dm: support non power of two target max_io_len
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16
17 #define DM_MSG_PREFIX "thin"
18
19 /*
20 * Tunable constants
21 */
22 #define ENDIO_HOOK_POOL_SIZE 1024
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27
28 /*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
35 /*
36 * Device id is restricted to 24 bits.
37 */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39
40 /*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
66 * (process_prepared_mapping). This act of inserting breaks some
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98 /*----------------------------------------------------------------*/
99
100 /*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106 struct bio_prison;
107
108 struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112 };
113
114 struct dm_bio_prison_cell {
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
118 struct bio *holder;
119 struct bio_list bios;
120 };
121
122 struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129 };
130
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142 }
143
144 static struct kmem_cache *_cell_cache;
145
146 /*
147 * @nr_cells should be the number of cells you want in use _concurrently_.
148 * Don't confuse it with the number of distinct keys.
149 */
150 static struct bio_prison *prison_create(unsigned nr_cells)
151 {
152 unsigned i;
153 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154 size_t len = sizeof(struct bio_prison) +
155 (sizeof(struct hlist_head) * nr_buckets);
156 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158 if (!prison)
159 return NULL;
160
161 spin_lock_init(&prison->lock);
162 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
163 if (!prison->cell_pool) {
164 kfree(prison);
165 return NULL;
166 }
167
168 prison->nr_buckets = nr_buckets;
169 prison->hash_mask = nr_buckets - 1;
170 prison->cells = (struct hlist_head *) (prison + 1);
171 for (i = 0; i < nr_buckets; i++)
172 INIT_HLIST_HEAD(prison->cells + i);
173
174 return prison;
175 }
176
177 static void prison_destroy(struct bio_prison *prison)
178 {
179 mempool_destroy(prison->cell_pool);
180 kfree(prison);
181 }
182
183 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184 {
185 const unsigned long BIG_PRIME = 4294967291UL;
186 uint64_t hash = key->block * BIG_PRIME;
187
188 return (uint32_t) (hash & prison->hash_mask);
189 }
190
191 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192 {
193 return (lhs->virtual == rhs->virtual) &&
194 (lhs->dev == rhs->dev) &&
195 (lhs->block == rhs->block);
196 }
197
198 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199 struct cell_key *key)
200 {
201 struct dm_bio_prison_cell *cell;
202 struct hlist_node *tmp;
203
204 hlist_for_each_entry(cell, tmp, bucket, list)
205 if (keys_equal(&cell->key, key))
206 return cell;
207
208 return NULL;
209 }
210
211 /*
212 * This may block if a new cell needs allocating. You must ensure that
213 * cells will be unlocked even if the calling thread is blocked.
214 *
215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
216 */
217 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
218 struct bio *inmate, struct dm_bio_prison_cell **ref)
219 {
220 int r = 1;
221 unsigned long flags;
222 uint32_t hash = hash_key(prison, key);
223 struct dm_bio_prison_cell *cell, *cell2;
224
225 BUG_ON(hash > prison->nr_buckets);
226
227 spin_lock_irqsave(&prison->lock, flags);
228
229 cell = __search_bucket(prison->cells + hash, key);
230 if (cell) {
231 bio_list_add(&cell->bios, inmate);
232 goto out;
233 }
234
235 /*
236 * Allocate a new cell
237 */
238 spin_unlock_irqrestore(&prison->lock, flags);
239 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240 spin_lock_irqsave(&prison->lock, flags);
241
242 /*
243 * We've been unlocked, so we have to double check that
244 * nobody else has inserted this cell in the meantime.
245 */
246 cell = __search_bucket(prison->cells + hash, key);
247 if (cell) {
248 mempool_free(cell2, prison->cell_pool);
249 bio_list_add(&cell->bios, inmate);
250 goto out;
251 }
252
253 /*
254 * Use new cell.
255 */
256 cell = cell2;
257
258 cell->prison = prison;
259 memcpy(&cell->key, key, sizeof(cell->key));
260 cell->holder = inmate;
261 bio_list_init(&cell->bios);
262 hlist_add_head(&cell->list, prison->cells + hash);
263
264 r = 0;
265
266 out:
267 spin_unlock_irqrestore(&prison->lock, flags);
268
269 *ref = cell;
270
271 return r;
272 }
273
274 /*
275 * @inmates must have been initialised prior to this call
276 */
277 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
278 {
279 struct bio_prison *prison = cell->prison;
280
281 hlist_del(&cell->list);
282
283 if (inmates) {
284 bio_list_add(inmates, cell->holder);
285 bio_list_merge(inmates, &cell->bios);
286 }
287
288 mempool_free(cell, prison->cell_pool);
289 }
290
291 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
292 {
293 unsigned long flags;
294 struct bio_prison *prison = cell->prison;
295
296 spin_lock_irqsave(&prison->lock, flags);
297 __cell_release(cell, bios);
298 spin_unlock_irqrestore(&prison->lock, flags);
299 }
300
301 /*
302 * There are a couple of places where we put a bio into a cell briefly
303 * before taking it out again. In these situations we know that no other
304 * bio may be in the cell. This function releases the cell, and also does
305 * a sanity check.
306 */
307 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
308 {
309 BUG_ON(cell->holder != bio);
310 BUG_ON(!bio_list_empty(&cell->bios));
311
312 __cell_release(cell, NULL);
313 }
314
315 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
316 {
317 unsigned long flags;
318 struct bio_prison *prison = cell->prison;
319
320 spin_lock_irqsave(&prison->lock, flags);
321 __cell_release_singleton(cell, bio);
322 spin_unlock_irqrestore(&prison->lock, flags);
323 }
324
325 /*
326 * Sometimes we don't want the holder, just the additional bios.
327 */
328 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329 struct bio_list *inmates)
330 {
331 struct bio_prison *prison = cell->prison;
332
333 hlist_del(&cell->list);
334 bio_list_merge(inmates, &cell->bios);
335
336 mempool_free(cell, prison->cell_pool);
337 }
338
339 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340 struct bio_list *inmates)
341 {
342 unsigned long flags;
343 struct bio_prison *prison = cell->prison;
344
345 spin_lock_irqsave(&prison->lock, flags);
346 __cell_release_no_holder(cell, inmates);
347 spin_unlock_irqrestore(&prison->lock, flags);
348 }
349
350 static void cell_error(struct dm_bio_prison_cell *cell)
351 {
352 struct bio_prison *prison = cell->prison;
353 struct bio_list bios;
354 struct bio *bio;
355 unsigned long flags;
356
357 bio_list_init(&bios);
358
359 spin_lock_irqsave(&prison->lock, flags);
360 __cell_release(cell, &bios);
361 spin_unlock_irqrestore(&prison->lock, flags);
362
363 while ((bio = bio_list_pop(&bios)))
364 bio_io_error(bio);
365 }
366
367 /*----------------------------------------------------------------*/
368
369 /*
370 * We use the deferred set to keep track of pending reads to shared blocks.
371 * We do this to ensure the new mapping caused by a write isn't performed
372 * until these prior reads have completed. Otherwise the insertion of the
373 * new mapping could free the old block that the read bios are mapped to.
374 */
375
376 struct deferred_set;
377 struct deferred_entry {
378 struct deferred_set *ds;
379 unsigned count;
380 struct list_head work_items;
381 };
382
383 struct deferred_set {
384 spinlock_t lock;
385 unsigned current_entry;
386 unsigned sweeper;
387 struct deferred_entry entries[DEFERRED_SET_SIZE];
388 };
389
390 static void ds_init(struct deferred_set *ds)
391 {
392 int i;
393
394 spin_lock_init(&ds->lock);
395 ds->current_entry = 0;
396 ds->sweeper = 0;
397 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398 ds->entries[i].ds = ds;
399 ds->entries[i].count = 0;
400 INIT_LIST_HEAD(&ds->entries[i].work_items);
401 }
402 }
403
404 static struct deferred_entry *ds_inc(struct deferred_set *ds)
405 {
406 unsigned long flags;
407 struct deferred_entry *entry;
408
409 spin_lock_irqsave(&ds->lock, flags);
410 entry = ds->entries + ds->current_entry;
411 entry->count++;
412 spin_unlock_irqrestore(&ds->lock, flags);
413
414 return entry;
415 }
416
417 static unsigned ds_next(unsigned index)
418 {
419 return (index + 1) % DEFERRED_SET_SIZE;
420 }
421
422 static void __sweep(struct deferred_set *ds, struct list_head *head)
423 {
424 while ((ds->sweeper != ds->current_entry) &&
425 !ds->entries[ds->sweeper].count) {
426 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427 ds->sweeper = ds_next(ds->sweeper);
428 }
429
430 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432 }
433
434 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435 {
436 unsigned long flags;
437
438 spin_lock_irqsave(&entry->ds->lock, flags);
439 BUG_ON(!entry->count);
440 --entry->count;
441 __sweep(entry->ds, head);
442 spin_unlock_irqrestore(&entry->ds->lock, flags);
443 }
444
445 /*
446 * Returns 1 if deferred or 0 if no pending items to delay job.
447 */
448 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449 {
450 int r = 1;
451 unsigned long flags;
452 unsigned next_entry;
453
454 spin_lock_irqsave(&ds->lock, flags);
455 if ((ds->sweeper == ds->current_entry) &&
456 !ds->entries[ds->current_entry].count)
457 r = 0;
458 else {
459 list_add(work, &ds->entries[ds->current_entry].work_items);
460 next_entry = ds_next(ds->current_entry);
461 if (!ds->entries[next_entry].count)
462 ds->current_entry = next_entry;
463 }
464 spin_unlock_irqrestore(&ds->lock, flags);
465
466 return r;
467 }
468
469 /*----------------------------------------------------------------*/
470
471 /*
472 * Key building.
473 */
474 static void build_data_key(struct dm_thin_device *td,
475 dm_block_t b, struct cell_key *key)
476 {
477 key->virtual = 0;
478 key->dev = dm_thin_dev_id(td);
479 key->block = b;
480 }
481
482 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483 struct cell_key *key)
484 {
485 key->virtual = 1;
486 key->dev = dm_thin_dev_id(td);
487 key->block = b;
488 }
489
490 /*----------------------------------------------------------------*/
491
492 /*
493 * A pool device ties together a metadata device and a data device. It
494 * also provides the interface for creating and destroying internal
495 * devices.
496 */
497 struct dm_thin_new_mapping;
498
499 struct pool_features {
500 unsigned zero_new_blocks:1;
501 unsigned discard_enabled:1;
502 unsigned discard_passdown:1;
503 };
504
505 struct pool {
506 struct list_head list;
507 struct dm_target *ti; /* Only set if a pool target is bound */
508
509 struct mapped_device *pool_md;
510 struct block_device *md_dev;
511 struct dm_pool_metadata *pmd;
512
513 uint32_t sectors_per_block;
514 unsigned block_shift;
515 dm_block_t offset_mask;
516 dm_block_t low_water_blocks;
517
518 struct pool_features pf;
519 unsigned low_water_triggered:1; /* A dm event has been sent */
520 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
521
522 struct bio_prison *prison;
523 struct dm_kcopyd_client *copier;
524
525 struct workqueue_struct *wq;
526 struct work_struct worker;
527 struct delayed_work waker;
528
529 unsigned ref_count;
530 unsigned long last_commit_jiffies;
531
532 spinlock_t lock;
533 struct bio_list deferred_bios;
534 struct bio_list deferred_flush_bios;
535 struct list_head prepared_mappings;
536 struct list_head prepared_discards;
537
538 struct bio_list retry_on_resume_list;
539
540 struct deferred_set shared_read_ds;
541 struct deferred_set all_io_ds;
542
543 struct dm_thin_new_mapping *next_mapping;
544 mempool_t *mapping_pool;
545 mempool_t *endio_hook_pool;
546 };
547
548 /*
549 * Target context for a pool.
550 */
551 struct pool_c {
552 struct dm_target *ti;
553 struct pool *pool;
554 struct dm_dev *data_dev;
555 struct dm_dev *metadata_dev;
556 struct dm_target_callbacks callbacks;
557
558 dm_block_t low_water_blocks;
559 struct pool_features pf;
560 };
561
562 /*
563 * Target context for a thin.
564 */
565 struct thin_c {
566 struct dm_dev *pool_dev;
567 struct dm_dev *origin_dev;
568 dm_thin_id dev_id;
569
570 struct pool *pool;
571 struct dm_thin_device *td;
572 };
573
574 /*----------------------------------------------------------------*/
575
576 /*
577 * A global list of pools that uses a struct mapped_device as a key.
578 */
579 static struct dm_thin_pool_table {
580 struct mutex mutex;
581 struct list_head pools;
582 } dm_thin_pool_table;
583
584 static void pool_table_init(void)
585 {
586 mutex_init(&dm_thin_pool_table.mutex);
587 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
588 }
589
590 static void __pool_table_insert(struct pool *pool)
591 {
592 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
593 list_add(&pool->list, &dm_thin_pool_table.pools);
594 }
595
596 static void __pool_table_remove(struct pool *pool)
597 {
598 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
599 list_del(&pool->list);
600 }
601
602 static struct pool *__pool_table_lookup(struct mapped_device *md)
603 {
604 struct pool *pool = NULL, *tmp;
605
606 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
607
608 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
609 if (tmp->pool_md == md) {
610 pool = tmp;
611 break;
612 }
613 }
614
615 return pool;
616 }
617
618 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
619 {
620 struct pool *pool = NULL, *tmp;
621
622 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
623
624 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
625 if (tmp->md_dev == md_dev) {
626 pool = tmp;
627 break;
628 }
629 }
630
631 return pool;
632 }
633
634 /*----------------------------------------------------------------*/
635
636 struct dm_thin_endio_hook {
637 struct thin_c *tc;
638 struct deferred_entry *shared_read_entry;
639 struct deferred_entry *all_io_entry;
640 struct dm_thin_new_mapping *overwrite_mapping;
641 };
642
643 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
644 {
645 struct bio *bio;
646 struct bio_list bios;
647
648 bio_list_init(&bios);
649 bio_list_merge(&bios, master);
650 bio_list_init(master);
651
652 while ((bio = bio_list_pop(&bios))) {
653 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
654
655 if (h->tc == tc)
656 bio_endio(bio, DM_ENDIO_REQUEUE);
657 else
658 bio_list_add(master, bio);
659 }
660 }
661
662 static void requeue_io(struct thin_c *tc)
663 {
664 struct pool *pool = tc->pool;
665 unsigned long flags;
666
667 spin_lock_irqsave(&pool->lock, flags);
668 __requeue_bio_list(tc, &pool->deferred_bios);
669 __requeue_bio_list(tc, &pool->retry_on_resume_list);
670 spin_unlock_irqrestore(&pool->lock, flags);
671 }
672
673 /*
674 * This section of code contains the logic for processing a thin device's IO.
675 * Much of the code depends on pool object resources (lists, workqueues, etc)
676 * but most is exclusively called from the thin target rather than the thin-pool
677 * target.
678 */
679
680 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
681 {
682 return bio->bi_sector >> tc->pool->block_shift;
683 }
684
685 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
686 {
687 struct pool *pool = tc->pool;
688
689 bio->bi_bdev = tc->pool_dev->bdev;
690 bio->bi_sector = (block << pool->block_shift) +
691 (bio->bi_sector & pool->offset_mask);
692 }
693
694 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
695 {
696 bio->bi_bdev = tc->origin_dev->bdev;
697 }
698
699 static void issue(struct thin_c *tc, struct bio *bio)
700 {
701 struct pool *pool = tc->pool;
702 unsigned long flags;
703
704 /*
705 * Batch together any FUA/FLUSH bios we find and then issue
706 * a single commit for them in process_deferred_bios().
707 */
708 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
709 spin_lock_irqsave(&pool->lock, flags);
710 bio_list_add(&pool->deferred_flush_bios, bio);
711 spin_unlock_irqrestore(&pool->lock, flags);
712 } else
713 generic_make_request(bio);
714 }
715
716 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
717 {
718 remap_to_origin(tc, bio);
719 issue(tc, bio);
720 }
721
722 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
723 dm_block_t block)
724 {
725 remap(tc, bio, block);
726 issue(tc, bio);
727 }
728
729 /*
730 * wake_worker() is used when new work is queued and when pool_resume is
731 * ready to continue deferred IO processing.
732 */
733 static void wake_worker(struct pool *pool)
734 {
735 queue_work(pool->wq, &pool->worker);
736 }
737
738 /*----------------------------------------------------------------*/
739
740 /*
741 * Bio endio functions.
742 */
743 struct dm_thin_new_mapping {
744 struct list_head list;
745
746 unsigned quiesced:1;
747 unsigned prepared:1;
748 unsigned pass_discard:1;
749
750 struct thin_c *tc;
751 dm_block_t virt_block;
752 dm_block_t data_block;
753 struct dm_bio_prison_cell *cell, *cell2;
754 int err;
755
756 /*
757 * If the bio covers the whole area of a block then we can avoid
758 * zeroing or copying. Instead this bio is hooked. The bio will
759 * still be in the cell, so care has to be taken to avoid issuing
760 * the bio twice.
761 */
762 struct bio *bio;
763 bio_end_io_t *saved_bi_end_io;
764 };
765
766 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
767 {
768 struct pool *pool = m->tc->pool;
769
770 if (m->quiesced && m->prepared) {
771 list_add(&m->list, &pool->prepared_mappings);
772 wake_worker(pool);
773 }
774 }
775
776 static void copy_complete(int read_err, unsigned long write_err, void *context)
777 {
778 unsigned long flags;
779 struct dm_thin_new_mapping *m = context;
780 struct pool *pool = m->tc->pool;
781
782 m->err = read_err || write_err ? -EIO : 0;
783
784 spin_lock_irqsave(&pool->lock, flags);
785 m->prepared = 1;
786 __maybe_add_mapping(m);
787 spin_unlock_irqrestore(&pool->lock, flags);
788 }
789
790 static void overwrite_endio(struct bio *bio, int err)
791 {
792 unsigned long flags;
793 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
794 struct dm_thin_new_mapping *m = h->overwrite_mapping;
795 struct pool *pool = m->tc->pool;
796
797 m->err = err;
798
799 spin_lock_irqsave(&pool->lock, flags);
800 m->prepared = 1;
801 __maybe_add_mapping(m);
802 spin_unlock_irqrestore(&pool->lock, flags);
803 }
804
805 /*----------------------------------------------------------------*/
806
807 /*
808 * Workqueue.
809 */
810
811 /*
812 * Prepared mapping jobs.
813 */
814
815 /*
816 * This sends the bios in the cell back to the deferred_bios list.
817 */
818 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
819 dm_block_t data_block)
820 {
821 struct pool *pool = tc->pool;
822 unsigned long flags;
823
824 spin_lock_irqsave(&pool->lock, flags);
825 cell_release(cell, &pool->deferred_bios);
826 spin_unlock_irqrestore(&tc->pool->lock, flags);
827
828 wake_worker(pool);
829 }
830
831 /*
832 * Same as cell_defer above, except it omits one particular detainee,
833 * a write bio that covers the block and has already been processed.
834 */
835 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
836 {
837 struct bio_list bios;
838 struct pool *pool = tc->pool;
839 unsigned long flags;
840
841 bio_list_init(&bios);
842
843 spin_lock_irqsave(&pool->lock, flags);
844 cell_release_no_holder(cell, &pool->deferred_bios);
845 spin_unlock_irqrestore(&pool->lock, flags);
846
847 wake_worker(pool);
848 }
849
850 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
851 {
852 struct thin_c *tc = m->tc;
853 struct bio *bio;
854 int r;
855
856 bio = m->bio;
857 if (bio)
858 bio->bi_end_io = m->saved_bi_end_io;
859
860 if (m->err) {
861 cell_error(m->cell);
862 return;
863 }
864
865 /*
866 * Commit the prepared block into the mapping btree.
867 * Any I/O for this block arriving after this point will get
868 * remapped to it directly.
869 */
870 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
871 if (r) {
872 DMERR("dm_thin_insert_block() failed");
873 cell_error(m->cell);
874 return;
875 }
876
877 /*
878 * Release any bios held while the block was being provisioned.
879 * If we are processing a write bio that completely covers the block,
880 * we already processed it so can ignore it now when processing
881 * the bios in the cell.
882 */
883 if (bio) {
884 cell_defer_except(tc, m->cell);
885 bio_endio(bio, 0);
886 } else
887 cell_defer(tc, m->cell, m->data_block);
888
889 list_del(&m->list);
890 mempool_free(m, tc->pool->mapping_pool);
891 }
892
893 static void process_prepared_discard(struct dm_thin_new_mapping *m)
894 {
895 int r;
896 struct thin_c *tc = m->tc;
897
898 r = dm_thin_remove_block(tc->td, m->virt_block);
899 if (r)
900 DMERR("dm_thin_remove_block() failed");
901
902 /*
903 * Pass the discard down to the underlying device?
904 */
905 if (m->pass_discard)
906 remap_and_issue(tc, m->bio, m->data_block);
907 else
908 bio_endio(m->bio, 0);
909
910 cell_defer_except(tc, m->cell);
911 cell_defer_except(tc, m->cell2);
912 mempool_free(m, tc->pool->mapping_pool);
913 }
914
915 static void process_prepared(struct pool *pool, struct list_head *head,
916 void (*fn)(struct dm_thin_new_mapping *))
917 {
918 unsigned long flags;
919 struct list_head maps;
920 struct dm_thin_new_mapping *m, *tmp;
921
922 INIT_LIST_HEAD(&maps);
923 spin_lock_irqsave(&pool->lock, flags);
924 list_splice_init(head, &maps);
925 spin_unlock_irqrestore(&pool->lock, flags);
926
927 list_for_each_entry_safe(m, tmp, &maps, list)
928 fn(m);
929 }
930
931 /*
932 * Deferred bio jobs.
933 */
934 static int io_overlaps_block(struct pool *pool, struct bio *bio)
935 {
936 return !(bio->bi_sector & pool->offset_mask) &&
937 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
938
939 }
940
941 static int io_overwrites_block(struct pool *pool, struct bio *bio)
942 {
943 return (bio_data_dir(bio) == WRITE) &&
944 io_overlaps_block(pool, bio);
945 }
946
947 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
948 bio_end_io_t *fn)
949 {
950 *save = bio->bi_end_io;
951 bio->bi_end_io = fn;
952 }
953
954 static int ensure_next_mapping(struct pool *pool)
955 {
956 if (pool->next_mapping)
957 return 0;
958
959 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
960
961 return pool->next_mapping ? 0 : -ENOMEM;
962 }
963
964 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
965 {
966 struct dm_thin_new_mapping *r = pool->next_mapping;
967
968 BUG_ON(!pool->next_mapping);
969
970 pool->next_mapping = NULL;
971
972 return r;
973 }
974
975 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
976 struct dm_dev *origin, dm_block_t data_origin,
977 dm_block_t data_dest,
978 struct dm_bio_prison_cell *cell, struct bio *bio)
979 {
980 int r;
981 struct pool *pool = tc->pool;
982 struct dm_thin_new_mapping *m = get_next_mapping(pool);
983
984 INIT_LIST_HEAD(&m->list);
985 m->quiesced = 0;
986 m->prepared = 0;
987 m->tc = tc;
988 m->virt_block = virt_block;
989 m->data_block = data_dest;
990 m->cell = cell;
991 m->err = 0;
992 m->bio = NULL;
993
994 if (!ds_add_work(&pool->shared_read_ds, &m->list))
995 m->quiesced = 1;
996
997 /*
998 * IO to pool_dev remaps to the pool target's data_dev.
999 *
1000 * If the whole block of data is being overwritten, we can issue the
1001 * bio immediately. Otherwise we use kcopyd to clone the data first.
1002 */
1003 if (io_overwrites_block(pool, bio)) {
1004 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1005
1006 h->overwrite_mapping = m;
1007 m->bio = bio;
1008 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1009 remap_and_issue(tc, bio, data_dest);
1010 } else {
1011 struct dm_io_region from, to;
1012
1013 from.bdev = origin->bdev;
1014 from.sector = data_origin * pool->sectors_per_block;
1015 from.count = pool->sectors_per_block;
1016
1017 to.bdev = tc->pool_dev->bdev;
1018 to.sector = data_dest * pool->sectors_per_block;
1019 to.count = pool->sectors_per_block;
1020
1021 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1022 0, copy_complete, m);
1023 if (r < 0) {
1024 mempool_free(m, pool->mapping_pool);
1025 DMERR("dm_kcopyd_copy() failed");
1026 cell_error(cell);
1027 }
1028 }
1029 }
1030
1031 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1032 dm_block_t data_origin, dm_block_t data_dest,
1033 struct dm_bio_prison_cell *cell, struct bio *bio)
1034 {
1035 schedule_copy(tc, virt_block, tc->pool_dev,
1036 data_origin, data_dest, cell, bio);
1037 }
1038
1039 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1040 dm_block_t data_dest,
1041 struct dm_bio_prison_cell *cell, struct bio *bio)
1042 {
1043 schedule_copy(tc, virt_block, tc->origin_dev,
1044 virt_block, data_dest, cell, bio);
1045 }
1046
1047 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1048 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1049 struct bio *bio)
1050 {
1051 struct pool *pool = tc->pool;
1052 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1053
1054 INIT_LIST_HEAD(&m->list);
1055 m->quiesced = 1;
1056 m->prepared = 0;
1057 m->tc = tc;
1058 m->virt_block = virt_block;
1059 m->data_block = data_block;
1060 m->cell = cell;
1061 m->err = 0;
1062 m->bio = NULL;
1063
1064 /*
1065 * If the whole block of data is being overwritten or we are not
1066 * zeroing pre-existing data, we can issue the bio immediately.
1067 * Otherwise we use kcopyd to zero the data first.
1068 */
1069 if (!pool->pf.zero_new_blocks)
1070 process_prepared_mapping(m);
1071
1072 else if (io_overwrites_block(pool, bio)) {
1073 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1074
1075 h->overwrite_mapping = m;
1076 m->bio = bio;
1077 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1078 remap_and_issue(tc, bio, data_block);
1079 } else {
1080 int r;
1081 struct dm_io_region to;
1082
1083 to.bdev = tc->pool_dev->bdev;
1084 to.sector = data_block * pool->sectors_per_block;
1085 to.count = pool->sectors_per_block;
1086
1087 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1088 if (r < 0) {
1089 mempool_free(m, pool->mapping_pool);
1090 DMERR("dm_kcopyd_zero() failed");
1091 cell_error(cell);
1092 }
1093 }
1094 }
1095
1096 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1097 {
1098 int r;
1099 dm_block_t free_blocks;
1100 unsigned long flags;
1101 struct pool *pool = tc->pool;
1102
1103 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1104 if (r)
1105 return r;
1106
1107 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1108 DMWARN("%s: reached low water mark, sending event.",
1109 dm_device_name(pool->pool_md));
1110 spin_lock_irqsave(&pool->lock, flags);
1111 pool->low_water_triggered = 1;
1112 spin_unlock_irqrestore(&pool->lock, flags);
1113 dm_table_event(pool->ti->table);
1114 }
1115
1116 if (!free_blocks) {
1117 if (pool->no_free_space)
1118 return -ENOSPC;
1119 else {
1120 /*
1121 * Try to commit to see if that will free up some
1122 * more space.
1123 */
1124 r = dm_pool_commit_metadata(pool->pmd);
1125 if (r) {
1126 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1127 __func__, r);
1128 return r;
1129 }
1130
1131 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1132 if (r)
1133 return r;
1134
1135 /*
1136 * If we still have no space we set a flag to avoid
1137 * doing all this checking and return -ENOSPC.
1138 */
1139 if (!free_blocks) {
1140 DMWARN("%s: no free space available.",
1141 dm_device_name(pool->pool_md));
1142 spin_lock_irqsave(&pool->lock, flags);
1143 pool->no_free_space = 1;
1144 spin_unlock_irqrestore(&pool->lock, flags);
1145 return -ENOSPC;
1146 }
1147 }
1148 }
1149
1150 r = dm_pool_alloc_data_block(pool->pmd, result);
1151 if (r)
1152 return r;
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * If we have run out of space, queue bios until the device is
1159 * resumed, presumably after having been reloaded with more space.
1160 */
1161 static void retry_on_resume(struct bio *bio)
1162 {
1163 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1164 struct thin_c *tc = h->tc;
1165 struct pool *pool = tc->pool;
1166 unsigned long flags;
1167
1168 spin_lock_irqsave(&pool->lock, flags);
1169 bio_list_add(&pool->retry_on_resume_list, bio);
1170 spin_unlock_irqrestore(&pool->lock, flags);
1171 }
1172
1173 static void no_space(struct dm_bio_prison_cell *cell)
1174 {
1175 struct bio *bio;
1176 struct bio_list bios;
1177
1178 bio_list_init(&bios);
1179 cell_release(cell, &bios);
1180
1181 while ((bio = bio_list_pop(&bios)))
1182 retry_on_resume(bio);
1183 }
1184
1185 static void process_discard(struct thin_c *tc, struct bio *bio)
1186 {
1187 int r;
1188 unsigned long flags;
1189 struct pool *pool = tc->pool;
1190 struct dm_bio_prison_cell *cell, *cell2;
1191 struct cell_key key, key2;
1192 dm_block_t block = get_bio_block(tc, bio);
1193 struct dm_thin_lookup_result lookup_result;
1194 struct dm_thin_new_mapping *m;
1195
1196 build_virtual_key(tc->td, block, &key);
1197 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1198 return;
1199
1200 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1201 switch (r) {
1202 case 0:
1203 /*
1204 * Check nobody is fiddling with this pool block. This can
1205 * happen if someone's in the process of breaking sharing
1206 * on this block.
1207 */
1208 build_data_key(tc->td, lookup_result.block, &key2);
1209 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1210 cell_release_singleton(cell, bio);
1211 break;
1212 }
1213
1214 if (io_overlaps_block(pool, bio)) {
1215 /*
1216 * IO may still be going to the destination block. We must
1217 * quiesce before we can do the removal.
1218 */
1219 m = get_next_mapping(pool);
1220 m->tc = tc;
1221 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1222 m->virt_block = block;
1223 m->data_block = lookup_result.block;
1224 m->cell = cell;
1225 m->cell2 = cell2;
1226 m->err = 0;
1227 m->bio = bio;
1228
1229 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1230 spin_lock_irqsave(&pool->lock, flags);
1231 list_add(&m->list, &pool->prepared_discards);
1232 spin_unlock_irqrestore(&pool->lock, flags);
1233 wake_worker(pool);
1234 }
1235 } else {
1236 /*
1237 * This path is hit if people are ignoring
1238 * limits->discard_granularity. It ignores any
1239 * part of the discard that is in a subsequent
1240 * block.
1241 */
1242 sector_t offset = bio->bi_sector - (block << pool->block_shift);
1243 unsigned remaining = (pool->sectors_per_block - offset) << 9;
1244 bio->bi_size = min(bio->bi_size, remaining);
1245
1246 cell_release_singleton(cell, bio);
1247 cell_release_singleton(cell2, bio);
1248 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1249 remap_and_issue(tc, bio, lookup_result.block);
1250 else
1251 bio_endio(bio, 0);
1252 }
1253 break;
1254
1255 case -ENODATA:
1256 /*
1257 * It isn't provisioned, just forget it.
1258 */
1259 cell_release_singleton(cell, bio);
1260 bio_endio(bio, 0);
1261 break;
1262
1263 default:
1264 DMERR("discard: find block unexpectedly returned %d", r);
1265 cell_release_singleton(cell, bio);
1266 bio_io_error(bio);
1267 break;
1268 }
1269 }
1270
1271 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1272 struct cell_key *key,
1273 struct dm_thin_lookup_result *lookup_result,
1274 struct dm_bio_prison_cell *cell)
1275 {
1276 int r;
1277 dm_block_t data_block;
1278
1279 r = alloc_data_block(tc, &data_block);
1280 switch (r) {
1281 case 0:
1282 schedule_internal_copy(tc, block, lookup_result->block,
1283 data_block, cell, bio);
1284 break;
1285
1286 case -ENOSPC:
1287 no_space(cell);
1288 break;
1289
1290 default:
1291 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1292 cell_error(cell);
1293 break;
1294 }
1295 }
1296
1297 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1298 dm_block_t block,
1299 struct dm_thin_lookup_result *lookup_result)
1300 {
1301 struct dm_bio_prison_cell *cell;
1302 struct pool *pool = tc->pool;
1303 struct cell_key key;
1304
1305 /*
1306 * If cell is already occupied, then sharing is already in the process
1307 * of being broken so we have nothing further to do here.
1308 */
1309 build_data_key(tc->td, lookup_result->block, &key);
1310 if (bio_detain(pool->prison, &key, bio, &cell))
1311 return;
1312
1313 if (bio_data_dir(bio) == WRITE)
1314 break_sharing(tc, bio, block, &key, lookup_result, cell);
1315 else {
1316 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1317
1318 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1319
1320 cell_release_singleton(cell, bio);
1321 remap_and_issue(tc, bio, lookup_result->block);
1322 }
1323 }
1324
1325 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1326 struct dm_bio_prison_cell *cell)
1327 {
1328 int r;
1329 dm_block_t data_block;
1330
1331 /*
1332 * Remap empty bios (flushes) immediately, without provisioning.
1333 */
1334 if (!bio->bi_size) {
1335 cell_release_singleton(cell, bio);
1336 remap_and_issue(tc, bio, 0);
1337 return;
1338 }
1339
1340 /*
1341 * Fill read bios with zeroes and complete them immediately.
1342 */
1343 if (bio_data_dir(bio) == READ) {
1344 zero_fill_bio(bio);
1345 cell_release_singleton(cell, bio);
1346 bio_endio(bio, 0);
1347 return;
1348 }
1349
1350 r = alloc_data_block(tc, &data_block);
1351 switch (r) {
1352 case 0:
1353 if (tc->origin_dev)
1354 schedule_external_copy(tc, block, data_block, cell, bio);
1355 else
1356 schedule_zero(tc, block, data_block, cell, bio);
1357 break;
1358
1359 case -ENOSPC:
1360 no_space(cell);
1361 break;
1362
1363 default:
1364 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1365 cell_error(cell);
1366 break;
1367 }
1368 }
1369
1370 static void process_bio(struct thin_c *tc, struct bio *bio)
1371 {
1372 int r;
1373 dm_block_t block = get_bio_block(tc, bio);
1374 struct dm_bio_prison_cell *cell;
1375 struct cell_key key;
1376 struct dm_thin_lookup_result lookup_result;
1377
1378 /*
1379 * If cell is already occupied, then the block is already
1380 * being provisioned so we have nothing further to do here.
1381 */
1382 build_virtual_key(tc->td, block, &key);
1383 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1384 return;
1385
1386 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1387 switch (r) {
1388 case 0:
1389 /*
1390 * We can release this cell now. This thread is the only
1391 * one that puts bios into a cell, and we know there were
1392 * no preceding bios.
1393 */
1394 /*
1395 * TODO: this will probably have to change when discard goes
1396 * back in.
1397 */
1398 cell_release_singleton(cell, bio);
1399
1400 if (lookup_result.shared)
1401 process_shared_bio(tc, bio, block, &lookup_result);
1402 else
1403 remap_and_issue(tc, bio, lookup_result.block);
1404 break;
1405
1406 case -ENODATA:
1407 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1408 cell_release_singleton(cell, bio);
1409 remap_to_origin_and_issue(tc, bio);
1410 } else
1411 provision_block(tc, bio, block, cell);
1412 break;
1413
1414 default:
1415 DMERR("dm_thin_find_block() failed, error = %d", r);
1416 cell_release_singleton(cell, bio);
1417 bio_io_error(bio);
1418 break;
1419 }
1420 }
1421
1422 static int need_commit_due_to_time(struct pool *pool)
1423 {
1424 return jiffies < pool->last_commit_jiffies ||
1425 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1426 }
1427
1428 static void process_deferred_bios(struct pool *pool)
1429 {
1430 unsigned long flags;
1431 struct bio *bio;
1432 struct bio_list bios;
1433 int r;
1434
1435 bio_list_init(&bios);
1436
1437 spin_lock_irqsave(&pool->lock, flags);
1438 bio_list_merge(&bios, &pool->deferred_bios);
1439 bio_list_init(&pool->deferred_bios);
1440 spin_unlock_irqrestore(&pool->lock, flags);
1441
1442 while ((bio = bio_list_pop(&bios))) {
1443 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1444 struct thin_c *tc = h->tc;
1445
1446 /*
1447 * If we've got no free new_mapping structs, and processing
1448 * this bio might require one, we pause until there are some
1449 * prepared mappings to process.
1450 */
1451 if (ensure_next_mapping(pool)) {
1452 spin_lock_irqsave(&pool->lock, flags);
1453 bio_list_merge(&pool->deferred_bios, &bios);
1454 spin_unlock_irqrestore(&pool->lock, flags);
1455
1456 break;
1457 }
1458
1459 if (bio->bi_rw & REQ_DISCARD)
1460 process_discard(tc, bio);
1461 else
1462 process_bio(tc, bio);
1463 }
1464
1465 /*
1466 * If there are any deferred flush bios, we must commit
1467 * the metadata before issuing them.
1468 */
1469 bio_list_init(&bios);
1470 spin_lock_irqsave(&pool->lock, flags);
1471 bio_list_merge(&bios, &pool->deferred_flush_bios);
1472 bio_list_init(&pool->deferred_flush_bios);
1473 spin_unlock_irqrestore(&pool->lock, flags);
1474
1475 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1476 return;
1477
1478 r = dm_pool_commit_metadata(pool->pmd);
1479 if (r) {
1480 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1481 __func__, r);
1482 while ((bio = bio_list_pop(&bios)))
1483 bio_io_error(bio);
1484 return;
1485 }
1486 pool->last_commit_jiffies = jiffies;
1487
1488 while ((bio = bio_list_pop(&bios)))
1489 generic_make_request(bio);
1490 }
1491
1492 static void do_worker(struct work_struct *ws)
1493 {
1494 struct pool *pool = container_of(ws, struct pool, worker);
1495
1496 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1497 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1498 process_deferred_bios(pool);
1499 }
1500
1501 /*
1502 * We want to commit periodically so that not too much
1503 * unwritten data builds up.
1504 */
1505 static void do_waker(struct work_struct *ws)
1506 {
1507 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1508 wake_worker(pool);
1509 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1510 }
1511
1512 /*----------------------------------------------------------------*/
1513
1514 /*
1515 * Mapping functions.
1516 */
1517
1518 /*
1519 * Called only while mapping a thin bio to hand it over to the workqueue.
1520 */
1521 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1522 {
1523 unsigned long flags;
1524 struct pool *pool = tc->pool;
1525
1526 spin_lock_irqsave(&pool->lock, flags);
1527 bio_list_add(&pool->deferred_bios, bio);
1528 spin_unlock_irqrestore(&pool->lock, flags);
1529
1530 wake_worker(pool);
1531 }
1532
1533 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1534 {
1535 struct pool *pool = tc->pool;
1536 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1537
1538 h->tc = tc;
1539 h->shared_read_entry = NULL;
1540 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1541 h->overwrite_mapping = NULL;
1542
1543 return h;
1544 }
1545
1546 /*
1547 * Non-blocking function called from the thin target's map function.
1548 */
1549 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1550 union map_info *map_context)
1551 {
1552 int r;
1553 struct thin_c *tc = ti->private;
1554 dm_block_t block = get_bio_block(tc, bio);
1555 struct dm_thin_device *td = tc->td;
1556 struct dm_thin_lookup_result result;
1557
1558 map_context->ptr = thin_hook_bio(tc, bio);
1559 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1560 thin_defer_bio(tc, bio);
1561 return DM_MAPIO_SUBMITTED;
1562 }
1563
1564 r = dm_thin_find_block(td, block, 0, &result);
1565
1566 /*
1567 * Note that we defer readahead too.
1568 */
1569 switch (r) {
1570 case 0:
1571 if (unlikely(result.shared)) {
1572 /*
1573 * We have a race condition here between the
1574 * result.shared value returned by the lookup and
1575 * snapshot creation, which may cause new
1576 * sharing.
1577 *
1578 * To avoid this always quiesce the origin before
1579 * taking the snap. You want to do this anyway to
1580 * ensure a consistent application view
1581 * (i.e. lockfs).
1582 *
1583 * More distant ancestors are irrelevant. The
1584 * shared flag will be set in their case.
1585 */
1586 thin_defer_bio(tc, bio);
1587 r = DM_MAPIO_SUBMITTED;
1588 } else {
1589 remap(tc, bio, result.block);
1590 r = DM_MAPIO_REMAPPED;
1591 }
1592 break;
1593
1594 case -ENODATA:
1595 /*
1596 * In future, the failed dm_thin_find_block above could
1597 * provide the hint to load the metadata into cache.
1598 */
1599 case -EWOULDBLOCK:
1600 thin_defer_bio(tc, bio);
1601 r = DM_MAPIO_SUBMITTED;
1602 break;
1603 }
1604
1605 return r;
1606 }
1607
1608 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1609 {
1610 int r;
1611 unsigned long flags;
1612 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1613
1614 spin_lock_irqsave(&pt->pool->lock, flags);
1615 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1616 spin_unlock_irqrestore(&pt->pool->lock, flags);
1617
1618 if (!r) {
1619 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1620 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1621 }
1622
1623 return r;
1624 }
1625
1626 static void __requeue_bios(struct pool *pool)
1627 {
1628 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1629 bio_list_init(&pool->retry_on_resume_list);
1630 }
1631
1632 /*----------------------------------------------------------------
1633 * Binding of control targets to a pool object
1634 *--------------------------------------------------------------*/
1635 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1636 {
1637 struct pool_c *pt = ti->private;
1638
1639 pool->ti = ti;
1640 pool->low_water_blocks = pt->low_water_blocks;
1641 pool->pf = pt->pf;
1642
1643 /*
1644 * If discard_passdown was enabled verify that the data device
1645 * supports discards. Disable discard_passdown if not; otherwise
1646 * -EOPNOTSUPP will be returned.
1647 */
1648 if (pt->pf.discard_passdown) {
1649 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1650 if (!q || !blk_queue_discard(q)) {
1651 char buf[BDEVNAME_SIZE];
1652 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1653 bdevname(pt->data_dev->bdev, buf));
1654 pool->pf.discard_passdown = 0;
1655 }
1656 }
1657
1658 return 0;
1659 }
1660
1661 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1662 {
1663 if (pool->ti == ti)
1664 pool->ti = NULL;
1665 }
1666
1667 /*----------------------------------------------------------------
1668 * Pool creation
1669 *--------------------------------------------------------------*/
1670 /* Initialize pool features. */
1671 static void pool_features_init(struct pool_features *pf)
1672 {
1673 pf->zero_new_blocks = 1;
1674 pf->discard_enabled = 1;
1675 pf->discard_passdown = 1;
1676 }
1677
1678 static void __pool_destroy(struct pool *pool)
1679 {
1680 __pool_table_remove(pool);
1681
1682 if (dm_pool_metadata_close(pool->pmd) < 0)
1683 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1684
1685 prison_destroy(pool->prison);
1686 dm_kcopyd_client_destroy(pool->copier);
1687
1688 if (pool->wq)
1689 destroy_workqueue(pool->wq);
1690
1691 if (pool->next_mapping)
1692 mempool_free(pool->next_mapping, pool->mapping_pool);
1693 mempool_destroy(pool->mapping_pool);
1694 mempool_destroy(pool->endio_hook_pool);
1695 kfree(pool);
1696 }
1697
1698 static struct kmem_cache *_new_mapping_cache;
1699 static struct kmem_cache *_endio_hook_cache;
1700
1701 static struct pool *pool_create(struct mapped_device *pool_md,
1702 struct block_device *metadata_dev,
1703 unsigned long block_size, char **error)
1704 {
1705 int r;
1706 void *err_p;
1707 struct pool *pool;
1708 struct dm_pool_metadata *pmd;
1709
1710 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1711 if (IS_ERR(pmd)) {
1712 *error = "Error creating metadata object";
1713 return (struct pool *)pmd;
1714 }
1715
1716 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1717 if (!pool) {
1718 *error = "Error allocating memory for pool";
1719 err_p = ERR_PTR(-ENOMEM);
1720 goto bad_pool;
1721 }
1722
1723 pool->pmd = pmd;
1724 pool->sectors_per_block = block_size;
1725 pool->block_shift = ffs(block_size) - 1;
1726 pool->offset_mask = block_size - 1;
1727 pool->low_water_blocks = 0;
1728 pool_features_init(&pool->pf);
1729 pool->prison = prison_create(PRISON_CELLS);
1730 if (!pool->prison) {
1731 *error = "Error creating pool's bio prison";
1732 err_p = ERR_PTR(-ENOMEM);
1733 goto bad_prison;
1734 }
1735
1736 pool->copier = dm_kcopyd_client_create();
1737 if (IS_ERR(pool->copier)) {
1738 r = PTR_ERR(pool->copier);
1739 *error = "Error creating pool's kcopyd client";
1740 err_p = ERR_PTR(r);
1741 goto bad_kcopyd_client;
1742 }
1743
1744 /*
1745 * Create singlethreaded workqueue that will service all devices
1746 * that use this metadata.
1747 */
1748 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1749 if (!pool->wq) {
1750 *error = "Error creating pool's workqueue";
1751 err_p = ERR_PTR(-ENOMEM);
1752 goto bad_wq;
1753 }
1754
1755 INIT_WORK(&pool->worker, do_worker);
1756 INIT_DELAYED_WORK(&pool->waker, do_waker);
1757 spin_lock_init(&pool->lock);
1758 bio_list_init(&pool->deferred_bios);
1759 bio_list_init(&pool->deferred_flush_bios);
1760 INIT_LIST_HEAD(&pool->prepared_mappings);
1761 INIT_LIST_HEAD(&pool->prepared_discards);
1762 pool->low_water_triggered = 0;
1763 pool->no_free_space = 0;
1764 bio_list_init(&pool->retry_on_resume_list);
1765 ds_init(&pool->shared_read_ds);
1766 ds_init(&pool->all_io_ds);
1767
1768 pool->next_mapping = NULL;
1769 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1770 _new_mapping_cache);
1771 if (!pool->mapping_pool) {
1772 *error = "Error creating pool's mapping mempool";
1773 err_p = ERR_PTR(-ENOMEM);
1774 goto bad_mapping_pool;
1775 }
1776
1777 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1778 _endio_hook_cache);
1779 if (!pool->endio_hook_pool) {
1780 *error = "Error creating pool's endio_hook mempool";
1781 err_p = ERR_PTR(-ENOMEM);
1782 goto bad_endio_hook_pool;
1783 }
1784 pool->ref_count = 1;
1785 pool->last_commit_jiffies = jiffies;
1786 pool->pool_md = pool_md;
1787 pool->md_dev = metadata_dev;
1788 __pool_table_insert(pool);
1789
1790 return pool;
1791
1792 bad_endio_hook_pool:
1793 mempool_destroy(pool->mapping_pool);
1794 bad_mapping_pool:
1795 destroy_workqueue(pool->wq);
1796 bad_wq:
1797 dm_kcopyd_client_destroy(pool->copier);
1798 bad_kcopyd_client:
1799 prison_destroy(pool->prison);
1800 bad_prison:
1801 kfree(pool);
1802 bad_pool:
1803 if (dm_pool_metadata_close(pmd))
1804 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1805
1806 return err_p;
1807 }
1808
1809 static void __pool_inc(struct pool *pool)
1810 {
1811 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1812 pool->ref_count++;
1813 }
1814
1815 static void __pool_dec(struct pool *pool)
1816 {
1817 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1818 BUG_ON(!pool->ref_count);
1819 if (!--pool->ref_count)
1820 __pool_destroy(pool);
1821 }
1822
1823 static struct pool *__pool_find(struct mapped_device *pool_md,
1824 struct block_device *metadata_dev,
1825 unsigned long block_size, char **error,
1826 int *created)
1827 {
1828 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1829
1830 if (pool) {
1831 if (pool->pool_md != pool_md) {
1832 *error = "metadata device already in use by a pool";
1833 return ERR_PTR(-EBUSY);
1834 }
1835 __pool_inc(pool);
1836
1837 } else {
1838 pool = __pool_table_lookup(pool_md);
1839 if (pool) {
1840 if (pool->md_dev != metadata_dev) {
1841 *error = "different pool cannot replace a pool";
1842 return ERR_PTR(-EINVAL);
1843 }
1844 __pool_inc(pool);
1845
1846 } else {
1847 pool = pool_create(pool_md, metadata_dev, block_size, error);
1848 *created = 1;
1849 }
1850 }
1851
1852 return pool;
1853 }
1854
1855 /*----------------------------------------------------------------
1856 * Pool target methods
1857 *--------------------------------------------------------------*/
1858 static void pool_dtr(struct dm_target *ti)
1859 {
1860 struct pool_c *pt = ti->private;
1861
1862 mutex_lock(&dm_thin_pool_table.mutex);
1863
1864 unbind_control_target(pt->pool, ti);
1865 __pool_dec(pt->pool);
1866 dm_put_device(ti, pt->metadata_dev);
1867 dm_put_device(ti, pt->data_dev);
1868 kfree(pt);
1869
1870 mutex_unlock(&dm_thin_pool_table.mutex);
1871 }
1872
1873 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1874 struct dm_target *ti)
1875 {
1876 int r;
1877 unsigned argc;
1878 const char *arg_name;
1879
1880 static struct dm_arg _args[] = {
1881 {0, 3, "Invalid number of pool feature arguments"},
1882 };
1883
1884 /*
1885 * No feature arguments supplied.
1886 */
1887 if (!as->argc)
1888 return 0;
1889
1890 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1891 if (r)
1892 return -EINVAL;
1893
1894 while (argc && !r) {
1895 arg_name = dm_shift_arg(as);
1896 argc--;
1897
1898 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1899 pf->zero_new_blocks = 0;
1900 continue;
1901 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1902 pf->discard_enabled = 0;
1903 continue;
1904 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1905 pf->discard_passdown = 0;
1906 continue;
1907 }
1908
1909 ti->error = "Unrecognised pool feature requested";
1910 r = -EINVAL;
1911 }
1912
1913 return r;
1914 }
1915
1916 /*
1917 * thin-pool <metadata dev> <data dev>
1918 * <data block size (sectors)>
1919 * <low water mark (blocks)>
1920 * [<#feature args> [<arg>]*]
1921 *
1922 * Optional feature arguments are:
1923 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1924 * ignore_discard: disable discard
1925 * no_discard_passdown: don't pass discards down to the data device
1926 */
1927 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1928 {
1929 int r, pool_created = 0;
1930 struct pool_c *pt;
1931 struct pool *pool;
1932 struct pool_features pf;
1933 struct dm_arg_set as;
1934 struct dm_dev *data_dev;
1935 unsigned long block_size;
1936 dm_block_t low_water_blocks;
1937 struct dm_dev *metadata_dev;
1938 sector_t metadata_dev_size;
1939 char b[BDEVNAME_SIZE];
1940
1941 /*
1942 * FIXME Remove validation from scope of lock.
1943 */
1944 mutex_lock(&dm_thin_pool_table.mutex);
1945
1946 if (argc < 4) {
1947 ti->error = "Invalid argument count";
1948 r = -EINVAL;
1949 goto out_unlock;
1950 }
1951 as.argc = argc;
1952 as.argv = argv;
1953
1954 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1955 if (r) {
1956 ti->error = "Error opening metadata block device";
1957 goto out_unlock;
1958 }
1959
1960 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1961 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1962 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1963 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1964
1965 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1966 if (r) {
1967 ti->error = "Error getting data device";
1968 goto out_metadata;
1969 }
1970
1971 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1972 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1973 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1974 !is_power_of_2(block_size)) {
1975 ti->error = "Invalid block size";
1976 r = -EINVAL;
1977 goto out;
1978 }
1979
1980 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1981 ti->error = "Invalid low water mark";
1982 r = -EINVAL;
1983 goto out;
1984 }
1985
1986 /*
1987 * Set default pool features.
1988 */
1989 pool_features_init(&pf);
1990
1991 dm_consume_args(&as, 4);
1992 r = parse_pool_features(&as, &pf, ti);
1993 if (r)
1994 goto out;
1995
1996 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1997 if (!pt) {
1998 r = -ENOMEM;
1999 goto out;
2000 }
2001
2002 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2003 block_size, &ti->error, &pool_created);
2004 if (IS_ERR(pool)) {
2005 r = PTR_ERR(pool);
2006 goto out_free_pt;
2007 }
2008
2009 /*
2010 * 'pool_created' reflects whether this is the first table load.
2011 * Top level discard support is not allowed to be changed after
2012 * initial load. This would require a pool reload to trigger thin
2013 * device changes.
2014 */
2015 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2016 ti->error = "Discard support cannot be disabled once enabled";
2017 r = -EINVAL;
2018 goto out_flags_changed;
2019 }
2020
2021 pt->pool = pool;
2022 pt->ti = ti;
2023 pt->metadata_dev = metadata_dev;
2024 pt->data_dev = data_dev;
2025 pt->low_water_blocks = low_water_blocks;
2026 pt->pf = pf;
2027 ti->num_flush_requests = 1;
2028 /*
2029 * Only need to enable discards if the pool should pass
2030 * them down to the data device. The thin device's discard
2031 * processing will cause mappings to be removed from the btree.
2032 */
2033 if (pf.discard_enabled && pf.discard_passdown) {
2034 ti->num_discard_requests = 1;
2035 /*
2036 * Setting 'discards_supported' circumvents the normal
2037 * stacking of discard limits (this keeps the pool and
2038 * thin devices' discard limits consistent).
2039 */
2040 ti->discards_supported = 1;
2041 }
2042 ti->private = pt;
2043
2044 pt->callbacks.congested_fn = pool_is_congested;
2045 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2046
2047 mutex_unlock(&dm_thin_pool_table.mutex);
2048
2049 return 0;
2050
2051 out_flags_changed:
2052 __pool_dec(pool);
2053 out_free_pt:
2054 kfree(pt);
2055 out:
2056 dm_put_device(ti, data_dev);
2057 out_metadata:
2058 dm_put_device(ti, metadata_dev);
2059 out_unlock:
2060 mutex_unlock(&dm_thin_pool_table.mutex);
2061
2062 return r;
2063 }
2064
2065 static int pool_map(struct dm_target *ti, struct bio *bio,
2066 union map_info *map_context)
2067 {
2068 int r;
2069 struct pool_c *pt = ti->private;
2070 struct pool *pool = pt->pool;
2071 unsigned long flags;
2072
2073 /*
2074 * As this is a singleton target, ti->begin is always zero.
2075 */
2076 spin_lock_irqsave(&pool->lock, flags);
2077 bio->bi_bdev = pt->data_dev->bdev;
2078 r = DM_MAPIO_REMAPPED;
2079 spin_unlock_irqrestore(&pool->lock, flags);
2080
2081 return r;
2082 }
2083
2084 /*
2085 * Retrieves the number of blocks of the data device from
2086 * the superblock and compares it to the actual device size,
2087 * thus resizing the data device in case it has grown.
2088 *
2089 * This both copes with opening preallocated data devices in the ctr
2090 * being followed by a resume
2091 * -and-
2092 * calling the resume method individually after userspace has
2093 * grown the data device in reaction to a table event.
2094 */
2095 static int pool_preresume(struct dm_target *ti)
2096 {
2097 int r;
2098 struct pool_c *pt = ti->private;
2099 struct pool *pool = pt->pool;
2100 dm_block_t data_size, sb_data_size;
2101
2102 /*
2103 * Take control of the pool object.
2104 */
2105 r = bind_control_target(pool, ti);
2106 if (r)
2107 return r;
2108
2109 data_size = ti->len >> pool->block_shift;
2110 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2111 if (r) {
2112 DMERR("failed to retrieve data device size");
2113 return r;
2114 }
2115
2116 if (data_size < sb_data_size) {
2117 DMERR("pool target too small, is %llu blocks (expected %llu)",
2118 data_size, sb_data_size);
2119 return -EINVAL;
2120
2121 } else if (data_size > sb_data_size) {
2122 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2123 if (r) {
2124 DMERR("failed to resize data device");
2125 return r;
2126 }
2127
2128 r = dm_pool_commit_metadata(pool->pmd);
2129 if (r) {
2130 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2131 __func__, r);
2132 return r;
2133 }
2134 }
2135
2136 return 0;
2137 }
2138
2139 static void pool_resume(struct dm_target *ti)
2140 {
2141 struct pool_c *pt = ti->private;
2142 struct pool *pool = pt->pool;
2143 unsigned long flags;
2144
2145 spin_lock_irqsave(&pool->lock, flags);
2146 pool->low_water_triggered = 0;
2147 pool->no_free_space = 0;
2148 __requeue_bios(pool);
2149 spin_unlock_irqrestore(&pool->lock, flags);
2150
2151 do_waker(&pool->waker.work);
2152 }
2153
2154 static void pool_postsuspend(struct dm_target *ti)
2155 {
2156 int r;
2157 struct pool_c *pt = ti->private;
2158 struct pool *pool = pt->pool;
2159
2160 cancel_delayed_work(&pool->waker);
2161 flush_workqueue(pool->wq);
2162
2163 r = dm_pool_commit_metadata(pool->pmd);
2164 if (r < 0) {
2165 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2166 __func__, r);
2167 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2168 }
2169 }
2170
2171 static int check_arg_count(unsigned argc, unsigned args_required)
2172 {
2173 if (argc != args_required) {
2174 DMWARN("Message received with %u arguments instead of %u.",
2175 argc, args_required);
2176 return -EINVAL;
2177 }
2178
2179 return 0;
2180 }
2181
2182 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2183 {
2184 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2185 *dev_id <= MAX_DEV_ID)
2186 return 0;
2187
2188 if (warning)
2189 DMWARN("Message received with invalid device id: %s", arg);
2190
2191 return -EINVAL;
2192 }
2193
2194 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2195 {
2196 dm_thin_id dev_id;
2197 int r;
2198
2199 r = check_arg_count(argc, 2);
2200 if (r)
2201 return r;
2202
2203 r = read_dev_id(argv[1], &dev_id, 1);
2204 if (r)
2205 return r;
2206
2207 r = dm_pool_create_thin(pool->pmd, dev_id);
2208 if (r) {
2209 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2210 argv[1]);
2211 return r;
2212 }
2213
2214 return 0;
2215 }
2216
2217 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2218 {
2219 dm_thin_id dev_id;
2220 dm_thin_id origin_dev_id;
2221 int r;
2222
2223 r = check_arg_count(argc, 3);
2224 if (r)
2225 return r;
2226
2227 r = read_dev_id(argv[1], &dev_id, 1);
2228 if (r)
2229 return r;
2230
2231 r = read_dev_id(argv[2], &origin_dev_id, 1);
2232 if (r)
2233 return r;
2234
2235 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2236 if (r) {
2237 DMWARN("Creation of new snapshot %s of device %s failed.",
2238 argv[1], argv[2]);
2239 return r;
2240 }
2241
2242 return 0;
2243 }
2244
2245 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2246 {
2247 dm_thin_id dev_id;
2248 int r;
2249
2250 r = check_arg_count(argc, 2);
2251 if (r)
2252 return r;
2253
2254 r = read_dev_id(argv[1], &dev_id, 1);
2255 if (r)
2256 return r;
2257
2258 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2259 if (r)
2260 DMWARN("Deletion of thin device %s failed.", argv[1]);
2261
2262 return r;
2263 }
2264
2265 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2266 {
2267 dm_thin_id old_id, new_id;
2268 int r;
2269
2270 r = check_arg_count(argc, 3);
2271 if (r)
2272 return r;
2273
2274 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2275 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2276 return -EINVAL;
2277 }
2278
2279 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2280 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2281 return -EINVAL;
2282 }
2283
2284 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2285 if (r) {
2286 DMWARN("Failed to change transaction id from %s to %s.",
2287 argv[1], argv[2]);
2288 return r;
2289 }
2290
2291 return 0;
2292 }
2293
2294 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2295 {
2296 int r;
2297
2298 r = check_arg_count(argc, 1);
2299 if (r)
2300 return r;
2301
2302 r = dm_pool_commit_metadata(pool->pmd);
2303 if (r) {
2304 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2305 __func__, r);
2306 return r;
2307 }
2308
2309 r = dm_pool_reserve_metadata_snap(pool->pmd);
2310 if (r)
2311 DMWARN("reserve_metadata_snap message failed.");
2312
2313 return r;
2314 }
2315
2316 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2317 {
2318 int r;
2319
2320 r = check_arg_count(argc, 1);
2321 if (r)
2322 return r;
2323
2324 r = dm_pool_release_metadata_snap(pool->pmd);
2325 if (r)
2326 DMWARN("release_metadata_snap message failed.");
2327
2328 return r;
2329 }
2330
2331 /*
2332 * Messages supported:
2333 * create_thin <dev_id>
2334 * create_snap <dev_id> <origin_id>
2335 * delete <dev_id>
2336 * trim <dev_id> <new_size_in_sectors>
2337 * set_transaction_id <current_trans_id> <new_trans_id>
2338 * reserve_metadata_snap
2339 * release_metadata_snap
2340 */
2341 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2342 {
2343 int r = -EINVAL;
2344 struct pool_c *pt = ti->private;
2345 struct pool *pool = pt->pool;
2346
2347 if (!strcasecmp(argv[0], "create_thin"))
2348 r = process_create_thin_mesg(argc, argv, pool);
2349
2350 else if (!strcasecmp(argv[0], "create_snap"))
2351 r = process_create_snap_mesg(argc, argv, pool);
2352
2353 else if (!strcasecmp(argv[0], "delete"))
2354 r = process_delete_mesg(argc, argv, pool);
2355
2356 else if (!strcasecmp(argv[0], "set_transaction_id"))
2357 r = process_set_transaction_id_mesg(argc, argv, pool);
2358
2359 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2360 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2361
2362 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2363 r = process_release_metadata_snap_mesg(argc, argv, pool);
2364
2365 else
2366 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2367
2368 if (!r) {
2369 r = dm_pool_commit_metadata(pool->pmd);
2370 if (r)
2371 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2372 argv[0], r);
2373 }
2374
2375 return r;
2376 }
2377
2378 /*
2379 * Status line is:
2380 * <transaction id> <used metadata sectors>/<total metadata sectors>
2381 * <used data sectors>/<total data sectors> <held metadata root>
2382 */
2383 static int pool_status(struct dm_target *ti, status_type_t type,
2384 char *result, unsigned maxlen)
2385 {
2386 int r, count;
2387 unsigned sz = 0;
2388 uint64_t transaction_id;
2389 dm_block_t nr_free_blocks_data;
2390 dm_block_t nr_free_blocks_metadata;
2391 dm_block_t nr_blocks_data;
2392 dm_block_t nr_blocks_metadata;
2393 dm_block_t held_root;
2394 char buf[BDEVNAME_SIZE];
2395 char buf2[BDEVNAME_SIZE];
2396 struct pool_c *pt = ti->private;
2397 struct pool *pool = pt->pool;
2398
2399 switch (type) {
2400 case STATUSTYPE_INFO:
2401 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2402 &transaction_id);
2403 if (r)
2404 return r;
2405
2406 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2407 &nr_free_blocks_metadata);
2408 if (r)
2409 return r;
2410
2411 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2412 if (r)
2413 return r;
2414
2415 r = dm_pool_get_free_block_count(pool->pmd,
2416 &nr_free_blocks_data);
2417 if (r)
2418 return r;
2419
2420 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2421 if (r)
2422 return r;
2423
2424 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2425 if (r)
2426 return r;
2427
2428 DMEMIT("%llu %llu/%llu %llu/%llu ",
2429 (unsigned long long)transaction_id,
2430 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2431 (unsigned long long)nr_blocks_metadata,
2432 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2433 (unsigned long long)nr_blocks_data);
2434
2435 if (held_root)
2436 DMEMIT("%llu", held_root);
2437 else
2438 DMEMIT("-");
2439
2440 break;
2441
2442 case STATUSTYPE_TABLE:
2443 DMEMIT("%s %s %lu %llu ",
2444 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2445 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2446 (unsigned long)pool->sectors_per_block,
2447 (unsigned long long)pt->low_water_blocks);
2448
2449 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2450 !pt->pf.discard_passdown;
2451 DMEMIT("%u ", count);
2452
2453 if (!pool->pf.zero_new_blocks)
2454 DMEMIT("skip_block_zeroing ");
2455
2456 if (!pool->pf.discard_enabled)
2457 DMEMIT("ignore_discard ");
2458
2459 if (!pt->pf.discard_passdown)
2460 DMEMIT("no_discard_passdown ");
2461
2462 break;
2463 }
2464
2465 return 0;
2466 }
2467
2468 static int pool_iterate_devices(struct dm_target *ti,
2469 iterate_devices_callout_fn fn, void *data)
2470 {
2471 struct pool_c *pt = ti->private;
2472
2473 return fn(ti, pt->data_dev, 0, ti->len, data);
2474 }
2475
2476 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2477 struct bio_vec *biovec, int max_size)
2478 {
2479 struct pool_c *pt = ti->private;
2480 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2481
2482 if (!q->merge_bvec_fn)
2483 return max_size;
2484
2485 bvm->bi_bdev = pt->data_dev->bdev;
2486
2487 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2488 }
2489
2490 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2491 {
2492 /*
2493 * FIXME: these limits may be incompatible with the pool's data device
2494 */
2495 limits->max_discard_sectors = pool->sectors_per_block;
2496
2497 /*
2498 * This is just a hint, and not enforced. We have to cope with
2499 * bios that overlap 2 blocks.
2500 */
2501 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2502 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2503 }
2504
2505 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2506 {
2507 struct pool_c *pt = ti->private;
2508 struct pool *pool = pt->pool;
2509
2510 blk_limits_io_min(limits, 0);
2511 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2512 if (pool->pf.discard_enabled)
2513 set_discard_limits(pool, limits);
2514 }
2515
2516 static struct target_type pool_target = {
2517 .name = "thin-pool",
2518 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2519 DM_TARGET_IMMUTABLE,
2520 .version = {1, 2, 0},
2521 .module = THIS_MODULE,
2522 .ctr = pool_ctr,
2523 .dtr = pool_dtr,
2524 .map = pool_map,
2525 .postsuspend = pool_postsuspend,
2526 .preresume = pool_preresume,
2527 .resume = pool_resume,
2528 .message = pool_message,
2529 .status = pool_status,
2530 .merge = pool_merge,
2531 .iterate_devices = pool_iterate_devices,
2532 .io_hints = pool_io_hints,
2533 };
2534
2535 /*----------------------------------------------------------------
2536 * Thin target methods
2537 *--------------------------------------------------------------*/
2538 static void thin_dtr(struct dm_target *ti)
2539 {
2540 struct thin_c *tc = ti->private;
2541
2542 mutex_lock(&dm_thin_pool_table.mutex);
2543
2544 __pool_dec(tc->pool);
2545 dm_pool_close_thin_device(tc->td);
2546 dm_put_device(ti, tc->pool_dev);
2547 if (tc->origin_dev)
2548 dm_put_device(ti, tc->origin_dev);
2549 kfree(tc);
2550
2551 mutex_unlock(&dm_thin_pool_table.mutex);
2552 }
2553
2554 /*
2555 * Thin target parameters:
2556 *
2557 * <pool_dev> <dev_id> [origin_dev]
2558 *
2559 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2560 * dev_id: the internal device identifier
2561 * origin_dev: a device external to the pool that should act as the origin
2562 *
2563 * If the pool device has discards disabled, they get disabled for the thin
2564 * device as well.
2565 */
2566 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2567 {
2568 int r;
2569 struct thin_c *tc;
2570 struct dm_dev *pool_dev, *origin_dev;
2571 struct mapped_device *pool_md;
2572
2573 mutex_lock(&dm_thin_pool_table.mutex);
2574
2575 if (argc != 2 && argc != 3) {
2576 ti->error = "Invalid argument count";
2577 r = -EINVAL;
2578 goto out_unlock;
2579 }
2580
2581 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2582 if (!tc) {
2583 ti->error = "Out of memory";
2584 r = -ENOMEM;
2585 goto out_unlock;
2586 }
2587
2588 if (argc == 3) {
2589 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2590 if (r) {
2591 ti->error = "Error opening origin device";
2592 goto bad_origin_dev;
2593 }
2594 tc->origin_dev = origin_dev;
2595 }
2596
2597 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2598 if (r) {
2599 ti->error = "Error opening pool device";
2600 goto bad_pool_dev;
2601 }
2602 tc->pool_dev = pool_dev;
2603
2604 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2605 ti->error = "Invalid device id";
2606 r = -EINVAL;
2607 goto bad_common;
2608 }
2609
2610 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2611 if (!pool_md) {
2612 ti->error = "Couldn't get pool mapped device";
2613 r = -EINVAL;
2614 goto bad_common;
2615 }
2616
2617 tc->pool = __pool_table_lookup(pool_md);
2618 if (!tc->pool) {
2619 ti->error = "Couldn't find pool object";
2620 r = -EINVAL;
2621 goto bad_pool_lookup;
2622 }
2623 __pool_inc(tc->pool);
2624
2625 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2626 if (r) {
2627 ti->error = "Couldn't open thin internal device";
2628 goto bad_thin_open;
2629 }
2630
2631 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2632 if (r)
2633 goto bad_thin_open;
2634
2635 ti->num_flush_requests = 1;
2636
2637 /* In case the pool supports discards, pass them on. */
2638 if (tc->pool->pf.discard_enabled) {
2639 ti->discards_supported = 1;
2640 ti->num_discard_requests = 1;
2641 ti->discard_zeroes_data_unsupported = 1;
2642 }
2643
2644 dm_put(pool_md);
2645
2646 mutex_unlock(&dm_thin_pool_table.mutex);
2647
2648 return 0;
2649
2650 bad_thin_open:
2651 __pool_dec(tc->pool);
2652 bad_pool_lookup:
2653 dm_put(pool_md);
2654 bad_common:
2655 dm_put_device(ti, tc->pool_dev);
2656 bad_pool_dev:
2657 if (tc->origin_dev)
2658 dm_put_device(ti, tc->origin_dev);
2659 bad_origin_dev:
2660 kfree(tc);
2661 out_unlock:
2662 mutex_unlock(&dm_thin_pool_table.mutex);
2663
2664 return r;
2665 }
2666
2667 static int thin_map(struct dm_target *ti, struct bio *bio,
2668 union map_info *map_context)
2669 {
2670 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2671
2672 return thin_bio_map(ti, bio, map_context);
2673 }
2674
2675 static int thin_endio(struct dm_target *ti,
2676 struct bio *bio, int err,
2677 union map_info *map_context)
2678 {
2679 unsigned long flags;
2680 struct dm_thin_endio_hook *h = map_context->ptr;
2681 struct list_head work;
2682 struct dm_thin_new_mapping *m, *tmp;
2683 struct pool *pool = h->tc->pool;
2684
2685 if (h->shared_read_entry) {
2686 INIT_LIST_HEAD(&work);
2687 ds_dec(h->shared_read_entry, &work);
2688
2689 spin_lock_irqsave(&pool->lock, flags);
2690 list_for_each_entry_safe(m, tmp, &work, list) {
2691 list_del(&m->list);
2692 m->quiesced = 1;
2693 __maybe_add_mapping(m);
2694 }
2695 spin_unlock_irqrestore(&pool->lock, flags);
2696 }
2697
2698 if (h->all_io_entry) {
2699 INIT_LIST_HEAD(&work);
2700 ds_dec(h->all_io_entry, &work);
2701 spin_lock_irqsave(&pool->lock, flags);
2702 list_for_each_entry_safe(m, tmp, &work, list)
2703 list_add(&m->list, &pool->prepared_discards);
2704 spin_unlock_irqrestore(&pool->lock, flags);
2705 }
2706
2707 mempool_free(h, pool->endio_hook_pool);
2708
2709 return 0;
2710 }
2711
2712 static void thin_postsuspend(struct dm_target *ti)
2713 {
2714 if (dm_noflush_suspending(ti))
2715 requeue_io((struct thin_c *)ti->private);
2716 }
2717
2718 /*
2719 * <nr mapped sectors> <highest mapped sector>
2720 */
2721 static int thin_status(struct dm_target *ti, status_type_t type,
2722 char *result, unsigned maxlen)
2723 {
2724 int r;
2725 ssize_t sz = 0;
2726 dm_block_t mapped, highest;
2727 char buf[BDEVNAME_SIZE];
2728 struct thin_c *tc = ti->private;
2729
2730 if (!tc->td)
2731 DMEMIT("-");
2732 else {
2733 switch (type) {
2734 case STATUSTYPE_INFO:
2735 r = dm_thin_get_mapped_count(tc->td, &mapped);
2736 if (r)
2737 return r;
2738
2739 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2740 if (r < 0)
2741 return r;
2742
2743 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2744 if (r)
2745 DMEMIT("%llu", ((highest + 1) *
2746 tc->pool->sectors_per_block) - 1);
2747 else
2748 DMEMIT("-");
2749 break;
2750
2751 case STATUSTYPE_TABLE:
2752 DMEMIT("%s %lu",
2753 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2754 (unsigned long) tc->dev_id);
2755 if (tc->origin_dev)
2756 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2757 break;
2758 }
2759 }
2760
2761 return 0;
2762 }
2763
2764 static int thin_iterate_devices(struct dm_target *ti,
2765 iterate_devices_callout_fn fn, void *data)
2766 {
2767 dm_block_t blocks;
2768 struct thin_c *tc = ti->private;
2769
2770 /*
2771 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2772 * we follow a more convoluted path through to the pool's target.
2773 */
2774 if (!tc->pool->ti)
2775 return 0; /* nothing is bound */
2776
2777 blocks = tc->pool->ti->len >> tc->pool->block_shift;
2778 if (blocks)
2779 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2780
2781 return 0;
2782 }
2783
2784 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2785 {
2786 struct thin_c *tc = ti->private;
2787 struct pool *pool = tc->pool;
2788
2789 blk_limits_io_min(limits, 0);
2790 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2791 set_discard_limits(pool, limits);
2792 }
2793
2794 static struct target_type thin_target = {
2795 .name = "thin",
2796 .version = {1, 1, 0},
2797 .module = THIS_MODULE,
2798 .ctr = thin_ctr,
2799 .dtr = thin_dtr,
2800 .map = thin_map,
2801 .end_io = thin_endio,
2802 .postsuspend = thin_postsuspend,
2803 .status = thin_status,
2804 .iterate_devices = thin_iterate_devices,
2805 .io_hints = thin_io_hints,
2806 };
2807
2808 /*----------------------------------------------------------------*/
2809
2810 static int __init dm_thin_init(void)
2811 {
2812 int r;
2813
2814 pool_table_init();
2815
2816 r = dm_register_target(&thin_target);
2817 if (r)
2818 return r;
2819
2820 r = dm_register_target(&pool_target);
2821 if (r)
2822 goto bad_pool_target;
2823
2824 r = -ENOMEM;
2825
2826 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2827 if (!_cell_cache)
2828 goto bad_cell_cache;
2829
2830 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2831 if (!_new_mapping_cache)
2832 goto bad_new_mapping_cache;
2833
2834 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2835 if (!_endio_hook_cache)
2836 goto bad_endio_hook_cache;
2837
2838 return 0;
2839
2840 bad_endio_hook_cache:
2841 kmem_cache_destroy(_new_mapping_cache);
2842 bad_new_mapping_cache:
2843 kmem_cache_destroy(_cell_cache);
2844 bad_cell_cache:
2845 dm_unregister_target(&pool_target);
2846 bad_pool_target:
2847 dm_unregister_target(&thin_target);
2848
2849 return r;
2850 }
2851
2852 static void dm_thin_exit(void)
2853 {
2854 dm_unregister_target(&thin_target);
2855 dm_unregister_target(&pool_target);
2856
2857 kmem_cache_destroy(_cell_cache);
2858 kmem_cache_destroy(_new_mapping_cache);
2859 kmem_cache_destroy(_endio_hook_cache);
2860 }
2861
2862 module_init(dm_thin_init);
2863 module_exit(dm_thin_exit);
2864
2865 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2866 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2867 MODULE_LICENSE("GPL");
This page took 0.085296 seconds and 6 git commands to generate.