Merge tag 'for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include <linux/rbtree.h>
23
24 #define DM_MSG_PREFIX "thin"
25
26 /*
27 * Tunable constants
28 */
29 #define ENDIO_HOOK_POOL_SIZE 1024
30 #define MAPPING_POOL_SIZE 1024
31 #define COMMIT_PERIOD HZ
32 #define NO_SPACE_TIMEOUT_SECS 60
33
34 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
35
36 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
37 "A percentage of time allocated for copy on write");
38
39 /*
40 * The block size of the device holding pool data must be
41 * between 64KB and 1GB.
42 */
43 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
44 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
45
46 /*
47 * Device id is restricted to 24 bits.
48 */
49 #define MAX_DEV_ID ((1 << 24) - 1)
50
51 /*
52 * How do we handle breaking sharing of data blocks?
53 * =================================================
54 *
55 * We use a standard copy-on-write btree to store the mappings for the
56 * devices (note I'm talking about copy-on-write of the metadata here, not
57 * the data). When you take an internal snapshot you clone the root node
58 * of the origin btree. After this there is no concept of an origin or a
59 * snapshot. They are just two device trees that happen to point to the
60 * same data blocks.
61 *
62 * When we get a write in we decide if it's to a shared data block using
63 * some timestamp magic. If it is, we have to break sharing.
64 *
65 * Let's say we write to a shared block in what was the origin. The
66 * steps are:
67 *
68 * i) plug io further to this physical block. (see bio_prison code).
69 *
70 * ii) quiesce any read io to that shared data block. Obviously
71 * including all devices that share this block. (see dm_deferred_set code)
72 *
73 * iii) copy the data block to a newly allocate block. This step can be
74 * missed out if the io covers the block. (schedule_copy).
75 *
76 * iv) insert the new mapping into the origin's btree
77 * (process_prepared_mapping). This act of inserting breaks some
78 * sharing of btree nodes between the two devices. Breaking sharing only
79 * effects the btree of that specific device. Btrees for the other
80 * devices that share the block never change. The btree for the origin
81 * device as it was after the last commit is untouched, ie. we're using
82 * persistent data structures in the functional programming sense.
83 *
84 * v) unplug io to this physical block, including the io that triggered
85 * the breaking of sharing.
86 *
87 * Steps (ii) and (iii) occur in parallel.
88 *
89 * The metadata _doesn't_ need to be committed before the io continues. We
90 * get away with this because the io is always written to a _new_ block.
91 * If there's a crash, then:
92 *
93 * - The origin mapping will point to the old origin block (the shared
94 * one). This will contain the data as it was before the io that triggered
95 * the breaking of sharing came in.
96 *
97 * - The snap mapping still points to the old block. As it would after
98 * the commit.
99 *
100 * The downside of this scheme is the timestamp magic isn't perfect, and
101 * will continue to think that data block in the snapshot device is shared
102 * even after the write to the origin has broken sharing. I suspect data
103 * blocks will typically be shared by many different devices, so we're
104 * breaking sharing n + 1 times, rather than n, where n is the number of
105 * devices that reference this data block. At the moment I think the
106 * benefits far, far outweigh the disadvantages.
107 */
108
109 /*----------------------------------------------------------------*/
110
111 /*
112 * Key building.
113 */
114 static void build_data_key(struct dm_thin_device *td,
115 dm_block_t b, struct dm_cell_key *key)
116 {
117 key->virtual = 0;
118 key->dev = dm_thin_dev_id(td);
119 key->block_begin = b;
120 key->block_end = b + 1ULL;
121 }
122
123 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
124 struct dm_cell_key *key)
125 {
126 key->virtual = 1;
127 key->dev = dm_thin_dev_id(td);
128 key->block_begin = b;
129 key->block_end = b + 1ULL;
130 }
131
132 /*----------------------------------------------------------------*/
133
134 #define THROTTLE_THRESHOLD (1 * HZ)
135
136 struct throttle {
137 struct rw_semaphore lock;
138 unsigned long threshold;
139 bool throttle_applied;
140 };
141
142 static void throttle_init(struct throttle *t)
143 {
144 init_rwsem(&t->lock);
145 t->throttle_applied = false;
146 }
147
148 static void throttle_work_start(struct throttle *t)
149 {
150 t->threshold = jiffies + THROTTLE_THRESHOLD;
151 }
152
153 static void throttle_work_update(struct throttle *t)
154 {
155 if (!t->throttle_applied && jiffies > t->threshold) {
156 down_write(&t->lock);
157 t->throttle_applied = true;
158 }
159 }
160
161 static void throttle_work_complete(struct throttle *t)
162 {
163 if (t->throttle_applied) {
164 t->throttle_applied = false;
165 up_write(&t->lock);
166 }
167 }
168
169 static void throttle_lock(struct throttle *t)
170 {
171 down_read(&t->lock);
172 }
173
174 static void throttle_unlock(struct throttle *t)
175 {
176 up_read(&t->lock);
177 }
178
179 /*----------------------------------------------------------------*/
180
181 /*
182 * A pool device ties together a metadata device and a data device. It
183 * also provides the interface for creating and destroying internal
184 * devices.
185 */
186 struct dm_thin_new_mapping;
187
188 /*
189 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
190 */
191 enum pool_mode {
192 PM_WRITE, /* metadata may be changed */
193 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
194 PM_READ_ONLY, /* metadata may not be changed */
195 PM_FAIL, /* all I/O fails */
196 };
197
198 struct pool_features {
199 enum pool_mode mode;
200
201 bool zero_new_blocks:1;
202 bool discard_enabled:1;
203 bool discard_passdown:1;
204 bool error_if_no_space:1;
205 };
206
207 struct thin_c;
208 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
209 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
210 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
211
212 #define CELL_SORT_ARRAY_SIZE 8192
213
214 struct pool {
215 struct list_head list;
216 struct dm_target *ti; /* Only set if a pool target is bound */
217
218 struct mapped_device *pool_md;
219 struct block_device *md_dev;
220 struct dm_pool_metadata *pmd;
221
222 dm_block_t low_water_blocks;
223 uint32_t sectors_per_block;
224 int sectors_per_block_shift;
225
226 struct pool_features pf;
227 bool low_water_triggered:1; /* A dm event has been sent */
228 bool suspended:1;
229
230 struct dm_bio_prison *prison;
231 struct dm_kcopyd_client *copier;
232
233 struct workqueue_struct *wq;
234 struct throttle throttle;
235 struct work_struct worker;
236 struct delayed_work waker;
237 struct delayed_work no_space_timeout;
238
239 unsigned long last_commit_jiffies;
240 unsigned ref_count;
241
242 spinlock_t lock;
243 struct bio_list deferred_flush_bios;
244 struct list_head prepared_mappings;
245 struct list_head prepared_discards;
246 struct list_head active_thins;
247
248 struct dm_deferred_set *shared_read_ds;
249 struct dm_deferred_set *all_io_ds;
250
251 struct dm_thin_new_mapping *next_mapping;
252 mempool_t *mapping_pool;
253
254 process_bio_fn process_bio;
255 process_bio_fn process_discard;
256
257 process_cell_fn process_cell;
258 process_cell_fn process_discard_cell;
259
260 process_mapping_fn process_prepared_mapping;
261 process_mapping_fn process_prepared_discard;
262
263 struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
264 };
265
266 static enum pool_mode get_pool_mode(struct pool *pool);
267 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
268
269 /*
270 * Target context for a pool.
271 */
272 struct pool_c {
273 struct dm_target *ti;
274 struct pool *pool;
275 struct dm_dev *data_dev;
276 struct dm_dev *metadata_dev;
277 struct dm_target_callbacks callbacks;
278
279 dm_block_t low_water_blocks;
280 struct pool_features requested_pf; /* Features requested during table load */
281 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
282 };
283
284 /*
285 * Target context for a thin.
286 */
287 struct thin_c {
288 struct list_head list;
289 struct dm_dev *pool_dev;
290 struct dm_dev *origin_dev;
291 sector_t origin_size;
292 dm_thin_id dev_id;
293
294 struct pool *pool;
295 struct dm_thin_device *td;
296 struct mapped_device *thin_md;
297
298 bool requeue_mode:1;
299 spinlock_t lock;
300 struct list_head deferred_cells;
301 struct bio_list deferred_bio_list;
302 struct bio_list retry_on_resume_list;
303 struct rb_root sort_bio_list; /* sorted list of deferred bios */
304
305 /*
306 * Ensures the thin is not destroyed until the worker has finished
307 * iterating the active_thins list.
308 */
309 atomic_t refcount;
310 struct completion can_destroy;
311 };
312
313 /*----------------------------------------------------------------*/
314
315 /*
316 * wake_worker() is used when new work is queued and when pool_resume is
317 * ready to continue deferred IO processing.
318 */
319 static void wake_worker(struct pool *pool)
320 {
321 queue_work(pool->wq, &pool->worker);
322 }
323
324 /*----------------------------------------------------------------*/
325
326 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
327 struct dm_bio_prison_cell **cell_result)
328 {
329 int r;
330 struct dm_bio_prison_cell *cell_prealloc;
331
332 /*
333 * Allocate a cell from the prison's mempool.
334 * This might block but it can't fail.
335 */
336 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
337
338 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
339 if (r)
340 /*
341 * We reused an old cell; we can get rid of
342 * the new one.
343 */
344 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
345
346 return r;
347 }
348
349 static void cell_release(struct pool *pool,
350 struct dm_bio_prison_cell *cell,
351 struct bio_list *bios)
352 {
353 dm_cell_release(pool->prison, cell, bios);
354 dm_bio_prison_free_cell(pool->prison, cell);
355 }
356
357 static void cell_visit_release(struct pool *pool,
358 void (*fn)(void *, struct dm_bio_prison_cell *),
359 void *context,
360 struct dm_bio_prison_cell *cell)
361 {
362 dm_cell_visit_release(pool->prison, fn, context, cell);
363 dm_bio_prison_free_cell(pool->prison, cell);
364 }
365
366 static void cell_release_no_holder(struct pool *pool,
367 struct dm_bio_prison_cell *cell,
368 struct bio_list *bios)
369 {
370 dm_cell_release_no_holder(pool->prison, cell, bios);
371 dm_bio_prison_free_cell(pool->prison, cell);
372 }
373
374 static void cell_error_with_code(struct pool *pool,
375 struct dm_bio_prison_cell *cell, int error_code)
376 {
377 dm_cell_error(pool->prison, cell, error_code);
378 dm_bio_prison_free_cell(pool->prison, cell);
379 }
380
381 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
382 {
383 cell_error_with_code(pool, cell, -EIO);
384 }
385
386 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
387 {
388 cell_error_with_code(pool, cell, 0);
389 }
390
391 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
392 {
393 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
394 }
395
396 /*----------------------------------------------------------------*/
397
398 /*
399 * A global list of pools that uses a struct mapped_device as a key.
400 */
401 static struct dm_thin_pool_table {
402 struct mutex mutex;
403 struct list_head pools;
404 } dm_thin_pool_table;
405
406 static void pool_table_init(void)
407 {
408 mutex_init(&dm_thin_pool_table.mutex);
409 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
410 }
411
412 static void __pool_table_insert(struct pool *pool)
413 {
414 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
415 list_add(&pool->list, &dm_thin_pool_table.pools);
416 }
417
418 static void __pool_table_remove(struct pool *pool)
419 {
420 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
421 list_del(&pool->list);
422 }
423
424 static struct pool *__pool_table_lookup(struct mapped_device *md)
425 {
426 struct pool *pool = NULL, *tmp;
427
428 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
429
430 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
431 if (tmp->pool_md == md) {
432 pool = tmp;
433 break;
434 }
435 }
436
437 return pool;
438 }
439
440 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
441 {
442 struct pool *pool = NULL, *tmp;
443
444 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
445
446 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
447 if (tmp->md_dev == md_dev) {
448 pool = tmp;
449 break;
450 }
451 }
452
453 return pool;
454 }
455
456 /*----------------------------------------------------------------*/
457
458 struct dm_thin_endio_hook {
459 struct thin_c *tc;
460 struct dm_deferred_entry *shared_read_entry;
461 struct dm_deferred_entry *all_io_entry;
462 struct dm_thin_new_mapping *overwrite_mapping;
463 struct rb_node rb_node;
464 };
465
466 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
467 {
468 bio_list_merge(bios, master);
469 bio_list_init(master);
470 }
471
472 static void error_bio_list(struct bio_list *bios, int error)
473 {
474 struct bio *bio;
475
476 while ((bio = bio_list_pop(bios)))
477 bio_endio(bio, error);
478 }
479
480 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
481 {
482 struct bio_list bios;
483 unsigned long flags;
484
485 bio_list_init(&bios);
486
487 spin_lock_irqsave(&tc->lock, flags);
488 __merge_bio_list(&bios, master);
489 spin_unlock_irqrestore(&tc->lock, flags);
490
491 error_bio_list(&bios, error);
492 }
493
494 static void requeue_deferred_cells(struct thin_c *tc)
495 {
496 struct pool *pool = tc->pool;
497 unsigned long flags;
498 struct list_head cells;
499 struct dm_bio_prison_cell *cell, *tmp;
500
501 INIT_LIST_HEAD(&cells);
502
503 spin_lock_irqsave(&tc->lock, flags);
504 list_splice_init(&tc->deferred_cells, &cells);
505 spin_unlock_irqrestore(&tc->lock, flags);
506
507 list_for_each_entry_safe(cell, tmp, &cells, user_list)
508 cell_requeue(pool, cell);
509 }
510
511 static void requeue_io(struct thin_c *tc)
512 {
513 struct bio_list bios;
514 unsigned long flags;
515
516 bio_list_init(&bios);
517
518 spin_lock_irqsave(&tc->lock, flags);
519 __merge_bio_list(&bios, &tc->deferred_bio_list);
520 __merge_bio_list(&bios, &tc->retry_on_resume_list);
521 spin_unlock_irqrestore(&tc->lock, flags);
522
523 error_bio_list(&bios, DM_ENDIO_REQUEUE);
524 requeue_deferred_cells(tc);
525 }
526
527 static void error_retry_list(struct pool *pool)
528 {
529 struct thin_c *tc;
530
531 rcu_read_lock();
532 list_for_each_entry_rcu(tc, &pool->active_thins, list)
533 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
534 rcu_read_unlock();
535 }
536
537 /*
538 * This section of code contains the logic for processing a thin device's IO.
539 * Much of the code depends on pool object resources (lists, workqueues, etc)
540 * but most is exclusively called from the thin target rather than the thin-pool
541 * target.
542 */
543
544 static bool block_size_is_power_of_two(struct pool *pool)
545 {
546 return pool->sectors_per_block_shift >= 0;
547 }
548
549 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
550 {
551 struct pool *pool = tc->pool;
552 sector_t block_nr = bio->bi_iter.bi_sector;
553
554 if (block_size_is_power_of_two(pool))
555 block_nr >>= pool->sectors_per_block_shift;
556 else
557 (void) sector_div(block_nr, pool->sectors_per_block);
558
559 return block_nr;
560 }
561
562 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
563 {
564 struct pool *pool = tc->pool;
565 sector_t bi_sector = bio->bi_iter.bi_sector;
566
567 bio->bi_bdev = tc->pool_dev->bdev;
568 if (block_size_is_power_of_two(pool))
569 bio->bi_iter.bi_sector =
570 (block << pool->sectors_per_block_shift) |
571 (bi_sector & (pool->sectors_per_block - 1));
572 else
573 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
574 sector_div(bi_sector, pool->sectors_per_block);
575 }
576
577 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
578 {
579 bio->bi_bdev = tc->origin_dev->bdev;
580 }
581
582 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
583 {
584 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
585 dm_thin_changed_this_transaction(tc->td);
586 }
587
588 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
589 {
590 struct dm_thin_endio_hook *h;
591
592 if (bio->bi_rw & REQ_DISCARD)
593 return;
594
595 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
596 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
597 }
598
599 static void issue(struct thin_c *tc, struct bio *bio)
600 {
601 struct pool *pool = tc->pool;
602 unsigned long flags;
603
604 if (!bio_triggers_commit(tc, bio)) {
605 generic_make_request(bio);
606 return;
607 }
608
609 /*
610 * Complete bio with an error if earlier I/O caused changes to
611 * the metadata that can't be committed e.g, due to I/O errors
612 * on the metadata device.
613 */
614 if (dm_thin_aborted_changes(tc->td)) {
615 bio_io_error(bio);
616 return;
617 }
618
619 /*
620 * Batch together any bios that trigger commits and then issue a
621 * single commit for them in process_deferred_bios().
622 */
623 spin_lock_irqsave(&pool->lock, flags);
624 bio_list_add(&pool->deferred_flush_bios, bio);
625 spin_unlock_irqrestore(&pool->lock, flags);
626 }
627
628 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
629 {
630 remap_to_origin(tc, bio);
631 issue(tc, bio);
632 }
633
634 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
635 dm_block_t block)
636 {
637 remap(tc, bio, block);
638 issue(tc, bio);
639 }
640
641 /*----------------------------------------------------------------*/
642
643 /*
644 * Bio endio functions.
645 */
646 struct dm_thin_new_mapping {
647 struct list_head list;
648
649 bool pass_discard:1;
650 bool definitely_not_shared:1;
651
652 /*
653 * Track quiescing, copying and zeroing preparation actions. When this
654 * counter hits zero the block is prepared and can be inserted into the
655 * btree.
656 */
657 atomic_t prepare_actions;
658
659 int err;
660 struct thin_c *tc;
661 dm_block_t virt_block;
662 dm_block_t data_block;
663 struct dm_bio_prison_cell *cell, *cell2;
664
665 /*
666 * If the bio covers the whole area of a block then we can avoid
667 * zeroing or copying. Instead this bio is hooked. The bio will
668 * still be in the cell, so care has to be taken to avoid issuing
669 * the bio twice.
670 */
671 struct bio *bio;
672 bio_end_io_t *saved_bi_end_io;
673 };
674
675 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
676 {
677 struct pool *pool = m->tc->pool;
678
679 if (atomic_dec_and_test(&m->prepare_actions)) {
680 list_add_tail(&m->list, &pool->prepared_mappings);
681 wake_worker(pool);
682 }
683 }
684
685 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
686 {
687 unsigned long flags;
688 struct pool *pool = m->tc->pool;
689
690 spin_lock_irqsave(&pool->lock, flags);
691 __complete_mapping_preparation(m);
692 spin_unlock_irqrestore(&pool->lock, flags);
693 }
694
695 static void copy_complete(int read_err, unsigned long write_err, void *context)
696 {
697 struct dm_thin_new_mapping *m = context;
698
699 m->err = read_err || write_err ? -EIO : 0;
700 complete_mapping_preparation(m);
701 }
702
703 static void overwrite_endio(struct bio *bio, int err)
704 {
705 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
706 struct dm_thin_new_mapping *m = h->overwrite_mapping;
707
708 m->err = err;
709 complete_mapping_preparation(m);
710 }
711
712 /*----------------------------------------------------------------*/
713
714 /*
715 * Workqueue.
716 */
717
718 /*
719 * Prepared mapping jobs.
720 */
721
722 /*
723 * This sends the bios in the cell, except the original holder, back
724 * to the deferred_bios list.
725 */
726 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
727 {
728 struct pool *pool = tc->pool;
729 unsigned long flags;
730
731 spin_lock_irqsave(&tc->lock, flags);
732 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
733 spin_unlock_irqrestore(&tc->lock, flags);
734
735 wake_worker(pool);
736 }
737
738 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
739
740 struct remap_info {
741 struct thin_c *tc;
742 struct bio_list defer_bios;
743 struct bio_list issue_bios;
744 };
745
746 static void __inc_remap_and_issue_cell(void *context,
747 struct dm_bio_prison_cell *cell)
748 {
749 struct remap_info *info = context;
750 struct bio *bio;
751
752 while ((bio = bio_list_pop(&cell->bios))) {
753 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
754 bio_list_add(&info->defer_bios, bio);
755 else {
756 inc_all_io_entry(info->tc->pool, bio);
757
758 /*
759 * We can't issue the bios with the bio prison lock
760 * held, so we add them to a list to issue on
761 * return from this function.
762 */
763 bio_list_add(&info->issue_bios, bio);
764 }
765 }
766 }
767
768 static void inc_remap_and_issue_cell(struct thin_c *tc,
769 struct dm_bio_prison_cell *cell,
770 dm_block_t block)
771 {
772 struct bio *bio;
773 struct remap_info info;
774
775 info.tc = tc;
776 bio_list_init(&info.defer_bios);
777 bio_list_init(&info.issue_bios);
778
779 /*
780 * We have to be careful to inc any bios we're about to issue
781 * before the cell is released, and avoid a race with new bios
782 * being added to the cell.
783 */
784 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
785 &info, cell);
786
787 while ((bio = bio_list_pop(&info.defer_bios)))
788 thin_defer_bio(tc, bio);
789
790 while ((bio = bio_list_pop(&info.issue_bios)))
791 remap_and_issue(info.tc, bio, block);
792 }
793
794 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
795 {
796 if (m->bio) {
797 m->bio->bi_end_io = m->saved_bi_end_io;
798 atomic_inc(&m->bio->bi_remaining);
799 }
800 cell_error(m->tc->pool, m->cell);
801 list_del(&m->list);
802 mempool_free(m, m->tc->pool->mapping_pool);
803 }
804
805 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
806 {
807 struct thin_c *tc = m->tc;
808 struct pool *pool = tc->pool;
809 struct bio *bio;
810 int r;
811
812 bio = m->bio;
813 if (bio) {
814 bio->bi_end_io = m->saved_bi_end_io;
815 atomic_inc(&bio->bi_remaining);
816 }
817
818 if (m->err) {
819 cell_error(pool, m->cell);
820 goto out;
821 }
822
823 /*
824 * Commit the prepared block into the mapping btree.
825 * Any I/O for this block arriving after this point will get
826 * remapped to it directly.
827 */
828 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
829 if (r) {
830 metadata_operation_failed(pool, "dm_thin_insert_block", r);
831 cell_error(pool, m->cell);
832 goto out;
833 }
834
835 /*
836 * Release any bios held while the block was being provisioned.
837 * If we are processing a write bio that completely covers the block,
838 * we already processed it so can ignore it now when processing
839 * the bios in the cell.
840 */
841 if (bio) {
842 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
843 bio_endio(bio, 0);
844 } else {
845 inc_all_io_entry(tc->pool, m->cell->holder);
846 remap_and_issue(tc, m->cell->holder, m->data_block);
847 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
848 }
849
850 out:
851 list_del(&m->list);
852 mempool_free(m, pool->mapping_pool);
853 }
854
855 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
856 {
857 struct thin_c *tc = m->tc;
858
859 bio_io_error(m->bio);
860 cell_defer_no_holder(tc, m->cell);
861 cell_defer_no_holder(tc, m->cell2);
862 mempool_free(m, tc->pool->mapping_pool);
863 }
864
865 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
866 {
867 struct thin_c *tc = m->tc;
868
869 inc_all_io_entry(tc->pool, m->bio);
870 cell_defer_no_holder(tc, m->cell);
871 cell_defer_no_holder(tc, m->cell2);
872
873 if (m->pass_discard)
874 if (m->definitely_not_shared)
875 remap_and_issue(tc, m->bio, m->data_block);
876 else {
877 bool used = false;
878 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
879 bio_endio(m->bio, 0);
880 else
881 remap_and_issue(tc, m->bio, m->data_block);
882 }
883 else
884 bio_endio(m->bio, 0);
885
886 mempool_free(m, tc->pool->mapping_pool);
887 }
888
889 static void process_prepared_discard(struct dm_thin_new_mapping *m)
890 {
891 int r;
892 struct thin_c *tc = m->tc;
893
894 r = dm_thin_remove_block(tc->td, m->virt_block);
895 if (r)
896 DMERR_LIMIT("dm_thin_remove_block() failed");
897
898 process_prepared_discard_passdown(m);
899 }
900
901 static void process_prepared(struct pool *pool, struct list_head *head,
902 process_mapping_fn *fn)
903 {
904 unsigned long flags;
905 struct list_head maps;
906 struct dm_thin_new_mapping *m, *tmp;
907
908 INIT_LIST_HEAD(&maps);
909 spin_lock_irqsave(&pool->lock, flags);
910 list_splice_init(head, &maps);
911 spin_unlock_irqrestore(&pool->lock, flags);
912
913 list_for_each_entry_safe(m, tmp, &maps, list)
914 (*fn)(m);
915 }
916
917 /*
918 * Deferred bio jobs.
919 */
920 static int io_overlaps_block(struct pool *pool, struct bio *bio)
921 {
922 return bio->bi_iter.bi_size ==
923 (pool->sectors_per_block << SECTOR_SHIFT);
924 }
925
926 static int io_overwrites_block(struct pool *pool, struct bio *bio)
927 {
928 return (bio_data_dir(bio) == WRITE) &&
929 io_overlaps_block(pool, bio);
930 }
931
932 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
933 bio_end_io_t *fn)
934 {
935 *save = bio->bi_end_io;
936 bio->bi_end_io = fn;
937 }
938
939 static int ensure_next_mapping(struct pool *pool)
940 {
941 if (pool->next_mapping)
942 return 0;
943
944 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
945
946 return pool->next_mapping ? 0 : -ENOMEM;
947 }
948
949 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
950 {
951 struct dm_thin_new_mapping *m = pool->next_mapping;
952
953 BUG_ON(!pool->next_mapping);
954
955 memset(m, 0, sizeof(struct dm_thin_new_mapping));
956 INIT_LIST_HEAD(&m->list);
957 m->bio = NULL;
958
959 pool->next_mapping = NULL;
960
961 return m;
962 }
963
964 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
965 sector_t begin, sector_t end)
966 {
967 int r;
968 struct dm_io_region to;
969
970 to.bdev = tc->pool_dev->bdev;
971 to.sector = begin;
972 to.count = end - begin;
973
974 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
975 if (r < 0) {
976 DMERR_LIMIT("dm_kcopyd_zero() failed");
977 copy_complete(1, 1, m);
978 }
979 }
980
981 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
982 dm_block_t data_block,
983 struct dm_thin_new_mapping *m)
984 {
985 struct pool *pool = tc->pool;
986 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
987
988 h->overwrite_mapping = m;
989 m->bio = bio;
990 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991 inc_all_io_entry(pool, bio);
992 remap_and_issue(tc, bio, data_block);
993 }
994
995 /*
996 * A partial copy also needs to zero the uncopied region.
997 */
998 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
999 struct dm_dev *origin, dm_block_t data_origin,
1000 dm_block_t data_dest,
1001 struct dm_bio_prison_cell *cell, struct bio *bio,
1002 sector_t len)
1003 {
1004 int r;
1005 struct pool *pool = tc->pool;
1006 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1007
1008 m->tc = tc;
1009 m->virt_block = virt_block;
1010 m->data_block = data_dest;
1011 m->cell = cell;
1012
1013 /*
1014 * quiesce action + copy action + an extra reference held for the
1015 * duration of this function (we may need to inc later for a
1016 * partial zero).
1017 */
1018 atomic_set(&m->prepare_actions, 3);
1019
1020 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1021 complete_mapping_preparation(m); /* already quiesced */
1022
1023 /*
1024 * IO to pool_dev remaps to the pool target's data_dev.
1025 *
1026 * If the whole block of data is being overwritten, we can issue the
1027 * bio immediately. Otherwise we use kcopyd to clone the data first.
1028 */
1029 if (io_overwrites_block(pool, bio))
1030 remap_and_issue_overwrite(tc, bio, data_dest, m);
1031 else {
1032 struct dm_io_region from, to;
1033
1034 from.bdev = origin->bdev;
1035 from.sector = data_origin * pool->sectors_per_block;
1036 from.count = len;
1037
1038 to.bdev = tc->pool_dev->bdev;
1039 to.sector = data_dest * pool->sectors_per_block;
1040 to.count = len;
1041
1042 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1043 0, copy_complete, m);
1044 if (r < 0) {
1045 DMERR_LIMIT("dm_kcopyd_copy() failed");
1046 copy_complete(1, 1, m);
1047
1048 /*
1049 * We allow the zero to be issued, to simplify the
1050 * error path. Otherwise we'd need to start
1051 * worrying about decrementing the prepare_actions
1052 * counter.
1053 */
1054 }
1055
1056 /*
1057 * Do we need to zero a tail region?
1058 */
1059 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1060 atomic_inc(&m->prepare_actions);
1061 ll_zero(tc, m,
1062 data_dest * pool->sectors_per_block + len,
1063 (data_dest + 1) * pool->sectors_per_block);
1064 }
1065 }
1066
1067 complete_mapping_preparation(m); /* drop our ref */
1068 }
1069
1070 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1071 dm_block_t data_origin, dm_block_t data_dest,
1072 struct dm_bio_prison_cell *cell, struct bio *bio)
1073 {
1074 schedule_copy(tc, virt_block, tc->pool_dev,
1075 data_origin, data_dest, cell, bio,
1076 tc->pool->sectors_per_block);
1077 }
1078
1079 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1080 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1081 struct bio *bio)
1082 {
1083 struct pool *pool = tc->pool;
1084 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1085
1086 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1087 m->tc = tc;
1088 m->virt_block = virt_block;
1089 m->data_block = data_block;
1090 m->cell = cell;
1091
1092 /*
1093 * If the whole block of data is being overwritten or we are not
1094 * zeroing pre-existing data, we can issue the bio immediately.
1095 * Otherwise we use kcopyd to zero the data first.
1096 */
1097 if (!pool->pf.zero_new_blocks)
1098 process_prepared_mapping(m);
1099
1100 else if (io_overwrites_block(pool, bio))
1101 remap_and_issue_overwrite(tc, bio, data_block, m);
1102
1103 else
1104 ll_zero(tc, m,
1105 data_block * pool->sectors_per_block,
1106 (data_block + 1) * pool->sectors_per_block);
1107 }
1108
1109 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1110 dm_block_t data_dest,
1111 struct dm_bio_prison_cell *cell, struct bio *bio)
1112 {
1113 struct pool *pool = tc->pool;
1114 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1115 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1116
1117 if (virt_block_end <= tc->origin_size)
1118 schedule_copy(tc, virt_block, tc->origin_dev,
1119 virt_block, data_dest, cell, bio,
1120 pool->sectors_per_block);
1121
1122 else if (virt_block_begin < tc->origin_size)
1123 schedule_copy(tc, virt_block, tc->origin_dev,
1124 virt_block, data_dest, cell, bio,
1125 tc->origin_size - virt_block_begin);
1126
1127 else
1128 schedule_zero(tc, virt_block, data_dest, cell, bio);
1129 }
1130
1131 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1132
1133 static void check_for_space(struct pool *pool)
1134 {
1135 int r;
1136 dm_block_t nr_free;
1137
1138 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1139 return;
1140
1141 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1142 if (r)
1143 return;
1144
1145 if (nr_free)
1146 set_pool_mode(pool, PM_WRITE);
1147 }
1148
1149 /*
1150 * A non-zero return indicates read_only or fail_io mode.
1151 * Many callers don't care about the return value.
1152 */
1153 static int commit(struct pool *pool)
1154 {
1155 int r;
1156
1157 if (get_pool_mode(pool) >= PM_READ_ONLY)
1158 return -EINVAL;
1159
1160 r = dm_pool_commit_metadata(pool->pmd);
1161 if (r)
1162 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1163 else
1164 check_for_space(pool);
1165
1166 return r;
1167 }
1168
1169 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1170 {
1171 unsigned long flags;
1172
1173 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1174 DMWARN("%s: reached low water mark for data device: sending event.",
1175 dm_device_name(pool->pool_md));
1176 spin_lock_irqsave(&pool->lock, flags);
1177 pool->low_water_triggered = true;
1178 spin_unlock_irqrestore(&pool->lock, flags);
1179 dm_table_event(pool->ti->table);
1180 }
1181 }
1182
1183 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1184 {
1185 int r;
1186 dm_block_t free_blocks;
1187 struct pool *pool = tc->pool;
1188
1189 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1190 return -EINVAL;
1191
1192 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1193 if (r) {
1194 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1195 return r;
1196 }
1197
1198 check_low_water_mark(pool, free_blocks);
1199
1200 if (!free_blocks) {
1201 /*
1202 * Try to commit to see if that will free up some
1203 * more space.
1204 */
1205 r = commit(pool);
1206 if (r)
1207 return r;
1208
1209 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1210 if (r) {
1211 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1212 return r;
1213 }
1214
1215 if (!free_blocks) {
1216 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1217 return -ENOSPC;
1218 }
1219 }
1220
1221 r = dm_pool_alloc_data_block(pool->pmd, result);
1222 if (r) {
1223 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1224 return r;
1225 }
1226
1227 return 0;
1228 }
1229
1230 /*
1231 * If we have run out of space, queue bios until the device is
1232 * resumed, presumably after having been reloaded with more space.
1233 */
1234 static void retry_on_resume(struct bio *bio)
1235 {
1236 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1237 struct thin_c *tc = h->tc;
1238 unsigned long flags;
1239
1240 spin_lock_irqsave(&tc->lock, flags);
1241 bio_list_add(&tc->retry_on_resume_list, bio);
1242 spin_unlock_irqrestore(&tc->lock, flags);
1243 }
1244
1245 static int should_error_unserviceable_bio(struct pool *pool)
1246 {
1247 enum pool_mode m = get_pool_mode(pool);
1248
1249 switch (m) {
1250 case PM_WRITE:
1251 /* Shouldn't get here */
1252 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1253 return -EIO;
1254
1255 case PM_OUT_OF_DATA_SPACE:
1256 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1257
1258 case PM_READ_ONLY:
1259 case PM_FAIL:
1260 return -EIO;
1261 default:
1262 /* Shouldn't get here */
1263 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1264 return -EIO;
1265 }
1266 }
1267
1268 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1269 {
1270 int error = should_error_unserviceable_bio(pool);
1271
1272 if (error)
1273 bio_endio(bio, error);
1274 else
1275 retry_on_resume(bio);
1276 }
1277
1278 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1279 {
1280 struct bio *bio;
1281 struct bio_list bios;
1282 int error;
1283
1284 error = should_error_unserviceable_bio(pool);
1285 if (error) {
1286 cell_error_with_code(pool, cell, error);
1287 return;
1288 }
1289
1290 bio_list_init(&bios);
1291 cell_release(pool, cell, &bios);
1292
1293 while ((bio = bio_list_pop(&bios)))
1294 retry_on_resume(bio);
1295 }
1296
1297 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1298 {
1299 int r;
1300 struct bio *bio = cell->holder;
1301 struct pool *pool = tc->pool;
1302 struct dm_bio_prison_cell *cell2;
1303 struct dm_cell_key key2;
1304 dm_block_t block = get_bio_block(tc, bio);
1305 struct dm_thin_lookup_result lookup_result;
1306 struct dm_thin_new_mapping *m;
1307
1308 if (tc->requeue_mode) {
1309 cell_requeue(pool, cell);
1310 return;
1311 }
1312
1313 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1314 switch (r) {
1315 case 0:
1316 /*
1317 * Check nobody is fiddling with this pool block. This can
1318 * happen if someone's in the process of breaking sharing
1319 * on this block.
1320 */
1321 build_data_key(tc->td, lookup_result.block, &key2);
1322 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1323 cell_defer_no_holder(tc, cell);
1324 break;
1325 }
1326
1327 if (io_overlaps_block(pool, bio)) {
1328 /*
1329 * IO may still be going to the destination block. We must
1330 * quiesce before we can do the removal.
1331 */
1332 m = get_next_mapping(pool);
1333 m->tc = tc;
1334 m->pass_discard = pool->pf.discard_passdown;
1335 m->definitely_not_shared = !lookup_result.shared;
1336 m->virt_block = block;
1337 m->data_block = lookup_result.block;
1338 m->cell = cell;
1339 m->cell2 = cell2;
1340 m->bio = bio;
1341
1342 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1343 pool->process_prepared_discard(m);
1344
1345 } else {
1346 inc_all_io_entry(pool, bio);
1347 cell_defer_no_holder(tc, cell);
1348 cell_defer_no_holder(tc, cell2);
1349
1350 /*
1351 * The DM core makes sure that the discard doesn't span
1352 * a block boundary. So we submit the discard of a
1353 * partial block appropriately.
1354 */
1355 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1356 remap_and_issue(tc, bio, lookup_result.block);
1357 else
1358 bio_endio(bio, 0);
1359 }
1360 break;
1361
1362 case -ENODATA:
1363 /*
1364 * It isn't provisioned, just forget it.
1365 */
1366 cell_defer_no_holder(tc, cell);
1367 bio_endio(bio, 0);
1368 break;
1369
1370 default:
1371 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1372 __func__, r);
1373 cell_defer_no_holder(tc, cell);
1374 bio_io_error(bio);
1375 break;
1376 }
1377 }
1378
1379 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1380 {
1381 struct dm_bio_prison_cell *cell;
1382 struct dm_cell_key key;
1383 dm_block_t block = get_bio_block(tc, bio);
1384
1385 build_virtual_key(tc->td, block, &key);
1386 if (bio_detain(tc->pool, &key, bio, &cell))
1387 return;
1388
1389 process_discard_cell(tc, cell);
1390 }
1391
1392 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1393 struct dm_cell_key *key,
1394 struct dm_thin_lookup_result *lookup_result,
1395 struct dm_bio_prison_cell *cell)
1396 {
1397 int r;
1398 dm_block_t data_block;
1399 struct pool *pool = tc->pool;
1400
1401 r = alloc_data_block(tc, &data_block);
1402 switch (r) {
1403 case 0:
1404 schedule_internal_copy(tc, block, lookup_result->block,
1405 data_block, cell, bio);
1406 break;
1407
1408 case -ENOSPC:
1409 retry_bios_on_resume(pool, cell);
1410 break;
1411
1412 default:
1413 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1414 __func__, r);
1415 cell_error(pool, cell);
1416 break;
1417 }
1418 }
1419
1420 static void __remap_and_issue_shared_cell(void *context,
1421 struct dm_bio_prison_cell *cell)
1422 {
1423 struct remap_info *info = context;
1424 struct bio *bio;
1425
1426 while ((bio = bio_list_pop(&cell->bios))) {
1427 if ((bio_data_dir(bio) == WRITE) ||
1428 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1429 bio_list_add(&info->defer_bios, bio);
1430 else {
1431 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1432
1433 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1434 inc_all_io_entry(info->tc->pool, bio);
1435 bio_list_add(&info->issue_bios, bio);
1436 }
1437 }
1438 }
1439
1440 static void remap_and_issue_shared_cell(struct thin_c *tc,
1441 struct dm_bio_prison_cell *cell,
1442 dm_block_t block)
1443 {
1444 struct bio *bio;
1445 struct remap_info info;
1446
1447 info.tc = tc;
1448 bio_list_init(&info.defer_bios);
1449 bio_list_init(&info.issue_bios);
1450
1451 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1452 &info, cell);
1453
1454 while ((bio = bio_list_pop(&info.defer_bios)))
1455 thin_defer_bio(tc, bio);
1456
1457 while ((bio = bio_list_pop(&info.issue_bios)))
1458 remap_and_issue(tc, bio, block);
1459 }
1460
1461 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1462 dm_block_t block,
1463 struct dm_thin_lookup_result *lookup_result,
1464 struct dm_bio_prison_cell *virt_cell)
1465 {
1466 struct dm_bio_prison_cell *data_cell;
1467 struct pool *pool = tc->pool;
1468 struct dm_cell_key key;
1469
1470 /*
1471 * If cell is already occupied, then sharing is already in the process
1472 * of being broken so we have nothing further to do here.
1473 */
1474 build_data_key(tc->td, lookup_result->block, &key);
1475 if (bio_detain(pool, &key, bio, &data_cell)) {
1476 cell_defer_no_holder(tc, virt_cell);
1477 return;
1478 }
1479
1480 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1481 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1482 cell_defer_no_holder(tc, virt_cell);
1483 } else {
1484 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1485
1486 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1487 inc_all_io_entry(pool, bio);
1488 remap_and_issue(tc, bio, lookup_result->block);
1489
1490 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1491 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1492 }
1493 }
1494
1495 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1496 struct dm_bio_prison_cell *cell)
1497 {
1498 int r;
1499 dm_block_t data_block;
1500 struct pool *pool = tc->pool;
1501
1502 /*
1503 * Remap empty bios (flushes) immediately, without provisioning.
1504 */
1505 if (!bio->bi_iter.bi_size) {
1506 inc_all_io_entry(pool, bio);
1507 cell_defer_no_holder(tc, cell);
1508
1509 remap_and_issue(tc, bio, 0);
1510 return;
1511 }
1512
1513 /*
1514 * Fill read bios with zeroes and complete them immediately.
1515 */
1516 if (bio_data_dir(bio) == READ) {
1517 zero_fill_bio(bio);
1518 cell_defer_no_holder(tc, cell);
1519 bio_endio(bio, 0);
1520 return;
1521 }
1522
1523 r = alloc_data_block(tc, &data_block);
1524 switch (r) {
1525 case 0:
1526 if (tc->origin_dev)
1527 schedule_external_copy(tc, block, data_block, cell, bio);
1528 else
1529 schedule_zero(tc, block, data_block, cell, bio);
1530 break;
1531
1532 case -ENOSPC:
1533 retry_bios_on_resume(pool, cell);
1534 break;
1535
1536 default:
1537 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1538 __func__, r);
1539 cell_error(pool, cell);
1540 break;
1541 }
1542 }
1543
1544 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1545 {
1546 int r;
1547 struct pool *pool = tc->pool;
1548 struct bio *bio = cell->holder;
1549 dm_block_t block = get_bio_block(tc, bio);
1550 struct dm_thin_lookup_result lookup_result;
1551
1552 if (tc->requeue_mode) {
1553 cell_requeue(pool, cell);
1554 return;
1555 }
1556
1557 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1558 switch (r) {
1559 case 0:
1560 if (lookup_result.shared)
1561 process_shared_bio(tc, bio, block, &lookup_result, cell);
1562 else {
1563 inc_all_io_entry(pool, bio);
1564 remap_and_issue(tc, bio, lookup_result.block);
1565 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1566 }
1567 break;
1568
1569 case -ENODATA:
1570 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1571 inc_all_io_entry(pool, bio);
1572 cell_defer_no_holder(tc, cell);
1573
1574 if (bio_end_sector(bio) <= tc->origin_size)
1575 remap_to_origin_and_issue(tc, bio);
1576
1577 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1578 zero_fill_bio(bio);
1579 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1580 remap_to_origin_and_issue(tc, bio);
1581
1582 } else {
1583 zero_fill_bio(bio);
1584 bio_endio(bio, 0);
1585 }
1586 } else
1587 provision_block(tc, bio, block, cell);
1588 break;
1589
1590 default:
1591 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1592 __func__, r);
1593 cell_defer_no_holder(tc, cell);
1594 bio_io_error(bio);
1595 break;
1596 }
1597 }
1598
1599 static void process_bio(struct thin_c *tc, struct bio *bio)
1600 {
1601 struct pool *pool = tc->pool;
1602 dm_block_t block = get_bio_block(tc, bio);
1603 struct dm_bio_prison_cell *cell;
1604 struct dm_cell_key key;
1605
1606 /*
1607 * If cell is already occupied, then the block is already
1608 * being provisioned so we have nothing further to do here.
1609 */
1610 build_virtual_key(tc->td, block, &key);
1611 if (bio_detain(pool, &key, bio, &cell))
1612 return;
1613
1614 process_cell(tc, cell);
1615 }
1616
1617 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1618 struct dm_bio_prison_cell *cell)
1619 {
1620 int r;
1621 int rw = bio_data_dir(bio);
1622 dm_block_t block = get_bio_block(tc, bio);
1623 struct dm_thin_lookup_result lookup_result;
1624
1625 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1626 switch (r) {
1627 case 0:
1628 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1629 handle_unserviceable_bio(tc->pool, bio);
1630 if (cell)
1631 cell_defer_no_holder(tc, cell);
1632 } else {
1633 inc_all_io_entry(tc->pool, bio);
1634 remap_and_issue(tc, bio, lookup_result.block);
1635 if (cell)
1636 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1637 }
1638 break;
1639
1640 case -ENODATA:
1641 if (cell)
1642 cell_defer_no_holder(tc, cell);
1643 if (rw != READ) {
1644 handle_unserviceable_bio(tc->pool, bio);
1645 break;
1646 }
1647
1648 if (tc->origin_dev) {
1649 inc_all_io_entry(tc->pool, bio);
1650 remap_to_origin_and_issue(tc, bio);
1651 break;
1652 }
1653
1654 zero_fill_bio(bio);
1655 bio_endio(bio, 0);
1656 break;
1657
1658 default:
1659 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1660 __func__, r);
1661 if (cell)
1662 cell_defer_no_holder(tc, cell);
1663 bio_io_error(bio);
1664 break;
1665 }
1666 }
1667
1668 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1669 {
1670 __process_bio_read_only(tc, bio, NULL);
1671 }
1672
1673 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1674 {
1675 __process_bio_read_only(tc, cell->holder, cell);
1676 }
1677
1678 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1679 {
1680 bio_endio(bio, 0);
1681 }
1682
1683 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1684 {
1685 bio_io_error(bio);
1686 }
1687
1688 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1689 {
1690 cell_success(tc->pool, cell);
1691 }
1692
1693 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1694 {
1695 cell_error(tc->pool, cell);
1696 }
1697
1698 /*
1699 * FIXME: should we also commit due to size of transaction, measured in
1700 * metadata blocks?
1701 */
1702 static int need_commit_due_to_time(struct pool *pool)
1703 {
1704 return !time_in_range(jiffies, pool->last_commit_jiffies,
1705 pool->last_commit_jiffies + COMMIT_PERIOD);
1706 }
1707
1708 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1709 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1710
1711 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1712 {
1713 struct rb_node **rbp, *parent;
1714 struct dm_thin_endio_hook *pbd;
1715 sector_t bi_sector = bio->bi_iter.bi_sector;
1716
1717 rbp = &tc->sort_bio_list.rb_node;
1718 parent = NULL;
1719 while (*rbp) {
1720 parent = *rbp;
1721 pbd = thin_pbd(parent);
1722
1723 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1724 rbp = &(*rbp)->rb_left;
1725 else
1726 rbp = &(*rbp)->rb_right;
1727 }
1728
1729 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730 rb_link_node(&pbd->rb_node, parent, rbp);
1731 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1732 }
1733
1734 static void __extract_sorted_bios(struct thin_c *tc)
1735 {
1736 struct rb_node *node;
1737 struct dm_thin_endio_hook *pbd;
1738 struct bio *bio;
1739
1740 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1741 pbd = thin_pbd(node);
1742 bio = thin_bio(pbd);
1743
1744 bio_list_add(&tc->deferred_bio_list, bio);
1745 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1746 }
1747
1748 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1749 }
1750
1751 static void __sort_thin_deferred_bios(struct thin_c *tc)
1752 {
1753 struct bio *bio;
1754 struct bio_list bios;
1755
1756 bio_list_init(&bios);
1757 bio_list_merge(&bios, &tc->deferred_bio_list);
1758 bio_list_init(&tc->deferred_bio_list);
1759
1760 /* Sort deferred_bio_list using rb-tree */
1761 while ((bio = bio_list_pop(&bios)))
1762 __thin_bio_rb_add(tc, bio);
1763
1764 /*
1765 * Transfer the sorted bios in sort_bio_list back to
1766 * deferred_bio_list to allow lockless submission of
1767 * all bios.
1768 */
1769 __extract_sorted_bios(tc);
1770 }
1771
1772 static void process_thin_deferred_bios(struct thin_c *tc)
1773 {
1774 struct pool *pool = tc->pool;
1775 unsigned long flags;
1776 struct bio *bio;
1777 struct bio_list bios;
1778 struct blk_plug plug;
1779 unsigned count = 0;
1780
1781 if (tc->requeue_mode) {
1782 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1783 return;
1784 }
1785
1786 bio_list_init(&bios);
1787
1788 spin_lock_irqsave(&tc->lock, flags);
1789
1790 if (bio_list_empty(&tc->deferred_bio_list)) {
1791 spin_unlock_irqrestore(&tc->lock, flags);
1792 return;
1793 }
1794
1795 __sort_thin_deferred_bios(tc);
1796
1797 bio_list_merge(&bios, &tc->deferred_bio_list);
1798 bio_list_init(&tc->deferred_bio_list);
1799
1800 spin_unlock_irqrestore(&tc->lock, flags);
1801
1802 blk_start_plug(&plug);
1803 while ((bio = bio_list_pop(&bios))) {
1804 /*
1805 * If we've got no free new_mapping structs, and processing
1806 * this bio might require one, we pause until there are some
1807 * prepared mappings to process.
1808 */
1809 if (ensure_next_mapping(pool)) {
1810 spin_lock_irqsave(&tc->lock, flags);
1811 bio_list_add(&tc->deferred_bio_list, bio);
1812 bio_list_merge(&tc->deferred_bio_list, &bios);
1813 spin_unlock_irqrestore(&tc->lock, flags);
1814 break;
1815 }
1816
1817 if (bio->bi_rw & REQ_DISCARD)
1818 pool->process_discard(tc, bio);
1819 else
1820 pool->process_bio(tc, bio);
1821
1822 if ((count++ & 127) == 0) {
1823 throttle_work_update(&pool->throttle);
1824 dm_pool_issue_prefetches(pool->pmd);
1825 }
1826 }
1827 blk_finish_plug(&plug);
1828 }
1829
1830 static int cmp_cells(const void *lhs, const void *rhs)
1831 {
1832 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1833 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1834
1835 BUG_ON(!lhs_cell->holder);
1836 BUG_ON(!rhs_cell->holder);
1837
1838 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1839 return -1;
1840
1841 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1842 return 1;
1843
1844 return 0;
1845 }
1846
1847 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1848 {
1849 unsigned count = 0;
1850 struct dm_bio_prison_cell *cell, *tmp;
1851
1852 list_for_each_entry_safe(cell, tmp, cells, user_list) {
1853 if (count >= CELL_SORT_ARRAY_SIZE)
1854 break;
1855
1856 pool->cell_sort_array[count++] = cell;
1857 list_del(&cell->user_list);
1858 }
1859
1860 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1861
1862 return count;
1863 }
1864
1865 static void process_thin_deferred_cells(struct thin_c *tc)
1866 {
1867 struct pool *pool = tc->pool;
1868 unsigned long flags;
1869 struct list_head cells;
1870 struct dm_bio_prison_cell *cell;
1871 unsigned i, j, count;
1872
1873 INIT_LIST_HEAD(&cells);
1874
1875 spin_lock_irqsave(&tc->lock, flags);
1876 list_splice_init(&tc->deferred_cells, &cells);
1877 spin_unlock_irqrestore(&tc->lock, flags);
1878
1879 if (list_empty(&cells))
1880 return;
1881
1882 do {
1883 count = sort_cells(tc->pool, &cells);
1884
1885 for (i = 0; i < count; i++) {
1886 cell = pool->cell_sort_array[i];
1887 BUG_ON(!cell->holder);
1888
1889 /*
1890 * If we've got no free new_mapping structs, and processing
1891 * this bio might require one, we pause until there are some
1892 * prepared mappings to process.
1893 */
1894 if (ensure_next_mapping(pool)) {
1895 for (j = i; j < count; j++)
1896 list_add(&pool->cell_sort_array[j]->user_list, &cells);
1897
1898 spin_lock_irqsave(&tc->lock, flags);
1899 list_splice(&cells, &tc->deferred_cells);
1900 spin_unlock_irqrestore(&tc->lock, flags);
1901 return;
1902 }
1903
1904 if (cell->holder->bi_rw & REQ_DISCARD)
1905 pool->process_discard_cell(tc, cell);
1906 else
1907 pool->process_cell(tc, cell);
1908 }
1909 } while (!list_empty(&cells));
1910 }
1911
1912 static void thin_get(struct thin_c *tc);
1913 static void thin_put(struct thin_c *tc);
1914
1915 /*
1916 * We can't hold rcu_read_lock() around code that can block. So we
1917 * find a thin with the rcu lock held; bump a refcount; then drop
1918 * the lock.
1919 */
1920 static struct thin_c *get_first_thin(struct pool *pool)
1921 {
1922 struct thin_c *tc = NULL;
1923
1924 rcu_read_lock();
1925 if (!list_empty(&pool->active_thins)) {
1926 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1927 thin_get(tc);
1928 }
1929 rcu_read_unlock();
1930
1931 return tc;
1932 }
1933
1934 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1935 {
1936 struct thin_c *old_tc = tc;
1937
1938 rcu_read_lock();
1939 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1940 thin_get(tc);
1941 thin_put(old_tc);
1942 rcu_read_unlock();
1943 return tc;
1944 }
1945 thin_put(old_tc);
1946 rcu_read_unlock();
1947
1948 return NULL;
1949 }
1950
1951 static void process_deferred_bios(struct pool *pool)
1952 {
1953 unsigned long flags;
1954 struct bio *bio;
1955 struct bio_list bios;
1956 struct thin_c *tc;
1957
1958 tc = get_first_thin(pool);
1959 while (tc) {
1960 process_thin_deferred_cells(tc);
1961 process_thin_deferred_bios(tc);
1962 tc = get_next_thin(pool, tc);
1963 }
1964
1965 /*
1966 * If there are any deferred flush bios, we must commit
1967 * the metadata before issuing them.
1968 */
1969 bio_list_init(&bios);
1970 spin_lock_irqsave(&pool->lock, flags);
1971 bio_list_merge(&bios, &pool->deferred_flush_bios);
1972 bio_list_init(&pool->deferred_flush_bios);
1973 spin_unlock_irqrestore(&pool->lock, flags);
1974
1975 if (bio_list_empty(&bios) &&
1976 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1977 return;
1978
1979 if (commit(pool)) {
1980 while ((bio = bio_list_pop(&bios)))
1981 bio_io_error(bio);
1982 return;
1983 }
1984 pool->last_commit_jiffies = jiffies;
1985
1986 while ((bio = bio_list_pop(&bios)))
1987 generic_make_request(bio);
1988 }
1989
1990 static void do_worker(struct work_struct *ws)
1991 {
1992 struct pool *pool = container_of(ws, struct pool, worker);
1993
1994 throttle_work_start(&pool->throttle);
1995 dm_pool_issue_prefetches(pool->pmd);
1996 throttle_work_update(&pool->throttle);
1997 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1998 throttle_work_update(&pool->throttle);
1999 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2000 throttle_work_update(&pool->throttle);
2001 process_deferred_bios(pool);
2002 throttle_work_complete(&pool->throttle);
2003 }
2004
2005 /*
2006 * We want to commit periodically so that not too much
2007 * unwritten data builds up.
2008 */
2009 static void do_waker(struct work_struct *ws)
2010 {
2011 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2012 wake_worker(pool);
2013 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2014 }
2015
2016 /*
2017 * We're holding onto IO to allow userland time to react. After the
2018 * timeout either the pool will have been resized (and thus back in
2019 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2020 */
2021 static void do_no_space_timeout(struct work_struct *ws)
2022 {
2023 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2024 no_space_timeout);
2025
2026 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2027 set_pool_mode(pool, PM_READ_ONLY);
2028 }
2029
2030 /*----------------------------------------------------------------*/
2031
2032 struct pool_work {
2033 struct work_struct worker;
2034 struct completion complete;
2035 };
2036
2037 static struct pool_work *to_pool_work(struct work_struct *ws)
2038 {
2039 return container_of(ws, struct pool_work, worker);
2040 }
2041
2042 static void pool_work_complete(struct pool_work *pw)
2043 {
2044 complete(&pw->complete);
2045 }
2046
2047 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2048 void (*fn)(struct work_struct *))
2049 {
2050 INIT_WORK_ONSTACK(&pw->worker, fn);
2051 init_completion(&pw->complete);
2052 queue_work(pool->wq, &pw->worker);
2053 wait_for_completion(&pw->complete);
2054 }
2055
2056 /*----------------------------------------------------------------*/
2057
2058 struct noflush_work {
2059 struct pool_work pw;
2060 struct thin_c *tc;
2061 };
2062
2063 static struct noflush_work *to_noflush(struct work_struct *ws)
2064 {
2065 return container_of(to_pool_work(ws), struct noflush_work, pw);
2066 }
2067
2068 static void do_noflush_start(struct work_struct *ws)
2069 {
2070 struct noflush_work *w = to_noflush(ws);
2071 w->tc->requeue_mode = true;
2072 requeue_io(w->tc);
2073 pool_work_complete(&w->pw);
2074 }
2075
2076 static void do_noflush_stop(struct work_struct *ws)
2077 {
2078 struct noflush_work *w = to_noflush(ws);
2079 w->tc->requeue_mode = false;
2080 pool_work_complete(&w->pw);
2081 }
2082
2083 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2084 {
2085 struct noflush_work w;
2086
2087 w.tc = tc;
2088 pool_work_wait(&w.pw, tc->pool, fn);
2089 }
2090
2091 /*----------------------------------------------------------------*/
2092
2093 static enum pool_mode get_pool_mode(struct pool *pool)
2094 {
2095 return pool->pf.mode;
2096 }
2097
2098 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2099 {
2100 dm_table_event(pool->ti->table);
2101 DMINFO("%s: switching pool to %s mode",
2102 dm_device_name(pool->pool_md), new_mode);
2103 }
2104
2105 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2106 {
2107 struct pool_c *pt = pool->ti->private;
2108 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2109 enum pool_mode old_mode = get_pool_mode(pool);
2110 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2111
2112 /*
2113 * Never allow the pool to transition to PM_WRITE mode if user
2114 * intervention is required to verify metadata and data consistency.
2115 */
2116 if (new_mode == PM_WRITE && needs_check) {
2117 DMERR("%s: unable to switch pool to write mode until repaired.",
2118 dm_device_name(pool->pool_md));
2119 if (old_mode != new_mode)
2120 new_mode = old_mode;
2121 else
2122 new_mode = PM_READ_ONLY;
2123 }
2124 /*
2125 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2126 * not going to recover without a thin_repair. So we never let the
2127 * pool move out of the old mode.
2128 */
2129 if (old_mode == PM_FAIL)
2130 new_mode = old_mode;
2131
2132 switch (new_mode) {
2133 case PM_FAIL:
2134 if (old_mode != new_mode)
2135 notify_of_pool_mode_change(pool, "failure");
2136 dm_pool_metadata_read_only(pool->pmd);
2137 pool->process_bio = process_bio_fail;
2138 pool->process_discard = process_bio_fail;
2139 pool->process_cell = process_cell_fail;
2140 pool->process_discard_cell = process_cell_fail;
2141 pool->process_prepared_mapping = process_prepared_mapping_fail;
2142 pool->process_prepared_discard = process_prepared_discard_fail;
2143
2144 error_retry_list(pool);
2145 break;
2146
2147 case PM_READ_ONLY:
2148 if (old_mode != new_mode)
2149 notify_of_pool_mode_change(pool, "read-only");
2150 dm_pool_metadata_read_only(pool->pmd);
2151 pool->process_bio = process_bio_read_only;
2152 pool->process_discard = process_bio_success;
2153 pool->process_cell = process_cell_read_only;
2154 pool->process_discard_cell = process_cell_success;
2155 pool->process_prepared_mapping = process_prepared_mapping_fail;
2156 pool->process_prepared_discard = process_prepared_discard_passdown;
2157
2158 error_retry_list(pool);
2159 break;
2160
2161 case PM_OUT_OF_DATA_SPACE:
2162 /*
2163 * Ideally we'd never hit this state; the low water mark
2164 * would trigger userland to extend the pool before we
2165 * completely run out of data space. However, many small
2166 * IOs to unprovisioned space can consume data space at an
2167 * alarming rate. Adjust your low water mark if you're
2168 * frequently seeing this mode.
2169 */
2170 if (old_mode != new_mode)
2171 notify_of_pool_mode_change(pool, "out-of-data-space");
2172 pool->process_bio = process_bio_read_only;
2173 pool->process_discard = process_discard_bio;
2174 pool->process_cell = process_cell_read_only;
2175 pool->process_discard_cell = process_discard_cell;
2176 pool->process_prepared_mapping = process_prepared_mapping;
2177 pool->process_prepared_discard = process_prepared_discard;
2178
2179 if (!pool->pf.error_if_no_space && no_space_timeout)
2180 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2181 break;
2182
2183 case PM_WRITE:
2184 if (old_mode != new_mode)
2185 notify_of_pool_mode_change(pool, "write");
2186 dm_pool_metadata_read_write(pool->pmd);
2187 pool->process_bio = process_bio;
2188 pool->process_discard = process_discard_bio;
2189 pool->process_cell = process_cell;
2190 pool->process_discard_cell = process_discard_cell;
2191 pool->process_prepared_mapping = process_prepared_mapping;
2192 pool->process_prepared_discard = process_prepared_discard;
2193 break;
2194 }
2195
2196 pool->pf.mode = new_mode;
2197 /*
2198 * The pool mode may have changed, sync it so bind_control_target()
2199 * doesn't cause an unexpected mode transition on resume.
2200 */
2201 pt->adjusted_pf.mode = new_mode;
2202 }
2203
2204 static void abort_transaction(struct pool *pool)
2205 {
2206 const char *dev_name = dm_device_name(pool->pool_md);
2207
2208 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2209 if (dm_pool_abort_metadata(pool->pmd)) {
2210 DMERR("%s: failed to abort metadata transaction", dev_name);
2211 set_pool_mode(pool, PM_FAIL);
2212 }
2213
2214 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2215 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2216 set_pool_mode(pool, PM_FAIL);
2217 }
2218 }
2219
2220 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2221 {
2222 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2223 dm_device_name(pool->pool_md), op, r);
2224
2225 abort_transaction(pool);
2226 set_pool_mode(pool, PM_READ_ONLY);
2227 }
2228
2229 /*----------------------------------------------------------------*/
2230
2231 /*
2232 * Mapping functions.
2233 */
2234
2235 /*
2236 * Called only while mapping a thin bio to hand it over to the workqueue.
2237 */
2238 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2239 {
2240 unsigned long flags;
2241 struct pool *pool = tc->pool;
2242
2243 spin_lock_irqsave(&tc->lock, flags);
2244 bio_list_add(&tc->deferred_bio_list, bio);
2245 spin_unlock_irqrestore(&tc->lock, flags);
2246
2247 wake_worker(pool);
2248 }
2249
2250 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2251 {
2252 struct pool *pool = tc->pool;
2253
2254 throttle_lock(&pool->throttle);
2255 thin_defer_bio(tc, bio);
2256 throttle_unlock(&pool->throttle);
2257 }
2258
2259 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2260 {
2261 unsigned long flags;
2262 struct pool *pool = tc->pool;
2263
2264 throttle_lock(&pool->throttle);
2265 spin_lock_irqsave(&tc->lock, flags);
2266 list_add_tail(&cell->user_list, &tc->deferred_cells);
2267 spin_unlock_irqrestore(&tc->lock, flags);
2268 throttle_unlock(&pool->throttle);
2269
2270 wake_worker(pool);
2271 }
2272
2273 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2274 {
2275 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2276
2277 h->tc = tc;
2278 h->shared_read_entry = NULL;
2279 h->all_io_entry = NULL;
2280 h->overwrite_mapping = NULL;
2281 }
2282
2283 /*
2284 * Non-blocking function called from the thin target's map function.
2285 */
2286 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2287 {
2288 int r;
2289 struct thin_c *tc = ti->private;
2290 dm_block_t block = get_bio_block(tc, bio);
2291 struct dm_thin_device *td = tc->td;
2292 struct dm_thin_lookup_result result;
2293 struct dm_bio_prison_cell *virt_cell, *data_cell;
2294 struct dm_cell_key key;
2295
2296 thin_hook_bio(tc, bio);
2297
2298 if (tc->requeue_mode) {
2299 bio_endio(bio, DM_ENDIO_REQUEUE);
2300 return DM_MAPIO_SUBMITTED;
2301 }
2302
2303 if (get_pool_mode(tc->pool) == PM_FAIL) {
2304 bio_io_error(bio);
2305 return DM_MAPIO_SUBMITTED;
2306 }
2307
2308 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2309 thin_defer_bio_with_throttle(tc, bio);
2310 return DM_MAPIO_SUBMITTED;
2311 }
2312
2313 /*
2314 * We must hold the virtual cell before doing the lookup, otherwise
2315 * there's a race with discard.
2316 */
2317 build_virtual_key(tc->td, block, &key);
2318 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2319 return DM_MAPIO_SUBMITTED;
2320
2321 r = dm_thin_find_block(td, block, 0, &result);
2322
2323 /*
2324 * Note that we defer readahead too.
2325 */
2326 switch (r) {
2327 case 0:
2328 if (unlikely(result.shared)) {
2329 /*
2330 * We have a race condition here between the
2331 * result.shared value returned by the lookup and
2332 * snapshot creation, which may cause new
2333 * sharing.
2334 *
2335 * To avoid this always quiesce the origin before
2336 * taking the snap. You want to do this anyway to
2337 * ensure a consistent application view
2338 * (i.e. lockfs).
2339 *
2340 * More distant ancestors are irrelevant. The
2341 * shared flag will be set in their case.
2342 */
2343 thin_defer_cell(tc, virt_cell);
2344 return DM_MAPIO_SUBMITTED;
2345 }
2346
2347 build_data_key(tc->td, result.block, &key);
2348 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2349 cell_defer_no_holder(tc, virt_cell);
2350 return DM_MAPIO_SUBMITTED;
2351 }
2352
2353 inc_all_io_entry(tc->pool, bio);
2354 cell_defer_no_holder(tc, data_cell);
2355 cell_defer_no_holder(tc, virt_cell);
2356
2357 remap(tc, bio, result.block);
2358 return DM_MAPIO_REMAPPED;
2359
2360 case -ENODATA:
2361 case -EWOULDBLOCK:
2362 thin_defer_cell(tc, virt_cell);
2363 return DM_MAPIO_SUBMITTED;
2364
2365 default:
2366 /*
2367 * Must always call bio_io_error on failure.
2368 * dm_thin_find_block can fail with -EINVAL if the
2369 * pool is switched to fail-io mode.
2370 */
2371 bio_io_error(bio);
2372 cell_defer_no_holder(tc, virt_cell);
2373 return DM_MAPIO_SUBMITTED;
2374 }
2375 }
2376
2377 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2378 {
2379 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2380 struct request_queue *q;
2381
2382 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2383 return 1;
2384
2385 q = bdev_get_queue(pt->data_dev->bdev);
2386 return bdi_congested(&q->backing_dev_info, bdi_bits);
2387 }
2388
2389 static void requeue_bios(struct pool *pool)
2390 {
2391 unsigned long flags;
2392 struct thin_c *tc;
2393
2394 rcu_read_lock();
2395 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2396 spin_lock_irqsave(&tc->lock, flags);
2397 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2398 bio_list_init(&tc->retry_on_resume_list);
2399 spin_unlock_irqrestore(&tc->lock, flags);
2400 }
2401 rcu_read_unlock();
2402 }
2403
2404 /*----------------------------------------------------------------
2405 * Binding of control targets to a pool object
2406 *--------------------------------------------------------------*/
2407 static bool data_dev_supports_discard(struct pool_c *pt)
2408 {
2409 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2410
2411 return q && blk_queue_discard(q);
2412 }
2413
2414 static bool is_factor(sector_t block_size, uint32_t n)
2415 {
2416 return !sector_div(block_size, n);
2417 }
2418
2419 /*
2420 * If discard_passdown was enabled verify that the data device
2421 * supports discards. Disable discard_passdown if not.
2422 */
2423 static void disable_passdown_if_not_supported(struct pool_c *pt)
2424 {
2425 struct pool *pool = pt->pool;
2426 struct block_device *data_bdev = pt->data_dev->bdev;
2427 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2428 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2429 const char *reason = NULL;
2430 char buf[BDEVNAME_SIZE];
2431
2432 if (!pt->adjusted_pf.discard_passdown)
2433 return;
2434
2435 if (!data_dev_supports_discard(pt))
2436 reason = "discard unsupported";
2437
2438 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2439 reason = "max discard sectors smaller than a block";
2440
2441 else if (data_limits->discard_granularity > block_size)
2442 reason = "discard granularity larger than a block";
2443
2444 else if (!is_factor(block_size, data_limits->discard_granularity))
2445 reason = "discard granularity not a factor of block size";
2446
2447 if (reason) {
2448 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2449 pt->adjusted_pf.discard_passdown = false;
2450 }
2451 }
2452
2453 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2454 {
2455 struct pool_c *pt = ti->private;
2456
2457 /*
2458 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2459 */
2460 enum pool_mode old_mode = get_pool_mode(pool);
2461 enum pool_mode new_mode = pt->adjusted_pf.mode;
2462
2463 /*
2464 * Don't change the pool's mode until set_pool_mode() below.
2465 * Otherwise the pool's process_* function pointers may
2466 * not match the desired pool mode.
2467 */
2468 pt->adjusted_pf.mode = old_mode;
2469
2470 pool->ti = ti;
2471 pool->pf = pt->adjusted_pf;
2472 pool->low_water_blocks = pt->low_water_blocks;
2473
2474 set_pool_mode(pool, new_mode);
2475
2476 return 0;
2477 }
2478
2479 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2480 {
2481 if (pool->ti == ti)
2482 pool->ti = NULL;
2483 }
2484
2485 /*----------------------------------------------------------------
2486 * Pool creation
2487 *--------------------------------------------------------------*/
2488 /* Initialize pool features. */
2489 static void pool_features_init(struct pool_features *pf)
2490 {
2491 pf->mode = PM_WRITE;
2492 pf->zero_new_blocks = true;
2493 pf->discard_enabled = true;
2494 pf->discard_passdown = true;
2495 pf->error_if_no_space = false;
2496 }
2497
2498 static void __pool_destroy(struct pool *pool)
2499 {
2500 __pool_table_remove(pool);
2501
2502 if (dm_pool_metadata_close(pool->pmd) < 0)
2503 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2504
2505 dm_bio_prison_destroy(pool->prison);
2506 dm_kcopyd_client_destroy(pool->copier);
2507
2508 if (pool->wq)
2509 destroy_workqueue(pool->wq);
2510
2511 if (pool->next_mapping)
2512 mempool_free(pool->next_mapping, pool->mapping_pool);
2513 mempool_destroy(pool->mapping_pool);
2514 dm_deferred_set_destroy(pool->shared_read_ds);
2515 dm_deferred_set_destroy(pool->all_io_ds);
2516 kfree(pool);
2517 }
2518
2519 static struct kmem_cache *_new_mapping_cache;
2520
2521 static struct pool *pool_create(struct mapped_device *pool_md,
2522 struct block_device *metadata_dev,
2523 unsigned long block_size,
2524 int read_only, char **error)
2525 {
2526 int r;
2527 void *err_p;
2528 struct pool *pool;
2529 struct dm_pool_metadata *pmd;
2530 bool format_device = read_only ? false : true;
2531
2532 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2533 if (IS_ERR(pmd)) {
2534 *error = "Error creating metadata object";
2535 return (struct pool *)pmd;
2536 }
2537
2538 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2539 if (!pool) {
2540 *error = "Error allocating memory for pool";
2541 err_p = ERR_PTR(-ENOMEM);
2542 goto bad_pool;
2543 }
2544
2545 pool->pmd = pmd;
2546 pool->sectors_per_block = block_size;
2547 if (block_size & (block_size - 1))
2548 pool->sectors_per_block_shift = -1;
2549 else
2550 pool->sectors_per_block_shift = __ffs(block_size);
2551 pool->low_water_blocks = 0;
2552 pool_features_init(&pool->pf);
2553 pool->prison = dm_bio_prison_create();
2554 if (!pool->prison) {
2555 *error = "Error creating pool's bio prison";
2556 err_p = ERR_PTR(-ENOMEM);
2557 goto bad_prison;
2558 }
2559
2560 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2561 if (IS_ERR(pool->copier)) {
2562 r = PTR_ERR(pool->copier);
2563 *error = "Error creating pool's kcopyd client";
2564 err_p = ERR_PTR(r);
2565 goto bad_kcopyd_client;
2566 }
2567
2568 /*
2569 * Create singlethreaded workqueue that will service all devices
2570 * that use this metadata.
2571 */
2572 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2573 if (!pool->wq) {
2574 *error = "Error creating pool's workqueue";
2575 err_p = ERR_PTR(-ENOMEM);
2576 goto bad_wq;
2577 }
2578
2579 throttle_init(&pool->throttle);
2580 INIT_WORK(&pool->worker, do_worker);
2581 INIT_DELAYED_WORK(&pool->waker, do_waker);
2582 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2583 spin_lock_init(&pool->lock);
2584 bio_list_init(&pool->deferred_flush_bios);
2585 INIT_LIST_HEAD(&pool->prepared_mappings);
2586 INIT_LIST_HEAD(&pool->prepared_discards);
2587 INIT_LIST_HEAD(&pool->active_thins);
2588 pool->low_water_triggered = false;
2589 pool->suspended = true;
2590
2591 pool->shared_read_ds = dm_deferred_set_create();
2592 if (!pool->shared_read_ds) {
2593 *error = "Error creating pool's shared read deferred set";
2594 err_p = ERR_PTR(-ENOMEM);
2595 goto bad_shared_read_ds;
2596 }
2597
2598 pool->all_io_ds = dm_deferred_set_create();
2599 if (!pool->all_io_ds) {
2600 *error = "Error creating pool's all io deferred set";
2601 err_p = ERR_PTR(-ENOMEM);
2602 goto bad_all_io_ds;
2603 }
2604
2605 pool->next_mapping = NULL;
2606 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2607 _new_mapping_cache);
2608 if (!pool->mapping_pool) {
2609 *error = "Error creating pool's mapping mempool";
2610 err_p = ERR_PTR(-ENOMEM);
2611 goto bad_mapping_pool;
2612 }
2613
2614 pool->ref_count = 1;
2615 pool->last_commit_jiffies = jiffies;
2616 pool->pool_md = pool_md;
2617 pool->md_dev = metadata_dev;
2618 __pool_table_insert(pool);
2619
2620 return pool;
2621
2622 bad_mapping_pool:
2623 dm_deferred_set_destroy(pool->all_io_ds);
2624 bad_all_io_ds:
2625 dm_deferred_set_destroy(pool->shared_read_ds);
2626 bad_shared_read_ds:
2627 destroy_workqueue(pool->wq);
2628 bad_wq:
2629 dm_kcopyd_client_destroy(pool->copier);
2630 bad_kcopyd_client:
2631 dm_bio_prison_destroy(pool->prison);
2632 bad_prison:
2633 kfree(pool);
2634 bad_pool:
2635 if (dm_pool_metadata_close(pmd))
2636 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2637
2638 return err_p;
2639 }
2640
2641 static void __pool_inc(struct pool *pool)
2642 {
2643 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2644 pool->ref_count++;
2645 }
2646
2647 static void __pool_dec(struct pool *pool)
2648 {
2649 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2650 BUG_ON(!pool->ref_count);
2651 if (!--pool->ref_count)
2652 __pool_destroy(pool);
2653 }
2654
2655 static struct pool *__pool_find(struct mapped_device *pool_md,
2656 struct block_device *metadata_dev,
2657 unsigned long block_size, int read_only,
2658 char **error, int *created)
2659 {
2660 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2661
2662 if (pool) {
2663 if (pool->pool_md != pool_md) {
2664 *error = "metadata device already in use by a pool";
2665 return ERR_PTR(-EBUSY);
2666 }
2667 __pool_inc(pool);
2668
2669 } else {
2670 pool = __pool_table_lookup(pool_md);
2671 if (pool) {
2672 if (pool->md_dev != metadata_dev) {
2673 *error = "different pool cannot replace a pool";
2674 return ERR_PTR(-EINVAL);
2675 }
2676 __pool_inc(pool);
2677
2678 } else {
2679 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2680 *created = 1;
2681 }
2682 }
2683
2684 return pool;
2685 }
2686
2687 /*----------------------------------------------------------------
2688 * Pool target methods
2689 *--------------------------------------------------------------*/
2690 static void pool_dtr(struct dm_target *ti)
2691 {
2692 struct pool_c *pt = ti->private;
2693
2694 mutex_lock(&dm_thin_pool_table.mutex);
2695
2696 unbind_control_target(pt->pool, ti);
2697 __pool_dec(pt->pool);
2698 dm_put_device(ti, pt->metadata_dev);
2699 dm_put_device(ti, pt->data_dev);
2700 kfree(pt);
2701
2702 mutex_unlock(&dm_thin_pool_table.mutex);
2703 }
2704
2705 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2706 struct dm_target *ti)
2707 {
2708 int r;
2709 unsigned argc;
2710 const char *arg_name;
2711
2712 static struct dm_arg _args[] = {
2713 {0, 4, "Invalid number of pool feature arguments"},
2714 };
2715
2716 /*
2717 * No feature arguments supplied.
2718 */
2719 if (!as->argc)
2720 return 0;
2721
2722 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2723 if (r)
2724 return -EINVAL;
2725
2726 while (argc && !r) {
2727 arg_name = dm_shift_arg(as);
2728 argc--;
2729
2730 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2731 pf->zero_new_blocks = false;
2732
2733 else if (!strcasecmp(arg_name, "ignore_discard"))
2734 pf->discard_enabled = false;
2735
2736 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2737 pf->discard_passdown = false;
2738
2739 else if (!strcasecmp(arg_name, "read_only"))
2740 pf->mode = PM_READ_ONLY;
2741
2742 else if (!strcasecmp(arg_name, "error_if_no_space"))
2743 pf->error_if_no_space = true;
2744
2745 else {
2746 ti->error = "Unrecognised pool feature requested";
2747 r = -EINVAL;
2748 break;
2749 }
2750 }
2751
2752 return r;
2753 }
2754
2755 static void metadata_low_callback(void *context)
2756 {
2757 struct pool *pool = context;
2758
2759 DMWARN("%s: reached low water mark for metadata device: sending event.",
2760 dm_device_name(pool->pool_md));
2761
2762 dm_table_event(pool->ti->table);
2763 }
2764
2765 static sector_t get_dev_size(struct block_device *bdev)
2766 {
2767 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2768 }
2769
2770 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2771 {
2772 sector_t metadata_dev_size = get_dev_size(bdev);
2773 char buffer[BDEVNAME_SIZE];
2774
2775 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2776 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2777 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2778 }
2779
2780 static sector_t get_metadata_dev_size(struct block_device *bdev)
2781 {
2782 sector_t metadata_dev_size = get_dev_size(bdev);
2783
2784 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2785 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2786
2787 return metadata_dev_size;
2788 }
2789
2790 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2791 {
2792 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2793
2794 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2795
2796 return metadata_dev_size;
2797 }
2798
2799 /*
2800 * When a metadata threshold is crossed a dm event is triggered, and
2801 * userland should respond by growing the metadata device. We could let
2802 * userland set the threshold, like we do with the data threshold, but I'm
2803 * not sure they know enough to do this well.
2804 */
2805 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2806 {
2807 /*
2808 * 4M is ample for all ops with the possible exception of thin
2809 * device deletion which is harmless if it fails (just retry the
2810 * delete after you've grown the device).
2811 */
2812 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2813 return min((dm_block_t)1024ULL /* 4M */, quarter);
2814 }
2815
2816 /*
2817 * thin-pool <metadata dev> <data dev>
2818 * <data block size (sectors)>
2819 * <low water mark (blocks)>
2820 * [<#feature args> [<arg>]*]
2821 *
2822 * Optional feature arguments are:
2823 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2824 * ignore_discard: disable discard
2825 * no_discard_passdown: don't pass discards down to the data device
2826 * read_only: Don't allow any changes to be made to the pool metadata.
2827 * error_if_no_space: error IOs, instead of queueing, if no space.
2828 */
2829 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2830 {
2831 int r, pool_created = 0;
2832 struct pool_c *pt;
2833 struct pool *pool;
2834 struct pool_features pf;
2835 struct dm_arg_set as;
2836 struct dm_dev *data_dev;
2837 unsigned long block_size;
2838 dm_block_t low_water_blocks;
2839 struct dm_dev *metadata_dev;
2840 fmode_t metadata_mode;
2841
2842 /*
2843 * FIXME Remove validation from scope of lock.
2844 */
2845 mutex_lock(&dm_thin_pool_table.mutex);
2846
2847 if (argc < 4) {
2848 ti->error = "Invalid argument count";
2849 r = -EINVAL;
2850 goto out_unlock;
2851 }
2852
2853 as.argc = argc;
2854 as.argv = argv;
2855
2856 /*
2857 * Set default pool features.
2858 */
2859 pool_features_init(&pf);
2860
2861 dm_consume_args(&as, 4);
2862 r = parse_pool_features(&as, &pf, ti);
2863 if (r)
2864 goto out_unlock;
2865
2866 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2867 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2868 if (r) {
2869 ti->error = "Error opening metadata block device";
2870 goto out_unlock;
2871 }
2872 warn_if_metadata_device_too_big(metadata_dev->bdev);
2873
2874 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2875 if (r) {
2876 ti->error = "Error getting data device";
2877 goto out_metadata;
2878 }
2879
2880 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2881 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2882 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2883 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2884 ti->error = "Invalid block size";
2885 r = -EINVAL;
2886 goto out;
2887 }
2888
2889 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2890 ti->error = "Invalid low water mark";
2891 r = -EINVAL;
2892 goto out;
2893 }
2894
2895 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2896 if (!pt) {
2897 r = -ENOMEM;
2898 goto out;
2899 }
2900
2901 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2902 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2903 if (IS_ERR(pool)) {
2904 r = PTR_ERR(pool);
2905 goto out_free_pt;
2906 }
2907
2908 /*
2909 * 'pool_created' reflects whether this is the first table load.
2910 * Top level discard support is not allowed to be changed after
2911 * initial load. This would require a pool reload to trigger thin
2912 * device changes.
2913 */
2914 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2915 ti->error = "Discard support cannot be disabled once enabled";
2916 r = -EINVAL;
2917 goto out_flags_changed;
2918 }
2919
2920 pt->pool = pool;
2921 pt->ti = ti;
2922 pt->metadata_dev = metadata_dev;
2923 pt->data_dev = data_dev;
2924 pt->low_water_blocks = low_water_blocks;
2925 pt->adjusted_pf = pt->requested_pf = pf;
2926 ti->num_flush_bios = 1;
2927
2928 /*
2929 * Only need to enable discards if the pool should pass
2930 * them down to the data device. The thin device's discard
2931 * processing will cause mappings to be removed from the btree.
2932 */
2933 ti->discard_zeroes_data_unsupported = true;
2934 if (pf.discard_enabled && pf.discard_passdown) {
2935 ti->num_discard_bios = 1;
2936
2937 /*
2938 * Setting 'discards_supported' circumvents the normal
2939 * stacking of discard limits (this keeps the pool and
2940 * thin devices' discard limits consistent).
2941 */
2942 ti->discards_supported = true;
2943 }
2944 ti->private = pt;
2945
2946 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2947 calc_metadata_threshold(pt),
2948 metadata_low_callback,
2949 pool);
2950 if (r)
2951 goto out_free_pt;
2952
2953 pt->callbacks.congested_fn = pool_is_congested;
2954 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2955
2956 mutex_unlock(&dm_thin_pool_table.mutex);
2957
2958 return 0;
2959
2960 out_flags_changed:
2961 __pool_dec(pool);
2962 out_free_pt:
2963 kfree(pt);
2964 out:
2965 dm_put_device(ti, data_dev);
2966 out_metadata:
2967 dm_put_device(ti, metadata_dev);
2968 out_unlock:
2969 mutex_unlock(&dm_thin_pool_table.mutex);
2970
2971 return r;
2972 }
2973
2974 static int pool_map(struct dm_target *ti, struct bio *bio)
2975 {
2976 int r;
2977 struct pool_c *pt = ti->private;
2978 struct pool *pool = pt->pool;
2979 unsigned long flags;
2980
2981 /*
2982 * As this is a singleton target, ti->begin is always zero.
2983 */
2984 spin_lock_irqsave(&pool->lock, flags);
2985 bio->bi_bdev = pt->data_dev->bdev;
2986 r = DM_MAPIO_REMAPPED;
2987 spin_unlock_irqrestore(&pool->lock, flags);
2988
2989 return r;
2990 }
2991
2992 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2993 {
2994 int r;
2995 struct pool_c *pt = ti->private;
2996 struct pool *pool = pt->pool;
2997 sector_t data_size = ti->len;
2998 dm_block_t sb_data_size;
2999
3000 *need_commit = false;
3001
3002 (void) sector_div(data_size, pool->sectors_per_block);
3003
3004 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3005 if (r) {
3006 DMERR("%s: failed to retrieve data device size",
3007 dm_device_name(pool->pool_md));
3008 return r;
3009 }
3010
3011 if (data_size < sb_data_size) {
3012 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3013 dm_device_name(pool->pool_md),
3014 (unsigned long long)data_size, sb_data_size);
3015 return -EINVAL;
3016
3017 } else if (data_size > sb_data_size) {
3018 if (dm_pool_metadata_needs_check(pool->pmd)) {
3019 DMERR("%s: unable to grow the data device until repaired.",
3020 dm_device_name(pool->pool_md));
3021 return 0;
3022 }
3023
3024 if (sb_data_size)
3025 DMINFO("%s: growing the data device from %llu to %llu blocks",
3026 dm_device_name(pool->pool_md),
3027 sb_data_size, (unsigned long long)data_size);
3028 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3029 if (r) {
3030 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3031 return r;
3032 }
3033
3034 *need_commit = true;
3035 }
3036
3037 return 0;
3038 }
3039
3040 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3041 {
3042 int r;
3043 struct pool_c *pt = ti->private;
3044 struct pool *pool = pt->pool;
3045 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3046
3047 *need_commit = false;
3048
3049 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3050
3051 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3052 if (r) {
3053 DMERR("%s: failed to retrieve metadata device size",
3054 dm_device_name(pool->pool_md));
3055 return r;
3056 }
3057
3058 if (metadata_dev_size < sb_metadata_dev_size) {
3059 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3060 dm_device_name(pool->pool_md),
3061 metadata_dev_size, sb_metadata_dev_size);
3062 return -EINVAL;
3063
3064 } else if (metadata_dev_size > sb_metadata_dev_size) {
3065 if (dm_pool_metadata_needs_check(pool->pmd)) {
3066 DMERR("%s: unable to grow the metadata device until repaired.",
3067 dm_device_name(pool->pool_md));
3068 return 0;
3069 }
3070
3071 warn_if_metadata_device_too_big(pool->md_dev);
3072 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3073 dm_device_name(pool->pool_md),
3074 sb_metadata_dev_size, metadata_dev_size);
3075 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3076 if (r) {
3077 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3078 return r;
3079 }
3080
3081 *need_commit = true;
3082 }
3083
3084 return 0;
3085 }
3086
3087 /*
3088 * Retrieves the number of blocks of the data device from
3089 * the superblock and compares it to the actual device size,
3090 * thus resizing the data device in case it has grown.
3091 *
3092 * This both copes with opening preallocated data devices in the ctr
3093 * being followed by a resume
3094 * -and-
3095 * calling the resume method individually after userspace has
3096 * grown the data device in reaction to a table event.
3097 */
3098 static int pool_preresume(struct dm_target *ti)
3099 {
3100 int r;
3101 bool need_commit1, need_commit2;
3102 struct pool_c *pt = ti->private;
3103 struct pool *pool = pt->pool;
3104
3105 /*
3106 * Take control of the pool object.
3107 */
3108 r = bind_control_target(pool, ti);
3109 if (r)
3110 return r;
3111
3112 r = maybe_resize_data_dev(ti, &need_commit1);
3113 if (r)
3114 return r;
3115
3116 r = maybe_resize_metadata_dev(ti, &need_commit2);
3117 if (r)
3118 return r;
3119
3120 if (need_commit1 || need_commit2)
3121 (void) commit(pool);
3122
3123 return 0;
3124 }
3125
3126 static void pool_suspend_active_thins(struct pool *pool)
3127 {
3128 struct thin_c *tc;
3129
3130 /* Suspend all active thin devices */
3131 tc = get_first_thin(pool);
3132 while (tc) {
3133 dm_internal_suspend_noflush(tc->thin_md);
3134 tc = get_next_thin(pool, tc);
3135 }
3136 }
3137
3138 static void pool_resume_active_thins(struct pool *pool)
3139 {
3140 struct thin_c *tc;
3141
3142 /* Resume all active thin devices */
3143 tc = get_first_thin(pool);
3144 while (tc) {
3145 dm_internal_resume(tc->thin_md);
3146 tc = get_next_thin(pool, tc);
3147 }
3148 }
3149
3150 static void pool_resume(struct dm_target *ti)
3151 {
3152 struct pool_c *pt = ti->private;
3153 struct pool *pool = pt->pool;
3154 unsigned long flags;
3155
3156 /*
3157 * Must requeue active_thins' bios and then resume
3158 * active_thins _before_ clearing 'suspend' flag.
3159 */
3160 requeue_bios(pool);
3161 pool_resume_active_thins(pool);
3162
3163 spin_lock_irqsave(&pool->lock, flags);
3164 pool->low_water_triggered = false;
3165 pool->suspended = false;
3166 spin_unlock_irqrestore(&pool->lock, flags);
3167
3168 do_waker(&pool->waker.work);
3169 }
3170
3171 static void pool_presuspend(struct dm_target *ti)
3172 {
3173 struct pool_c *pt = ti->private;
3174 struct pool *pool = pt->pool;
3175 unsigned long flags;
3176
3177 spin_lock_irqsave(&pool->lock, flags);
3178 pool->suspended = true;
3179 spin_unlock_irqrestore(&pool->lock, flags);
3180
3181 pool_suspend_active_thins(pool);
3182 }
3183
3184 static void pool_presuspend_undo(struct dm_target *ti)
3185 {
3186 struct pool_c *pt = ti->private;
3187 struct pool *pool = pt->pool;
3188 unsigned long flags;
3189
3190 pool_resume_active_thins(pool);
3191
3192 spin_lock_irqsave(&pool->lock, flags);
3193 pool->suspended = false;
3194 spin_unlock_irqrestore(&pool->lock, flags);
3195 }
3196
3197 static void pool_postsuspend(struct dm_target *ti)
3198 {
3199 struct pool_c *pt = ti->private;
3200 struct pool *pool = pt->pool;
3201
3202 cancel_delayed_work(&pool->waker);
3203 cancel_delayed_work(&pool->no_space_timeout);
3204 flush_workqueue(pool->wq);
3205 (void) commit(pool);
3206 }
3207
3208 static int check_arg_count(unsigned argc, unsigned args_required)
3209 {
3210 if (argc != args_required) {
3211 DMWARN("Message received with %u arguments instead of %u.",
3212 argc, args_required);
3213 return -EINVAL;
3214 }
3215
3216 return 0;
3217 }
3218
3219 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3220 {
3221 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3222 *dev_id <= MAX_DEV_ID)
3223 return 0;
3224
3225 if (warning)
3226 DMWARN("Message received with invalid device id: %s", arg);
3227
3228 return -EINVAL;
3229 }
3230
3231 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3232 {
3233 dm_thin_id dev_id;
3234 int r;
3235
3236 r = check_arg_count(argc, 2);
3237 if (r)
3238 return r;
3239
3240 r = read_dev_id(argv[1], &dev_id, 1);
3241 if (r)
3242 return r;
3243
3244 r = dm_pool_create_thin(pool->pmd, dev_id);
3245 if (r) {
3246 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3247 argv[1]);
3248 return r;
3249 }
3250
3251 return 0;
3252 }
3253
3254 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3255 {
3256 dm_thin_id dev_id;
3257 dm_thin_id origin_dev_id;
3258 int r;
3259
3260 r = check_arg_count(argc, 3);
3261 if (r)
3262 return r;
3263
3264 r = read_dev_id(argv[1], &dev_id, 1);
3265 if (r)
3266 return r;
3267
3268 r = read_dev_id(argv[2], &origin_dev_id, 1);
3269 if (r)
3270 return r;
3271
3272 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3273 if (r) {
3274 DMWARN("Creation of new snapshot %s of device %s failed.",
3275 argv[1], argv[2]);
3276 return r;
3277 }
3278
3279 return 0;
3280 }
3281
3282 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3283 {
3284 dm_thin_id dev_id;
3285 int r;
3286
3287 r = check_arg_count(argc, 2);
3288 if (r)
3289 return r;
3290
3291 r = read_dev_id(argv[1], &dev_id, 1);
3292 if (r)
3293 return r;
3294
3295 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3296 if (r)
3297 DMWARN("Deletion of thin device %s failed.", argv[1]);
3298
3299 return r;
3300 }
3301
3302 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3303 {
3304 dm_thin_id old_id, new_id;
3305 int r;
3306
3307 r = check_arg_count(argc, 3);
3308 if (r)
3309 return r;
3310
3311 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3312 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3313 return -EINVAL;
3314 }
3315
3316 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3317 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3318 return -EINVAL;
3319 }
3320
3321 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3322 if (r) {
3323 DMWARN("Failed to change transaction id from %s to %s.",
3324 argv[1], argv[2]);
3325 return r;
3326 }
3327
3328 return 0;
3329 }
3330
3331 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3332 {
3333 int r;
3334
3335 r = check_arg_count(argc, 1);
3336 if (r)
3337 return r;
3338
3339 (void) commit(pool);
3340
3341 r = dm_pool_reserve_metadata_snap(pool->pmd);
3342 if (r)
3343 DMWARN("reserve_metadata_snap message failed.");
3344
3345 return r;
3346 }
3347
3348 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3349 {
3350 int r;
3351
3352 r = check_arg_count(argc, 1);
3353 if (r)
3354 return r;
3355
3356 r = dm_pool_release_metadata_snap(pool->pmd);
3357 if (r)
3358 DMWARN("release_metadata_snap message failed.");
3359
3360 return r;
3361 }
3362
3363 /*
3364 * Messages supported:
3365 * create_thin <dev_id>
3366 * create_snap <dev_id> <origin_id>
3367 * delete <dev_id>
3368 * set_transaction_id <current_trans_id> <new_trans_id>
3369 * reserve_metadata_snap
3370 * release_metadata_snap
3371 */
3372 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3373 {
3374 int r = -EINVAL;
3375 struct pool_c *pt = ti->private;
3376 struct pool *pool = pt->pool;
3377
3378 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3379 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3380 dm_device_name(pool->pool_md));
3381 return -EINVAL;
3382 }
3383
3384 if (!strcasecmp(argv[0], "create_thin"))
3385 r = process_create_thin_mesg(argc, argv, pool);
3386
3387 else if (!strcasecmp(argv[0], "create_snap"))
3388 r = process_create_snap_mesg(argc, argv, pool);
3389
3390 else if (!strcasecmp(argv[0], "delete"))
3391 r = process_delete_mesg(argc, argv, pool);
3392
3393 else if (!strcasecmp(argv[0], "set_transaction_id"))
3394 r = process_set_transaction_id_mesg(argc, argv, pool);
3395
3396 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3397 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3398
3399 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3400 r = process_release_metadata_snap_mesg(argc, argv, pool);
3401
3402 else
3403 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3404
3405 if (!r)
3406 (void) commit(pool);
3407
3408 return r;
3409 }
3410
3411 static void emit_flags(struct pool_features *pf, char *result,
3412 unsigned sz, unsigned maxlen)
3413 {
3414 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3415 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3416 pf->error_if_no_space;
3417 DMEMIT("%u ", count);
3418
3419 if (!pf->zero_new_blocks)
3420 DMEMIT("skip_block_zeroing ");
3421
3422 if (!pf->discard_enabled)
3423 DMEMIT("ignore_discard ");
3424
3425 if (!pf->discard_passdown)
3426 DMEMIT("no_discard_passdown ");
3427
3428 if (pf->mode == PM_READ_ONLY)
3429 DMEMIT("read_only ");
3430
3431 if (pf->error_if_no_space)
3432 DMEMIT("error_if_no_space ");
3433 }
3434
3435 /*
3436 * Status line is:
3437 * <transaction id> <used metadata sectors>/<total metadata sectors>
3438 * <used data sectors>/<total data sectors> <held metadata root>
3439 */
3440 static void pool_status(struct dm_target *ti, status_type_t type,
3441 unsigned status_flags, char *result, unsigned maxlen)
3442 {
3443 int r;
3444 unsigned sz = 0;
3445 uint64_t transaction_id;
3446 dm_block_t nr_free_blocks_data;
3447 dm_block_t nr_free_blocks_metadata;
3448 dm_block_t nr_blocks_data;
3449 dm_block_t nr_blocks_metadata;
3450 dm_block_t held_root;
3451 char buf[BDEVNAME_SIZE];
3452 char buf2[BDEVNAME_SIZE];
3453 struct pool_c *pt = ti->private;
3454 struct pool *pool = pt->pool;
3455
3456 switch (type) {
3457 case STATUSTYPE_INFO:
3458 if (get_pool_mode(pool) == PM_FAIL) {
3459 DMEMIT("Fail");
3460 break;
3461 }
3462
3463 /* Commit to ensure statistics aren't out-of-date */
3464 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3465 (void) commit(pool);
3466
3467 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3468 if (r) {
3469 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3470 dm_device_name(pool->pool_md), r);
3471 goto err;
3472 }
3473
3474 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3475 if (r) {
3476 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3477 dm_device_name(pool->pool_md), r);
3478 goto err;
3479 }
3480
3481 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3482 if (r) {
3483 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3484 dm_device_name(pool->pool_md), r);
3485 goto err;
3486 }
3487
3488 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3489 if (r) {
3490 DMERR("%s: dm_pool_get_free_block_count returned %d",
3491 dm_device_name(pool->pool_md), r);
3492 goto err;
3493 }
3494
3495 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3496 if (r) {
3497 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3498 dm_device_name(pool->pool_md), r);
3499 goto err;
3500 }
3501
3502 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3503 if (r) {
3504 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3505 dm_device_name(pool->pool_md), r);
3506 goto err;
3507 }
3508
3509 DMEMIT("%llu %llu/%llu %llu/%llu ",
3510 (unsigned long long)transaction_id,
3511 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3512 (unsigned long long)nr_blocks_metadata,
3513 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3514 (unsigned long long)nr_blocks_data);
3515
3516 if (held_root)
3517 DMEMIT("%llu ", held_root);
3518 else
3519 DMEMIT("- ");
3520
3521 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3522 DMEMIT("out_of_data_space ");
3523 else if (pool->pf.mode == PM_READ_ONLY)
3524 DMEMIT("ro ");
3525 else
3526 DMEMIT("rw ");
3527
3528 if (!pool->pf.discard_enabled)
3529 DMEMIT("ignore_discard ");
3530 else if (pool->pf.discard_passdown)
3531 DMEMIT("discard_passdown ");
3532 else
3533 DMEMIT("no_discard_passdown ");
3534
3535 if (pool->pf.error_if_no_space)
3536 DMEMIT("error_if_no_space ");
3537 else
3538 DMEMIT("queue_if_no_space ");
3539
3540 break;
3541
3542 case STATUSTYPE_TABLE:
3543 DMEMIT("%s %s %lu %llu ",
3544 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3545 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3546 (unsigned long)pool->sectors_per_block,
3547 (unsigned long long)pt->low_water_blocks);
3548 emit_flags(&pt->requested_pf, result, sz, maxlen);
3549 break;
3550 }
3551 return;
3552
3553 err:
3554 DMEMIT("Error");
3555 }
3556
3557 static int pool_iterate_devices(struct dm_target *ti,
3558 iterate_devices_callout_fn fn, void *data)
3559 {
3560 struct pool_c *pt = ti->private;
3561
3562 return fn(ti, pt->data_dev, 0, ti->len, data);
3563 }
3564
3565 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3566 struct bio_vec *biovec, int max_size)
3567 {
3568 struct pool_c *pt = ti->private;
3569 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3570
3571 if (!q->merge_bvec_fn)
3572 return max_size;
3573
3574 bvm->bi_bdev = pt->data_dev->bdev;
3575
3576 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3577 }
3578
3579 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3580 {
3581 struct pool *pool = pt->pool;
3582 struct queue_limits *data_limits;
3583
3584 limits->max_discard_sectors = pool->sectors_per_block;
3585
3586 /*
3587 * discard_granularity is just a hint, and not enforced.
3588 */
3589 if (pt->adjusted_pf.discard_passdown) {
3590 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3591 limits->discard_granularity = max(data_limits->discard_granularity,
3592 pool->sectors_per_block << SECTOR_SHIFT);
3593 } else
3594 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3595 }
3596
3597 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3598 {
3599 struct pool_c *pt = ti->private;
3600 struct pool *pool = pt->pool;
3601 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3602
3603 /*
3604 * If max_sectors is smaller than pool->sectors_per_block adjust it
3605 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3606 * This is especially beneficial when the pool's data device is a RAID
3607 * device that has a full stripe width that matches pool->sectors_per_block
3608 * -- because even though partial RAID stripe-sized IOs will be issued to a
3609 * single RAID stripe; when aggregated they will end on a full RAID stripe
3610 * boundary.. which avoids additional partial RAID stripe writes cascading
3611 */
3612 if (limits->max_sectors < pool->sectors_per_block) {
3613 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3614 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3615 limits->max_sectors--;
3616 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3617 }
3618 }
3619
3620 /*
3621 * If the system-determined stacked limits are compatible with the
3622 * pool's blocksize (io_opt is a factor) do not override them.
3623 */
3624 if (io_opt_sectors < pool->sectors_per_block ||
3625 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3626 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3627 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3628 else
3629 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3630 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3631 }
3632
3633 /*
3634 * pt->adjusted_pf is a staging area for the actual features to use.
3635 * They get transferred to the live pool in bind_control_target()
3636 * called from pool_preresume().
3637 */
3638 if (!pt->adjusted_pf.discard_enabled) {
3639 /*
3640 * Must explicitly disallow stacking discard limits otherwise the
3641 * block layer will stack them if pool's data device has support.
3642 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3643 * user to see that, so make sure to set all discard limits to 0.
3644 */
3645 limits->discard_granularity = 0;
3646 return;
3647 }
3648
3649 disable_passdown_if_not_supported(pt);
3650
3651 set_discard_limits(pt, limits);
3652 }
3653
3654 static struct target_type pool_target = {
3655 .name = "thin-pool",
3656 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3657 DM_TARGET_IMMUTABLE,
3658 .version = {1, 14, 0},
3659 .module = THIS_MODULE,
3660 .ctr = pool_ctr,
3661 .dtr = pool_dtr,
3662 .map = pool_map,
3663 .presuspend = pool_presuspend,
3664 .presuspend_undo = pool_presuspend_undo,
3665 .postsuspend = pool_postsuspend,
3666 .preresume = pool_preresume,
3667 .resume = pool_resume,
3668 .message = pool_message,
3669 .status = pool_status,
3670 .merge = pool_merge,
3671 .iterate_devices = pool_iterate_devices,
3672 .io_hints = pool_io_hints,
3673 };
3674
3675 /*----------------------------------------------------------------
3676 * Thin target methods
3677 *--------------------------------------------------------------*/
3678 static void thin_get(struct thin_c *tc)
3679 {
3680 atomic_inc(&tc->refcount);
3681 }
3682
3683 static void thin_put(struct thin_c *tc)
3684 {
3685 if (atomic_dec_and_test(&tc->refcount))
3686 complete(&tc->can_destroy);
3687 }
3688
3689 static void thin_dtr(struct dm_target *ti)
3690 {
3691 struct thin_c *tc = ti->private;
3692 unsigned long flags;
3693
3694 spin_lock_irqsave(&tc->pool->lock, flags);
3695 list_del_rcu(&tc->list);
3696 spin_unlock_irqrestore(&tc->pool->lock, flags);
3697 synchronize_rcu();
3698
3699 thin_put(tc);
3700 wait_for_completion(&tc->can_destroy);
3701
3702 mutex_lock(&dm_thin_pool_table.mutex);
3703
3704 __pool_dec(tc->pool);
3705 dm_pool_close_thin_device(tc->td);
3706 dm_put_device(ti, tc->pool_dev);
3707 if (tc->origin_dev)
3708 dm_put_device(ti, tc->origin_dev);
3709 kfree(tc);
3710
3711 mutex_unlock(&dm_thin_pool_table.mutex);
3712 }
3713
3714 /*
3715 * Thin target parameters:
3716 *
3717 * <pool_dev> <dev_id> [origin_dev]
3718 *
3719 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3720 * dev_id: the internal device identifier
3721 * origin_dev: a device external to the pool that should act as the origin
3722 *
3723 * If the pool device has discards disabled, they get disabled for the thin
3724 * device as well.
3725 */
3726 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3727 {
3728 int r;
3729 struct thin_c *tc;
3730 struct dm_dev *pool_dev, *origin_dev;
3731 struct mapped_device *pool_md;
3732 unsigned long flags;
3733
3734 mutex_lock(&dm_thin_pool_table.mutex);
3735
3736 if (argc != 2 && argc != 3) {
3737 ti->error = "Invalid argument count";
3738 r = -EINVAL;
3739 goto out_unlock;
3740 }
3741
3742 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3743 if (!tc) {
3744 ti->error = "Out of memory";
3745 r = -ENOMEM;
3746 goto out_unlock;
3747 }
3748 tc->thin_md = dm_table_get_md(ti->table);
3749 spin_lock_init(&tc->lock);
3750 INIT_LIST_HEAD(&tc->deferred_cells);
3751 bio_list_init(&tc->deferred_bio_list);
3752 bio_list_init(&tc->retry_on_resume_list);
3753 tc->sort_bio_list = RB_ROOT;
3754
3755 if (argc == 3) {
3756 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3757 if (r) {
3758 ti->error = "Error opening origin device";
3759 goto bad_origin_dev;
3760 }
3761 tc->origin_dev = origin_dev;
3762 }
3763
3764 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3765 if (r) {
3766 ti->error = "Error opening pool device";
3767 goto bad_pool_dev;
3768 }
3769 tc->pool_dev = pool_dev;
3770
3771 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3772 ti->error = "Invalid device id";
3773 r = -EINVAL;
3774 goto bad_common;
3775 }
3776
3777 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3778 if (!pool_md) {
3779 ti->error = "Couldn't get pool mapped device";
3780 r = -EINVAL;
3781 goto bad_common;
3782 }
3783
3784 tc->pool = __pool_table_lookup(pool_md);
3785 if (!tc->pool) {
3786 ti->error = "Couldn't find pool object";
3787 r = -EINVAL;
3788 goto bad_pool_lookup;
3789 }
3790 __pool_inc(tc->pool);
3791
3792 if (get_pool_mode(tc->pool) == PM_FAIL) {
3793 ti->error = "Couldn't open thin device, Pool is in fail mode";
3794 r = -EINVAL;
3795 goto bad_pool;
3796 }
3797
3798 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3799 if (r) {
3800 ti->error = "Couldn't open thin internal device";
3801 goto bad_pool;
3802 }
3803
3804 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3805 if (r)
3806 goto bad;
3807
3808 ti->num_flush_bios = 1;
3809 ti->flush_supported = true;
3810 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3811
3812 /* In case the pool supports discards, pass them on. */
3813 ti->discard_zeroes_data_unsupported = true;
3814 if (tc->pool->pf.discard_enabled) {
3815 ti->discards_supported = true;
3816 ti->num_discard_bios = 1;
3817 /* Discard bios must be split on a block boundary */
3818 ti->split_discard_bios = true;
3819 }
3820
3821 mutex_unlock(&dm_thin_pool_table.mutex);
3822
3823 spin_lock_irqsave(&tc->pool->lock, flags);
3824 if (tc->pool->suspended) {
3825 spin_unlock_irqrestore(&tc->pool->lock, flags);
3826 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3827 ti->error = "Unable to activate thin device while pool is suspended";
3828 r = -EINVAL;
3829 goto bad;
3830 }
3831 atomic_set(&tc->refcount, 1);
3832 init_completion(&tc->can_destroy);
3833 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3834 spin_unlock_irqrestore(&tc->pool->lock, flags);
3835 /*
3836 * This synchronize_rcu() call is needed here otherwise we risk a
3837 * wake_worker() call finding no bios to process (because the newly
3838 * added tc isn't yet visible). So this reduces latency since we
3839 * aren't then dependent on the periodic commit to wake_worker().
3840 */
3841 synchronize_rcu();
3842
3843 dm_put(pool_md);
3844
3845 return 0;
3846
3847 bad:
3848 dm_pool_close_thin_device(tc->td);
3849 bad_pool:
3850 __pool_dec(tc->pool);
3851 bad_pool_lookup:
3852 dm_put(pool_md);
3853 bad_common:
3854 dm_put_device(ti, tc->pool_dev);
3855 bad_pool_dev:
3856 if (tc->origin_dev)
3857 dm_put_device(ti, tc->origin_dev);
3858 bad_origin_dev:
3859 kfree(tc);
3860 out_unlock:
3861 mutex_unlock(&dm_thin_pool_table.mutex);
3862
3863 return r;
3864 }
3865
3866 static int thin_map(struct dm_target *ti, struct bio *bio)
3867 {
3868 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3869
3870 return thin_bio_map(ti, bio);
3871 }
3872
3873 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3874 {
3875 unsigned long flags;
3876 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3877 struct list_head work;
3878 struct dm_thin_new_mapping *m, *tmp;
3879 struct pool *pool = h->tc->pool;
3880
3881 if (h->shared_read_entry) {
3882 INIT_LIST_HEAD(&work);
3883 dm_deferred_entry_dec(h->shared_read_entry, &work);
3884
3885 spin_lock_irqsave(&pool->lock, flags);
3886 list_for_each_entry_safe(m, tmp, &work, list) {
3887 list_del(&m->list);
3888 __complete_mapping_preparation(m);
3889 }
3890 spin_unlock_irqrestore(&pool->lock, flags);
3891 }
3892
3893 if (h->all_io_entry) {
3894 INIT_LIST_HEAD(&work);
3895 dm_deferred_entry_dec(h->all_io_entry, &work);
3896 if (!list_empty(&work)) {
3897 spin_lock_irqsave(&pool->lock, flags);
3898 list_for_each_entry_safe(m, tmp, &work, list)
3899 list_add_tail(&m->list, &pool->prepared_discards);
3900 spin_unlock_irqrestore(&pool->lock, flags);
3901 wake_worker(pool);
3902 }
3903 }
3904
3905 return 0;
3906 }
3907
3908 static void thin_presuspend(struct dm_target *ti)
3909 {
3910 struct thin_c *tc = ti->private;
3911
3912 if (dm_noflush_suspending(ti))
3913 noflush_work(tc, do_noflush_start);
3914 }
3915
3916 static void thin_postsuspend(struct dm_target *ti)
3917 {
3918 struct thin_c *tc = ti->private;
3919
3920 /*
3921 * The dm_noflush_suspending flag has been cleared by now, so
3922 * unfortunately we must always run this.
3923 */
3924 noflush_work(tc, do_noflush_stop);
3925 }
3926
3927 static int thin_preresume(struct dm_target *ti)
3928 {
3929 struct thin_c *tc = ti->private;
3930
3931 if (tc->origin_dev)
3932 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3933
3934 return 0;
3935 }
3936
3937 /*
3938 * <nr mapped sectors> <highest mapped sector>
3939 */
3940 static void thin_status(struct dm_target *ti, status_type_t type,
3941 unsigned status_flags, char *result, unsigned maxlen)
3942 {
3943 int r;
3944 ssize_t sz = 0;
3945 dm_block_t mapped, highest;
3946 char buf[BDEVNAME_SIZE];
3947 struct thin_c *tc = ti->private;
3948
3949 if (get_pool_mode(tc->pool) == PM_FAIL) {
3950 DMEMIT("Fail");
3951 return;
3952 }
3953
3954 if (!tc->td)
3955 DMEMIT("-");
3956 else {
3957 switch (type) {
3958 case STATUSTYPE_INFO:
3959 r = dm_thin_get_mapped_count(tc->td, &mapped);
3960 if (r) {
3961 DMERR("dm_thin_get_mapped_count returned %d", r);
3962 goto err;
3963 }
3964
3965 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3966 if (r < 0) {
3967 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3968 goto err;
3969 }
3970
3971 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3972 if (r)
3973 DMEMIT("%llu", ((highest + 1) *
3974 tc->pool->sectors_per_block) - 1);
3975 else
3976 DMEMIT("-");
3977 break;
3978
3979 case STATUSTYPE_TABLE:
3980 DMEMIT("%s %lu",
3981 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3982 (unsigned long) tc->dev_id);
3983 if (tc->origin_dev)
3984 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3985 break;
3986 }
3987 }
3988
3989 return;
3990
3991 err:
3992 DMEMIT("Error");
3993 }
3994
3995 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3996 struct bio_vec *biovec, int max_size)
3997 {
3998 struct thin_c *tc = ti->private;
3999 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4000
4001 if (!q->merge_bvec_fn)
4002 return max_size;
4003
4004 bvm->bi_bdev = tc->pool_dev->bdev;
4005 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4006
4007 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4008 }
4009
4010 static int thin_iterate_devices(struct dm_target *ti,
4011 iterate_devices_callout_fn fn, void *data)
4012 {
4013 sector_t blocks;
4014 struct thin_c *tc = ti->private;
4015 struct pool *pool = tc->pool;
4016
4017 /*
4018 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4019 * we follow a more convoluted path through to the pool's target.
4020 */
4021 if (!pool->ti)
4022 return 0; /* nothing is bound */
4023
4024 blocks = pool->ti->len;
4025 (void) sector_div(blocks, pool->sectors_per_block);
4026 if (blocks)
4027 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4028
4029 return 0;
4030 }
4031
4032 static struct target_type thin_target = {
4033 .name = "thin",
4034 .version = {1, 14, 0},
4035 .module = THIS_MODULE,
4036 .ctr = thin_ctr,
4037 .dtr = thin_dtr,
4038 .map = thin_map,
4039 .end_io = thin_endio,
4040 .preresume = thin_preresume,
4041 .presuspend = thin_presuspend,
4042 .postsuspend = thin_postsuspend,
4043 .status = thin_status,
4044 .merge = thin_merge,
4045 .iterate_devices = thin_iterate_devices,
4046 };
4047
4048 /*----------------------------------------------------------------*/
4049
4050 static int __init dm_thin_init(void)
4051 {
4052 int r;
4053
4054 pool_table_init();
4055
4056 r = dm_register_target(&thin_target);
4057 if (r)
4058 return r;
4059
4060 r = dm_register_target(&pool_target);
4061 if (r)
4062 goto bad_pool_target;
4063
4064 r = -ENOMEM;
4065
4066 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4067 if (!_new_mapping_cache)
4068 goto bad_new_mapping_cache;
4069
4070 return 0;
4071
4072 bad_new_mapping_cache:
4073 dm_unregister_target(&pool_target);
4074 bad_pool_target:
4075 dm_unregister_target(&thin_target);
4076
4077 return r;
4078 }
4079
4080 static void dm_thin_exit(void)
4081 {
4082 dm_unregister_target(&thin_target);
4083 dm_unregister_target(&pool_target);
4084
4085 kmem_cache_destroy(_new_mapping_cache);
4086 }
4087
4088 module_init(dm_thin_init);
4089 module_exit(dm_thin_exit);
4090
4091 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4092 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4093
4094 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4095 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4096 MODULE_LICENSE("GPL");
This page took 0.206539 seconds and 5 git commands to generate.