Merge tag 'soc2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16
17 #define DM_MSG_PREFIX "thin"
18
19 /*
20 * Tunable constants
21 */
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27
28 /*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
35 /*
36 * Device id is restricted to 24 bits.
37 */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39
40 /*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
66 * (process_prepared_mapping). This act of inserting breaks some
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98 /*----------------------------------------------------------------*/
99
100 /*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106 struct bio_prison;
107
108 struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112 };
113
114 struct dm_bio_prison_cell {
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
118 struct bio *holder;
119 struct bio_list bios;
120 };
121
122 struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129 };
130
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142 }
143
144 static struct kmem_cache *_cell_cache;
145
146 /*
147 * @nr_cells should be the number of cells you want in use _concurrently_.
148 * Don't confuse it with the number of distinct keys.
149 */
150 static struct bio_prison *prison_create(unsigned nr_cells)
151 {
152 unsigned i;
153 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154 size_t len = sizeof(struct bio_prison) +
155 (sizeof(struct hlist_head) * nr_buckets);
156 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158 if (!prison)
159 return NULL;
160
161 spin_lock_init(&prison->lock);
162 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
163 if (!prison->cell_pool) {
164 kfree(prison);
165 return NULL;
166 }
167
168 prison->nr_buckets = nr_buckets;
169 prison->hash_mask = nr_buckets - 1;
170 prison->cells = (struct hlist_head *) (prison + 1);
171 for (i = 0; i < nr_buckets; i++)
172 INIT_HLIST_HEAD(prison->cells + i);
173
174 return prison;
175 }
176
177 static void prison_destroy(struct bio_prison *prison)
178 {
179 mempool_destroy(prison->cell_pool);
180 kfree(prison);
181 }
182
183 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184 {
185 const unsigned long BIG_PRIME = 4294967291UL;
186 uint64_t hash = key->block * BIG_PRIME;
187
188 return (uint32_t) (hash & prison->hash_mask);
189 }
190
191 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192 {
193 return (lhs->virtual == rhs->virtual) &&
194 (lhs->dev == rhs->dev) &&
195 (lhs->block == rhs->block);
196 }
197
198 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199 struct cell_key *key)
200 {
201 struct dm_bio_prison_cell *cell;
202 struct hlist_node *tmp;
203
204 hlist_for_each_entry(cell, tmp, bucket, list)
205 if (keys_equal(&cell->key, key))
206 return cell;
207
208 return NULL;
209 }
210
211 /*
212 * This may block if a new cell needs allocating. You must ensure that
213 * cells will be unlocked even if the calling thread is blocked.
214 *
215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
216 */
217 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
218 struct bio *inmate, struct dm_bio_prison_cell **ref)
219 {
220 int r = 1;
221 unsigned long flags;
222 uint32_t hash = hash_key(prison, key);
223 struct dm_bio_prison_cell *cell, *cell2;
224
225 BUG_ON(hash > prison->nr_buckets);
226
227 spin_lock_irqsave(&prison->lock, flags);
228
229 cell = __search_bucket(prison->cells + hash, key);
230 if (cell) {
231 bio_list_add(&cell->bios, inmate);
232 goto out;
233 }
234
235 /*
236 * Allocate a new cell
237 */
238 spin_unlock_irqrestore(&prison->lock, flags);
239 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240 spin_lock_irqsave(&prison->lock, flags);
241
242 /*
243 * We've been unlocked, so we have to double check that
244 * nobody else has inserted this cell in the meantime.
245 */
246 cell = __search_bucket(prison->cells + hash, key);
247 if (cell) {
248 mempool_free(cell2, prison->cell_pool);
249 bio_list_add(&cell->bios, inmate);
250 goto out;
251 }
252
253 /*
254 * Use new cell.
255 */
256 cell = cell2;
257
258 cell->prison = prison;
259 memcpy(&cell->key, key, sizeof(cell->key));
260 cell->holder = inmate;
261 bio_list_init(&cell->bios);
262 hlist_add_head(&cell->list, prison->cells + hash);
263
264 r = 0;
265
266 out:
267 spin_unlock_irqrestore(&prison->lock, flags);
268
269 *ref = cell;
270
271 return r;
272 }
273
274 /*
275 * @inmates must have been initialised prior to this call
276 */
277 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
278 {
279 struct bio_prison *prison = cell->prison;
280
281 hlist_del(&cell->list);
282
283 if (inmates) {
284 bio_list_add(inmates, cell->holder);
285 bio_list_merge(inmates, &cell->bios);
286 }
287
288 mempool_free(cell, prison->cell_pool);
289 }
290
291 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
292 {
293 unsigned long flags;
294 struct bio_prison *prison = cell->prison;
295
296 spin_lock_irqsave(&prison->lock, flags);
297 __cell_release(cell, bios);
298 spin_unlock_irqrestore(&prison->lock, flags);
299 }
300
301 /*
302 * There are a couple of places where we put a bio into a cell briefly
303 * before taking it out again. In these situations we know that no other
304 * bio may be in the cell. This function releases the cell, and also does
305 * a sanity check.
306 */
307 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
308 {
309 BUG_ON(cell->holder != bio);
310 BUG_ON(!bio_list_empty(&cell->bios));
311
312 __cell_release(cell, NULL);
313 }
314
315 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
316 {
317 unsigned long flags;
318 struct bio_prison *prison = cell->prison;
319
320 spin_lock_irqsave(&prison->lock, flags);
321 __cell_release_singleton(cell, bio);
322 spin_unlock_irqrestore(&prison->lock, flags);
323 }
324
325 /*
326 * Sometimes we don't want the holder, just the additional bios.
327 */
328 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329 struct bio_list *inmates)
330 {
331 struct bio_prison *prison = cell->prison;
332
333 hlist_del(&cell->list);
334 bio_list_merge(inmates, &cell->bios);
335
336 mempool_free(cell, prison->cell_pool);
337 }
338
339 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340 struct bio_list *inmates)
341 {
342 unsigned long flags;
343 struct bio_prison *prison = cell->prison;
344
345 spin_lock_irqsave(&prison->lock, flags);
346 __cell_release_no_holder(cell, inmates);
347 spin_unlock_irqrestore(&prison->lock, flags);
348 }
349
350 static void cell_error(struct dm_bio_prison_cell *cell)
351 {
352 struct bio_prison *prison = cell->prison;
353 struct bio_list bios;
354 struct bio *bio;
355 unsigned long flags;
356
357 bio_list_init(&bios);
358
359 spin_lock_irqsave(&prison->lock, flags);
360 __cell_release(cell, &bios);
361 spin_unlock_irqrestore(&prison->lock, flags);
362
363 while ((bio = bio_list_pop(&bios)))
364 bio_io_error(bio);
365 }
366
367 /*----------------------------------------------------------------*/
368
369 /*
370 * We use the deferred set to keep track of pending reads to shared blocks.
371 * We do this to ensure the new mapping caused by a write isn't performed
372 * until these prior reads have completed. Otherwise the insertion of the
373 * new mapping could free the old block that the read bios are mapped to.
374 */
375
376 struct deferred_set;
377 struct deferred_entry {
378 struct deferred_set *ds;
379 unsigned count;
380 struct list_head work_items;
381 };
382
383 struct deferred_set {
384 spinlock_t lock;
385 unsigned current_entry;
386 unsigned sweeper;
387 struct deferred_entry entries[DEFERRED_SET_SIZE];
388 };
389
390 static void ds_init(struct deferred_set *ds)
391 {
392 int i;
393
394 spin_lock_init(&ds->lock);
395 ds->current_entry = 0;
396 ds->sweeper = 0;
397 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398 ds->entries[i].ds = ds;
399 ds->entries[i].count = 0;
400 INIT_LIST_HEAD(&ds->entries[i].work_items);
401 }
402 }
403
404 static struct deferred_entry *ds_inc(struct deferred_set *ds)
405 {
406 unsigned long flags;
407 struct deferred_entry *entry;
408
409 spin_lock_irqsave(&ds->lock, flags);
410 entry = ds->entries + ds->current_entry;
411 entry->count++;
412 spin_unlock_irqrestore(&ds->lock, flags);
413
414 return entry;
415 }
416
417 static unsigned ds_next(unsigned index)
418 {
419 return (index + 1) % DEFERRED_SET_SIZE;
420 }
421
422 static void __sweep(struct deferred_set *ds, struct list_head *head)
423 {
424 while ((ds->sweeper != ds->current_entry) &&
425 !ds->entries[ds->sweeper].count) {
426 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427 ds->sweeper = ds_next(ds->sweeper);
428 }
429
430 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432 }
433
434 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435 {
436 unsigned long flags;
437
438 spin_lock_irqsave(&entry->ds->lock, flags);
439 BUG_ON(!entry->count);
440 --entry->count;
441 __sweep(entry->ds, head);
442 spin_unlock_irqrestore(&entry->ds->lock, flags);
443 }
444
445 /*
446 * Returns 1 if deferred or 0 if no pending items to delay job.
447 */
448 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449 {
450 int r = 1;
451 unsigned long flags;
452 unsigned next_entry;
453
454 spin_lock_irqsave(&ds->lock, flags);
455 if ((ds->sweeper == ds->current_entry) &&
456 !ds->entries[ds->current_entry].count)
457 r = 0;
458 else {
459 list_add(work, &ds->entries[ds->current_entry].work_items);
460 next_entry = ds_next(ds->current_entry);
461 if (!ds->entries[next_entry].count)
462 ds->current_entry = next_entry;
463 }
464 spin_unlock_irqrestore(&ds->lock, flags);
465
466 return r;
467 }
468
469 /*----------------------------------------------------------------*/
470
471 /*
472 * Key building.
473 */
474 static void build_data_key(struct dm_thin_device *td,
475 dm_block_t b, struct cell_key *key)
476 {
477 key->virtual = 0;
478 key->dev = dm_thin_dev_id(td);
479 key->block = b;
480 }
481
482 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483 struct cell_key *key)
484 {
485 key->virtual = 1;
486 key->dev = dm_thin_dev_id(td);
487 key->block = b;
488 }
489
490 /*----------------------------------------------------------------*/
491
492 /*
493 * A pool device ties together a metadata device and a data device. It
494 * also provides the interface for creating and destroying internal
495 * devices.
496 */
497 struct dm_thin_new_mapping;
498
499 struct pool_features {
500 unsigned zero_new_blocks:1;
501 unsigned discard_enabled:1;
502 unsigned discard_passdown:1;
503 };
504
505 struct pool {
506 struct list_head list;
507 struct dm_target *ti; /* Only set if a pool target is bound */
508
509 struct mapped_device *pool_md;
510 struct block_device *md_dev;
511 struct dm_pool_metadata *pmd;
512
513 uint32_t sectors_per_block;
514 unsigned block_shift;
515 dm_block_t offset_mask;
516 dm_block_t low_water_blocks;
517
518 struct pool_features pf;
519 unsigned low_water_triggered:1; /* A dm event has been sent */
520 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
521
522 struct bio_prison *prison;
523 struct dm_kcopyd_client *copier;
524
525 struct workqueue_struct *wq;
526 struct work_struct worker;
527 struct delayed_work waker;
528
529 unsigned ref_count;
530 unsigned long last_commit_jiffies;
531
532 spinlock_t lock;
533 struct bio_list deferred_bios;
534 struct bio_list deferred_flush_bios;
535 struct list_head prepared_mappings;
536 struct list_head prepared_discards;
537
538 struct bio_list retry_on_resume_list;
539
540 struct deferred_set shared_read_ds;
541 struct deferred_set all_io_ds;
542
543 struct dm_thin_new_mapping *next_mapping;
544 mempool_t *mapping_pool;
545 mempool_t *endio_hook_pool;
546 };
547
548 /*
549 * Target context for a pool.
550 */
551 struct pool_c {
552 struct dm_target *ti;
553 struct pool *pool;
554 struct dm_dev *data_dev;
555 struct dm_dev *metadata_dev;
556 struct dm_target_callbacks callbacks;
557
558 dm_block_t low_water_blocks;
559 struct pool_features pf;
560 };
561
562 /*
563 * Target context for a thin.
564 */
565 struct thin_c {
566 struct dm_dev *pool_dev;
567 struct dm_dev *origin_dev;
568 dm_thin_id dev_id;
569
570 struct pool *pool;
571 struct dm_thin_device *td;
572 };
573
574 /*----------------------------------------------------------------*/
575
576 /*
577 * A global list of pools that uses a struct mapped_device as a key.
578 */
579 static struct dm_thin_pool_table {
580 struct mutex mutex;
581 struct list_head pools;
582 } dm_thin_pool_table;
583
584 static void pool_table_init(void)
585 {
586 mutex_init(&dm_thin_pool_table.mutex);
587 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
588 }
589
590 static void __pool_table_insert(struct pool *pool)
591 {
592 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
593 list_add(&pool->list, &dm_thin_pool_table.pools);
594 }
595
596 static void __pool_table_remove(struct pool *pool)
597 {
598 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
599 list_del(&pool->list);
600 }
601
602 static struct pool *__pool_table_lookup(struct mapped_device *md)
603 {
604 struct pool *pool = NULL, *tmp;
605
606 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
607
608 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
609 if (tmp->pool_md == md) {
610 pool = tmp;
611 break;
612 }
613 }
614
615 return pool;
616 }
617
618 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
619 {
620 struct pool *pool = NULL, *tmp;
621
622 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
623
624 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
625 if (tmp->md_dev == md_dev) {
626 pool = tmp;
627 break;
628 }
629 }
630
631 return pool;
632 }
633
634 /*----------------------------------------------------------------*/
635
636 struct dm_thin_endio_hook {
637 struct thin_c *tc;
638 struct deferred_entry *shared_read_entry;
639 struct deferred_entry *all_io_entry;
640 struct dm_thin_new_mapping *overwrite_mapping;
641 };
642
643 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
644 {
645 struct bio *bio;
646 struct bio_list bios;
647
648 bio_list_init(&bios);
649 bio_list_merge(&bios, master);
650 bio_list_init(master);
651
652 while ((bio = bio_list_pop(&bios))) {
653 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
654
655 if (h->tc == tc)
656 bio_endio(bio, DM_ENDIO_REQUEUE);
657 else
658 bio_list_add(master, bio);
659 }
660 }
661
662 static void requeue_io(struct thin_c *tc)
663 {
664 struct pool *pool = tc->pool;
665 unsigned long flags;
666
667 spin_lock_irqsave(&pool->lock, flags);
668 __requeue_bio_list(tc, &pool->deferred_bios);
669 __requeue_bio_list(tc, &pool->retry_on_resume_list);
670 spin_unlock_irqrestore(&pool->lock, flags);
671 }
672
673 /*
674 * This section of code contains the logic for processing a thin device's IO.
675 * Much of the code depends on pool object resources (lists, workqueues, etc)
676 * but most is exclusively called from the thin target rather than the thin-pool
677 * target.
678 */
679
680 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
681 {
682 return bio->bi_sector >> tc->pool->block_shift;
683 }
684
685 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
686 {
687 struct pool *pool = tc->pool;
688
689 bio->bi_bdev = tc->pool_dev->bdev;
690 bio->bi_sector = (block << pool->block_shift) +
691 (bio->bi_sector & pool->offset_mask);
692 }
693
694 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
695 {
696 bio->bi_bdev = tc->origin_dev->bdev;
697 }
698
699 static void issue(struct thin_c *tc, struct bio *bio)
700 {
701 struct pool *pool = tc->pool;
702 unsigned long flags;
703
704 /*
705 * Batch together any FUA/FLUSH bios we find and then issue
706 * a single commit for them in process_deferred_bios().
707 */
708 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
709 spin_lock_irqsave(&pool->lock, flags);
710 bio_list_add(&pool->deferred_flush_bios, bio);
711 spin_unlock_irqrestore(&pool->lock, flags);
712 } else
713 generic_make_request(bio);
714 }
715
716 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
717 {
718 remap_to_origin(tc, bio);
719 issue(tc, bio);
720 }
721
722 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
723 dm_block_t block)
724 {
725 remap(tc, bio, block);
726 issue(tc, bio);
727 }
728
729 /*
730 * wake_worker() is used when new work is queued and when pool_resume is
731 * ready to continue deferred IO processing.
732 */
733 static void wake_worker(struct pool *pool)
734 {
735 queue_work(pool->wq, &pool->worker);
736 }
737
738 /*----------------------------------------------------------------*/
739
740 /*
741 * Bio endio functions.
742 */
743 struct dm_thin_new_mapping {
744 struct list_head list;
745
746 unsigned quiesced:1;
747 unsigned prepared:1;
748 unsigned pass_discard:1;
749
750 struct thin_c *tc;
751 dm_block_t virt_block;
752 dm_block_t data_block;
753 struct dm_bio_prison_cell *cell, *cell2;
754 int err;
755
756 /*
757 * If the bio covers the whole area of a block then we can avoid
758 * zeroing or copying. Instead this bio is hooked. The bio will
759 * still be in the cell, so care has to be taken to avoid issuing
760 * the bio twice.
761 */
762 struct bio *bio;
763 bio_end_io_t *saved_bi_end_io;
764 };
765
766 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
767 {
768 struct pool *pool = m->tc->pool;
769
770 if (m->quiesced && m->prepared) {
771 list_add(&m->list, &pool->prepared_mappings);
772 wake_worker(pool);
773 }
774 }
775
776 static void copy_complete(int read_err, unsigned long write_err, void *context)
777 {
778 unsigned long flags;
779 struct dm_thin_new_mapping *m = context;
780 struct pool *pool = m->tc->pool;
781
782 m->err = read_err || write_err ? -EIO : 0;
783
784 spin_lock_irqsave(&pool->lock, flags);
785 m->prepared = 1;
786 __maybe_add_mapping(m);
787 spin_unlock_irqrestore(&pool->lock, flags);
788 }
789
790 static void overwrite_endio(struct bio *bio, int err)
791 {
792 unsigned long flags;
793 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
794 struct dm_thin_new_mapping *m = h->overwrite_mapping;
795 struct pool *pool = m->tc->pool;
796
797 m->err = err;
798
799 spin_lock_irqsave(&pool->lock, flags);
800 m->prepared = 1;
801 __maybe_add_mapping(m);
802 spin_unlock_irqrestore(&pool->lock, flags);
803 }
804
805 /*----------------------------------------------------------------*/
806
807 /*
808 * Workqueue.
809 */
810
811 /*
812 * Prepared mapping jobs.
813 */
814
815 /*
816 * This sends the bios in the cell back to the deferred_bios list.
817 */
818 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
819 dm_block_t data_block)
820 {
821 struct pool *pool = tc->pool;
822 unsigned long flags;
823
824 spin_lock_irqsave(&pool->lock, flags);
825 cell_release(cell, &pool->deferred_bios);
826 spin_unlock_irqrestore(&tc->pool->lock, flags);
827
828 wake_worker(pool);
829 }
830
831 /*
832 * Same as cell_defer above, except it omits one particular detainee,
833 * a write bio that covers the block and has already been processed.
834 */
835 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
836 {
837 struct bio_list bios;
838 struct pool *pool = tc->pool;
839 unsigned long flags;
840
841 bio_list_init(&bios);
842
843 spin_lock_irqsave(&pool->lock, flags);
844 cell_release_no_holder(cell, &pool->deferred_bios);
845 spin_unlock_irqrestore(&pool->lock, flags);
846
847 wake_worker(pool);
848 }
849
850 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
851 {
852 struct thin_c *tc = m->tc;
853 struct bio *bio;
854 int r;
855
856 bio = m->bio;
857 if (bio)
858 bio->bi_end_io = m->saved_bi_end_io;
859
860 if (m->err) {
861 cell_error(m->cell);
862 return;
863 }
864
865 /*
866 * Commit the prepared block into the mapping btree.
867 * Any I/O for this block arriving after this point will get
868 * remapped to it directly.
869 */
870 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
871 if (r) {
872 DMERR("dm_thin_insert_block() failed");
873 cell_error(m->cell);
874 return;
875 }
876
877 /*
878 * Release any bios held while the block was being provisioned.
879 * If we are processing a write bio that completely covers the block,
880 * we already processed it so can ignore it now when processing
881 * the bios in the cell.
882 */
883 if (bio) {
884 cell_defer_except(tc, m->cell);
885 bio_endio(bio, 0);
886 } else
887 cell_defer(tc, m->cell, m->data_block);
888
889 list_del(&m->list);
890 mempool_free(m, tc->pool->mapping_pool);
891 }
892
893 static void process_prepared_discard(struct dm_thin_new_mapping *m)
894 {
895 int r;
896 struct thin_c *tc = m->tc;
897
898 r = dm_thin_remove_block(tc->td, m->virt_block);
899 if (r)
900 DMERR("dm_thin_remove_block() failed");
901
902 /*
903 * Pass the discard down to the underlying device?
904 */
905 if (m->pass_discard)
906 remap_and_issue(tc, m->bio, m->data_block);
907 else
908 bio_endio(m->bio, 0);
909
910 cell_defer_except(tc, m->cell);
911 cell_defer_except(tc, m->cell2);
912 mempool_free(m, tc->pool->mapping_pool);
913 }
914
915 static void process_prepared(struct pool *pool, struct list_head *head,
916 void (*fn)(struct dm_thin_new_mapping *))
917 {
918 unsigned long flags;
919 struct list_head maps;
920 struct dm_thin_new_mapping *m, *tmp;
921
922 INIT_LIST_HEAD(&maps);
923 spin_lock_irqsave(&pool->lock, flags);
924 list_splice_init(head, &maps);
925 spin_unlock_irqrestore(&pool->lock, flags);
926
927 list_for_each_entry_safe(m, tmp, &maps, list)
928 fn(m);
929 }
930
931 /*
932 * Deferred bio jobs.
933 */
934 static int io_overlaps_block(struct pool *pool, struct bio *bio)
935 {
936 return !(bio->bi_sector & pool->offset_mask) &&
937 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
938
939 }
940
941 static int io_overwrites_block(struct pool *pool, struct bio *bio)
942 {
943 return (bio_data_dir(bio) == WRITE) &&
944 io_overlaps_block(pool, bio);
945 }
946
947 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
948 bio_end_io_t *fn)
949 {
950 *save = bio->bi_end_io;
951 bio->bi_end_io = fn;
952 }
953
954 static int ensure_next_mapping(struct pool *pool)
955 {
956 if (pool->next_mapping)
957 return 0;
958
959 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
960
961 return pool->next_mapping ? 0 : -ENOMEM;
962 }
963
964 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
965 {
966 struct dm_thin_new_mapping *r = pool->next_mapping;
967
968 BUG_ON(!pool->next_mapping);
969
970 pool->next_mapping = NULL;
971
972 return r;
973 }
974
975 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
976 struct dm_dev *origin, dm_block_t data_origin,
977 dm_block_t data_dest,
978 struct dm_bio_prison_cell *cell, struct bio *bio)
979 {
980 int r;
981 struct pool *pool = tc->pool;
982 struct dm_thin_new_mapping *m = get_next_mapping(pool);
983
984 INIT_LIST_HEAD(&m->list);
985 m->quiesced = 0;
986 m->prepared = 0;
987 m->tc = tc;
988 m->virt_block = virt_block;
989 m->data_block = data_dest;
990 m->cell = cell;
991 m->err = 0;
992 m->bio = NULL;
993
994 if (!ds_add_work(&pool->shared_read_ds, &m->list))
995 m->quiesced = 1;
996
997 /*
998 * IO to pool_dev remaps to the pool target's data_dev.
999 *
1000 * If the whole block of data is being overwritten, we can issue the
1001 * bio immediately. Otherwise we use kcopyd to clone the data first.
1002 */
1003 if (io_overwrites_block(pool, bio)) {
1004 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1005
1006 h->overwrite_mapping = m;
1007 m->bio = bio;
1008 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1009 remap_and_issue(tc, bio, data_dest);
1010 } else {
1011 struct dm_io_region from, to;
1012
1013 from.bdev = origin->bdev;
1014 from.sector = data_origin * pool->sectors_per_block;
1015 from.count = pool->sectors_per_block;
1016
1017 to.bdev = tc->pool_dev->bdev;
1018 to.sector = data_dest * pool->sectors_per_block;
1019 to.count = pool->sectors_per_block;
1020
1021 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1022 0, copy_complete, m);
1023 if (r < 0) {
1024 mempool_free(m, pool->mapping_pool);
1025 DMERR("dm_kcopyd_copy() failed");
1026 cell_error(cell);
1027 }
1028 }
1029 }
1030
1031 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1032 dm_block_t data_origin, dm_block_t data_dest,
1033 struct dm_bio_prison_cell *cell, struct bio *bio)
1034 {
1035 schedule_copy(tc, virt_block, tc->pool_dev,
1036 data_origin, data_dest, cell, bio);
1037 }
1038
1039 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1040 dm_block_t data_dest,
1041 struct dm_bio_prison_cell *cell, struct bio *bio)
1042 {
1043 schedule_copy(tc, virt_block, tc->origin_dev,
1044 virt_block, data_dest, cell, bio);
1045 }
1046
1047 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1048 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1049 struct bio *bio)
1050 {
1051 struct pool *pool = tc->pool;
1052 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1053
1054 INIT_LIST_HEAD(&m->list);
1055 m->quiesced = 1;
1056 m->prepared = 0;
1057 m->tc = tc;
1058 m->virt_block = virt_block;
1059 m->data_block = data_block;
1060 m->cell = cell;
1061 m->err = 0;
1062 m->bio = NULL;
1063
1064 /*
1065 * If the whole block of data is being overwritten or we are not
1066 * zeroing pre-existing data, we can issue the bio immediately.
1067 * Otherwise we use kcopyd to zero the data first.
1068 */
1069 if (!pool->pf.zero_new_blocks)
1070 process_prepared_mapping(m);
1071
1072 else if (io_overwrites_block(pool, bio)) {
1073 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1074
1075 h->overwrite_mapping = m;
1076 m->bio = bio;
1077 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1078 remap_and_issue(tc, bio, data_block);
1079 } else {
1080 int r;
1081 struct dm_io_region to;
1082
1083 to.bdev = tc->pool_dev->bdev;
1084 to.sector = data_block * pool->sectors_per_block;
1085 to.count = pool->sectors_per_block;
1086
1087 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1088 if (r < 0) {
1089 mempool_free(m, pool->mapping_pool);
1090 DMERR("dm_kcopyd_zero() failed");
1091 cell_error(cell);
1092 }
1093 }
1094 }
1095
1096 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1097 {
1098 int r;
1099 dm_block_t free_blocks;
1100 unsigned long flags;
1101 struct pool *pool = tc->pool;
1102
1103 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1104 if (r)
1105 return r;
1106
1107 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1108 DMWARN("%s: reached low water mark, sending event.",
1109 dm_device_name(pool->pool_md));
1110 spin_lock_irqsave(&pool->lock, flags);
1111 pool->low_water_triggered = 1;
1112 spin_unlock_irqrestore(&pool->lock, flags);
1113 dm_table_event(pool->ti->table);
1114 }
1115
1116 if (!free_blocks) {
1117 if (pool->no_free_space)
1118 return -ENOSPC;
1119 else {
1120 /*
1121 * Try to commit to see if that will free up some
1122 * more space.
1123 */
1124 r = dm_pool_commit_metadata(pool->pmd);
1125 if (r) {
1126 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1127 __func__, r);
1128 return r;
1129 }
1130
1131 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1132 if (r)
1133 return r;
1134
1135 /*
1136 * If we still have no space we set a flag to avoid
1137 * doing all this checking and return -ENOSPC.
1138 */
1139 if (!free_blocks) {
1140 DMWARN("%s: no free space available.",
1141 dm_device_name(pool->pool_md));
1142 spin_lock_irqsave(&pool->lock, flags);
1143 pool->no_free_space = 1;
1144 spin_unlock_irqrestore(&pool->lock, flags);
1145 return -ENOSPC;
1146 }
1147 }
1148 }
1149
1150 r = dm_pool_alloc_data_block(pool->pmd, result);
1151 if (r)
1152 return r;
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * If we have run out of space, queue bios until the device is
1159 * resumed, presumably after having been reloaded with more space.
1160 */
1161 static void retry_on_resume(struct bio *bio)
1162 {
1163 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1164 struct thin_c *tc = h->tc;
1165 struct pool *pool = tc->pool;
1166 unsigned long flags;
1167
1168 spin_lock_irqsave(&pool->lock, flags);
1169 bio_list_add(&pool->retry_on_resume_list, bio);
1170 spin_unlock_irqrestore(&pool->lock, flags);
1171 }
1172
1173 static void no_space(struct dm_bio_prison_cell *cell)
1174 {
1175 struct bio *bio;
1176 struct bio_list bios;
1177
1178 bio_list_init(&bios);
1179 cell_release(cell, &bios);
1180
1181 while ((bio = bio_list_pop(&bios)))
1182 retry_on_resume(bio);
1183 }
1184
1185 static void process_discard(struct thin_c *tc, struct bio *bio)
1186 {
1187 int r;
1188 unsigned long flags;
1189 struct pool *pool = tc->pool;
1190 struct dm_bio_prison_cell *cell, *cell2;
1191 struct cell_key key, key2;
1192 dm_block_t block = get_bio_block(tc, bio);
1193 struct dm_thin_lookup_result lookup_result;
1194 struct dm_thin_new_mapping *m;
1195
1196 build_virtual_key(tc->td, block, &key);
1197 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1198 return;
1199
1200 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1201 switch (r) {
1202 case 0:
1203 /*
1204 * Check nobody is fiddling with this pool block. This can
1205 * happen if someone's in the process of breaking sharing
1206 * on this block.
1207 */
1208 build_data_key(tc->td, lookup_result.block, &key2);
1209 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1210 cell_release_singleton(cell, bio);
1211 break;
1212 }
1213
1214 if (io_overlaps_block(pool, bio)) {
1215 /*
1216 * IO may still be going to the destination block. We must
1217 * quiesce before we can do the removal.
1218 */
1219 m = get_next_mapping(pool);
1220 m->tc = tc;
1221 m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1222 m->virt_block = block;
1223 m->data_block = lookup_result.block;
1224 m->cell = cell;
1225 m->cell2 = cell2;
1226 m->err = 0;
1227 m->bio = bio;
1228
1229 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1230 spin_lock_irqsave(&pool->lock, flags);
1231 list_add(&m->list, &pool->prepared_discards);
1232 spin_unlock_irqrestore(&pool->lock, flags);
1233 wake_worker(pool);
1234 }
1235 } else {
1236 /*
1237 * This path is hit if people are ignoring
1238 * limits->discard_granularity. It ignores any
1239 * part of the discard that is in a subsequent
1240 * block.
1241 */
1242 sector_t offset = bio->bi_sector - (block << pool->block_shift);
1243 unsigned remaining = (pool->sectors_per_block - offset) << 9;
1244 bio->bi_size = min(bio->bi_size, remaining);
1245
1246 cell_release_singleton(cell, bio);
1247 cell_release_singleton(cell2, bio);
1248 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1249 remap_and_issue(tc, bio, lookup_result.block);
1250 else
1251 bio_endio(bio, 0);
1252 }
1253 break;
1254
1255 case -ENODATA:
1256 /*
1257 * It isn't provisioned, just forget it.
1258 */
1259 cell_release_singleton(cell, bio);
1260 bio_endio(bio, 0);
1261 break;
1262
1263 default:
1264 DMERR("discard: find block unexpectedly returned %d", r);
1265 cell_release_singleton(cell, bio);
1266 bio_io_error(bio);
1267 break;
1268 }
1269 }
1270
1271 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1272 struct cell_key *key,
1273 struct dm_thin_lookup_result *lookup_result,
1274 struct dm_bio_prison_cell *cell)
1275 {
1276 int r;
1277 dm_block_t data_block;
1278
1279 r = alloc_data_block(tc, &data_block);
1280 switch (r) {
1281 case 0:
1282 schedule_internal_copy(tc, block, lookup_result->block,
1283 data_block, cell, bio);
1284 break;
1285
1286 case -ENOSPC:
1287 no_space(cell);
1288 break;
1289
1290 default:
1291 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1292 cell_error(cell);
1293 break;
1294 }
1295 }
1296
1297 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1298 dm_block_t block,
1299 struct dm_thin_lookup_result *lookup_result)
1300 {
1301 struct dm_bio_prison_cell *cell;
1302 struct pool *pool = tc->pool;
1303 struct cell_key key;
1304
1305 /*
1306 * If cell is already occupied, then sharing is already in the process
1307 * of being broken so we have nothing further to do here.
1308 */
1309 build_data_key(tc->td, lookup_result->block, &key);
1310 if (bio_detain(pool->prison, &key, bio, &cell))
1311 return;
1312
1313 if (bio_data_dir(bio) == WRITE)
1314 break_sharing(tc, bio, block, &key, lookup_result, cell);
1315 else {
1316 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1317
1318 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1319
1320 cell_release_singleton(cell, bio);
1321 remap_and_issue(tc, bio, lookup_result->block);
1322 }
1323 }
1324
1325 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1326 struct dm_bio_prison_cell *cell)
1327 {
1328 int r;
1329 dm_block_t data_block;
1330
1331 /*
1332 * Remap empty bios (flushes) immediately, without provisioning.
1333 */
1334 if (!bio->bi_size) {
1335 cell_release_singleton(cell, bio);
1336 remap_and_issue(tc, bio, 0);
1337 return;
1338 }
1339
1340 /*
1341 * Fill read bios with zeroes and complete them immediately.
1342 */
1343 if (bio_data_dir(bio) == READ) {
1344 zero_fill_bio(bio);
1345 cell_release_singleton(cell, bio);
1346 bio_endio(bio, 0);
1347 return;
1348 }
1349
1350 r = alloc_data_block(tc, &data_block);
1351 switch (r) {
1352 case 0:
1353 if (tc->origin_dev)
1354 schedule_external_copy(tc, block, data_block, cell, bio);
1355 else
1356 schedule_zero(tc, block, data_block, cell, bio);
1357 break;
1358
1359 case -ENOSPC:
1360 no_space(cell);
1361 break;
1362
1363 default:
1364 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1365 cell_error(cell);
1366 break;
1367 }
1368 }
1369
1370 static void process_bio(struct thin_c *tc, struct bio *bio)
1371 {
1372 int r;
1373 dm_block_t block = get_bio_block(tc, bio);
1374 struct dm_bio_prison_cell *cell;
1375 struct cell_key key;
1376 struct dm_thin_lookup_result lookup_result;
1377
1378 /*
1379 * If cell is already occupied, then the block is already
1380 * being provisioned so we have nothing further to do here.
1381 */
1382 build_virtual_key(tc->td, block, &key);
1383 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1384 return;
1385
1386 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1387 switch (r) {
1388 case 0:
1389 /*
1390 * We can release this cell now. This thread is the only
1391 * one that puts bios into a cell, and we know there were
1392 * no preceding bios.
1393 */
1394 /*
1395 * TODO: this will probably have to change when discard goes
1396 * back in.
1397 */
1398 cell_release_singleton(cell, bio);
1399
1400 if (lookup_result.shared)
1401 process_shared_bio(tc, bio, block, &lookup_result);
1402 else
1403 remap_and_issue(tc, bio, lookup_result.block);
1404 break;
1405
1406 case -ENODATA:
1407 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1408 cell_release_singleton(cell, bio);
1409 remap_to_origin_and_issue(tc, bio);
1410 } else
1411 provision_block(tc, bio, block, cell);
1412 break;
1413
1414 default:
1415 DMERR("dm_thin_find_block() failed, error = %d", r);
1416 cell_release_singleton(cell, bio);
1417 bio_io_error(bio);
1418 break;
1419 }
1420 }
1421
1422 static int need_commit_due_to_time(struct pool *pool)
1423 {
1424 return jiffies < pool->last_commit_jiffies ||
1425 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1426 }
1427
1428 static void process_deferred_bios(struct pool *pool)
1429 {
1430 unsigned long flags;
1431 struct bio *bio;
1432 struct bio_list bios;
1433 int r;
1434
1435 bio_list_init(&bios);
1436
1437 spin_lock_irqsave(&pool->lock, flags);
1438 bio_list_merge(&bios, &pool->deferred_bios);
1439 bio_list_init(&pool->deferred_bios);
1440 spin_unlock_irqrestore(&pool->lock, flags);
1441
1442 while ((bio = bio_list_pop(&bios))) {
1443 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1444 struct thin_c *tc = h->tc;
1445
1446 /*
1447 * If we've got no free new_mapping structs, and processing
1448 * this bio might require one, we pause until there are some
1449 * prepared mappings to process.
1450 */
1451 if (ensure_next_mapping(pool)) {
1452 spin_lock_irqsave(&pool->lock, flags);
1453 bio_list_merge(&pool->deferred_bios, &bios);
1454 spin_unlock_irqrestore(&pool->lock, flags);
1455
1456 break;
1457 }
1458
1459 if (bio->bi_rw & REQ_DISCARD)
1460 process_discard(tc, bio);
1461 else
1462 process_bio(tc, bio);
1463 }
1464
1465 /*
1466 * If there are any deferred flush bios, we must commit
1467 * the metadata before issuing them.
1468 */
1469 bio_list_init(&bios);
1470 spin_lock_irqsave(&pool->lock, flags);
1471 bio_list_merge(&bios, &pool->deferred_flush_bios);
1472 bio_list_init(&pool->deferred_flush_bios);
1473 spin_unlock_irqrestore(&pool->lock, flags);
1474
1475 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1476 return;
1477
1478 r = dm_pool_commit_metadata(pool->pmd);
1479 if (r) {
1480 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1481 __func__, r);
1482 while ((bio = bio_list_pop(&bios)))
1483 bio_io_error(bio);
1484 return;
1485 }
1486 pool->last_commit_jiffies = jiffies;
1487
1488 while ((bio = bio_list_pop(&bios)))
1489 generic_make_request(bio);
1490 }
1491
1492 static void do_worker(struct work_struct *ws)
1493 {
1494 struct pool *pool = container_of(ws, struct pool, worker);
1495
1496 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1497 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1498 process_deferred_bios(pool);
1499 }
1500
1501 /*
1502 * We want to commit periodically so that not too much
1503 * unwritten data builds up.
1504 */
1505 static void do_waker(struct work_struct *ws)
1506 {
1507 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1508 wake_worker(pool);
1509 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1510 }
1511
1512 /*----------------------------------------------------------------*/
1513
1514 /*
1515 * Mapping functions.
1516 */
1517
1518 /*
1519 * Called only while mapping a thin bio to hand it over to the workqueue.
1520 */
1521 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1522 {
1523 unsigned long flags;
1524 struct pool *pool = tc->pool;
1525
1526 spin_lock_irqsave(&pool->lock, flags);
1527 bio_list_add(&pool->deferred_bios, bio);
1528 spin_unlock_irqrestore(&pool->lock, flags);
1529
1530 wake_worker(pool);
1531 }
1532
1533 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1534 {
1535 struct pool *pool = tc->pool;
1536 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1537
1538 h->tc = tc;
1539 h->shared_read_entry = NULL;
1540 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1541 h->overwrite_mapping = NULL;
1542
1543 return h;
1544 }
1545
1546 /*
1547 * Non-blocking function called from the thin target's map function.
1548 */
1549 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1550 union map_info *map_context)
1551 {
1552 int r;
1553 struct thin_c *tc = ti->private;
1554 dm_block_t block = get_bio_block(tc, bio);
1555 struct dm_thin_device *td = tc->td;
1556 struct dm_thin_lookup_result result;
1557
1558 map_context->ptr = thin_hook_bio(tc, bio);
1559 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1560 thin_defer_bio(tc, bio);
1561 return DM_MAPIO_SUBMITTED;
1562 }
1563
1564 r = dm_thin_find_block(td, block, 0, &result);
1565
1566 /*
1567 * Note that we defer readahead too.
1568 */
1569 switch (r) {
1570 case 0:
1571 if (unlikely(result.shared)) {
1572 /*
1573 * We have a race condition here between the
1574 * result.shared value returned by the lookup and
1575 * snapshot creation, which may cause new
1576 * sharing.
1577 *
1578 * To avoid this always quiesce the origin before
1579 * taking the snap. You want to do this anyway to
1580 * ensure a consistent application view
1581 * (i.e. lockfs).
1582 *
1583 * More distant ancestors are irrelevant. The
1584 * shared flag will be set in their case.
1585 */
1586 thin_defer_bio(tc, bio);
1587 r = DM_MAPIO_SUBMITTED;
1588 } else {
1589 remap(tc, bio, result.block);
1590 r = DM_MAPIO_REMAPPED;
1591 }
1592 break;
1593
1594 case -ENODATA:
1595 /*
1596 * In future, the failed dm_thin_find_block above could
1597 * provide the hint to load the metadata into cache.
1598 */
1599 case -EWOULDBLOCK:
1600 thin_defer_bio(tc, bio);
1601 r = DM_MAPIO_SUBMITTED;
1602 break;
1603 }
1604
1605 return r;
1606 }
1607
1608 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1609 {
1610 int r;
1611 unsigned long flags;
1612 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1613
1614 spin_lock_irqsave(&pt->pool->lock, flags);
1615 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1616 spin_unlock_irqrestore(&pt->pool->lock, flags);
1617
1618 if (!r) {
1619 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1620 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1621 }
1622
1623 return r;
1624 }
1625
1626 static void __requeue_bios(struct pool *pool)
1627 {
1628 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1629 bio_list_init(&pool->retry_on_resume_list);
1630 }
1631
1632 /*----------------------------------------------------------------
1633 * Binding of control targets to a pool object
1634 *--------------------------------------------------------------*/
1635 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1636 {
1637 struct pool_c *pt = ti->private;
1638
1639 pool->ti = ti;
1640 pool->low_water_blocks = pt->low_water_blocks;
1641 pool->pf = pt->pf;
1642
1643 /*
1644 * If discard_passdown was enabled verify that the data device
1645 * supports discards. Disable discard_passdown if not; otherwise
1646 * -EOPNOTSUPP will be returned.
1647 */
1648 if (pt->pf.discard_passdown) {
1649 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1650 if (!q || !blk_queue_discard(q)) {
1651 char buf[BDEVNAME_SIZE];
1652 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1653 bdevname(pt->data_dev->bdev, buf));
1654 pool->pf.discard_passdown = 0;
1655 }
1656 }
1657
1658 return 0;
1659 }
1660
1661 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1662 {
1663 if (pool->ti == ti)
1664 pool->ti = NULL;
1665 }
1666
1667 /*----------------------------------------------------------------
1668 * Pool creation
1669 *--------------------------------------------------------------*/
1670 /* Initialize pool features. */
1671 static void pool_features_init(struct pool_features *pf)
1672 {
1673 pf->zero_new_blocks = 1;
1674 pf->discard_enabled = 1;
1675 pf->discard_passdown = 1;
1676 }
1677
1678 static void __pool_destroy(struct pool *pool)
1679 {
1680 __pool_table_remove(pool);
1681
1682 if (dm_pool_metadata_close(pool->pmd) < 0)
1683 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1684
1685 prison_destroy(pool->prison);
1686 dm_kcopyd_client_destroy(pool->copier);
1687
1688 if (pool->wq)
1689 destroy_workqueue(pool->wq);
1690
1691 if (pool->next_mapping)
1692 mempool_free(pool->next_mapping, pool->mapping_pool);
1693 mempool_destroy(pool->mapping_pool);
1694 mempool_destroy(pool->endio_hook_pool);
1695 kfree(pool);
1696 }
1697
1698 static struct kmem_cache *_new_mapping_cache;
1699 static struct kmem_cache *_endio_hook_cache;
1700
1701 static struct pool *pool_create(struct mapped_device *pool_md,
1702 struct block_device *metadata_dev,
1703 unsigned long block_size, char **error)
1704 {
1705 int r;
1706 void *err_p;
1707 struct pool *pool;
1708 struct dm_pool_metadata *pmd;
1709
1710 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1711 if (IS_ERR(pmd)) {
1712 *error = "Error creating metadata object";
1713 return (struct pool *)pmd;
1714 }
1715
1716 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1717 if (!pool) {
1718 *error = "Error allocating memory for pool";
1719 err_p = ERR_PTR(-ENOMEM);
1720 goto bad_pool;
1721 }
1722
1723 pool->pmd = pmd;
1724 pool->sectors_per_block = block_size;
1725 pool->block_shift = ffs(block_size) - 1;
1726 pool->offset_mask = block_size - 1;
1727 pool->low_water_blocks = 0;
1728 pool_features_init(&pool->pf);
1729 pool->prison = prison_create(PRISON_CELLS);
1730 if (!pool->prison) {
1731 *error = "Error creating pool's bio prison";
1732 err_p = ERR_PTR(-ENOMEM);
1733 goto bad_prison;
1734 }
1735
1736 pool->copier = dm_kcopyd_client_create();
1737 if (IS_ERR(pool->copier)) {
1738 r = PTR_ERR(pool->copier);
1739 *error = "Error creating pool's kcopyd client";
1740 err_p = ERR_PTR(r);
1741 goto bad_kcopyd_client;
1742 }
1743
1744 /*
1745 * Create singlethreaded workqueue that will service all devices
1746 * that use this metadata.
1747 */
1748 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1749 if (!pool->wq) {
1750 *error = "Error creating pool's workqueue";
1751 err_p = ERR_PTR(-ENOMEM);
1752 goto bad_wq;
1753 }
1754
1755 INIT_WORK(&pool->worker, do_worker);
1756 INIT_DELAYED_WORK(&pool->waker, do_waker);
1757 spin_lock_init(&pool->lock);
1758 bio_list_init(&pool->deferred_bios);
1759 bio_list_init(&pool->deferred_flush_bios);
1760 INIT_LIST_HEAD(&pool->prepared_mappings);
1761 INIT_LIST_HEAD(&pool->prepared_discards);
1762 pool->low_water_triggered = 0;
1763 pool->no_free_space = 0;
1764 bio_list_init(&pool->retry_on_resume_list);
1765 ds_init(&pool->shared_read_ds);
1766 ds_init(&pool->all_io_ds);
1767
1768 pool->next_mapping = NULL;
1769 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1770 _new_mapping_cache);
1771 if (!pool->mapping_pool) {
1772 *error = "Error creating pool's mapping mempool";
1773 err_p = ERR_PTR(-ENOMEM);
1774 goto bad_mapping_pool;
1775 }
1776
1777 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1778 _endio_hook_cache);
1779 if (!pool->endio_hook_pool) {
1780 *error = "Error creating pool's endio_hook mempool";
1781 err_p = ERR_PTR(-ENOMEM);
1782 goto bad_endio_hook_pool;
1783 }
1784 pool->ref_count = 1;
1785 pool->last_commit_jiffies = jiffies;
1786 pool->pool_md = pool_md;
1787 pool->md_dev = metadata_dev;
1788 __pool_table_insert(pool);
1789
1790 return pool;
1791
1792 bad_endio_hook_pool:
1793 mempool_destroy(pool->mapping_pool);
1794 bad_mapping_pool:
1795 destroy_workqueue(pool->wq);
1796 bad_wq:
1797 dm_kcopyd_client_destroy(pool->copier);
1798 bad_kcopyd_client:
1799 prison_destroy(pool->prison);
1800 bad_prison:
1801 kfree(pool);
1802 bad_pool:
1803 if (dm_pool_metadata_close(pmd))
1804 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1805
1806 return err_p;
1807 }
1808
1809 static void __pool_inc(struct pool *pool)
1810 {
1811 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1812 pool->ref_count++;
1813 }
1814
1815 static void __pool_dec(struct pool *pool)
1816 {
1817 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1818 BUG_ON(!pool->ref_count);
1819 if (!--pool->ref_count)
1820 __pool_destroy(pool);
1821 }
1822
1823 static struct pool *__pool_find(struct mapped_device *pool_md,
1824 struct block_device *metadata_dev,
1825 unsigned long block_size, char **error,
1826 int *created)
1827 {
1828 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1829
1830 if (pool) {
1831 if (pool->pool_md != pool_md)
1832 return ERR_PTR(-EBUSY);
1833 __pool_inc(pool);
1834
1835 } else {
1836 pool = __pool_table_lookup(pool_md);
1837 if (pool) {
1838 if (pool->md_dev != metadata_dev)
1839 return ERR_PTR(-EINVAL);
1840 __pool_inc(pool);
1841
1842 } else {
1843 pool = pool_create(pool_md, metadata_dev, block_size, error);
1844 *created = 1;
1845 }
1846 }
1847
1848 return pool;
1849 }
1850
1851 /*----------------------------------------------------------------
1852 * Pool target methods
1853 *--------------------------------------------------------------*/
1854 static void pool_dtr(struct dm_target *ti)
1855 {
1856 struct pool_c *pt = ti->private;
1857
1858 mutex_lock(&dm_thin_pool_table.mutex);
1859
1860 unbind_control_target(pt->pool, ti);
1861 __pool_dec(pt->pool);
1862 dm_put_device(ti, pt->metadata_dev);
1863 dm_put_device(ti, pt->data_dev);
1864 kfree(pt);
1865
1866 mutex_unlock(&dm_thin_pool_table.mutex);
1867 }
1868
1869 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1870 struct dm_target *ti)
1871 {
1872 int r;
1873 unsigned argc;
1874 const char *arg_name;
1875
1876 static struct dm_arg _args[] = {
1877 {0, 3, "Invalid number of pool feature arguments"},
1878 };
1879
1880 /*
1881 * No feature arguments supplied.
1882 */
1883 if (!as->argc)
1884 return 0;
1885
1886 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1887 if (r)
1888 return -EINVAL;
1889
1890 while (argc && !r) {
1891 arg_name = dm_shift_arg(as);
1892 argc--;
1893
1894 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1895 pf->zero_new_blocks = 0;
1896 continue;
1897 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1898 pf->discard_enabled = 0;
1899 continue;
1900 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1901 pf->discard_passdown = 0;
1902 continue;
1903 }
1904
1905 ti->error = "Unrecognised pool feature requested";
1906 r = -EINVAL;
1907 }
1908
1909 return r;
1910 }
1911
1912 /*
1913 * thin-pool <metadata dev> <data dev>
1914 * <data block size (sectors)>
1915 * <low water mark (blocks)>
1916 * [<#feature args> [<arg>]*]
1917 *
1918 * Optional feature arguments are:
1919 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1920 * ignore_discard: disable discard
1921 * no_discard_passdown: don't pass discards down to the data device
1922 */
1923 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1924 {
1925 int r, pool_created = 0;
1926 struct pool_c *pt;
1927 struct pool *pool;
1928 struct pool_features pf;
1929 struct dm_arg_set as;
1930 struct dm_dev *data_dev;
1931 unsigned long block_size;
1932 dm_block_t low_water_blocks;
1933 struct dm_dev *metadata_dev;
1934 sector_t metadata_dev_size;
1935 char b[BDEVNAME_SIZE];
1936
1937 /*
1938 * FIXME Remove validation from scope of lock.
1939 */
1940 mutex_lock(&dm_thin_pool_table.mutex);
1941
1942 if (argc < 4) {
1943 ti->error = "Invalid argument count";
1944 r = -EINVAL;
1945 goto out_unlock;
1946 }
1947 as.argc = argc;
1948 as.argv = argv;
1949
1950 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1951 if (r) {
1952 ti->error = "Error opening metadata block device";
1953 goto out_unlock;
1954 }
1955
1956 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1957 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1958 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1959 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1960
1961 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1962 if (r) {
1963 ti->error = "Error getting data device";
1964 goto out_metadata;
1965 }
1966
1967 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1968 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1969 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1970 !is_power_of_2(block_size)) {
1971 ti->error = "Invalid block size";
1972 r = -EINVAL;
1973 goto out;
1974 }
1975
1976 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1977 ti->error = "Invalid low water mark";
1978 r = -EINVAL;
1979 goto out;
1980 }
1981
1982 /*
1983 * Set default pool features.
1984 */
1985 pool_features_init(&pf);
1986
1987 dm_consume_args(&as, 4);
1988 r = parse_pool_features(&as, &pf, ti);
1989 if (r)
1990 goto out;
1991
1992 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1993 if (!pt) {
1994 r = -ENOMEM;
1995 goto out;
1996 }
1997
1998 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1999 block_size, &ti->error, &pool_created);
2000 if (IS_ERR(pool)) {
2001 r = PTR_ERR(pool);
2002 goto out_free_pt;
2003 }
2004
2005 /*
2006 * 'pool_created' reflects whether this is the first table load.
2007 * Top level discard support is not allowed to be changed after
2008 * initial load. This would require a pool reload to trigger thin
2009 * device changes.
2010 */
2011 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2012 ti->error = "Discard support cannot be disabled once enabled";
2013 r = -EINVAL;
2014 goto out_flags_changed;
2015 }
2016
2017 pt->pool = pool;
2018 pt->ti = ti;
2019 pt->metadata_dev = metadata_dev;
2020 pt->data_dev = data_dev;
2021 pt->low_water_blocks = low_water_blocks;
2022 pt->pf = pf;
2023 ti->num_flush_requests = 1;
2024 /*
2025 * Only need to enable discards if the pool should pass
2026 * them down to the data device. The thin device's discard
2027 * processing will cause mappings to be removed from the btree.
2028 */
2029 if (pf.discard_enabled && pf.discard_passdown) {
2030 ti->num_discard_requests = 1;
2031 /*
2032 * Setting 'discards_supported' circumvents the normal
2033 * stacking of discard limits (this keeps the pool and
2034 * thin devices' discard limits consistent).
2035 */
2036 ti->discards_supported = 1;
2037 }
2038 ti->private = pt;
2039
2040 pt->callbacks.congested_fn = pool_is_congested;
2041 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2042
2043 mutex_unlock(&dm_thin_pool_table.mutex);
2044
2045 return 0;
2046
2047 out_flags_changed:
2048 __pool_dec(pool);
2049 out_free_pt:
2050 kfree(pt);
2051 out:
2052 dm_put_device(ti, data_dev);
2053 out_metadata:
2054 dm_put_device(ti, metadata_dev);
2055 out_unlock:
2056 mutex_unlock(&dm_thin_pool_table.mutex);
2057
2058 return r;
2059 }
2060
2061 static int pool_map(struct dm_target *ti, struct bio *bio,
2062 union map_info *map_context)
2063 {
2064 int r;
2065 struct pool_c *pt = ti->private;
2066 struct pool *pool = pt->pool;
2067 unsigned long flags;
2068
2069 /*
2070 * As this is a singleton target, ti->begin is always zero.
2071 */
2072 spin_lock_irqsave(&pool->lock, flags);
2073 bio->bi_bdev = pt->data_dev->bdev;
2074 r = DM_MAPIO_REMAPPED;
2075 spin_unlock_irqrestore(&pool->lock, flags);
2076
2077 return r;
2078 }
2079
2080 /*
2081 * Retrieves the number of blocks of the data device from
2082 * the superblock and compares it to the actual device size,
2083 * thus resizing the data device in case it has grown.
2084 *
2085 * This both copes with opening preallocated data devices in the ctr
2086 * being followed by a resume
2087 * -and-
2088 * calling the resume method individually after userspace has
2089 * grown the data device in reaction to a table event.
2090 */
2091 static int pool_preresume(struct dm_target *ti)
2092 {
2093 int r;
2094 struct pool_c *pt = ti->private;
2095 struct pool *pool = pt->pool;
2096 dm_block_t data_size, sb_data_size;
2097
2098 /*
2099 * Take control of the pool object.
2100 */
2101 r = bind_control_target(pool, ti);
2102 if (r)
2103 return r;
2104
2105 data_size = ti->len >> pool->block_shift;
2106 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2107 if (r) {
2108 DMERR("failed to retrieve data device size");
2109 return r;
2110 }
2111
2112 if (data_size < sb_data_size) {
2113 DMERR("pool target too small, is %llu blocks (expected %llu)",
2114 data_size, sb_data_size);
2115 return -EINVAL;
2116
2117 } else if (data_size > sb_data_size) {
2118 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2119 if (r) {
2120 DMERR("failed to resize data device");
2121 return r;
2122 }
2123
2124 r = dm_pool_commit_metadata(pool->pmd);
2125 if (r) {
2126 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2127 __func__, r);
2128 return r;
2129 }
2130 }
2131
2132 return 0;
2133 }
2134
2135 static void pool_resume(struct dm_target *ti)
2136 {
2137 struct pool_c *pt = ti->private;
2138 struct pool *pool = pt->pool;
2139 unsigned long flags;
2140
2141 spin_lock_irqsave(&pool->lock, flags);
2142 pool->low_water_triggered = 0;
2143 pool->no_free_space = 0;
2144 __requeue_bios(pool);
2145 spin_unlock_irqrestore(&pool->lock, flags);
2146
2147 do_waker(&pool->waker.work);
2148 }
2149
2150 static void pool_postsuspend(struct dm_target *ti)
2151 {
2152 int r;
2153 struct pool_c *pt = ti->private;
2154 struct pool *pool = pt->pool;
2155
2156 cancel_delayed_work(&pool->waker);
2157 flush_workqueue(pool->wq);
2158
2159 r = dm_pool_commit_metadata(pool->pmd);
2160 if (r < 0) {
2161 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2162 __func__, r);
2163 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2164 }
2165 }
2166
2167 static int check_arg_count(unsigned argc, unsigned args_required)
2168 {
2169 if (argc != args_required) {
2170 DMWARN("Message received with %u arguments instead of %u.",
2171 argc, args_required);
2172 return -EINVAL;
2173 }
2174
2175 return 0;
2176 }
2177
2178 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2179 {
2180 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2181 *dev_id <= MAX_DEV_ID)
2182 return 0;
2183
2184 if (warning)
2185 DMWARN("Message received with invalid device id: %s", arg);
2186
2187 return -EINVAL;
2188 }
2189
2190 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2191 {
2192 dm_thin_id dev_id;
2193 int r;
2194
2195 r = check_arg_count(argc, 2);
2196 if (r)
2197 return r;
2198
2199 r = read_dev_id(argv[1], &dev_id, 1);
2200 if (r)
2201 return r;
2202
2203 r = dm_pool_create_thin(pool->pmd, dev_id);
2204 if (r) {
2205 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2206 argv[1]);
2207 return r;
2208 }
2209
2210 return 0;
2211 }
2212
2213 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2214 {
2215 dm_thin_id dev_id;
2216 dm_thin_id origin_dev_id;
2217 int r;
2218
2219 r = check_arg_count(argc, 3);
2220 if (r)
2221 return r;
2222
2223 r = read_dev_id(argv[1], &dev_id, 1);
2224 if (r)
2225 return r;
2226
2227 r = read_dev_id(argv[2], &origin_dev_id, 1);
2228 if (r)
2229 return r;
2230
2231 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2232 if (r) {
2233 DMWARN("Creation of new snapshot %s of device %s failed.",
2234 argv[1], argv[2]);
2235 return r;
2236 }
2237
2238 return 0;
2239 }
2240
2241 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2242 {
2243 dm_thin_id dev_id;
2244 int r;
2245
2246 r = check_arg_count(argc, 2);
2247 if (r)
2248 return r;
2249
2250 r = read_dev_id(argv[1], &dev_id, 1);
2251 if (r)
2252 return r;
2253
2254 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2255 if (r)
2256 DMWARN("Deletion of thin device %s failed.", argv[1]);
2257
2258 return r;
2259 }
2260
2261 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2262 {
2263 dm_thin_id old_id, new_id;
2264 int r;
2265
2266 r = check_arg_count(argc, 3);
2267 if (r)
2268 return r;
2269
2270 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2271 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2272 return -EINVAL;
2273 }
2274
2275 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2276 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2277 return -EINVAL;
2278 }
2279
2280 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2281 if (r) {
2282 DMWARN("Failed to change transaction id from %s to %s.",
2283 argv[1], argv[2]);
2284 return r;
2285 }
2286
2287 return 0;
2288 }
2289
2290 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2291 {
2292 int r;
2293
2294 r = check_arg_count(argc, 1);
2295 if (r)
2296 return r;
2297
2298 r = dm_pool_commit_metadata(pool->pmd);
2299 if (r) {
2300 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2301 __func__, r);
2302 return r;
2303 }
2304
2305 r = dm_pool_reserve_metadata_snap(pool->pmd);
2306 if (r)
2307 DMWARN("reserve_metadata_snap message failed.");
2308
2309 return r;
2310 }
2311
2312 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2313 {
2314 int r;
2315
2316 r = check_arg_count(argc, 1);
2317 if (r)
2318 return r;
2319
2320 r = dm_pool_release_metadata_snap(pool->pmd);
2321 if (r)
2322 DMWARN("release_metadata_snap message failed.");
2323
2324 return r;
2325 }
2326
2327 /*
2328 * Messages supported:
2329 * create_thin <dev_id>
2330 * create_snap <dev_id> <origin_id>
2331 * delete <dev_id>
2332 * trim <dev_id> <new_size_in_sectors>
2333 * set_transaction_id <current_trans_id> <new_trans_id>
2334 * reserve_metadata_snap
2335 * release_metadata_snap
2336 */
2337 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2338 {
2339 int r = -EINVAL;
2340 struct pool_c *pt = ti->private;
2341 struct pool *pool = pt->pool;
2342
2343 if (!strcasecmp(argv[0], "create_thin"))
2344 r = process_create_thin_mesg(argc, argv, pool);
2345
2346 else if (!strcasecmp(argv[0], "create_snap"))
2347 r = process_create_snap_mesg(argc, argv, pool);
2348
2349 else if (!strcasecmp(argv[0], "delete"))
2350 r = process_delete_mesg(argc, argv, pool);
2351
2352 else if (!strcasecmp(argv[0], "set_transaction_id"))
2353 r = process_set_transaction_id_mesg(argc, argv, pool);
2354
2355 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2356 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2357
2358 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2359 r = process_release_metadata_snap_mesg(argc, argv, pool);
2360
2361 else
2362 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2363
2364 if (!r) {
2365 r = dm_pool_commit_metadata(pool->pmd);
2366 if (r)
2367 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2368 argv[0], r);
2369 }
2370
2371 return r;
2372 }
2373
2374 /*
2375 * Status line is:
2376 * <transaction id> <used metadata sectors>/<total metadata sectors>
2377 * <used data sectors>/<total data sectors> <held metadata root>
2378 */
2379 static int pool_status(struct dm_target *ti, status_type_t type,
2380 char *result, unsigned maxlen)
2381 {
2382 int r, count;
2383 unsigned sz = 0;
2384 uint64_t transaction_id;
2385 dm_block_t nr_free_blocks_data;
2386 dm_block_t nr_free_blocks_metadata;
2387 dm_block_t nr_blocks_data;
2388 dm_block_t nr_blocks_metadata;
2389 dm_block_t held_root;
2390 char buf[BDEVNAME_SIZE];
2391 char buf2[BDEVNAME_SIZE];
2392 struct pool_c *pt = ti->private;
2393 struct pool *pool = pt->pool;
2394
2395 switch (type) {
2396 case STATUSTYPE_INFO:
2397 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2398 &transaction_id);
2399 if (r)
2400 return r;
2401
2402 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2403 &nr_free_blocks_metadata);
2404 if (r)
2405 return r;
2406
2407 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2408 if (r)
2409 return r;
2410
2411 r = dm_pool_get_free_block_count(pool->pmd,
2412 &nr_free_blocks_data);
2413 if (r)
2414 return r;
2415
2416 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2417 if (r)
2418 return r;
2419
2420 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2421 if (r)
2422 return r;
2423
2424 DMEMIT("%llu %llu/%llu %llu/%llu ",
2425 (unsigned long long)transaction_id,
2426 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2427 (unsigned long long)nr_blocks_metadata,
2428 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2429 (unsigned long long)nr_blocks_data);
2430
2431 if (held_root)
2432 DMEMIT("%llu", held_root);
2433 else
2434 DMEMIT("-");
2435
2436 break;
2437
2438 case STATUSTYPE_TABLE:
2439 DMEMIT("%s %s %lu %llu ",
2440 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2441 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2442 (unsigned long)pool->sectors_per_block,
2443 (unsigned long long)pt->low_water_blocks);
2444
2445 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2446 !pt->pf.discard_passdown;
2447 DMEMIT("%u ", count);
2448
2449 if (!pool->pf.zero_new_blocks)
2450 DMEMIT("skip_block_zeroing ");
2451
2452 if (!pool->pf.discard_enabled)
2453 DMEMIT("ignore_discard ");
2454
2455 if (!pt->pf.discard_passdown)
2456 DMEMIT("no_discard_passdown ");
2457
2458 break;
2459 }
2460
2461 return 0;
2462 }
2463
2464 static int pool_iterate_devices(struct dm_target *ti,
2465 iterate_devices_callout_fn fn, void *data)
2466 {
2467 struct pool_c *pt = ti->private;
2468
2469 return fn(ti, pt->data_dev, 0, ti->len, data);
2470 }
2471
2472 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2473 struct bio_vec *biovec, int max_size)
2474 {
2475 struct pool_c *pt = ti->private;
2476 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2477
2478 if (!q->merge_bvec_fn)
2479 return max_size;
2480
2481 bvm->bi_bdev = pt->data_dev->bdev;
2482
2483 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2484 }
2485
2486 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2487 {
2488 /*
2489 * FIXME: these limits may be incompatible with the pool's data device
2490 */
2491 limits->max_discard_sectors = pool->sectors_per_block;
2492
2493 /*
2494 * This is just a hint, and not enforced. We have to cope with
2495 * bios that overlap 2 blocks.
2496 */
2497 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2498 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2499 }
2500
2501 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2502 {
2503 struct pool_c *pt = ti->private;
2504 struct pool *pool = pt->pool;
2505
2506 blk_limits_io_min(limits, 0);
2507 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2508 if (pool->pf.discard_enabled)
2509 set_discard_limits(pool, limits);
2510 }
2511
2512 static struct target_type pool_target = {
2513 .name = "thin-pool",
2514 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2515 DM_TARGET_IMMUTABLE,
2516 .version = {1, 2, 0},
2517 .module = THIS_MODULE,
2518 .ctr = pool_ctr,
2519 .dtr = pool_dtr,
2520 .map = pool_map,
2521 .postsuspend = pool_postsuspend,
2522 .preresume = pool_preresume,
2523 .resume = pool_resume,
2524 .message = pool_message,
2525 .status = pool_status,
2526 .merge = pool_merge,
2527 .iterate_devices = pool_iterate_devices,
2528 .io_hints = pool_io_hints,
2529 };
2530
2531 /*----------------------------------------------------------------
2532 * Thin target methods
2533 *--------------------------------------------------------------*/
2534 static void thin_dtr(struct dm_target *ti)
2535 {
2536 struct thin_c *tc = ti->private;
2537
2538 mutex_lock(&dm_thin_pool_table.mutex);
2539
2540 __pool_dec(tc->pool);
2541 dm_pool_close_thin_device(tc->td);
2542 dm_put_device(ti, tc->pool_dev);
2543 if (tc->origin_dev)
2544 dm_put_device(ti, tc->origin_dev);
2545 kfree(tc);
2546
2547 mutex_unlock(&dm_thin_pool_table.mutex);
2548 }
2549
2550 /*
2551 * Thin target parameters:
2552 *
2553 * <pool_dev> <dev_id> [origin_dev]
2554 *
2555 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2556 * dev_id: the internal device identifier
2557 * origin_dev: a device external to the pool that should act as the origin
2558 *
2559 * If the pool device has discards disabled, they get disabled for the thin
2560 * device as well.
2561 */
2562 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2563 {
2564 int r;
2565 struct thin_c *tc;
2566 struct dm_dev *pool_dev, *origin_dev;
2567 struct mapped_device *pool_md;
2568
2569 mutex_lock(&dm_thin_pool_table.mutex);
2570
2571 if (argc != 2 && argc != 3) {
2572 ti->error = "Invalid argument count";
2573 r = -EINVAL;
2574 goto out_unlock;
2575 }
2576
2577 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2578 if (!tc) {
2579 ti->error = "Out of memory";
2580 r = -ENOMEM;
2581 goto out_unlock;
2582 }
2583
2584 if (argc == 3) {
2585 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2586 if (r) {
2587 ti->error = "Error opening origin device";
2588 goto bad_origin_dev;
2589 }
2590 tc->origin_dev = origin_dev;
2591 }
2592
2593 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2594 if (r) {
2595 ti->error = "Error opening pool device";
2596 goto bad_pool_dev;
2597 }
2598 tc->pool_dev = pool_dev;
2599
2600 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2601 ti->error = "Invalid device id";
2602 r = -EINVAL;
2603 goto bad_common;
2604 }
2605
2606 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2607 if (!pool_md) {
2608 ti->error = "Couldn't get pool mapped device";
2609 r = -EINVAL;
2610 goto bad_common;
2611 }
2612
2613 tc->pool = __pool_table_lookup(pool_md);
2614 if (!tc->pool) {
2615 ti->error = "Couldn't find pool object";
2616 r = -EINVAL;
2617 goto bad_pool_lookup;
2618 }
2619 __pool_inc(tc->pool);
2620
2621 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2622 if (r) {
2623 ti->error = "Couldn't open thin internal device";
2624 goto bad_thin_open;
2625 }
2626
2627 ti->split_io = tc->pool->sectors_per_block;
2628 ti->num_flush_requests = 1;
2629
2630 /* In case the pool supports discards, pass them on. */
2631 if (tc->pool->pf.discard_enabled) {
2632 ti->discards_supported = 1;
2633 ti->num_discard_requests = 1;
2634 ti->discard_zeroes_data_unsupported = 1;
2635 }
2636
2637 dm_put(pool_md);
2638
2639 mutex_unlock(&dm_thin_pool_table.mutex);
2640
2641 return 0;
2642
2643 bad_thin_open:
2644 __pool_dec(tc->pool);
2645 bad_pool_lookup:
2646 dm_put(pool_md);
2647 bad_common:
2648 dm_put_device(ti, tc->pool_dev);
2649 bad_pool_dev:
2650 if (tc->origin_dev)
2651 dm_put_device(ti, tc->origin_dev);
2652 bad_origin_dev:
2653 kfree(tc);
2654 out_unlock:
2655 mutex_unlock(&dm_thin_pool_table.mutex);
2656
2657 return r;
2658 }
2659
2660 static int thin_map(struct dm_target *ti, struct bio *bio,
2661 union map_info *map_context)
2662 {
2663 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2664
2665 return thin_bio_map(ti, bio, map_context);
2666 }
2667
2668 static int thin_endio(struct dm_target *ti,
2669 struct bio *bio, int err,
2670 union map_info *map_context)
2671 {
2672 unsigned long flags;
2673 struct dm_thin_endio_hook *h = map_context->ptr;
2674 struct list_head work;
2675 struct dm_thin_new_mapping *m, *tmp;
2676 struct pool *pool = h->tc->pool;
2677
2678 if (h->shared_read_entry) {
2679 INIT_LIST_HEAD(&work);
2680 ds_dec(h->shared_read_entry, &work);
2681
2682 spin_lock_irqsave(&pool->lock, flags);
2683 list_for_each_entry_safe(m, tmp, &work, list) {
2684 list_del(&m->list);
2685 m->quiesced = 1;
2686 __maybe_add_mapping(m);
2687 }
2688 spin_unlock_irqrestore(&pool->lock, flags);
2689 }
2690
2691 if (h->all_io_entry) {
2692 INIT_LIST_HEAD(&work);
2693 ds_dec(h->all_io_entry, &work);
2694 spin_lock_irqsave(&pool->lock, flags);
2695 list_for_each_entry_safe(m, tmp, &work, list)
2696 list_add(&m->list, &pool->prepared_discards);
2697 spin_unlock_irqrestore(&pool->lock, flags);
2698 }
2699
2700 mempool_free(h, pool->endio_hook_pool);
2701
2702 return 0;
2703 }
2704
2705 static void thin_postsuspend(struct dm_target *ti)
2706 {
2707 if (dm_noflush_suspending(ti))
2708 requeue_io((struct thin_c *)ti->private);
2709 }
2710
2711 /*
2712 * <nr mapped sectors> <highest mapped sector>
2713 */
2714 static int thin_status(struct dm_target *ti, status_type_t type,
2715 char *result, unsigned maxlen)
2716 {
2717 int r;
2718 ssize_t sz = 0;
2719 dm_block_t mapped, highest;
2720 char buf[BDEVNAME_SIZE];
2721 struct thin_c *tc = ti->private;
2722
2723 if (!tc->td)
2724 DMEMIT("-");
2725 else {
2726 switch (type) {
2727 case STATUSTYPE_INFO:
2728 r = dm_thin_get_mapped_count(tc->td, &mapped);
2729 if (r)
2730 return r;
2731
2732 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2733 if (r < 0)
2734 return r;
2735
2736 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2737 if (r)
2738 DMEMIT("%llu", ((highest + 1) *
2739 tc->pool->sectors_per_block) - 1);
2740 else
2741 DMEMIT("-");
2742 break;
2743
2744 case STATUSTYPE_TABLE:
2745 DMEMIT("%s %lu",
2746 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2747 (unsigned long) tc->dev_id);
2748 if (tc->origin_dev)
2749 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2750 break;
2751 }
2752 }
2753
2754 return 0;
2755 }
2756
2757 static int thin_iterate_devices(struct dm_target *ti,
2758 iterate_devices_callout_fn fn, void *data)
2759 {
2760 dm_block_t blocks;
2761 struct thin_c *tc = ti->private;
2762
2763 /*
2764 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2765 * we follow a more convoluted path through to the pool's target.
2766 */
2767 if (!tc->pool->ti)
2768 return 0; /* nothing is bound */
2769
2770 blocks = tc->pool->ti->len >> tc->pool->block_shift;
2771 if (blocks)
2772 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2773
2774 return 0;
2775 }
2776
2777 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2778 {
2779 struct thin_c *tc = ti->private;
2780 struct pool *pool = tc->pool;
2781
2782 blk_limits_io_min(limits, 0);
2783 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2784 set_discard_limits(pool, limits);
2785 }
2786
2787 static struct target_type thin_target = {
2788 .name = "thin",
2789 .version = {1, 1, 0},
2790 .module = THIS_MODULE,
2791 .ctr = thin_ctr,
2792 .dtr = thin_dtr,
2793 .map = thin_map,
2794 .end_io = thin_endio,
2795 .postsuspend = thin_postsuspend,
2796 .status = thin_status,
2797 .iterate_devices = thin_iterate_devices,
2798 .io_hints = thin_io_hints,
2799 };
2800
2801 /*----------------------------------------------------------------*/
2802
2803 static int __init dm_thin_init(void)
2804 {
2805 int r;
2806
2807 pool_table_init();
2808
2809 r = dm_register_target(&thin_target);
2810 if (r)
2811 return r;
2812
2813 r = dm_register_target(&pool_target);
2814 if (r)
2815 goto bad_pool_target;
2816
2817 r = -ENOMEM;
2818
2819 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2820 if (!_cell_cache)
2821 goto bad_cell_cache;
2822
2823 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2824 if (!_new_mapping_cache)
2825 goto bad_new_mapping_cache;
2826
2827 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2828 if (!_endio_hook_cache)
2829 goto bad_endio_hook_cache;
2830
2831 return 0;
2832
2833 bad_endio_hook_cache:
2834 kmem_cache_destroy(_new_mapping_cache);
2835 bad_new_mapping_cache:
2836 kmem_cache_destroy(_cell_cache);
2837 bad_cell_cache:
2838 dm_unregister_target(&pool_target);
2839 bad_pool_target:
2840 dm_unregister_target(&thin_target);
2841
2842 return r;
2843 }
2844
2845 static void dm_thin_exit(void)
2846 {
2847 dm_unregister_target(&thin_target);
2848 dm_unregister_target(&pool_target);
2849
2850 kmem_cache_destroy(_cell_cache);
2851 kmem_cache_destroy(_new_mapping_cache);
2852 kmem_cache_destroy(_endio_hook_cache);
2853 }
2854
2855 module_init(dm_thin_init);
2856 module_exit(dm_thin_exit);
2857
2858 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2859 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2860 MODULE_LICENSE("GPL");
This page took 0.157535 seconds and 5 git commands to generate.