dm thin: simplify pool_is_congested
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
138 PM_READ_ONLY, /* metadata may not be changed */
139 PM_FAIL, /* all I/O fails */
140 };
141
142 struct pool_features {
143 enum pool_mode mode;
144
145 bool zero_new_blocks:1;
146 bool discard_enabled:1;
147 bool discard_passdown:1;
148 bool error_if_no_space:1;
149 };
150
151 struct thin_c;
152 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
153 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
154
155 struct pool {
156 struct list_head list;
157 struct dm_target *ti; /* Only set if a pool target is bound */
158
159 struct mapped_device *pool_md;
160 struct block_device *md_dev;
161 struct dm_pool_metadata *pmd;
162
163 dm_block_t low_water_blocks;
164 uint32_t sectors_per_block;
165 int sectors_per_block_shift;
166
167 struct pool_features pf;
168 bool low_water_triggered:1; /* A dm event has been sent */
169
170 struct dm_bio_prison *prison;
171 struct dm_kcopyd_client *copier;
172
173 struct workqueue_struct *wq;
174 struct work_struct worker;
175 struct delayed_work waker;
176
177 unsigned long last_commit_jiffies;
178 unsigned ref_count;
179
180 spinlock_t lock;
181 struct bio_list deferred_bios;
182 struct bio_list deferred_flush_bios;
183 struct list_head prepared_mappings;
184 struct list_head prepared_discards;
185
186 struct bio_list retry_on_resume_list;
187
188 struct dm_deferred_set *shared_read_ds;
189 struct dm_deferred_set *all_io_ds;
190
191 struct dm_thin_new_mapping *next_mapping;
192 mempool_t *mapping_pool;
193
194 process_bio_fn process_bio;
195 process_bio_fn process_discard;
196
197 process_mapping_fn process_prepared_mapping;
198 process_mapping_fn process_prepared_discard;
199 };
200
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205 * Target context for a pool.
206 */
207 struct pool_c {
208 struct dm_target *ti;
209 struct pool *pool;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
213
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220 * Target context for a thin.
221 */
222 struct thin_c {
223 struct dm_dev *pool_dev;
224 struct dm_dev *origin_dev;
225 dm_thin_id dev_id;
226
227 struct pool *pool;
228 struct dm_thin_device *td;
229 bool requeue_mode:1;
230 };
231
232 /*----------------------------------------------------------------*/
233
234 /*
235 * wake_worker() is used when new work is queued and when pool_resume is
236 * ready to continue deferred IO processing.
237 */
238 static void wake_worker(struct pool *pool)
239 {
240 queue_work(pool->wq, &pool->worker);
241 }
242
243 /*----------------------------------------------------------------*/
244
245 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
246 struct dm_bio_prison_cell **cell_result)
247 {
248 int r;
249 struct dm_bio_prison_cell *cell_prealloc;
250
251 /*
252 * Allocate a cell from the prison's mempool.
253 * This might block but it can't fail.
254 */
255 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
256
257 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
258 if (r)
259 /*
260 * We reused an old cell; we can get rid of
261 * the new one.
262 */
263 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
264
265 return r;
266 }
267
268 static void cell_release(struct pool *pool,
269 struct dm_bio_prison_cell *cell,
270 struct bio_list *bios)
271 {
272 dm_cell_release(pool->prison, cell, bios);
273 dm_bio_prison_free_cell(pool->prison, cell);
274 }
275
276 static void cell_release_no_holder(struct pool *pool,
277 struct dm_bio_prison_cell *cell,
278 struct bio_list *bios)
279 {
280 dm_cell_release_no_holder(pool->prison, cell, bios);
281 dm_bio_prison_free_cell(pool->prison, cell);
282 }
283
284 static void cell_defer_no_holder_no_free(struct thin_c *tc,
285 struct dm_bio_prison_cell *cell)
286 {
287 struct pool *pool = tc->pool;
288 unsigned long flags;
289
290 spin_lock_irqsave(&pool->lock, flags);
291 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
292 spin_unlock_irqrestore(&pool->lock, flags);
293
294 wake_worker(pool);
295 }
296
297 static void cell_error(struct pool *pool,
298 struct dm_bio_prison_cell *cell)
299 {
300 dm_cell_error(pool->prison, cell);
301 dm_bio_prison_free_cell(pool->prison, cell);
302 }
303
304 /*----------------------------------------------------------------*/
305
306 /*
307 * A global list of pools that uses a struct mapped_device as a key.
308 */
309 static struct dm_thin_pool_table {
310 struct mutex mutex;
311 struct list_head pools;
312 } dm_thin_pool_table;
313
314 static void pool_table_init(void)
315 {
316 mutex_init(&dm_thin_pool_table.mutex);
317 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
318 }
319
320 static void __pool_table_insert(struct pool *pool)
321 {
322 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
323 list_add(&pool->list, &dm_thin_pool_table.pools);
324 }
325
326 static void __pool_table_remove(struct pool *pool)
327 {
328 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
329 list_del(&pool->list);
330 }
331
332 static struct pool *__pool_table_lookup(struct mapped_device *md)
333 {
334 struct pool *pool = NULL, *tmp;
335
336 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
337
338 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
339 if (tmp->pool_md == md) {
340 pool = tmp;
341 break;
342 }
343 }
344
345 return pool;
346 }
347
348 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
349 {
350 struct pool *pool = NULL, *tmp;
351
352 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
353
354 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
355 if (tmp->md_dev == md_dev) {
356 pool = tmp;
357 break;
358 }
359 }
360
361 return pool;
362 }
363
364 /*----------------------------------------------------------------*/
365
366 struct dm_thin_endio_hook {
367 struct thin_c *tc;
368 struct dm_deferred_entry *shared_read_entry;
369 struct dm_deferred_entry *all_io_entry;
370 struct dm_thin_new_mapping *overwrite_mapping;
371 };
372
373 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
374 {
375 struct bio *bio;
376 struct bio_list bios;
377 unsigned long flags;
378
379 bio_list_init(&bios);
380
381 spin_lock_irqsave(&tc->pool->lock, flags);
382 bio_list_merge(&bios, master);
383 bio_list_init(master);
384 spin_unlock_irqrestore(&tc->pool->lock, flags);
385
386 while ((bio = bio_list_pop(&bios))) {
387 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
388
389 if (h->tc == tc)
390 bio_endio(bio, DM_ENDIO_REQUEUE);
391 else
392 bio_list_add(master, bio);
393 }
394 }
395
396 static void requeue_io(struct thin_c *tc)
397 {
398 struct pool *pool = tc->pool;
399
400 requeue_bio_list(tc, &pool->deferred_bios);
401 requeue_bio_list(tc, &pool->retry_on_resume_list);
402 }
403
404 static void error_retry_list(struct pool *pool)
405 {
406 struct bio *bio;
407 unsigned long flags;
408 struct bio_list bios;
409
410 bio_list_init(&bios);
411
412 spin_lock_irqsave(&pool->lock, flags);
413 bio_list_merge(&bios, &pool->retry_on_resume_list);
414 bio_list_init(&pool->retry_on_resume_list);
415 spin_unlock_irqrestore(&pool->lock, flags);
416
417 while ((bio = bio_list_pop(&bios)))
418 bio_io_error(bio);
419 }
420
421 /*
422 * This section of code contains the logic for processing a thin device's IO.
423 * Much of the code depends on pool object resources (lists, workqueues, etc)
424 * but most is exclusively called from the thin target rather than the thin-pool
425 * target.
426 */
427
428 static bool block_size_is_power_of_two(struct pool *pool)
429 {
430 return pool->sectors_per_block_shift >= 0;
431 }
432
433 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
434 {
435 struct pool *pool = tc->pool;
436 sector_t block_nr = bio->bi_iter.bi_sector;
437
438 if (block_size_is_power_of_two(pool))
439 block_nr >>= pool->sectors_per_block_shift;
440 else
441 (void) sector_div(block_nr, pool->sectors_per_block);
442
443 return block_nr;
444 }
445
446 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
447 {
448 struct pool *pool = tc->pool;
449 sector_t bi_sector = bio->bi_iter.bi_sector;
450
451 bio->bi_bdev = tc->pool_dev->bdev;
452 if (block_size_is_power_of_two(pool))
453 bio->bi_iter.bi_sector =
454 (block << pool->sectors_per_block_shift) |
455 (bi_sector & (pool->sectors_per_block - 1));
456 else
457 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
458 sector_div(bi_sector, pool->sectors_per_block);
459 }
460
461 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
462 {
463 bio->bi_bdev = tc->origin_dev->bdev;
464 }
465
466 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
467 {
468 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
469 dm_thin_changed_this_transaction(tc->td);
470 }
471
472 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
473 {
474 struct dm_thin_endio_hook *h;
475
476 if (bio->bi_rw & REQ_DISCARD)
477 return;
478
479 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
480 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
481 }
482
483 static void issue(struct thin_c *tc, struct bio *bio)
484 {
485 struct pool *pool = tc->pool;
486 unsigned long flags;
487
488 if (!bio_triggers_commit(tc, bio)) {
489 generic_make_request(bio);
490 return;
491 }
492
493 /*
494 * Complete bio with an error if earlier I/O caused changes to
495 * the metadata that can't be committed e.g, due to I/O errors
496 * on the metadata device.
497 */
498 if (dm_thin_aborted_changes(tc->td)) {
499 bio_io_error(bio);
500 return;
501 }
502
503 /*
504 * Batch together any bios that trigger commits and then issue a
505 * single commit for them in process_deferred_bios().
506 */
507 spin_lock_irqsave(&pool->lock, flags);
508 bio_list_add(&pool->deferred_flush_bios, bio);
509 spin_unlock_irqrestore(&pool->lock, flags);
510 }
511
512 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
513 {
514 remap_to_origin(tc, bio);
515 issue(tc, bio);
516 }
517
518 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
519 dm_block_t block)
520 {
521 remap(tc, bio, block);
522 issue(tc, bio);
523 }
524
525 /*----------------------------------------------------------------*/
526
527 /*
528 * Bio endio functions.
529 */
530 struct dm_thin_new_mapping {
531 struct list_head list;
532
533 bool quiesced:1;
534 bool prepared:1;
535 bool pass_discard:1;
536 bool definitely_not_shared:1;
537
538 int err;
539 struct thin_c *tc;
540 dm_block_t virt_block;
541 dm_block_t data_block;
542 struct dm_bio_prison_cell *cell, *cell2;
543
544 /*
545 * If the bio covers the whole area of a block then we can avoid
546 * zeroing or copying. Instead this bio is hooked. The bio will
547 * still be in the cell, so care has to be taken to avoid issuing
548 * the bio twice.
549 */
550 struct bio *bio;
551 bio_end_io_t *saved_bi_end_io;
552 };
553
554 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
555 {
556 struct pool *pool = m->tc->pool;
557
558 if (m->quiesced && m->prepared) {
559 list_add_tail(&m->list, &pool->prepared_mappings);
560 wake_worker(pool);
561 }
562 }
563
564 static void copy_complete(int read_err, unsigned long write_err, void *context)
565 {
566 unsigned long flags;
567 struct dm_thin_new_mapping *m = context;
568 struct pool *pool = m->tc->pool;
569
570 m->err = read_err || write_err ? -EIO : 0;
571
572 spin_lock_irqsave(&pool->lock, flags);
573 m->prepared = true;
574 __maybe_add_mapping(m);
575 spin_unlock_irqrestore(&pool->lock, flags);
576 }
577
578 static void overwrite_endio(struct bio *bio, int err)
579 {
580 unsigned long flags;
581 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
582 struct dm_thin_new_mapping *m = h->overwrite_mapping;
583 struct pool *pool = m->tc->pool;
584
585 m->err = err;
586
587 spin_lock_irqsave(&pool->lock, flags);
588 m->prepared = true;
589 __maybe_add_mapping(m);
590 spin_unlock_irqrestore(&pool->lock, flags);
591 }
592
593 /*----------------------------------------------------------------*/
594
595 /*
596 * Workqueue.
597 */
598
599 /*
600 * Prepared mapping jobs.
601 */
602
603 /*
604 * This sends the bios in the cell back to the deferred_bios list.
605 */
606 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
607 {
608 struct pool *pool = tc->pool;
609 unsigned long flags;
610
611 spin_lock_irqsave(&pool->lock, flags);
612 cell_release(pool, cell, &pool->deferred_bios);
613 spin_unlock_irqrestore(&tc->pool->lock, flags);
614
615 wake_worker(pool);
616 }
617
618 /*
619 * Same as cell_defer above, except it omits the original holder of the cell.
620 */
621 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
622 {
623 struct pool *pool = tc->pool;
624 unsigned long flags;
625
626 spin_lock_irqsave(&pool->lock, flags);
627 cell_release_no_holder(pool, cell, &pool->deferred_bios);
628 spin_unlock_irqrestore(&pool->lock, flags);
629
630 wake_worker(pool);
631 }
632
633 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
634 {
635 if (m->bio) {
636 m->bio->bi_end_io = m->saved_bi_end_io;
637 atomic_inc(&m->bio->bi_remaining);
638 }
639 cell_error(m->tc->pool, m->cell);
640 list_del(&m->list);
641 mempool_free(m, m->tc->pool->mapping_pool);
642 }
643
644 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
645 {
646 struct thin_c *tc = m->tc;
647 struct pool *pool = tc->pool;
648 struct bio *bio;
649 int r;
650
651 bio = m->bio;
652 if (bio) {
653 bio->bi_end_io = m->saved_bi_end_io;
654 atomic_inc(&bio->bi_remaining);
655 }
656
657 if (m->err) {
658 cell_error(pool, m->cell);
659 goto out;
660 }
661
662 /*
663 * Commit the prepared block into the mapping btree.
664 * Any I/O for this block arriving after this point will get
665 * remapped to it directly.
666 */
667 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
668 if (r) {
669 metadata_operation_failed(pool, "dm_thin_insert_block", r);
670 cell_error(pool, m->cell);
671 goto out;
672 }
673
674 /*
675 * Release any bios held while the block was being provisioned.
676 * If we are processing a write bio that completely covers the block,
677 * we already processed it so can ignore it now when processing
678 * the bios in the cell.
679 */
680 if (bio) {
681 cell_defer_no_holder(tc, m->cell);
682 bio_endio(bio, 0);
683 } else
684 cell_defer(tc, m->cell);
685
686 out:
687 list_del(&m->list);
688 mempool_free(m, pool->mapping_pool);
689 }
690
691 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
692 {
693 struct thin_c *tc = m->tc;
694
695 bio_io_error(m->bio);
696 cell_defer_no_holder(tc, m->cell);
697 cell_defer_no_holder(tc, m->cell2);
698 mempool_free(m, tc->pool->mapping_pool);
699 }
700
701 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
702 {
703 struct thin_c *tc = m->tc;
704
705 inc_all_io_entry(tc->pool, m->bio);
706 cell_defer_no_holder(tc, m->cell);
707 cell_defer_no_holder(tc, m->cell2);
708
709 if (m->pass_discard)
710 if (m->definitely_not_shared)
711 remap_and_issue(tc, m->bio, m->data_block);
712 else {
713 bool used = false;
714 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
715 bio_endio(m->bio, 0);
716 else
717 remap_and_issue(tc, m->bio, m->data_block);
718 }
719 else
720 bio_endio(m->bio, 0);
721
722 mempool_free(m, tc->pool->mapping_pool);
723 }
724
725 static void process_prepared_discard(struct dm_thin_new_mapping *m)
726 {
727 int r;
728 struct thin_c *tc = m->tc;
729
730 r = dm_thin_remove_block(tc->td, m->virt_block);
731 if (r)
732 DMERR_LIMIT("dm_thin_remove_block() failed");
733
734 process_prepared_discard_passdown(m);
735 }
736
737 static void process_prepared(struct pool *pool, struct list_head *head,
738 process_mapping_fn *fn)
739 {
740 unsigned long flags;
741 struct list_head maps;
742 struct dm_thin_new_mapping *m, *tmp;
743
744 INIT_LIST_HEAD(&maps);
745 spin_lock_irqsave(&pool->lock, flags);
746 list_splice_init(head, &maps);
747 spin_unlock_irqrestore(&pool->lock, flags);
748
749 list_for_each_entry_safe(m, tmp, &maps, list)
750 (*fn)(m);
751 }
752
753 /*
754 * Deferred bio jobs.
755 */
756 static int io_overlaps_block(struct pool *pool, struct bio *bio)
757 {
758 return bio->bi_iter.bi_size ==
759 (pool->sectors_per_block << SECTOR_SHIFT);
760 }
761
762 static int io_overwrites_block(struct pool *pool, struct bio *bio)
763 {
764 return (bio_data_dir(bio) == WRITE) &&
765 io_overlaps_block(pool, bio);
766 }
767
768 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
769 bio_end_io_t *fn)
770 {
771 *save = bio->bi_end_io;
772 bio->bi_end_io = fn;
773 }
774
775 static int ensure_next_mapping(struct pool *pool)
776 {
777 if (pool->next_mapping)
778 return 0;
779
780 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
781
782 return pool->next_mapping ? 0 : -ENOMEM;
783 }
784
785 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
786 {
787 struct dm_thin_new_mapping *m = pool->next_mapping;
788
789 BUG_ON(!pool->next_mapping);
790
791 memset(m, 0, sizeof(struct dm_thin_new_mapping));
792 INIT_LIST_HEAD(&m->list);
793 m->bio = NULL;
794
795 pool->next_mapping = NULL;
796
797 return m;
798 }
799
800 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
801 struct dm_dev *origin, dm_block_t data_origin,
802 dm_block_t data_dest,
803 struct dm_bio_prison_cell *cell, struct bio *bio)
804 {
805 int r;
806 struct pool *pool = tc->pool;
807 struct dm_thin_new_mapping *m = get_next_mapping(pool);
808
809 m->tc = tc;
810 m->virt_block = virt_block;
811 m->data_block = data_dest;
812 m->cell = cell;
813
814 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
815 m->quiesced = true;
816
817 /*
818 * IO to pool_dev remaps to the pool target's data_dev.
819 *
820 * If the whole block of data is being overwritten, we can issue the
821 * bio immediately. Otherwise we use kcopyd to clone the data first.
822 */
823 if (io_overwrites_block(pool, bio)) {
824 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
825
826 h->overwrite_mapping = m;
827 m->bio = bio;
828 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
829 inc_all_io_entry(pool, bio);
830 remap_and_issue(tc, bio, data_dest);
831 } else {
832 struct dm_io_region from, to;
833
834 from.bdev = origin->bdev;
835 from.sector = data_origin * pool->sectors_per_block;
836 from.count = pool->sectors_per_block;
837
838 to.bdev = tc->pool_dev->bdev;
839 to.sector = data_dest * pool->sectors_per_block;
840 to.count = pool->sectors_per_block;
841
842 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
843 0, copy_complete, m);
844 if (r < 0) {
845 mempool_free(m, pool->mapping_pool);
846 DMERR_LIMIT("dm_kcopyd_copy() failed");
847 cell_error(pool, cell);
848 }
849 }
850 }
851
852 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
853 dm_block_t data_origin, dm_block_t data_dest,
854 struct dm_bio_prison_cell *cell, struct bio *bio)
855 {
856 schedule_copy(tc, virt_block, tc->pool_dev,
857 data_origin, data_dest, cell, bio);
858 }
859
860 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
861 dm_block_t data_dest,
862 struct dm_bio_prison_cell *cell, struct bio *bio)
863 {
864 schedule_copy(tc, virt_block, tc->origin_dev,
865 virt_block, data_dest, cell, bio);
866 }
867
868 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
869 dm_block_t data_block, struct dm_bio_prison_cell *cell,
870 struct bio *bio)
871 {
872 struct pool *pool = tc->pool;
873 struct dm_thin_new_mapping *m = get_next_mapping(pool);
874
875 m->quiesced = true;
876 m->prepared = false;
877 m->tc = tc;
878 m->virt_block = virt_block;
879 m->data_block = data_block;
880 m->cell = cell;
881
882 /*
883 * If the whole block of data is being overwritten or we are not
884 * zeroing pre-existing data, we can issue the bio immediately.
885 * Otherwise we use kcopyd to zero the data first.
886 */
887 if (!pool->pf.zero_new_blocks)
888 process_prepared_mapping(m);
889
890 else if (io_overwrites_block(pool, bio)) {
891 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
892
893 h->overwrite_mapping = m;
894 m->bio = bio;
895 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
896 inc_all_io_entry(pool, bio);
897 remap_and_issue(tc, bio, data_block);
898 } else {
899 int r;
900 struct dm_io_region to;
901
902 to.bdev = tc->pool_dev->bdev;
903 to.sector = data_block * pool->sectors_per_block;
904 to.count = pool->sectors_per_block;
905
906 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
907 if (r < 0) {
908 mempool_free(m, pool->mapping_pool);
909 DMERR_LIMIT("dm_kcopyd_zero() failed");
910 cell_error(pool, cell);
911 }
912 }
913 }
914
915 /*
916 * A non-zero return indicates read_only or fail_io mode.
917 * Many callers don't care about the return value.
918 */
919 static int commit(struct pool *pool)
920 {
921 int r;
922
923 if (get_pool_mode(pool) != PM_WRITE)
924 return -EINVAL;
925
926 r = dm_pool_commit_metadata(pool->pmd);
927 if (r)
928 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
929
930 return r;
931 }
932
933 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
934 {
935 unsigned long flags;
936
937 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
938 DMWARN("%s: reached low water mark for data device: sending event.",
939 dm_device_name(pool->pool_md));
940 spin_lock_irqsave(&pool->lock, flags);
941 pool->low_water_triggered = true;
942 spin_unlock_irqrestore(&pool->lock, flags);
943 dm_table_event(pool->ti->table);
944 }
945 }
946
947 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
948
949 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
950 {
951 int r;
952 dm_block_t free_blocks;
953 struct pool *pool = tc->pool;
954
955 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
956 return -EINVAL;
957
958 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
959 if (r) {
960 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
961 return r;
962 }
963
964 check_low_water_mark(pool, free_blocks);
965
966 if (!free_blocks) {
967 /*
968 * Try to commit to see if that will free up some
969 * more space.
970 */
971 r = commit(pool);
972 if (r)
973 return r;
974
975 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
976 if (r) {
977 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
978 return r;
979 }
980
981 if (!free_blocks) {
982 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
983 return -ENOSPC;
984 }
985 }
986
987 r = dm_pool_alloc_data_block(pool->pmd, result);
988 if (r) {
989 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
990 return r;
991 }
992
993 return 0;
994 }
995
996 /*
997 * If we have run out of space, queue bios until the device is
998 * resumed, presumably after having been reloaded with more space.
999 */
1000 static void retry_on_resume(struct bio *bio)
1001 {
1002 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1003 struct thin_c *tc = h->tc;
1004 struct pool *pool = tc->pool;
1005 unsigned long flags;
1006
1007 spin_lock_irqsave(&pool->lock, flags);
1008 bio_list_add(&pool->retry_on_resume_list, bio);
1009 spin_unlock_irqrestore(&pool->lock, flags);
1010 }
1011
1012 static bool should_error_unserviceable_bio(struct pool *pool)
1013 {
1014 enum pool_mode m = get_pool_mode(pool);
1015
1016 switch (m) {
1017 case PM_WRITE:
1018 /* Shouldn't get here */
1019 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1020 return true;
1021
1022 case PM_OUT_OF_DATA_SPACE:
1023 return pool->pf.error_if_no_space;
1024
1025 case PM_READ_ONLY:
1026 case PM_FAIL:
1027 return true;
1028 default:
1029 /* Shouldn't get here */
1030 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1031 return true;
1032 }
1033 }
1034
1035 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1036 {
1037 if (should_error_unserviceable_bio(pool))
1038 bio_io_error(bio);
1039 else
1040 retry_on_resume(bio);
1041 }
1042
1043 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1044 {
1045 struct bio *bio;
1046 struct bio_list bios;
1047
1048 if (should_error_unserviceable_bio(pool)) {
1049 cell_error(pool, cell);
1050 return;
1051 }
1052
1053 bio_list_init(&bios);
1054 cell_release(pool, cell, &bios);
1055
1056 if (should_error_unserviceable_bio(pool))
1057 while ((bio = bio_list_pop(&bios)))
1058 bio_io_error(bio);
1059 else
1060 while ((bio = bio_list_pop(&bios)))
1061 retry_on_resume(bio);
1062 }
1063
1064 static void process_discard(struct thin_c *tc, struct bio *bio)
1065 {
1066 int r;
1067 unsigned long flags;
1068 struct pool *pool = tc->pool;
1069 struct dm_bio_prison_cell *cell, *cell2;
1070 struct dm_cell_key key, key2;
1071 dm_block_t block = get_bio_block(tc, bio);
1072 struct dm_thin_lookup_result lookup_result;
1073 struct dm_thin_new_mapping *m;
1074
1075 build_virtual_key(tc->td, block, &key);
1076 if (bio_detain(tc->pool, &key, bio, &cell))
1077 return;
1078
1079 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1080 switch (r) {
1081 case 0:
1082 /*
1083 * Check nobody is fiddling with this pool block. This can
1084 * happen if someone's in the process of breaking sharing
1085 * on this block.
1086 */
1087 build_data_key(tc->td, lookup_result.block, &key2);
1088 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1089 cell_defer_no_holder(tc, cell);
1090 break;
1091 }
1092
1093 if (io_overlaps_block(pool, bio)) {
1094 /*
1095 * IO may still be going to the destination block. We must
1096 * quiesce before we can do the removal.
1097 */
1098 m = get_next_mapping(pool);
1099 m->tc = tc;
1100 m->pass_discard = pool->pf.discard_passdown;
1101 m->definitely_not_shared = !lookup_result.shared;
1102 m->virt_block = block;
1103 m->data_block = lookup_result.block;
1104 m->cell = cell;
1105 m->cell2 = cell2;
1106 m->bio = bio;
1107
1108 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1109 spin_lock_irqsave(&pool->lock, flags);
1110 list_add_tail(&m->list, &pool->prepared_discards);
1111 spin_unlock_irqrestore(&pool->lock, flags);
1112 wake_worker(pool);
1113 }
1114 } else {
1115 inc_all_io_entry(pool, bio);
1116 cell_defer_no_holder(tc, cell);
1117 cell_defer_no_holder(tc, cell2);
1118
1119 /*
1120 * The DM core makes sure that the discard doesn't span
1121 * a block boundary. So we submit the discard of a
1122 * partial block appropriately.
1123 */
1124 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1125 remap_and_issue(tc, bio, lookup_result.block);
1126 else
1127 bio_endio(bio, 0);
1128 }
1129 break;
1130
1131 case -ENODATA:
1132 /*
1133 * It isn't provisioned, just forget it.
1134 */
1135 cell_defer_no_holder(tc, cell);
1136 bio_endio(bio, 0);
1137 break;
1138
1139 default:
1140 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1141 __func__, r);
1142 cell_defer_no_holder(tc, cell);
1143 bio_io_error(bio);
1144 break;
1145 }
1146 }
1147
1148 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1149 struct dm_cell_key *key,
1150 struct dm_thin_lookup_result *lookup_result,
1151 struct dm_bio_prison_cell *cell)
1152 {
1153 int r;
1154 dm_block_t data_block;
1155 struct pool *pool = tc->pool;
1156
1157 r = alloc_data_block(tc, &data_block);
1158 switch (r) {
1159 case 0:
1160 schedule_internal_copy(tc, block, lookup_result->block,
1161 data_block, cell, bio);
1162 break;
1163
1164 case -ENOSPC:
1165 retry_bios_on_resume(pool, cell);
1166 break;
1167
1168 default:
1169 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1170 __func__, r);
1171 cell_error(pool, cell);
1172 break;
1173 }
1174 }
1175
1176 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1177 dm_block_t block,
1178 struct dm_thin_lookup_result *lookup_result)
1179 {
1180 struct dm_bio_prison_cell *cell;
1181 struct pool *pool = tc->pool;
1182 struct dm_cell_key key;
1183
1184 /*
1185 * If cell is already occupied, then sharing is already in the process
1186 * of being broken so we have nothing further to do here.
1187 */
1188 build_data_key(tc->td, lookup_result->block, &key);
1189 if (bio_detain(pool, &key, bio, &cell))
1190 return;
1191
1192 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1193 break_sharing(tc, bio, block, &key, lookup_result, cell);
1194 else {
1195 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1196
1197 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1198 inc_all_io_entry(pool, bio);
1199 cell_defer_no_holder(tc, cell);
1200
1201 remap_and_issue(tc, bio, lookup_result->block);
1202 }
1203 }
1204
1205 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1206 struct dm_bio_prison_cell *cell)
1207 {
1208 int r;
1209 dm_block_t data_block;
1210 struct pool *pool = tc->pool;
1211
1212 /*
1213 * Remap empty bios (flushes) immediately, without provisioning.
1214 */
1215 if (!bio->bi_iter.bi_size) {
1216 inc_all_io_entry(pool, bio);
1217 cell_defer_no_holder(tc, cell);
1218
1219 remap_and_issue(tc, bio, 0);
1220 return;
1221 }
1222
1223 /*
1224 * Fill read bios with zeroes and complete them immediately.
1225 */
1226 if (bio_data_dir(bio) == READ) {
1227 zero_fill_bio(bio);
1228 cell_defer_no_holder(tc, cell);
1229 bio_endio(bio, 0);
1230 return;
1231 }
1232
1233 r = alloc_data_block(tc, &data_block);
1234 switch (r) {
1235 case 0:
1236 if (tc->origin_dev)
1237 schedule_external_copy(tc, block, data_block, cell, bio);
1238 else
1239 schedule_zero(tc, block, data_block, cell, bio);
1240 break;
1241
1242 case -ENOSPC:
1243 retry_bios_on_resume(pool, cell);
1244 break;
1245
1246 default:
1247 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1248 __func__, r);
1249 cell_error(pool, cell);
1250 break;
1251 }
1252 }
1253
1254 static void process_bio(struct thin_c *tc, struct bio *bio)
1255 {
1256 int r;
1257 struct pool *pool = tc->pool;
1258 dm_block_t block = get_bio_block(tc, bio);
1259 struct dm_bio_prison_cell *cell;
1260 struct dm_cell_key key;
1261 struct dm_thin_lookup_result lookup_result;
1262
1263 /*
1264 * If cell is already occupied, then the block is already
1265 * being provisioned so we have nothing further to do here.
1266 */
1267 build_virtual_key(tc->td, block, &key);
1268 if (bio_detain(pool, &key, bio, &cell))
1269 return;
1270
1271 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1272 switch (r) {
1273 case 0:
1274 if (lookup_result.shared) {
1275 process_shared_bio(tc, bio, block, &lookup_result);
1276 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1277 } else {
1278 inc_all_io_entry(pool, bio);
1279 cell_defer_no_holder(tc, cell);
1280
1281 remap_and_issue(tc, bio, lookup_result.block);
1282 }
1283 break;
1284
1285 case -ENODATA:
1286 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1287 inc_all_io_entry(pool, bio);
1288 cell_defer_no_holder(tc, cell);
1289
1290 remap_to_origin_and_issue(tc, bio);
1291 } else
1292 provision_block(tc, bio, block, cell);
1293 break;
1294
1295 default:
1296 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1297 __func__, r);
1298 cell_defer_no_holder(tc, cell);
1299 bio_io_error(bio);
1300 break;
1301 }
1302 }
1303
1304 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1305 {
1306 int r;
1307 int rw = bio_data_dir(bio);
1308 dm_block_t block = get_bio_block(tc, bio);
1309 struct dm_thin_lookup_result lookup_result;
1310
1311 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1312 switch (r) {
1313 case 0:
1314 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1315 handle_unserviceable_bio(tc->pool, bio);
1316 else {
1317 inc_all_io_entry(tc->pool, bio);
1318 remap_and_issue(tc, bio, lookup_result.block);
1319 }
1320 break;
1321
1322 case -ENODATA:
1323 if (rw != READ) {
1324 handle_unserviceable_bio(tc->pool, bio);
1325 break;
1326 }
1327
1328 if (tc->origin_dev) {
1329 inc_all_io_entry(tc->pool, bio);
1330 remap_to_origin_and_issue(tc, bio);
1331 break;
1332 }
1333
1334 zero_fill_bio(bio);
1335 bio_endio(bio, 0);
1336 break;
1337
1338 default:
1339 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1340 __func__, r);
1341 bio_io_error(bio);
1342 break;
1343 }
1344 }
1345
1346 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1347 {
1348 bio_endio(bio, 0);
1349 }
1350
1351 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1352 {
1353 bio_io_error(bio);
1354 }
1355
1356 /*
1357 * FIXME: should we also commit due to size of transaction, measured in
1358 * metadata blocks?
1359 */
1360 static int need_commit_due_to_time(struct pool *pool)
1361 {
1362 return jiffies < pool->last_commit_jiffies ||
1363 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1364 }
1365
1366 static void process_deferred_bios(struct pool *pool)
1367 {
1368 unsigned long flags;
1369 struct bio *bio;
1370 struct bio_list bios;
1371
1372 bio_list_init(&bios);
1373
1374 spin_lock_irqsave(&pool->lock, flags);
1375 bio_list_merge(&bios, &pool->deferred_bios);
1376 bio_list_init(&pool->deferred_bios);
1377 spin_unlock_irqrestore(&pool->lock, flags);
1378
1379 while ((bio = bio_list_pop(&bios))) {
1380 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1381 struct thin_c *tc = h->tc;
1382
1383 if (tc->requeue_mode) {
1384 bio_endio(bio, DM_ENDIO_REQUEUE);
1385 continue;
1386 }
1387
1388 /*
1389 * If we've got no free new_mapping structs, and processing
1390 * this bio might require one, we pause until there are some
1391 * prepared mappings to process.
1392 */
1393 if (ensure_next_mapping(pool)) {
1394 spin_lock_irqsave(&pool->lock, flags);
1395 bio_list_add(&pool->deferred_bios, bio);
1396 bio_list_merge(&pool->deferred_bios, &bios);
1397 spin_unlock_irqrestore(&pool->lock, flags);
1398 break;
1399 }
1400
1401 if (bio->bi_rw & REQ_DISCARD)
1402 pool->process_discard(tc, bio);
1403 else
1404 pool->process_bio(tc, bio);
1405 }
1406
1407 /*
1408 * If there are any deferred flush bios, we must commit
1409 * the metadata before issuing them.
1410 */
1411 bio_list_init(&bios);
1412 spin_lock_irqsave(&pool->lock, flags);
1413 bio_list_merge(&bios, &pool->deferred_flush_bios);
1414 bio_list_init(&pool->deferred_flush_bios);
1415 spin_unlock_irqrestore(&pool->lock, flags);
1416
1417 if (bio_list_empty(&bios) &&
1418 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1419 return;
1420
1421 if (commit(pool)) {
1422 while ((bio = bio_list_pop(&bios)))
1423 bio_io_error(bio);
1424 return;
1425 }
1426 pool->last_commit_jiffies = jiffies;
1427
1428 while ((bio = bio_list_pop(&bios)))
1429 generic_make_request(bio);
1430 }
1431
1432 static void do_worker(struct work_struct *ws)
1433 {
1434 struct pool *pool = container_of(ws, struct pool, worker);
1435
1436 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1437 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1438 process_deferred_bios(pool);
1439 }
1440
1441 /*
1442 * We want to commit periodically so that not too much
1443 * unwritten data builds up.
1444 */
1445 static void do_waker(struct work_struct *ws)
1446 {
1447 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1448 wake_worker(pool);
1449 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1450 }
1451
1452 /*----------------------------------------------------------------*/
1453
1454 struct noflush_work {
1455 struct work_struct worker;
1456 struct thin_c *tc;
1457
1458 atomic_t complete;
1459 wait_queue_head_t wait;
1460 };
1461
1462 static void complete_noflush_work(struct noflush_work *w)
1463 {
1464 atomic_set(&w->complete, 1);
1465 wake_up(&w->wait);
1466 }
1467
1468 static void do_noflush_start(struct work_struct *ws)
1469 {
1470 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1471 w->tc->requeue_mode = true;
1472 requeue_io(w->tc);
1473 complete_noflush_work(w);
1474 }
1475
1476 static void do_noflush_stop(struct work_struct *ws)
1477 {
1478 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1479 w->tc->requeue_mode = false;
1480 complete_noflush_work(w);
1481 }
1482
1483 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1484 {
1485 struct noflush_work w;
1486
1487 INIT_WORK(&w.worker, fn);
1488 w.tc = tc;
1489 atomic_set(&w.complete, 0);
1490 init_waitqueue_head(&w.wait);
1491
1492 queue_work(tc->pool->wq, &w.worker);
1493
1494 wait_event(w.wait, atomic_read(&w.complete));
1495 }
1496
1497 /*----------------------------------------------------------------*/
1498
1499 static enum pool_mode get_pool_mode(struct pool *pool)
1500 {
1501 return pool->pf.mode;
1502 }
1503
1504 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1505 {
1506 dm_table_event(pool->ti->table);
1507 DMINFO("%s: switching pool to %s mode",
1508 dm_device_name(pool->pool_md), new_mode);
1509 }
1510
1511 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1512 {
1513 struct pool_c *pt = pool->ti->private;
1514 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1515 enum pool_mode old_mode = get_pool_mode(pool);
1516
1517 /*
1518 * Never allow the pool to transition to PM_WRITE mode if user
1519 * intervention is required to verify metadata and data consistency.
1520 */
1521 if (new_mode == PM_WRITE && needs_check) {
1522 DMERR("%s: unable to switch pool to write mode until repaired.",
1523 dm_device_name(pool->pool_md));
1524 if (old_mode != new_mode)
1525 new_mode = old_mode;
1526 else
1527 new_mode = PM_READ_ONLY;
1528 }
1529 /*
1530 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1531 * not going to recover without a thin_repair. So we never let the
1532 * pool move out of the old mode.
1533 */
1534 if (old_mode == PM_FAIL)
1535 new_mode = old_mode;
1536
1537 switch (new_mode) {
1538 case PM_FAIL:
1539 if (old_mode != new_mode)
1540 notify_of_pool_mode_change(pool, "failure");
1541 dm_pool_metadata_read_only(pool->pmd);
1542 pool->process_bio = process_bio_fail;
1543 pool->process_discard = process_bio_fail;
1544 pool->process_prepared_mapping = process_prepared_mapping_fail;
1545 pool->process_prepared_discard = process_prepared_discard_fail;
1546
1547 error_retry_list(pool);
1548 break;
1549
1550 case PM_READ_ONLY:
1551 if (old_mode != new_mode)
1552 notify_of_pool_mode_change(pool, "read-only");
1553 dm_pool_metadata_read_only(pool->pmd);
1554 pool->process_bio = process_bio_read_only;
1555 pool->process_discard = process_bio_success;
1556 pool->process_prepared_mapping = process_prepared_mapping_fail;
1557 pool->process_prepared_discard = process_prepared_discard_passdown;
1558
1559 error_retry_list(pool);
1560 break;
1561
1562 case PM_OUT_OF_DATA_SPACE:
1563 /*
1564 * Ideally we'd never hit this state; the low water mark
1565 * would trigger userland to extend the pool before we
1566 * completely run out of data space. However, many small
1567 * IOs to unprovisioned space can consume data space at an
1568 * alarming rate. Adjust your low water mark if you're
1569 * frequently seeing this mode.
1570 */
1571 if (old_mode != new_mode)
1572 notify_of_pool_mode_change(pool, "out-of-data-space");
1573 pool->process_bio = process_bio_read_only;
1574 pool->process_discard = process_discard;
1575 pool->process_prepared_mapping = process_prepared_mapping;
1576 pool->process_prepared_discard = process_prepared_discard_passdown;
1577 break;
1578
1579 case PM_WRITE:
1580 if (old_mode != new_mode)
1581 notify_of_pool_mode_change(pool, "write");
1582 dm_pool_metadata_read_write(pool->pmd);
1583 pool->process_bio = process_bio;
1584 pool->process_discard = process_discard;
1585 pool->process_prepared_mapping = process_prepared_mapping;
1586 pool->process_prepared_discard = process_prepared_discard;
1587 break;
1588 }
1589
1590 pool->pf.mode = new_mode;
1591 /*
1592 * The pool mode may have changed, sync it so bind_control_target()
1593 * doesn't cause an unexpected mode transition on resume.
1594 */
1595 pt->adjusted_pf.mode = new_mode;
1596 }
1597
1598 static void abort_transaction(struct pool *pool)
1599 {
1600 const char *dev_name = dm_device_name(pool->pool_md);
1601
1602 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1603 if (dm_pool_abort_metadata(pool->pmd)) {
1604 DMERR("%s: failed to abort metadata transaction", dev_name);
1605 set_pool_mode(pool, PM_FAIL);
1606 }
1607
1608 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1609 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1610 set_pool_mode(pool, PM_FAIL);
1611 }
1612 }
1613
1614 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1615 {
1616 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1617 dm_device_name(pool->pool_md), op, r);
1618
1619 abort_transaction(pool);
1620 set_pool_mode(pool, PM_READ_ONLY);
1621 }
1622
1623 /*----------------------------------------------------------------*/
1624
1625 /*
1626 * Mapping functions.
1627 */
1628
1629 /*
1630 * Called only while mapping a thin bio to hand it over to the workqueue.
1631 */
1632 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1633 {
1634 unsigned long flags;
1635 struct pool *pool = tc->pool;
1636
1637 spin_lock_irqsave(&pool->lock, flags);
1638 bio_list_add(&pool->deferred_bios, bio);
1639 spin_unlock_irqrestore(&pool->lock, flags);
1640
1641 wake_worker(pool);
1642 }
1643
1644 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1645 {
1646 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1647
1648 h->tc = tc;
1649 h->shared_read_entry = NULL;
1650 h->all_io_entry = NULL;
1651 h->overwrite_mapping = NULL;
1652 }
1653
1654 /*
1655 * Non-blocking function called from the thin target's map function.
1656 */
1657 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1658 {
1659 int r;
1660 struct thin_c *tc = ti->private;
1661 dm_block_t block = get_bio_block(tc, bio);
1662 struct dm_thin_device *td = tc->td;
1663 struct dm_thin_lookup_result result;
1664 struct dm_bio_prison_cell cell1, cell2;
1665 struct dm_bio_prison_cell *cell_result;
1666 struct dm_cell_key key;
1667
1668 thin_hook_bio(tc, bio);
1669
1670 if (tc->requeue_mode) {
1671 bio_endio(bio, DM_ENDIO_REQUEUE);
1672 return DM_MAPIO_SUBMITTED;
1673 }
1674
1675 if (get_pool_mode(tc->pool) == PM_FAIL) {
1676 bio_io_error(bio);
1677 return DM_MAPIO_SUBMITTED;
1678 }
1679
1680 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1681 thin_defer_bio(tc, bio);
1682 return DM_MAPIO_SUBMITTED;
1683 }
1684
1685 r = dm_thin_find_block(td, block, 0, &result);
1686
1687 /*
1688 * Note that we defer readahead too.
1689 */
1690 switch (r) {
1691 case 0:
1692 if (unlikely(result.shared)) {
1693 /*
1694 * We have a race condition here between the
1695 * result.shared value returned by the lookup and
1696 * snapshot creation, which may cause new
1697 * sharing.
1698 *
1699 * To avoid this always quiesce the origin before
1700 * taking the snap. You want to do this anyway to
1701 * ensure a consistent application view
1702 * (i.e. lockfs).
1703 *
1704 * More distant ancestors are irrelevant. The
1705 * shared flag will be set in their case.
1706 */
1707 thin_defer_bio(tc, bio);
1708 return DM_MAPIO_SUBMITTED;
1709 }
1710
1711 build_virtual_key(tc->td, block, &key);
1712 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1713 return DM_MAPIO_SUBMITTED;
1714
1715 build_data_key(tc->td, result.block, &key);
1716 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1717 cell_defer_no_holder_no_free(tc, &cell1);
1718 return DM_MAPIO_SUBMITTED;
1719 }
1720
1721 inc_all_io_entry(tc->pool, bio);
1722 cell_defer_no_holder_no_free(tc, &cell2);
1723 cell_defer_no_holder_no_free(tc, &cell1);
1724
1725 remap(tc, bio, result.block);
1726 return DM_MAPIO_REMAPPED;
1727
1728 case -ENODATA:
1729 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1730 /*
1731 * This block isn't provisioned, and we have no way
1732 * of doing so.
1733 */
1734 handle_unserviceable_bio(tc->pool, bio);
1735 return DM_MAPIO_SUBMITTED;
1736 }
1737 /* fall through */
1738
1739 case -EWOULDBLOCK:
1740 /*
1741 * In future, the failed dm_thin_find_block above could
1742 * provide the hint to load the metadata into cache.
1743 */
1744 thin_defer_bio(tc, bio);
1745 return DM_MAPIO_SUBMITTED;
1746
1747 default:
1748 /*
1749 * Must always call bio_io_error on failure.
1750 * dm_thin_find_block can fail with -EINVAL if the
1751 * pool is switched to fail-io mode.
1752 */
1753 bio_io_error(bio);
1754 return DM_MAPIO_SUBMITTED;
1755 }
1756 }
1757
1758 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1759 {
1760 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1761 struct request_queue *q;
1762
1763 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1764 return 1;
1765
1766 q = bdev_get_queue(pt->data_dev->bdev);
1767 return bdi_congested(&q->backing_dev_info, bdi_bits);
1768 }
1769
1770 static void __requeue_bios(struct pool *pool)
1771 {
1772 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1773 bio_list_init(&pool->retry_on_resume_list);
1774 }
1775
1776 /*----------------------------------------------------------------
1777 * Binding of control targets to a pool object
1778 *--------------------------------------------------------------*/
1779 static bool data_dev_supports_discard(struct pool_c *pt)
1780 {
1781 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1782
1783 return q && blk_queue_discard(q);
1784 }
1785
1786 static bool is_factor(sector_t block_size, uint32_t n)
1787 {
1788 return !sector_div(block_size, n);
1789 }
1790
1791 /*
1792 * If discard_passdown was enabled verify that the data device
1793 * supports discards. Disable discard_passdown if not.
1794 */
1795 static void disable_passdown_if_not_supported(struct pool_c *pt)
1796 {
1797 struct pool *pool = pt->pool;
1798 struct block_device *data_bdev = pt->data_dev->bdev;
1799 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1800 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1801 const char *reason = NULL;
1802 char buf[BDEVNAME_SIZE];
1803
1804 if (!pt->adjusted_pf.discard_passdown)
1805 return;
1806
1807 if (!data_dev_supports_discard(pt))
1808 reason = "discard unsupported";
1809
1810 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1811 reason = "max discard sectors smaller than a block";
1812
1813 else if (data_limits->discard_granularity > block_size)
1814 reason = "discard granularity larger than a block";
1815
1816 else if (!is_factor(block_size, data_limits->discard_granularity))
1817 reason = "discard granularity not a factor of block size";
1818
1819 if (reason) {
1820 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1821 pt->adjusted_pf.discard_passdown = false;
1822 }
1823 }
1824
1825 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1826 {
1827 struct pool_c *pt = ti->private;
1828
1829 /*
1830 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1831 */
1832 enum pool_mode old_mode = get_pool_mode(pool);
1833 enum pool_mode new_mode = pt->adjusted_pf.mode;
1834
1835 /*
1836 * Don't change the pool's mode until set_pool_mode() below.
1837 * Otherwise the pool's process_* function pointers may
1838 * not match the desired pool mode.
1839 */
1840 pt->adjusted_pf.mode = old_mode;
1841
1842 pool->ti = ti;
1843 pool->pf = pt->adjusted_pf;
1844 pool->low_water_blocks = pt->low_water_blocks;
1845
1846 set_pool_mode(pool, new_mode);
1847
1848 return 0;
1849 }
1850
1851 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1852 {
1853 if (pool->ti == ti)
1854 pool->ti = NULL;
1855 }
1856
1857 /*----------------------------------------------------------------
1858 * Pool creation
1859 *--------------------------------------------------------------*/
1860 /* Initialize pool features. */
1861 static void pool_features_init(struct pool_features *pf)
1862 {
1863 pf->mode = PM_WRITE;
1864 pf->zero_new_blocks = true;
1865 pf->discard_enabled = true;
1866 pf->discard_passdown = true;
1867 pf->error_if_no_space = false;
1868 }
1869
1870 static void __pool_destroy(struct pool *pool)
1871 {
1872 __pool_table_remove(pool);
1873
1874 if (dm_pool_metadata_close(pool->pmd) < 0)
1875 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1876
1877 dm_bio_prison_destroy(pool->prison);
1878 dm_kcopyd_client_destroy(pool->copier);
1879
1880 if (pool->wq)
1881 destroy_workqueue(pool->wq);
1882
1883 if (pool->next_mapping)
1884 mempool_free(pool->next_mapping, pool->mapping_pool);
1885 mempool_destroy(pool->mapping_pool);
1886 dm_deferred_set_destroy(pool->shared_read_ds);
1887 dm_deferred_set_destroy(pool->all_io_ds);
1888 kfree(pool);
1889 }
1890
1891 static struct kmem_cache *_new_mapping_cache;
1892
1893 static struct pool *pool_create(struct mapped_device *pool_md,
1894 struct block_device *metadata_dev,
1895 unsigned long block_size,
1896 int read_only, char **error)
1897 {
1898 int r;
1899 void *err_p;
1900 struct pool *pool;
1901 struct dm_pool_metadata *pmd;
1902 bool format_device = read_only ? false : true;
1903
1904 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1905 if (IS_ERR(pmd)) {
1906 *error = "Error creating metadata object";
1907 return (struct pool *)pmd;
1908 }
1909
1910 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1911 if (!pool) {
1912 *error = "Error allocating memory for pool";
1913 err_p = ERR_PTR(-ENOMEM);
1914 goto bad_pool;
1915 }
1916
1917 pool->pmd = pmd;
1918 pool->sectors_per_block = block_size;
1919 if (block_size & (block_size - 1))
1920 pool->sectors_per_block_shift = -1;
1921 else
1922 pool->sectors_per_block_shift = __ffs(block_size);
1923 pool->low_water_blocks = 0;
1924 pool_features_init(&pool->pf);
1925 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1926 if (!pool->prison) {
1927 *error = "Error creating pool's bio prison";
1928 err_p = ERR_PTR(-ENOMEM);
1929 goto bad_prison;
1930 }
1931
1932 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1933 if (IS_ERR(pool->copier)) {
1934 r = PTR_ERR(pool->copier);
1935 *error = "Error creating pool's kcopyd client";
1936 err_p = ERR_PTR(r);
1937 goto bad_kcopyd_client;
1938 }
1939
1940 /*
1941 * Create singlethreaded workqueue that will service all devices
1942 * that use this metadata.
1943 */
1944 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1945 if (!pool->wq) {
1946 *error = "Error creating pool's workqueue";
1947 err_p = ERR_PTR(-ENOMEM);
1948 goto bad_wq;
1949 }
1950
1951 INIT_WORK(&pool->worker, do_worker);
1952 INIT_DELAYED_WORK(&pool->waker, do_waker);
1953 spin_lock_init(&pool->lock);
1954 bio_list_init(&pool->deferred_bios);
1955 bio_list_init(&pool->deferred_flush_bios);
1956 INIT_LIST_HEAD(&pool->prepared_mappings);
1957 INIT_LIST_HEAD(&pool->prepared_discards);
1958 pool->low_water_triggered = false;
1959 bio_list_init(&pool->retry_on_resume_list);
1960
1961 pool->shared_read_ds = dm_deferred_set_create();
1962 if (!pool->shared_read_ds) {
1963 *error = "Error creating pool's shared read deferred set";
1964 err_p = ERR_PTR(-ENOMEM);
1965 goto bad_shared_read_ds;
1966 }
1967
1968 pool->all_io_ds = dm_deferred_set_create();
1969 if (!pool->all_io_ds) {
1970 *error = "Error creating pool's all io deferred set";
1971 err_p = ERR_PTR(-ENOMEM);
1972 goto bad_all_io_ds;
1973 }
1974
1975 pool->next_mapping = NULL;
1976 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1977 _new_mapping_cache);
1978 if (!pool->mapping_pool) {
1979 *error = "Error creating pool's mapping mempool";
1980 err_p = ERR_PTR(-ENOMEM);
1981 goto bad_mapping_pool;
1982 }
1983
1984 pool->ref_count = 1;
1985 pool->last_commit_jiffies = jiffies;
1986 pool->pool_md = pool_md;
1987 pool->md_dev = metadata_dev;
1988 __pool_table_insert(pool);
1989
1990 return pool;
1991
1992 bad_mapping_pool:
1993 dm_deferred_set_destroy(pool->all_io_ds);
1994 bad_all_io_ds:
1995 dm_deferred_set_destroy(pool->shared_read_ds);
1996 bad_shared_read_ds:
1997 destroy_workqueue(pool->wq);
1998 bad_wq:
1999 dm_kcopyd_client_destroy(pool->copier);
2000 bad_kcopyd_client:
2001 dm_bio_prison_destroy(pool->prison);
2002 bad_prison:
2003 kfree(pool);
2004 bad_pool:
2005 if (dm_pool_metadata_close(pmd))
2006 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2007
2008 return err_p;
2009 }
2010
2011 static void __pool_inc(struct pool *pool)
2012 {
2013 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2014 pool->ref_count++;
2015 }
2016
2017 static void __pool_dec(struct pool *pool)
2018 {
2019 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2020 BUG_ON(!pool->ref_count);
2021 if (!--pool->ref_count)
2022 __pool_destroy(pool);
2023 }
2024
2025 static struct pool *__pool_find(struct mapped_device *pool_md,
2026 struct block_device *metadata_dev,
2027 unsigned long block_size, int read_only,
2028 char **error, int *created)
2029 {
2030 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2031
2032 if (pool) {
2033 if (pool->pool_md != pool_md) {
2034 *error = "metadata device already in use by a pool";
2035 return ERR_PTR(-EBUSY);
2036 }
2037 __pool_inc(pool);
2038
2039 } else {
2040 pool = __pool_table_lookup(pool_md);
2041 if (pool) {
2042 if (pool->md_dev != metadata_dev) {
2043 *error = "different pool cannot replace a pool";
2044 return ERR_PTR(-EINVAL);
2045 }
2046 __pool_inc(pool);
2047
2048 } else {
2049 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2050 *created = 1;
2051 }
2052 }
2053
2054 return pool;
2055 }
2056
2057 /*----------------------------------------------------------------
2058 * Pool target methods
2059 *--------------------------------------------------------------*/
2060 static void pool_dtr(struct dm_target *ti)
2061 {
2062 struct pool_c *pt = ti->private;
2063
2064 mutex_lock(&dm_thin_pool_table.mutex);
2065
2066 unbind_control_target(pt->pool, ti);
2067 __pool_dec(pt->pool);
2068 dm_put_device(ti, pt->metadata_dev);
2069 dm_put_device(ti, pt->data_dev);
2070 kfree(pt);
2071
2072 mutex_unlock(&dm_thin_pool_table.mutex);
2073 }
2074
2075 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2076 struct dm_target *ti)
2077 {
2078 int r;
2079 unsigned argc;
2080 const char *arg_name;
2081
2082 static struct dm_arg _args[] = {
2083 {0, 4, "Invalid number of pool feature arguments"},
2084 };
2085
2086 /*
2087 * No feature arguments supplied.
2088 */
2089 if (!as->argc)
2090 return 0;
2091
2092 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2093 if (r)
2094 return -EINVAL;
2095
2096 while (argc && !r) {
2097 arg_name = dm_shift_arg(as);
2098 argc--;
2099
2100 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2101 pf->zero_new_blocks = false;
2102
2103 else if (!strcasecmp(arg_name, "ignore_discard"))
2104 pf->discard_enabled = false;
2105
2106 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2107 pf->discard_passdown = false;
2108
2109 else if (!strcasecmp(arg_name, "read_only"))
2110 pf->mode = PM_READ_ONLY;
2111
2112 else if (!strcasecmp(arg_name, "error_if_no_space"))
2113 pf->error_if_no_space = true;
2114
2115 else {
2116 ti->error = "Unrecognised pool feature requested";
2117 r = -EINVAL;
2118 break;
2119 }
2120 }
2121
2122 return r;
2123 }
2124
2125 static void metadata_low_callback(void *context)
2126 {
2127 struct pool *pool = context;
2128
2129 DMWARN("%s: reached low water mark for metadata device: sending event.",
2130 dm_device_name(pool->pool_md));
2131
2132 dm_table_event(pool->ti->table);
2133 }
2134
2135 static sector_t get_dev_size(struct block_device *bdev)
2136 {
2137 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2138 }
2139
2140 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2141 {
2142 sector_t metadata_dev_size = get_dev_size(bdev);
2143 char buffer[BDEVNAME_SIZE];
2144
2145 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2146 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2147 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2148 }
2149
2150 static sector_t get_metadata_dev_size(struct block_device *bdev)
2151 {
2152 sector_t metadata_dev_size = get_dev_size(bdev);
2153
2154 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2155 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2156
2157 return metadata_dev_size;
2158 }
2159
2160 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2161 {
2162 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2163
2164 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2165
2166 return metadata_dev_size;
2167 }
2168
2169 /*
2170 * When a metadata threshold is crossed a dm event is triggered, and
2171 * userland should respond by growing the metadata device. We could let
2172 * userland set the threshold, like we do with the data threshold, but I'm
2173 * not sure they know enough to do this well.
2174 */
2175 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2176 {
2177 /*
2178 * 4M is ample for all ops with the possible exception of thin
2179 * device deletion which is harmless if it fails (just retry the
2180 * delete after you've grown the device).
2181 */
2182 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2183 return min((dm_block_t)1024ULL /* 4M */, quarter);
2184 }
2185
2186 /*
2187 * thin-pool <metadata dev> <data dev>
2188 * <data block size (sectors)>
2189 * <low water mark (blocks)>
2190 * [<#feature args> [<arg>]*]
2191 *
2192 * Optional feature arguments are:
2193 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2194 * ignore_discard: disable discard
2195 * no_discard_passdown: don't pass discards down to the data device
2196 * read_only: Don't allow any changes to be made to the pool metadata.
2197 * error_if_no_space: error IOs, instead of queueing, if no space.
2198 */
2199 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2200 {
2201 int r, pool_created = 0;
2202 struct pool_c *pt;
2203 struct pool *pool;
2204 struct pool_features pf;
2205 struct dm_arg_set as;
2206 struct dm_dev *data_dev;
2207 unsigned long block_size;
2208 dm_block_t low_water_blocks;
2209 struct dm_dev *metadata_dev;
2210 fmode_t metadata_mode;
2211
2212 /*
2213 * FIXME Remove validation from scope of lock.
2214 */
2215 mutex_lock(&dm_thin_pool_table.mutex);
2216
2217 if (argc < 4) {
2218 ti->error = "Invalid argument count";
2219 r = -EINVAL;
2220 goto out_unlock;
2221 }
2222
2223 as.argc = argc;
2224 as.argv = argv;
2225
2226 /*
2227 * Set default pool features.
2228 */
2229 pool_features_init(&pf);
2230
2231 dm_consume_args(&as, 4);
2232 r = parse_pool_features(&as, &pf, ti);
2233 if (r)
2234 goto out_unlock;
2235
2236 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2237 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2238 if (r) {
2239 ti->error = "Error opening metadata block device";
2240 goto out_unlock;
2241 }
2242 warn_if_metadata_device_too_big(metadata_dev->bdev);
2243
2244 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2245 if (r) {
2246 ti->error = "Error getting data device";
2247 goto out_metadata;
2248 }
2249
2250 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2251 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2252 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2253 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2254 ti->error = "Invalid block size";
2255 r = -EINVAL;
2256 goto out;
2257 }
2258
2259 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2260 ti->error = "Invalid low water mark";
2261 r = -EINVAL;
2262 goto out;
2263 }
2264
2265 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2266 if (!pt) {
2267 r = -ENOMEM;
2268 goto out;
2269 }
2270
2271 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2272 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2273 if (IS_ERR(pool)) {
2274 r = PTR_ERR(pool);
2275 goto out_free_pt;
2276 }
2277
2278 /*
2279 * 'pool_created' reflects whether this is the first table load.
2280 * Top level discard support is not allowed to be changed after
2281 * initial load. This would require a pool reload to trigger thin
2282 * device changes.
2283 */
2284 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2285 ti->error = "Discard support cannot be disabled once enabled";
2286 r = -EINVAL;
2287 goto out_flags_changed;
2288 }
2289
2290 pt->pool = pool;
2291 pt->ti = ti;
2292 pt->metadata_dev = metadata_dev;
2293 pt->data_dev = data_dev;
2294 pt->low_water_blocks = low_water_blocks;
2295 pt->adjusted_pf = pt->requested_pf = pf;
2296 ti->num_flush_bios = 1;
2297
2298 /*
2299 * Only need to enable discards if the pool should pass
2300 * them down to the data device. The thin device's discard
2301 * processing will cause mappings to be removed from the btree.
2302 */
2303 ti->discard_zeroes_data_unsupported = true;
2304 if (pf.discard_enabled && pf.discard_passdown) {
2305 ti->num_discard_bios = 1;
2306
2307 /*
2308 * Setting 'discards_supported' circumvents the normal
2309 * stacking of discard limits (this keeps the pool and
2310 * thin devices' discard limits consistent).
2311 */
2312 ti->discards_supported = true;
2313 }
2314 ti->private = pt;
2315
2316 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2317 calc_metadata_threshold(pt),
2318 metadata_low_callback,
2319 pool);
2320 if (r)
2321 goto out_free_pt;
2322
2323 pt->callbacks.congested_fn = pool_is_congested;
2324 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2325
2326 mutex_unlock(&dm_thin_pool_table.mutex);
2327
2328 return 0;
2329
2330 out_flags_changed:
2331 __pool_dec(pool);
2332 out_free_pt:
2333 kfree(pt);
2334 out:
2335 dm_put_device(ti, data_dev);
2336 out_metadata:
2337 dm_put_device(ti, metadata_dev);
2338 out_unlock:
2339 mutex_unlock(&dm_thin_pool_table.mutex);
2340
2341 return r;
2342 }
2343
2344 static int pool_map(struct dm_target *ti, struct bio *bio)
2345 {
2346 int r;
2347 struct pool_c *pt = ti->private;
2348 struct pool *pool = pt->pool;
2349 unsigned long flags;
2350
2351 /*
2352 * As this is a singleton target, ti->begin is always zero.
2353 */
2354 spin_lock_irqsave(&pool->lock, flags);
2355 bio->bi_bdev = pt->data_dev->bdev;
2356 r = DM_MAPIO_REMAPPED;
2357 spin_unlock_irqrestore(&pool->lock, flags);
2358
2359 return r;
2360 }
2361
2362 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2363 {
2364 int r;
2365 struct pool_c *pt = ti->private;
2366 struct pool *pool = pt->pool;
2367 sector_t data_size = ti->len;
2368 dm_block_t sb_data_size;
2369
2370 *need_commit = false;
2371
2372 (void) sector_div(data_size, pool->sectors_per_block);
2373
2374 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2375 if (r) {
2376 DMERR("%s: failed to retrieve data device size",
2377 dm_device_name(pool->pool_md));
2378 return r;
2379 }
2380
2381 if (data_size < sb_data_size) {
2382 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2383 dm_device_name(pool->pool_md),
2384 (unsigned long long)data_size, sb_data_size);
2385 return -EINVAL;
2386
2387 } else if (data_size > sb_data_size) {
2388 if (dm_pool_metadata_needs_check(pool->pmd)) {
2389 DMERR("%s: unable to grow the data device until repaired.",
2390 dm_device_name(pool->pool_md));
2391 return 0;
2392 }
2393
2394 if (sb_data_size)
2395 DMINFO("%s: growing the data device from %llu to %llu blocks",
2396 dm_device_name(pool->pool_md),
2397 sb_data_size, (unsigned long long)data_size);
2398 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2399 if (r) {
2400 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2401 return r;
2402 }
2403
2404 *need_commit = true;
2405 }
2406
2407 return 0;
2408 }
2409
2410 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2411 {
2412 int r;
2413 struct pool_c *pt = ti->private;
2414 struct pool *pool = pt->pool;
2415 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2416
2417 *need_commit = false;
2418
2419 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2420
2421 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2422 if (r) {
2423 DMERR("%s: failed to retrieve metadata device size",
2424 dm_device_name(pool->pool_md));
2425 return r;
2426 }
2427
2428 if (metadata_dev_size < sb_metadata_dev_size) {
2429 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2430 dm_device_name(pool->pool_md),
2431 metadata_dev_size, sb_metadata_dev_size);
2432 return -EINVAL;
2433
2434 } else if (metadata_dev_size > sb_metadata_dev_size) {
2435 if (dm_pool_metadata_needs_check(pool->pmd)) {
2436 DMERR("%s: unable to grow the metadata device until repaired.",
2437 dm_device_name(pool->pool_md));
2438 return 0;
2439 }
2440
2441 warn_if_metadata_device_too_big(pool->md_dev);
2442 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2443 dm_device_name(pool->pool_md),
2444 sb_metadata_dev_size, metadata_dev_size);
2445 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2446 if (r) {
2447 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2448 return r;
2449 }
2450
2451 *need_commit = true;
2452 }
2453
2454 return 0;
2455 }
2456
2457 /*
2458 * Retrieves the number of blocks of the data device from
2459 * the superblock and compares it to the actual device size,
2460 * thus resizing the data device in case it has grown.
2461 *
2462 * This both copes with opening preallocated data devices in the ctr
2463 * being followed by a resume
2464 * -and-
2465 * calling the resume method individually after userspace has
2466 * grown the data device in reaction to a table event.
2467 */
2468 static int pool_preresume(struct dm_target *ti)
2469 {
2470 int r;
2471 bool need_commit1, need_commit2;
2472 struct pool_c *pt = ti->private;
2473 struct pool *pool = pt->pool;
2474
2475 /*
2476 * Take control of the pool object.
2477 */
2478 r = bind_control_target(pool, ti);
2479 if (r)
2480 return r;
2481
2482 r = maybe_resize_data_dev(ti, &need_commit1);
2483 if (r)
2484 return r;
2485
2486 r = maybe_resize_metadata_dev(ti, &need_commit2);
2487 if (r)
2488 return r;
2489
2490 if (need_commit1 || need_commit2)
2491 (void) commit(pool);
2492
2493 return 0;
2494 }
2495
2496 static void pool_resume(struct dm_target *ti)
2497 {
2498 struct pool_c *pt = ti->private;
2499 struct pool *pool = pt->pool;
2500 unsigned long flags;
2501
2502 spin_lock_irqsave(&pool->lock, flags);
2503 pool->low_water_triggered = false;
2504 __requeue_bios(pool);
2505 spin_unlock_irqrestore(&pool->lock, flags);
2506
2507 do_waker(&pool->waker.work);
2508 }
2509
2510 static void pool_postsuspend(struct dm_target *ti)
2511 {
2512 struct pool_c *pt = ti->private;
2513 struct pool *pool = pt->pool;
2514
2515 cancel_delayed_work(&pool->waker);
2516 flush_workqueue(pool->wq);
2517 (void) commit(pool);
2518 }
2519
2520 static int check_arg_count(unsigned argc, unsigned args_required)
2521 {
2522 if (argc != args_required) {
2523 DMWARN("Message received with %u arguments instead of %u.",
2524 argc, args_required);
2525 return -EINVAL;
2526 }
2527
2528 return 0;
2529 }
2530
2531 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2532 {
2533 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2534 *dev_id <= MAX_DEV_ID)
2535 return 0;
2536
2537 if (warning)
2538 DMWARN("Message received with invalid device id: %s", arg);
2539
2540 return -EINVAL;
2541 }
2542
2543 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2544 {
2545 dm_thin_id dev_id;
2546 int r;
2547
2548 r = check_arg_count(argc, 2);
2549 if (r)
2550 return r;
2551
2552 r = read_dev_id(argv[1], &dev_id, 1);
2553 if (r)
2554 return r;
2555
2556 r = dm_pool_create_thin(pool->pmd, dev_id);
2557 if (r) {
2558 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2559 argv[1]);
2560 return r;
2561 }
2562
2563 return 0;
2564 }
2565
2566 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2567 {
2568 dm_thin_id dev_id;
2569 dm_thin_id origin_dev_id;
2570 int r;
2571
2572 r = check_arg_count(argc, 3);
2573 if (r)
2574 return r;
2575
2576 r = read_dev_id(argv[1], &dev_id, 1);
2577 if (r)
2578 return r;
2579
2580 r = read_dev_id(argv[2], &origin_dev_id, 1);
2581 if (r)
2582 return r;
2583
2584 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2585 if (r) {
2586 DMWARN("Creation of new snapshot %s of device %s failed.",
2587 argv[1], argv[2]);
2588 return r;
2589 }
2590
2591 return 0;
2592 }
2593
2594 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2595 {
2596 dm_thin_id dev_id;
2597 int r;
2598
2599 r = check_arg_count(argc, 2);
2600 if (r)
2601 return r;
2602
2603 r = read_dev_id(argv[1], &dev_id, 1);
2604 if (r)
2605 return r;
2606
2607 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2608 if (r)
2609 DMWARN("Deletion of thin device %s failed.", argv[1]);
2610
2611 return r;
2612 }
2613
2614 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2615 {
2616 dm_thin_id old_id, new_id;
2617 int r;
2618
2619 r = check_arg_count(argc, 3);
2620 if (r)
2621 return r;
2622
2623 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2624 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2625 return -EINVAL;
2626 }
2627
2628 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2629 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2630 return -EINVAL;
2631 }
2632
2633 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2634 if (r) {
2635 DMWARN("Failed to change transaction id from %s to %s.",
2636 argv[1], argv[2]);
2637 return r;
2638 }
2639
2640 return 0;
2641 }
2642
2643 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2644 {
2645 int r;
2646
2647 r = check_arg_count(argc, 1);
2648 if (r)
2649 return r;
2650
2651 (void) commit(pool);
2652
2653 r = dm_pool_reserve_metadata_snap(pool->pmd);
2654 if (r)
2655 DMWARN("reserve_metadata_snap message failed.");
2656
2657 return r;
2658 }
2659
2660 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2661 {
2662 int r;
2663
2664 r = check_arg_count(argc, 1);
2665 if (r)
2666 return r;
2667
2668 r = dm_pool_release_metadata_snap(pool->pmd);
2669 if (r)
2670 DMWARN("release_metadata_snap message failed.");
2671
2672 return r;
2673 }
2674
2675 /*
2676 * Messages supported:
2677 * create_thin <dev_id>
2678 * create_snap <dev_id> <origin_id>
2679 * delete <dev_id>
2680 * trim <dev_id> <new_size_in_sectors>
2681 * set_transaction_id <current_trans_id> <new_trans_id>
2682 * reserve_metadata_snap
2683 * release_metadata_snap
2684 */
2685 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2686 {
2687 int r = -EINVAL;
2688 struct pool_c *pt = ti->private;
2689 struct pool *pool = pt->pool;
2690
2691 if (!strcasecmp(argv[0], "create_thin"))
2692 r = process_create_thin_mesg(argc, argv, pool);
2693
2694 else if (!strcasecmp(argv[0], "create_snap"))
2695 r = process_create_snap_mesg(argc, argv, pool);
2696
2697 else if (!strcasecmp(argv[0], "delete"))
2698 r = process_delete_mesg(argc, argv, pool);
2699
2700 else if (!strcasecmp(argv[0], "set_transaction_id"))
2701 r = process_set_transaction_id_mesg(argc, argv, pool);
2702
2703 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2704 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2705
2706 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2707 r = process_release_metadata_snap_mesg(argc, argv, pool);
2708
2709 else
2710 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2711
2712 if (!r)
2713 (void) commit(pool);
2714
2715 return r;
2716 }
2717
2718 static void emit_flags(struct pool_features *pf, char *result,
2719 unsigned sz, unsigned maxlen)
2720 {
2721 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2722 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2723 pf->error_if_no_space;
2724 DMEMIT("%u ", count);
2725
2726 if (!pf->zero_new_blocks)
2727 DMEMIT("skip_block_zeroing ");
2728
2729 if (!pf->discard_enabled)
2730 DMEMIT("ignore_discard ");
2731
2732 if (!pf->discard_passdown)
2733 DMEMIT("no_discard_passdown ");
2734
2735 if (pf->mode == PM_READ_ONLY)
2736 DMEMIT("read_only ");
2737
2738 if (pf->error_if_no_space)
2739 DMEMIT("error_if_no_space ");
2740 }
2741
2742 /*
2743 * Status line is:
2744 * <transaction id> <used metadata sectors>/<total metadata sectors>
2745 * <used data sectors>/<total data sectors> <held metadata root>
2746 */
2747 static void pool_status(struct dm_target *ti, status_type_t type,
2748 unsigned status_flags, char *result, unsigned maxlen)
2749 {
2750 int r;
2751 unsigned sz = 0;
2752 uint64_t transaction_id;
2753 dm_block_t nr_free_blocks_data;
2754 dm_block_t nr_free_blocks_metadata;
2755 dm_block_t nr_blocks_data;
2756 dm_block_t nr_blocks_metadata;
2757 dm_block_t held_root;
2758 char buf[BDEVNAME_SIZE];
2759 char buf2[BDEVNAME_SIZE];
2760 struct pool_c *pt = ti->private;
2761 struct pool *pool = pt->pool;
2762
2763 switch (type) {
2764 case STATUSTYPE_INFO:
2765 if (get_pool_mode(pool) == PM_FAIL) {
2766 DMEMIT("Fail");
2767 break;
2768 }
2769
2770 /* Commit to ensure statistics aren't out-of-date */
2771 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2772 (void) commit(pool);
2773
2774 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2775 if (r) {
2776 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2777 dm_device_name(pool->pool_md), r);
2778 goto err;
2779 }
2780
2781 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2782 if (r) {
2783 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2784 dm_device_name(pool->pool_md), r);
2785 goto err;
2786 }
2787
2788 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2789 if (r) {
2790 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2791 dm_device_name(pool->pool_md), r);
2792 goto err;
2793 }
2794
2795 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2796 if (r) {
2797 DMERR("%s: dm_pool_get_free_block_count returned %d",
2798 dm_device_name(pool->pool_md), r);
2799 goto err;
2800 }
2801
2802 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2803 if (r) {
2804 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2805 dm_device_name(pool->pool_md), r);
2806 goto err;
2807 }
2808
2809 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2810 if (r) {
2811 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2812 dm_device_name(pool->pool_md), r);
2813 goto err;
2814 }
2815
2816 DMEMIT("%llu %llu/%llu %llu/%llu ",
2817 (unsigned long long)transaction_id,
2818 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2819 (unsigned long long)nr_blocks_metadata,
2820 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2821 (unsigned long long)nr_blocks_data);
2822
2823 if (held_root)
2824 DMEMIT("%llu ", held_root);
2825 else
2826 DMEMIT("- ");
2827
2828 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2829 DMEMIT("out_of_data_space ");
2830 else if (pool->pf.mode == PM_READ_ONLY)
2831 DMEMIT("ro ");
2832 else
2833 DMEMIT("rw ");
2834
2835 if (!pool->pf.discard_enabled)
2836 DMEMIT("ignore_discard ");
2837 else if (pool->pf.discard_passdown)
2838 DMEMIT("discard_passdown ");
2839 else
2840 DMEMIT("no_discard_passdown ");
2841
2842 if (pool->pf.error_if_no_space)
2843 DMEMIT("error_if_no_space ");
2844 else
2845 DMEMIT("queue_if_no_space ");
2846
2847 break;
2848
2849 case STATUSTYPE_TABLE:
2850 DMEMIT("%s %s %lu %llu ",
2851 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2852 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2853 (unsigned long)pool->sectors_per_block,
2854 (unsigned long long)pt->low_water_blocks);
2855 emit_flags(&pt->requested_pf, result, sz, maxlen);
2856 break;
2857 }
2858 return;
2859
2860 err:
2861 DMEMIT("Error");
2862 }
2863
2864 static int pool_iterate_devices(struct dm_target *ti,
2865 iterate_devices_callout_fn fn, void *data)
2866 {
2867 struct pool_c *pt = ti->private;
2868
2869 return fn(ti, pt->data_dev, 0, ti->len, data);
2870 }
2871
2872 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2873 struct bio_vec *biovec, int max_size)
2874 {
2875 struct pool_c *pt = ti->private;
2876 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2877
2878 if (!q->merge_bvec_fn)
2879 return max_size;
2880
2881 bvm->bi_bdev = pt->data_dev->bdev;
2882
2883 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2884 }
2885
2886 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2887 {
2888 struct pool *pool = pt->pool;
2889 struct queue_limits *data_limits;
2890
2891 limits->max_discard_sectors = pool->sectors_per_block;
2892
2893 /*
2894 * discard_granularity is just a hint, and not enforced.
2895 */
2896 if (pt->adjusted_pf.discard_passdown) {
2897 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2898 limits->discard_granularity = data_limits->discard_granularity;
2899 } else
2900 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2901 }
2902
2903 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2904 {
2905 struct pool_c *pt = ti->private;
2906 struct pool *pool = pt->pool;
2907 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2908
2909 /*
2910 * If the system-determined stacked limits are compatible with the
2911 * pool's blocksize (io_opt is a factor) do not override them.
2912 */
2913 if (io_opt_sectors < pool->sectors_per_block ||
2914 do_div(io_opt_sectors, pool->sectors_per_block)) {
2915 blk_limits_io_min(limits, 0);
2916 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2917 }
2918
2919 /*
2920 * pt->adjusted_pf is a staging area for the actual features to use.
2921 * They get transferred to the live pool in bind_control_target()
2922 * called from pool_preresume().
2923 */
2924 if (!pt->adjusted_pf.discard_enabled) {
2925 /*
2926 * Must explicitly disallow stacking discard limits otherwise the
2927 * block layer will stack them if pool's data device has support.
2928 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2929 * user to see that, so make sure to set all discard limits to 0.
2930 */
2931 limits->discard_granularity = 0;
2932 return;
2933 }
2934
2935 disable_passdown_if_not_supported(pt);
2936
2937 set_discard_limits(pt, limits);
2938 }
2939
2940 static struct target_type pool_target = {
2941 .name = "thin-pool",
2942 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2943 DM_TARGET_IMMUTABLE,
2944 .version = {1, 11, 0},
2945 .module = THIS_MODULE,
2946 .ctr = pool_ctr,
2947 .dtr = pool_dtr,
2948 .map = pool_map,
2949 .postsuspend = pool_postsuspend,
2950 .preresume = pool_preresume,
2951 .resume = pool_resume,
2952 .message = pool_message,
2953 .status = pool_status,
2954 .merge = pool_merge,
2955 .iterate_devices = pool_iterate_devices,
2956 .io_hints = pool_io_hints,
2957 };
2958
2959 /*----------------------------------------------------------------
2960 * Thin target methods
2961 *--------------------------------------------------------------*/
2962 static void thin_dtr(struct dm_target *ti)
2963 {
2964 struct thin_c *tc = ti->private;
2965
2966 mutex_lock(&dm_thin_pool_table.mutex);
2967
2968 __pool_dec(tc->pool);
2969 dm_pool_close_thin_device(tc->td);
2970 dm_put_device(ti, tc->pool_dev);
2971 if (tc->origin_dev)
2972 dm_put_device(ti, tc->origin_dev);
2973 kfree(tc);
2974
2975 mutex_unlock(&dm_thin_pool_table.mutex);
2976 }
2977
2978 /*
2979 * Thin target parameters:
2980 *
2981 * <pool_dev> <dev_id> [origin_dev]
2982 *
2983 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2984 * dev_id: the internal device identifier
2985 * origin_dev: a device external to the pool that should act as the origin
2986 *
2987 * If the pool device has discards disabled, they get disabled for the thin
2988 * device as well.
2989 */
2990 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2991 {
2992 int r;
2993 struct thin_c *tc;
2994 struct dm_dev *pool_dev, *origin_dev;
2995 struct mapped_device *pool_md;
2996
2997 mutex_lock(&dm_thin_pool_table.mutex);
2998
2999 if (argc != 2 && argc != 3) {
3000 ti->error = "Invalid argument count";
3001 r = -EINVAL;
3002 goto out_unlock;
3003 }
3004
3005 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3006 if (!tc) {
3007 ti->error = "Out of memory";
3008 r = -ENOMEM;
3009 goto out_unlock;
3010 }
3011
3012 if (argc == 3) {
3013 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3014 if (r) {
3015 ti->error = "Error opening origin device";
3016 goto bad_origin_dev;
3017 }
3018 tc->origin_dev = origin_dev;
3019 }
3020
3021 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3022 if (r) {
3023 ti->error = "Error opening pool device";
3024 goto bad_pool_dev;
3025 }
3026 tc->pool_dev = pool_dev;
3027
3028 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3029 ti->error = "Invalid device id";
3030 r = -EINVAL;
3031 goto bad_common;
3032 }
3033
3034 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3035 if (!pool_md) {
3036 ti->error = "Couldn't get pool mapped device";
3037 r = -EINVAL;
3038 goto bad_common;
3039 }
3040
3041 tc->pool = __pool_table_lookup(pool_md);
3042 if (!tc->pool) {
3043 ti->error = "Couldn't find pool object";
3044 r = -EINVAL;
3045 goto bad_pool_lookup;
3046 }
3047 __pool_inc(tc->pool);
3048
3049 if (get_pool_mode(tc->pool) == PM_FAIL) {
3050 ti->error = "Couldn't open thin device, Pool is in fail mode";
3051 r = -EINVAL;
3052 goto bad_thin_open;
3053 }
3054
3055 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3056 if (r) {
3057 ti->error = "Couldn't open thin internal device";
3058 goto bad_thin_open;
3059 }
3060
3061 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3062 if (r)
3063 goto bad_target_max_io_len;
3064
3065 ti->num_flush_bios = 1;
3066 ti->flush_supported = true;
3067 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3068
3069 /* In case the pool supports discards, pass them on. */
3070 ti->discard_zeroes_data_unsupported = true;
3071 if (tc->pool->pf.discard_enabled) {
3072 ti->discards_supported = true;
3073 ti->num_discard_bios = 1;
3074 /* Discard bios must be split on a block boundary */
3075 ti->split_discard_bios = true;
3076 }
3077
3078 dm_put(pool_md);
3079
3080 mutex_unlock(&dm_thin_pool_table.mutex);
3081
3082 return 0;
3083
3084 bad_target_max_io_len:
3085 dm_pool_close_thin_device(tc->td);
3086 bad_thin_open:
3087 __pool_dec(tc->pool);
3088 bad_pool_lookup:
3089 dm_put(pool_md);
3090 bad_common:
3091 dm_put_device(ti, tc->pool_dev);
3092 bad_pool_dev:
3093 if (tc->origin_dev)
3094 dm_put_device(ti, tc->origin_dev);
3095 bad_origin_dev:
3096 kfree(tc);
3097 out_unlock:
3098 mutex_unlock(&dm_thin_pool_table.mutex);
3099
3100 return r;
3101 }
3102
3103 static int thin_map(struct dm_target *ti, struct bio *bio)
3104 {
3105 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3106
3107 return thin_bio_map(ti, bio);
3108 }
3109
3110 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3111 {
3112 unsigned long flags;
3113 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3114 struct list_head work;
3115 struct dm_thin_new_mapping *m, *tmp;
3116 struct pool *pool = h->tc->pool;
3117
3118 if (h->shared_read_entry) {
3119 INIT_LIST_HEAD(&work);
3120 dm_deferred_entry_dec(h->shared_read_entry, &work);
3121
3122 spin_lock_irqsave(&pool->lock, flags);
3123 list_for_each_entry_safe(m, tmp, &work, list) {
3124 list_del(&m->list);
3125 m->quiesced = true;
3126 __maybe_add_mapping(m);
3127 }
3128 spin_unlock_irqrestore(&pool->lock, flags);
3129 }
3130
3131 if (h->all_io_entry) {
3132 INIT_LIST_HEAD(&work);
3133 dm_deferred_entry_dec(h->all_io_entry, &work);
3134 if (!list_empty(&work)) {
3135 spin_lock_irqsave(&pool->lock, flags);
3136 list_for_each_entry_safe(m, tmp, &work, list)
3137 list_add_tail(&m->list, &pool->prepared_discards);
3138 spin_unlock_irqrestore(&pool->lock, flags);
3139 wake_worker(pool);
3140 }
3141 }
3142
3143 return 0;
3144 }
3145
3146 static void thin_presuspend(struct dm_target *ti)
3147 {
3148 struct thin_c *tc = ti->private;
3149
3150 if (dm_noflush_suspending(ti))
3151 noflush_work(tc, do_noflush_start);
3152 }
3153
3154 static void thin_postsuspend(struct dm_target *ti)
3155 {
3156 struct thin_c *tc = ti->private;
3157
3158 /*
3159 * The dm_noflush_suspending flag has been cleared by now, so
3160 * unfortunately we must always run this.
3161 */
3162 noflush_work(tc, do_noflush_stop);
3163 }
3164
3165 /*
3166 * <nr mapped sectors> <highest mapped sector>
3167 */
3168 static void thin_status(struct dm_target *ti, status_type_t type,
3169 unsigned status_flags, char *result, unsigned maxlen)
3170 {
3171 int r;
3172 ssize_t sz = 0;
3173 dm_block_t mapped, highest;
3174 char buf[BDEVNAME_SIZE];
3175 struct thin_c *tc = ti->private;
3176
3177 if (get_pool_mode(tc->pool) == PM_FAIL) {
3178 DMEMIT("Fail");
3179 return;
3180 }
3181
3182 if (!tc->td)
3183 DMEMIT("-");
3184 else {
3185 switch (type) {
3186 case STATUSTYPE_INFO:
3187 r = dm_thin_get_mapped_count(tc->td, &mapped);
3188 if (r) {
3189 DMERR("dm_thin_get_mapped_count returned %d", r);
3190 goto err;
3191 }
3192
3193 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3194 if (r < 0) {
3195 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3196 goto err;
3197 }
3198
3199 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3200 if (r)
3201 DMEMIT("%llu", ((highest + 1) *
3202 tc->pool->sectors_per_block) - 1);
3203 else
3204 DMEMIT("-");
3205 break;
3206
3207 case STATUSTYPE_TABLE:
3208 DMEMIT("%s %lu",
3209 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3210 (unsigned long) tc->dev_id);
3211 if (tc->origin_dev)
3212 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3213 break;
3214 }
3215 }
3216
3217 return;
3218
3219 err:
3220 DMEMIT("Error");
3221 }
3222
3223 static int thin_iterate_devices(struct dm_target *ti,
3224 iterate_devices_callout_fn fn, void *data)
3225 {
3226 sector_t blocks;
3227 struct thin_c *tc = ti->private;
3228 struct pool *pool = tc->pool;
3229
3230 /*
3231 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3232 * we follow a more convoluted path through to the pool's target.
3233 */
3234 if (!pool->ti)
3235 return 0; /* nothing is bound */
3236
3237 blocks = pool->ti->len;
3238 (void) sector_div(blocks, pool->sectors_per_block);
3239 if (blocks)
3240 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3241
3242 return 0;
3243 }
3244
3245 static struct target_type thin_target = {
3246 .name = "thin",
3247 .version = {1, 11, 0},
3248 .module = THIS_MODULE,
3249 .ctr = thin_ctr,
3250 .dtr = thin_dtr,
3251 .map = thin_map,
3252 .end_io = thin_endio,
3253 .presuspend = thin_presuspend,
3254 .postsuspend = thin_postsuspend,
3255 .status = thin_status,
3256 .iterate_devices = thin_iterate_devices,
3257 };
3258
3259 /*----------------------------------------------------------------*/
3260
3261 static int __init dm_thin_init(void)
3262 {
3263 int r;
3264
3265 pool_table_init();
3266
3267 r = dm_register_target(&thin_target);
3268 if (r)
3269 return r;
3270
3271 r = dm_register_target(&pool_target);
3272 if (r)
3273 goto bad_pool_target;
3274
3275 r = -ENOMEM;
3276
3277 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3278 if (!_new_mapping_cache)
3279 goto bad_new_mapping_cache;
3280
3281 return 0;
3282
3283 bad_new_mapping_cache:
3284 dm_unregister_target(&pool_target);
3285 bad_pool_target:
3286 dm_unregister_target(&thin_target);
3287
3288 return r;
3289 }
3290
3291 static void dm_thin_exit(void)
3292 {
3293 dm_unregister_target(&thin_target);
3294 dm_unregister_target(&pool_target);
3295
3296 kmem_cache_destroy(_new_mapping_cache);
3297 }
3298
3299 module_init(dm_thin_init);
3300 module_exit(dm_thin_exit);
3301
3302 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3303 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3304 MODULE_LICENSE("GPL");
This page took 0.103396 seconds and 5 git commands to generate.