Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
138 PM_READ_ONLY, /* metadata may not be changed */
139 PM_FAIL, /* all I/O fails */
140 };
141
142 struct pool_features {
143 enum pool_mode mode;
144
145 bool zero_new_blocks:1;
146 bool discard_enabled:1;
147 bool discard_passdown:1;
148 bool error_if_no_space:1;
149 };
150
151 struct thin_c;
152 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
153 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
154
155 struct pool {
156 struct list_head list;
157 struct dm_target *ti; /* Only set if a pool target is bound */
158
159 struct mapped_device *pool_md;
160 struct block_device *md_dev;
161 struct dm_pool_metadata *pmd;
162
163 dm_block_t low_water_blocks;
164 uint32_t sectors_per_block;
165 int sectors_per_block_shift;
166
167 struct pool_features pf;
168 bool low_water_triggered:1; /* A dm event has been sent */
169
170 struct dm_bio_prison *prison;
171 struct dm_kcopyd_client *copier;
172
173 struct workqueue_struct *wq;
174 struct work_struct worker;
175 struct delayed_work waker;
176
177 unsigned long last_commit_jiffies;
178 unsigned ref_count;
179
180 spinlock_t lock;
181 struct bio_list deferred_bios;
182 struct bio_list deferred_flush_bios;
183 struct list_head prepared_mappings;
184 struct list_head prepared_discards;
185
186 struct bio_list retry_on_resume_list;
187
188 struct dm_deferred_set *shared_read_ds;
189 struct dm_deferred_set *all_io_ds;
190
191 struct dm_thin_new_mapping *next_mapping;
192 mempool_t *mapping_pool;
193
194 process_bio_fn process_bio;
195 process_bio_fn process_discard;
196
197 process_mapping_fn process_prepared_mapping;
198 process_mapping_fn process_prepared_discard;
199 };
200
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205 * Target context for a pool.
206 */
207 struct pool_c {
208 struct dm_target *ti;
209 struct pool *pool;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
213
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220 * Target context for a thin.
221 */
222 struct thin_c {
223 struct dm_dev *pool_dev;
224 struct dm_dev *origin_dev;
225 dm_thin_id dev_id;
226
227 struct pool *pool;
228 struct dm_thin_device *td;
229 bool requeue_mode:1;
230 };
231
232 /*----------------------------------------------------------------*/
233
234 /*
235 * wake_worker() is used when new work is queued and when pool_resume is
236 * ready to continue deferred IO processing.
237 */
238 static void wake_worker(struct pool *pool)
239 {
240 queue_work(pool->wq, &pool->worker);
241 }
242
243 /*----------------------------------------------------------------*/
244
245 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
246 struct dm_bio_prison_cell **cell_result)
247 {
248 int r;
249 struct dm_bio_prison_cell *cell_prealloc;
250
251 /*
252 * Allocate a cell from the prison's mempool.
253 * This might block but it can't fail.
254 */
255 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
256
257 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
258 if (r)
259 /*
260 * We reused an old cell; we can get rid of
261 * the new one.
262 */
263 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
264
265 return r;
266 }
267
268 static void cell_release(struct pool *pool,
269 struct dm_bio_prison_cell *cell,
270 struct bio_list *bios)
271 {
272 dm_cell_release(pool->prison, cell, bios);
273 dm_bio_prison_free_cell(pool->prison, cell);
274 }
275
276 static void cell_release_no_holder(struct pool *pool,
277 struct dm_bio_prison_cell *cell,
278 struct bio_list *bios)
279 {
280 dm_cell_release_no_holder(pool->prison, cell, bios);
281 dm_bio_prison_free_cell(pool->prison, cell);
282 }
283
284 static void cell_defer_no_holder_no_free(struct thin_c *tc,
285 struct dm_bio_prison_cell *cell)
286 {
287 struct pool *pool = tc->pool;
288 unsigned long flags;
289
290 spin_lock_irqsave(&pool->lock, flags);
291 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
292 spin_unlock_irqrestore(&pool->lock, flags);
293
294 wake_worker(pool);
295 }
296
297 static void cell_error(struct pool *pool,
298 struct dm_bio_prison_cell *cell)
299 {
300 dm_cell_error(pool->prison, cell);
301 dm_bio_prison_free_cell(pool->prison, cell);
302 }
303
304 /*----------------------------------------------------------------*/
305
306 /*
307 * A global list of pools that uses a struct mapped_device as a key.
308 */
309 static struct dm_thin_pool_table {
310 struct mutex mutex;
311 struct list_head pools;
312 } dm_thin_pool_table;
313
314 static void pool_table_init(void)
315 {
316 mutex_init(&dm_thin_pool_table.mutex);
317 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
318 }
319
320 static void __pool_table_insert(struct pool *pool)
321 {
322 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
323 list_add(&pool->list, &dm_thin_pool_table.pools);
324 }
325
326 static void __pool_table_remove(struct pool *pool)
327 {
328 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
329 list_del(&pool->list);
330 }
331
332 static struct pool *__pool_table_lookup(struct mapped_device *md)
333 {
334 struct pool *pool = NULL, *tmp;
335
336 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
337
338 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
339 if (tmp->pool_md == md) {
340 pool = tmp;
341 break;
342 }
343 }
344
345 return pool;
346 }
347
348 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
349 {
350 struct pool *pool = NULL, *tmp;
351
352 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
353
354 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
355 if (tmp->md_dev == md_dev) {
356 pool = tmp;
357 break;
358 }
359 }
360
361 return pool;
362 }
363
364 /*----------------------------------------------------------------*/
365
366 struct dm_thin_endio_hook {
367 struct thin_c *tc;
368 struct dm_deferred_entry *shared_read_entry;
369 struct dm_deferred_entry *all_io_entry;
370 struct dm_thin_new_mapping *overwrite_mapping;
371 };
372
373 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
374 {
375 struct bio *bio;
376 struct bio_list bios;
377 unsigned long flags;
378
379 bio_list_init(&bios);
380
381 spin_lock_irqsave(&tc->pool->lock, flags);
382 bio_list_merge(&bios, master);
383 bio_list_init(master);
384 spin_unlock_irqrestore(&tc->pool->lock, flags);
385
386 while ((bio = bio_list_pop(&bios))) {
387 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
388
389 if (h->tc == tc)
390 bio_endio(bio, DM_ENDIO_REQUEUE);
391 else
392 bio_list_add(master, bio);
393 }
394 }
395
396 static void requeue_io(struct thin_c *tc)
397 {
398 struct pool *pool = tc->pool;
399
400 requeue_bio_list(tc, &pool->deferred_bios);
401 requeue_bio_list(tc, &pool->retry_on_resume_list);
402 }
403
404 static void error_retry_list(struct pool *pool)
405 {
406 struct bio *bio;
407 unsigned long flags;
408 struct bio_list bios;
409
410 bio_list_init(&bios);
411
412 spin_lock_irqsave(&pool->lock, flags);
413 bio_list_merge(&bios, &pool->retry_on_resume_list);
414 bio_list_init(&pool->retry_on_resume_list);
415 spin_unlock_irqrestore(&pool->lock, flags);
416
417 while ((bio = bio_list_pop(&bios)))
418 bio_io_error(bio);
419 }
420
421 /*
422 * This section of code contains the logic for processing a thin device's IO.
423 * Much of the code depends on pool object resources (lists, workqueues, etc)
424 * but most is exclusively called from the thin target rather than the thin-pool
425 * target.
426 */
427
428 static bool block_size_is_power_of_two(struct pool *pool)
429 {
430 return pool->sectors_per_block_shift >= 0;
431 }
432
433 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
434 {
435 struct pool *pool = tc->pool;
436 sector_t block_nr = bio->bi_iter.bi_sector;
437
438 if (block_size_is_power_of_two(pool))
439 block_nr >>= pool->sectors_per_block_shift;
440 else
441 (void) sector_div(block_nr, pool->sectors_per_block);
442
443 return block_nr;
444 }
445
446 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
447 {
448 struct pool *pool = tc->pool;
449 sector_t bi_sector = bio->bi_iter.bi_sector;
450
451 bio->bi_bdev = tc->pool_dev->bdev;
452 if (block_size_is_power_of_two(pool))
453 bio->bi_iter.bi_sector =
454 (block << pool->sectors_per_block_shift) |
455 (bi_sector & (pool->sectors_per_block - 1));
456 else
457 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
458 sector_div(bi_sector, pool->sectors_per_block);
459 }
460
461 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
462 {
463 bio->bi_bdev = tc->origin_dev->bdev;
464 }
465
466 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
467 {
468 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
469 dm_thin_changed_this_transaction(tc->td);
470 }
471
472 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
473 {
474 struct dm_thin_endio_hook *h;
475
476 if (bio->bi_rw & REQ_DISCARD)
477 return;
478
479 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
480 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
481 }
482
483 static void issue(struct thin_c *tc, struct bio *bio)
484 {
485 struct pool *pool = tc->pool;
486 unsigned long flags;
487
488 if (!bio_triggers_commit(tc, bio)) {
489 generic_make_request(bio);
490 return;
491 }
492
493 /*
494 * Complete bio with an error if earlier I/O caused changes to
495 * the metadata that can't be committed e.g, due to I/O errors
496 * on the metadata device.
497 */
498 if (dm_thin_aborted_changes(tc->td)) {
499 bio_io_error(bio);
500 return;
501 }
502
503 /*
504 * Batch together any bios that trigger commits and then issue a
505 * single commit for them in process_deferred_bios().
506 */
507 spin_lock_irqsave(&pool->lock, flags);
508 bio_list_add(&pool->deferred_flush_bios, bio);
509 spin_unlock_irqrestore(&pool->lock, flags);
510 }
511
512 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
513 {
514 remap_to_origin(tc, bio);
515 issue(tc, bio);
516 }
517
518 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
519 dm_block_t block)
520 {
521 remap(tc, bio, block);
522 issue(tc, bio);
523 }
524
525 /*----------------------------------------------------------------*/
526
527 /*
528 * Bio endio functions.
529 */
530 struct dm_thin_new_mapping {
531 struct list_head list;
532
533 bool quiesced:1;
534 bool prepared:1;
535 bool pass_discard:1;
536 bool definitely_not_shared:1;
537
538 int err;
539 struct thin_c *tc;
540 dm_block_t virt_block;
541 dm_block_t data_block;
542 struct dm_bio_prison_cell *cell, *cell2;
543
544 /*
545 * If the bio covers the whole area of a block then we can avoid
546 * zeroing or copying. Instead this bio is hooked. The bio will
547 * still be in the cell, so care has to be taken to avoid issuing
548 * the bio twice.
549 */
550 struct bio *bio;
551 bio_end_io_t *saved_bi_end_io;
552 };
553
554 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
555 {
556 struct pool *pool = m->tc->pool;
557
558 if (m->quiesced && m->prepared) {
559 list_add_tail(&m->list, &pool->prepared_mappings);
560 wake_worker(pool);
561 }
562 }
563
564 static void copy_complete(int read_err, unsigned long write_err, void *context)
565 {
566 unsigned long flags;
567 struct dm_thin_new_mapping *m = context;
568 struct pool *pool = m->tc->pool;
569
570 m->err = read_err || write_err ? -EIO : 0;
571
572 spin_lock_irqsave(&pool->lock, flags);
573 m->prepared = true;
574 __maybe_add_mapping(m);
575 spin_unlock_irqrestore(&pool->lock, flags);
576 }
577
578 static void overwrite_endio(struct bio *bio, int err)
579 {
580 unsigned long flags;
581 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
582 struct dm_thin_new_mapping *m = h->overwrite_mapping;
583 struct pool *pool = m->tc->pool;
584
585 m->err = err;
586
587 spin_lock_irqsave(&pool->lock, flags);
588 m->prepared = true;
589 __maybe_add_mapping(m);
590 spin_unlock_irqrestore(&pool->lock, flags);
591 }
592
593 /*----------------------------------------------------------------*/
594
595 /*
596 * Workqueue.
597 */
598
599 /*
600 * Prepared mapping jobs.
601 */
602
603 /*
604 * This sends the bios in the cell back to the deferred_bios list.
605 */
606 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
607 {
608 struct pool *pool = tc->pool;
609 unsigned long flags;
610
611 spin_lock_irqsave(&pool->lock, flags);
612 cell_release(pool, cell, &pool->deferred_bios);
613 spin_unlock_irqrestore(&tc->pool->lock, flags);
614
615 wake_worker(pool);
616 }
617
618 /*
619 * Same as cell_defer above, except it omits the original holder of the cell.
620 */
621 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
622 {
623 struct pool *pool = tc->pool;
624 unsigned long flags;
625
626 spin_lock_irqsave(&pool->lock, flags);
627 cell_release_no_holder(pool, cell, &pool->deferred_bios);
628 spin_unlock_irqrestore(&pool->lock, flags);
629
630 wake_worker(pool);
631 }
632
633 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
634 {
635 if (m->bio) {
636 m->bio->bi_end_io = m->saved_bi_end_io;
637 atomic_inc(&m->bio->bi_remaining);
638 }
639 cell_error(m->tc->pool, m->cell);
640 list_del(&m->list);
641 mempool_free(m, m->tc->pool->mapping_pool);
642 }
643
644 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
645 {
646 struct thin_c *tc = m->tc;
647 struct pool *pool = tc->pool;
648 struct bio *bio;
649 int r;
650
651 bio = m->bio;
652 if (bio) {
653 bio->bi_end_io = m->saved_bi_end_io;
654 atomic_inc(&bio->bi_remaining);
655 }
656
657 if (m->err) {
658 cell_error(pool, m->cell);
659 goto out;
660 }
661
662 /*
663 * Commit the prepared block into the mapping btree.
664 * Any I/O for this block arriving after this point will get
665 * remapped to it directly.
666 */
667 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
668 if (r) {
669 metadata_operation_failed(pool, "dm_thin_insert_block", r);
670 cell_error(pool, m->cell);
671 goto out;
672 }
673
674 /*
675 * Release any bios held while the block was being provisioned.
676 * If we are processing a write bio that completely covers the block,
677 * we already processed it so can ignore it now when processing
678 * the bios in the cell.
679 */
680 if (bio) {
681 cell_defer_no_holder(tc, m->cell);
682 bio_endio(bio, 0);
683 } else
684 cell_defer(tc, m->cell);
685
686 out:
687 list_del(&m->list);
688 mempool_free(m, pool->mapping_pool);
689 }
690
691 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
692 {
693 struct thin_c *tc = m->tc;
694
695 bio_io_error(m->bio);
696 cell_defer_no_holder(tc, m->cell);
697 cell_defer_no_holder(tc, m->cell2);
698 mempool_free(m, tc->pool->mapping_pool);
699 }
700
701 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
702 {
703 struct thin_c *tc = m->tc;
704
705 inc_all_io_entry(tc->pool, m->bio);
706 cell_defer_no_holder(tc, m->cell);
707 cell_defer_no_holder(tc, m->cell2);
708
709 if (m->pass_discard)
710 if (m->definitely_not_shared)
711 remap_and_issue(tc, m->bio, m->data_block);
712 else {
713 bool used = false;
714 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
715 bio_endio(m->bio, 0);
716 else
717 remap_and_issue(tc, m->bio, m->data_block);
718 }
719 else
720 bio_endio(m->bio, 0);
721
722 mempool_free(m, tc->pool->mapping_pool);
723 }
724
725 static void process_prepared_discard(struct dm_thin_new_mapping *m)
726 {
727 int r;
728 struct thin_c *tc = m->tc;
729
730 r = dm_thin_remove_block(tc->td, m->virt_block);
731 if (r)
732 DMERR_LIMIT("dm_thin_remove_block() failed");
733
734 process_prepared_discard_passdown(m);
735 }
736
737 static void process_prepared(struct pool *pool, struct list_head *head,
738 process_mapping_fn *fn)
739 {
740 unsigned long flags;
741 struct list_head maps;
742 struct dm_thin_new_mapping *m, *tmp;
743
744 INIT_LIST_HEAD(&maps);
745 spin_lock_irqsave(&pool->lock, flags);
746 list_splice_init(head, &maps);
747 spin_unlock_irqrestore(&pool->lock, flags);
748
749 list_for_each_entry_safe(m, tmp, &maps, list)
750 (*fn)(m);
751 }
752
753 /*
754 * Deferred bio jobs.
755 */
756 static int io_overlaps_block(struct pool *pool, struct bio *bio)
757 {
758 return bio->bi_iter.bi_size ==
759 (pool->sectors_per_block << SECTOR_SHIFT);
760 }
761
762 static int io_overwrites_block(struct pool *pool, struct bio *bio)
763 {
764 return (bio_data_dir(bio) == WRITE) &&
765 io_overlaps_block(pool, bio);
766 }
767
768 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
769 bio_end_io_t *fn)
770 {
771 *save = bio->bi_end_io;
772 bio->bi_end_io = fn;
773 }
774
775 static int ensure_next_mapping(struct pool *pool)
776 {
777 if (pool->next_mapping)
778 return 0;
779
780 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
781
782 return pool->next_mapping ? 0 : -ENOMEM;
783 }
784
785 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
786 {
787 struct dm_thin_new_mapping *m = pool->next_mapping;
788
789 BUG_ON(!pool->next_mapping);
790
791 memset(m, 0, sizeof(struct dm_thin_new_mapping));
792 INIT_LIST_HEAD(&m->list);
793 m->bio = NULL;
794
795 pool->next_mapping = NULL;
796
797 return m;
798 }
799
800 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
801 struct dm_dev *origin, dm_block_t data_origin,
802 dm_block_t data_dest,
803 struct dm_bio_prison_cell *cell, struct bio *bio)
804 {
805 int r;
806 struct pool *pool = tc->pool;
807 struct dm_thin_new_mapping *m = get_next_mapping(pool);
808
809 m->tc = tc;
810 m->virt_block = virt_block;
811 m->data_block = data_dest;
812 m->cell = cell;
813
814 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
815 m->quiesced = true;
816
817 /*
818 * IO to pool_dev remaps to the pool target's data_dev.
819 *
820 * If the whole block of data is being overwritten, we can issue the
821 * bio immediately. Otherwise we use kcopyd to clone the data first.
822 */
823 if (io_overwrites_block(pool, bio)) {
824 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
825
826 h->overwrite_mapping = m;
827 m->bio = bio;
828 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
829 inc_all_io_entry(pool, bio);
830 remap_and_issue(tc, bio, data_dest);
831 } else {
832 struct dm_io_region from, to;
833
834 from.bdev = origin->bdev;
835 from.sector = data_origin * pool->sectors_per_block;
836 from.count = pool->sectors_per_block;
837
838 to.bdev = tc->pool_dev->bdev;
839 to.sector = data_dest * pool->sectors_per_block;
840 to.count = pool->sectors_per_block;
841
842 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
843 0, copy_complete, m);
844 if (r < 0) {
845 mempool_free(m, pool->mapping_pool);
846 DMERR_LIMIT("dm_kcopyd_copy() failed");
847 cell_error(pool, cell);
848 }
849 }
850 }
851
852 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
853 dm_block_t data_origin, dm_block_t data_dest,
854 struct dm_bio_prison_cell *cell, struct bio *bio)
855 {
856 schedule_copy(tc, virt_block, tc->pool_dev,
857 data_origin, data_dest, cell, bio);
858 }
859
860 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
861 dm_block_t data_dest,
862 struct dm_bio_prison_cell *cell, struct bio *bio)
863 {
864 schedule_copy(tc, virt_block, tc->origin_dev,
865 virt_block, data_dest, cell, bio);
866 }
867
868 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
869 dm_block_t data_block, struct dm_bio_prison_cell *cell,
870 struct bio *bio)
871 {
872 struct pool *pool = tc->pool;
873 struct dm_thin_new_mapping *m = get_next_mapping(pool);
874
875 m->quiesced = true;
876 m->prepared = false;
877 m->tc = tc;
878 m->virt_block = virt_block;
879 m->data_block = data_block;
880 m->cell = cell;
881
882 /*
883 * If the whole block of data is being overwritten or we are not
884 * zeroing pre-existing data, we can issue the bio immediately.
885 * Otherwise we use kcopyd to zero the data first.
886 */
887 if (!pool->pf.zero_new_blocks)
888 process_prepared_mapping(m);
889
890 else if (io_overwrites_block(pool, bio)) {
891 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
892
893 h->overwrite_mapping = m;
894 m->bio = bio;
895 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
896 inc_all_io_entry(pool, bio);
897 remap_and_issue(tc, bio, data_block);
898 } else {
899 int r;
900 struct dm_io_region to;
901
902 to.bdev = tc->pool_dev->bdev;
903 to.sector = data_block * pool->sectors_per_block;
904 to.count = pool->sectors_per_block;
905
906 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
907 if (r < 0) {
908 mempool_free(m, pool->mapping_pool);
909 DMERR_LIMIT("dm_kcopyd_zero() failed");
910 cell_error(pool, cell);
911 }
912 }
913 }
914
915 /*
916 * A non-zero return indicates read_only or fail_io mode.
917 * Many callers don't care about the return value.
918 */
919 static int commit(struct pool *pool)
920 {
921 int r;
922
923 if (get_pool_mode(pool) != PM_WRITE)
924 return -EINVAL;
925
926 r = dm_pool_commit_metadata(pool->pmd);
927 if (r)
928 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
929
930 return r;
931 }
932
933 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
934 {
935 unsigned long flags;
936
937 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
938 DMWARN("%s: reached low water mark for data device: sending event.",
939 dm_device_name(pool->pool_md));
940 spin_lock_irqsave(&pool->lock, flags);
941 pool->low_water_triggered = true;
942 spin_unlock_irqrestore(&pool->lock, flags);
943 dm_table_event(pool->ti->table);
944 }
945 }
946
947 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
948
949 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
950 {
951 int r;
952 dm_block_t free_blocks;
953 struct pool *pool = tc->pool;
954
955 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
956 return -EINVAL;
957
958 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
959 if (r) {
960 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
961 return r;
962 }
963
964 check_low_water_mark(pool, free_blocks);
965
966 if (!free_blocks) {
967 /*
968 * Try to commit to see if that will free up some
969 * more space.
970 */
971 r = commit(pool);
972 if (r)
973 return r;
974
975 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
976 if (r) {
977 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
978 return r;
979 }
980
981 if (!free_blocks) {
982 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
983 return -ENOSPC;
984 }
985 }
986
987 r = dm_pool_alloc_data_block(pool->pmd, result);
988 if (r) {
989 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
990 return r;
991 }
992
993 return 0;
994 }
995
996 /*
997 * If we have run out of space, queue bios until the device is
998 * resumed, presumably after having been reloaded with more space.
999 */
1000 static void retry_on_resume(struct bio *bio)
1001 {
1002 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1003 struct thin_c *tc = h->tc;
1004 struct pool *pool = tc->pool;
1005 unsigned long flags;
1006
1007 spin_lock_irqsave(&pool->lock, flags);
1008 bio_list_add(&pool->retry_on_resume_list, bio);
1009 spin_unlock_irqrestore(&pool->lock, flags);
1010 }
1011
1012 static bool should_error_unserviceable_bio(struct pool *pool)
1013 {
1014 enum pool_mode m = get_pool_mode(pool);
1015
1016 switch (m) {
1017 case PM_WRITE:
1018 /* Shouldn't get here */
1019 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1020 return true;
1021
1022 case PM_OUT_OF_DATA_SPACE:
1023 return pool->pf.error_if_no_space;
1024
1025 case PM_READ_ONLY:
1026 case PM_FAIL:
1027 return true;
1028 default:
1029 /* Shouldn't get here */
1030 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1031 return true;
1032 }
1033 }
1034
1035 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1036 {
1037 if (should_error_unserviceable_bio(pool))
1038 bio_io_error(bio);
1039 else
1040 retry_on_resume(bio);
1041 }
1042
1043 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1044 {
1045 struct bio *bio;
1046 struct bio_list bios;
1047
1048 if (should_error_unserviceable_bio(pool)) {
1049 cell_error(pool, cell);
1050 return;
1051 }
1052
1053 bio_list_init(&bios);
1054 cell_release(pool, cell, &bios);
1055
1056 if (should_error_unserviceable_bio(pool))
1057 while ((bio = bio_list_pop(&bios)))
1058 bio_io_error(bio);
1059 else
1060 while ((bio = bio_list_pop(&bios)))
1061 retry_on_resume(bio);
1062 }
1063
1064 static void process_discard(struct thin_c *tc, struct bio *bio)
1065 {
1066 int r;
1067 unsigned long flags;
1068 struct pool *pool = tc->pool;
1069 struct dm_bio_prison_cell *cell, *cell2;
1070 struct dm_cell_key key, key2;
1071 dm_block_t block = get_bio_block(tc, bio);
1072 struct dm_thin_lookup_result lookup_result;
1073 struct dm_thin_new_mapping *m;
1074
1075 build_virtual_key(tc->td, block, &key);
1076 if (bio_detain(tc->pool, &key, bio, &cell))
1077 return;
1078
1079 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1080 switch (r) {
1081 case 0:
1082 /*
1083 * Check nobody is fiddling with this pool block. This can
1084 * happen if someone's in the process of breaking sharing
1085 * on this block.
1086 */
1087 build_data_key(tc->td, lookup_result.block, &key2);
1088 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1089 cell_defer_no_holder(tc, cell);
1090 break;
1091 }
1092
1093 if (io_overlaps_block(pool, bio)) {
1094 /*
1095 * IO may still be going to the destination block. We must
1096 * quiesce before we can do the removal.
1097 */
1098 m = get_next_mapping(pool);
1099 m->tc = tc;
1100 m->pass_discard = pool->pf.discard_passdown;
1101 m->definitely_not_shared = !lookup_result.shared;
1102 m->virt_block = block;
1103 m->data_block = lookup_result.block;
1104 m->cell = cell;
1105 m->cell2 = cell2;
1106 m->bio = bio;
1107
1108 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1109 spin_lock_irqsave(&pool->lock, flags);
1110 list_add_tail(&m->list, &pool->prepared_discards);
1111 spin_unlock_irqrestore(&pool->lock, flags);
1112 wake_worker(pool);
1113 }
1114 } else {
1115 inc_all_io_entry(pool, bio);
1116 cell_defer_no_holder(tc, cell);
1117 cell_defer_no_holder(tc, cell2);
1118
1119 /*
1120 * The DM core makes sure that the discard doesn't span
1121 * a block boundary. So we submit the discard of a
1122 * partial block appropriately.
1123 */
1124 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1125 remap_and_issue(tc, bio, lookup_result.block);
1126 else
1127 bio_endio(bio, 0);
1128 }
1129 break;
1130
1131 case -ENODATA:
1132 /*
1133 * It isn't provisioned, just forget it.
1134 */
1135 cell_defer_no_holder(tc, cell);
1136 bio_endio(bio, 0);
1137 break;
1138
1139 default:
1140 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1141 __func__, r);
1142 cell_defer_no_holder(tc, cell);
1143 bio_io_error(bio);
1144 break;
1145 }
1146 }
1147
1148 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1149 struct dm_cell_key *key,
1150 struct dm_thin_lookup_result *lookup_result,
1151 struct dm_bio_prison_cell *cell)
1152 {
1153 int r;
1154 dm_block_t data_block;
1155 struct pool *pool = tc->pool;
1156
1157 r = alloc_data_block(tc, &data_block);
1158 switch (r) {
1159 case 0:
1160 schedule_internal_copy(tc, block, lookup_result->block,
1161 data_block, cell, bio);
1162 break;
1163
1164 case -ENOSPC:
1165 retry_bios_on_resume(pool, cell);
1166 break;
1167
1168 default:
1169 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1170 __func__, r);
1171 cell_error(pool, cell);
1172 break;
1173 }
1174 }
1175
1176 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1177 dm_block_t block,
1178 struct dm_thin_lookup_result *lookup_result)
1179 {
1180 struct dm_bio_prison_cell *cell;
1181 struct pool *pool = tc->pool;
1182 struct dm_cell_key key;
1183
1184 /*
1185 * If cell is already occupied, then sharing is already in the process
1186 * of being broken so we have nothing further to do here.
1187 */
1188 build_data_key(tc->td, lookup_result->block, &key);
1189 if (bio_detain(pool, &key, bio, &cell))
1190 return;
1191
1192 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1193 break_sharing(tc, bio, block, &key, lookup_result, cell);
1194 else {
1195 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1196
1197 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1198 inc_all_io_entry(pool, bio);
1199 cell_defer_no_holder(tc, cell);
1200
1201 remap_and_issue(tc, bio, lookup_result->block);
1202 }
1203 }
1204
1205 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1206 struct dm_bio_prison_cell *cell)
1207 {
1208 int r;
1209 dm_block_t data_block;
1210 struct pool *pool = tc->pool;
1211
1212 /*
1213 * Remap empty bios (flushes) immediately, without provisioning.
1214 */
1215 if (!bio->bi_iter.bi_size) {
1216 inc_all_io_entry(pool, bio);
1217 cell_defer_no_holder(tc, cell);
1218
1219 remap_and_issue(tc, bio, 0);
1220 return;
1221 }
1222
1223 /*
1224 * Fill read bios with zeroes and complete them immediately.
1225 */
1226 if (bio_data_dir(bio) == READ) {
1227 zero_fill_bio(bio);
1228 cell_defer_no_holder(tc, cell);
1229 bio_endio(bio, 0);
1230 return;
1231 }
1232
1233 r = alloc_data_block(tc, &data_block);
1234 switch (r) {
1235 case 0:
1236 if (tc->origin_dev)
1237 schedule_external_copy(tc, block, data_block, cell, bio);
1238 else
1239 schedule_zero(tc, block, data_block, cell, bio);
1240 break;
1241
1242 case -ENOSPC:
1243 retry_bios_on_resume(pool, cell);
1244 break;
1245
1246 default:
1247 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1248 __func__, r);
1249 cell_error(pool, cell);
1250 break;
1251 }
1252 }
1253
1254 static void process_bio(struct thin_c *tc, struct bio *bio)
1255 {
1256 int r;
1257 struct pool *pool = tc->pool;
1258 dm_block_t block = get_bio_block(tc, bio);
1259 struct dm_bio_prison_cell *cell;
1260 struct dm_cell_key key;
1261 struct dm_thin_lookup_result lookup_result;
1262
1263 /*
1264 * If cell is already occupied, then the block is already
1265 * being provisioned so we have nothing further to do here.
1266 */
1267 build_virtual_key(tc->td, block, &key);
1268 if (bio_detain(pool, &key, bio, &cell))
1269 return;
1270
1271 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1272 switch (r) {
1273 case 0:
1274 if (lookup_result.shared) {
1275 process_shared_bio(tc, bio, block, &lookup_result);
1276 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1277 } else {
1278 inc_all_io_entry(pool, bio);
1279 cell_defer_no_holder(tc, cell);
1280
1281 remap_and_issue(tc, bio, lookup_result.block);
1282 }
1283 break;
1284
1285 case -ENODATA:
1286 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1287 inc_all_io_entry(pool, bio);
1288 cell_defer_no_holder(tc, cell);
1289
1290 remap_to_origin_and_issue(tc, bio);
1291 } else
1292 provision_block(tc, bio, block, cell);
1293 break;
1294
1295 default:
1296 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1297 __func__, r);
1298 cell_defer_no_holder(tc, cell);
1299 bio_io_error(bio);
1300 break;
1301 }
1302 }
1303
1304 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1305 {
1306 int r;
1307 int rw = bio_data_dir(bio);
1308 dm_block_t block = get_bio_block(tc, bio);
1309 struct dm_thin_lookup_result lookup_result;
1310
1311 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1312 switch (r) {
1313 case 0:
1314 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1315 handle_unserviceable_bio(tc->pool, bio);
1316 else {
1317 inc_all_io_entry(tc->pool, bio);
1318 remap_and_issue(tc, bio, lookup_result.block);
1319 }
1320 break;
1321
1322 case -ENODATA:
1323 if (rw != READ) {
1324 handle_unserviceable_bio(tc->pool, bio);
1325 break;
1326 }
1327
1328 if (tc->origin_dev) {
1329 inc_all_io_entry(tc->pool, bio);
1330 remap_to_origin_and_issue(tc, bio);
1331 break;
1332 }
1333
1334 zero_fill_bio(bio);
1335 bio_endio(bio, 0);
1336 break;
1337
1338 default:
1339 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1340 __func__, r);
1341 bio_io_error(bio);
1342 break;
1343 }
1344 }
1345
1346 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1347 {
1348 bio_endio(bio, 0);
1349 }
1350
1351 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1352 {
1353 bio_io_error(bio);
1354 }
1355
1356 /*
1357 * FIXME: should we also commit due to size of transaction, measured in
1358 * metadata blocks?
1359 */
1360 static int need_commit_due_to_time(struct pool *pool)
1361 {
1362 return jiffies < pool->last_commit_jiffies ||
1363 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1364 }
1365
1366 static void process_deferred_bios(struct pool *pool)
1367 {
1368 unsigned long flags;
1369 struct bio *bio;
1370 struct bio_list bios;
1371
1372 bio_list_init(&bios);
1373
1374 spin_lock_irqsave(&pool->lock, flags);
1375 bio_list_merge(&bios, &pool->deferred_bios);
1376 bio_list_init(&pool->deferred_bios);
1377 spin_unlock_irqrestore(&pool->lock, flags);
1378
1379 while ((bio = bio_list_pop(&bios))) {
1380 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1381 struct thin_c *tc = h->tc;
1382
1383 if (tc->requeue_mode) {
1384 bio_endio(bio, DM_ENDIO_REQUEUE);
1385 continue;
1386 }
1387
1388 /*
1389 * If we've got no free new_mapping structs, and processing
1390 * this bio might require one, we pause until there are some
1391 * prepared mappings to process.
1392 */
1393 if (ensure_next_mapping(pool)) {
1394 spin_lock_irqsave(&pool->lock, flags);
1395 bio_list_merge(&pool->deferred_bios, &bios);
1396 spin_unlock_irqrestore(&pool->lock, flags);
1397
1398 break;
1399 }
1400
1401 if (bio->bi_rw & REQ_DISCARD)
1402 pool->process_discard(tc, bio);
1403 else
1404 pool->process_bio(tc, bio);
1405 }
1406
1407 /*
1408 * If there are any deferred flush bios, we must commit
1409 * the metadata before issuing them.
1410 */
1411 bio_list_init(&bios);
1412 spin_lock_irqsave(&pool->lock, flags);
1413 bio_list_merge(&bios, &pool->deferred_flush_bios);
1414 bio_list_init(&pool->deferred_flush_bios);
1415 spin_unlock_irqrestore(&pool->lock, flags);
1416
1417 if (bio_list_empty(&bios) &&
1418 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1419 return;
1420
1421 if (commit(pool)) {
1422 while ((bio = bio_list_pop(&bios)))
1423 bio_io_error(bio);
1424 return;
1425 }
1426 pool->last_commit_jiffies = jiffies;
1427
1428 while ((bio = bio_list_pop(&bios)))
1429 generic_make_request(bio);
1430 }
1431
1432 static void do_worker(struct work_struct *ws)
1433 {
1434 struct pool *pool = container_of(ws, struct pool, worker);
1435
1436 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1437 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1438 process_deferred_bios(pool);
1439 }
1440
1441 /*
1442 * We want to commit periodically so that not too much
1443 * unwritten data builds up.
1444 */
1445 static void do_waker(struct work_struct *ws)
1446 {
1447 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1448 wake_worker(pool);
1449 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1450 }
1451
1452 /*----------------------------------------------------------------*/
1453
1454 struct noflush_work {
1455 struct work_struct worker;
1456 struct thin_c *tc;
1457
1458 atomic_t complete;
1459 wait_queue_head_t wait;
1460 };
1461
1462 static void complete_noflush_work(struct noflush_work *w)
1463 {
1464 atomic_set(&w->complete, 1);
1465 wake_up(&w->wait);
1466 }
1467
1468 static void do_noflush_start(struct work_struct *ws)
1469 {
1470 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1471 w->tc->requeue_mode = true;
1472 requeue_io(w->tc);
1473 complete_noflush_work(w);
1474 }
1475
1476 static void do_noflush_stop(struct work_struct *ws)
1477 {
1478 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1479 w->tc->requeue_mode = false;
1480 complete_noflush_work(w);
1481 }
1482
1483 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1484 {
1485 struct noflush_work w;
1486
1487 INIT_WORK(&w.worker, fn);
1488 w.tc = tc;
1489 atomic_set(&w.complete, 0);
1490 init_waitqueue_head(&w.wait);
1491
1492 queue_work(tc->pool->wq, &w.worker);
1493
1494 wait_event(w.wait, atomic_read(&w.complete));
1495 }
1496
1497 /*----------------------------------------------------------------*/
1498
1499 static enum pool_mode get_pool_mode(struct pool *pool)
1500 {
1501 return pool->pf.mode;
1502 }
1503
1504 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1505 {
1506 dm_table_event(pool->ti->table);
1507 DMINFO("%s: switching pool to %s mode",
1508 dm_device_name(pool->pool_md), new_mode);
1509 }
1510
1511 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1512 {
1513 struct pool_c *pt = pool->ti->private;
1514 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1515 enum pool_mode old_mode = get_pool_mode(pool);
1516
1517 /*
1518 * Never allow the pool to transition to PM_WRITE mode if user
1519 * intervention is required to verify metadata and data consistency.
1520 */
1521 if (new_mode == PM_WRITE && needs_check) {
1522 DMERR("%s: unable to switch pool to write mode until repaired.",
1523 dm_device_name(pool->pool_md));
1524 if (old_mode != new_mode)
1525 new_mode = old_mode;
1526 else
1527 new_mode = PM_READ_ONLY;
1528 }
1529 /*
1530 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1531 * not going to recover without a thin_repair. So we never let the
1532 * pool move out of the old mode.
1533 */
1534 if (old_mode == PM_FAIL)
1535 new_mode = old_mode;
1536
1537 switch (new_mode) {
1538 case PM_FAIL:
1539 if (old_mode != new_mode)
1540 notify_of_pool_mode_change(pool, "failure");
1541 dm_pool_metadata_read_only(pool->pmd);
1542 pool->process_bio = process_bio_fail;
1543 pool->process_discard = process_bio_fail;
1544 pool->process_prepared_mapping = process_prepared_mapping_fail;
1545 pool->process_prepared_discard = process_prepared_discard_fail;
1546
1547 error_retry_list(pool);
1548 break;
1549
1550 case PM_READ_ONLY:
1551 if (old_mode != new_mode)
1552 notify_of_pool_mode_change(pool, "read-only");
1553 dm_pool_metadata_read_only(pool->pmd);
1554 pool->process_bio = process_bio_read_only;
1555 pool->process_discard = process_bio_success;
1556 pool->process_prepared_mapping = process_prepared_mapping_fail;
1557 pool->process_prepared_discard = process_prepared_discard_passdown;
1558
1559 error_retry_list(pool);
1560 break;
1561
1562 case PM_OUT_OF_DATA_SPACE:
1563 /*
1564 * Ideally we'd never hit this state; the low water mark
1565 * would trigger userland to extend the pool before we
1566 * completely run out of data space. However, many small
1567 * IOs to unprovisioned space can consume data space at an
1568 * alarming rate. Adjust your low water mark if you're
1569 * frequently seeing this mode.
1570 */
1571 if (old_mode != new_mode)
1572 notify_of_pool_mode_change(pool, "out-of-data-space");
1573 pool->process_bio = process_bio_read_only;
1574 pool->process_discard = process_discard;
1575 pool->process_prepared_mapping = process_prepared_mapping;
1576 pool->process_prepared_discard = process_prepared_discard_passdown;
1577 break;
1578
1579 case PM_WRITE:
1580 if (old_mode != new_mode)
1581 notify_of_pool_mode_change(pool, "write");
1582 dm_pool_metadata_read_write(pool->pmd);
1583 pool->process_bio = process_bio;
1584 pool->process_discard = process_discard;
1585 pool->process_prepared_mapping = process_prepared_mapping;
1586 pool->process_prepared_discard = process_prepared_discard;
1587 break;
1588 }
1589
1590 pool->pf.mode = new_mode;
1591 /*
1592 * The pool mode may have changed, sync it so bind_control_target()
1593 * doesn't cause an unexpected mode transition on resume.
1594 */
1595 pt->adjusted_pf.mode = new_mode;
1596 }
1597
1598 static void abort_transaction(struct pool *pool)
1599 {
1600 const char *dev_name = dm_device_name(pool->pool_md);
1601
1602 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1603 if (dm_pool_abort_metadata(pool->pmd)) {
1604 DMERR("%s: failed to abort metadata transaction", dev_name);
1605 set_pool_mode(pool, PM_FAIL);
1606 }
1607
1608 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1609 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1610 set_pool_mode(pool, PM_FAIL);
1611 }
1612 }
1613
1614 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1615 {
1616 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1617 dm_device_name(pool->pool_md), op, r);
1618
1619 abort_transaction(pool);
1620 set_pool_mode(pool, PM_READ_ONLY);
1621 }
1622
1623 /*----------------------------------------------------------------*/
1624
1625 /*
1626 * Mapping functions.
1627 */
1628
1629 /*
1630 * Called only while mapping a thin bio to hand it over to the workqueue.
1631 */
1632 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1633 {
1634 unsigned long flags;
1635 struct pool *pool = tc->pool;
1636
1637 spin_lock_irqsave(&pool->lock, flags);
1638 bio_list_add(&pool->deferred_bios, bio);
1639 spin_unlock_irqrestore(&pool->lock, flags);
1640
1641 wake_worker(pool);
1642 }
1643
1644 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1645 {
1646 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1647
1648 h->tc = tc;
1649 h->shared_read_entry = NULL;
1650 h->all_io_entry = NULL;
1651 h->overwrite_mapping = NULL;
1652 }
1653
1654 /*
1655 * Non-blocking function called from the thin target's map function.
1656 */
1657 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1658 {
1659 int r;
1660 struct thin_c *tc = ti->private;
1661 dm_block_t block = get_bio_block(tc, bio);
1662 struct dm_thin_device *td = tc->td;
1663 struct dm_thin_lookup_result result;
1664 struct dm_bio_prison_cell cell1, cell2;
1665 struct dm_bio_prison_cell *cell_result;
1666 struct dm_cell_key key;
1667
1668 thin_hook_bio(tc, bio);
1669
1670 if (tc->requeue_mode) {
1671 bio_endio(bio, DM_ENDIO_REQUEUE);
1672 return DM_MAPIO_SUBMITTED;
1673 }
1674
1675 if (get_pool_mode(tc->pool) == PM_FAIL) {
1676 bio_io_error(bio);
1677 return DM_MAPIO_SUBMITTED;
1678 }
1679
1680 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1681 thin_defer_bio(tc, bio);
1682 return DM_MAPIO_SUBMITTED;
1683 }
1684
1685 r = dm_thin_find_block(td, block, 0, &result);
1686
1687 /*
1688 * Note that we defer readahead too.
1689 */
1690 switch (r) {
1691 case 0:
1692 if (unlikely(result.shared)) {
1693 /*
1694 * We have a race condition here between the
1695 * result.shared value returned by the lookup and
1696 * snapshot creation, which may cause new
1697 * sharing.
1698 *
1699 * To avoid this always quiesce the origin before
1700 * taking the snap. You want to do this anyway to
1701 * ensure a consistent application view
1702 * (i.e. lockfs).
1703 *
1704 * More distant ancestors are irrelevant. The
1705 * shared flag will be set in their case.
1706 */
1707 thin_defer_bio(tc, bio);
1708 return DM_MAPIO_SUBMITTED;
1709 }
1710
1711 build_virtual_key(tc->td, block, &key);
1712 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1713 return DM_MAPIO_SUBMITTED;
1714
1715 build_data_key(tc->td, result.block, &key);
1716 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1717 cell_defer_no_holder_no_free(tc, &cell1);
1718 return DM_MAPIO_SUBMITTED;
1719 }
1720
1721 inc_all_io_entry(tc->pool, bio);
1722 cell_defer_no_holder_no_free(tc, &cell2);
1723 cell_defer_no_holder_no_free(tc, &cell1);
1724
1725 remap(tc, bio, result.block);
1726 return DM_MAPIO_REMAPPED;
1727
1728 case -ENODATA:
1729 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1730 /*
1731 * This block isn't provisioned, and we have no way
1732 * of doing so.
1733 */
1734 handle_unserviceable_bio(tc->pool, bio);
1735 return DM_MAPIO_SUBMITTED;
1736 }
1737 /* fall through */
1738
1739 case -EWOULDBLOCK:
1740 /*
1741 * In future, the failed dm_thin_find_block above could
1742 * provide the hint to load the metadata into cache.
1743 */
1744 thin_defer_bio(tc, bio);
1745 return DM_MAPIO_SUBMITTED;
1746
1747 default:
1748 /*
1749 * Must always call bio_io_error on failure.
1750 * dm_thin_find_block can fail with -EINVAL if the
1751 * pool is switched to fail-io mode.
1752 */
1753 bio_io_error(bio);
1754 return DM_MAPIO_SUBMITTED;
1755 }
1756 }
1757
1758 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1759 {
1760 int r;
1761 unsigned long flags;
1762 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1763
1764 spin_lock_irqsave(&pt->pool->lock, flags);
1765 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1766 spin_unlock_irqrestore(&pt->pool->lock, flags);
1767
1768 if (!r) {
1769 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1770 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1771 }
1772
1773 return r;
1774 }
1775
1776 static void __requeue_bios(struct pool *pool)
1777 {
1778 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1779 bio_list_init(&pool->retry_on_resume_list);
1780 }
1781
1782 /*----------------------------------------------------------------
1783 * Binding of control targets to a pool object
1784 *--------------------------------------------------------------*/
1785 static bool data_dev_supports_discard(struct pool_c *pt)
1786 {
1787 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1788
1789 return q && blk_queue_discard(q);
1790 }
1791
1792 static bool is_factor(sector_t block_size, uint32_t n)
1793 {
1794 return !sector_div(block_size, n);
1795 }
1796
1797 /*
1798 * If discard_passdown was enabled verify that the data device
1799 * supports discards. Disable discard_passdown if not.
1800 */
1801 static void disable_passdown_if_not_supported(struct pool_c *pt)
1802 {
1803 struct pool *pool = pt->pool;
1804 struct block_device *data_bdev = pt->data_dev->bdev;
1805 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1806 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1807 const char *reason = NULL;
1808 char buf[BDEVNAME_SIZE];
1809
1810 if (!pt->adjusted_pf.discard_passdown)
1811 return;
1812
1813 if (!data_dev_supports_discard(pt))
1814 reason = "discard unsupported";
1815
1816 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1817 reason = "max discard sectors smaller than a block";
1818
1819 else if (data_limits->discard_granularity > block_size)
1820 reason = "discard granularity larger than a block";
1821
1822 else if (!is_factor(block_size, data_limits->discard_granularity))
1823 reason = "discard granularity not a factor of block size";
1824
1825 if (reason) {
1826 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1827 pt->adjusted_pf.discard_passdown = false;
1828 }
1829 }
1830
1831 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1832 {
1833 struct pool_c *pt = ti->private;
1834
1835 /*
1836 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1837 */
1838 enum pool_mode old_mode = get_pool_mode(pool);
1839 enum pool_mode new_mode = pt->adjusted_pf.mode;
1840
1841 /*
1842 * Don't change the pool's mode until set_pool_mode() below.
1843 * Otherwise the pool's process_* function pointers may
1844 * not match the desired pool mode.
1845 */
1846 pt->adjusted_pf.mode = old_mode;
1847
1848 pool->ti = ti;
1849 pool->pf = pt->adjusted_pf;
1850 pool->low_water_blocks = pt->low_water_blocks;
1851
1852 set_pool_mode(pool, new_mode);
1853
1854 return 0;
1855 }
1856
1857 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1858 {
1859 if (pool->ti == ti)
1860 pool->ti = NULL;
1861 }
1862
1863 /*----------------------------------------------------------------
1864 * Pool creation
1865 *--------------------------------------------------------------*/
1866 /* Initialize pool features. */
1867 static void pool_features_init(struct pool_features *pf)
1868 {
1869 pf->mode = PM_WRITE;
1870 pf->zero_new_blocks = true;
1871 pf->discard_enabled = true;
1872 pf->discard_passdown = true;
1873 pf->error_if_no_space = false;
1874 }
1875
1876 static void __pool_destroy(struct pool *pool)
1877 {
1878 __pool_table_remove(pool);
1879
1880 if (dm_pool_metadata_close(pool->pmd) < 0)
1881 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1882
1883 dm_bio_prison_destroy(pool->prison);
1884 dm_kcopyd_client_destroy(pool->copier);
1885
1886 if (pool->wq)
1887 destroy_workqueue(pool->wq);
1888
1889 if (pool->next_mapping)
1890 mempool_free(pool->next_mapping, pool->mapping_pool);
1891 mempool_destroy(pool->mapping_pool);
1892 dm_deferred_set_destroy(pool->shared_read_ds);
1893 dm_deferred_set_destroy(pool->all_io_ds);
1894 kfree(pool);
1895 }
1896
1897 static struct kmem_cache *_new_mapping_cache;
1898
1899 static struct pool *pool_create(struct mapped_device *pool_md,
1900 struct block_device *metadata_dev,
1901 unsigned long block_size,
1902 int read_only, char **error)
1903 {
1904 int r;
1905 void *err_p;
1906 struct pool *pool;
1907 struct dm_pool_metadata *pmd;
1908 bool format_device = read_only ? false : true;
1909
1910 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1911 if (IS_ERR(pmd)) {
1912 *error = "Error creating metadata object";
1913 return (struct pool *)pmd;
1914 }
1915
1916 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1917 if (!pool) {
1918 *error = "Error allocating memory for pool";
1919 err_p = ERR_PTR(-ENOMEM);
1920 goto bad_pool;
1921 }
1922
1923 pool->pmd = pmd;
1924 pool->sectors_per_block = block_size;
1925 if (block_size & (block_size - 1))
1926 pool->sectors_per_block_shift = -1;
1927 else
1928 pool->sectors_per_block_shift = __ffs(block_size);
1929 pool->low_water_blocks = 0;
1930 pool_features_init(&pool->pf);
1931 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1932 if (!pool->prison) {
1933 *error = "Error creating pool's bio prison";
1934 err_p = ERR_PTR(-ENOMEM);
1935 goto bad_prison;
1936 }
1937
1938 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1939 if (IS_ERR(pool->copier)) {
1940 r = PTR_ERR(pool->copier);
1941 *error = "Error creating pool's kcopyd client";
1942 err_p = ERR_PTR(r);
1943 goto bad_kcopyd_client;
1944 }
1945
1946 /*
1947 * Create singlethreaded workqueue that will service all devices
1948 * that use this metadata.
1949 */
1950 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1951 if (!pool->wq) {
1952 *error = "Error creating pool's workqueue";
1953 err_p = ERR_PTR(-ENOMEM);
1954 goto bad_wq;
1955 }
1956
1957 INIT_WORK(&pool->worker, do_worker);
1958 INIT_DELAYED_WORK(&pool->waker, do_waker);
1959 spin_lock_init(&pool->lock);
1960 bio_list_init(&pool->deferred_bios);
1961 bio_list_init(&pool->deferred_flush_bios);
1962 INIT_LIST_HEAD(&pool->prepared_mappings);
1963 INIT_LIST_HEAD(&pool->prepared_discards);
1964 pool->low_water_triggered = false;
1965 bio_list_init(&pool->retry_on_resume_list);
1966
1967 pool->shared_read_ds = dm_deferred_set_create();
1968 if (!pool->shared_read_ds) {
1969 *error = "Error creating pool's shared read deferred set";
1970 err_p = ERR_PTR(-ENOMEM);
1971 goto bad_shared_read_ds;
1972 }
1973
1974 pool->all_io_ds = dm_deferred_set_create();
1975 if (!pool->all_io_ds) {
1976 *error = "Error creating pool's all io deferred set";
1977 err_p = ERR_PTR(-ENOMEM);
1978 goto bad_all_io_ds;
1979 }
1980
1981 pool->next_mapping = NULL;
1982 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1983 _new_mapping_cache);
1984 if (!pool->mapping_pool) {
1985 *error = "Error creating pool's mapping mempool";
1986 err_p = ERR_PTR(-ENOMEM);
1987 goto bad_mapping_pool;
1988 }
1989
1990 pool->ref_count = 1;
1991 pool->last_commit_jiffies = jiffies;
1992 pool->pool_md = pool_md;
1993 pool->md_dev = metadata_dev;
1994 __pool_table_insert(pool);
1995
1996 return pool;
1997
1998 bad_mapping_pool:
1999 dm_deferred_set_destroy(pool->all_io_ds);
2000 bad_all_io_ds:
2001 dm_deferred_set_destroy(pool->shared_read_ds);
2002 bad_shared_read_ds:
2003 destroy_workqueue(pool->wq);
2004 bad_wq:
2005 dm_kcopyd_client_destroy(pool->copier);
2006 bad_kcopyd_client:
2007 dm_bio_prison_destroy(pool->prison);
2008 bad_prison:
2009 kfree(pool);
2010 bad_pool:
2011 if (dm_pool_metadata_close(pmd))
2012 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2013
2014 return err_p;
2015 }
2016
2017 static void __pool_inc(struct pool *pool)
2018 {
2019 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2020 pool->ref_count++;
2021 }
2022
2023 static void __pool_dec(struct pool *pool)
2024 {
2025 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2026 BUG_ON(!pool->ref_count);
2027 if (!--pool->ref_count)
2028 __pool_destroy(pool);
2029 }
2030
2031 static struct pool *__pool_find(struct mapped_device *pool_md,
2032 struct block_device *metadata_dev,
2033 unsigned long block_size, int read_only,
2034 char **error, int *created)
2035 {
2036 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2037
2038 if (pool) {
2039 if (pool->pool_md != pool_md) {
2040 *error = "metadata device already in use by a pool";
2041 return ERR_PTR(-EBUSY);
2042 }
2043 __pool_inc(pool);
2044
2045 } else {
2046 pool = __pool_table_lookup(pool_md);
2047 if (pool) {
2048 if (pool->md_dev != metadata_dev) {
2049 *error = "different pool cannot replace a pool";
2050 return ERR_PTR(-EINVAL);
2051 }
2052 __pool_inc(pool);
2053
2054 } else {
2055 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2056 *created = 1;
2057 }
2058 }
2059
2060 return pool;
2061 }
2062
2063 /*----------------------------------------------------------------
2064 * Pool target methods
2065 *--------------------------------------------------------------*/
2066 static void pool_dtr(struct dm_target *ti)
2067 {
2068 struct pool_c *pt = ti->private;
2069
2070 mutex_lock(&dm_thin_pool_table.mutex);
2071
2072 unbind_control_target(pt->pool, ti);
2073 __pool_dec(pt->pool);
2074 dm_put_device(ti, pt->metadata_dev);
2075 dm_put_device(ti, pt->data_dev);
2076 kfree(pt);
2077
2078 mutex_unlock(&dm_thin_pool_table.mutex);
2079 }
2080
2081 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2082 struct dm_target *ti)
2083 {
2084 int r;
2085 unsigned argc;
2086 const char *arg_name;
2087
2088 static struct dm_arg _args[] = {
2089 {0, 4, "Invalid number of pool feature arguments"},
2090 };
2091
2092 /*
2093 * No feature arguments supplied.
2094 */
2095 if (!as->argc)
2096 return 0;
2097
2098 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2099 if (r)
2100 return -EINVAL;
2101
2102 while (argc && !r) {
2103 arg_name = dm_shift_arg(as);
2104 argc--;
2105
2106 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2107 pf->zero_new_blocks = false;
2108
2109 else if (!strcasecmp(arg_name, "ignore_discard"))
2110 pf->discard_enabled = false;
2111
2112 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2113 pf->discard_passdown = false;
2114
2115 else if (!strcasecmp(arg_name, "read_only"))
2116 pf->mode = PM_READ_ONLY;
2117
2118 else if (!strcasecmp(arg_name, "error_if_no_space"))
2119 pf->error_if_no_space = true;
2120
2121 else {
2122 ti->error = "Unrecognised pool feature requested";
2123 r = -EINVAL;
2124 break;
2125 }
2126 }
2127
2128 return r;
2129 }
2130
2131 static void metadata_low_callback(void *context)
2132 {
2133 struct pool *pool = context;
2134
2135 DMWARN("%s: reached low water mark for metadata device: sending event.",
2136 dm_device_name(pool->pool_md));
2137
2138 dm_table_event(pool->ti->table);
2139 }
2140
2141 static sector_t get_dev_size(struct block_device *bdev)
2142 {
2143 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2144 }
2145
2146 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2147 {
2148 sector_t metadata_dev_size = get_dev_size(bdev);
2149 char buffer[BDEVNAME_SIZE];
2150
2151 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2152 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2153 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2154 }
2155
2156 static sector_t get_metadata_dev_size(struct block_device *bdev)
2157 {
2158 sector_t metadata_dev_size = get_dev_size(bdev);
2159
2160 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2161 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2162
2163 return metadata_dev_size;
2164 }
2165
2166 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2167 {
2168 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2169
2170 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2171
2172 return metadata_dev_size;
2173 }
2174
2175 /*
2176 * When a metadata threshold is crossed a dm event is triggered, and
2177 * userland should respond by growing the metadata device. We could let
2178 * userland set the threshold, like we do with the data threshold, but I'm
2179 * not sure they know enough to do this well.
2180 */
2181 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2182 {
2183 /*
2184 * 4M is ample for all ops with the possible exception of thin
2185 * device deletion which is harmless if it fails (just retry the
2186 * delete after you've grown the device).
2187 */
2188 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2189 return min((dm_block_t)1024ULL /* 4M */, quarter);
2190 }
2191
2192 /*
2193 * thin-pool <metadata dev> <data dev>
2194 * <data block size (sectors)>
2195 * <low water mark (blocks)>
2196 * [<#feature args> [<arg>]*]
2197 *
2198 * Optional feature arguments are:
2199 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2200 * ignore_discard: disable discard
2201 * no_discard_passdown: don't pass discards down to the data device
2202 * read_only: Don't allow any changes to be made to the pool metadata.
2203 * error_if_no_space: error IOs, instead of queueing, if no space.
2204 */
2205 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2206 {
2207 int r, pool_created = 0;
2208 struct pool_c *pt;
2209 struct pool *pool;
2210 struct pool_features pf;
2211 struct dm_arg_set as;
2212 struct dm_dev *data_dev;
2213 unsigned long block_size;
2214 dm_block_t low_water_blocks;
2215 struct dm_dev *metadata_dev;
2216 fmode_t metadata_mode;
2217
2218 /*
2219 * FIXME Remove validation from scope of lock.
2220 */
2221 mutex_lock(&dm_thin_pool_table.mutex);
2222
2223 if (argc < 4) {
2224 ti->error = "Invalid argument count";
2225 r = -EINVAL;
2226 goto out_unlock;
2227 }
2228
2229 as.argc = argc;
2230 as.argv = argv;
2231
2232 /*
2233 * Set default pool features.
2234 */
2235 pool_features_init(&pf);
2236
2237 dm_consume_args(&as, 4);
2238 r = parse_pool_features(&as, &pf, ti);
2239 if (r)
2240 goto out_unlock;
2241
2242 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2243 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2244 if (r) {
2245 ti->error = "Error opening metadata block device";
2246 goto out_unlock;
2247 }
2248 warn_if_metadata_device_too_big(metadata_dev->bdev);
2249
2250 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2251 if (r) {
2252 ti->error = "Error getting data device";
2253 goto out_metadata;
2254 }
2255
2256 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2257 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2258 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2259 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2260 ti->error = "Invalid block size";
2261 r = -EINVAL;
2262 goto out;
2263 }
2264
2265 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2266 ti->error = "Invalid low water mark";
2267 r = -EINVAL;
2268 goto out;
2269 }
2270
2271 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2272 if (!pt) {
2273 r = -ENOMEM;
2274 goto out;
2275 }
2276
2277 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2278 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2279 if (IS_ERR(pool)) {
2280 r = PTR_ERR(pool);
2281 goto out_free_pt;
2282 }
2283
2284 /*
2285 * 'pool_created' reflects whether this is the first table load.
2286 * Top level discard support is not allowed to be changed after
2287 * initial load. This would require a pool reload to trigger thin
2288 * device changes.
2289 */
2290 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2291 ti->error = "Discard support cannot be disabled once enabled";
2292 r = -EINVAL;
2293 goto out_flags_changed;
2294 }
2295
2296 pt->pool = pool;
2297 pt->ti = ti;
2298 pt->metadata_dev = metadata_dev;
2299 pt->data_dev = data_dev;
2300 pt->low_water_blocks = low_water_blocks;
2301 pt->adjusted_pf = pt->requested_pf = pf;
2302 ti->num_flush_bios = 1;
2303
2304 /*
2305 * Only need to enable discards if the pool should pass
2306 * them down to the data device. The thin device's discard
2307 * processing will cause mappings to be removed from the btree.
2308 */
2309 ti->discard_zeroes_data_unsupported = true;
2310 if (pf.discard_enabled && pf.discard_passdown) {
2311 ti->num_discard_bios = 1;
2312
2313 /*
2314 * Setting 'discards_supported' circumvents the normal
2315 * stacking of discard limits (this keeps the pool and
2316 * thin devices' discard limits consistent).
2317 */
2318 ti->discards_supported = true;
2319 }
2320 ti->private = pt;
2321
2322 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2323 calc_metadata_threshold(pt),
2324 metadata_low_callback,
2325 pool);
2326 if (r)
2327 goto out_free_pt;
2328
2329 pt->callbacks.congested_fn = pool_is_congested;
2330 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2331
2332 mutex_unlock(&dm_thin_pool_table.mutex);
2333
2334 return 0;
2335
2336 out_flags_changed:
2337 __pool_dec(pool);
2338 out_free_pt:
2339 kfree(pt);
2340 out:
2341 dm_put_device(ti, data_dev);
2342 out_metadata:
2343 dm_put_device(ti, metadata_dev);
2344 out_unlock:
2345 mutex_unlock(&dm_thin_pool_table.mutex);
2346
2347 return r;
2348 }
2349
2350 static int pool_map(struct dm_target *ti, struct bio *bio)
2351 {
2352 int r;
2353 struct pool_c *pt = ti->private;
2354 struct pool *pool = pt->pool;
2355 unsigned long flags;
2356
2357 /*
2358 * As this is a singleton target, ti->begin is always zero.
2359 */
2360 spin_lock_irqsave(&pool->lock, flags);
2361 bio->bi_bdev = pt->data_dev->bdev;
2362 r = DM_MAPIO_REMAPPED;
2363 spin_unlock_irqrestore(&pool->lock, flags);
2364
2365 return r;
2366 }
2367
2368 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2369 {
2370 int r;
2371 struct pool_c *pt = ti->private;
2372 struct pool *pool = pt->pool;
2373 sector_t data_size = ti->len;
2374 dm_block_t sb_data_size;
2375
2376 *need_commit = false;
2377
2378 (void) sector_div(data_size, pool->sectors_per_block);
2379
2380 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2381 if (r) {
2382 DMERR("%s: failed to retrieve data device size",
2383 dm_device_name(pool->pool_md));
2384 return r;
2385 }
2386
2387 if (data_size < sb_data_size) {
2388 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2389 dm_device_name(pool->pool_md),
2390 (unsigned long long)data_size, sb_data_size);
2391 return -EINVAL;
2392
2393 } else if (data_size > sb_data_size) {
2394 if (dm_pool_metadata_needs_check(pool->pmd)) {
2395 DMERR("%s: unable to grow the data device until repaired.",
2396 dm_device_name(pool->pool_md));
2397 return 0;
2398 }
2399
2400 if (sb_data_size)
2401 DMINFO("%s: growing the data device from %llu to %llu blocks",
2402 dm_device_name(pool->pool_md),
2403 sb_data_size, (unsigned long long)data_size);
2404 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2405 if (r) {
2406 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2407 return r;
2408 }
2409
2410 *need_commit = true;
2411 }
2412
2413 return 0;
2414 }
2415
2416 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2417 {
2418 int r;
2419 struct pool_c *pt = ti->private;
2420 struct pool *pool = pt->pool;
2421 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2422
2423 *need_commit = false;
2424
2425 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2426
2427 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2428 if (r) {
2429 DMERR("%s: failed to retrieve metadata device size",
2430 dm_device_name(pool->pool_md));
2431 return r;
2432 }
2433
2434 if (metadata_dev_size < sb_metadata_dev_size) {
2435 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2436 dm_device_name(pool->pool_md),
2437 metadata_dev_size, sb_metadata_dev_size);
2438 return -EINVAL;
2439
2440 } else if (metadata_dev_size > sb_metadata_dev_size) {
2441 if (dm_pool_metadata_needs_check(pool->pmd)) {
2442 DMERR("%s: unable to grow the metadata device until repaired.",
2443 dm_device_name(pool->pool_md));
2444 return 0;
2445 }
2446
2447 warn_if_metadata_device_too_big(pool->md_dev);
2448 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2449 dm_device_name(pool->pool_md),
2450 sb_metadata_dev_size, metadata_dev_size);
2451 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2452 if (r) {
2453 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2454 return r;
2455 }
2456
2457 *need_commit = true;
2458 }
2459
2460 return 0;
2461 }
2462
2463 /*
2464 * Retrieves the number of blocks of the data device from
2465 * the superblock and compares it to the actual device size,
2466 * thus resizing the data device in case it has grown.
2467 *
2468 * This both copes with opening preallocated data devices in the ctr
2469 * being followed by a resume
2470 * -and-
2471 * calling the resume method individually after userspace has
2472 * grown the data device in reaction to a table event.
2473 */
2474 static int pool_preresume(struct dm_target *ti)
2475 {
2476 int r;
2477 bool need_commit1, need_commit2;
2478 struct pool_c *pt = ti->private;
2479 struct pool *pool = pt->pool;
2480
2481 /*
2482 * Take control of the pool object.
2483 */
2484 r = bind_control_target(pool, ti);
2485 if (r)
2486 return r;
2487
2488 r = maybe_resize_data_dev(ti, &need_commit1);
2489 if (r)
2490 return r;
2491
2492 r = maybe_resize_metadata_dev(ti, &need_commit2);
2493 if (r)
2494 return r;
2495
2496 if (need_commit1 || need_commit2)
2497 (void) commit(pool);
2498
2499 return 0;
2500 }
2501
2502 static void pool_resume(struct dm_target *ti)
2503 {
2504 struct pool_c *pt = ti->private;
2505 struct pool *pool = pt->pool;
2506 unsigned long flags;
2507
2508 spin_lock_irqsave(&pool->lock, flags);
2509 pool->low_water_triggered = false;
2510 __requeue_bios(pool);
2511 spin_unlock_irqrestore(&pool->lock, flags);
2512
2513 do_waker(&pool->waker.work);
2514 }
2515
2516 static void pool_postsuspend(struct dm_target *ti)
2517 {
2518 struct pool_c *pt = ti->private;
2519 struct pool *pool = pt->pool;
2520
2521 cancel_delayed_work(&pool->waker);
2522 flush_workqueue(pool->wq);
2523 (void) commit(pool);
2524 }
2525
2526 static int check_arg_count(unsigned argc, unsigned args_required)
2527 {
2528 if (argc != args_required) {
2529 DMWARN("Message received with %u arguments instead of %u.",
2530 argc, args_required);
2531 return -EINVAL;
2532 }
2533
2534 return 0;
2535 }
2536
2537 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2538 {
2539 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2540 *dev_id <= MAX_DEV_ID)
2541 return 0;
2542
2543 if (warning)
2544 DMWARN("Message received with invalid device id: %s", arg);
2545
2546 return -EINVAL;
2547 }
2548
2549 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2550 {
2551 dm_thin_id dev_id;
2552 int r;
2553
2554 r = check_arg_count(argc, 2);
2555 if (r)
2556 return r;
2557
2558 r = read_dev_id(argv[1], &dev_id, 1);
2559 if (r)
2560 return r;
2561
2562 r = dm_pool_create_thin(pool->pmd, dev_id);
2563 if (r) {
2564 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2565 argv[1]);
2566 return r;
2567 }
2568
2569 return 0;
2570 }
2571
2572 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2573 {
2574 dm_thin_id dev_id;
2575 dm_thin_id origin_dev_id;
2576 int r;
2577
2578 r = check_arg_count(argc, 3);
2579 if (r)
2580 return r;
2581
2582 r = read_dev_id(argv[1], &dev_id, 1);
2583 if (r)
2584 return r;
2585
2586 r = read_dev_id(argv[2], &origin_dev_id, 1);
2587 if (r)
2588 return r;
2589
2590 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2591 if (r) {
2592 DMWARN("Creation of new snapshot %s of device %s failed.",
2593 argv[1], argv[2]);
2594 return r;
2595 }
2596
2597 return 0;
2598 }
2599
2600 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2601 {
2602 dm_thin_id dev_id;
2603 int r;
2604
2605 r = check_arg_count(argc, 2);
2606 if (r)
2607 return r;
2608
2609 r = read_dev_id(argv[1], &dev_id, 1);
2610 if (r)
2611 return r;
2612
2613 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2614 if (r)
2615 DMWARN("Deletion of thin device %s failed.", argv[1]);
2616
2617 return r;
2618 }
2619
2620 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2621 {
2622 dm_thin_id old_id, new_id;
2623 int r;
2624
2625 r = check_arg_count(argc, 3);
2626 if (r)
2627 return r;
2628
2629 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2630 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2631 return -EINVAL;
2632 }
2633
2634 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2635 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2636 return -EINVAL;
2637 }
2638
2639 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2640 if (r) {
2641 DMWARN("Failed to change transaction id from %s to %s.",
2642 argv[1], argv[2]);
2643 return r;
2644 }
2645
2646 return 0;
2647 }
2648
2649 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2650 {
2651 int r;
2652
2653 r = check_arg_count(argc, 1);
2654 if (r)
2655 return r;
2656
2657 (void) commit(pool);
2658
2659 r = dm_pool_reserve_metadata_snap(pool->pmd);
2660 if (r)
2661 DMWARN("reserve_metadata_snap message failed.");
2662
2663 return r;
2664 }
2665
2666 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2667 {
2668 int r;
2669
2670 r = check_arg_count(argc, 1);
2671 if (r)
2672 return r;
2673
2674 r = dm_pool_release_metadata_snap(pool->pmd);
2675 if (r)
2676 DMWARN("release_metadata_snap message failed.");
2677
2678 return r;
2679 }
2680
2681 /*
2682 * Messages supported:
2683 * create_thin <dev_id>
2684 * create_snap <dev_id> <origin_id>
2685 * delete <dev_id>
2686 * trim <dev_id> <new_size_in_sectors>
2687 * set_transaction_id <current_trans_id> <new_trans_id>
2688 * reserve_metadata_snap
2689 * release_metadata_snap
2690 */
2691 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2692 {
2693 int r = -EINVAL;
2694 struct pool_c *pt = ti->private;
2695 struct pool *pool = pt->pool;
2696
2697 if (!strcasecmp(argv[0], "create_thin"))
2698 r = process_create_thin_mesg(argc, argv, pool);
2699
2700 else if (!strcasecmp(argv[0], "create_snap"))
2701 r = process_create_snap_mesg(argc, argv, pool);
2702
2703 else if (!strcasecmp(argv[0], "delete"))
2704 r = process_delete_mesg(argc, argv, pool);
2705
2706 else if (!strcasecmp(argv[0], "set_transaction_id"))
2707 r = process_set_transaction_id_mesg(argc, argv, pool);
2708
2709 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2710 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2711
2712 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2713 r = process_release_metadata_snap_mesg(argc, argv, pool);
2714
2715 else
2716 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2717
2718 if (!r)
2719 (void) commit(pool);
2720
2721 return r;
2722 }
2723
2724 static void emit_flags(struct pool_features *pf, char *result,
2725 unsigned sz, unsigned maxlen)
2726 {
2727 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2728 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2729 pf->error_if_no_space;
2730 DMEMIT("%u ", count);
2731
2732 if (!pf->zero_new_blocks)
2733 DMEMIT("skip_block_zeroing ");
2734
2735 if (!pf->discard_enabled)
2736 DMEMIT("ignore_discard ");
2737
2738 if (!pf->discard_passdown)
2739 DMEMIT("no_discard_passdown ");
2740
2741 if (pf->mode == PM_READ_ONLY)
2742 DMEMIT("read_only ");
2743
2744 if (pf->error_if_no_space)
2745 DMEMIT("error_if_no_space ");
2746 }
2747
2748 /*
2749 * Status line is:
2750 * <transaction id> <used metadata sectors>/<total metadata sectors>
2751 * <used data sectors>/<total data sectors> <held metadata root>
2752 */
2753 static void pool_status(struct dm_target *ti, status_type_t type,
2754 unsigned status_flags, char *result, unsigned maxlen)
2755 {
2756 int r;
2757 unsigned sz = 0;
2758 uint64_t transaction_id;
2759 dm_block_t nr_free_blocks_data;
2760 dm_block_t nr_free_blocks_metadata;
2761 dm_block_t nr_blocks_data;
2762 dm_block_t nr_blocks_metadata;
2763 dm_block_t held_root;
2764 char buf[BDEVNAME_SIZE];
2765 char buf2[BDEVNAME_SIZE];
2766 struct pool_c *pt = ti->private;
2767 struct pool *pool = pt->pool;
2768
2769 switch (type) {
2770 case STATUSTYPE_INFO:
2771 if (get_pool_mode(pool) == PM_FAIL) {
2772 DMEMIT("Fail");
2773 break;
2774 }
2775
2776 /* Commit to ensure statistics aren't out-of-date */
2777 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2778 (void) commit(pool);
2779
2780 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2781 if (r) {
2782 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2783 dm_device_name(pool->pool_md), r);
2784 goto err;
2785 }
2786
2787 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2788 if (r) {
2789 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2790 dm_device_name(pool->pool_md), r);
2791 goto err;
2792 }
2793
2794 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2795 if (r) {
2796 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2797 dm_device_name(pool->pool_md), r);
2798 goto err;
2799 }
2800
2801 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2802 if (r) {
2803 DMERR("%s: dm_pool_get_free_block_count returned %d",
2804 dm_device_name(pool->pool_md), r);
2805 goto err;
2806 }
2807
2808 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2809 if (r) {
2810 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2811 dm_device_name(pool->pool_md), r);
2812 goto err;
2813 }
2814
2815 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2816 if (r) {
2817 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2818 dm_device_name(pool->pool_md), r);
2819 goto err;
2820 }
2821
2822 DMEMIT("%llu %llu/%llu %llu/%llu ",
2823 (unsigned long long)transaction_id,
2824 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2825 (unsigned long long)nr_blocks_metadata,
2826 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2827 (unsigned long long)nr_blocks_data);
2828
2829 if (held_root)
2830 DMEMIT("%llu ", held_root);
2831 else
2832 DMEMIT("- ");
2833
2834 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2835 DMEMIT("out_of_data_space ");
2836 else if (pool->pf.mode == PM_READ_ONLY)
2837 DMEMIT("ro ");
2838 else
2839 DMEMIT("rw ");
2840
2841 if (!pool->pf.discard_enabled)
2842 DMEMIT("ignore_discard ");
2843 else if (pool->pf.discard_passdown)
2844 DMEMIT("discard_passdown ");
2845 else
2846 DMEMIT("no_discard_passdown ");
2847
2848 if (pool->pf.error_if_no_space)
2849 DMEMIT("error_if_no_space ");
2850 else
2851 DMEMIT("queue_if_no_space ");
2852
2853 break;
2854
2855 case STATUSTYPE_TABLE:
2856 DMEMIT("%s %s %lu %llu ",
2857 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2858 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2859 (unsigned long)pool->sectors_per_block,
2860 (unsigned long long)pt->low_water_blocks);
2861 emit_flags(&pt->requested_pf, result, sz, maxlen);
2862 break;
2863 }
2864 return;
2865
2866 err:
2867 DMEMIT("Error");
2868 }
2869
2870 static int pool_iterate_devices(struct dm_target *ti,
2871 iterate_devices_callout_fn fn, void *data)
2872 {
2873 struct pool_c *pt = ti->private;
2874
2875 return fn(ti, pt->data_dev, 0, ti->len, data);
2876 }
2877
2878 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2879 struct bio_vec *biovec, int max_size)
2880 {
2881 struct pool_c *pt = ti->private;
2882 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2883
2884 if (!q->merge_bvec_fn)
2885 return max_size;
2886
2887 bvm->bi_bdev = pt->data_dev->bdev;
2888
2889 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2890 }
2891
2892 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2893 {
2894 struct pool *pool = pt->pool;
2895 struct queue_limits *data_limits;
2896
2897 limits->max_discard_sectors = pool->sectors_per_block;
2898
2899 /*
2900 * discard_granularity is just a hint, and not enforced.
2901 */
2902 if (pt->adjusted_pf.discard_passdown) {
2903 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2904 limits->discard_granularity = data_limits->discard_granularity;
2905 } else
2906 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2907 }
2908
2909 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2910 {
2911 struct pool_c *pt = ti->private;
2912 struct pool *pool = pt->pool;
2913 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2914
2915 /*
2916 * If the system-determined stacked limits are compatible with the
2917 * pool's blocksize (io_opt is a factor) do not override them.
2918 */
2919 if (io_opt_sectors < pool->sectors_per_block ||
2920 do_div(io_opt_sectors, pool->sectors_per_block)) {
2921 blk_limits_io_min(limits, 0);
2922 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2923 }
2924
2925 /*
2926 * pt->adjusted_pf is a staging area for the actual features to use.
2927 * They get transferred to the live pool in bind_control_target()
2928 * called from pool_preresume().
2929 */
2930 if (!pt->adjusted_pf.discard_enabled) {
2931 /*
2932 * Must explicitly disallow stacking discard limits otherwise the
2933 * block layer will stack them if pool's data device has support.
2934 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2935 * user to see that, so make sure to set all discard limits to 0.
2936 */
2937 limits->discard_granularity = 0;
2938 return;
2939 }
2940
2941 disable_passdown_if_not_supported(pt);
2942
2943 set_discard_limits(pt, limits);
2944 }
2945
2946 static struct target_type pool_target = {
2947 .name = "thin-pool",
2948 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2949 DM_TARGET_IMMUTABLE,
2950 .version = {1, 11, 0},
2951 .module = THIS_MODULE,
2952 .ctr = pool_ctr,
2953 .dtr = pool_dtr,
2954 .map = pool_map,
2955 .postsuspend = pool_postsuspend,
2956 .preresume = pool_preresume,
2957 .resume = pool_resume,
2958 .message = pool_message,
2959 .status = pool_status,
2960 .merge = pool_merge,
2961 .iterate_devices = pool_iterate_devices,
2962 .io_hints = pool_io_hints,
2963 };
2964
2965 /*----------------------------------------------------------------
2966 * Thin target methods
2967 *--------------------------------------------------------------*/
2968 static void thin_dtr(struct dm_target *ti)
2969 {
2970 struct thin_c *tc = ti->private;
2971
2972 mutex_lock(&dm_thin_pool_table.mutex);
2973
2974 __pool_dec(tc->pool);
2975 dm_pool_close_thin_device(tc->td);
2976 dm_put_device(ti, tc->pool_dev);
2977 if (tc->origin_dev)
2978 dm_put_device(ti, tc->origin_dev);
2979 kfree(tc);
2980
2981 mutex_unlock(&dm_thin_pool_table.mutex);
2982 }
2983
2984 /*
2985 * Thin target parameters:
2986 *
2987 * <pool_dev> <dev_id> [origin_dev]
2988 *
2989 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2990 * dev_id: the internal device identifier
2991 * origin_dev: a device external to the pool that should act as the origin
2992 *
2993 * If the pool device has discards disabled, they get disabled for the thin
2994 * device as well.
2995 */
2996 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2997 {
2998 int r;
2999 struct thin_c *tc;
3000 struct dm_dev *pool_dev, *origin_dev;
3001 struct mapped_device *pool_md;
3002
3003 mutex_lock(&dm_thin_pool_table.mutex);
3004
3005 if (argc != 2 && argc != 3) {
3006 ti->error = "Invalid argument count";
3007 r = -EINVAL;
3008 goto out_unlock;
3009 }
3010
3011 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3012 if (!tc) {
3013 ti->error = "Out of memory";
3014 r = -ENOMEM;
3015 goto out_unlock;
3016 }
3017
3018 if (argc == 3) {
3019 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3020 if (r) {
3021 ti->error = "Error opening origin device";
3022 goto bad_origin_dev;
3023 }
3024 tc->origin_dev = origin_dev;
3025 }
3026
3027 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3028 if (r) {
3029 ti->error = "Error opening pool device";
3030 goto bad_pool_dev;
3031 }
3032 tc->pool_dev = pool_dev;
3033
3034 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3035 ti->error = "Invalid device id";
3036 r = -EINVAL;
3037 goto bad_common;
3038 }
3039
3040 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3041 if (!pool_md) {
3042 ti->error = "Couldn't get pool mapped device";
3043 r = -EINVAL;
3044 goto bad_common;
3045 }
3046
3047 tc->pool = __pool_table_lookup(pool_md);
3048 if (!tc->pool) {
3049 ti->error = "Couldn't find pool object";
3050 r = -EINVAL;
3051 goto bad_pool_lookup;
3052 }
3053 __pool_inc(tc->pool);
3054
3055 if (get_pool_mode(tc->pool) == PM_FAIL) {
3056 ti->error = "Couldn't open thin device, Pool is in fail mode";
3057 r = -EINVAL;
3058 goto bad_thin_open;
3059 }
3060
3061 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3062 if (r) {
3063 ti->error = "Couldn't open thin internal device";
3064 goto bad_thin_open;
3065 }
3066
3067 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3068 if (r)
3069 goto bad_target_max_io_len;
3070
3071 ti->num_flush_bios = 1;
3072 ti->flush_supported = true;
3073 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3074
3075 /* In case the pool supports discards, pass them on. */
3076 ti->discard_zeroes_data_unsupported = true;
3077 if (tc->pool->pf.discard_enabled) {
3078 ti->discards_supported = true;
3079 ti->num_discard_bios = 1;
3080 /* Discard bios must be split on a block boundary */
3081 ti->split_discard_bios = true;
3082 }
3083
3084 dm_put(pool_md);
3085
3086 mutex_unlock(&dm_thin_pool_table.mutex);
3087
3088 return 0;
3089
3090 bad_target_max_io_len:
3091 dm_pool_close_thin_device(tc->td);
3092 bad_thin_open:
3093 __pool_dec(tc->pool);
3094 bad_pool_lookup:
3095 dm_put(pool_md);
3096 bad_common:
3097 dm_put_device(ti, tc->pool_dev);
3098 bad_pool_dev:
3099 if (tc->origin_dev)
3100 dm_put_device(ti, tc->origin_dev);
3101 bad_origin_dev:
3102 kfree(tc);
3103 out_unlock:
3104 mutex_unlock(&dm_thin_pool_table.mutex);
3105
3106 return r;
3107 }
3108
3109 static int thin_map(struct dm_target *ti, struct bio *bio)
3110 {
3111 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3112
3113 return thin_bio_map(ti, bio);
3114 }
3115
3116 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3117 {
3118 unsigned long flags;
3119 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3120 struct list_head work;
3121 struct dm_thin_new_mapping *m, *tmp;
3122 struct pool *pool = h->tc->pool;
3123
3124 if (h->shared_read_entry) {
3125 INIT_LIST_HEAD(&work);
3126 dm_deferred_entry_dec(h->shared_read_entry, &work);
3127
3128 spin_lock_irqsave(&pool->lock, flags);
3129 list_for_each_entry_safe(m, tmp, &work, list) {
3130 list_del(&m->list);
3131 m->quiesced = true;
3132 __maybe_add_mapping(m);
3133 }
3134 spin_unlock_irqrestore(&pool->lock, flags);
3135 }
3136
3137 if (h->all_io_entry) {
3138 INIT_LIST_HEAD(&work);
3139 dm_deferred_entry_dec(h->all_io_entry, &work);
3140 if (!list_empty(&work)) {
3141 spin_lock_irqsave(&pool->lock, flags);
3142 list_for_each_entry_safe(m, tmp, &work, list)
3143 list_add_tail(&m->list, &pool->prepared_discards);
3144 spin_unlock_irqrestore(&pool->lock, flags);
3145 wake_worker(pool);
3146 }
3147 }
3148
3149 return 0;
3150 }
3151
3152 static void thin_presuspend(struct dm_target *ti)
3153 {
3154 struct thin_c *tc = ti->private;
3155
3156 if (dm_noflush_suspending(ti))
3157 noflush_work(tc, do_noflush_start);
3158 }
3159
3160 static void thin_postsuspend(struct dm_target *ti)
3161 {
3162 struct thin_c *tc = ti->private;
3163
3164 /*
3165 * The dm_noflush_suspending flag has been cleared by now, so
3166 * unfortunately we must always run this.
3167 */
3168 noflush_work(tc, do_noflush_stop);
3169 }
3170
3171 /*
3172 * <nr mapped sectors> <highest mapped sector>
3173 */
3174 static void thin_status(struct dm_target *ti, status_type_t type,
3175 unsigned status_flags, char *result, unsigned maxlen)
3176 {
3177 int r;
3178 ssize_t sz = 0;
3179 dm_block_t mapped, highest;
3180 char buf[BDEVNAME_SIZE];
3181 struct thin_c *tc = ti->private;
3182
3183 if (get_pool_mode(tc->pool) == PM_FAIL) {
3184 DMEMIT("Fail");
3185 return;
3186 }
3187
3188 if (!tc->td)
3189 DMEMIT("-");
3190 else {
3191 switch (type) {
3192 case STATUSTYPE_INFO:
3193 r = dm_thin_get_mapped_count(tc->td, &mapped);
3194 if (r) {
3195 DMERR("dm_thin_get_mapped_count returned %d", r);
3196 goto err;
3197 }
3198
3199 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3200 if (r < 0) {
3201 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3202 goto err;
3203 }
3204
3205 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3206 if (r)
3207 DMEMIT("%llu", ((highest + 1) *
3208 tc->pool->sectors_per_block) - 1);
3209 else
3210 DMEMIT("-");
3211 break;
3212
3213 case STATUSTYPE_TABLE:
3214 DMEMIT("%s %lu",
3215 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3216 (unsigned long) tc->dev_id);
3217 if (tc->origin_dev)
3218 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3219 break;
3220 }
3221 }
3222
3223 return;
3224
3225 err:
3226 DMEMIT("Error");
3227 }
3228
3229 static int thin_iterate_devices(struct dm_target *ti,
3230 iterate_devices_callout_fn fn, void *data)
3231 {
3232 sector_t blocks;
3233 struct thin_c *tc = ti->private;
3234 struct pool *pool = tc->pool;
3235
3236 /*
3237 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3238 * we follow a more convoluted path through to the pool's target.
3239 */
3240 if (!pool->ti)
3241 return 0; /* nothing is bound */
3242
3243 blocks = pool->ti->len;
3244 (void) sector_div(blocks, pool->sectors_per_block);
3245 if (blocks)
3246 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3247
3248 return 0;
3249 }
3250
3251 static struct target_type thin_target = {
3252 .name = "thin",
3253 .version = {1, 11, 0},
3254 .module = THIS_MODULE,
3255 .ctr = thin_ctr,
3256 .dtr = thin_dtr,
3257 .map = thin_map,
3258 .end_io = thin_endio,
3259 .presuspend = thin_presuspend,
3260 .postsuspend = thin_postsuspend,
3261 .status = thin_status,
3262 .iterate_devices = thin_iterate_devices,
3263 };
3264
3265 /*----------------------------------------------------------------*/
3266
3267 static int __init dm_thin_init(void)
3268 {
3269 int r;
3270
3271 pool_table_init();
3272
3273 r = dm_register_target(&thin_target);
3274 if (r)
3275 return r;
3276
3277 r = dm_register_target(&pool_target);
3278 if (r)
3279 goto bad_pool_target;
3280
3281 r = -ENOMEM;
3282
3283 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3284 if (!_new_mapping_cache)
3285 goto bad_new_mapping_cache;
3286
3287 return 0;
3288
3289 bad_new_mapping_cache:
3290 dm_unregister_target(&pool_target);
3291 bad_pool_target:
3292 dm_unregister_target(&thin_target);
3293
3294 return r;
3295 }
3296
3297 static void dm_thin_exit(void)
3298 {
3299 dm_unregister_target(&thin_target);
3300 dm_unregister_target(&pool_target);
3301
3302 kmem_cache_destroy(_new_mapping_cache);
3303 }
3304
3305 module_init(dm_thin_init);
3306 module_exit(dm_thin_exit);
3307
3308 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3309 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3310 MODULE_LICENSE("GPL");
This page took 0.146269 seconds and 5 git commands to generate.