block, drivers, fs: rename REQ_FLUSH to REQ_PREFLUSH
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
205 };
206
207 struct pool_features {
208 enum pool_mode mode;
209
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
213 bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
226
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
230
231 dm_block_t low_water_blocks;
232 uint32_t sectors_per_block;
233 int sectors_per_block_shift;
234
235 struct pool_features pf;
236 bool low_water_triggered:1; /* A dm event has been sent */
237 bool suspended:1;
238 bool out_of_data_space:1;
239
240 struct dm_bio_prison *prison;
241 struct dm_kcopyd_client *copier;
242
243 struct workqueue_struct *wq;
244 struct throttle throttle;
245 struct work_struct worker;
246 struct delayed_work waker;
247 struct delayed_work no_space_timeout;
248
249 unsigned long last_commit_jiffies;
250 unsigned ref_count;
251
252 spinlock_t lock;
253 struct bio_list deferred_flush_bios;
254 struct list_head prepared_mappings;
255 struct list_head prepared_discards;
256 struct list_head active_thins;
257
258 struct dm_deferred_set *shared_read_ds;
259 struct dm_deferred_set *all_io_ds;
260
261 struct dm_thin_new_mapping *next_mapping;
262 mempool_t *mapping_pool;
263
264 process_bio_fn process_bio;
265 process_bio_fn process_discard;
266
267 process_cell_fn process_cell;
268 process_cell_fn process_discard_cell;
269
270 process_mapping_fn process_prepared_mapping;
271 process_mapping_fn process_prepared_discard;
272
273 struct dm_bio_prison_cell **cell_sort_array;
274 };
275
276 static enum pool_mode get_pool_mode(struct pool *pool);
277 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
278
279 /*
280 * Target context for a pool.
281 */
282 struct pool_c {
283 struct dm_target *ti;
284 struct pool *pool;
285 struct dm_dev *data_dev;
286 struct dm_dev *metadata_dev;
287 struct dm_target_callbacks callbacks;
288
289 dm_block_t low_water_blocks;
290 struct pool_features requested_pf; /* Features requested during table load */
291 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
292 };
293
294 /*
295 * Target context for a thin.
296 */
297 struct thin_c {
298 struct list_head list;
299 struct dm_dev *pool_dev;
300 struct dm_dev *origin_dev;
301 sector_t origin_size;
302 dm_thin_id dev_id;
303
304 struct pool *pool;
305 struct dm_thin_device *td;
306 struct mapped_device *thin_md;
307
308 bool requeue_mode:1;
309 spinlock_t lock;
310 struct list_head deferred_cells;
311 struct bio_list deferred_bio_list;
312 struct bio_list retry_on_resume_list;
313 struct rb_root sort_bio_list; /* sorted list of deferred bios */
314
315 /*
316 * Ensures the thin is not destroyed until the worker has finished
317 * iterating the active_thins list.
318 */
319 atomic_t refcount;
320 struct completion can_destroy;
321 };
322
323 /*----------------------------------------------------------------*/
324
325 static bool block_size_is_power_of_two(struct pool *pool)
326 {
327 return pool->sectors_per_block_shift >= 0;
328 }
329
330 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
331 {
332 return block_size_is_power_of_two(pool) ?
333 (b << pool->sectors_per_block_shift) :
334 (b * pool->sectors_per_block);
335 }
336
337 /*----------------------------------------------------------------*/
338
339 struct discard_op {
340 struct thin_c *tc;
341 struct blk_plug plug;
342 struct bio *parent_bio;
343 struct bio *bio;
344 };
345
346 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
347 {
348 BUG_ON(!parent);
349
350 op->tc = tc;
351 blk_start_plug(&op->plug);
352 op->parent_bio = parent;
353 op->bio = NULL;
354 }
355
356 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
357 {
358 struct thin_c *tc = op->tc;
359 sector_t s = block_to_sectors(tc->pool, data_b);
360 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
361
362 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
363 GFP_NOWAIT, 0, &op->bio);
364 }
365
366 static void end_discard(struct discard_op *op, int r)
367 {
368 if (op->bio) {
369 /*
370 * Even if one of the calls to issue_discard failed, we
371 * need to wait for the chain to complete.
372 */
373 bio_chain(op->bio, op->parent_bio);
374 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
375 submit_bio(op->bio);
376 }
377
378 blk_finish_plug(&op->plug);
379
380 /*
381 * Even if r is set, there could be sub discards in flight that we
382 * need to wait for.
383 */
384 if (r && !op->parent_bio->bi_error)
385 op->parent_bio->bi_error = r;
386 bio_endio(op->parent_bio);
387 }
388
389 /*----------------------------------------------------------------*/
390
391 /*
392 * wake_worker() is used when new work is queued and when pool_resume is
393 * ready to continue deferred IO processing.
394 */
395 static void wake_worker(struct pool *pool)
396 {
397 queue_work(pool->wq, &pool->worker);
398 }
399
400 /*----------------------------------------------------------------*/
401
402 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
403 struct dm_bio_prison_cell **cell_result)
404 {
405 int r;
406 struct dm_bio_prison_cell *cell_prealloc;
407
408 /*
409 * Allocate a cell from the prison's mempool.
410 * This might block but it can't fail.
411 */
412 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
413
414 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
415 if (r)
416 /*
417 * We reused an old cell; we can get rid of
418 * the new one.
419 */
420 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
421
422 return r;
423 }
424
425 static void cell_release(struct pool *pool,
426 struct dm_bio_prison_cell *cell,
427 struct bio_list *bios)
428 {
429 dm_cell_release(pool->prison, cell, bios);
430 dm_bio_prison_free_cell(pool->prison, cell);
431 }
432
433 static void cell_visit_release(struct pool *pool,
434 void (*fn)(void *, struct dm_bio_prison_cell *),
435 void *context,
436 struct dm_bio_prison_cell *cell)
437 {
438 dm_cell_visit_release(pool->prison, fn, context, cell);
439 dm_bio_prison_free_cell(pool->prison, cell);
440 }
441
442 static void cell_release_no_holder(struct pool *pool,
443 struct dm_bio_prison_cell *cell,
444 struct bio_list *bios)
445 {
446 dm_cell_release_no_holder(pool->prison, cell, bios);
447 dm_bio_prison_free_cell(pool->prison, cell);
448 }
449
450 static void cell_error_with_code(struct pool *pool,
451 struct dm_bio_prison_cell *cell, int error_code)
452 {
453 dm_cell_error(pool->prison, cell, error_code);
454 dm_bio_prison_free_cell(pool->prison, cell);
455 }
456
457 static int get_pool_io_error_code(struct pool *pool)
458 {
459 return pool->out_of_data_space ? -ENOSPC : -EIO;
460 }
461
462 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
463 {
464 int error = get_pool_io_error_code(pool);
465
466 cell_error_with_code(pool, cell, error);
467 }
468
469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
470 {
471 cell_error_with_code(pool, cell, 0);
472 }
473
474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
475 {
476 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
477 }
478
479 /*----------------------------------------------------------------*/
480
481 /*
482 * A global list of pools that uses a struct mapped_device as a key.
483 */
484 static struct dm_thin_pool_table {
485 struct mutex mutex;
486 struct list_head pools;
487 } dm_thin_pool_table;
488
489 static void pool_table_init(void)
490 {
491 mutex_init(&dm_thin_pool_table.mutex);
492 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
493 }
494
495 static void __pool_table_insert(struct pool *pool)
496 {
497 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
498 list_add(&pool->list, &dm_thin_pool_table.pools);
499 }
500
501 static void __pool_table_remove(struct pool *pool)
502 {
503 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504 list_del(&pool->list);
505 }
506
507 static struct pool *__pool_table_lookup(struct mapped_device *md)
508 {
509 struct pool *pool = NULL, *tmp;
510
511 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512
513 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
514 if (tmp->pool_md == md) {
515 pool = tmp;
516 break;
517 }
518 }
519
520 return pool;
521 }
522
523 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
524 {
525 struct pool *pool = NULL, *tmp;
526
527 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
528
529 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
530 if (tmp->md_dev == md_dev) {
531 pool = tmp;
532 break;
533 }
534 }
535
536 return pool;
537 }
538
539 /*----------------------------------------------------------------*/
540
541 struct dm_thin_endio_hook {
542 struct thin_c *tc;
543 struct dm_deferred_entry *shared_read_entry;
544 struct dm_deferred_entry *all_io_entry;
545 struct dm_thin_new_mapping *overwrite_mapping;
546 struct rb_node rb_node;
547 struct dm_bio_prison_cell *cell;
548 };
549
550 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
551 {
552 bio_list_merge(bios, master);
553 bio_list_init(master);
554 }
555
556 static void error_bio_list(struct bio_list *bios, int error)
557 {
558 struct bio *bio;
559
560 while ((bio = bio_list_pop(bios))) {
561 bio->bi_error = error;
562 bio_endio(bio);
563 }
564 }
565
566 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
567 {
568 struct bio_list bios;
569 unsigned long flags;
570
571 bio_list_init(&bios);
572
573 spin_lock_irqsave(&tc->lock, flags);
574 __merge_bio_list(&bios, master);
575 spin_unlock_irqrestore(&tc->lock, flags);
576
577 error_bio_list(&bios, error);
578 }
579
580 static void requeue_deferred_cells(struct thin_c *tc)
581 {
582 struct pool *pool = tc->pool;
583 unsigned long flags;
584 struct list_head cells;
585 struct dm_bio_prison_cell *cell, *tmp;
586
587 INIT_LIST_HEAD(&cells);
588
589 spin_lock_irqsave(&tc->lock, flags);
590 list_splice_init(&tc->deferred_cells, &cells);
591 spin_unlock_irqrestore(&tc->lock, flags);
592
593 list_for_each_entry_safe(cell, tmp, &cells, user_list)
594 cell_requeue(pool, cell);
595 }
596
597 static void requeue_io(struct thin_c *tc)
598 {
599 struct bio_list bios;
600 unsigned long flags;
601
602 bio_list_init(&bios);
603
604 spin_lock_irqsave(&tc->lock, flags);
605 __merge_bio_list(&bios, &tc->deferred_bio_list);
606 __merge_bio_list(&bios, &tc->retry_on_resume_list);
607 spin_unlock_irqrestore(&tc->lock, flags);
608
609 error_bio_list(&bios, DM_ENDIO_REQUEUE);
610 requeue_deferred_cells(tc);
611 }
612
613 static void error_retry_list_with_code(struct pool *pool, int error)
614 {
615 struct thin_c *tc;
616
617 rcu_read_lock();
618 list_for_each_entry_rcu(tc, &pool->active_thins, list)
619 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
620 rcu_read_unlock();
621 }
622
623 static void error_retry_list(struct pool *pool)
624 {
625 int error = get_pool_io_error_code(pool);
626
627 error_retry_list_with_code(pool, error);
628 }
629
630 /*
631 * This section of code contains the logic for processing a thin device's IO.
632 * Much of the code depends on pool object resources (lists, workqueues, etc)
633 * but most is exclusively called from the thin target rather than the thin-pool
634 * target.
635 */
636
637 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
638 {
639 struct pool *pool = tc->pool;
640 sector_t block_nr = bio->bi_iter.bi_sector;
641
642 if (block_size_is_power_of_two(pool))
643 block_nr >>= pool->sectors_per_block_shift;
644 else
645 (void) sector_div(block_nr, pool->sectors_per_block);
646
647 return block_nr;
648 }
649
650 /*
651 * Returns the _complete_ blocks that this bio covers.
652 */
653 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
654 dm_block_t *begin, dm_block_t *end)
655 {
656 struct pool *pool = tc->pool;
657 sector_t b = bio->bi_iter.bi_sector;
658 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
659
660 b += pool->sectors_per_block - 1ull; /* so we round up */
661
662 if (block_size_is_power_of_two(pool)) {
663 b >>= pool->sectors_per_block_shift;
664 e >>= pool->sectors_per_block_shift;
665 } else {
666 (void) sector_div(b, pool->sectors_per_block);
667 (void) sector_div(e, pool->sectors_per_block);
668 }
669
670 if (e < b)
671 /* Can happen if the bio is within a single block. */
672 e = b;
673
674 *begin = b;
675 *end = e;
676 }
677
678 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
679 {
680 struct pool *pool = tc->pool;
681 sector_t bi_sector = bio->bi_iter.bi_sector;
682
683 bio->bi_bdev = tc->pool_dev->bdev;
684 if (block_size_is_power_of_two(pool))
685 bio->bi_iter.bi_sector =
686 (block << pool->sectors_per_block_shift) |
687 (bi_sector & (pool->sectors_per_block - 1));
688 else
689 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
690 sector_div(bi_sector, pool->sectors_per_block);
691 }
692
693 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
694 {
695 bio->bi_bdev = tc->origin_dev->bdev;
696 }
697
698 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
699 {
700 return (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA)) &&
701 dm_thin_changed_this_transaction(tc->td);
702 }
703
704 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
705 {
706 struct dm_thin_endio_hook *h;
707
708 if (bio_op(bio) == REQ_OP_DISCARD)
709 return;
710
711 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
712 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
713 }
714
715 static void issue(struct thin_c *tc, struct bio *bio)
716 {
717 struct pool *pool = tc->pool;
718 unsigned long flags;
719
720 if (!bio_triggers_commit(tc, bio)) {
721 generic_make_request(bio);
722 return;
723 }
724
725 /*
726 * Complete bio with an error if earlier I/O caused changes to
727 * the metadata that can't be committed e.g, due to I/O errors
728 * on the metadata device.
729 */
730 if (dm_thin_aborted_changes(tc->td)) {
731 bio_io_error(bio);
732 return;
733 }
734
735 /*
736 * Batch together any bios that trigger commits and then issue a
737 * single commit for them in process_deferred_bios().
738 */
739 spin_lock_irqsave(&pool->lock, flags);
740 bio_list_add(&pool->deferred_flush_bios, bio);
741 spin_unlock_irqrestore(&pool->lock, flags);
742 }
743
744 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
745 {
746 remap_to_origin(tc, bio);
747 issue(tc, bio);
748 }
749
750 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
751 dm_block_t block)
752 {
753 remap(tc, bio, block);
754 issue(tc, bio);
755 }
756
757 /*----------------------------------------------------------------*/
758
759 /*
760 * Bio endio functions.
761 */
762 struct dm_thin_new_mapping {
763 struct list_head list;
764
765 bool pass_discard:1;
766 bool maybe_shared:1;
767
768 /*
769 * Track quiescing, copying and zeroing preparation actions. When this
770 * counter hits zero the block is prepared and can be inserted into the
771 * btree.
772 */
773 atomic_t prepare_actions;
774
775 int err;
776 struct thin_c *tc;
777 dm_block_t virt_begin, virt_end;
778 dm_block_t data_block;
779 struct dm_bio_prison_cell *cell;
780
781 /*
782 * If the bio covers the whole area of a block then we can avoid
783 * zeroing or copying. Instead this bio is hooked. The bio will
784 * still be in the cell, so care has to be taken to avoid issuing
785 * the bio twice.
786 */
787 struct bio *bio;
788 bio_end_io_t *saved_bi_end_io;
789 };
790
791 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
792 {
793 struct pool *pool = m->tc->pool;
794
795 if (atomic_dec_and_test(&m->prepare_actions)) {
796 list_add_tail(&m->list, &pool->prepared_mappings);
797 wake_worker(pool);
798 }
799 }
800
801 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
802 {
803 unsigned long flags;
804 struct pool *pool = m->tc->pool;
805
806 spin_lock_irqsave(&pool->lock, flags);
807 __complete_mapping_preparation(m);
808 spin_unlock_irqrestore(&pool->lock, flags);
809 }
810
811 static void copy_complete(int read_err, unsigned long write_err, void *context)
812 {
813 struct dm_thin_new_mapping *m = context;
814
815 m->err = read_err || write_err ? -EIO : 0;
816 complete_mapping_preparation(m);
817 }
818
819 static void overwrite_endio(struct bio *bio)
820 {
821 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
822 struct dm_thin_new_mapping *m = h->overwrite_mapping;
823
824 bio->bi_end_io = m->saved_bi_end_io;
825
826 m->err = bio->bi_error;
827 complete_mapping_preparation(m);
828 }
829
830 /*----------------------------------------------------------------*/
831
832 /*
833 * Workqueue.
834 */
835
836 /*
837 * Prepared mapping jobs.
838 */
839
840 /*
841 * This sends the bios in the cell, except the original holder, back
842 * to the deferred_bios list.
843 */
844 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
845 {
846 struct pool *pool = tc->pool;
847 unsigned long flags;
848
849 spin_lock_irqsave(&tc->lock, flags);
850 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
851 spin_unlock_irqrestore(&tc->lock, flags);
852
853 wake_worker(pool);
854 }
855
856 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
857
858 struct remap_info {
859 struct thin_c *tc;
860 struct bio_list defer_bios;
861 struct bio_list issue_bios;
862 };
863
864 static void __inc_remap_and_issue_cell(void *context,
865 struct dm_bio_prison_cell *cell)
866 {
867 struct remap_info *info = context;
868 struct bio *bio;
869
870 while ((bio = bio_list_pop(&cell->bios))) {
871 if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA) ||
872 bio_op(bio) == REQ_OP_DISCARD)
873 bio_list_add(&info->defer_bios, bio);
874 else {
875 inc_all_io_entry(info->tc->pool, bio);
876
877 /*
878 * We can't issue the bios with the bio prison lock
879 * held, so we add them to a list to issue on
880 * return from this function.
881 */
882 bio_list_add(&info->issue_bios, bio);
883 }
884 }
885 }
886
887 static void inc_remap_and_issue_cell(struct thin_c *tc,
888 struct dm_bio_prison_cell *cell,
889 dm_block_t block)
890 {
891 struct bio *bio;
892 struct remap_info info;
893
894 info.tc = tc;
895 bio_list_init(&info.defer_bios);
896 bio_list_init(&info.issue_bios);
897
898 /*
899 * We have to be careful to inc any bios we're about to issue
900 * before the cell is released, and avoid a race with new bios
901 * being added to the cell.
902 */
903 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
904 &info, cell);
905
906 while ((bio = bio_list_pop(&info.defer_bios)))
907 thin_defer_bio(tc, bio);
908
909 while ((bio = bio_list_pop(&info.issue_bios)))
910 remap_and_issue(info.tc, bio, block);
911 }
912
913 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
914 {
915 cell_error(m->tc->pool, m->cell);
916 list_del(&m->list);
917 mempool_free(m, m->tc->pool->mapping_pool);
918 }
919
920 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
921 {
922 struct thin_c *tc = m->tc;
923 struct pool *pool = tc->pool;
924 struct bio *bio = m->bio;
925 int r;
926
927 if (m->err) {
928 cell_error(pool, m->cell);
929 goto out;
930 }
931
932 /*
933 * Commit the prepared block into the mapping btree.
934 * Any I/O for this block arriving after this point will get
935 * remapped to it directly.
936 */
937 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
938 if (r) {
939 metadata_operation_failed(pool, "dm_thin_insert_block", r);
940 cell_error(pool, m->cell);
941 goto out;
942 }
943
944 /*
945 * Release any bios held while the block was being provisioned.
946 * If we are processing a write bio that completely covers the block,
947 * we already processed it so can ignore it now when processing
948 * the bios in the cell.
949 */
950 if (bio) {
951 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
952 bio_endio(bio);
953 } else {
954 inc_all_io_entry(tc->pool, m->cell->holder);
955 remap_and_issue(tc, m->cell->holder, m->data_block);
956 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
957 }
958
959 out:
960 list_del(&m->list);
961 mempool_free(m, pool->mapping_pool);
962 }
963
964 /*----------------------------------------------------------------*/
965
966 static void free_discard_mapping(struct dm_thin_new_mapping *m)
967 {
968 struct thin_c *tc = m->tc;
969 if (m->cell)
970 cell_defer_no_holder(tc, m->cell);
971 mempool_free(m, tc->pool->mapping_pool);
972 }
973
974 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
975 {
976 bio_io_error(m->bio);
977 free_discard_mapping(m);
978 }
979
980 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
981 {
982 bio_endio(m->bio);
983 free_discard_mapping(m);
984 }
985
986 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
987 {
988 int r;
989 struct thin_c *tc = m->tc;
990
991 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
992 if (r) {
993 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
994 bio_io_error(m->bio);
995 } else
996 bio_endio(m->bio);
997
998 cell_defer_no_holder(tc, m->cell);
999 mempool_free(m, tc->pool->mapping_pool);
1000 }
1001
1002 /*----------------------------------------------------------------*/
1003
1004 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1005 {
1006 /*
1007 * We've already unmapped this range of blocks, but before we
1008 * passdown we have to check that these blocks are now unused.
1009 */
1010 int r = 0;
1011 bool used = true;
1012 struct thin_c *tc = m->tc;
1013 struct pool *pool = tc->pool;
1014 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1015 struct discard_op op;
1016
1017 begin_discard(&op, tc, m->bio);
1018 while (b != end) {
1019 /* find start of unmapped run */
1020 for (; b < end; b++) {
1021 r = dm_pool_block_is_used(pool->pmd, b, &used);
1022 if (r)
1023 goto out;
1024
1025 if (!used)
1026 break;
1027 }
1028
1029 if (b == end)
1030 break;
1031
1032 /* find end of run */
1033 for (e = b + 1; e != end; e++) {
1034 r = dm_pool_block_is_used(pool->pmd, e, &used);
1035 if (r)
1036 goto out;
1037
1038 if (used)
1039 break;
1040 }
1041
1042 r = issue_discard(&op, b, e);
1043 if (r)
1044 goto out;
1045
1046 b = e;
1047 }
1048 out:
1049 end_discard(&op, r);
1050 }
1051
1052 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1053 {
1054 int r;
1055 struct thin_c *tc = m->tc;
1056 struct pool *pool = tc->pool;
1057
1058 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1059 if (r) {
1060 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1061 bio_io_error(m->bio);
1062
1063 } else if (m->maybe_shared) {
1064 passdown_double_checking_shared_status(m);
1065
1066 } else {
1067 struct discard_op op;
1068 begin_discard(&op, tc, m->bio);
1069 r = issue_discard(&op, m->data_block,
1070 m->data_block + (m->virt_end - m->virt_begin));
1071 end_discard(&op, r);
1072 }
1073
1074 cell_defer_no_holder(tc, m->cell);
1075 mempool_free(m, pool->mapping_pool);
1076 }
1077
1078 static void process_prepared(struct pool *pool, struct list_head *head,
1079 process_mapping_fn *fn)
1080 {
1081 unsigned long flags;
1082 struct list_head maps;
1083 struct dm_thin_new_mapping *m, *tmp;
1084
1085 INIT_LIST_HEAD(&maps);
1086 spin_lock_irqsave(&pool->lock, flags);
1087 list_splice_init(head, &maps);
1088 spin_unlock_irqrestore(&pool->lock, flags);
1089
1090 list_for_each_entry_safe(m, tmp, &maps, list)
1091 (*fn)(m);
1092 }
1093
1094 /*
1095 * Deferred bio jobs.
1096 */
1097 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1098 {
1099 return bio->bi_iter.bi_size ==
1100 (pool->sectors_per_block << SECTOR_SHIFT);
1101 }
1102
1103 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1104 {
1105 return (bio_data_dir(bio) == WRITE) &&
1106 io_overlaps_block(pool, bio);
1107 }
1108
1109 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1110 bio_end_io_t *fn)
1111 {
1112 *save = bio->bi_end_io;
1113 bio->bi_end_io = fn;
1114 }
1115
1116 static int ensure_next_mapping(struct pool *pool)
1117 {
1118 if (pool->next_mapping)
1119 return 0;
1120
1121 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1122
1123 return pool->next_mapping ? 0 : -ENOMEM;
1124 }
1125
1126 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1127 {
1128 struct dm_thin_new_mapping *m = pool->next_mapping;
1129
1130 BUG_ON(!pool->next_mapping);
1131
1132 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1133 INIT_LIST_HEAD(&m->list);
1134 m->bio = NULL;
1135
1136 pool->next_mapping = NULL;
1137
1138 return m;
1139 }
1140
1141 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1142 sector_t begin, sector_t end)
1143 {
1144 int r;
1145 struct dm_io_region to;
1146
1147 to.bdev = tc->pool_dev->bdev;
1148 to.sector = begin;
1149 to.count = end - begin;
1150
1151 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1152 if (r < 0) {
1153 DMERR_LIMIT("dm_kcopyd_zero() failed");
1154 copy_complete(1, 1, m);
1155 }
1156 }
1157
1158 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1159 dm_block_t data_begin,
1160 struct dm_thin_new_mapping *m)
1161 {
1162 struct pool *pool = tc->pool;
1163 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1164
1165 h->overwrite_mapping = m;
1166 m->bio = bio;
1167 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1168 inc_all_io_entry(pool, bio);
1169 remap_and_issue(tc, bio, data_begin);
1170 }
1171
1172 /*
1173 * A partial copy also needs to zero the uncopied region.
1174 */
1175 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1176 struct dm_dev *origin, dm_block_t data_origin,
1177 dm_block_t data_dest,
1178 struct dm_bio_prison_cell *cell, struct bio *bio,
1179 sector_t len)
1180 {
1181 int r;
1182 struct pool *pool = tc->pool;
1183 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1184
1185 m->tc = tc;
1186 m->virt_begin = virt_block;
1187 m->virt_end = virt_block + 1u;
1188 m->data_block = data_dest;
1189 m->cell = cell;
1190
1191 /*
1192 * quiesce action + copy action + an extra reference held for the
1193 * duration of this function (we may need to inc later for a
1194 * partial zero).
1195 */
1196 atomic_set(&m->prepare_actions, 3);
1197
1198 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1199 complete_mapping_preparation(m); /* already quiesced */
1200
1201 /*
1202 * IO to pool_dev remaps to the pool target's data_dev.
1203 *
1204 * If the whole block of data is being overwritten, we can issue the
1205 * bio immediately. Otherwise we use kcopyd to clone the data first.
1206 */
1207 if (io_overwrites_block(pool, bio))
1208 remap_and_issue_overwrite(tc, bio, data_dest, m);
1209 else {
1210 struct dm_io_region from, to;
1211
1212 from.bdev = origin->bdev;
1213 from.sector = data_origin * pool->sectors_per_block;
1214 from.count = len;
1215
1216 to.bdev = tc->pool_dev->bdev;
1217 to.sector = data_dest * pool->sectors_per_block;
1218 to.count = len;
1219
1220 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1221 0, copy_complete, m);
1222 if (r < 0) {
1223 DMERR_LIMIT("dm_kcopyd_copy() failed");
1224 copy_complete(1, 1, m);
1225
1226 /*
1227 * We allow the zero to be issued, to simplify the
1228 * error path. Otherwise we'd need to start
1229 * worrying about decrementing the prepare_actions
1230 * counter.
1231 */
1232 }
1233
1234 /*
1235 * Do we need to zero a tail region?
1236 */
1237 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1238 atomic_inc(&m->prepare_actions);
1239 ll_zero(tc, m,
1240 data_dest * pool->sectors_per_block + len,
1241 (data_dest + 1) * pool->sectors_per_block);
1242 }
1243 }
1244
1245 complete_mapping_preparation(m); /* drop our ref */
1246 }
1247
1248 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1249 dm_block_t data_origin, dm_block_t data_dest,
1250 struct dm_bio_prison_cell *cell, struct bio *bio)
1251 {
1252 schedule_copy(tc, virt_block, tc->pool_dev,
1253 data_origin, data_dest, cell, bio,
1254 tc->pool->sectors_per_block);
1255 }
1256
1257 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1258 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1259 struct bio *bio)
1260 {
1261 struct pool *pool = tc->pool;
1262 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263
1264 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1265 m->tc = tc;
1266 m->virt_begin = virt_block;
1267 m->virt_end = virt_block + 1u;
1268 m->data_block = data_block;
1269 m->cell = cell;
1270
1271 /*
1272 * If the whole block of data is being overwritten or we are not
1273 * zeroing pre-existing data, we can issue the bio immediately.
1274 * Otherwise we use kcopyd to zero the data first.
1275 */
1276 if (pool->pf.zero_new_blocks) {
1277 if (io_overwrites_block(pool, bio))
1278 remap_and_issue_overwrite(tc, bio, data_block, m);
1279 else
1280 ll_zero(tc, m, data_block * pool->sectors_per_block,
1281 (data_block + 1) * pool->sectors_per_block);
1282 } else
1283 process_prepared_mapping(m);
1284 }
1285
1286 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1287 dm_block_t data_dest,
1288 struct dm_bio_prison_cell *cell, struct bio *bio)
1289 {
1290 struct pool *pool = tc->pool;
1291 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1292 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1293
1294 if (virt_block_end <= tc->origin_size)
1295 schedule_copy(tc, virt_block, tc->origin_dev,
1296 virt_block, data_dest, cell, bio,
1297 pool->sectors_per_block);
1298
1299 else if (virt_block_begin < tc->origin_size)
1300 schedule_copy(tc, virt_block, tc->origin_dev,
1301 virt_block, data_dest, cell, bio,
1302 tc->origin_size - virt_block_begin);
1303
1304 else
1305 schedule_zero(tc, virt_block, data_dest, cell, bio);
1306 }
1307
1308 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1309
1310 static void check_for_space(struct pool *pool)
1311 {
1312 int r;
1313 dm_block_t nr_free;
1314
1315 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1316 return;
1317
1318 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1319 if (r)
1320 return;
1321
1322 if (nr_free)
1323 set_pool_mode(pool, PM_WRITE);
1324 }
1325
1326 /*
1327 * A non-zero return indicates read_only or fail_io mode.
1328 * Many callers don't care about the return value.
1329 */
1330 static int commit(struct pool *pool)
1331 {
1332 int r;
1333
1334 if (get_pool_mode(pool) >= PM_READ_ONLY)
1335 return -EINVAL;
1336
1337 r = dm_pool_commit_metadata(pool->pmd);
1338 if (r)
1339 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1340 else
1341 check_for_space(pool);
1342
1343 return r;
1344 }
1345
1346 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1347 {
1348 unsigned long flags;
1349
1350 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1351 DMWARN("%s: reached low water mark for data device: sending event.",
1352 dm_device_name(pool->pool_md));
1353 spin_lock_irqsave(&pool->lock, flags);
1354 pool->low_water_triggered = true;
1355 spin_unlock_irqrestore(&pool->lock, flags);
1356 dm_table_event(pool->ti->table);
1357 }
1358 }
1359
1360 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1361 {
1362 int r;
1363 dm_block_t free_blocks;
1364 struct pool *pool = tc->pool;
1365
1366 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1367 return -EINVAL;
1368
1369 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1370 if (r) {
1371 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1372 return r;
1373 }
1374
1375 check_low_water_mark(pool, free_blocks);
1376
1377 if (!free_blocks) {
1378 /*
1379 * Try to commit to see if that will free up some
1380 * more space.
1381 */
1382 r = commit(pool);
1383 if (r)
1384 return r;
1385
1386 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1387 if (r) {
1388 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1389 return r;
1390 }
1391
1392 if (!free_blocks) {
1393 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1394 return -ENOSPC;
1395 }
1396 }
1397
1398 r = dm_pool_alloc_data_block(pool->pmd, result);
1399 if (r) {
1400 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1401 return r;
1402 }
1403
1404 return 0;
1405 }
1406
1407 /*
1408 * If we have run out of space, queue bios until the device is
1409 * resumed, presumably after having been reloaded with more space.
1410 */
1411 static void retry_on_resume(struct bio *bio)
1412 {
1413 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1414 struct thin_c *tc = h->tc;
1415 unsigned long flags;
1416
1417 spin_lock_irqsave(&tc->lock, flags);
1418 bio_list_add(&tc->retry_on_resume_list, bio);
1419 spin_unlock_irqrestore(&tc->lock, flags);
1420 }
1421
1422 static int should_error_unserviceable_bio(struct pool *pool)
1423 {
1424 enum pool_mode m = get_pool_mode(pool);
1425
1426 switch (m) {
1427 case PM_WRITE:
1428 /* Shouldn't get here */
1429 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1430 return -EIO;
1431
1432 case PM_OUT_OF_DATA_SPACE:
1433 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1434
1435 case PM_READ_ONLY:
1436 case PM_FAIL:
1437 return -EIO;
1438 default:
1439 /* Shouldn't get here */
1440 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1441 return -EIO;
1442 }
1443 }
1444
1445 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1446 {
1447 int error = should_error_unserviceable_bio(pool);
1448
1449 if (error) {
1450 bio->bi_error = error;
1451 bio_endio(bio);
1452 } else
1453 retry_on_resume(bio);
1454 }
1455
1456 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1457 {
1458 struct bio *bio;
1459 struct bio_list bios;
1460 int error;
1461
1462 error = should_error_unserviceable_bio(pool);
1463 if (error) {
1464 cell_error_with_code(pool, cell, error);
1465 return;
1466 }
1467
1468 bio_list_init(&bios);
1469 cell_release(pool, cell, &bios);
1470
1471 while ((bio = bio_list_pop(&bios)))
1472 retry_on_resume(bio);
1473 }
1474
1475 static void process_discard_cell_no_passdown(struct thin_c *tc,
1476 struct dm_bio_prison_cell *virt_cell)
1477 {
1478 struct pool *pool = tc->pool;
1479 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1480
1481 /*
1482 * We don't need to lock the data blocks, since there's no
1483 * passdown. We only lock data blocks for allocation and breaking sharing.
1484 */
1485 m->tc = tc;
1486 m->virt_begin = virt_cell->key.block_begin;
1487 m->virt_end = virt_cell->key.block_end;
1488 m->cell = virt_cell;
1489 m->bio = virt_cell->holder;
1490
1491 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1492 pool->process_prepared_discard(m);
1493 }
1494
1495 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1496 struct bio *bio)
1497 {
1498 struct pool *pool = tc->pool;
1499
1500 int r;
1501 bool maybe_shared;
1502 struct dm_cell_key data_key;
1503 struct dm_bio_prison_cell *data_cell;
1504 struct dm_thin_new_mapping *m;
1505 dm_block_t virt_begin, virt_end, data_begin;
1506
1507 while (begin != end) {
1508 r = ensure_next_mapping(pool);
1509 if (r)
1510 /* we did our best */
1511 return;
1512
1513 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1514 &data_begin, &maybe_shared);
1515 if (r)
1516 /*
1517 * Silently fail, letting any mappings we've
1518 * created complete.
1519 */
1520 break;
1521
1522 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1523 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1524 /* contention, we'll give up with this range */
1525 begin = virt_end;
1526 continue;
1527 }
1528
1529 /*
1530 * IO may still be going to the destination block. We must
1531 * quiesce before we can do the removal.
1532 */
1533 m = get_next_mapping(pool);
1534 m->tc = tc;
1535 m->maybe_shared = maybe_shared;
1536 m->virt_begin = virt_begin;
1537 m->virt_end = virt_end;
1538 m->data_block = data_begin;
1539 m->cell = data_cell;
1540 m->bio = bio;
1541
1542 /*
1543 * The parent bio must not complete before sub discard bios are
1544 * chained to it (see end_discard's bio_chain)!
1545 *
1546 * This per-mapping bi_remaining increment is paired with
1547 * the implicit decrement that occurs via bio_endio() in
1548 * end_discard().
1549 */
1550 bio_inc_remaining(bio);
1551 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1552 pool->process_prepared_discard(m);
1553
1554 begin = virt_end;
1555 }
1556 }
1557
1558 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1559 {
1560 struct bio *bio = virt_cell->holder;
1561 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1562
1563 /*
1564 * The virt_cell will only get freed once the origin bio completes.
1565 * This means it will remain locked while all the individual
1566 * passdown bios are in flight.
1567 */
1568 h->cell = virt_cell;
1569 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1570
1571 /*
1572 * We complete the bio now, knowing that the bi_remaining field
1573 * will prevent completion until the sub range discards have
1574 * completed.
1575 */
1576 bio_endio(bio);
1577 }
1578
1579 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1580 {
1581 dm_block_t begin, end;
1582 struct dm_cell_key virt_key;
1583 struct dm_bio_prison_cell *virt_cell;
1584
1585 get_bio_block_range(tc, bio, &begin, &end);
1586 if (begin == end) {
1587 /*
1588 * The discard covers less than a block.
1589 */
1590 bio_endio(bio);
1591 return;
1592 }
1593
1594 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1595 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1596 /*
1597 * Potential starvation issue: We're relying on the
1598 * fs/application being well behaved, and not trying to
1599 * send IO to a region at the same time as discarding it.
1600 * If they do this persistently then it's possible this
1601 * cell will never be granted.
1602 */
1603 return;
1604
1605 tc->pool->process_discard_cell(tc, virt_cell);
1606 }
1607
1608 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1609 struct dm_cell_key *key,
1610 struct dm_thin_lookup_result *lookup_result,
1611 struct dm_bio_prison_cell *cell)
1612 {
1613 int r;
1614 dm_block_t data_block;
1615 struct pool *pool = tc->pool;
1616
1617 r = alloc_data_block(tc, &data_block);
1618 switch (r) {
1619 case 0:
1620 schedule_internal_copy(tc, block, lookup_result->block,
1621 data_block, cell, bio);
1622 break;
1623
1624 case -ENOSPC:
1625 retry_bios_on_resume(pool, cell);
1626 break;
1627
1628 default:
1629 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1630 __func__, r);
1631 cell_error(pool, cell);
1632 break;
1633 }
1634 }
1635
1636 static void __remap_and_issue_shared_cell(void *context,
1637 struct dm_bio_prison_cell *cell)
1638 {
1639 struct remap_info *info = context;
1640 struct bio *bio;
1641
1642 while ((bio = bio_list_pop(&cell->bios))) {
1643 if ((bio_data_dir(bio) == WRITE) ||
1644 (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA) ||
1645 bio_op(bio) == REQ_OP_DISCARD))
1646 bio_list_add(&info->defer_bios, bio);
1647 else {
1648 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1649
1650 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1651 inc_all_io_entry(info->tc->pool, bio);
1652 bio_list_add(&info->issue_bios, bio);
1653 }
1654 }
1655 }
1656
1657 static void remap_and_issue_shared_cell(struct thin_c *tc,
1658 struct dm_bio_prison_cell *cell,
1659 dm_block_t block)
1660 {
1661 struct bio *bio;
1662 struct remap_info info;
1663
1664 info.tc = tc;
1665 bio_list_init(&info.defer_bios);
1666 bio_list_init(&info.issue_bios);
1667
1668 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1669 &info, cell);
1670
1671 while ((bio = bio_list_pop(&info.defer_bios)))
1672 thin_defer_bio(tc, bio);
1673
1674 while ((bio = bio_list_pop(&info.issue_bios)))
1675 remap_and_issue(tc, bio, block);
1676 }
1677
1678 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1679 dm_block_t block,
1680 struct dm_thin_lookup_result *lookup_result,
1681 struct dm_bio_prison_cell *virt_cell)
1682 {
1683 struct dm_bio_prison_cell *data_cell;
1684 struct pool *pool = tc->pool;
1685 struct dm_cell_key key;
1686
1687 /*
1688 * If cell is already occupied, then sharing is already in the process
1689 * of being broken so we have nothing further to do here.
1690 */
1691 build_data_key(tc->td, lookup_result->block, &key);
1692 if (bio_detain(pool, &key, bio, &data_cell)) {
1693 cell_defer_no_holder(tc, virt_cell);
1694 return;
1695 }
1696
1697 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1698 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1699 cell_defer_no_holder(tc, virt_cell);
1700 } else {
1701 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1702
1703 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1704 inc_all_io_entry(pool, bio);
1705 remap_and_issue(tc, bio, lookup_result->block);
1706
1707 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1708 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1709 }
1710 }
1711
1712 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1713 struct dm_bio_prison_cell *cell)
1714 {
1715 int r;
1716 dm_block_t data_block;
1717 struct pool *pool = tc->pool;
1718
1719 /*
1720 * Remap empty bios (flushes) immediately, without provisioning.
1721 */
1722 if (!bio->bi_iter.bi_size) {
1723 inc_all_io_entry(pool, bio);
1724 cell_defer_no_holder(tc, cell);
1725
1726 remap_and_issue(tc, bio, 0);
1727 return;
1728 }
1729
1730 /*
1731 * Fill read bios with zeroes and complete them immediately.
1732 */
1733 if (bio_data_dir(bio) == READ) {
1734 zero_fill_bio(bio);
1735 cell_defer_no_holder(tc, cell);
1736 bio_endio(bio);
1737 return;
1738 }
1739
1740 r = alloc_data_block(tc, &data_block);
1741 switch (r) {
1742 case 0:
1743 if (tc->origin_dev)
1744 schedule_external_copy(tc, block, data_block, cell, bio);
1745 else
1746 schedule_zero(tc, block, data_block, cell, bio);
1747 break;
1748
1749 case -ENOSPC:
1750 retry_bios_on_resume(pool, cell);
1751 break;
1752
1753 default:
1754 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1755 __func__, r);
1756 cell_error(pool, cell);
1757 break;
1758 }
1759 }
1760
1761 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1762 {
1763 int r;
1764 struct pool *pool = tc->pool;
1765 struct bio *bio = cell->holder;
1766 dm_block_t block = get_bio_block(tc, bio);
1767 struct dm_thin_lookup_result lookup_result;
1768
1769 if (tc->requeue_mode) {
1770 cell_requeue(pool, cell);
1771 return;
1772 }
1773
1774 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1775 switch (r) {
1776 case 0:
1777 if (lookup_result.shared)
1778 process_shared_bio(tc, bio, block, &lookup_result, cell);
1779 else {
1780 inc_all_io_entry(pool, bio);
1781 remap_and_issue(tc, bio, lookup_result.block);
1782 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1783 }
1784 break;
1785
1786 case -ENODATA:
1787 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1788 inc_all_io_entry(pool, bio);
1789 cell_defer_no_holder(tc, cell);
1790
1791 if (bio_end_sector(bio) <= tc->origin_size)
1792 remap_to_origin_and_issue(tc, bio);
1793
1794 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1795 zero_fill_bio(bio);
1796 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1797 remap_to_origin_and_issue(tc, bio);
1798
1799 } else {
1800 zero_fill_bio(bio);
1801 bio_endio(bio);
1802 }
1803 } else
1804 provision_block(tc, bio, block, cell);
1805 break;
1806
1807 default:
1808 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1809 __func__, r);
1810 cell_defer_no_holder(tc, cell);
1811 bio_io_error(bio);
1812 break;
1813 }
1814 }
1815
1816 static void process_bio(struct thin_c *tc, struct bio *bio)
1817 {
1818 struct pool *pool = tc->pool;
1819 dm_block_t block = get_bio_block(tc, bio);
1820 struct dm_bio_prison_cell *cell;
1821 struct dm_cell_key key;
1822
1823 /*
1824 * If cell is already occupied, then the block is already
1825 * being provisioned so we have nothing further to do here.
1826 */
1827 build_virtual_key(tc->td, block, &key);
1828 if (bio_detain(pool, &key, bio, &cell))
1829 return;
1830
1831 process_cell(tc, cell);
1832 }
1833
1834 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1835 struct dm_bio_prison_cell *cell)
1836 {
1837 int r;
1838 int rw = bio_data_dir(bio);
1839 dm_block_t block = get_bio_block(tc, bio);
1840 struct dm_thin_lookup_result lookup_result;
1841
1842 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1843 switch (r) {
1844 case 0:
1845 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1846 handle_unserviceable_bio(tc->pool, bio);
1847 if (cell)
1848 cell_defer_no_holder(tc, cell);
1849 } else {
1850 inc_all_io_entry(tc->pool, bio);
1851 remap_and_issue(tc, bio, lookup_result.block);
1852 if (cell)
1853 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1854 }
1855 break;
1856
1857 case -ENODATA:
1858 if (cell)
1859 cell_defer_no_holder(tc, cell);
1860 if (rw != READ) {
1861 handle_unserviceable_bio(tc->pool, bio);
1862 break;
1863 }
1864
1865 if (tc->origin_dev) {
1866 inc_all_io_entry(tc->pool, bio);
1867 remap_to_origin_and_issue(tc, bio);
1868 break;
1869 }
1870
1871 zero_fill_bio(bio);
1872 bio_endio(bio);
1873 break;
1874
1875 default:
1876 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1877 __func__, r);
1878 if (cell)
1879 cell_defer_no_holder(tc, cell);
1880 bio_io_error(bio);
1881 break;
1882 }
1883 }
1884
1885 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1886 {
1887 __process_bio_read_only(tc, bio, NULL);
1888 }
1889
1890 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1891 {
1892 __process_bio_read_only(tc, cell->holder, cell);
1893 }
1894
1895 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1896 {
1897 bio_endio(bio);
1898 }
1899
1900 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1901 {
1902 bio_io_error(bio);
1903 }
1904
1905 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1906 {
1907 cell_success(tc->pool, cell);
1908 }
1909
1910 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1911 {
1912 cell_error(tc->pool, cell);
1913 }
1914
1915 /*
1916 * FIXME: should we also commit due to size of transaction, measured in
1917 * metadata blocks?
1918 */
1919 static int need_commit_due_to_time(struct pool *pool)
1920 {
1921 return !time_in_range(jiffies, pool->last_commit_jiffies,
1922 pool->last_commit_jiffies + COMMIT_PERIOD);
1923 }
1924
1925 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1926 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1927
1928 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1929 {
1930 struct rb_node **rbp, *parent;
1931 struct dm_thin_endio_hook *pbd;
1932 sector_t bi_sector = bio->bi_iter.bi_sector;
1933
1934 rbp = &tc->sort_bio_list.rb_node;
1935 parent = NULL;
1936 while (*rbp) {
1937 parent = *rbp;
1938 pbd = thin_pbd(parent);
1939
1940 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1941 rbp = &(*rbp)->rb_left;
1942 else
1943 rbp = &(*rbp)->rb_right;
1944 }
1945
1946 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1947 rb_link_node(&pbd->rb_node, parent, rbp);
1948 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1949 }
1950
1951 static void __extract_sorted_bios(struct thin_c *tc)
1952 {
1953 struct rb_node *node;
1954 struct dm_thin_endio_hook *pbd;
1955 struct bio *bio;
1956
1957 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1958 pbd = thin_pbd(node);
1959 bio = thin_bio(pbd);
1960
1961 bio_list_add(&tc->deferred_bio_list, bio);
1962 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1963 }
1964
1965 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1966 }
1967
1968 static void __sort_thin_deferred_bios(struct thin_c *tc)
1969 {
1970 struct bio *bio;
1971 struct bio_list bios;
1972
1973 bio_list_init(&bios);
1974 bio_list_merge(&bios, &tc->deferred_bio_list);
1975 bio_list_init(&tc->deferred_bio_list);
1976
1977 /* Sort deferred_bio_list using rb-tree */
1978 while ((bio = bio_list_pop(&bios)))
1979 __thin_bio_rb_add(tc, bio);
1980
1981 /*
1982 * Transfer the sorted bios in sort_bio_list back to
1983 * deferred_bio_list to allow lockless submission of
1984 * all bios.
1985 */
1986 __extract_sorted_bios(tc);
1987 }
1988
1989 static void process_thin_deferred_bios(struct thin_c *tc)
1990 {
1991 struct pool *pool = tc->pool;
1992 unsigned long flags;
1993 struct bio *bio;
1994 struct bio_list bios;
1995 struct blk_plug plug;
1996 unsigned count = 0;
1997
1998 if (tc->requeue_mode) {
1999 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2000 return;
2001 }
2002
2003 bio_list_init(&bios);
2004
2005 spin_lock_irqsave(&tc->lock, flags);
2006
2007 if (bio_list_empty(&tc->deferred_bio_list)) {
2008 spin_unlock_irqrestore(&tc->lock, flags);
2009 return;
2010 }
2011
2012 __sort_thin_deferred_bios(tc);
2013
2014 bio_list_merge(&bios, &tc->deferred_bio_list);
2015 bio_list_init(&tc->deferred_bio_list);
2016
2017 spin_unlock_irqrestore(&tc->lock, flags);
2018
2019 blk_start_plug(&plug);
2020 while ((bio = bio_list_pop(&bios))) {
2021 /*
2022 * If we've got no free new_mapping structs, and processing
2023 * this bio might require one, we pause until there are some
2024 * prepared mappings to process.
2025 */
2026 if (ensure_next_mapping(pool)) {
2027 spin_lock_irqsave(&tc->lock, flags);
2028 bio_list_add(&tc->deferred_bio_list, bio);
2029 bio_list_merge(&tc->deferred_bio_list, &bios);
2030 spin_unlock_irqrestore(&tc->lock, flags);
2031 break;
2032 }
2033
2034 if (bio_op(bio) == REQ_OP_DISCARD)
2035 pool->process_discard(tc, bio);
2036 else
2037 pool->process_bio(tc, bio);
2038
2039 if ((count++ & 127) == 0) {
2040 throttle_work_update(&pool->throttle);
2041 dm_pool_issue_prefetches(pool->pmd);
2042 }
2043 }
2044 blk_finish_plug(&plug);
2045 }
2046
2047 static int cmp_cells(const void *lhs, const void *rhs)
2048 {
2049 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2050 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2051
2052 BUG_ON(!lhs_cell->holder);
2053 BUG_ON(!rhs_cell->holder);
2054
2055 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2056 return -1;
2057
2058 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2059 return 1;
2060
2061 return 0;
2062 }
2063
2064 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2065 {
2066 unsigned count = 0;
2067 struct dm_bio_prison_cell *cell, *tmp;
2068
2069 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2070 if (count >= CELL_SORT_ARRAY_SIZE)
2071 break;
2072
2073 pool->cell_sort_array[count++] = cell;
2074 list_del(&cell->user_list);
2075 }
2076
2077 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2078
2079 return count;
2080 }
2081
2082 static void process_thin_deferred_cells(struct thin_c *tc)
2083 {
2084 struct pool *pool = tc->pool;
2085 unsigned long flags;
2086 struct list_head cells;
2087 struct dm_bio_prison_cell *cell;
2088 unsigned i, j, count;
2089
2090 INIT_LIST_HEAD(&cells);
2091
2092 spin_lock_irqsave(&tc->lock, flags);
2093 list_splice_init(&tc->deferred_cells, &cells);
2094 spin_unlock_irqrestore(&tc->lock, flags);
2095
2096 if (list_empty(&cells))
2097 return;
2098
2099 do {
2100 count = sort_cells(tc->pool, &cells);
2101
2102 for (i = 0; i < count; i++) {
2103 cell = pool->cell_sort_array[i];
2104 BUG_ON(!cell->holder);
2105
2106 /*
2107 * If we've got no free new_mapping structs, and processing
2108 * this bio might require one, we pause until there are some
2109 * prepared mappings to process.
2110 */
2111 if (ensure_next_mapping(pool)) {
2112 for (j = i; j < count; j++)
2113 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2114
2115 spin_lock_irqsave(&tc->lock, flags);
2116 list_splice(&cells, &tc->deferred_cells);
2117 spin_unlock_irqrestore(&tc->lock, flags);
2118 return;
2119 }
2120
2121 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2122 pool->process_discard_cell(tc, cell);
2123 else
2124 pool->process_cell(tc, cell);
2125 }
2126 } while (!list_empty(&cells));
2127 }
2128
2129 static void thin_get(struct thin_c *tc);
2130 static void thin_put(struct thin_c *tc);
2131
2132 /*
2133 * We can't hold rcu_read_lock() around code that can block. So we
2134 * find a thin with the rcu lock held; bump a refcount; then drop
2135 * the lock.
2136 */
2137 static struct thin_c *get_first_thin(struct pool *pool)
2138 {
2139 struct thin_c *tc = NULL;
2140
2141 rcu_read_lock();
2142 if (!list_empty(&pool->active_thins)) {
2143 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2144 thin_get(tc);
2145 }
2146 rcu_read_unlock();
2147
2148 return tc;
2149 }
2150
2151 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2152 {
2153 struct thin_c *old_tc = tc;
2154
2155 rcu_read_lock();
2156 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2157 thin_get(tc);
2158 thin_put(old_tc);
2159 rcu_read_unlock();
2160 return tc;
2161 }
2162 thin_put(old_tc);
2163 rcu_read_unlock();
2164
2165 return NULL;
2166 }
2167
2168 static void process_deferred_bios(struct pool *pool)
2169 {
2170 unsigned long flags;
2171 struct bio *bio;
2172 struct bio_list bios;
2173 struct thin_c *tc;
2174
2175 tc = get_first_thin(pool);
2176 while (tc) {
2177 process_thin_deferred_cells(tc);
2178 process_thin_deferred_bios(tc);
2179 tc = get_next_thin(pool, tc);
2180 }
2181
2182 /*
2183 * If there are any deferred flush bios, we must commit
2184 * the metadata before issuing them.
2185 */
2186 bio_list_init(&bios);
2187 spin_lock_irqsave(&pool->lock, flags);
2188 bio_list_merge(&bios, &pool->deferred_flush_bios);
2189 bio_list_init(&pool->deferred_flush_bios);
2190 spin_unlock_irqrestore(&pool->lock, flags);
2191
2192 if (bio_list_empty(&bios) &&
2193 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2194 return;
2195
2196 if (commit(pool)) {
2197 while ((bio = bio_list_pop(&bios)))
2198 bio_io_error(bio);
2199 return;
2200 }
2201 pool->last_commit_jiffies = jiffies;
2202
2203 while ((bio = bio_list_pop(&bios)))
2204 generic_make_request(bio);
2205 }
2206
2207 static void do_worker(struct work_struct *ws)
2208 {
2209 struct pool *pool = container_of(ws, struct pool, worker);
2210
2211 throttle_work_start(&pool->throttle);
2212 dm_pool_issue_prefetches(pool->pmd);
2213 throttle_work_update(&pool->throttle);
2214 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2215 throttle_work_update(&pool->throttle);
2216 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2217 throttle_work_update(&pool->throttle);
2218 process_deferred_bios(pool);
2219 throttle_work_complete(&pool->throttle);
2220 }
2221
2222 /*
2223 * We want to commit periodically so that not too much
2224 * unwritten data builds up.
2225 */
2226 static void do_waker(struct work_struct *ws)
2227 {
2228 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2229 wake_worker(pool);
2230 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2231 }
2232
2233 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2234
2235 /*
2236 * We're holding onto IO to allow userland time to react. After the
2237 * timeout either the pool will have been resized (and thus back in
2238 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2239 */
2240 static void do_no_space_timeout(struct work_struct *ws)
2241 {
2242 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2243 no_space_timeout);
2244
2245 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2246 pool->pf.error_if_no_space = true;
2247 notify_of_pool_mode_change_to_oods(pool);
2248 error_retry_list_with_code(pool, -ENOSPC);
2249 }
2250 }
2251
2252 /*----------------------------------------------------------------*/
2253
2254 struct pool_work {
2255 struct work_struct worker;
2256 struct completion complete;
2257 };
2258
2259 static struct pool_work *to_pool_work(struct work_struct *ws)
2260 {
2261 return container_of(ws, struct pool_work, worker);
2262 }
2263
2264 static void pool_work_complete(struct pool_work *pw)
2265 {
2266 complete(&pw->complete);
2267 }
2268
2269 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2270 void (*fn)(struct work_struct *))
2271 {
2272 INIT_WORK_ONSTACK(&pw->worker, fn);
2273 init_completion(&pw->complete);
2274 queue_work(pool->wq, &pw->worker);
2275 wait_for_completion(&pw->complete);
2276 }
2277
2278 /*----------------------------------------------------------------*/
2279
2280 struct noflush_work {
2281 struct pool_work pw;
2282 struct thin_c *tc;
2283 };
2284
2285 static struct noflush_work *to_noflush(struct work_struct *ws)
2286 {
2287 return container_of(to_pool_work(ws), struct noflush_work, pw);
2288 }
2289
2290 static void do_noflush_start(struct work_struct *ws)
2291 {
2292 struct noflush_work *w = to_noflush(ws);
2293 w->tc->requeue_mode = true;
2294 requeue_io(w->tc);
2295 pool_work_complete(&w->pw);
2296 }
2297
2298 static void do_noflush_stop(struct work_struct *ws)
2299 {
2300 struct noflush_work *w = to_noflush(ws);
2301 w->tc->requeue_mode = false;
2302 pool_work_complete(&w->pw);
2303 }
2304
2305 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2306 {
2307 struct noflush_work w;
2308
2309 w.tc = tc;
2310 pool_work_wait(&w.pw, tc->pool, fn);
2311 }
2312
2313 /*----------------------------------------------------------------*/
2314
2315 static enum pool_mode get_pool_mode(struct pool *pool)
2316 {
2317 return pool->pf.mode;
2318 }
2319
2320 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2321 {
2322 dm_table_event(pool->ti->table);
2323 DMINFO("%s: switching pool to %s mode",
2324 dm_device_name(pool->pool_md), new_mode);
2325 }
2326
2327 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2328 {
2329 if (!pool->pf.error_if_no_space)
2330 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2331 else
2332 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2333 }
2334
2335 static bool passdown_enabled(struct pool_c *pt)
2336 {
2337 return pt->adjusted_pf.discard_passdown;
2338 }
2339
2340 static void set_discard_callbacks(struct pool *pool)
2341 {
2342 struct pool_c *pt = pool->ti->private;
2343
2344 if (passdown_enabled(pt)) {
2345 pool->process_discard_cell = process_discard_cell_passdown;
2346 pool->process_prepared_discard = process_prepared_discard_passdown;
2347 } else {
2348 pool->process_discard_cell = process_discard_cell_no_passdown;
2349 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2350 }
2351 }
2352
2353 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2354 {
2355 struct pool_c *pt = pool->ti->private;
2356 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2357 enum pool_mode old_mode = get_pool_mode(pool);
2358 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2359
2360 /*
2361 * Never allow the pool to transition to PM_WRITE mode if user
2362 * intervention is required to verify metadata and data consistency.
2363 */
2364 if (new_mode == PM_WRITE && needs_check) {
2365 DMERR("%s: unable to switch pool to write mode until repaired.",
2366 dm_device_name(pool->pool_md));
2367 if (old_mode != new_mode)
2368 new_mode = old_mode;
2369 else
2370 new_mode = PM_READ_ONLY;
2371 }
2372 /*
2373 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2374 * not going to recover without a thin_repair. So we never let the
2375 * pool move out of the old mode.
2376 */
2377 if (old_mode == PM_FAIL)
2378 new_mode = old_mode;
2379
2380 switch (new_mode) {
2381 case PM_FAIL:
2382 if (old_mode != new_mode)
2383 notify_of_pool_mode_change(pool, "failure");
2384 dm_pool_metadata_read_only(pool->pmd);
2385 pool->process_bio = process_bio_fail;
2386 pool->process_discard = process_bio_fail;
2387 pool->process_cell = process_cell_fail;
2388 pool->process_discard_cell = process_cell_fail;
2389 pool->process_prepared_mapping = process_prepared_mapping_fail;
2390 pool->process_prepared_discard = process_prepared_discard_fail;
2391
2392 error_retry_list(pool);
2393 break;
2394
2395 case PM_READ_ONLY:
2396 if (old_mode != new_mode)
2397 notify_of_pool_mode_change(pool, "read-only");
2398 dm_pool_metadata_read_only(pool->pmd);
2399 pool->process_bio = process_bio_read_only;
2400 pool->process_discard = process_bio_success;
2401 pool->process_cell = process_cell_read_only;
2402 pool->process_discard_cell = process_cell_success;
2403 pool->process_prepared_mapping = process_prepared_mapping_fail;
2404 pool->process_prepared_discard = process_prepared_discard_success;
2405
2406 error_retry_list(pool);
2407 break;
2408
2409 case PM_OUT_OF_DATA_SPACE:
2410 /*
2411 * Ideally we'd never hit this state; the low water mark
2412 * would trigger userland to extend the pool before we
2413 * completely run out of data space. However, many small
2414 * IOs to unprovisioned space can consume data space at an
2415 * alarming rate. Adjust your low water mark if you're
2416 * frequently seeing this mode.
2417 */
2418 if (old_mode != new_mode)
2419 notify_of_pool_mode_change_to_oods(pool);
2420 pool->out_of_data_space = true;
2421 pool->process_bio = process_bio_read_only;
2422 pool->process_discard = process_discard_bio;
2423 pool->process_cell = process_cell_read_only;
2424 pool->process_prepared_mapping = process_prepared_mapping;
2425 set_discard_callbacks(pool);
2426
2427 if (!pool->pf.error_if_no_space && no_space_timeout)
2428 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2429 break;
2430
2431 case PM_WRITE:
2432 if (old_mode != new_mode)
2433 notify_of_pool_mode_change(pool, "write");
2434 pool->out_of_data_space = false;
2435 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2436 dm_pool_metadata_read_write(pool->pmd);
2437 pool->process_bio = process_bio;
2438 pool->process_discard = process_discard_bio;
2439 pool->process_cell = process_cell;
2440 pool->process_prepared_mapping = process_prepared_mapping;
2441 set_discard_callbacks(pool);
2442 break;
2443 }
2444
2445 pool->pf.mode = new_mode;
2446 /*
2447 * The pool mode may have changed, sync it so bind_control_target()
2448 * doesn't cause an unexpected mode transition on resume.
2449 */
2450 pt->adjusted_pf.mode = new_mode;
2451 }
2452
2453 static void abort_transaction(struct pool *pool)
2454 {
2455 const char *dev_name = dm_device_name(pool->pool_md);
2456
2457 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2458 if (dm_pool_abort_metadata(pool->pmd)) {
2459 DMERR("%s: failed to abort metadata transaction", dev_name);
2460 set_pool_mode(pool, PM_FAIL);
2461 }
2462
2463 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2464 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2465 set_pool_mode(pool, PM_FAIL);
2466 }
2467 }
2468
2469 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2470 {
2471 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2472 dm_device_name(pool->pool_md), op, r);
2473
2474 abort_transaction(pool);
2475 set_pool_mode(pool, PM_READ_ONLY);
2476 }
2477
2478 /*----------------------------------------------------------------*/
2479
2480 /*
2481 * Mapping functions.
2482 */
2483
2484 /*
2485 * Called only while mapping a thin bio to hand it over to the workqueue.
2486 */
2487 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2488 {
2489 unsigned long flags;
2490 struct pool *pool = tc->pool;
2491
2492 spin_lock_irqsave(&tc->lock, flags);
2493 bio_list_add(&tc->deferred_bio_list, bio);
2494 spin_unlock_irqrestore(&tc->lock, flags);
2495
2496 wake_worker(pool);
2497 }
2498
2499 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2500 {
2501 struct pool *pool = tc->pool;
2502
2503 throttle_lock(&pool->throttle);
2504 thin_defer_bio(tc, bio);
2505 throttle_unlock(&pool->throttle);
2506 }
2507
2508 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2509 {
2510 unsigned long flags;
2511 struct pool *pool = tc->pool;
2512
2513 throttle_lock(&pool->throttle);
2514 spin_lock_irqsave(&tc->lock, flags);
2515 list_add_tail(&cell->user_list, &tc->deferred_cells);
2516 spin_unlock_irqrestore(&tc->lock, flags);
2517 throttle_unlock(&pool->throttle);
2518
2519 wake_worker(pool);
2520 }
2521
2522 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2523 {
2524 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2525
2526 h->tc = tc;
2527 h->shared_read_entry = NULL;
2528 h->all_io_entry = NULL;
2529 h->overwrite_mapping = NULL;
2530 h->cell = NULL;
2531 }
2532
2533 /*
2534 * Non-blocking function called from the thin target's map function.
2535 */
2536 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2537 {
2538 int r;
2539 struct thin_c *tc = ti->private;
2540 dm_block_t block = get_bio_block(tc, bio);
2541 struct dm_thin_device *td = tc->td;
2542 struct dm_thin_lookup_result result;
2543 struct dm_bio_prison_cell *virt_cell, *data_cell;
2544 struct dm_cell_key key;
2545
2546 thin_hook_bio(tc, bio);
2547
2548 if (tc->requeue_mode) {
2549 bio->bi_error = DM_ENDIO_REQUEUE;
2550 bio_endio(bio);
2551 return DM_MAPIO_SUBMITTED;
2552 }
2553
2554 if (get_pool_mode(tc->pool) == PM_FAIL) {
2555 bio_io_error(bio);
2556 return DM_MAPIO_SUBMITTED;
2557 }
2558
2559 if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA) ||
2560 bio_op(bio) == REQ_OP_DISCARD) {
2561 thin_defer_bio_with_throttle(tc, bio);
2562 return DM_MAPIO_SUBMITTED;
2563 }
2564
2565 /*
2566 * We must hold the virtual cell before doing the lookup, otherwise
2567 * there's a race with discard.
2568 */
2569 build_virtual_key(tc->td, block, &key);
2570 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2571 return DM_MAPIO_SUBMITTED;
2572
2573 r = dm_thin_find_block(td, block, 0, &result);
2574
2575 /*
2576 * Note that we defer readahead too.
2577 */
2578 switch (r) {
2579 case 0:
2580 if (unlikely(result.shared)) {
2581 /*
2582 * We have a race condition here between the
2583 * result.shared value returned by the lookup and
2584 * snapshot creation, which may cause new
2585 * sharing.
2586 *
2587 * To avoid this always quiesce the origin before
2588 * taking the snap. You want to do this anyway to
2589 * ensure a consistent application view
2590 * (i.e. lockfs).
2591 *
2592 * More distant ancestors are irrelevant. The
2593 * shared flag will be set in their case.
2594 */
2595 thin_defer_cell(tc, virt_cell);
2596 return DM_MAPIO_SUBMITTED;
2597 }
2598
2599 build_data_key(tc->td, result.block, &key);
2600 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2601 cell_defer_no_holder(tc, virt_cell);
2602 return DM_MAPIO_SUBMITTED;
2603 }
2604
2605 inc_all_io_entry(tc->pool, bio);
2606 cell_defer_no_holder(tc, data_cell);
2607 cell_defer_no_holder(tc, virt_cell);
2608
2609 remap(tc, bio, result.block);
2610 return DM_MAPIO_REMAPPED;
2611
2612 case -ENODATA:
2613 case -EWOULDBLOCK:
2614 thin_defer_cell(tc, virt_cell);
2615 return DM_MAPIO_SUBMITTED;
2616
2617 default:
2618 /*
2619 * Must always call bio_io_error on failure.
2620 * dm_thin_find_block can fail with -EINVAL if the
2621 * pool is switched to fail-io mode.
2622 */
2623 bio_io_error(bio);
2624 cell_defer_no_holder(tc, virt_cell);
2625 return DM_MAPIO_SUBMITTED;
2626 }
2627 }
2628
2629 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2630 {
2631 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2632 struct request_queue *q;
2633
2634 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2635 return 1;
2636
2637 q = bdev_get_queue(pt->data_dev->bdev);
2638 return bdi_congested(&q->backing_dev_info, bdi_bits);
2639 }
2640
2641 static void requeue_bios(struct pool *pool)
2642 {
2643 unsigned long flags;
2644 struct thin_c *tc;
2645
2646 rcu_read_lock();
2647 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2648 spin_lock_irqsave(&tc->lock, flags);
2649 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2650 bio_list_init(&tc->retry_on_resume_list);
2651 spin_unlock_irqrestore(&tc->lock, flags);
2652 }
2653 rcu_read_unlock();
2654 }
2655
2656 /*----------------------------------------------------------------
2657 * Binding of control targets to a pool object
2658 *--------------------------------------------------------------*/
2659 static bool data_dev_supports_discard(struct pool_c *pt)
2660 {
2661 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2662
2663 return q && blk_queue_discard(q);
2664 }
2665
2666 static bool is_factor(sector_t block_size, uint32_t n)
2667 {
2668 return !sector_div(block_size, n);
2669 }
2670
2671 /*
2672 * If discard_passdown was enabled verify that the data device
2673 * supports discards. Disable discard_passdown if not.
2674 */
2675 static void disable_passdown_if_not_supported(struct pool_c *pt)
2676 {
2677 struct pool *pool = pt->pool;
2678 struct block_device *data_bdev = pt->data_dev->bdev;
2679 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2680 const char *reason = NULL;
2681 char buf[BDEVNAME_SIZE];
2682
2683 if (!pt->adjusted_pf.discard_passdown)
2684 return;
2685
2686 if (!data_dev_supports_discard(pt))
2687 reason = "discard unsupported";
2688
2689 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2690 reason = "max discard sectors smaller than a block";
2691
2692 if (reason) {
2693 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2694 pt->adjusted_pf.discard_passdown = false;
2695 }
2696 }
2697
2698 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2699 {
2700 struct pool_c *pt = ti->private;
2701
2702 /*
2703 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2704 */
2705 enum pool_mode old_mode = get_pool_mode(pool);
2706 enum pool_mode new_mode = pt->adjusted_pf.mode;
2707
2708 /*
2709 * Don't change the pool's mode until set_pool_mode() below.
2710 * Otherwise the pool's process_* function pointers may
2711 * not match the desired pool mode.
2712 */
2713 pt->adjusted_pf.mode = old_mode;
2714
2715 pool->ti = ti;
2716 pool->pf = pt->adjusted_pf;
2717 pool->low_water_blocks = pt->low_water_blocks;
2718
2719 set_pool_mode(pool, new_mode);
2720
2721 return 0;
2722 }
2723
2724 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2725 {
2726 if (pool->ti == ti)
2727 pool->ti = NULL;
2728 }
2729
2730 /*----------------------------------------------------------------
2731 * Pool creation
2732 *--------------------------------------------------------------*/
2733 /* Initialize pool features. */
2734 static void pool_features_init(struct pool_features *pf)
2735 {
2736 pf->mode = PM_WRITE;
2737 pf->zero_new_blocks = true;
2738 pf->discard_enabled = true;
2739 pf->discard_passdown = true;
2740 pf->error_if_no_space = false;
2741 }
2742
2743 static void __pool_destroy(struct pool *pool)
2744 {
2745 __pool_table_remove(pool);
2746
2747 vfree(pool->cell_sort_array);
2748 if (dm_pool_metadata_close(pool->pmd) < 0)
2749 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2750
2751 dm_bio_prison_destroy(pool->prison);
2752 dm_kcopyd_client_destroy(pool->copier);
2753
2754 if (pool->wq)
2755 destroy_workqueue(pool->wq);
2756
2757 if (pool->next_mapping)
2758 mempool_free(pool->next_mapping, pool->mapping_pool);
2759 mempool_destroy(pool->mapping_pool);
2760 dm_deferred_set_destroy(pool->shared_read_ds);
2761 dm_deferred_set_destroy(pool->all_io_ds);
2762 kfree(pool);
2763 }
2764
2765 static struct kmem_cache *_new_mapping_cache;
2766
2767 static struct pool *pool_create(struct mapped_device *pool_md,
2768 struct block_device *metadata_dev,
2769 unsigned long block_size,
2770 int read_only, char **error)
2771 {
2772 int r;
2773 void *err_p;
2774 struct pool *pool;
2775 struct dm_pool_metadata *pmd;
2776 bool format_device = read_only ? false : true;
2777
2778 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2779 if (IS_ERR(pmd)) {
2780 *error = "Error creating metadata object";
2781 return (struct pool *)pmd;
2782 }
2783
2784 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2785 if (!pool) {
2786 *error = "Error allocating memory for pool";
2787 err_p = ERR_PTR(-ENOMEM);
2788 goto bad_pool;
2789 }
2790
2791 pool->pmd = pmd;
2792 pool->sectors_per_block = block_size;
2793 if (block_size & (block_size - 1))
2794 pool->sectors_per_block_shift = -1;
2795 else
2796 pool->sectors_per_block_shift = __ffs(block_size);
2797 pool->low_water_blocks = 0;
2798 pool_features_init(&pool->pf);
2799 pool->prison = dm_bio_prison_create();
2800 if (!pool->prison) {
2801 *error = "Error creating pool's bio prison";
2802 err_p = ERR_PTR(-ENOMEM);
2803 goto bad_prison;
2804 }
2805
2806 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2807 if (IS_ERR(pool->copier)) {
2808 r = PTR_ERR(pool->copier);
2809 *error = "Error creating pool's kcopyd client";
2810 err_p = ERR_PTR(r);
2811 goto bad_kcopyd_client;
2812 }
2813
2814 /*
2815 * Create singlethreaded workqueue that will service all devices
2816 * that use this metadata.
2817 */
2818 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2819 if (!pool->wq) {
2820 *error = "Error creating pool's workqueue";
2821 err_p = ERR_PTR(-ENOMEM);
2822 goto bad_wq;
2823 }
2824
2825 throttle_init(&pool->throttle);
2826 INIT_WORK(&pool->worker, do_worker);
2827 INIT_DELAYED_WORK(&pool->waker, do_waker);
2828 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2829 spin_lock_init(&pool->lock);
2830 bio_list_init(&pool->deferred_flush_bios);
2831 INIT_LIST_HEAD(&pool->prepared_mappings);
2832 INIT_LIST_HEAD(&pool->prepared_discards);
2833 INIT_LIST_HEAD(&pool->active_thins);
2834 pool->low_water_triggered = false;
2835 pool->suspended = true;
2836 pool->out_of_data_space = false;
2837
2838 pool->shared_read_ds = dm_deferred_set_create();
2839 if (!pool->shared_read_ds) {
2840 *error = "Error creating pool's shared read deferred set";
2841 err_p = ERR_PTR(-ENOMEM);
2842 goto bad_shared_read_ds;
2843 }
2844
2845 pool->all_io_ds = dm_deferred_set_create();
2846 if (!pool->all_io_ds) {
2847 *error = "Error creating pool's all io deferred set";
2848 err_p = ERR_PTR(-ENOMEM);
2849 goto bad_all_io_ds;
2850 }
2851
2852 pool->next_mapping = NULL;
2853 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2854 _new_mapping_cache);
2855 if (!pool->mapping_pool) {
2856 *error = "Error creating pool's mapping mempool";
2857 err_p = ERR_PTR(-ENOMEM);
2858 goto bad_mapping_pool;
2859 }
2860
2861 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2862 if (!pool->cell_sort_array) {
2863 *error = "Error allocating cell sort array";
2864 err_p = ERR_PTR(-ENOMEM);
2865 goto bad_sort_array;
2866 }
2867
2868 pool->ref_count = 1;
2869 pool->last_commit_jiffies = jiffies;
2870 pool->pool_md = pool_md;
2871 pool->md_dev = metadata_dev;
2872 __pool_table_insert(pool);
2873
2874 return pool;
2875
2876 bad_sort_array:
2877 mempool_destroy(pool->mapping_pool);
2878 bad_mapping_pool:
2879 dm_deferred_set_destroy(pool->all_io_ds);
2880 bad_all_io_ds:
2881 dm_deferred_set_destroy(pool->shared_read_ds);
2882 bad_shared_read_ds:
2883 destroy_workqueue(pool->wq);
2884 bad_wq:
2885 dm_kcopyd_client_destroy(pool->copier);
2886 bad_kcopyd_client:
2887 dm_bio_prison_destroy(pool->prison);
2888 bad_prison:
2889 kfree(pool);
2890 bad_pool:
2891 if (dm_pool_metadata_close(pmd))
2892 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2893
2894 return err_p;
2895 }
2896
2897 static void __pool_inc(struct pool *pool)
2898 {
2899 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2900 pool->ref_count++;
2901 }
2902
2903 static void __pool_dec(struct pool *pool)
2904 {
2905 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2906 BUG_ON(!pool->ref_count);
2907 if (!--pool->ref_count)
2908 __pool_destroy(pool);
2909 }
2910
2911 static struct pool *__pool_find(struct mapped_device *pool_md,
2912 struct block_device *metadata_dev,
2913 unsigned long block_size, int read_only,
2914 char **error, int *created)
2915 {
2916 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2917
2918 if (pool) {
2919 if (pool->pool_md != pool_md) {
2920 *error = "metadata device already in use by a pool";
2921 return ERR_PTR(-EBUSY);
2922 }
2923 __pool_inc(pool);
2924
2925 } else {
2926 pool = __pool_table_lookup(pool_md);
2927 if (pool) {
2928 if (pool->md_dev != metadata_dev) {
2929 *error = "different pool cannot replace a pool";
2930 return ERR_PTR(-EINVAL);
2931 }
2932 __pool_inc(pool);
2933
2934 } else {
2935 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2936 *created = 1;
2937 }
2938 }
2939
2940 return pool;
2941 }
2942
2943 /*----------------------------------------------------------------
2944 * Pool target methods
2945 *--------------------------------------------------------------*/
2946 static void pool_dtr(struct dm_target *ti)
2947 {
2948 struct pool_c *pt = ti->private;
2949
2950 mutex_lock(&dm_thin_pool_table.mutex);
2951
2952 unbind_control_target(pt->pool, ti);
2953 __pool_dec(pt->pool);
2954 dm_put_device(ti, pt->metadata_dev);
2955 dm_put_device(ti, pt->data_dev);
2956 kfree(pt);
2957
2958 mutex_unlock(&dm_thin_pool_table.mutex);
2959 }
2960
2961 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2962 struct dm_target *ti)
2963 {
2964 int r;
2965 unsigned argc;
2966 const char *arg_name;
2967
2968 static struct dm_arg _args[] = {
2969 {0, 4, "Invalid number of pool feature arguments"},
2970 };
2971
2972 /*
2973 * No feature arguments supplied.
2974 */
2975 if (!as->argc)
2976 return 0;
2977
2978 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2979 if (r)
2980 return -EINVAL;
2981
2982 while (argc && !r) {
2983 arg_name = dm_shift_arg(as);
2984 argc--;
2985
2986 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2987 pf->zero_new_blocks = false;
2988
2989 else if (!strcasecmp(arg_name, "ignore_discard"))
2990 pf->discard_enabled = false;
2991
2992 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2993 pf->discard_passdown = false;
2994
2995 else if (!strcasecmp(arg_name, "read_only"))
2996 pf->mode = PM_READ_ONLY;
2997
2998 else if (!strcasecmp(arg_name, "error_if_no_space"))
2999 pf->error_if_no_space = true;
3000
3001 else {
3002 ti->error = "Unrecognised pool feature requested";
3003 r = -EINVAL;
3004 break;
3005 }
3006 }
3007
3008 return r;
3009 }
3010
3011 static void metadata_low_callback(void *context)
3012 {
3013 struct pool *pool = context;
3014
3015 DMWARN("%s: reached low water mark for metadata device: sending event.",
3016 dm_device_name(pool->pool_md));
3017
3018 dm_table_event(pool->ti->table);
3019 }
3020
3021 static sector_t get_dev_size(struct block_device *bdev)
3022 {
3023 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3024 }
3025
3026 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3027 {
3028 sector_t metadata_dev_size = get_dev_size(bdev);
3029 char buffer[BDEVNAME_SIZE];
3030
3031 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3032 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3033 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3034 }
3035
3036 static sector_t get_metadata_dev_size(struct block_device *bdev)
3037 {
3038 sector_t metadata_dev_size = get_dev_size(bdev);
3039
3040 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3041 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3042
3043 return metadata_dev_size;
3044 }
3045
3046 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3047 {
3048 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3049
3050 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3051
3052 return metadata_dev_size;
3053 }
3054
3055 /*
3056 * When a metadata threshold is crossed a dm event is triggered, and
3057 * userland should respond by growing the metadata device. We could let
3058 * userland set the threshold, like we do with the data threshold, but I'm
3059 * not sure they know enough to do this well.
3060 */
3061 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3062 {
3063 /*
3064 * 4M is ample for all ops with the possible exception of thin
3065 * device deletion which is harmless if it fails (just retry the
3066 * delete after you've grown the device).
3067 */
3068 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3069 return min((dm_block_t)1024ULL /* 4M */, quarter);
3070 }
3071
3072 /*
3073 * thin-pool <metadata dev> <data dev>
3074 * <data block size (sectors)>
3075 * <low water mark (blocks)>
3076 * [<#feature args> [<arg>]*]
3077 *
3078 * Optional feature arguments are:
3079 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3080 * ignore_discard: disable discard
3081 * no_discard_passdown: don't pass discards down to the data device
3082 * read_only: Don't allow any changes to be made to the pool metadata.
3083 * error_if_no_space: error IOs, instead of queueing, if no space.
3084 */
3085 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3086 {
3087 int r, pool_created = 0;
3088 struct pool_c *pt;
3089 struct pool *pool;
3090 struct pool_features pf;
3091 struct dm_arg_set as;
3092 struct dm_dev *data_dev;
3093 unsigned long block_size;
3094 dm_block_t low_water_blocks;
3095 struct dm_dev *metadata_dev;
3096 fmode_t metadata_mode;
3097
3098 /*
3099 * FIXME Remove validation from scope of lock.
3100 */
3101 mutex_lock(&dm_thin_pool_table.mutex);
3102
3103 if (argc < 4) {
3104 ti->error = "Invalid argument count";
3105 r = -EINVAL;
3106 goto out_unlock;
3107 }
3108
3109 as.argc = argc;
3110 as.argv = argv;
3111
3112 /*
3113 * Set default pool features.
3114 */
3115 pool_features_init(&pf);
3116
3117 dm_consume_args(&as, 4);
3118 r = parse_pool_features(&as, &pf, ti);
3119 if (r)
3120 goto out_unlock;
3121
3122 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3123 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3124 if (r) {
3125 ti->error = "Error opening metadata block device";
3126 goto out_unlock;
3127 }
3128 warn_if_metadata_device_too_big(metadata_dev->bdev);
3129
3130 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3131 if (r) {
3132 ti->error = "Error getting data device";
3133 goto out_metadata;
3134 }
3135
3136 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3137 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3138 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3139 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3140 ti->error = "Invalid block size";
3141 r = -EINVAL;
3142 goto out;
3143 }
3144
3145 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3146 ti->error = "Invalid low water mark";
3147 r = -EINVAL;
3148 goto out;
3149 }
3150
3151 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3152 if (!pt) {
3153 r = -ENOMEM;
3154 goto out;
3155 }
3156
3157 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3158 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3159 if (IS_ERR(pool)) {
3160 r = PTR_ERR(pool);
3161 goto out_free_pt;
3162 }
3163
3164 /*
3165 * 'pool_created' reflects whether this is the first table load.
3166 * Top level discard support is not allowed to be changed after
3167 * initial load. This would require a pool reload to trigger thin
3168 * device changes.
3169 */
3170 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3171 ti->error = "Discard support cannot be disabled once enabled";
3172 r = -EINVAL;
3173 goto out_flags_changed;
3174 }
3175
3176 pt->pool = pool;
3177 pt->ti = ti;
3178 pt->metadata_dev = metadata_dev;
3179 pt->data_dev = data_dev;
3180 pt->low_water_blocks = low_water_blocks;
3181 pt->adjusted_pf = pt->requested_pf = pf;
3182 ti->num_flush_bios = 1;
3183
3184 /*
3185 * Only need to enable discards if the pool should pass
3186 * them down to the data device. The thin device's discard
3187 * processing will cause mappings to be removed from the btree.
3188 */
3189 ti->discard_zeroes_data_unsupported = true;
3190 if (pf.discard_enabled && pf.discard_passdown) {
3191 ti->num_discard_bios = 1;
3192
3193 /*
3194 * Setting 'discards_supported' circumvents the normal
3195 * stacking of discard limits (this keeps the pool and
3196 * thin devices' discard limits consistent).
3197 */
3198 ti->discards_supported = true;
3199 }
3200 ti->private = pt;
3201
3202 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3203 calc_metadata_threshold(pt),
3204 metadata_low_callback,
3205 pool);
3206 if (r)
3207 goto out_flags_changed;
3208
3209 pt->callbacks.congested_fn = pool_is_congested;
3210 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3211
3212 mutex_unlock(&dm_thin_pool_table.mutex);
3213
3214 return 0;
3215
3216 out_flags_changed:
3217 __pool_dec(pool);
3218 out_free_pt:
3219 kfree(pt);
3220 out:
3221 dm_put_device(ti, data_dev);
3222 out_metadata:
3223 dm_put_device(ti, metadata_dev);
3224 out_unlock:
3225 mutex_unlock(&dm_thin_pool_table.mutex);
3226
3227 return r;
3228 }
3229
3230 static int pool_map(struct dm_target *ti, struct bio *bio)
3231 {
3232 int r;
3233 struct pool_c *pt = ti->private;
3234 struct pool *pool = pt->pool;
3235 unsigned long flags;
3236
3237 /*
3238 * As this is a singleton target, ti->begin is always zero.
3239 */
3240 spin_lock_irqsave(&pool->lock, flags);
3241 bio->bi_bdev = pt->data_dev->bdev;
3242 r = DM_MAPIO_REMAPPED;
3243 spin_unlock_irqrestore(&pool->lock, flags);
3244
3245 return r;
3246 }
3247
3248 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3249 {
3250 int r;
3251 struct pool_c *pt = ti->private;
3252 struct pool *pool = pt->pool;
3253 sector_t data_size = ti->len;
3254 dm_block_t sb_data_size;
3255
3256 *need_commit = false;
3257
3258 (void) sector_div(data_size, pool->sectors_per_block);
3259
3260 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3261 if (r) {
3262 DMERR("%s: failed to retrieve data device size",
3263 dm_device_name(pool->pool_md));
3264 return r;
3265 }
3266
3267 if (data_size < sb_data_size) {
3268 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3269 dm_device_name(pool->pool_md),
3270 (unsigned long long)data_size, sb_data_size);
3271 return -EINVAL;
3272
3273 } else if (data_size > sb_data_size) {
3274 if (dm_pool_metadata_needs_check(pool->pmd)) {
3275 DMERR("%s: unable to grow the data device until repaired.",
3276 dm_device_name(pool->pool_md));
3277 return 0;
3278 }
3279
3280 if (sb_data_size)
3281 DMINFO("%s: growing the data device from %llu to %llu blocks",
3282 dm_device_name(pool->pool_md),
3283 sb_data_size, (unsigned long long)data_size);
3284 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3285 if (r) {
3286 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3287 return r;
3288 }
3289
3290 *need_commit = true;
3291 }
3292
3293 return 0;
3294 }
3295
3296 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3297 {
3298 int r;
3299 struct pool_c *pt = ti->private;
3300 struct pool *pool = pt->pool;
3301 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3302
3303 *need_commit = false;
3304
3305 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3306
3307 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3308 if (r) {
3309 DMERR("%s: failed to retrieve metadata device size",
3310 dm_device_name(pool->pool_md));
3311 return r;
3312 }
3313
3314 if (metadata_dev_size < sb_metadata_dev_size) {
3315 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3316 dm_device_name(pool->pool_md),
3317 metadata_dev_size, sb_metadata_dev_size);
3318 return -EINVAL;
3319
3320 } else if (metadata_dev_size > sb_metadata_dev_size) {
3321 if (dm_pool_metadata_needs_check(pool->pmd)) {
3322 DMERR("%s: unable to grow the metadata device until repaired.",
3323 dm_device_name(pool->pool_md));
3324 return 0;
3325 }
3326
3327 warn_if_metadata_device_too_big(pool->md_dev);
3328 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3329 dm_device_name(pool->pool_md),
3330 sb_metadata_dev_size, metadata_dev_size);
3331 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3332 if (r) {
3333 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3334 return r;
3335 }
3336
3337 *need_commit = true;
3338 }
3339
3340 return 0;
3341 }
3342
3343 /*
3344 * Retrieves the number of blocks of the data device from
3345 * the superblock and compares it to the actual device size,
3346 * thus resizing the data device in case it has grown.
3347 *
3348 * This both copes with opening preallocated data devices in the ctr
3349 * being followed by a resume
3350 * -and-
3351 * calling the resume method individually after userspace has
3352 * grown the data device in reaction to a table event.
3353 */
3354 static int pool_preresume(struct dm_target *ti)
3355 {
3356 int r;
3357 bool need_commit1, need_commit2;
3358 struct pool_c *pt = ti->private;
3359 struct pool *pool = pt->pool;
3360
3361 /*
3362 * Take control of the pool object.
3363 */
3364 r = bind_control_target(pool, ti);
3365 if (r)
3366 return r;
3367
3368 r = maybe_resize_data_dev(ti, &need_commit1);
3369 if (r)
3370 return r;
3371
3372 r = maybe_resize_metadata_dev(ti, &need_commit2);
3373 if (r)
3374 return r;
3375
3376 if (need_commit1 || need_commit2)
3377 (void) commit(pool);
3378
3379 return 0;
3380 }
3381
3382 static void pool_suspend_active_thins(struct pool *pool)
3383 {
3384 struct thin_c *tc;
3385
3386 /* Suspend all active thin devices */
3387 tc = get_first_thin(pool);
3388 while (tc) {
3389 dm_internal_suspend_noflush(tc->thin_md);
3390 tc = get_next_thin(pool, tc);
3391 }
3392 }
3393
3394 static void pool_resume_active_thins(struct pool *pool)
3395 {
3396 struct thin_c *tc;
3397
3398 /* Resume all active thin devices */
3399 tc = get_first_thin(pool);
3400 while (tc) {
3401 dm_internal_resume(tc->thin_md);
3402 tc = get_next_thin(pool, tc);
3403 }
3404 }
3405
3406 static void pool_resume(struct dm_target *ti)
3407 {
3408 struct pool_c *pt = ti->private;
3409 struct pool *pool = pt->pool;
3410 unsigned long flags;
3411
3412 /*
3413 * Must requeue active_thins' bios and then resume
3414 * active_thins _before_ clearing 'suspend' flag.
3415 */
3416 requeue_bios(pool);
3417 pool_resume_active_thins(pool);
3418
3419 spin_lock_irqsave(&pool->lock, flags);
3420 pool->low_water_triggered = false;
3421 pool->suspended = false;
3422 spin_unlock_irqrestore(&pool->lock, flags);
3423
3424 do_waker(&pool->waker.work);
3425 }
3426
3427 static void pool_presuspend(struct dm_target *ti)
3428 {
3429 struct pool_c *pt = ti->private;
3430 struct pool *pool = pt->pool;
3431 unsigned long flags;
3432
3433 spin_lock_irqsave(&pool->lock, flags);
3434 pool->suspended = true;
3435 spin_unlock_irqrestore(&pool->lock, flags);
3436
3437 pool_suspend_active_thins(pool);
3438 }
3439
3440 static void pool_presuspend_undo(struct dm_target *ti)
3441 {
3442 struct pool_c *pt = ti->private;
3443 struct pool *pool = pt->pool;
3444 unsigned long flags;
3445
3446 pool_resume_active_thins(pool);
3447
3448 spin_lock_irqsave(&pool->lock, flags);
3449 pool->suspended = false;
3450 spin_unlock_irqrestore(&pool->lock, flags);
3451 }
3452
3453 static void pool_postsuspend(struct dm_target *ti)
3454 {
3455 struct pool_c *pt = ti->private;
3456 struct pool *pool = pt->pool;
3457
3458 cancel_delayed_work_sync(&pool->waker);
3459 cancel_delayed_work_sync(&pool->no_space_timeout);
3460 flush_workqueue(pool->wq);
3461 (void) commit(pool);
3462 }
3463
3464 static int check_arg_count(unsigned argc, unsigned args_required)
3465 {
3466 if (argc != args_required) {
3467 DMWARN("Message received with %u arguments instead of %u.",
3468 argc, args_required);
3469 return -EINVAL;
3470 }
3471
3472 return 0;
3473 }
3474
3475 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3476 {
3477 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3478 *dev_id <= MAX_DEV_ID)
3479 return 0;
3480
3481 if (warning)
3482 DMWARN("Message received with invalid device id: %s", arg);
3483
3484 return -EINVAL;
3485 }
3486
3487 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3488 {
3489 dm_thin_id dev_id;
3490 int r;
3491
3492 r = check_arg_count(argc, 2);
3493 if (r)
3494 return r;
3495
3496 r = read_dev_id(argv[1], &dev_id, 1);
3497 if (r)
3498 return r;
3499
3500 r = dm_pool_create_thin(pool->pmd, dev_id);
3501 if (r) {
3502 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3503 argv[1]);
3504 return r;
3505 }
3506
3507 return 0;
3508 }
3509
3510 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3511 {
3512 dm_thin_id dev_id;
3513 dm_thin_id origin_dev_id;
3514 int r;
3515
3516 r = check_arg_count(argc, 3);
3517 if (r)
3518 return r;
3519
3520 r = read_dev_id(argv[1], &dev_id, 1);
3521 if (r)
3522 return r;
3523
3524 r = read_dev_id(argv[2], &origin_dev_id, 1);
3525 if (r)
3526 return r;
3527
3528 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3529 if (r) {
3530 DMWARN("Creation of new snapshot %s of device %s failed.",
3531 argv[1], argv[2]);
3532 return r;
3533 }
3534
3535 return 0;
3536 }
3537
3538 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3539 {
3540 dm_thin_id dev_id;
3541 int r;
3542
3543 r = check_arg_count(argc, 2);
3544 if (r)
3545 return r;
3546
3547 r = read_dev_id(argv[1], &dev_id, 1);
3548 if (r)
3549 return r;
3550
3551 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3552 if (r)
3553 DMWARN("Deletion of thin device %s failed.", argv[1]);
3554
3555 return r;
3556 }
3557
3558 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3559 {
3560 dm_thin_id old_id, new_id;
3561 int r;
3562
3563 r = check_arg_count(argc, 3);
3564 if (r)
3565 return r;
3566
3567 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3568 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3569 return -EINVAL;
3570 }
3571
3572 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3573 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3574 return -EINVAL;
3575 }
3576
3577 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3578 if (r) {
3579 DMWARN("Failed to change transaction id from %s to %s.",
3580 argv[1], argv[2]);
3581 return r;
3582 }
3583
3584 return 0;
3585 }
3586
3587 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3588 {
3589 int r;
3590
3591 r = check_arg_count(argc, 1);
3592 if (r)
3593 return r;
3594
3595 (void) commit(pool);
3596
3597 r = dm_pool_reserve_metadata_snap(pool->pmd);
3598 if (r)
3599 DMWARN("reserve_metadata_snap message failed.");
3600
3601 return r;
3602 }
3603
3604 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3605 {
3606 int r;
3607
3608 r = check_arg_count(argc, 1);
3609 if (r)
3610 return r;
3611
3612 r = dm_pool_release_metadata_snap(pool->pmd);
3613 if (r)
3614 DMWARN("release_metadata_snap message failed.");
3615
3616 return r;
3617 }
3618
3619 /*
3620 * Messages supported:
3621 * create_thin <dev_id>
3622 * create_snap <dev_id> <origin_id>
3623 * delete <dev_id>
3624 * set_transaction_id <current_trans_id> <new_trans_id>
3625 * reserve_metadata_snap
3626 * release_metadata_snap
3627 */
3628 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3629 {
3630 int r = -EINVAL;
3631 struct pool_c *pt = ti->private;
3632 struct pool *pool = pt->pool;
3633
3634 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3635 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3636 dm_device_name(pool->pool_md));
3637 return -EOPNOTSUPP;
3638 }
3639
3640 if (!strcasecmp(argv[0], "create_thin"))
3641 r = process_create_thin_mesg(argc, argv, pool);
3642
3643 else if (!strcasecmp(argv[0], "create_snap"))
3644 r = process_create_snap_mesg(argc, argv, pool);
3645
3646 else if (!strcasecmp(argv[0], "delete"))
3647 r = process_delete_mesg(argc, argv, pool);
3648
3649 else if (!strcasecmp(argv[0], "set_transaction_id"))
3650 r = process_set_transaction_id_mesg(argc, argv, pool);
3651
3652 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3653 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3654
3655 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3656 r = process_release_metadata_snap_mesg(argc, argv, pool);
3657
3658 else
3659 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3660
3661 if (!r)
3662 (void) commit(pool);
3663
3664 return r;
3665 }
3666
3667 static void emit_flags(struct pool_features *pf, char *result,
3668 unsigned sz, unsigned maxlen)
3669 {
3670 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3671 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3672 pf->error_if_no_space;
3673 DMEMIT("%u ", count);
3674
3675 if (!pf->zero_new_blocks)
3676 DMEMIT("skip_block_zeroing ");
3677
3678 if (!pf->discard_enabled)
3679 DMEMIT("ignore_discard ");
3680
3681 if (!pf->discard_passdown)
3682 DMEMIT("no_discard_passdown ");
3683
3684 if (pf->mode == PM_READ_ONLY)
3685 DMEMIT("read_only ");
3686
3687 if (pf->error_if_no_space)
3688 DMEMIT("error_if_no_space ");
3689 }
3690
3691 /*
3692 * Status line is:
3693 * <transaction id> <used metadata sectors>/<total metadata sectors>
3694 * <used data sectors>/<total data sectors> <held metadata root>
3695 * <pool mode> <discard config> <no space config> <needs_check>
3696 */
3697 static void pool_status(struct dm_target *ti, status_type_t type,
3698 unsigned status_flags, char *result, unsigned maxlen)
3699 {
3700 int r;
3701 unsigned sz = 0;
3702 uint64_t transaction_id;
3703 dm_block_t nr_free_blocks_data;
3704 dm_block_t nr_free_blocks_metadata;
3705 dm_block_t nr_blocks_data;
3706 dm_block_t nr_blocks_metadata;
3707 dm_block_t held_root;
3708 char buf[BDEVNAME_SIZE];
3709 char buf2[BDEVNAME_SIZE];
3710 struct pool_c *pt = ti->private;
3711 struct pool *pool = pt->pool;
3712
3713 switch (type) {
3714 case STATUSTYPE_INFO:
3715 if (get_pool_mode(pool) == PM_FAIL) {
3716 DMEMIT("Fail");
3717 break;
3718 }
3719
3720 /* Commit to ensure statistics aren't out-of-date */
3721 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3722 (void) commit(pool);
3723
3724 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3725 if (r) {
3726 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3727 dm_device_name(pool->pool_md), r);
3728 goto err;
3729 }
3730
3731 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3732 if (r) {
3733 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3734 dm_device_name(pool->pool_md), r);
3735 goto err;
3736 }
3737
3738 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3739 if (r) {
3740 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3741 dm_device_name(pool->pool_md), r);
3742 goto err;
3743 }
3744
3745 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3746 if (r) {
3747 DMERR("%s: dm_pool_get_free_block_count returned %d",
3748 dm_device_name(pool->pool_md), r);
3749 goto err;
3750 }
3751
3752 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3753 if (r) {
3754 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3755 dm_device_name(pool->pool_md), r);
3756 goto err;
3757 }
3758
3759 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3760 if (r) {
3761 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3762 dm_device_name(pool->pool_md), r);
3763 goto err;
3764 }
3765
3766 DMEMIT("%llu %llu/%llu %llu/%llu ",
3767 (unsigned long long)transaction_id,
3768 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3769 (unsigned long long)nr_blocks_metadata,
3770 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3771 (unsigned long long)nr_blocks_data);
3772
3773 if (held_root)
3774 DMEMIT("%llu ", held_root);
3775 else
3776 DMEMIT("- ");
3777
3778 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3779 DMEMIT("out_of_data_space ");
3780 else if (pool->pf.mode == PM_READ_ONLY)
3781 DMEMIT("ro ");
3782 else
3783 DMEMIT("rw ");
3784
3785 if (!pool->pf.discard_enabled)
3786 DMEMIT("ignore_discard ");
3787 else if (pool->pf.discard_passdown)
3788 DMEMIT("discard_passdown ");
3789 else
3790 DMEMIT("no_discard_passdown ");
3791
3792 if (pool->pf.error_if_no_space)
3793 DMEMIT("error_if_no_space ");
3794 else
3795 DMEMIT("queue_if_no_space ");
3796
3797 if (dm_pool_metadata_needs_check(pool->pmd))
3798 DMEMIT("needs_check ");
3799 else
3800 DMEMIT("- ");
3801
3802 break;
3803
3804 case STATUSTYPE_TABLE:
3805 DMEMIT("%s %s %lu %llu ",
3806 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3807 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3808 (unsigned long)pool->sectors_per_block,
3809 (unsigned long long)pt->low_water_blocks);
3810 emit_flags(&pt->requested_pf, result, sz, maxlen);
3811 break;
3812 }
3813 return;
3814
3815 err:
3816 DMEMIT("Error");
3817 }
3818
3819 static int pool_iterate_devices(struct dm_target *ti,
3820 iterate_devices_callout_fn fn, void *data)
3821 {
3822 struct pool_c *pt = ti->private;
3823
3824 return fn(ti, pt->data_dev, 0, ti->len, data);
3825 }
3826
3827 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3828 {
3829 struct pool_c *pt = ti->private;
3830 struct pool *pool = pt->pool;
3831 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3832
3833 /*
3834 * If max_sectors is smaller than pool->sectors_per_block adjust it
3835 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3836 * This is especially beneficial when the pool's data device is a RAID
3837 * device that has a full stripe width that matches pool->sectors_per_block
3838 * -- because even though partial RAID stripe-sized IOs will be issued to a
3839 * single RAID stripe; when aggregated they will end on a full RAID stripe
3840 * boundary.. which avoids additional partial RAID stripe writes cascading
3841 */
3842 if (limits->max_sectors < pool->sectors_per_block) {
3843 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3844 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3845 limits->max_sectors--;
3846 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3847 }
3848 }
3849
3850 /*
3851 * If the system-determined stacked limits are compatible with the
3852 * pool's blocksize (io_opt is a factor) do not override them.
3853 */
3854 if (io_opt_sectors < pool->sectors_per_block ||
3855 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3856 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3857 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3858 else
3859 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3860 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3861 }
3862
3863 /*
3864 * pt->adjusted_pf is a staging area for the actual features to use.
3865 * They get transferred to the live pool in bind_control_target()
3866 * called from pool_preresume().
3867 */
3868 if (!pt->adjusted_pf.discard_enabled) {
3869 /*
3870 * Must explicitly disallow stacking discard limits otherwise the
3871 * block layer will stack them if pool's data device has support.
3872 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3873 * user to see that, so make sure to set all discard limits to 0.
3874 */
3875 limits->discard_granularity = 0;
3876 return;
3877 }
3878
3879 disable_passdown_if_not_supported(pt);
3880
3881 /*
3882 * The pool uses the same discard limits as the underlying data
3883 * device. DM core has already set this up.
3884 */
3885 }
3886
3887 static struct target_type pool_target = {
3888 .name = "thin-pool",
3889 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3890 DM_TARGET_IMMUTABLE,
3891 .version = {1, 19, 0},
3892 .module = THIS_MODULE,
3893 .ctr = pool_ctr,
3894 .dtr = pool_dtr,
3895 .map = pool_map,
3896 .presuspend = pool_presuspend,
3897 .presuspend_undo = pool_presuspend_undo,
3898 .postsuspend = pool_postsuspend,
3899 .preresume = pool_preresume,
3900 .resume = pool_resume,
3901 .message = pool_message,
3902 .status = pool_status,
3903 .iterate_devices = pool_iterate_devices,
3904 .io_hints = pool_io_hints,
3905 };
3906
3907 /*----------------------------------------------------------------
3908 * Thin target methods
3909 *--------------------------------------------------------------*/
3910 static void thin_get(struct thin_c *tc)
3911 {
3912 atomic_inc(&tc->refcount);
3913 }
3914
3915 static void thin_put(struct thin_c *tc)
3916 {
3917 if (atomic_dec_and_test(&tc->refcount))
3918 complete(&tc->can_destroy);
3919 }
3920
3921 static void thin_dtr(struct dm_target *ti)
3922 {
3923 struct thin_c *tc = ti->private;
3924 unsigned long flags;
3925
3926 spin_lock_irqsave(&tc->pool->lock, flags);
3927 list_del_rcu(&tc->list);
3928 spin_unlock_irqrestore(&tc->pool->lock, flags);
3929 synchronize_rcu();
3930
3931 thin_put(tc);
3932 wait_for_completion(&tc->can_destroy);
3933
3934 mutex_lock(&dm_thin_pool_table.mutex);
3935
3936 __pool_dec(tc->pool);
3937 dm_pool_close_thin_device(tc->td);
3938 dm_put_device(ti, tc->pool_dev);
3939 if (tc->origin_dev)
3940 dm_put_device(ti, tc->origin_dev);
3941 kfree(tc);
3942
3943 mutex_unlock(&dm_thin_pool_table.mutex);
3944 }
3945
3946 /*
3947 * Thin target parameters:
3948 *
3949 * <pool_dev> <dev_id> [origin_dev]
3950 *
3951 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3952 * dev_id: the internal device identifier
3953 * origin_dev: a device external to the pool that should act as the origin
3954 *
3955 * If the pool device has discards disabled, they get disabled for the thin
3956 * device as well.
3957 */
3958 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3959 {
3960 int r;
3961 struct thin_c *tc;
3962 struct dm_dev *pool_dev, *origin_dev;
3963 struct mapped_device *pool_md;
3964 unsigned long flags;
3965
3966 mutex_lock(&dm_thin_pool_table.mutex);
3967
3968 if (argc != 2 && argc != 3) {
3969 ti->error = "Invalid argument count";
3970 r = -EINVAL;
3971 goto out_unlock;
3972 }
3973
3974 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3975 if (!tc) {
3976 ti->error = "Out of memory";
3977 r = -ENOMEM;
3978 goto out_unlock;
3979 }
3980 tc->thin_md = dm_table_get_md(ti->table);
3981 spin_lock_init(&tc->lock);
3982 INIT_LIST_HEAD(&tc->deferred_cells);
3983 bio_list_init(&tc->deferred_bio_list);
3984 bio_list_init(&tc->retry_on_resume_list);
3985 tc->sort_bio_list = RB_ROOT;
3986
3987 if (argc == 3) {
3988 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3989 if (r) {
3990 ti->error = "Error opening origin device";
3991 goto bad_origin_dev;
3992 }
3993 tc->origin_dev = origin_dev;
3994 }
3995
3996 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3997 if (r) {
3998 ti->error = "Error opening pool device";
3999 goto bad_pool_dev;
4000 }
4001 tc->pool_dev = pool_dev;
4002
4003 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4004 ti->error = "Invalid device id";
4005 r = -EINVAL;
4006 goto bad_common;
4007 }
4008
4009 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4010 if (!pool_md) {
4011 ti->error = "Couldn't get pool mapped device";
4012 r = -EINVAL;
4013 goto bad_common;
4014 }
4015
4016 tc->pool = __pool_table_lookup(pool_md);
4017 if (!tc->pool) {
4018 ti->error = "Couldn't find pool object";
4019 r = -EINVAL;
4020 goto bad_pool_lookup;
4021 }
4022 __pool_inc(tc->pool);
4023
4024 if (get_pool_mode(tc->pool) == PM_FAIL) {
4025 ti->error = "Couldn't open thin device, Pool is in fail mode";
4026 r = -EINVAL;
4027 goto bad_pool;
4028 }
4029
4030 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4031 if (r) {
4032 ti->error = "Couldn't open thin internal device";
4033 goto bad_pool;
4034 }
4035
4036 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4037 if (r)
4038 goto bad;
4039
4040 ti->num_flush_bios = 1;
4041 ti->flush_supported = true;
4042 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4043
4044 /* In case the pool supports discards, pass them on. */
4045 ti->discard_zeroes_data_unsupported = true;
4046 if (tc->pool->pf.discard_enabled) {
4047 ti->discards_supported = true;
4048 ti->num_discard_bios = 1;
4049 ti->split_discard_bios = false;
4050 }
4051
4052 mutex_unlock(&dm_thin_pool_table.mutex);
4053
4054 spin_lock_irqsave(&tc->pool->lock, flags);
4055 if (tc->pool->suspended) {
4056 spin_unlock_irqrestore(&tc->pool->lock, flags);
4057 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4058 ti->error = "Unable to activate thin device while pool is suspended";
4059 r = -EINVAL;
4060 goto bad;
4061 }
4062 atomic_set(&tc->refcount, 1);
4063 init_completion(&tc->can_destroy);
4064 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4065 spin_unlock_irqrestore(&tc->pool->lock, flags);
4066 /*
4067 * This synchronize_rcu() call is needed here otherwise we risk a
4068 * wake_worker() call finding no bios to process (because the newly
4069 * added tc isn't yet visible). So this reduces latency since we
4070 * aren't then dependent on the periodic commit to wake_worker().
4071 */
4072 synchronize_rcu();
4073
4074 dm_put(pool_md);
4075
4076 return 0;
4077
4078 bad:
4079 dm_pool_close_thin_device(tc->td);
4080 bad_pool:
4081 __pool_dec(tc->pool);
4082 bad_pool_lookup:
4083 dm_put(pool_md);
4084 bad_common:
4085 dm_put_device(ti, tc->pool_dev);
4086 bad_pool_dev:
4087 if (tc->origin_dev)
4088 dm_put_device(ti, tc->origin_dev);
4089 bad_origin_dev:
4090 kfree(tc);
4091 out_unlock:
4092 mutex_unlock(&dm_thin_pool_table.mutex);
4093
4094 return r;
4095 }
4096
4097 static int thin_map(struct dm_target *ti, struct bio *bio)
4098 {
4099 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4100
4101 return thin_bio_map(ti, bio);
4102 }
4103
4104 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4105 {
4106 unsigned long flags;
4107 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4108 struct list_head work;
4109 struct dm_thin_new_mapping *m, *tmp;
4110 struct pool *pool = h->tc->pool;
4111
4112 if (h->shared_read_entry) {
4113 INIT_LIST_HEAD(&work);
4114 dm_deferred_entry_dec(h->shared_read_entry, &work);
4115
4116 spin_lock_irqsave(&pool->lock, flags);
4117 list_for_each_entry_safe(m, tmp, &work, list) {
4118 list_del(&m->list);
4119 __complete_mapping_preparation(m);
4120 }
4121 spin_unlock_irqrestore(&pool->lock, flags);
4122 }
4123
4124 if (h->all_io_entry) {
4125 INIT_LIST_HEAD(&work);
4126 dm_deferred_entry_dec(h->all_io_entry, &work);
4127 if (!list_empty(&work)) {
4128 spin_lock_irqsave(&pool->lock, flags);
4129 list_for_each_entry_safe(m, tmp, &work, list)
4130 list_add_tail(&m->list, &pool->prepared_discards);
4131 spin_unlock_irqrestore(&pool->lock, flags);
4132 wake_worker(pool);
4133 }
4134 }
4135
4136 if (h->cell)
4137 cell_defer_no_holder(h->tc, h->cell);
4138
4139 return 0;
4140 }
4141
4142 static void thin_presuspend(struct dm_target *ti)
4143 {
4144 struct thin_c *tc = ti->private;
4145
4146 if (dm_noflush_suspending(ti))
4147 noflush_work(tc, do_noflush_start);
4148 }
4149
4150 static void thin_postsuspend(struct dm_target *ti)
4151 {
4152 struct thin_c *tc = ti->private;
4153
4154 /*
4155 * The dm_noflush_suspending flag has been cleared by now, so
4156 * unfortunately we must always run this.
4157 */
4158 noflush_work(tc, do_noflush_stop);
4159 }
4160
4161 static int thin_preresume(struct dm_target *ti)
4162 {
4163 struct thin_c *tc = ti->private;
4164
4165 if (tc->origin_dev)
4166 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4167
4168 return 0;
4169 }
4170
4171 /*
4172 * <nr mapped sectors> <highest mapped sector>
4173 */
4174 static void thin_status(struct dm_target *ti, status_type_t type,
4175 unsigned status_flags, char *result, unsigned maxlen)
4176 {
4177 int r;
4178 ssize_t sz = 0;
4179 dm_block_t mapped, highest;
4180 char buf[BDEVNAME_SIZE];
4181 struct thin_c *tc = ti->private;
4182
4183 if (get_pool_mode(tc->pool) == PM_FAIL) {
4184 DMEMIT("Fail");
4185 return;
4186 }
4187
4188 if (!tc->td)
4189 DMEMIT("-");
4190 else {
4191 switch (type) {
4192 case STATUSTYPE_INFO:
4193 r = dm_thin_get_mapped_count(tc->td, &mapped);
4194 if (r) {
4195 DMERR("dm_thin_get_mapped_count returned %d", r);
4196 goto err;
4197 }
4198
4199 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4200 if (r < 0) {
4201 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4202 goto err;
4203 }
4204
4205 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4206 if (r)
4207 DMEMIT("%llu", ((highest + 1) *
4208 tc->pool->sectors_per_block) - 1);
4209 else
4210 DMEMIT("-");
4211 break;
4212
4213 case STATUSTYPE_TABLE:
4214 DMEMIT("%s %lu",
4215 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4216 (unsigned long) tc->dev_id);
4217 if (tc->origin_dev)
4218 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4219 break;
4220 }
4221 }
4222
4223 return;
4224
4225 err:
4226 DMEMIT("Error");
4227 }
4228
4229 static int thin_iterate_devices(struct dm_target *ti,
4230 iterate_devices_callout_fn fn, void *data)
4231 {
4232 sector_t blocks;
4233 struct thin_c *tc = ti->private;
4234 struct pool *pool = tc->pool;
4235
4236 /*
4237 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4238 * we follow a more convoluted path through to the pool's target.
4239 */
4240 if (!pool->ti)
4241 return 0; /* nothing is bound */
4242
4243 blocks = pool->ti->len;
4244 (void) sector_div(blocks, pool->sectors_per_block);
4245 if (blocks)
4246 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4247
4248 return 0;
4249 }
4250
4251 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4252 {
4253 struct thin_c *tc = ti->private;
4254 struct pool *pool = tc->pool;
4255
4256 if (!pool->pf.discard_enabled)
4257 return;
4258
4259 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4260 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4261 }
4262
4263 static struct target_type thin_target = {
4264 .name = "thin",
4265 .version = {1, 19, 0},
4266 .module = THIS_MODULE,
4267 .ctr = thin_ctr,
4268 .dtr = thin_dtr,
4269 .map = thin_map,
4270 .end_io = thin_endio,
4271 .preresume = thin_preresume,
4272 .presuspend = thin_presuspend,
4273 .postsuspend = thin_postsuspend,
4274 .status = thin_status,
4275 .iterate_devices = thin_iterate_devices,
4276 .io_hints = thin_io_hints,
4277 };
4278
4279 /*----------------------------------------------------------------*/
4280
4281 static int __init dm_thin_init(void)
4282 {
4283 int r;
4284
4285 pool_table_init();
4286
4287 r = dm_register_target(&thin_target);
4288 if (r)
4289 return r;
4290
4291 r = dm_register_target(&pool_target);
4292 if (r)
4293 goto bad_pool_target;
4294
4295 r = -ENOMEM;
4296
4297 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4298 if (!_new_mapping_cache)
4299 goto bad_new_mapping_cache;
4300
4301 return 0;
4302
4303 bad_new_mapping_cache:
4304 dm_unregister_target(&pool_target);
4305 bad_pool_target:
4306 dm_unregister_target(&thin_target);
4307
4308 return r;
4309 }
4310
4311 static void dm_thin_exit(void)
4312 {
4313 dm_unregister_target(&thin_target);
4314 dm_unregister_target(&pool_target);
4315
4316 kmem_cache_destroy(_new_mapping_cache);
4317 }
4318
4319 module_init(dm_thin_init);
4320 module_exit(dm_thin_exit);
4321
4322 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4323 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4324
4325 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4326 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4327 MODULE_LICENSE("GPL");
This page took 0.122932 seconds and 5 git commands to generate.