2368 r = check_arg_count(argc, 3);
2369 if (r)
2370 return r;
2371
2372 r = read_dev_id(argv[1], &dev_id, 1);
2373 if (r)
2374 return r;
2375
2376 r = read_dev_id(argv[2], &origin_dev_id, 1);
2377 if (r)
2378 return r;
2379
2380 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2381 if (r) {
2382 DMWARN("Creation of new snapshot %s of device %s failed.",
2383 argv[1], argv[2]);
2384 return r;
2385 }
2386
2387 return 0;
2388 }
2389
2390 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2391 {
2392 dm_thin_id dev_id;
2393 int r;
2394
2395 r = check_arg_count(argc, 2);
2396 if (r)
2397 return r;
2398
2399 r = read_dev_id(argv[1], &dev_id, 1);
2400 if (r)
2401 return r;
2402
2403 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2404 if (r)
2405 DMWARN("Deletion of thin device %s failed.", argv[1]);
2406
2407 return r;
2408 }
2409
2410 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2411 {
2412 dm_thin_id old_id, new_id;
2413 int r;
2414
2415 r = check_arg_count(argc, 3);
2416 if (r)
2417 return r;
2418
2419 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2420 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2421 return -EINVAL;
2422 }
2423
2424 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2425 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2426 return -EINVAL;
2427 }
2428
2429 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2430 if (r) {
2431 DMWARN("Failed to change transaction id from %s to %s.",
2432 argv[1], argv[2]);
2433 return r;
2434 }
2435
2436 return 0;
2437 }
2438
2439 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2440 {
2441 int r;
2442
2443 r = check_arg_count(argc, 1);
2444 if (r)
2445 return r;
2446
2447 (void) commit(pool);
2448
2449 r = dm_pool_reserve_metadata_snap(pool->pmd);
2450 if (r)
2451 DMWARN("reserve_metadata_snap message failed.");
2452
2453 return r;
2454 }
2455
2456 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2457 {
2458 int r;
2459
2460 r = check_arg_count(argc, 1);
2461 if (r)
2462 return r;
2463
2464 r = dm_pool_release_metadata_snap(pool->pmd);
2465 if (r)
2466 DMWARN("release_metadata_snap message failed.");
2467
2468 return r;
2469 }
2470
2471 /*
2472 * Messages supported:
2473 * create_thin <dev_id>
2474 * create_snap <dev_id> <origin_id>
2475 * delete <dev_id>
2476 * trim <dev_id> <new_size_in_sectors>
2477 * set_transaction_id <current_trans_id> <new_trans_id>
2478 * reserve_metadata_snap
2479 * release_metadata_snap
2480 */
2481 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2482 {
2483 int r = -EINVAL;
2484 struct pool_c *pt = ti->private;
2485 struct pool *pool = pt->pool;
2486
2487 if (!strcasecmp(argv[0], "create_thin"))
2488 r = process_create_thin_mesg(argc, argv, pool);
2489
2490 else if (!strcasecmp(argv[0], "create_snap"))
2491 r = process_create_snap_mesg(argc, argv, pool);
2492
2493 else if (!strcasecmp(argv[0], "delete"))
2494 r = process_delete_mesg(argc, argv, pool);
2495
2496 else if (!strcasecmp(argv[0], "set_transaction_id"))
2497 r = process_set_transaction_id_mesg(argc, argv, pool);
2498
2499 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2500 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2501
2502 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2503 r = process_release_metadata_snap_mesg(argc, argv, pool);
2504
2505 else
2506 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2507
2508 if (!r)
2509 (void) commit(pool);
2510
2511 return r;
2512 }
2513
2514 static void emit_flags(struct pool_features *pf, char *result,
2515 unsigned sz, unsigned maxlen)
2516 {
2517 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2518 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2519 DMEMIT("%u ", count);
2520
2521 if (!pf->zero_new_blocks)
2522 DMEMIT("skip_block_zeroing ");
2523
2524 if (!pf->discard_enabled)
2525 DMEMIT("ignore_discard ");
2526
2527 if (!pf->discard_passdown)
2528 DMEMIT("no_discard_passdown ");
2529
2530 if (pf->mode == PM_READ_ONLY)
2531 DMEMIT("read_only ");
2532 }
2533
2534 /*
2535 * Status line is:
2536 * <transaction id> <used metadata sectors>/<total metadata sectors>
2537 * <used data sectors>/<total data sectors> <held metadata root>
2538 */
2539 static void pool_status(struct dm_target *ti, status_type_t type,
2540 unsigned status_flags, char *result, unsigned maxlen)
2541 {
2542 int r;
2543 unsigned sz = 0;
2544 uint64_t transaction_id;
2545 dm_block_t nr_free_blocks_data;
2546 dm_block_t nr_free_blocks_metadata;
2547 dm_block_t nr_blocks_data;
2548 dm_block_t nr_blocks_metadata;
2549 dm_block_t held_root;
2550 char buf[BDEVNAME_SIZE];
2551 char buf2[BDEVNAME_SIZE];
2552 struct pool_c *pt = ti->private;
2553 struct pool *pool = pt->pool;
2554
2555 switch (type) {
2556 case STATUSTYPE_INFO:
2557 if (get_pool_mode(pool) == PM_FAIL) {
2558 DMEMIT("Fail");
2559 break;
2560 }
2561
2562 /* Commit to ensure statistics aren't out-of-date */
2563 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2564 (void) commit(pool);
2565
2566 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2567 if (r) {
2568 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2569 dm_device_name(pool->pool_md), r);
2570 goto err;
2571 }
2572
2573 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2574 if (r) {
2575 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2576 dm_device_name(pool->pool_md), r);
2577 goto err;
2578 }
2579
2580 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2581 if (r) {
2582 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2583 dm_device_name(pool->pool_md), r);
2584 goto err;
2585 }
2586
2587 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2588 if (r) {
2589 DMERR("%s: dm_pool_get_free_block_count returned %d",
2590 dm_device_name(pool->pool_md), r);
2591 goto err;
2592 }
2593
2594 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2595 if (r) {
2596 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2597 dm_device_name(pool->pool_md), r);
2598 goto err;
2599 }
2600
2601 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2602 if (r) {
2603 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2604 dm_device_name(pool->pool_md), r);
2605 goto err;
2606 }
2607
2608 DMEMIT("%llu %llu/%llu %llu/%llu ",
2609 (unsigned long long)transaction_id,
2610 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2611 (unsigned long long)nr_blocks_metadata,
2612 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2613 (unsigned long long)nr_blocks_data);
2614
2615 if (held_root)
2616 DMEMIT("%llu ", held_root);
2617 else
2618 DMEMIT("- ");
2619
2620 if (pool->pf.mode == PM_READ_ONLY)
2621 DMEMIT("ro ");
2622 else
2623 DMEMIT("rw ");
2624
2625 if (!pool->pf.discard_enabled)
2626 DMEMIT("ignore_discard");
2627 else if (pool->pf.discard_passdown)
2628 DMEMIT("discard_passdown");
2629 else
2630 DMEMIT("no_discard_passdown");
2631
2632 break;
2633
2634 case STATUSTYPE_TABLE:
2635 DMEMIT("%s %s %lu %llu ",
2636 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2637 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2638 (unsigned long)pool->sectors_per_block,
2639 (unsigned long long)pt->low_water_blocks);
2640 emit_flags(&pt->requested_pf, result, sz, maxlen);
2641 break;
2642 }
2643 return;
2644
2645 err:
2646 DMEMIT("Error");
2647 }
2648
2649 static int pool_iterate_devices(struct dm_target *ti,
2650 iterate_devices_callout_fn fn, void *data)
2651 {
2652 struct pool_c *pt = ti->private;
2653
2654 return fn(ti, pt->data_dev, 0, ti->len, data);
2655 }
2656
2657 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2658 struct bio_vec *biovec, int max_size)
2659 {
2660 struct pool_c *pt = ti->private;
2661 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2662
2663 if (!q->merge_bvec_fn)
2664 return max_size;
2665
2666 bvm->bi_bdev = pt->data_dev->bdev;
2667
2668 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2669 }
2670
2671 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2672 {
2673 struct pool *pool = pt->pool;
2674 struct queue_limits *data_limits;
2675
2676 limits->max_discard_sectors = pool->sectors_per_block;
2677
2678 /*
2679 * discard_granularity is just a hint, and not enforced.
2680 */
2681 if (pt->adjusted_pf.discard_passdown) {
2682 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2683 limits->discard_granularity = data_limits->discard_granularity;
2684 } else
2685 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2686 }
2687
2688 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2689 {
2690 struct pool_c *pt = ti->private;
2691 struct pool *pool = pt->pool;
2692 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2693
2694 /*
2695 * If the system-determined stacked limits are compatible with the
2696 * pool's blocksize (io_opt is a factor) do not override them.
2697 */
2698 if (io_opt_sectors < pool->sectors_per_block ||
2699 do_div(io_opt_sectors, pool->sectors_per_block)) {
2700 blk_limits_io_min(limits, 0);
2701 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2702 }
2703
2704 /*
2705 * pt->adjusted_pf is a staging area for the actual features to use.
2706 * They get transferred to the live pool in bind_control_target()
2707 * called from pool_preresume().
2708 */
2709 if (!pt->adjusted_pf.discard_enabled) {
2710 /*
2711 * Must explicitly disallow stacking discard limits otherwise the
2712 * block layer will stack them if pool's data device has support.
2713 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2714 * user to see that, so make sure to set all discard limits to 0.
2715 */
2716 limits->discard_granularity = 0;
2717 return;
2718 }
2719
2720 disable_passdown_if_not_supported(pt);
2721
2722 set_discard_limits(pt, limits);
2723 }
2724
2725 static struct target_type pool_target = {
2726 .name = "thin-pool",
2727 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2728 DM_TARGET_IMMUTABLE,
2729 .version = {1, 9, 0},
2730 .module = THIS_MODULE,
2731 .ctr = pool_ctr,
2732 .dtr = pool_dtr,
2733 .map = pool_map,
2734 .postsuspend = pool_postsuspend,
2735 .preresume = pool_preresume,
2736 .resume = pool_resume,
2737 .message = pool_message,
2738 .status = pool_status,
2739 .merge = pool_merge,
2740 .iterate_devices = pool_iterate_devices,
2741 .io_hints = pool_io_hints,
2742 };
2743
2744 /*----------------------------------------------------------------
2745 * Thin target methods
2746 *--------------------------------------------------------------*/
2747 static void thin_dtr(struct dm_target *ti)
2748 {
2749 struct thin_c *tc = ti->private;
2750
2751 mutex_lock(&dm_thin_pool_table.mutex);
2752
2753 __pool_dec(tc->pool);
2754 dm_pool_close_thin_device(tc->td);
2755 dm_put_device(ti, tc->pool_dev);
2756 if (tc->origin_dev)
2757 dm_put_device(ti, tc->origin_dev);
2758 kfree(tc);
2759
2760 mutex_unlock(&dm_thin_pool_table.mutex);
2761 }
2762
2763 /*
2764 * Thin target parameters:
2765 *
2766 * <pool_dev> <dev_id> [origin_dev]
2767 *
2768 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2769 * dev_id: the internal device identifier
2770 * origin_dev: a device external to the pool that should act as the origin
2771 *
2772 * If the pool device has discards disabled, they get disabled for the thin
2773 * device as well.
2774 */
2775 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2776 {
2777 int r;
2778 struct thin_c *tc;
2779 struct dm_dev *pool_dev, *origin_dev;
2780 struct mapped_device *pool_md;
2781
2782 mutex_lock(&dm_thin_pool_table.mutex);
2783
2784 if (argc != 2 && argc != 3) {
2785 ti->error = "Invalid argument count";
2786 r = -EINVAL;
2787 goto out_unlock;
2788 }
2789
2790 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2791 if (!tc) {
2792 ti->error = "Out of memory";
2793 r = -ENOMEM;
2794 goto out_unlock;
2795 }
2796
2797 if (argc == 3) {
2798 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2799 if (r) {
2800 ti->error = "Error opening origin device";
2801 goto bad_origin_dev;
2802 }
2803 tc->origin_dev = origin_dev;
2804 }
2805
2806 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2807 if (r) {
2808 ti->error = "Error opening pool device";
2809 goto bad_pool_dev;
2810 }
2811 tc->pool_dev = pool_dev;
2812
2813 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2814 ti->error = "Invalid device id";
2815 r = -EINVAL;
2816 goto bad_common;
2817 }
2818
2819 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2820 if (!pool_md) {
2821 ti->error = "Couldn't get pool mapped device";
2822 r = -EINVAL;
2823 goto bad_common;
2824 }
2825
2826 tc->pool = __pool_table_lookup(pool_md);
2827 if (!tc->pool) {
2828 ti->error = "Couldn't find pool object";
2829 r = -EINVAL;
2830 goto bad_pool_lookup;
2831 }
2832 __pool_inc(tc->pool);
2833
2834 if (get_pool_mode(tc->pool) == PM_FAIL) {
2835 ti->error = "Couldn't open thin device, Pool is in fail mode";
2836 goto bad_thin_open;
2837 }
2838
2839 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2840 if (r) {
2841 ti->error = "Couldn't open thin internal device";
2842 goto bad_thin_open;
2843 }
2844
2845 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2846 if (r)
2847 goto bad_thin_open;
2848
2849 ti->num_flush_bios = 1;
2850 ti->flush_supported = true;
2851 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2852
2853 /* In case the pool supports discards, pass them on. */
2854 ti->discard_zeroes_data_unsupported = true;
2855 if (tc->pool->pf.discard_enabled) {
2856 ti->discards_supported = true;
2857 ti->num_discard_bios = 1;
2858 /* Discard bios must be split on a block boundary */
2859 ti->split_discard_bios = true;
2860 }
2861
2862 dm_put(pool_md);
2863
2864 mutex_unlock(&dm_thin_pool_table.mutex);
2865
2866 return 0;
2867
2868 bad_thin_open:
2869 __pool_dec(tc->pool);
2870 bad_pool_lookup:
2871 dm_put(pool_md);
2872 bad_common:
2873 dm_put_device(ti, tc->pool_dev);
2874 bad_pool_dev:
2875 if (tc->origin_dev)
2876 dm_put_device(ti, tc->origin_dev);
2877 bad_origin_dev:
2878 kfree(tc);
2879 out_unlock:
2880 mutex_unlock(&dm_thin_pool_table.mutex);
2881
2882 return r;
2883 }
2884
2885 static int thin_map(struct dm_target *ti, struct bio *bio)
2886 {
2887 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2888
2889 return thin_bio_map(ti, bio);
2890 }
2891
2892 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2893 {
2894 unsigned long flags;
2895 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2896 struct list_head work;
2897 struct dm_thin_new_mapping *m, *tmp;
2898 struct pool *pool = h->tc->pool;
2899
2900 if (h->shared_read_entry) {
2901 INIT_LIST_HEAD(&work);
2902 dm_deferred_entry_dec(h->shared_read_entry, &work);
2903
2904 spin_lock_irqsave(&pool->lock, flags);
2905 list_for_each_entry_safe(m, tmp, &work, list) {
2906 list_del(&m->list);
2907 m->quiesced = 1;
2908 __maybe_add_mapping(m);
2909 }
2910 spin_unlock_irqrestore(&pool->lock, flags);
2911 }
2912
2913 if (h->all_io_entry) {
2914 INIT_LIST_HEAD(&work);
2915 dm_deferred_entry_dec(h->all_io_entry, &work);
2916 if (!list_empty(&work)) {
2917 spin_lock_irqsave(&pool->lock, flags);
2918 list_for_each_entry_safe(m, tmp, &work, list)
2919 list_add(&m->list, &pool->prepared_discards);
2920 spin_unlock_irqrestore(&pool->lock, flags);
2921 wake_worker(pool);
2922 }
2923 }
2924
2925 return 0;
2926 }
2927
2928 static void thin_postsuspend(struct dm_target *ti)
2929 {
2930 if (dm_noflush_suspending(ti))
2931 requeue_io((struct thin_c *)ti->private);
2932 }
2933
2934 /*
2935 * <nr mapped sectors> <highest mapped sector>
2936 */
2937 static void thin_status(struct dm_target *ti, status_type_t type,
2938 unsigned status_flags, char *result, unsigned maxlen)
2939 {
2940 int r;
2941 ssize_t sz = 0;
2942 dm_block_t mapped, highest;
2943 char buf[BDEVNAME_SIZE];
2944 struct thin_c *tc = ti->private;
2945
2946 if (get_pool_mode(tc->pool) == PM_FAIL) {
2947 DMEMIT("Fail");
2948 return;
2949 }
2950
2951 if (!tc->td)
2952 DMEMIT("-");
2953 else {
2954 switch (type) {
2955 case STATUSTYPE_INFO:
2956 r = dm_thin_get_mapped_count(tc->td, &mapped);
2957 if (r) {
2958 DMERR("dm_thin_get_mapped_count returned %d", r);
2959 goto err;
2960 }
2961
2962 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2963 if (r < 0) {
2964 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2965 goto err;
2966 }
2967
2968 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2969 if (r)
2970 DMEMIT("%llu", ((highest + 1) *
2971 tc->pool->sectors_per_block) - 1);
2972 else
2973 DMEMIT("-");
2974 break;
2975
2976 case STATUSTYPE_TABLE:
2977 DMEMIT("%s %lu",
2978 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2979 (unsigned long) tc->dev_id);
2980 if (tc->origin_dev)
2981 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2982 break;
2983 }
2984 }
2985
2986 return;
2987
2988 err:
2989 DMEMIT("Error");
2990 }
2991
2992 static int thin_iterate_devices(struct dm_target *ti,
2993 iterate_devices_callout_fn fn, void *data)
2994 {
2995 sector_t blocks;
2996 struct thin_c *tc = ti->private;
2997 struct pool *pool = tc->pool;
2998
2999 /*
3000 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3001 * we follow a more convoluted path through to the pool's target.
3002 */
3003 if (!pool->ti)
3004 return 0; /* nothing is bound */
3005
3006 blocks = pool->ti->len;
3007 (void) sector_div(blocks, pool->sectors_per_block);
3008 if (blocks)
3009 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3010
3011 return 0;
3012 }
3013
3014 static struct target_type thin_target = {
3015 .name = "thin",
3016 .version = {1, 9, 0},
3017 .module = THIS_MODULE,
3018 .ctr = thin_ctr,
3019 .dtr = thin_dtr,
3020 .map = thin_map,
3021 .end_io = thin_endio,
3022 .postsuspend = thin_postsuspend,
3023 .status = thin_status,
3024 .iterate_devices = thin_iterate_devices,
3025 };
3026
3027 /*----------------------------------------------------------------*/
3028
3029 static int __init dm_thin_init(void)
3030 {
3031 int r;
3032
3033 pool_table_init();
3034
3035 r = dm_register_target(&thin_target);
3036 if (r)
3037 return r;
3038
3039 r = dm_register_target(&pool_target);
3040 if (r)
3041 goto bad_pool_target;
3042
3043 r = -ENOMEM;
3044
3045 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3046 if (!_new_mapping_cache)
3047 goto bad_new_mapping_cache;
3048
3049 return 0;
3050
3051 bad_new_mapping_cache:
3052 dm_unregister_target(&pool_target);
3053 bad_pool_target:
3054 dm_unregister_target(&thin_target);
3055
3056 return r;
3057 }
3058
3059 static void dm_thin_exit(void)
3060 {
3061 dm_unregister_target(&thin_target);
3062 dm_unregister_target(&pool_target);
3063
3064 kmem_cache_destroy(_new_mapping_cache);
3065 }
3066
3067 module_init(dm_thin_init);
3068 module_exit(dm_thin_exit);
3069
3070 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3071 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3072 MODULE_LICENSE("GPL");
This page took 0.132128 seconds and 5 git commands to generate.