dm thin: initialize dm_thin_new_mapping returned by get_next_mapping
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154 struct list_head list;
155 struct dm_target *ti; /* Only set if a pool target is bound */
156
157 struct mapped_device *pool_md;
158 struct block_device *md_dev;
159 struct dm_pool_metadata *pmd;
160
161 dm_block_t low_water_blocks;
162 uint32_t sectors_per_block;
163 int sectors_per_block_shift;
164
165 struct pool_features pf;
166 unsigned low_water_triggered:1; /* A dm event has been sent */
167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204 * Target context for a pool.
205 */
206 struct pool_c {
207 struct dm_target *ti;
208 struct pool *pool;
209 struct dm_dev *data_dev;
210 struct dm_dev *metadata_dev;
211 struct dm_target_callbacks callbacks;
212
213 dm_block_t low_water_blocks;
214 struct pool_features requested_pf; /* Features requested during table load */
215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219 * Target context for a thin.
220 */
221 struct thin_c {
222 struct dm_dev *pool_dev;
223 struct dm_dev *origin_dev;
224 dm_thin_id dev_id;
225
226 struct pool *pool;
227 struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233 * wake_worker() is used when new work is queued and when pool_resume is
234 * ready to continue deferred IO processing.
235 */
236 static void wake_worker(struct pool *pool)
237 {
238 queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 struct dm_bio_prison_cell **cell_result)
245 {
246 int r;
247 struct dm_bio_prison_cell *cell_prealloc;
248
249 /*
250 * Allocate a cell from the prison's mempool.
251 * This might block but it can't fail.
252 */
253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 if (r)
257 /*
258 * We reused an old cell; we can get rid of
259 * the new one.
260 */
261 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263 return r;
264 }
265
266 static void cell_release(struct pool *pool,
267 struct dm_bio_prison_cell *cell,
268 struct bio_list *bios)
269 {
270 dm_cell_release(pool->prison, cell, bios);
271 dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275 struct dm_bio_prison_cell *cell,
276 struct bio_list *bios)
277 {
278 dm_cell_release_no_holder(pool->prison, cell, bios);
279 dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 struct dm_bio_prison_cell *cell)
284 {
285 struct pool *pool = tc->pool;
286 unsigned long flags;
287
288 spin_lock_irqsave(&pool->lock, flags);
289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 spin_unlock_irqrestore(&pool->lock, flags);
291
292 wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296 struct dm_bio_prison_cell *cell)
297 {
298 dm_cell_error(pool->prison, cell);
299 dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305 * A global list of pools that uses a struct mapped_device as a key.
306 */
307 static struct dm_thin_pool_table {
308 struct mutex mutex;
309 struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314 mutex_init(&dm_thin_pool_table.mutex);
315 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 struct pool *pool = NULL, *tmp;
333
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 if (tmp->pool_md == md) {
338 pool = tmp;
339 break;
340 }
341 }
342
343 return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 struct pool *pool = NULL, *tmp;
349
350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 if (tmp->md_dev == md_dev) {
354 pool = tmp;
355 break;
356 }
357 }
358
359 return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365 struct thin_c *tc;
366 struct dm_deferred_entry *shared_read_entry;
367 struct dm_deferred_entry *all_io_entry;
368 struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 struct bio *bio;
374 struct bio_list bios;
375
376 bio_list_init(&bios);
377 bio_list_merge(&bios, master);
378 bio_list_init(master);
379
380 while ((bio = bio_list_pop(&bios))) {
381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383 if (h->tc == tc)
384 bio_endio(bio, DM_ENDIO_REQUEUE);
385 else
386 bio_list_add(master, bio);
387 }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392 struct pool *pool = tc->pool;
393 unsigned long flags;
394
395 spin_lock_irqsave(&pool->lock, flags);
396 __requeue_bio_list(tc, &pool->deferred_bios);
397 __requeue_bio_list(tc, &pool->retry_on_resume_list);
398 spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402 * This section of code contains the logic for processing a thin device's IO.
403 * Much of the code depends on pool object resources (lists, workqueues, etc)
404 * but most is exclusively called from the thin target rather than the thin-pool
405 * target.
406 */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 struct pool *pool = tc->pool;
416 sector_t block_nr = bio->bi_sector;
417
418 if (block_size_is_power_of_two(pool))
419 block_nr >>= pool->sectors_per_block_shift;
420 else
421 (void) sector_div(block_nr, pool->sectors_per_block);
422
423 return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 struct pool *pool = tc->pool;
429 sector_t bi_sector = bio->bi_sector;
430
431 bio->bi_bdev = tc->pool_dev->bdev;
432 if (block_size_is_power_of_two(pool))
433 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 (bi_sector & (pool->sectors_per_block - 1));
435 else
436 bio->bi_sector = (block * pool->sectors_per_block) +
437 sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 struct dm_thin_endio_hook *h;
454
455 if (bio->bi_rw & REQ_DISCARD)
456 return;
457
458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 struct pool *pool = tc->pool;
465 unsigned long flags;
466
467 if (!bio_triggers_commit(tc, bio)) {
468 generic_make_request(bio);
469 return;
470 }
471
472 /*
473 * Complete bio with an error if earlier I/O caused changes to
474 * the metadata that can't be committed e.g, due to I/O errors
475 * on the metadata device.
476 */
477 if (dm_thin_aborted_changes(tc->td)) {
478 bio_io_error(bio);
479 return;
480 }
481
482 /*
483 * Batch together any bios that trigger commits and then issue a
484 * single commit for them in process_deferred_bios().
485 */
486 spin_lock_irqsave(&pool->lock, flags);
487 bio_list_add(&pool->deferred_flush_bios, bio);
488 spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 remap_to_origin(tc, bio);
494 issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 dm_block_t block)
499 {
500 remap(tc, bio, block);
501 issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507 * Bio endio functions.
508 */
509 struct dm_thin_new_mapping {
510 struct list_head list;
511
512 unsigned quiesced:1;
513 unsigned prepared:1;
514 unsigned pass_discard:1;
515
516 struct thin_c *tc;
517 dm_block_t virt_block;
518 dm_block_t data_block;
519 struct dm_bio_prison_cell *cell, *cell2;
520 int err;
521
522 /*
523 * If the bio covers the whole area of a block then we can avoid
524 * zeroing or copying. Instead this bio is hooked. The bio will
525 * still be in the cell, so care has to be taken to avoid issuing
526 * the bio twice.
527 */
528 struct bio *bio;
529 bio_end_io_t *saved_bi_end_io;
530 };
531
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 struct pool *pool = m->tc->pool;
535
536 if (m->quiesced && m->prepared) {
537 list_add(&m->list, &pool->prepared_mappings);
538 wake_worker(pool);
539 }
540 }
541
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 unsigned long flags;
545 struct dm_thin_new_mapping *m = context;
546 struct pool *pool = m->tc->pool;
547
548 m->err = read_err || write_err ? -EIO : 0;
549
550 spin_lock_irqsave(&pool->lock, flags);
551 m->prepared = 1;
552 __maybe_add_mapping(m);
553 spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 unsigned long flags;
559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 struct pool *pool = m->tc->pool;
562
563 m->err = err;
564
565 spin_lock_irqsave(&pool->lock, flags);
566 m->prepared = 1;
567 __maybe_add_mapping(m);
568 spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574 * Workqueue.
575 */
576
577 /*
578 * Prepared mapping jobs.
579 */
580
581 /*
582 * This sends the bios in the cell back to the deferred_bios list.
583 */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 struct pool *pool = tc->pool;
587 unsigned long flags;
588
589 spin_lock_irqsave(&pool->lock, flags);
590 cell_release(pool, cell, &pool->deferred_bios);
591 spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593 wake_worker(pool);
594 }
595
596 /*
597 * Same as cell_defer above, except it omits the original holder of the cell.
598 */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 struct pool *pool = tc->pool;
602 unsigned long flags;
603
604 spin_lock_irqsave(&pool->lock, flags);
605 cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 spin_unlock_irqrestore(&pool->lock, flags);
607
608 wake_worker(pool);
609 }
610
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 if (m->bio)
614 m->bio->bi_end_io = m->saved_bi_end_io;
615 cell_error(m->tc->pool, m->cell);
616 list_del(&m->list);
617 mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 struct thin_c *tc = m->tc;
623 struct pool *pool = tc->pool;
624 struct bio *bio;
625 int r;
626
627 bio = m->bio;
628 if (bio)
629 bio->bi_end_io = m->saved_bi_end_io;
630
631 if (m->err) {
632 cell_error(pool, m->cell);
633 goto out;
634 }
635
636 /*
637 * Commit the prepared block into the mapping btree.
638 * Any I/O for this block arriving after this point will get
639 * remapped to it directly.
640 */
641 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 if (r) {
643 DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
644 dm_device_name(pool->pool_md), r);
645 set_pool_mode(pool, PM_READ_ONLY);
646 cell_error(pool, m->cell);
647 goto out;
648 }
649
650 /*
651 * Release any bios held while the block was being provisioned.
652 * If we are processing a write bio that completely covers the block,
653 * we already processed it so can ignore it now when processing
654 * the bios in the cell.
655 */
656 if (bio) {
657 cell_defer_no_holder(tc, m->cell);
658 bio_endio(bio, 0);
659 } else
660 cell_defer(tc, m->cell);
661
662 out:
663 list_del(&m->list);
664 mempool_free(m, pool->mapping_pool);
665 }
666
667 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 {
669 struct thin_c *tc = m->tc;
670
671 bio_io_error(m->bio);
672 cell_defer_no_holder(tc, m->cell);
673 cell_defer_no_holder(tc, m->cell2);
674 mempool_free(m, tc->pool->mapping_pool);
675 }
676
677 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 {
679 struct thin_c *tc = m->tc;
680
681 inc_all_io_entry(tc->pool, m->bio);
682 cell_defer_no_holder(tc, m->cell);
683 cell_defer_no_holder(tc, m->cell2);
684
685 if (m->pass_discard)
686 remap_and_issue(tc, m->bio, m->data_block);
687 else
688 bio_endio(m->bio, 0);
689
690 mempool_free(m, tc->pool->mapping_pool);
691 }
692
693 static void process_prepared_discard(struct dm_thin_new_mapping *m)
694 {
695 int r;
696 struct thin_c *tc = m->tc;
697
698 r = dm_thin_remove_block(tc->td, m->virt_block);
699 if (r)
700 DMERR_LIMIT("dm_thin_remove_block() failed");
701
702 process_prepared_discard_passdown(m);
703 }
704
705 static void process_prepared(struct pool *pool, struct list_head *head,
706 process_mapping_fn *fn)
707 {
708 unsigned long flags;
709 struct list_head maps;
710 struct dm_thin_new_mapping *m, *tmp;
711
712 INIT_LIST_HEAD(&maps);
713 spin_lock_irqsave(&pool->lock, flags);
714 list_splice_init(head, &maps);
715 spin_unlock_irqrestore(&pool->lock, flags);
716
717 list_for_each_entry_safe(m, tmp, &maps, list)
718 (*fn)(m);
719 }
720
721 /*
722 * Deferred bio jobs.
723 */
724 static int io_overlaps_block(struct pool *pool, struct bio *bio)
725 {
726 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
727 }
728
729 static int io_overwrites_block(struct pool *pool, struct bio *bio)
730 {
731 return (bio_data_dir(bio) == WRITE) &&
732 io_overlaps_block(pool, bio);
733 }
734
735 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
736 bio_end_io_t *fn)
737 {
738 *save = bio->bi_end_io;
739 bio->bi_end_io = fn;
740 }
741
742 static int ensure_next_mapping(struct pool *pool)
743 {
744 if (pool->next_mapping)
745 return 0;
746
747 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
748
749 return pool->next_mapping ? 0 : -ENOMEM;
750 }
751
752 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
753 {
754 struct dm_thin_new_mapping *m = pool->next_mapping;
755
756 BUG_ON(!pool->next_mapping);
757
758 memset(m, 0, sizeof(struct dm_thin_new_mapping));
759 INIT_LIST_HEAD(&m->list);
760 m->bio = NULL;
761
762 pool->next_mapping = NULL;
763
764 return m;
765 }
766
767 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
768 struct dm_dev *origin, dm_block_t data_origin,
769 dm_block_t data_dest,
770 struct dm_bio_prison_cell *cell, struct bio *bio)
771 {
772 int r;
773 struct pool *pool = tc->pool;
774 struct dm_thin_new_mapping *m = get_next_mapping(pool);
775
776 m->tc = tc;
777 m->virt_block = virt_block;
778 m->data_block = data_dest;
779 m->cell = cell;
780
781 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
782 m->quiesced = 1;
783
784 /*
785 * IO to pool_dev remaps to the pool target's data_dev.
786 *
787 * If the whole block of data is being overwritten, we can issue the
788 * bio immediately. Otherwise we use kcopyd to clone the data first.
789 */
790 if (io_overwrites_block(pool, bio)) {
791 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
792
793 h->overwrite_mapping = m;
794 m->bio = bio;
795 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
796 inc_all_io_entry(pool, bio);
797 remap_and_issue(tc, bio, data_dest);
798 } else {
799 struct dm_io_region from, to;
800
801 from.bdev = origin->bdev;
802 from.sector = data_origin * pool->sectors_per_block;
803 from.count = pool->sectors_per_block;
804
805 to.bdev = tc->pool_dev->bdev;
806 to.sector = data_dest * pool->sectors_per_block;
807 to.count = pool->sectors_per_block;
808
809 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
810 0, copy_complete, m);
811 if (r < 0) {
812 mempool_free(m, pool->mapping_pool);
813 DMERR_LIMIT("dm_kcopyd_copy() failed");
814 cell_error(pool, cell);
815 }
816 }
817 }
818
819 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
820 dm_block_t data_origin, dm_block_t data_dest,
821 struct dm_bio_prison_cell *cell, struct bio *bio)
822 {
823 schedule_copy(tc, virt_block, tc->pool_dev,
824 data_origin, data_dest, cell, bio);
825 }
826
827 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
828 dm_block_t data_dest,
829 struct dm_bio_prison_cell *cell, struct bio *bio)
830 {
831 schedule_copy(tc, virt_block, tc->origin_dev,
832 virt_block, data_dest, cell, bio);
833 }
834
835 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
836 dm_block_t data_block, struct dm_bio_prison_cell *cell,
837 struct bio *bio)
838 {
839 struct pool *pool = tc->pool;
840 struct dm_thin_new_mapping *m = get_next_mapping(pool);
841
842 m->quiesced = 1;
843 m->prepared = 0;
844 m->tc = tc;
845 m->virt_block = virt_block;
846 m->data_block = data_block;
847 m->cell = cell;
848
849 /*
850 * If the whole block of data is being overwritten or we are not
851 * zeroing pre-existing data, we can issue the bio immediately.
852 * Otherwise we use kcopyd to zero the data first.
853 */
854 if (!pool->pf.zero_new_blocks)
855 process_prepared_mapping(m);
856
857 else if (io_overwrites_block(pool, bio)) {
858 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
859
860 h->overwrite_mapping = m;
861 m->bio = bio;
862 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
863 inc_all_io_entry(pool, bio);
864 remap_and_issue(tc, bio, data_block);
865 } else {
866 int r;
867 struct dm_io_region to;
868
869 to.bdev = tc->pool_dev->bdev;
870 to.sector = data_block * pool->sectors_per_block;
871 to.count = pool->sectors_per_block;
872
873 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
874 if (r < 0) {
875 mempool_free(m, pool->mapping_pool);
876 DMERR_LIMIT("dm_kcopyd_zero() failed");
877 cell_error(pool, cell);
878 }
879 }
880 }
881
882 /*
883 * A non-zero return indicates read_only or fail_io mode.
884 * Many callers don't care about the return value.
885 */
886 static int commit(struct pool *pool)
887 {
888 int r;
889
890 if (get_pool_mode(pool) != PM_WRITE)
891 return -EINVAL;
892
893 r = dm_pool_commit_metadata(pool->pmd);
894 if (r) {
895 DMERR_LIMIT("%s: dm_pool_commit_metadata failed: error = %d",
896 dm_device_name(pool->pool_md), r);
897 set_pool_mode(pool, PM_READ_ONLY);
898 }
899
900 return r;
901 }
902
903 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
904 {
905 int r;
906 dm_block_t free_blocks;
907 unsigned long flags;
908 struct pool *pool = tc->pool;
909
910 /*
911 * Once no_free_space is set we must not allow allocation to succeed.
912 * Otherwise it is difficult to explain, debug, test and support.
913 */
914 if (pool->no_free_space)
915 return -ENOSPC;
916
917 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
918 if (r)
919 return r;
920
921 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
922 DMWARN("%s: reached low water mark for data device: sending event.",
923 dm_device_name(pool->pool_md));
924 spin_lock_irqsave(&pool->lock, flags);
925 pool->low_water_triggered = 1;
926 spin_unlock_irqrestore(&pool->lock, flags);
927 dm_table_event(pool->ti->table);
928 }
929
930 if (!free_blocks) {
931 /*
932 * Try to commit to see if that will free up some
933 * more space.
934 */
935 r = commit(pool);
936 if (r)
937 return r;
938
939 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
940 if (r)
941 return r;
942
943 /*
944 * If we still have no space we set a flag to avoid
945 * doing all this checking and return -ENOSPC. This
946 * flag serves as a latch that disallows allocations from
947 * this pool until the admin takes action (e.g. resize or
948 * table reload).
949 */
950 if (!free_blocks) {
951 DMWARN("%s: no free data space available.",
952 dm_device_name(pool->pool_md));
953 spin_lock_irqsave(&pool->lock, flags);
954 pool->no_free_space = 1;
955 spin_unlock_irqrestore(&pool->lock, flags);
956 return -ENOSPC;
957 }
958 }
959
960 r = dm_pool_alloc_data_block(pool->pmd, result);
961 if (r) {
962 if (r == -ENOSPC &&
963 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
964 !free_blocks) {
965 DMWARN("%s: no free metadata space available.",
966 dm_device_name(pool->pool_md));
967 set_pool_mode(pool, PM_READ_ONLY);
968 }
969 return r;
970 }
971
972 return 0;
973 }
974
975 /*
976 * If we have run out of space, queue bios until the device is
977 * resumed, presumably after having been reloaded with more space.
978 */
979 static void retry_on_resume(struct bio *bio)
980 {
981 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
982 struct thin_c *tc = h->tc;
983 struct pool *pool = tc->pool;
984 unsigned long flags;
985
986 spin_lock_irqsave(&pool->lock, flags);
987 bio_list_add(&pool->retry_on_resume_list, bio);
988 spin_unlock_irqrestore(&pool->lock, flags);
989 }
990
991 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
992 {
993 struct bio *bio;
994 struct bio_list bios;
995
996 bio_list_init(&bios);
997 cell_release(pool, cell, &bios);
998
999 while ((bio = bio_list_pop(&bios)))
1000 retry_on_resume(bio);
1001 }
1002
1003 static void process_discard(struct thin_c *tc, struct bio *bio)
1004 {
1005 int r;
1006 unsigned long flags;
1007 struct pool *pool = tc->pool;
1008 struct dm_bio_prison_cell *cell, *cell2;
1009 struct dm_cell_key key, key2;
1010 dm_block_t block = get_bio_block(tc, bio);
1011 struct dm_thin_lookup_result lookup_result;
1012 struct dm_thin_new_mapping *m;
1013
1014 build_virtual_key(tc->td, block, &key);
1015 if (bio_detain(tc->pool, &key, bio, &cell))
1016 return;
1017
1018 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1019 switch (r) {
1020 case 0:
1021 /*
1022 * Check nobody is fiddling with this pool block. This can
1023 * happen if someone's in the process of breaking sharing
1024 * on this block.
1025 */
1026 build_data_key(tc->td, lookup_result.block, &key2);
1027 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1028 cell_defer_no_holder(tc, cell);
1029 break;
1030 }
1031
1032 if (io_overlaps_block(pool, bio)) {
1033 /*
1034 * IO may still be going to the destination block. We must
1035 * quiesce before we can do the removal.
1036 */
1037 m = get_next_mapping(pool);
1038 m->tc = tc;
1039 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1040 m->virt_block = block;
1041 m->data_block = lookup_result.block;
1042 m->cell = cell;
1043 m->cell2 = cell2;
1044 m->bio = bio;
1045
1046 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1047 spin_lock_irqsave(&pool->lock, flags);
1048 list_add(&m->list, &pool->prepared_discards);
1049 spin_unlock_irqrestore(&pool->lock, flags);
1050 wake_worker(pool);
1051 }
1052 } else {
1053 inc_all_io_entry(pool, bio);
1054 cell_defer_no_holder(tc, cell);
1055 cell_defer_no_holder(tc, cell2);
1056
1057 /*
1058 * The DM core makes sure that the discard doesn't span
1059 * a block boundary. So we submit the discard of a
1060 * partial block appropriately.
1061 */
1062 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1063 remap_and_issue(tc, bio, lookup_result.block);
1064 else
1065 bio_endio(bio, 0);
1066 }
1067 break;
1068
1069 case -ENODATA:
1070 /*
1071 * It isn't provisioned, just forget it.
1072 */
1073 cell_defer_no_holder(tc, cell);
1074 bio_endio(bio, 0);
1075 break;
1076
1077 default:
1078 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1079 __func__, r);
1080 cell_defer_no_holder(tc, cell);
1081 bio_io_error(bio);
1082 break;
1083 }
1084 }
1085
1086 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1087 struct dm_cell_key *key,
1088 struct dm_thin_lookup_result *lookup_result,
1089 struct dm_bio_prison_cell *cell)
1090 {
1091 int r;
1092 dm_block_t data_block;
1093 struct pool *pool = tc->pool;
1094
1095 r = alloc_data_block(tc, &data_block);
1096 switch (r) {
1097 case 0:
1098 schedule_internal_copy(tc, block, lookup_result->block,
1099 data_block, cell, bio);
1100 break;
1101
1102 case -ENOSPC:
1103 no_space(pool, cell);
1104 break;
1105
1106 default:
1107 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1108 __func__, r);
1109 set_pool_mode(pool, PM_READ_ONLY);
1110 cell_error(pool, cell);
1111 break;
1112 }
1113 }
1114
1115 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1116 dm_block_t block,
1117 struct dm_thin_lookup_result *lookup_result)
1118 {
1119 struct dm_bio_prison_cell *cell;
1120 struct pool *pool = tc->pool;
1121 struct dm_cell_key key;
1122
1123 /*
1124 * If cell is already occupied, then sharing is already in the process
1125 * of being broken so we have nothing further to do here.
1126 */
1127 build_data_key(tc->td, lookup_result->block, &key);
1128 if (bio_detain(pool, &key, bio, &cell))
1129 return;
1130
1131 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1132 break_sharing(tc, bio, block, &key, lookup_result, cell);
1133 else {
1134 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1135
1136 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1137 inc_all_io_entry(pool, bio);
1138 cell_defer_no_holder(tc, cell);
1139
1140 remap_and_issue(tc, bio, lookup_result->block);
1141 }
1142 }
1143
1144 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1145 struct dm_bio_prison_cell *cell)
1146 {
1147 int r;
1148 dm_block_t data_block;
1149 struct pool *pool = tc->pool;
1150
1151 /*
1152 * Remap empty bios (flushes) immediately, without provisioning.
1153 */
1154 if (!bio->bi_size) {
1155 inc_all_io_entry(pool, bio);
1156 cell_defer_no_holder(tc, cell);
1157
1158 remap_and_issue(tc, bio, 0);
1159 return;
1160 }
1161
1162 /*
1163 * Fill read bios with zeroes and complete them immediately.
1164 */
1165 if (bio_data_dir(bio) == READ) {
1166 zero_fill_bio(bio);
1167 cell_defer_no_holder(tc, cell);
1168 bio_endio(bio, 0);
1169 return;
1170 }
1171
1172 r = alloc_data_block(tc, &data_block);
1173 switch (r) {
1174 case 0:
1175 if (tc->origin_dev)
1176 schedule_external_copy(tc, block, data_block, cell, bio);
1177 else
1178 schedule_zero(tc, block, data_block, cell, bio);
1179 break;
1180
1181 case -ENOSPC:
1182 no_space(pool, cell);
1183 break;
1184
1185 default:
1186 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1187 __func__, r);
1188 set_pool_mode(pool, PM_READ_ONLY);
1189 cell_error(pool, cell);
1190 break;
1191 }
1192 }
1193
1194 static void process_bio(struct thin_c *tc, struct bio *bio)
1195 {
1196 int r;
1197 struct pool *pool = tc->pool;
1198 dm_block_t block = get_bio_block(tc, bio);
1199 struct dm_bio_prison_cell *cell;
1200 struct dm_cell_key key;
1201 struct dm_thin_lookup_result lookup_result;
1202
1203 /*
1204 * If cell is already occupied, then the block is already
1205 * being provisioned so we have nothing further to do here.
1206 */
1207 build_virtual_key(tc->td, block, &key);
1208 if (bio_detain(pool, &key, bio, &cell))
1209 return;
1210
1211 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1212 switch (r) {
1213 case 0:
1214 if (lookup_result.shared) {
1215 process_shared_bio(tc, bio, block, &lookup_result);
1216 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1217 } else {
1218 inc_all_io_entry(pool, bio);
1219 cell_defer_no_holder(tc, cell);
1220
1221 remap_and_issue(tc, bio, lookup_result.block);
1222 }
1223 break;
1224
1225 case -ENODATA:
1226 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1227 inc_all_io_entry(pool, bio);
1228 cell_defer_no_holder(tc, cell);
1229
1230 remap_to_origin_and_issue(tc, bio);
1231 } else
1232 provision_block(tc, bio, block, cell);
1233 break;
1234
1235 default:
1236 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1237 __func__, r);
1238 cell_defer_no_holder(tc, cell);
1239 bio_io_error(bio);
1240 break;
1241 }
1242 }
1243
1244 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1245 {
1246 int r;
1247 int rw = bio_data_dir(bio);
1248 dm_block_t block = get_bio_block(tc, bio);
1249 struct dm_thin_lookup_result lookup_result;
1250
1251 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1252 switch (r) {
1253 case 0:
1254 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1255 bio_io_error(bio);
1256 else {
1257 inc_all_io_entry(tc->pool, bio);
1258 remap_and_issue(tc, bio, lookup_result.block);
1259 }
1260 break;
1261
1262 case -ENODATA:
1263 if (rw != READ) {
1264 bio_io_error(bio);
1265 break;
1266 }
1267
1268 if (tc->origin_dev) {
1269 inc_all_io_entry(tc->pool, bio);
1270 remap_to_origin_and_issue(tc, bio);
1271 break;
1272 }
1273
1274 zero_fill_bio(bio);
1275 bio_endio(bio, 0);
1276 break;
1277
1278 default:
1279 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1280 __func__, r);
1281 bio_io_error(bio);
1282 break;
1283 }
1284 }
1285
1286 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1287 {
1288 bio_io_error(bio);
1289 }
1290
1291 /*
1292 * FIXME: should we also commit due to size of transaction, measured in
1293 * metadata blocks?
1294 */
1295 static int need_commit_due_to_time(struct pool *pool)
1296 {
1297 return jiffies < pool->last_commit_jiffies ||
1298 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1299 }
1300
1301 static void process_deferred_bios(struct pool *pool)
1302 {
1303 unsigned long flags;
1304 struct bio *bio;
1305 struct bio_list bios;
1306
1307 bio_list_init(&bios);
1308
1309 spin_lock_irqsave(&pool->lock, flags);
1310 bio_list_merge(&bios, &pool->deferred_bios);
1311 bio_list_init(&pool->deferred_bios);
1312 spin_unlock_irqrestore(&pool->lock, flags);
1313
1314 while ((bio = bio_list_pop(&bios))) {
1315 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1316 struct thin_c *tc = h->tc;
1317
1318 /*
1319 * If we've got no free new_mapping structs, and processing
1320 * this bio might require one, we pause until there are some
1321 * prepared mappings to process.
1322 */
1323 if (ensure_next_mapping(pool)) {
1324 spin_lock_irqsave(&pool->lock, flags);
1325 bio_list_merge(&pool->deferred_bios, &bios);
1326 spin_unlock_irqrestore(&pool->lock, flags);
1327
1328 break;
1329 }
1330
1331 if (bio->bi_rw & REQ_DISCARD)
1332 pool->process_discard(tc, bio);
1333 else
1334 pool->process_bio(tc, bio);
1335 }
1336
1337 /*
1338 * If there are any deferred flush bios, we must commit
1339 * the metadata before issuing them.
1340 */
1341 bio_list_init(&bios);
1342 spin_lock_irqsave(&pool->lock, flags);
1343 bio_list_merge(&bios, &pool->deferred_flush_bios);
1344 bio_list_init(&pool->deferred_flush_bios);
1345 spin_unlock_irqrestore(&pool->lock, flags);
1346
1347 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1348 return;
1349
1350 if (commit(pool)) {
1351 while ((bio = bio_list_pop(&bios)))
1352 bio_io_error(bio);
1353 return;
1354 }
1355 pool->last_commit_jiffies = jiffies;
1356
1357 while ((bio = bio_list_pop(&bios)))
1358 generic_make_request(bio);
1359 }
1360
1361 static void do_worker(struct work_struct *ws)
1362 {
1363 struct pool *pool = container_of(ws, struct pool, worker);
1364
1365 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1366 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1367 process_deferred_bios(pool);
1368 }
1369
1370 /*
1371 * We want to commit periodically so that not too much
1372 * unwritten data builds up.
1373 */
1374 static void do_waker(struct work_struct *ws)
1375 {
1376 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1377 wake_worker(pool);
1378 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1379 }
1380
1381 /*----------------------------------------------------------------*/
1382
1383 static enum pool_mode get_pool_mode(struct pool *pool)
1384 {
1385 return pool->pf.mode;
1386 }
1387
1388 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1389 {
1390 int r;
1391
1392 pool->pf.mode = mode;
1393
1394 switch (mode) {
1395 case PM_FAIL:
1396 DMERR("%s: switching pool to failure mode",
1397 dm_device_name(pool->pool_md));
1398 dm_pool_metadata_read_only(pool->pmd);
1399 pool->process_bio = process_bio_fail;
1400 pool->process_discard = process_bio_fail;
1401 pool->process_prepared_mapping = process_prepared_mapping_fail;
1402 pool->process_prepared_discard = process_prepared_discard_fail;
1403 break;
1404
1405 case PM_READ_ONLY:
1406 DMERR("%s: switching pool to read-only mode",
1407 dm_device_name(pool->pool_md));
1408 r = dm_pool_abort_metadata(pool->pmd);
1409 if (r) {
1410 DMERR("%s: aborting transaction failed",
1411 dm_device_name(pool->pool_md));
1412 set_pool_mode(pool, PM_FAIL);
1413 } else {
1414 dm_pool_metadata_read_only(pool->pmd);
1415 pool->process_bio = process_bio_read_only;
1416 pool->process_discard = process_discard;
1417 pool->process_prepared_mapping = process_prepared_mapping_fail;
1418 pool->process_prepared_discard = process_prepared_discard_passdown;
1419 }
1420 break;
1421
1422 case PM_WRITE:
1423 dm_pool_metadata_read_write(pool->pmd);
1424 pool->process_bio = process_bio;
1425 pool->process_discard = process_discard;
1426 pool->process_prepared_mapping = process_prepared_mapping;
1427 pool->process_prepared_discard = process_prepared_discard;
1428 break;
1429 }
1430 }
1431
1432 /*----------------------------------------------------------------*/
1433
1434 /*
1435 * Mapping functions.
1436 */
1437
1438 /*
1439 * Called only while mapping a thin bio to hand it over to the workqueue.
1440 */
1441 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1442 {
1443 unsigned long flags;
1444 struct pool *pool = tc->pool;
1445
1446 spin_lock_irqsave(&pool->lock, flags);
1447 bio_list_add(&pool->deferred_bios, bio);
1448 spin_unlock_irqrestore(&pool->lock, flags);
1449
1450 wake_worker(pool);
1451 }
1452
1453 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1454 {
1455 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1456
1457 h->tc = tc;
1458 h->shared_read_entry = NULL;
1459 h->all_io_entry = NULL;
1460 h->overwrite_mapping = NULL;
1461 }
1462
1463 /*
1464 * Non-blocking function called from the thin target's map function.
1465 */
1466 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1467 {
1468 int r;
1469 struct thin_c *tc = ti->private;
1470 dm_block_t block = get_bio_block(tc, bio);
1471 struct dm_thin_device *td = tc->td;
1472 struct dm_thin_lookup_result result;
1473 struct dm_bio_prison_cell cell1, cell2;
1474 struct dm_bio_prison_cell *cell_result;
1475 struct dm_cell_key key;
1476
1477 thin_hook_bio(tc, bio);
1478
1479 if (get_pool_mode(tc->pool) == PM_FAIL) {
1480 bio_io_error(bio);
1481 return DM_MAPIO_SUBMITTED;
1482 }
1483
1484 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1485 thin_defer_bio(tc, bio);
1486 return DM_MAPIO_SUBMITTED;
1487 }
1488
1489 r = dm_thin_find_block(td, block, 0, &result);
1490
1491 /*
1492 * Note that we defer readahead too.
1493 */
1494 switch (r) {
1495 case 0:
1496 if (unlikely(result.shared)) {
1497 /*
1498 * We have a race condition here between the
1499 * result.shared value returned by the lookup and
1500 * snapshot creation, which may cause new
1501 * sharing.
1502 *
1503 * To avoid this always quiesce the origin before
1504 * taking the snap. You want to do this anyway to
1505 * ensure a consistent application view
1506 * (i.e. lockfs).
1507 *
1508 * More distant ancestors are irrelevant. The
1509 * shared flag will be set in their case.
1510 */
1511 thin_defer_bio(tc, bio);
1512 return DM_MAPIO_SUBMITTED;
1513 }
1514
1515 build_virtual_key(tc->td, block, &key);
1516 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1517 return DM_MAPIO_SUBMITTED;
1518
1519 build_data_key(tc->td, result.block, &key);
1520 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1521 cell_defer_no_holder_no_free(tc, &cell1);
1522 return DM_MAPIO_SUBMITTED;
1523 }
1524
1525 inc_all_io_entry(tc->pool, bio);
1526 cell_defer_no_holder_no_free(tc, &cell2);
1527 cell_defer_no_holder_no_free(tc, &cell1);
1528
1529 remap(tc, bio, result.block);
1530 return DM_MAPIO_REMAPPED;
1531
1532 case -ENODATA:
1533 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1534 /*
1535 * This block isn't provisioned, and we have no way
1536 * of doing so. Just error it.
1537 */
1538 bio_io_error(bio);
1539 return DM_MAPIO_SUBMITTED;
1540 }
1541 /* fall through */
1542
1543 case -EWOULDBLOCK:
1544 /*
1545 * In future, the failed dm_thin_find_block above could
1546 * provide the hint to load the metadata into cache.
1547 */
1548 thin_defer_bio(tc, bio);
1549 return DM_MAPIO_SUBMITTED;
1550
1551 default:
1552 /*
1553 * Must always call bio_io_error on failure.
1554 * dm_thin_find_block can fail with -EINVAL if the
1555 * pool is switched to fail-io mode.
1556 */
1557 bio_io_error(bio);
1558 return DM_MAPIO_SUBMITTED;
1559 }
1560 }
1561
1562 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1563 {
1564 int r;
1565 unsigned long flags;
1566 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1567
1568 spin_lock_irqsave(&pt->pool->lock, flags);
1569 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1570 spin_unlock_irqrestore(&pt->pool->lock, flags);
1571
1572 if (!r) {
1573 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1574 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1575 }
1576
1577 return r;
1578 }
1579
1580 static void __requeue_bios(struct pool *pool)
1581 {
1582 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1583 bio_list_init(&pool->retry_on_resume_list);
1584 }
1585
1586 /*----------------------------------------------------------------
1587 * Binding of control targets to a pool object
1588 *--------------------------------------------------------------*/
1589 static bool data_dev_supports_discard(struct pool_c *pt)
1590 {
1591 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1592
1593 return q && blk_queue_discard(q);
1594 }
1595
1596 static bool is_factor(sector_t block_size, uint32_t n)
1597 {
1598 return !sector_div(block_size, n);
1599 }
1600
1601 /*
1602 * If discard_passdown was enabled verify that the data device
1603 * supports discards. Disable discard_passdown if not.
1604 */
1605 static void disable_passdown_if_not_supported(struct pool_c *pt)
1606 {
1607 struct pool *pool = pt->pool;
1608 struct block_device *data_bdev = pt->data_dev->bdev;
1609 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1610 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1611 const char *reason = NULL;
1612 char buf[BDEVNAME_SIZE];
1613
1614 if (!pt->adjusted_pf.discard_passdown)
1615 return;
1616
1617 if (!data_dev_supports_discard(pt))
1618 reason = "discard unsupported";
1619
1620 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1621 reason = "max discard sectors smaller than a block";
1622
1623 else if (data_limits->discard_granularity > block_size)
1624 reason = "discard granularity larger than a block";
1625
1626 else if (!is_factor(block_size, data_limits->discard_granularity))
1627 reason = "discard granularity not a factor of block size";
1628
1629 if (reason) {
1630 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1631 pt->adjusted_pf.discard_passdown = false;
1632 }
1633 }
1634
1635 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1636 {
1637 struct pool_c *pt = ti->private;
1638
1639 /*
1640 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1641 */
1642 enum pool_mode old_mode = pool->pf.mode;
1643 enum pool_mode new_mode = pt->adjusted_pf.mode;
1644
1645 /*
1646 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1647 * not going to recover without a thin_repair. So we never let the
1648 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1649 * may have been due to a lack of metadata or data space, and may
1650 * now work (ie. if the underlying devices have been resized).
1651 */
1652 if (old_mode == PM_FAIL)
1653 new_mode = old_mode;
1654
1655 pool->ti = ti;
1656 pool->low_water_blocks = pt->low_water_blocks;
1657 pool->pf = pt->adjusted_pf;
1658
1659 set_pool_mode(pool, new_mode);
1660
1661 return 0;
1662 }
1663
1664 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1665 {
1666 if (pool->ti == ti)
1667 pool->ti = NULL;
1668 }
1669
1670 /*----------------------------------------------------------------
1671 * Pool creation
1672 *--------------------------------------------------------------*/
1673 /* Initialize pool features. */
1674 static void pool_features_init(struct pool_features *pf)
1675 {
1676 pf->mode = PM_WRITE;
1677 pf->zero_new_blocks = true;
1678 pf->discard_enabled = true;
1679 pf->discard_passdown = true;
1680 }
1681
1682 static void __pool_destroy(struct pool *pool)
1683 {
1684 __pool_table_remove(pool);
1685
1686 if (dm_pool_metadata_close(pool->pmd) < 0)
1687 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1688
1689 dm_bio_prison_destroy(pool->prison);
1690 dm_kcopyd_client_destroy(pool->copier);
1691
1692 if (pool->wq)
1693 destroy_workqueue(pool->wq);
1694
1695 if (pool->next_mapping)
1696 mempool_free(pool->next_mapping, pool->mapping_pool);
1697 mempool_destroy(pool->mapping_pool);
1698 dm_deferred_set_destroy(pool->shared_read_ds);
1699 dm_deferred_set_destroy(pool->all_io_ds);
1700 kfree(pool);
1701 }
1702
1703 static struct kmem_cache *_new_mapping_cache;
1704
1705 static struct pool *pool_create(struct mapped_device *pool_md,
1706 struct block_device *metadata_dev,
1707 unsigned long block_size,
1708 int read_only, char **error)
1709 {
1710 int r;
1711 void *err_p;
1712 struct pool *pool;
1713 struct dm_pool_metadata *pmd;
1714 bool format_device = read_only ? false : true;
1715
1716 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1717 if (IS_ERR(pmd)) {
1718 *error = "Error creating metadata object";
1719 return (struct pool *)pmd;
1720 }
1721
1722 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1723 if (!pool) {
1724 *error = "Error allocating memory for pool";
1725 err_p = ERR_PTR(-ENOMEM);
1726 goto bad_pool;
1727 }
1728
1729 pool->pmd = pmd;
1730 pool->sectors_per_block = block_size;
1731 if (block_size & (block_size - 1))
1732 pool->sectors_per_block_shift = -1;
1733 else
1734 pool->sectors_per_block_shift = __ffs(block_size);
1735 pool->low_water_blocks = 0;
1736 pool_features_init(&pool->pf);
1737 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1738 if (!pool->prison) {
1739 *error = "Error creating pool's bio prison";
1740 err_p = ERR_PTR(-ENOMEM);
1741 goto bad_prison;
1742 }
1743
1744 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1745 if (IS_ERR(pool->copier)) {
1746 r = PTR_ERR(pool->copier);
1747 *error = "Error creating pool's kcopyd client";
1748 err_p = ERR_PTR(r);
1749 goto bad_kcopyd_client;
1750 }
1751
1752 /*
1753 * Create singlethreaded workqueue that will service all devices
1754 * that use this metadata.
1755 */
1756 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1757 if (!pool->wq) {
1758 *error = "Error creating pool's workqueue";
1759 err_p = ERR_PTR(-ENOMEM);
1760 goto bad_wq;
1761 }
1762
1763 INIT_WORK(&pool->worker, do_worker);
1764 INIT_DELAYED_WORK(&pool->waker, do_waker);
1765 spin_lock_init(&pool->lock);
1766 bio_list_init(&pool->deferred_bios);
1767 bio_list_init(&pool->deferred_flush_bios);
1768 INIT_LIST_HEAD(&pool->prepared_mappings);
1769 INIT_LIST_HEAD(&pool->prepared_discards);
1770 pool->low_water_triggered = 0;
1771 pool->no_free_space = 0;
1772 bio_list_init(&pool->retry_on_resume_list);
1773
1774 pool->shared_read_ds = dm_deferred_set_create();
1775 if (!pool->shared_read_ds) {
1776 *error = "Error creating pool's shared read deferred set";
1777 err_p = ERR_PTR(-ENOMEM);
1778 goto bad_shared_read_ds;
1779 }
1780
1781 pool->all_io_ds = dm_deferred_set_create();
1782 if (!pool->all_io_ds) {
1783 *error = "Error creating pool's all io deferred set";
1784 err_p = ERR_PTR(-ENOMEM);
1785 goto bad_all_io_ds;
1786 }
1787
1788 pool->next_mapping = NULL;
1789 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1790 _new_mapping_cache);
1791 if (!pool->mapping_pool) {
1792 *error = "Error creating pool's mapping mempool";
1793 err_p = ERR_PTR(-ENOMEM);
1794 goto bad_mapping_pool;
1795 }
1796
1797 pool->ref_count = 1;
1798 pool->last_commit_jiffies = jiffies;
1799 pool->pool_md = pool_md;
1800 pool->md_dev = metadata_dev;
1801 __pool_table_insert(pool);
1802
1803 return pool;
1804
1805 bad_mapping_pool:
1806 dm_deferred_set_destroy(pool->all_io_ds);
1807 bad_all_io_ds:
1808 dm_deferred_set_destroy(pool->shared_read_ds);
1809 bad_shared_read_ds:
1810 destroy_workqueue(pool->wq);
1811 bad_wq:
1812 dm_kcopyd_client_destroy(pool->copier);
1813 bad_kcopyd_client:
1814 dm_bio_prison_destroy(pool->prison);
1815 bad_prison:
1816 kfree(pool);
1817 bad_pool:
1818 if (dm_pool_metadata_close(pmd))
1819 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1820
1821 return err_p;
1822 }
1823
1824 static void __pool_inc(struct pool *pool)
1825 {
1826 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1827 pool->ref_count++;
1828 }
1829
1830 static void __pool_dec(struct pool *pool)
1831 {
1832 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1833 BUG_ON(!pool->ref_count);
1834 if (!--pool->ref_count)
1835 __pool_destroy(pool);
1836 }
1837
1838 static struct pool *__pool_find(struct mapped_device *pool_md,
1839 struct block_device *metadata_dev,
1840 unsigned long block_size, int read_only,
1841 char **error, int *created)
1842 {
1843 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1844
1845 if (pool) {
1846 if (pool->pool_md != pool_md) {
1847 *error = "metadata device already in use by a pool";
1848 return ERR_PTR(-EBUSY);
1849 }
1850 __pool_inc(pool);
1851
1852 } else {
1853 pool = __pool_table_lookup(pool_md);
1854 if (pool) {
1855 if (pool->md_dev != metadata_dev) {
1856 *error = "different pool cannot replace a pool";
1857 return ERR_PTR(-EINVAL);
1858 }
1859 __pool_inc(pool);
1860
1861 } else {
1862 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1863 *created = 1;
1864 }
1865 }
1866
1867 return pool;
1868 }
1869
1870 /*----------------------------------------------------------------
1871 * Pool target methods
1872 *--------------------------------------------------------------*/
1873 static void pool_dtr(struct dm_target *ti)
1874 {
1875 struct pool_c *pt = ti->private;
1876
1877 mutex_lock(&dm_thin_pool_table.mutex);
1878
1879 unbind_control_target(pt->pool, ti);
1880 __pool_dec(pt->pool);
1881 dm_put_device(ti, pt->metadata_dev);
1882 dm_put_device(ti, pt->data_dev);
1883 kfree(pt);
1884
1885 mutex_unlock(&dm_thin_pool_table.mutex);
1886 }
1887
1888 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1889 struct dm_target *ti)
1890 {
1891 int r;
1892 unsigned argc;
1893 const char *arg_name;
1894
1895 static struct dm_arg _args[] = {
1896 {0, 3, "Invalid number of pool feature arguments"},
1897 };
1898
1899 /*
1900 * No feature arguments supplied.
1901 */
1902 if (!as->argc)
1903 return 0;
1904
1905 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1906 if (r)
1907 return -EINVAL;
1908
1909 while (argc && !r) {
1910 arg_name = dm_shift_arg(as);
1911 argc--;
1912
1913 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1914 pf->zero_new_blocks = false;
1915
1916 else if (!strcasecmp(arg_name, "ignore_discard"))
1917 pf->discard_enabled = false;
1918
1919 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1920 pf->discard_passdown = false;
1921
1922 else if (!strcasecmp(arg_name, "read_only"))
1923 pf->mode = PM_READ_ONLY;
1924
1925 else {
1926 ti->error = "Unrecognised pool feature requested";
1927 r = -EINVAL;
1928 break;
1929 }
1930 }
1931
1932 return r;
1933 }
1934
1935 static void metadata_low_callback(void *context)
1936 {
1937 struct pool *pool = context;
1938
1939 DMWARN("%s: reached low water mark for metadata device: sending event.",
1940 dm_device_name(pool->pool_md));
1941
1942 dm_table_event(pool->ti->table);
1943 }
1944
1945 static sector_t get_metadata_dev_size(struct block_device *bdev)
1946 {
1947 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1948 char buffer[BDEVNAME_SIZE];
1949
1950 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1951 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1952 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1953 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1954 }
1955
1956 return metadata_dev_size;
1957 }
1958
1959 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1960 {
1961 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1962
1963 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1964
1965 return metadata_dev_size;
1966 }
1967
1968 /*
1969 * When a metadata threshold is crossed a dm event is triggered, and
1970 * userland should respond by growing the metadata device. We could let
1971 * userland set the threshold, like we do with the data threshold, but I'm
1972 * not sure they know enough to do this well.
1973 */
1974 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1975 {
1976 /*
1977 * 4M is ample for all ops with the possible exception of thin
1978 * device deletion which is harmless if it fails (just retry the
1979 * delete after you've grown the device).
1980 */
1981 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1982 return min((dm_block_t)1024ULL /* 4M */, quarter);
1983 }
1984
1985 /*
1986 * thin-pool <metadata dev> <data dev>
1987 * <data block size (sectors)>
1988 * <low water mark (blocks)>
1989 * [<#feature args> [<arg>]*]
1990 *
1991 * Optional feature arguments are:
1992 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1993 * ignore_discard: disable discard
1994 * no_discard_passdown: don't pass discards down to the data device
1995 */
1996 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1997 {
1998 int r, pool_created = 0;
1999 struct pool_c *pt;
2000 struct pool *pool;
2001 struct pool_features pf;
2002 struct dm_arg_set as;
2003 struct dm_dev *data_dev;
2004 unsigned long block_size;
2005 dm_block_t low_water_blocks;
2006 struct dm_dev *metadata_dev;
2007 fmode_t metadata_mode;
2008
2009 /*
2010 * FIXME Remove validation from scope of lock.
2011 */
2012 mutex_lock(&dm_thin_pool_table.mutex);
2013
2014 if (argc < 4) {
2015 ti->error = "Invalid argument count";
2016 r = -EINVAL;
2017 goto out_unlock;
2018 }
2019
2020 as.argc = argc;
2021 as.argv = argv;
2022
2023 /*
2024 * Set default pool features.
2025 */
2026 pool_features_init(&pf);
2027
2028 dm_consume_args(&as, 4);
2029 r = parse_pool_features(&as, &pf, ti);
2030 if (r)
2031 goto out_unlock;
2032
2033 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2034 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2035 if (r) {
2036 ti->error = "Error opening metadata block device";
2037 goto out_unlock;
2038 }
2039
2040 /*
2041 * Run for the side-effect of possibly issuing a warning if the
2042 * device is too big.
2043 */
2044 (void) get_metadata_dev_size(metadata_dev->bdev);
2045
2046 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2047 if (r) {
2048 ti->error = "Error getting data device";
2049 goto out_metadata;
2050 }
2051
2052 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2053 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2054 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2055 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2056 ti->error = "Invalid block size";
2057 r = -EINVAL;
2058 goto out;
2059 }
2060
2061 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2062 ti->error = "Invalid low water mark";
2063 r = -EINVAL;
2064 goto out;
2065 }
2066
2067 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2068 if (!pt) {
2069 r = -ENOMEM;
2070 goto out;
2071 }
2072
2073 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2074 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2075 if (IS_ERR(pool)) {
2076 r = PTR_ERR(pool);
2077 goto out_free_pt;
2078 }
2079
2080 /*
2081 * 'pool_created' reflects whether this is the first table load.
2082 * Top level discard support is not allowed to be changed after
2083 * initial load. This would require a pool reload to trigger thin
2084 * device changes.
2085 */
2086 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2087 ti->error = "Discard support cannot be disabled once enabled";
2088 r = -EINVAL;
2089 goto out_flags_changed;
2090 }
2091
2092 pt->pool = pool;
2093 pt->ti = ti;
2094 pt->metadata_dev = metadata_dev;
2095 pt->data_dev = data_dev;
2096 pt->low_water_blocks = low_water_blocks;
2097 pt->adjusted_pf = pt->requested_pf = pf;
2098 ti->num_flush_bios = 1;
2099
2100 /*
2101 * Only need to enable discards if the pool should pass
2102 * them down to the data device. The thin device's discard
2103 * processing will cause mappings to be removed from the btree.
2104 */
2105 ti->discard_zeroes_data_unsupported = true;
2106 if (pf.discard_enabled && pf.discard_passdown) {
2107 ti->num_discard_bios = 1;
2108
2109 /*
2110 * Setting 'discards_supported' circumvents the normal
2111 * stacking of discard limits (this keeps the pool and
2112 * thin devices' discard limits consistent).
2113 */
2114 ti->discards_supported = true;
2115 }
2116 ti->private = pt;
2117
2118 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2119 calc_metadata_threshold(pt),
2120 metadata_low_callback,
2121 pool);
2122 if (r)
2123 goto out_free_pt;
2124
2125 pt->callbacks.congested_fn = pool_is_congested;
2126 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2127
2128 mutex_unlock(&dm_thin_pool_table.mutex);
2129
2130 return 0;
2131
2132 out_flags_changed:
2133 __pool_dec(pool);
2134 out_free_pt:
2135 kfree(pt);
2136 out:
2137 dm_put_device(ti, data_dev);
2138 out_metadata:
2139 dm_put_device(ti, metadata_dev);
2140 out_unlock:
2141 mutex_unlock(&dm_thin_pool_table.mutex);
2142
2143 return r;
2144 }
2145
2146 static int pool_map(struct dm_target *ti, struct bio *bio)
2147 {
2148 int r;
2149 struct pool_c *pt = ti->private;
2150 struct pool *pool = pt->pool;
2151 unsigned long flags;
2152
2153 /*
2154 * As this is a singleton target, ti->begin is always zero.
2155 */
2156 spin_lock_irqsave(&pool->lock, flags);
2157 bio->bi_bdev = pt->data_dev->bdev;
2158 r = DM_MAPIO_REMAPPED;
2159 spin_unlock_irqrestore(&pool->lock, flags);
2160
2161 return r;
2162 }
2163
2164 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2165 {
2166 int r;
2167 struct pool_c *pt = ti->private;
2168 struct pool *pool = pt->pool;
2169 sector_t data_size = ti->len;
2170 dm_block_t sb_data_size;
2171
2172 *need_commit = false;
2173
2174 (void) sector_div(data_size, pool->sectors_per_block);
2175
2176 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2177 if (r) {
2178 DMERR("%s: failed to retrieve data device size",
2179 dm_device_name(pool->pool_md));
2180 return r;
2181 }
2182
2183 if (data_size < sb_data_size) {
2184 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2185 dm_device_name(pool->pool_md),
2186 (unsigned long long)data_size, sb_data_size);
2187 return -EINVAL;
2188
2189 } else if (data_size > sb_data_size) {
2190 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2191 if (r) {
2192 DMERR("%s: failed to resize data device",
2193 dm_device_name(pool->pool_md));
2194 set_pool_mode(pool, PM_READ_ONLY);
2195 return r;
2196 }
2197
2198 *need_commit = true;
2199 }
2200
2201 return 0;
2202 }
2203
2204 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2205 {
2206 int r;
2207 struct pool_c *pt = ti->private;
2208 struct pool *pool = pt->pool;
2209 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2210
2211 *need_commit = false;
2212
2213 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2214
2215 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2216 if (r) {
2217 DMERR("%s: failed to retrieve metadata device size",
2218 dm_device_name(pool->pool_md));
2219 return r;
2220 }
2221
2222 if (metadata_dev_size < sb_metadata_dev_size) {
2223 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2224 dm_device_name(pool->pool_md),
2225 metadata_dev_size, sb_metadata_dev_size);
2226 return -EINVAL;
2227
2228 } else if (metadata_dev_size > sb_metadata_dev_size) {
2229 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2230 if (r) {
2231 DMERR("%s: failed to resize metadata device",
2232 dm_device_name(pool->pool_md));
2233 return r;
2234 }
2235
2236 *need_commit = true;
2237 }
2238
2239 return 0;
2240 }
2241
2242 /*
2243 * Retrieves the number of blocks of the data device from
2244 * the superblock and compares it to the actual device size,
2245 * thus resizing the data device in case it has grown.
2246 *
2247 * This both copes with opening preallocated data devices in the ctr
2248 * being followed by a resume
2249 * -and-
2250 * calling the resume method individually after userspace has
2251 * grown the data device in reaction to a table event.
2252 */
2253 static int pool_preresume(struct dm_target *ti)
2254 {
2255 int r;
2256 bool need_commit1, need_commit2;
2257 struct pool_c *pt = ti->private;
2258 struct pool *pool = pt->pool;
2259
2260 /*
2261 * Take control of the pool object.
2262 */
2263 r = bind_control_target(pool, ti);
2264 if (r)
2265 return r;
2266
2267 r = maybe_resize_data_dev(ti, &need_commit1);
2268 if (r)
2269 return r;
2270
2271 r = maybe_resize_metadata_dev(ti, &need_commit2);
2272 if (r)
2273 return r;
2274
2275 if (need_commit1 || need_commit2)
2276 (void) commit(pool);
2277
2278 return 0;
2279 }
2280
2281 static void pool_resume(struct dm_target *ti)
2282 {
2283 struct pool_c *pt = ti->private;
2284 struct pool *pool = pt->pool;
2285 unsigned long flags;
2286
2287 spin_lock_irqsave(&pool->lock, flags);
2288 pool->low_water_triggered = 0;
2289 pool->no_free_space = 0;
2290 __requeue_bios(pool);
2291 spin_unlock_irqrestore(&pool->lock, flags);
2292
2293 do_waker(&pool->waker.work);
2294 }
2295
2296 static void pool_postsuspend(struct dm_target *ti)
2297 {
2298 struct pool_c *pt = ti->private;
2299 struct pool *pool = pt->pool;
2300
2301 cancel_delayed_work(&pool->waker);
2302 flush_workqueue(pool->wq);
2303 (void) commit(pool);
2304 }
2305
2306 static int check_arg_count(unsigned argc, unsigned args_required)
2307 {
2308 if (argc != args_required) {
2309 DMWARN("Message received with %u arguments instead of %u.",
2310 argc, args_required);
2311 return -EINVAL;
2312 }
2313
2314 return 0;
2315 }
2316
2317 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2318 {
2319 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2320 *dev_id <= MAX_DEV_ID)
2321 return 0;
2322
2323 if (warning)
2324 DMWARN("Message received with invalid device id: %s", arg);
2325
2326 return -EINVAL;
2327 }
2328
2329 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2330 {
2331 dm_thin_id dev_id;
2332 int r;
2333
2334 r = check_arg_count(argc, 2);
2335 if (r)
2336 return r;
2337
2338 r = read_dev_id(argv[1], &dev_id, 1);
2339 if (r)
2340 return r;
2341
2342 r = dm_pool_create_thin(pool->pmd, dev_id);
2343 if (r) {
2344 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2345 argv[1]);
2346 return r;
2347 }
2348
2349 return 0;
2350 }
2351
2352 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2353 {
2354 dm_thin_id dev_id;
2355 dm_thin_id origin_dev_id;
2356 int r;
2357
2358 r = check_arg_count(argc, 3);
2359 if (r)
2360 return r;
2361
2362 r = read_dev_id(argv[1], &dev_id, 1);
2363 if (r)
2364 return r;
2365
2366 r = read_dev_id(argv[2], &origin_dev_id, 1);
2367 if (r)
2368 return r;
2369
2370 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2371 if (r) {
2372 DMWARN("Creation of new snapshot %s of device %s failed.",
2373 argv[1], argv[2]);
2374 return r;
2375 }
2376
2377 return 0;
2378 }
2379
2380 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2381 {
2382 dm_thin_id dev_id;
2383 int r;
2384
2385 r = check_arg_count(argc, 2);
2386 if (r)
2387 return r;
2388
2389 r = read_dev_id(argv[1], &dev_id, 1);
2390 if (r)
2391 return r;
2392
2393 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2394 if (r)
2395 DMWARN("Deletion of thin device %s failed.", argv[1]);
2396
2397 return r;
2398 }
2399
2400 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2401 {
2402 dm_thin_id old_id, new_id;
2403 int r;
2404
2405 r = check_arg_count(argc, 3);
2406 if (r)
2407 return r;
2408
2409 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2410 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2411 return -EINVAL;
2412 }
2413
2414 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2415 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2416 return -EINVAL;
2417 }
2418
2419 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2420 if (r) {
2421 DMWARN("Failed to change transaction id from %s to %s.",
2422 argv[1], argv[2]);
2423 return r;
2424 }
2425
2426 return 0;
2427 }
2428
2429 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2430 {
2431 int r;
2432
2433 r = check_arg_count(argc, 1);
2434 if (r)
2435 return r;
2436
2437 (void) commit(pool);
2438
2439 r = dm_pool_reserve_metadata_snap(pool->pmd);
2440 if (r)
2441 DMWARN("reserve_metadata_snap message failed.");
2442
2443 return r;
2444 }
2445
2446 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2447 {
2448 int r;
2449
2450 r = check_arg_count(argc, 1);
2451 if (r)
2452 return r;
2453
2454 r = dm_pool_release_metadata_snap(pool->pmd);
2455 if (r)
2456 DMWARN("release_metadata_snap message failed.");
2457
2458 return r;
2459 }
2460
2461 /*
2462 * Messages supported:
2463 * create_thin <dev_id>
2464 * create_snap <dev_id> <origin_id>
2465 * delete <dev_id>
2466 * trim <dev_id> <new_size_in_sectors>
2467 * set_transaction_id <current_trans_id> <new_trans_id>
2468 * reserve_metadata_snap
2469 * release_metadata_snap
2470 */
2471 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2472 {
2473 int r = -EINVAL;
2474 struct pool_c *pt = ti->private;
2475 struct pool *pool = pt->pool;
2476
2477 if (!strcasecmp(argv[0], "create_thin"))
2478 r = process_create_thin_mesg(argc, argv, pool);
2479
2480 else if (!strcasecmp(argv[0], "create_snap"))
2481 r = process_create_snap_mesg(argc, argv, pool);
2482
2483 else if (!strcasecmp(argv[0], "delete"))
2484 r = process_delete_mesg(argc, argv, pool);
2485
2486 else if (!strcasecmp(argv[0], "set_transaction_id"))
2487 r = process_set_transaction_id_mesg(argc, argv, pool);
2488
2489 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2490 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2491
2492 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2493 r = process_release_metadata_snap_mesg(argc, argv, pool);
2494
2495 else
2496 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2497
2498 if (!r)
2499 (void) commit(pool);
2500
2501 return r;
2502 }
2503
2504 static void emit_flags(struct pool_features *pf, char *result,
2505 unsigned sz, unsigned maxlen)
2506 {
2507 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2508 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2509 DMEMIT("%u ", count);
2510
2511 if (!pf->zero_new_blocks)
2512 DMEMIT("skip_block_zeroing ");
2513
2514 if (!pf->discard_enabled)
2515 DMEMIT("ignore_discard ");
2516
2517 if (!pf->discard_passdown)
2518 DMEMIT("no_discard_passdown ");
2519
2520 if (pf->mode == PM_READ_ONLY)
2521 DMEMIT("read_only ");
2522 }
2523
2524 /*
2525 * Status line is:
2526 * <transaction id> <used metadata sectors>/<total metadata sectors>
2527 * <used data sectors>/<total data sectors> <held metadata root>
2528 */
2529 static void pool_status(struct dm_target *ti, status_type_t type,
2530 unsigned status_flags, char *result, unsigned maxlen)
2531 {
2532 int r;
2533 unsigned sz = 0;
2534 uint64_t transaction_id;
2535 dm_block_t nr_free_blocks_data;
2536 dm_block_t nr_free_blocks_metadata;
2537 dm_block_t nr_blocks_data;
2538 dm_block_t nr_blocks_metadata;
2539 dm_block_t held_root;
2540 char buf[BDEVNAME_SIZE];
2541 char buf2[BDEVNAME_SIZE];
2542 struct pool_c *pt = ti->private;
2543 struct pool *pool = pt->pool;
2544
2545 switch (type) {
2546 case STATUSTYPE_INFO:
2547 if (get_pool_mode(pool) == PM_FAIL) {
2548 DMEMIT("Fail");
2549 break;
2550 }
2551
2552 /* Commit to ensure statistics aren't out-of-date */
2553 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2554 (void) commit(pool);
2555
2556 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2557 if (r) {
2558 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2559 dm_device_name(pool->pool_md), r);
2560 goto err;
2561 }
2562
2563 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2564 if (r) {
2565 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2566 dm_device_name(pool->pool_md), r);
2567 goto err;
2568 }
2569
2570 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2571 if (r) {
2572 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2573 dm_device_name(pool->pool_md), r);
2574 goto err;
2575 }
2576
2577 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2578 if (r) {
2579 DMERR("%s: dm_pool_get_free_block_count returned %d",
2580 dm_device_name(pool->pool_md), r);
2581 goto err;
2582 }
2583
2584 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2585 if (r) {
2586 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2587 dm_device_name(pool->pool_md), r);
2588 goto err;
2589 }
2590
2591 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2592 if (r) {
2593 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2594 dm_device_name(pool->pool_md), r);
2595 goto err;
2596 }
2597
2598 DMEMIT("%llu %llu/%llu %llu/%llu ",
2599 (unsigned long long)transaction_id,
2600 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2601 (unsigned long long)nr_blocks_metadata,
2602 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2603 (unsigned long long)nr_blocks_data);
2604
2605 if (held_root)
2606 DMEMIT("%llu ", held_root);
2607 else
2608 DMEMIT("- ");
2609
2610 if (pool->pf.mode == PM_READ_ONLY)
2611 DMEMIT("ro ");
2612 else
2613 DMEMIT("rw ");
2614
2615 if (!pool->pf.discard_enabled)
2616 DMEMIT("ignore_discard");
2617 else if (pool->pf.discard_passdown)
2618 DMEMIT("discard_passdown");
2619 else
2620 DMEMIT("no_discard_passdown");
2621
2622 break;
2623
2624 case STATUSTYPE_TABLE:
2625 DMEMIT("%s %s %lu %llu ",
2626 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2627 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2628 (unsigned long)pool->sectors_per_block,
2629 (unsigned long long)pt->low_water_blocks);
2630 emit_flags(&pt->requested_pf, result, sz, maxlen);
2631 break;
2632 }
2633 return;
2634
2635 err:
2636 DMEMIT("Error");
2637 }
2638
2639 static int pool_iterate_devices(struct dm_target *ti,
2640 iterate_devices_callout_fn fn, void *data)
2641 {
2642 struct pool_c *pt = ti->private;
2643
2644 return fn(ti, pt->data_dev, 0, ti->len, data);
2645 }
2646
2647 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2648 struct bio_vec *biovec, int max_size)
2649 {
2650 struct pool_c *pt = ti->private;
2651 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2652
2653 if (!q->merge_bvec_fn)
2654 return max_size;
2655
2656 bvm->bi_bdev = pt->data_dev->bdev;
2657
2658 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2659 }
2660
2661 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2662 {
2663 struct pool *pool = pt->pool;
2664 struct queue_limits *data_limits;
2665
2666 limits->max_discard_sectors = pool->sectors_per_block;
2667
2668 /*
2669 * discard_granularity is just a hint, and not enforced.
2670 */
2671 if (pt->adjusted_pf.discard_passdown) {
2672 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2673 limits->discard_granularity = data_limits->discard_granularity;
2674 } else
2675 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2676 }
2677
2678 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2679 {
2680 struct pool_c *pt = ti->private;
2681 struct pool *pool = pt->pool;
2682 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2683
2684 /*
2685 * If the system-determined stacked limits are compatible with the
2686 * pool's blocksize (io_opt is a factor) do not override them.
2687 */
2688 if (io_opt_sectors < pool->sectors_per_block ||
2689 do_div(io_opt_sectors, pool->sectors_per_block)) {
2690 blk_limits_io_min(limits, 0);
2691 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2692 }
2693
2694 /*
2695 * pt->adjusted_pf is a staging area for the actual features to use.
2696 * They get transferred to the live pool in bind_control_target()
2697 * called from pool_preresume().
2698 */
2699 if (!pt->adjusted_pf.discard_enabled) {
2700 /*
2701 * Must explicitly disallow stacking discard limits otherwise the
2702 * block layer will stack them if pool's data device has support.
2703 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2704 * user to see that, so make sure to set all discard limits to 0.
2705 */
2706 limits->discard_granularity = 0;
2707 return;
2708 }
2709
2710 disable_passdown_if_not_supported(pt);
2711
2712 set_discard_limits(pt, limits);
2713 }
2714
2715 static struct target_type pool_target = {
2716 .name = "thin-pool",
2717 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2718 DM_TARGET_IMMUTABLE,
2719 .version = {1, 9, 0},
2720 .module = THIS_MODULE,
2721 .ctr = pool_ctr,
2722 .dtr = pool_dtr,
2723 .map = pool_map,
2724 .postsuspend = pool_postsuspend,
2725 .preresume = pool_preresume,
2726 .resume = pool_resume,
2727 .message = pool_message,
2728 .status = pool_status,
2729 .merge = pool_merge,
2730 .iterate_devices = pool_iterate_devices,
2731 .io_hints = pool_io_hints,
2732 };
2733
2734 /*----------------------------------------------------------------
2735 * Thin target methods
2736 *--------------------------------------------------------------*/
2737 static void thin_dtr(struct dm_target *ti)
2738 {
2739 struct thin_c *tc = ti->private;
2740
2741 mutex_lock(&dm_thin_pool_table.mutex);
2742
2743 __pool_dec(tc->pool);
2744 dm_pool_close_thin_device(tc->td);
2745 dm_put_device(ti, tc->pool_dev);
2746 if (tc->origin_dev)
2747 dm_put_device(ti, tc->origin_dev);
2748 kfree(tc);
2749
2750 mutex_unlock(&dm_thin_pool_table.mutex);
2751 }
2752
2753 /*
2754 * Thin target parameters:
2755 *
2756 * <pool_dev> <dev_id> [origin_dev]
2757 *
2758 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2759 * dev_id: the internal device identifier
2760 * origin_dev: a device external to the pool that should act as the origin
2761 *
2762 * If the pool device has discards disabled, they get disabled for the thin
2763 * device as well.
2764 */
2765 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2766 {
2767 int r;
2768 struct thin_c *tc;
2769 struct dm_dev *pool_dev, *origin_dev;
2770 struct mapped_device *pool_md;
2771
2772 mutex_lock(&dm_thin_pool_table.mutex);
2773
2774 if (argc != 2 && argc != 3) {
2775 ti->error = "Invalid argument count";
2776 r = -EINVAL;
2777 goto out_unlock;
2778 }
2779
2780 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2781 if (!tc) {
2782 ti->error = "Out of memory";
2783 r = -ENOMEM;
2784 goto out_unlock;
2785 }
2786
2787 if (argc == 3) {
2788 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2789 if (r) {
2790 ti->error = "Error opening origin device";
2791 goto bad_origin_dev;
2792 }
2793 tc->origin_dev = origin_dev;
2794 }
2795
2796 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2797 if (r) {
2798 ti->error = "Error opening pool device";
2799 goto bad_pool_dev;
2800 }
2801 tc->pool_dev = pool_dev;
2802
2803 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2804 ti->error = "Invalid device id";
2805 r = -EINVAL;
2806 goto bad_common;
2807 }
2808
2809 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2810 if (!pool_md) {
2811 ti->error = "Couldn't get pool mapped device";
2812 r = -EINVAL;
2813 goto bad_common;
2814 }
2815
2816 tc->pool = __pool_table_lookup(pool_md);
2817 if (!tc->pool) {
2818 ti->error = "Couldn't find pool object";
2819 r = -EINVAL;
2820 goto bad_pool_lookup;
2821 }
2822 __pool_inc(tc->pool);
2823
2824 if (get_pool_mode(tc->pool) == PM_FAIL) {
2825 ti->error = "Couldn't open thin device, Pool is in fail mode";
2826 goto bad_thin_open;
2827 }
2828
2829 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2830 if (r) {
2831 ti->error = "Couldn't open thin internal device";
2832 goto bad_thin_open;
2833 }
2834
2835 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2836 if (r)
2837 goto bad_thin_open;
2838
2839 ti->num_flush_bios = 1;
2840 ti->flush_supported = true;
2841 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2842
2843 /* In case the pool supports discards, pass them on. */
2844 ti->discard_zeroes_data_unsupported = true;
2845 if (tc->pool->pf.discard_enabled) {
2846 ti->discards_supported = true;
2847 ti->num_discard_bios = 1;
2848 /* Discard bios must be split on a block boundary */
2849 ti->split_discard_bios = true;
2850 }
2851
2852 dm_put(pool_md);
2853
2854 mutex_unlock(&dm_thin_pool_table.mutex);
2855
2856 return 0;
2857
2858 bad_thin_open:
2859 __pool_dec(tc->pool);
2860 bad_pool_lookup:
2861 dm_put(pool_md);
2862 bad_common:
2863 dm_put_device(ti, tc->pool_dev);
2864 bad_pool_dev:
2865 if (tc->origin_dev)
2866 dm_put_device(ti, tc->origin_dev);
2867 bad_origin_dev:
2868 kfree(tc);
2869 out_unlock:
2870 mutex_unlock(&dm_thin_pool_table.mutex);
2871
2872 return r;
2873 }
2874
2875 static int thin_map(struct dm_target *ti, struct bio *bio)
2876 {
2877 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2878
2879 return thin_bio_map(ti, bio);
2880 }
2881
2882 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2883 {
2884 unsigned long flags;
2885 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2886 struct list_head work;
2887 struct dm_thin_new_mapping *m, *tmp;
2888 struct pool *pool = h->tc->pool;
2889
2890 if (h->shared_read_entry) {
2891 INIT_LIST_HEAD(&work);
2892 dm_deferred_entry_dec(h->shared_read_entry, &work);
2893
2894 spin_lock_irqsave(&pool->lock, flags);
2895 list_for_each_entry_safe(m, tmp, &work, list) {
2896 list_del(&m->list);
2897 m->quiesced = 1;
2898 __maybe_add_mapping(m);
2899 }
2900 spin_unlock_irqrestore(&pool->lock, flags);
2901 }
2902
2903 if (h->all_io_entry) {
2904 INIT_LIST_HEAD(&work);
2905 dm_deferred_entry_dec(h->all_io_entry, &work);
2906 if (!list_empty(&work)) {
2907 spin_lock_irqsave(&pool->lock, flags);
2908 list_for_each_entry_safe(m, tmp, &work, list)
2909 list_add(&m->list, &pool->prepared_discards);
2910 spin_unlock_irqrestore(&pool->lock, flags);
2911 wake_worker(pool);
2912 }
2913 }
2914
2915 return 0;
2916 }
2917
2918 static void thin_postsuspend(struct dm_target *ti)
2919 {
2920 if (dm_noflush_suspending(ti))
2921 requeue_io((struct thin_c *)ti->private);
2922 }
2923
2924 /*
2925 * <nr mapped sectors> <highest mapped sector>
2926 */
2927 static void thin_status(struct dm_target *ti, status_type_t type,
2928 unsigned status_flags, char *result, unsigned maxlen)
2929 {
2930 int r;
2931 ssize_t sz = 0;
2932 dm_block_t mapped, highest;
2933 char buf[BDEVNAME_SIZE];
2934 struct thin_c *tc = ti->private;
2935
2936 if (get_pool_mode(tc->pool) == PM_FAIL) {
2937 DMEMIT("Fail");
2938 return;
2939 }
2940
2941 if (!tc->td)
2942 DMEMIT("-");
2943 else {
2944 switch (type) {
2945 case STATUSTYPE_INFO:
2946 r = dm_thin_get_mapped_count(tc->td, &mapped);
2947 if (r) {
2948 DMERR("dm_thin_get_mapped_count returned %d", r);
2949 goto err;
2950 }
2951
2952 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2953 if (r < 0) {
2954 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2955 goto err;
2956 }
2957
2958 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2959 if (r)
2960 DMEMIT("%llu", ((highest + 1) *
2961 tc->pool->sectors_per_block) - 1);
2962 else
2963 DMEMIT("-");
2964 break;
2965
2966 case STATUSTYPE_TABLE:
2967 DMEMIT("%s %lu",
2968 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2969 (unsigned long) tc->dev_id);
2970 if (tc->origin_dev)
2971 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2972 break;
2973 }
2974 }
2975
2976 return;
2977
2978 err:
2979 DMEMIT("Error");
2980 }
2981
2982 static int thin_iterate_devices(struct dm_target *ti,
2983 iterate_devices_callout_fn fn, void *data)
2984 {
2985 sector_t blocks;
2986 struct thin_c *tc = ti->private;
2987 struct pool *pool = tc->pool;
2988
2989 /*
2990 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2991 * we follow a more convoluted path through to the pool's target.
2992 */
2993 if (!pool->ti)
2994 return 0; /* nothing is bound */
2995
2996 blocks = pool->ti->len;
2997 (void) sector_div(blocks, pool->sectors_per_block);
2998 if (blocks)
2999 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3000
3001 return 0;
3002 }
3003
3004 static struct target_type thin_target = {
3005 .name = "thin",
3006 .version = {1, 9, 0},
3007 .module = THIS_MODULE,
3008 .ctr = thin_ctr,
3009 .dtr = thin_dtr,
3010 .map = thin_map,
3011 .end_io = thin_endio,
3012 .postsuspend = thin_postsuspend,
3013 .status = thin_status,
3014 .iterate_devices = thin_iterate_devices,
3015 };
3016
3017 /*----------------------------------------------------------------*/
3018
3019 static int __init dm_thin_init(void)
3020 {
3021 int r;
3022
3023 pool_table_init();
3024
3025 r = dm_register_target(&thin_target);
3026 if (r)
3027 return r;
3028
3029 r = dm_register_target(&pool_target);
3030 if (r)
3031 goto bad_pool_target;
3032
3033 r = -ENOMEM;
3034
3035 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3036 if (!_new_mapping_cache)
3037 goto bad_new_mapping_cache;
3038
3039 return 0;
3040
3041 bad_new_mapping_cache:
3042 dm_unregister_target(&pool_target);
3043 bad_pool_target:
3044 dm_unregister_target(&thin_target);
3045
3046 return r;
3047 }
3048
3049 static void dm_thin_exit(void)
3050 {
3051 dm_unregister_target(&thin_target);
3052 dm_unregister_target(&pool_target);
3053
3054 kmem_cache_destroy(_new_mapping_cache);
3055 }
3056
3057 module_init(dm_thin_init);
3058 module_exit(dm_thin_exit);
3059
3060 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3061 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3062 MODULE_LICENSE("GPL");
This page took 0.117769 seconds and 6 git commands to generate.