dm thin: synchronize the pool mode during suspend
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 bool error_if_no_space:1;
148 };
149
150 struct thin_c;
151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
153
154 struct pool {
155 struct list_head list;
156 struct dm_target *ti; /* Only set if a pool target is bound */
157
158 struct mapped_device *pool_md;
159 struct block_device *md_dev;
160 struct dm_pool_metadata *pmd;
161
162 dm_block_t low_water_blocks;
163 uint32_t sectors_per_block;
164 int sectors_per_block_shift;
165
166 struct pool_features pf;
167 bool low_water_triggered:1; /* A dm event has been sent */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205 * Target context for a pool.
206 */
207 struct pool_c {
208 struct dm_target *ti;
209 struct pool *pool;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
213
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220 * Target context for a thin.
221 */
222 struct thin_c {
223 struct dm_dev *pool_dev;
224 struct dm_dev *origin_dev;
225 dm_thin_id dev_id;
226
227 struct pool *pool;
228 struct dm_thin_device *td;
229 };
230
231 /*----------------------------------------------------------------*/
232
233 /*
234 * wake_worker() is used when new work is queued and when pool_resume is
235 * ready to continue deferred IO processing.
236 */
237 static void wake_worker(struct pool *pool)
238 {
239 queue_work(pool->wq, &pool->worker);
240 }
241
242 /*----------------------------------------------------------------*/
243
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245 struct dm_bio_prison_cell **cell_result)
246 {
247 int r;
248 struct dm_bio_prison_cell *cell_prealloc;
249
250 /*
251 * Allocate a cell from the prison's mempool.
252 * This might block but it can't fail.
253 */
254 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257 if (r)
258 /*
259 * We reused an old cell; we can get rid of
260 * the new one.
261 */
262 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264 return r;
265 }
266
267 static void cell_release(struct pool *pool,
268 struct dm_bio_prison_cell *cell,
269 struct bio_list *bios)
270 {
271 dm_cell_release(pool->prison, cell, bios);
272 dm_bio_prison_free_cell(pool->prison, cell);
273 }
274
275 static void cell_release_no_holder(struct pool *pool,
276 struct dm_bio_prison_cell *cell,
277 struct bio_list *bios)
278 {
279 dm_cell_release_no_holder(pool->prison, cell, bios);
280 dm_bio_prison_free_cell(pool->prison, cell);
281 }
282
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284 struct dm_bio_prison_cell *cell)
285 {
286 struct pool *pool = tc->pool;
287 unsigned long flags;
288
289 spin_lock_irqsave(&pool->lock, flags);
290 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291 spin_unlock_irqrestore(&pool->lock, flags);
292
293 wake_worker(pool);
294 }
295
296 static void cell_error(struct pool *pool,
297 struct dm_bio_prison_cell *cell)
298 {
299 dm_cell_error(pool->prison, cell);
300 dm_bio_prison_free_cell(pool->prison, cell);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 /*
306 * A global list of pools that uses a struct mapped_device as a key.
307 */
308 static struct dm_thin_pool_table {
309 struct mutex mutex;
310 struct list_head pools;
311 } dm_thin_pool_table;
312
313 static void pool_table_init(void)
314 {
315 mutex_init(&dm_thin_pool_table.mutex);
316 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318
319 static void __pool_table_insert(struct pool *pool)
320 {
321 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322 list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324
325 static void __pool_table_remove(struct pool *pool)
326 {
327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328 list_del(&pool->list);
329 }
330
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333 struct pool *pool = NULL, *tmp;
334
335 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338 if (tmp->pool_md == md) {
339 pool = tmp;
340 break;
341 }
342 }
343
344 return pool;
345 }
346
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349 struct pool *pool = NULL, *tmp;
350
351 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354 if (tmp->md_dev == md_dev) {
355 pool = tmp;
356 break;
357 }
358 }
359
360 return pool;
361 }
362
363 /*----------------------------------------------------------------*/
364
365 struct dm_thin_endio_hook {
366 struct thin_c *tc;
367 struct dm_deferred_entry *shared_read_entry;
368 struct dm_deferred_entry *all_io_entry;
369 struct dm_thin_new_mapping *overwrite_mapping;
370 };
371
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374 struct bio *bio;
375 struct bio_list bios;
376
377 bio_list_init(&bios);
378 bio_list_merge(&bios, master);
379 bio_list_init(master);
380
381 while ((bio = bio_list_pop(&bios))) {
382 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383
384 if (h->tc == tc)
385 bio_endio(bio, DM_ENDIO_REQUEUE);
386 else
387 bio_list_add(master, bio);
388 }
389 }
390
391 static void requeue_io(struct thin_c *tc)
392 {
393 struct pool *pool = tc->pool;
394 unsigned long flags;
395
396 spin_lock_irqsave(&pool->lock, flags);
397 __requeue_bio_list(tc, &pool->deferred_bios);
398 __requeue_bio_list(tc, &pool->retry_on_resume_list);
399 spin_unlock_irqrestore(&pool->lock, flags);
400 }
401
402 /*
403 * This section of code contains the logic for processing a thin device's IO.
404 * Much of the code depends on pool object resources (lists, workqueues, etc)
405 * but most is exclusively called from the thin target rather than the thin-pool
406 * target.
407 */
408
409 static bool block_size_is_power_of_two(struct pool *pool)
410 {
411 return pool->sectors_per_block_shift >= 0;
412 }
413
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 {
416 struct pool *pool = tc->pool;
417 sector_t block_nr = bio->bi_iter.bi_sector;
418
419 if (block_size_is_power_of_two(pool))
420 block_nr >>= pool->sectors_per_block_shift;
421 else
422 (void) sector_div(block_nr, pool->sectors_per_block);
423
424 return block_nr;
425 }
426
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 {
429 struct pool *pool = tc->pool;
430 sector_t bi_sector = bio->bi_iter.bi_sector;
431
432 bio->bi_bdev = tc->pool_dev->bdev;
433 if (block_size_is_power_of_two(pool))
434 bio->bi_iter.bi_sector =
435 (block << pool->sectors_per_block_shift) |
436 (bi_sector & (pool->sectors_per_block - 1));
437 else
438 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
439 sector_div(bi_sector, pool->sectors_per_block);
440 }
441
442 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
443 {
444 bio->bi_bdev = tc->origin_dev->bdev;
445 }
446
447 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
448 {
449 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
450 dm_thin_changed_this_transaction(tc->td);
451 }
452
453 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
454 {
455 struct dm_thin_endio_hook *h;
456
457 if (bio->bi_rw & REQ_DISCARD)
458 return;
459
460 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
461 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
462 }
463
464 static void issue(struct thin_c *tc, struct bio *bio)
465 {
466 struct pool *pool = tc->pool;
467 unsigned long flags;
468
469 if (!bio_triggers_commit(tc, bio)) {
470 generic_make_request(bio);
471 return;
472 }
473
474 /*
475 * Complete bio with an error if earlier I/O caused changes to
476 * the metadata that can't be committed e.g, due to I/O errors
477 * on the metadata device.
478 */
479 if (dm_thin_aborted_changes(tc->td)) {
480 bio_io_error(bio);
481 return;
482 }
483
484 /*
485 * Batch together any bios that trigger commits and then issue a
486 * single commit for them in process_deferred_bios().
487 */
488 spin_lock_irqsave(&pool->lock, flags);
489 bio_list_add(&pool->deferred_flush_bios, bio);
490 spin_unlock_irqrestore(&pool->lock, flags);
491 }
492
493 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
494 {
495 remap_to_origin(tc, bio);
496 issue(tc, bio);
497 }
498
499 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500 dm_block_t block)
501 {
502 remap(tc, bio, block);
503 issue(tc, bio);
504 }
505
506 /*----------------------------------------------------------------*/
507
508 /*
509 * Bio endio functions.
510 */
511 struct dm_thin_new_mapping {
512 struct list_head list;
513
514 bool quiesced:1;
515 bool prepared:1;
516 bool pass_discard:1;
517 bool definitely_not_shared:1;
518
519 int err;
520 struct thin_c *tc;
521 dm_block_t virt_block;
522 dm_block_t data_block;
523 struct dm_bio_prison_cell *cell, *cell2;
524
525 /*
526 * If the bio covers the whole area of a block then we can avoid
527 * zeroing or copying. Instead this bio is hooked. The bio will
528 * still be in the cell, so care has to be taken to avoid issuing
529 * the bio twice.
530 */
531 struct bio *bio;
532 bio_end_io_t *saved_bi_end_io;
533 };
534
535 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
536 {
537 struct pool *pool = m->tc->pool;
538
539 if (m->quiesced && m->prepared) {
540 list_add_tail(&m->list, &pool->prepared_mappings);
541 wake_worker(pool);
542 }
543 }
544
545 static void copy_complete(int read_err, unsigned long write_err, void *context)
546 {
547 unsigned long flags;
548 struct dm_thin_new_mapping *m = context;
549 struct pool *pool = m->tc->pool;
550
551 m->err = read_err || write_err ? -EIO : 0;
552
553 spin_lock_irqsave(&pool->lock, flags);
554 m->prepared = true;
555 __maybe_add_mapping(m);
556 spin_unlock_irqrestore(&pool->lock, flags);
557 }
558
559 static void overwrite_endio(struct bio *bio, int err)
560 {
561 unsigned long flags;
562 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
563 struct dm_thin_new_mapping *m = h->overwrite_mapping;
564 struct pool *pool = m->tc->pool;
565
566 m->err = err;
567
568 spin_lock_irqsave(&pool->lock, flags);
569 m->prepared = true;
570 __maybe_add_mapping(m);
571 spin_unlock_irqrestore(&pool->lock, flags);
572 }
573
574 /*----------------------------------------------------------------*/
575
576 /*
577 * Workqueue.
578 */
579
580 /*
581 * Prepared mapping jobs.
582 */
583
584 /*
585 * This sends the bios in the cell back to the deferred_bios list.
586 */
587 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
588 {
589 struct pool *pool = tc->pool;
590 unsigned long flags;
591
592 spin_lock_irqsave(&pool->lock, flags);
593 cell_release(pool, cell, &pool->deferred_bios);
594 spin_unlock_irqrestore(&tc->pool->lock, flags);
595
596 wake_worker(pool);
597 }
598
599 /*
600 * Same as cell_defer above, except it omits the original holder of the cell.
601 */
602 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
603 {
604 struct pool *pool = tc->pool;
605 unsigned long flags;
606
607 spin_lock_irqsave(&pool->lock, flags);
608 cell_release_no_holder(pool, cell, &pool->deferred_bios);
609 spin_unlock_irqrestore(&pool->lock, flags);
610
611 wake_worker(pool);
612 }
613
614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
615 {
616 if (m->bio) {
617 m->bio->bi_end_io = m->saved_bi_end_io;
618 atomic_inc(&m->bio->bi_remaining);
619 }
620 cell_error(m->tc->pool, m->cell);
621 list_del(&m->list);
622 mempool_free(m, m->tc->pool->mapping_pool);
623 }
624
625 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
626 {
627 struct thin_c *tc = m->tc;
628 struct pool *pool = tc->pool;
629 struct bio *bio;
630 int r;
631
632 bio = m->bio;
633 if (bio) {
634 bio->bi_end_io = m->saved_bi_end_io;
635 atomic_inc(&bio->bi_remaining);
636 }
637
638 if (m->err) {
639 cell_error(pool, m->cell);
640 goto out;
641 }
642
643 /*
644 * Commit the prepared block into the mapping btree.
645 * Any I/O for this block arriving after this point will get
646 * remapped to it directly.
647 */
648 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
649 if (r) {
650 metadata_operation_failed(pool, "dm_thin_insert_block", r);
651 cell_error(pool, m->cell);
652 goto out;
653 }
654
655 /*
656 * Release any bios held while the block was being provisioned.
657 * If we are processing a write bio that completely covers the block,
658 * we already processed it so can ignore it now when processing
659 * the bios in the cell.
660 */
661 if (bio) {
662 cell_defer_no_holder(tc, m->cell);
663 bio_endio(bio, 0);
664 } else
665 cell_defer(tc, m->cell);
666
667 out:
668 list_del(&m->list);
669 mempool_free(m, pool->mapping_pool);
670 }
671
672 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
673 {
674 struct thin_c *tc = m->tc;
675
676 bio_io_error(m->bio);
677 cell_defer_no_holder(tc, m->cell);
678 cell_defer_no_holder(tc, m->cell2);
679 mempool_free(m, tc->pool->mapping_pool);
680 }
681
682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
683 {
684 struct thin_c *tc = m->tc;
685
686 inc_all_io_entry(tc->pool, m->bio);
687 cell_defer_no_holder(tc, m->cell);
688 cell_defer_no_holder(tc, m->cell2);
689
690 if (m->pass_discard)
691 if (m->definitely_not_shared)
692 remap_and_issue(tc, m->bio, m->data_block);
693 else {
694 bool used = false;
695 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
696 bio_endio(m->bio, 0);
697 else
698 remap_and_issue(tc, m->bio, m->data_block);
699 }
700 else
701 bio_endio(m->bio, 0);
702
703 mempool_free(m, tc->pool->mapping_pool);
704 }
705
706 static void process_prepared_discard(struct dm_thin_new_mapping *m)
707 {
708 int r;
709 struct thin_c *tc = m->tc;
710
711 r = dm_thin_remove_block(tc->td, m->virt_block);
712 if (r)
713 DMERR_LIMIT("dm_thin_remove_block() failed");
714
715 process_prepared_discard_passdown(m);
716 }
717
718 static void process_prepared(struct pool *pool, struct list_head *head,
719 process_mapping_fn *fn)
720 {
721 unsigned long flags;
722 struct list_head maps;
723 struct dm_thin_new_mapping *m, *tmp;
724
725 INIT_LIST_HEAD(&maps);
726 spin_lock_irqsave(&pool->lock, flags);
727 list_splice_init(head, &maps);
728 spin_unlock_irqrestore(&pool->lock, flags);
729
730 list_for_each_entry_safe(m, tmp, &maps, list)
731 (*fn)(m);
732 }
733
734 /*
735 * Deferred bio jobs.
736 */
737 static int io_overlaps_block(struct pool *pool, struct bio *bio)
738 {
739 return bio->bi_iter.bi_size ==
740 (pool->sectors_per_block << SECTOR_SHIFT);
741 }
742
743 static int io_overwrites_block(struct pool *pool, struct bio *bio)
744 {
745 return (bio_data_dir(bio) == WRITE) &&
746 io_overlaps_block(pool, bio);
747 }
748
749 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
750 bio_end_io_t *fn)
751 {
752 *save = bio->bi_end_io;
753 bio->bi_end_io = fn;
754 }
755
756 static int ensure_next_mapping(struct pool *pool)
757 {
758 if (pool->next_mapping)
759 return 0;
760
761 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
762
763 return pool->next_mapping ? 0 : -ENOMEM;
764 }
765
766 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
767 {
768 struct dm_thin_new_mapping *m = pool->next_mapping;
769
770 BUG_ON(!pool->next_mapping);
771
772 memset(m, 0, sizeof(struct dm_thin_new_mapping));
773 INIT_LIST_HEAD(&m->list);
774 m->bio = NULL;
775
776 pool->next_mapping = NULL;
777
778 return m;
779 }
780
781 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
782 struct dm_dev *origin, dm_block_t data_origin,
783 dm_block_t data_dest,
784 struct dm_bio_prison_cell *cell, struct bio *bio)
785 {
786 int r;
787 struct pool *pool = tc->pool;
788 struct dm_thin_new_mapping *m = get_next_mapping(pool);
789
790 m->tc = tc;
791 m->virt_block = virt_block;
792 m->data_block = data_dest;
793 m->cell = cell;
794
795 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
796 m->quiesced = true;
797
798 /*
799 * IO to pool_dev remaps to the pool target's data_dev.
800 *
801 * If the whole block of data is being overwritten, we can issue the
802 * bio immediately. Otherwise we use kcopyd to clone the data first.
803 */
804 if (io_overwrites_block(pool, bio)) {
805 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
806
807 h->overwrite_mapping = m;
808 m->bio = bio;
809 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
810 inc_all_io_entry(pool, bio);
811 remap_and_issue(tc, bio, data_dest);
812 } else {
813 struct dm_io_region from, to;
814
815 from.bdev = origin->bdev;
816 from.sector = data_origin * pool->sectors_per_block;
817 from.count = pool->sectors_per_block;
818
819 to.bdev = tc->pool_dev->bdev;
820 to.sector = data_dest * pool->sectors_per_block;
821 to.count = pool->sectors_per_block;
822
823 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
824 0, copy_complete, m);
825 if (r < 0) {
826 mempool_free(m, pool->mapping_pool);
827 DMERR_LIMIT("dm_kcopyd_copy() failed");
828 cell_error(pool, cell);
829 }
830 }
831 }
832
833 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
834 dm_block_t data_origin, dm_block_t data_dest,
835 struct dm_bio_prison_cell *cell, struct bio *bio)
836 {
837 schedule_copy(tc, virt_block, tc->pool_dev,
838 data_origin, data_dest, cell, bio);
839 }
840
841 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
842 dm_block_t data_dest,
843 struct dm_bio_prison_cell *cell, struct bio *bio)
844 {
845 schedule_copy(tc, virt_block, tc->origin_dev,
846 virt_block, data_dest, cell, bio);
847 }
848
849 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
850 dm_block_t data_block, struct dm_bio_prison_cell *cell,
851 struct bio *bio)
852 {
853 struct pool *pool = tc->pool;
854 struct dm_thin_new_mapping *m = get_next_mapping(pool);
855
856 m->quiesced = true;
857 m->prepared = false;
858 m->tc = tc;
859 m->virt_block = virt_block;
860 m->data_block = data_block;
861 m->cell = cell;
862
863 /*
864 * If the whole block of data is being overwritten or we are not
865 * zeroing pre-existing data, we can issue the bio immediately.
866 * Otherwise we use kcopyd to zero the data first.
867 */
868 if (!pool->pf.zero_new_blocks)
869 process_prepared_mapping(m);
870
871 else if (io_overwrites_block(pool, bio)) {
872 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
873
874 h->overwrite_mapping = m;
875 m->bio = bio;
876 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
877 inc_all_io_entry(pool, bio);
878 remap_and_issue(tc, bio, data_block);
879 } else {
880 int r;
881 struct dm_io_region to;
882
883 to.bdev = tc->pool_dev->bdev;
884 to.sector = data_block * pool->sectors_per_block;
885 to.count = pool->sectors_per_block;
886
887 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
888 if (r < 0) {
889 mempool_free(m, pool->mapping_pool);
890 DMERR_LIMIT("dm_kcopyd_zero() failed");
891 cell_error(pool, cell);
892 }
893 }
894 }
895
896 /*
897 * A non-zero return indicates read_only or fail_io mode.
898 * Many callers don't care about the return value.
899 */
900 static int commit(struct pool *pool)
901 {
902 int r;
903
904 if (get_pool_mode(pool) != PM_WRITE)
905 return -EINVAL;
906
907 r = dm_pool_commit_metadata(pool->pmd);
908 if (r)
909 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
910
911 return r;
912 }
913
914 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
915 {
916 unsigned long flags;
917
918 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
919 DMWARN("%s: reached low water mark for data device: sending event.",
920 dm_device_name(pool->pool_md));
921 spin_lock_irqsave(&pool->lock, flags);
922 pool->low_water_triggered = true;
923 spin_unlock_irqrestore(&pool->lock, flags);
924 dm_table_event(pool->ti->table);
925 }
926 }
927
928 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
929 {
930 int r;
931 dm_block_t free_blocks;
932 struct pool *pool = tc->pool;
933
934 if (get_pool_mode(pool) != PM_WRITE)
935 return -EINVAL;
936
937 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
938 if (r) {
939 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
940 return r;
941 }
942
943 check_low_water_mark(pool, free_blocks);
944
945 if (!free_blocks) {
946 /*
947 * Try to commit to see if that will free up some
948 * more space.
949 */
950 r = commit(pool);
951 if (r)
952 return r;
953
954 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
955 if (r) {
956 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
957 return r;
958 }
959
960 if (!free_blocks) {
961 out_of_data_space(pool);
962 return -ENOSPC;
963 }
964 }
965
966 r = dm_pool_alloc_data_block(pool->pmd, result);
967 if (r) {
968 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
969 return r;
970 }
971
972 return 0;
973 }
974
975 /*
976 * If we have run out of space, queue bios until the device is
977 * resumed, presumably after having been reloaded with more space.
978 */
979 static void retry_on_resume(struct bio *bio)
980 {
981 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
982 struct thin_c *tc = h->tc;
983 struct pool *pool = tc->pool;
984 unsigned long flags;
985
986 spin_lock_irqsave(&pool->lock, flags);
987 bio_list_add(&pool->retry_on_resume_list, bio);
988 spin_unlock_irqrestore(&pool->lock, flags);
989 }
990
991 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
992 {
993 /*
994 * When pool is read-only, no cell locking is needed because
995 * nothing is changing.
996 */
997 WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
998
999 if (pool->pf.error_if_no_space)
1000 bio_io_error(bio);
1001 else
1002 retry_on_resume(bio);
1003 }
1004
1005 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1006 {
1007 struct bio *bio;
1008 struct bio_list bios;
1009
1010 bio_list_init(&bios);
1011 cell_release(pool, cell, &bios);
1012
1013 while ((bio = bio_list_pop(&bios)))
1014 handle_unserviceable_bio(pool, bio);
1015 }
1016
1017 static void process_discard(struct thin_c *tc, struct bio *bio)
1018 {
1019 int r;
1020 unsigned long flags;
1021 struct pool *pool = tc->pool;
1022 struct dm_bio_prison_cell *cell, *cell2;
1023 struct dm_cell_key key, key2;
1024 dm_block_t block = get_bio_block(tc, bio);
1025 struct dm_thin_lookup_result lookup_result;
1026 struct dm_thin_new_mapping *m;
1027
1028 build_virtual_key(tc->td, block, &key);
1029 if (bio_detain(tc->pool, &key, bio, &cell))
1030 return;
1031
1032 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1033 switch (r) {
1034 case 0:
1035 /*
1036 * Check nobody is fiddling with this pool block. This can
1037 * happen if someone's in the process of breaking sharing
1038 * on this block.
1039 */
1040 build_data_key(tc->td, lookup_result.block, &key2);
1041 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1042 cell_defer_no_holder(tc, cell);
1043 break;
1044 }
1045
1046 if (io_overlaps_block(pool, bio)) {
1047 /*
1048 * IO may still be going to the destination block. We must
1049 * quiesce before we can do the removal.
1050 */
1051 m = get_next_mapping(pool);
1052 m->tc = tc;
1053 m->pass_discard = pool->pf.discard_passdown;
1054 m->definitely_not_shared = !lookup_result.shared;
1055 m->virt_block = block;
1056 m->data_block = lookup_result.block;
1057 m->cell = cell;
1058 m->cell2 = cell2;
1059 m->bio = bio;
1060
1061 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1062 spin_lock_irqsave(&pool->lock, flags);
1063 list_add_tail(&m->list, &pool->prepared_discards);
1064 spin_unlock_irqrestore(&pool->lock, flags);
1065 wake_worker(pool);
1066 }
1067 } else {
1068 inc_all_io_entry(pool, bio);
1069 cell_defer_no_holder(tc, cell);
1070 cell_defer_no_holder(tc, cell2);
1071
1072 /*
1073 * The DM core makes sure that the discard doesn't span
1074 * a block boundary. So we submit the discard of a
1075 * partial block appropriately.
1076 */
1077 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1078 remap_and_issue(tc, bio, lookup_result.block);
1079 else
1080 bio_endio(bio, 0);
1081 }
1082 break;
1083
1084 case -ENODATA:
1085 /*
1086 * It isn't provisioned, just forget it.
1087 */
1088 cell_defer_no_holder(tc, cell);
1089 bio_endio(bio, 0);
1090 break;
1091
1092 default:
1093 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1094 __func__, r);
1095 cell_defer_no_holder(tc, cell);
1096 bio_io_error(bio);
1097 break;
1098 }
1099 }
1100
1101 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1102 struct dm_cell_key *key,
1103 struct dm_thin_lookup_result *lookup_result,
1104 struct dm_bio_prison_cell *cell)
1105 {
1106 int r;
1107 dm_block_t data_block;
1108 struct pool *pool = tc->pool;
1109
1110 r = alloc_data_block(tc, &data_block);
1111 switch (r) {
1112 case 0:
1113 schedule_internal_copy(tc, block, lookup_result->block,
1114 data_block, cell, bio);
1115 break;
1116
1117 case -ENOSPC:
1118 retry_bios_on_resume(pool, cell);
1119 break;
1120
1121 default:
1122 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1123 __func__, r);
1124 cell_error(pool, cell);
1125 break;
1126 }
1127 }
1128
1129 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1130 dm_block_t block,
1131 struct dm_thin_lookup_result *lookup_result)
1132 {
1133 struct dm_bio_prison_cell *cell;
1134 struct pool *pool = tc->pool;
1135 struct dm_cell_key key;
1136
1137 /*
1138 * If cell is already occupied, then sharing is already in the process
1139 * of being broken so we have nothing further to do here.
1140 */
1141 build_data_key(tc->td, lookup_result->block, &key);
1142 if (bio_detain(pool, &key, bio, &cell))
1143 return;
1144
1145 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1146 break_sharing(tc, bio, block, &key, lookup_result, cell);
1147 else {
1148 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1149
1150 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1151 inc_all_io_entry(pool, bio);
1152 cell_defer_no_holder(tc, cell);
1153
1154 remap_and_issue(tc, bio, lookup_result->block);
1155 }
1156 }
1157
1158 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1159 struct dm_bio_prison_cell *cell)
1160 {
1161 int r;
1162 dm_block_t data_block;
1163 struct pool *pool = tc->pool;
1164
1165 /*
1166 * Remap empty bios (flushes) immediately, without provisioning.
1167 */
1168 if (!bio->bi_iter.bi_size) {
1169 inc_all_io_entry(pool, bio);
1170 cell_defer_no_holder(tc, cell);
1171
1172 remap_and_issue(tc, bio, 0);
1173 return;
1174 }
1175
1176 /*
1177 * Fill read bios with zeroes and complete them immediately.
1178 */
1179 if (bio_data_dir(bio) == READ) {
1180 zero_fill_bio(bio);
1181 cell_defer_no_holder(tc, cell);
1182 bio_endio(bio, 0);
1183 return;
1184 }
1185
1186 r = alloc_data_block(tc, &data_block);
1187 switch (r) {
1188 case 0:
1189 if (tc->origin_dev)
1190 schedule_external_copy(tc, block, data_block, cell, bio);
1191 else
1192 schedule_zero(tc, block, data_block, cell, bio);
1193 break;
1194
1195 case -ENOSPC:
1196 retry_bios_on_resume(pool, cell);
1197 break;
1198
1199 default:
1200 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1201 __func__, r);
1202 cell_error(pool, cell);
1203 break;
1204 }
1205 }
1206
1207 static void process_bio(struct thin_c *tc, struct bio *bio)
1208 {
1209 int r;
1210 struct pool *pool = tc->pool;
1211 dm_block_t block = get_bio_block(tc, bio);
1212 struct dm_bio_prison_cell *cell;
1213 struct dm_cell_key key;
1214 struct dm_thin_lookup_result lookup_result;
1215
1216 /*
1217 * If cell is already occupied, then the block is already
1218 * being provisioned so we have nothing further to do here.
1219 */
1220 build_virtual_key(tc->td, block, &key);
1221 if (bio_detain(pool, &key, bio, &cell))
1222 return;
1223
1224 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1225 switch (r) {
1226 case 0:
1227 if (lookup_result.shared) {
1228 process_shared_bio(tc, bio, block, &lookup_result);
1229 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1230 } else {
1231 inc_all_io_entry(pool, bio);
1232 cell_defer_no_holder(tc, cell);
1233
1234 remap_and_issue(tc, bio, lookup_result.block);
1235 }
1236 break;
1237
1238 case -ENODATA:
1239 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1240 inc_all_io_entry(pool, bio);
1241 cell_defer_no_holder(tc, cell);
1242
1243 remap_to_origin_and_issue(tc, bio);
1244 } else
1245 provision_block(tc, bio, block, cell);
1246 break;
1247
1248 default:
1249 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1250 __func__, r);
1251 cell_defer_no_holder(tc, cell);
1252 bio_io_error(bio);
1253 break;
1254 }
1255 }
1256
1257 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1258 {
1259 int r;
1260 int rw = bio_data_dir(bio);
1261 dm_block_t block = get_bio_block(tc, bio);
1262 struct dm_thin_lookup_result lookup_result;
1263
1264 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1265 switch (r) {
1266 case 0:
1267 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1268 handle_unserviceable_bio(tc->pool, bio);
1269 else {
1270 inc_all_io_entry(tc->pool, bio);
1271 remap_and_issue(tc, bio, lookup_result.block);
1272 }
1273 break;
1274
1275 case -ENODATA:
1276 if (rw != READ) {
1277 handle_unserviceable_bio(tc->pool, bio);
1278 break;
1279 }
1280
1281 if (tc->origin_dev) {
1282 inc_all_io_entry(tc->pool, bio);
1283 remap_to_origin_and_issue(tc, bio);
1284 break;
1285 }
1286
1287 zero_fill_bio(bio);
1288 bio_endio(bio, 0);
1289 break;
1290
1291 default:
1292 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1293 __func__, r);
1294 bio_io_error(bio);
1295 break;
1296 }
1297 }
1298
1299 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1300 {
1301 bio_io_error(bio);
1302 }
1303
1304 /*
1305 * FIXME: should we also commit due to size of transaction, measured in
1306 * metadata blocks?
1307 */
1308 static int need_commit_due_to_time(struct pool *pool)
1309 {
1310 return jiffies < pool->last_commit_jiffies ||
1311 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1312 }
1313
1314 static void process_deferred_bios(struct pool *pool)
1315 {
1316 unsigned long flags;
1317 struct bio *bio;
1318 struct bio_list bios;
1319
1320 bio_list_init(&bios);
1321
1322 spin_lock_irqsave(&pool->lock, flags);
1323 bio_list_merge(&bios, &pool->deferred_bios);
1324 bio_list_init(&pool->deferred_bios);
1325 spin_unlock_irqrestore(&pool->lock, flags);
1326
1327 while ((bio = bio_list_pop(&bios))) {
1328 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1329 struct thin_c *tc = h->tc;
1330
1331 /*
1332 * If we've got no free new_mapping structs, and processing
1333 * this bio might require one, we pause until there are some
1334 * prepared mappings to process.
1335 */
1336 if (ensure_next_mapping(pool)) {
1337 spin_lock_irqsave(&pool->lock, flags);
1338 bio_list_merge(&pool->deferred_bios, &bios);
1339 spin_unlock_irqrestore(&pool->lock, flags);
1340
1341 break;
1342 }
1343
1344 if (bio->bi_rw & REQ_DISCARD)
1345 pool->process_discard(tc, bio);
1346 else
1347 pool->process_bio(tc, bio);
1348 }
1349
1350 /*
1351 * If there are any deferred flush bios, we must commit
1352 * the metadata before issuing them.
1353 */
1354 bio_list_init(&bios);
1355 spin_lock_irqsave(&pool->lock, flags);
1356 bio_list_merge(&bios, &pool->deferred_flush_bios);
1357 bio_list_init(&pool->deferred_flush_bios);
1358 spin_unlock_irqrestore(&pool->lock, flags);
1359
1360 if (bio_list_empty(&bios) &&
1361 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1362 return;
1363
1364 if (commit(pool)) {
1365 while ((bio = bio_list_pop(&bios)))
1366 bio_io_error(bio);
1367 return;
1368 }
1369 pool->last_commit_jiffies = jiffies;
1370
1371 while ((bio = bio_list_pop(&bios)))
1372 generic_make_request(bio);
1373 }
1374
1375 static void do_worker(struct work_struct *ws)
1376 {
1377 struct pool *pool = container_of(ws, struct pool, worker);
1378
1379 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1380 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1381 process_deferred_bios(pool);
1382 }
1383
1384 /*
1385 * We want to commit periodically so that not too much
1386 * unwritten data builds up.
1387 */
1388 static void do_waker(struct work_struct *ws)
1389 {
1390 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1391 wake_worker(pool);
1392 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1393 }
1394
1395 /*----------------------------------------------------------------*/
1396
1397 static enum pool_mode get_pool_mode(struct pool *pool)
1398 {
1399 return pool->pf.mode;
1400 }
1401
1402 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1403 {
1404 int r;
1405 struct pool_c *pt = pool->ti->private;
1406 enum pool_mode old_mode = pool->pf.mode;
1407
1408 switch (new_mode) {
1409 case PM_FAIL:
1410 if (old_mode != new_mode)
1411 DMERR("%s: switching pool to failure mode",
1412 dm_device_name(pool->pool_md));
1413 dm_pool_metadata_read_only(pool->pmd);
1414 pool->process_bio = process_bio_fail;
1415 pool->process_discard = process_bio_fail;
1416 pool->process_prepared_mapping = process_prepared_mapping_fail;
1417 pool->process_prepared_discard = process_prepared_discard_fail;
1418 break;
1419
1420 case PM_READ_ONLY:
1421 if (old_mode != new_mode)
1422 DMERR("%s: switching pool to read-only mode",
1423 dm_device_name(pool->pool_md));
1424 r = dm_pool_abort_metadata(pool->pmd);
1425 if (r) {
1426 DMERR("%s: aborting transaction failed",
1427 dm_device_name(pool->pool_md));
1428 new_mode = PM_FAIL;
1429 set_pool_mode(pool, new_mode);
1430 } else {
1431 dm_pool_metadata_read_only(pool->pmd);
1432 pool->process_bio = process_bio_read_only;
1433 pool->process_discard = process_discard;
1434 pool->process_prepared_mapping = process_prepared_mapping_fail;
1435 pool->process_prepared_discard = process_prepared_discard_passdown;
1436 }
1437 break;
1438
1439 case PM_WRITE:
1440 if (old_mode != new_mode)
1441 DMINFO("%s: switching pool to write mode",
1442 dm_device_name(pool->pool_md));
1443 dm_pool_metadata_read_write(pool->pmd);
1444 pool->process_bio = process_bio;
1445 pool->process_discard = process_discard;
1446 pool->process_prepared_mapping = process_prepared_mapping;
1447 pool->process_prepared_discard = process_prepared_discard;
1448 break;
1449 }
1450
1451 pool->pf.mode = new_mode;
1452 /*
1453 * The pool mode may have changed, sync it so bind_control_target()
1454 * doesn't cause an unexpected mode transition on resume.
1455 */
1456 pt->adjusted_pf.mode = new_mode;
1457 }
1458
1459 /*
1460 * Rather than calling set_pool_mode directly, use these which describe the
1461 * reason for mode degradation.
1462 */
1463 static void out_of_data_space(struct pool *pool)
1464 {
1465 DMERR_LIMIT("%s: no free data space available.",
1466 dm_device_name(pool->pool_md));
1467 set_pool_mode(pool, PM_READ_ONLY);
1468 }
1469
1470 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1471 {
1472 dm_block_t free_blocks;
1473
1474 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1475 dm_device_name(pool->pool_md), op, r);
1476
1477 if (r == -ENOSPC &&
1478 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1479 !free_blocks)
1480 DMERR_LIMIT("%s: no free metadata space available.",
1481 dm_device_name(pool->pool_md));
1482
1483 set_pool_mode(pool, PM_READ_ONLY);
1484 }
1485
1486 /*----------------------------------------------------------------*/
1487
1488 /*
1489 * Mapping functions.
1490 */
1491
1492 /*
1493 * Called only while mapping a thin bio to hand it over to the workqueue.
1494 */
1495 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1496 {
1497 unsigned long flags;
1498 struct pool *pool = tc->pool;
1499
1500 spin_lock_irqsave(&pool->lock, flags);
1501 bio_list_add(&pool->deferred_bios, bio);
1502 spin_unlock_irqrestore(&pool->lock, flags);
1503
1504 wake_worker(pool);
1505 }
1506
1507 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1508 {
1509 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1510
1511 h->tc = tc;
1512 h->shared_read_entry = NULL;
1513 h->all_io_entry = NULL;
1514 h->overwrite_mapping = NULL;
1515 }
1516
1517 /*
1518 * Non-blocking function called from the thin target's map function.
1519 */
1520 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1521 {
1522 int r;
1523 struct thin_c *tc = ti->private;
1524 dm_block_t block = get_bio_block(tc, bio);
1525 struct dm_thin_device *td = tc->td;
1526 struct dm_thin_lookup_result result;
1527 struct dm_bio_prison_cell cell1, cell2;
1528 struct dm_bio_prison_cell *cell_result;
1529 struct dm_cell_key key;
1530
1531 thin_hook_bio(tc, bio);
1532
1533 if (get_pool_mode(tc->pool) == PM_FAIL) {
1534 bio_io_error(bio);
1535 return DM_MAPIO_SUBMITTED;
1536 }
1537
1538 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1539 thin_defer_bio(tc, bio);
1540 return DM_MAPIO_SUBMITTED;
1541 }
1542
1543 r = dm_thin_find_block(td, block, 0, &result);
1544
1545 /*
1546 * Note that we defer readahead too.
1547 */
1548 switch (r) {
1549 case 0:
1550 if (unlikely(result.shared)) {
1551 /*
1552 * We have a race condition here between the
1553 * result.shared value returned by the lookup and
1554 * snapshot creation, which may cause new
1555 * sharing.
1556 *
1557 * To avoid this always quiesce the origin before
1558 * taking the snap. You want to do this anyway to
1559 * ensure a consistent application view
1560 * (i.e. lockfs).
1561 *
1562 * More distant ancestors are irrelevant. The
1563 * shared flag will be set in their case.
1564 */
1565 thin_defer_bio(tc, bio);
1566 return DM_MAPIO_SUBMITTED;
1567 }
1568
1569 build_virtual_key(tc->td, block, &key);
1570 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1571 return DM_MAPIO_SUBMITTED;
1572
1573 build_data_key(tc->td, result.block, &key);
1574 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1575 cell_defer_no_holder_no_free(tc, &cell1);
1576 return DM_MAPIO_SUBMITTED;
1577 }
1578
1579 inc_all_io_entry(tc->pool, bio);
1580 cell_defer_no_holder_no_free(tc, &cell2);
1581 cell_defer_no_holder_no_free(tc, &cell1);
1582
1583 remap(tc, bio, result.block);
1584 return DM_MAPIO_REMAPPED;
1585
1586 case -ENODATA:
1587 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1588 /*
1589 * This block isn't provisioned, and we have no way
1590 * of doing so.
1591 */
1592 handle_unserviceable_bio(tc->pool, bio);
1593 return DM_MAPIO_SUBMITTED;
1594 }
1595 /* fall through */
1596
1597 case -EWOULDBLOCK:
1598 /*
1599 * In future, the failed dm_thin_find_block above could
1600 * provide the hint to load the metadata into cache.
1601 */
1602 thin_defer_bio(tc, bio);
1603 return DM_MAPIO_SUBMITTED;
1604
1605 default:
1606 /*
1607 * Must always call bio_io_error on failure.
1608 * dm_thin_find_block can fail with -EINVAL if the
1609 * pool is switched to fail-io mode.
1610 */
1611 bio_io_error(bio);
1612 return DM_MAPIO_SUBMITTED;
1613 }
1614 }
1615
1616 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1617 {
1618 int r;
1619 unsigned long flags;
1620 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1621
1622 spin_lock_irqsave(&pt->pool->lock, flags);
1623 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1624 spin_unlock_irqrestore(&pt->pool->lock, flags);
1625
1626 if (!r) {
1627 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1628 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1629 }
1630
1631 return r;
1632 }
1633
1634 static void __requeue_bios(struct pool *pool)
1635 {
1636 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1637 bio_list_init(&pool->retry_on_resume_list);
1638 }
1639
1640 /*----------------------------------------------------------------
1641 * Binding of control targets to a pool object
1642 *--------------------------------------------------------------*/
1643 static bool data_dev_supports_discard(struct pool_c *pt)
1644 {
1645 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1646
1647 return q && blk_queue_discard(q);
1648 }
1649
1650 static bool is_factor(sector_t block_size, uint32_t n)
1651 {
1652 return !sector_div(block_size, n);
1653 }
1654
1655 /*
1656 * If discard_passdown was enabled verify that the data device
1657 * supports discards. Disable discard_passdown if not.
1658 */
1659 static void disable_passdown_if_not_supported(struct pool_c *pt)
1660 {
1661 struct pool *pool = pt->pool;
1662 struct block_device *data_bdev = pt->data_dev->bdev;
1663 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1664 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1665 const char *reason = NULL;
1666 char buf[BDEVNAME_SIZE];
1667
1668 if (!pt->adjusted_pf.discard_passdown)
1669 return;
1670
1671 if (!data_dev_supports_discard(pt))
1672 reason = "discard unsupported";
1673
1674 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1675 reason = "max discard sectors smaller than a block";
1676
1677 else if (data_limits->discard_granularity > block_size)
1678 reason = "discard granularity larger than a block";
1679
1680 else if (!is_factor(block_size, data_limits->discard_granularity))
1681 reason = "discard granularity not a factor of block size";
1682
1683 if (reason) {
1684 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1685 pt->adjusted_pf.discard_passdown = false;
1686 }
1687 }
1688
1689 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1690 {
1691 struct pool_c *pt = ti->private;
1692
1693 /*
1694 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1695 */
1696 enum pool_mode old_mode = pool->pf.mode;
1697 enum pool_mode new_mode = pt->adjusted_pf.mode;
1698
1699 /*
1700 * Don't change the pool's mode until set_pool_mode() below.
1701 * Otherwise the pool's process_* function pointers may
1702 * not match the desired pool mode.
1703 */
1704 pt->adjusted_pf.mode = old_mode;
1705
1706 pool->ti = ti;
1707 pool->pf = pt->adjusted_pf;
1708 pool->low_water_blocks = pt->low_water_blocks;
1709
1710 /*
1711 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1712 * not going to recover without a thin_repair. So we never let the
1713 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1714 * may have been due to a lack of metadata or data space, and may
1715 * now work (ie. if the underlying devices have been resized).
1716 */
1717 if (old_mode == PM_FAIL)
1718 new_mode = old_mode;
1719
1720 set_pool_mode(pool, new_mode);
1721
1722 return 0;
1723 }
1724
1725 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1726 {
1727 if (pool->ti == ti)
1728 pool->ti = NULL;
1729 }
1730
1731 /*----------------------------------------------------------------
1732 * Pool creation
1733 *--------------------------------------------------------------*/
1734 /* Initialize pool features. */
1735 static void pool_features_init(struct pool_features *pf)
1736 {
1737 pf->mode = PM_WRITE;
1738 pf->zero_new_blocks = true;
1739 pf->discard_enabled = true;
1740 pf->discard_passdown = true;
1741 pf->error_if_no_space = false;
1742 }
1743
1744 static void __pool_destroy(struct pool *pool)
1745 {
1746 __pool_table_remove(pool);
1747
1748 if (dm_pool_metadata_close(pool->pmd) < 0)
1749 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1750
1751 dm_bio_prison_destroy(pool->prison);
1752 dm_kcopyd_client_destroy(pool->copier);
1753
1754 if (pool->wq)
1755 destroy_workqueue(pool->wq);
1756
1757 if (pool->next_mapping)
1758 mempool_free(pool->next_mapping, pool->mapping_pool);
1759 mempool_destroy(pool->mapping_pool);
1760 dm_deferred_set_destroy(pool->shared_read_ds);
1761 dm_deferred_set_destroy(pool->all_io_ds);
1762 kfree(pool);
1763 }
1764
1765 static struct kmem_cache *_new_mapping_cache;
1766
1767 static struct pool *pool_create(struct mapped_device *pool_md,
1768 struct block_device *metadata_dev,
1769 unsigned long block_size,
1770 int read_only, char **error)
1771 {
1772 int r;
1773 void *err_p;
1774 struct pool *pool;
1775 struct dm_pool_metadata *pmd;
1776 bool format_device = read_only ? false : true;
1777
1778 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1779 if (IS_ERR(pmd)) {
1780 *error = "Error creating metadata object";
1781 return (struct pool *)pmd;
1782 }
1783
1784 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1785 if (!pool) {
1786 *error = "Error allocating memory for pool";
1787 err_p = ERR_PTR(-ENOMEM);
1788 goto bad_pool;
1789 }
1790
1791 pool->pmd = pmd;
1792 pool->sectors_per_block = block_size;
1793 if (block_size & (block_size - 1))
1794 pool->sectors_per_block_shift = -1;
1795 else
1796 pool->sectors_per_block_shift = __ffs(block_size);
1797 pool->low_water_blocks = 0;
1798 pool_features_init(&pool->pf);
1799 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1800 if (!pool->prison) {
1801 *error = "Error creating pool's bio prison";
1802 err_p = ERR_PTR(-ENOMEM);
1803 goto bad_prison;
1804 }
1805
1806 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1807 if (IS_ERR(pool->copier)) {
1808 r = PTR_ERR(pool->copier);
1809 *error = "Error creating pool's kcopyd client";
1810 err_p = ERR_PTR(r);
1811 goto bad_kcopyd_client;
1812 }
1813
1814 /*
1815 * Create singlethreaded workqueue that will service all devices
1816 * that use this metadata.
1817 */
1818 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1819 if (!pool->wq) {
1820 *error = "Error creating pool's workqueue";
1821 err_p = ERR_PTR(-ENOMEM);
1822 goto bad_wq;
1823 }
1824
1825 INIT_WORK(&pool->worker, do_worker);
1826 INIT_DELAYED_WORK(&pool->waker, do_waker);
1827 spin_lock_init(&pool->lock);
1828 bio_list_init(&pool->deferred_bios);
1829 bio_list_init(&pool->deferred_flush_bios);
1830 INIT_LIST_HEAD(&pool->prepared_mappings);
1831 INIT_LIST_HEAD(&pool->prepared_discards);
1832 pool->low_water_triggered = false;
1833 bio_list_init(&pool->retry_on_resume_list);
1834
1835 pool->shared_read_ds = dm_deferred_set_create();
1836 if (!pool->shared_read_ds) {
1837 *error = "Error creating pool's shared read deferred set";
1838 err_p = ERR_PTR(-ENOMEM);
1839 goto bad_shared_read_ds;
1840 }
1841
1842 pool->all_io_ds = dm_deferred_set_create();
1843 if (!pool->all_io_ds) {
1844 *error = "Error creating pool's all io deferred set";
1845 err_p = ERR_PTR(-ENOMEM);
1846 goto bad_all_io_ds;
1847 }
1848
1849 pool->next_mapping = NULL;
1850 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1851 _new_mapping_cache);
1852 if (!pool->mapping_pool) {
1853 *error = "Error creating pool's mapping mempool";
1854 err_p = ERR_PTR(-ENOMEM);
1855 goto bad_mapping_pool;
1856 }
1857
1858 pool->ref_count = 1;
1859 pool->last_commit_jiffies = jiffies;
1860 pool->pool_md = pool_md;
1861 pool->md_dev = metadata_dev;
1862 __pool_table_insert(pool);
1863
1864 return pool;
1865
1866 bad_mapping_pool:
1867 dm_deferred_set_destroy(pool->all_io_ds);
1868 bad_all_io_ds:
1869 dm_deferred_set_destroy(pool->shared_read_ds);
1870 bad_shared_read_ds:
1871 destroy_workqueue(pool->wq);
1872 bad_wq:
1873 dm_kcopyd_client_destroy(pool->copier);
1874 bad_kcopyd_client:
1875 dm_bio_prison_destroy(pool->prison);
1876 bad_prison:
1877 kfree(pool);
1878 bad_pool:
1879 if (dm_pool_metadata_close(pmd))
1880 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1881
1882 return err_p;
1883 }
1884
1885 static void __pool_inc(struct pool *pool)
1886 {
1887 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1888 pool->ref_count++;
1889 }
1890
1891 static void __pool_dec(struct pool *pool)
1892 {
1893 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1894 BUG_ON(!pool->ref_count);
1895 if (!--pool->ref_count)
1896 __pool_destroy(pool);
1897 }
1898
1899 static struct pool *__pool_find(struct mapped_device *pool_md,
1900 struct block_device *metadata_dev,
1901 unsigned long block_size, int read_only,
1902 char **error, int *created)
1903 {
1904 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1905
1906 if (pool) {
1907 if (pool->pool_md != pool_md) {
1908 *error = "metadata device already in use by a pool";
1909 return ERR_PTR(-EBUSY);
1910 }
1911 __pool_inc(pool);
1912
1913 } else {
1914 pool = __pool_table_lookup(pool_md);
1915 if (pool) {
1916 if (pool->md_dev != metadata_dev) {
1917 *error = "different pool cannot replace a pool";
1918 return ERR_PTR(-EINVAL);
1919 }
1920 __pool_inc(pool);
1921
1922 } else {
1923 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1924 *created = 1;
1925 }
1926 }
1927
1928 return pool;
1929 }
1930
1931 /*----------------------------------------------------------------
1932 * Pool target methods
1933 *--------------------------------------------------------------*/
1934 static void pool_dtr(struct dm_target *ti)
1935 {
1936 struct pool_c *pt = ti->private;
1937
1938 mutex_lock(&dm_thin_pool_table.mutex);
1939
1940 unbind_control_target(pt->pool, ti);
1941 __pool_dec(pt->pool);
1942 dm_put_device(ti, pt->metadata_dev);
1943 dm_put_device(ti, pt->data_dev);
1944 kfree(pt);
1945
1946 mutex_unlock(&dm_thin_pool_table.mutex);
1947 }
1948
1949 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1950 struct dm_target *ti)
1951 {
1952 int r;
1953 unsigned argc;
1954 const char *arg_name;
1955
1956 static struct dm_arg _args[] = {
1957 {0, 4, "Invalid number of pool feature arguments"},
1958 };
1959
1960 /*
1961 * No feature arguments supplied.
1962 */
1963 if (!as->argc)
1964 return 0;
1965
1966 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1967 if (r)
1968 return -EINVAL;
1969
1970 while (argc && !r) {
1971 arg_name = dm_shift_arg(as);
1972 argc--;
1973
1974 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1975 pf->zero_new_blocks = false;
1976
1977 else if (!strcasecmp(arg_name, "ignore_discard"))
1978 pf->discard_enabled = false;
1979
1980 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1981 pf->discard_passdown = false;
1982
1983 else if (!strcasecmp(arg_name, "read_only"))
1984 pf->mode = PM_READ_ONLY;
1985
1986 else if (!strcasecmp(arg_name, "error_if_no_space"))
1987 pf->error_if_no_space = true;
1988
1989 else {
1990 ti->error = "Unrecognised pool feature requested";
1991 r = -EINVAL;
1992 break;
1993 }
1994 }
1995
1996 return r;
1997 }
1998
1999 static void metadata_low_callback(void *context)
2000 {
2001 struct pool *pool = context;
2002
2003 DMWARN("%s: reached low water mark for metadata device: sending event.",
2004 dm_device_name(pool->pool_md));
2005
2006 dm_table_event(pool->ti->table);
2007 }
2008
2009 static sector_t get_dev_size(struct block_device *bdev)
2010 {
2011 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2012 }
2013
2014 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2015 {
2016 sector_t metadata_dev_size = get_dev_size(bdev);
2017 char buffer[BDEVNAME_SIZE];
2018
2019 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2020 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2021 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2022 }
2023
2024 static sector_t get_metadata_dev_size(struct block_device *bdev)
2025 {
2026 sector_t metadata_dev_size = get_dev_size(bdev);
2027
2028 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2029 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2030
2031 return metadata_dev_size;
2032 }
2033
2034 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2035 {
2036 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2037
2038 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2039
2040 return metadata_dev_size;
2041 }
2042
2043 /*
2044 * When a metadata threshold is crossed a dm event is triggered, and
2045 * userland should respond by growing the metadata device. We could let
2046 * userland set the threshold, like we do with the data threshold, but I'm
2047 * not sure they know enough to do this well.
2048 */
2049 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2050 {
2051 /*
2052 * 4M is ample for all ops with the possible exception of thin
2053 * device deletion which is harmless if it fails (just retry the
2054 * delete after you've grown the device).
2055 */
2056 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2057 return min((dm_block_t)1024ULL /* 4M */, quarter);
2058 }
2059
2060 /*
2061 * thin-pool <metadata dev> <data dev>
2062 * <data block size (sectors)>
2063 * <low water mark (blocks)>
2064 * [<#feature args> [<arg>]*]
2065 *
2066 * Optional feature arguments are:
2067 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2068 * ignore_discard: disable discard
2069 * no_discard_passdown: don't pass discards down to the data device
2070 * read_only: Don't allow any changes to be made to the pool metadata.
2071 * error_if_no_space: error IOs, instead of queueing, if no space.
2072 */
2073 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2074 {
2075 int r, pool_created = 0;
2076 struct pool_c *pt;
2077 struct pool *pool;
2078 struct pool_features pf;
2079 struct dm_arg_set as;
2080 struct dm_dev *data_dev;
2081 unsigned long block_size;
2082 dm_block_t low_water_blocks;
2083 struct dm_dev *metadata_dev;
2084 fmode_t metadata_mode;
2085
2086 /*
2087 * FIXME Remove validation from scope of lock.
2088 */
2089 mutex_lock(&dm_thin_pool_table.mutex);
2090
2091 if (argc < 4) {
2092 ti->error = "Invalid argument count";
2093 r = -EINVAL;
2094 goto out_unlock;
2095 }
2096
2097 as.argc = argc;
2098 as.argv = argv;
2099
2100 /*
2101 * Set default pool features.
2102 */
2103 pool_features_init(&pf);
2104
2105 dm_consume_args(&as, 4);
2106 r = parse_pool_features(&as, &pf, ti);
2107 if (r)
2108 goto out_unlock;
2109
2110 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2111 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2112 if (r) {
2113 ti->error = "Error opening metadata block device";
2114 goto out_unlock;
2115 }
2116 warn_if_metadata_device_too_big(metadata_dev->bdev);
2117
2118 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2119 if (r) {
2120 ti->error = "Error getting data device";
2121 goto out_metadata;
2122 }
2123
2124 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2125 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2126 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2127 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2128 ti->error = "Invalid block size";
2129 r = -EINVAL;
2130 goto out;
2131 }
2132
2133 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2134 ti->error = "Invalid low water mark";
2135 r = -EINVAL;
2136 goto out;
2137 }
2138
2139 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2140 if (!pt) {
2141 r = -ENOMEM;
2142 goto out;
2143 }
2144
2145 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2146 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2147 if (IS_ERR(pool)) {
2148 r = PTR_ERR(pool);
2149 goto out_free_pt;
2150 }
2151
2152 /*
2153 * 'pool_created' reflects whether this is the first table load.
2154 * Top level discard support is not allowed to be changed after
2155 * initial load. This would require a pool reload to trigger thin
2156 * device changes.
2157 */
2158 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2159 ti->error = "Discard support cannot be disabled once enabled";
2160 r = -EINVAL;
2161 goto out_flags_changed;
2162 }
2163
2164 pt->pool = pool;
2165 pt->ti = ti;
2166 pt->metadata_dev = metadata_dev;
2167 pt->data_dev = data_dev;
2168 pt->low_water_blocks = low_water_blocks;
2169 pt->adjusted_pf = pt->requested_pf = pf;
2170 ti->num_flush_bios = 1;
2171
2172 /*
2173 * Only need to enable discards if the pool should pass
2174 * them down to the data device. The thin device's discard
2175 * processing will cause mappings to be removed from the btree.
2176 */
2177 ti->discard_zeroes_data_unsupported = true;
2178 if (pf.discard_enabled && pf.discard_passdown) {
2179 ti->num_discard_bios = 1;
2180
2181 /*
2182 * Setting 'discards_supported' circumvents the normal
2183 * stacking of discard limits (this keeps the pool and
2184 * thin devices' discard limits consistent).
2185 */
2186 ti->discards_supported = true;
2187 }
2188 ti->private = pt;
2189
2190 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2191 calc_metadata_threshold(pt),
2192 metadata_low_callback,
2193 pool);
2194 if (r)
2195 goto out_free_pt;
2196
2197 pt->callbacks.congested_fn = pool_is_congested;
2198 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2199
2200 mutex_unlock(&dm_thin_pool_table.mutex);
2201
2202 return 0;
2203
2204 out_flags_changed:
2205 __pool_dec(pool);
2206 out_free_pt:
2207 kfree(pt);
2208 out:
2209 dm_put_device(ti, data_dev);
2210 out_metadata:
2211 dm_put_device(ti, metadata_dev);
2212 out_unlock:
2213 mutex_unlock(&dm_thin_pool_table.mutex);
2214
2215 return r;
2216 }
2217
2218 static int pool_map(struct dm_target *ti, struct bio *bio)
2219 {
2220 int r;
2221 struct pool_c *pt = ti->private;
2222 struct pool *pool = pt->pool;
2223 unsigned long flags;
2224
2225 /*
2226 * As this is a singleton target, ti->begin is always zero.
2227 */
2228 spin_lock_irqsave(&pool->lock, flags);
2229 bio->bi_bdev = pt->data_dev->bdev;
2230 r = DM_MAPIO_REMAPPED;
2231 spin_unlock_irqrestore(&pool->lock, flags);
2232
2233 return r;
2234 }
2235
2236 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2237 {
2238 int r;
2239 struct pool_c *pt = ti->private;
2240 struct pool *pool = pt->pool;
2241 sector_t data_size = ti->len;
2242 dm_block_t sb_data_size;
2243
2244 *need_commit = false;
2245
2246 (void) sector_div(data_size, pool->sectors_per_block);
2247
2248 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2249 if (r) {
2250 DMERR("%s: failed to retrieve data device size",
2251 dm_device_name(pool->pool_md));
2252 return r;
2253 }
2254
2255 if (data_size < sb_data_size) {
2256 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2257 dm_device_name(pool->pool_md),
2258 (unsigned long long)data_size, sb_data_size);
2259 return -EINVAL;
2260
2261 } else if (data_size > sb_data_size) {
2262 if (sb_data_size)
2263 DMINFO("%s: growing the data device from %llu to %llu blocks",
2264 dm_device_name(pool->pool_md),
2265 sb_data_size, (unsigned long long)data_size);
2266 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2267 if (r) {
2268 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2269 return r;
2270 }
2271
2272 *need_commit = true;
2273 }
2274
2275 return 0;
2276 }
2277
2278 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2279 {
2280 int r;
2281 struct pool_c *pt = ti->private;
2282 struct pool *pool = pt->pool;
2283 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2284
2285 *need_commit = false;
2286
2287 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2288
2289 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2290 if (r) {
2291 DMERR("%s: failed to retrieve metadata device size",
2292 dm_device_name(pool->pool_md));
2293 return r;
2294 }
2295
2296 if (metadata_dev_size < sb_metadata_dev_size) {
2297 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2298 dm_device_name(pool->pool_md),
2299 metadata_dev_size, sb_metadata_dev_size);
2300 return -EINVAL;
2301
2302 } else if (metadata_dev_size > sb_metadata_dev_size) {
2303 warn_if_metadata_device_too_big(pool->md_dev);
2304 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2305 dm_device_name(pool->pool_md),
2306 sb_metadata_dev_size, metadata_dev_size);
2307 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2308 if (r) {
2309 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2310 return r;
2311 }
2312
2313 *need_commit = true;
2314 }
2315
2316 return 0;
2317 }
2318
2319 /*
2320 * Retrieves the number of blocks of the data device from
2321 * the superblock and compares it to the actual device size,
2322 * thus resizing the data device in case it has grown.
2323 *
2324 * This both copes with opening preallocated data devices in the ctr
2325 * being followed by a resume
2326 * -and-
2327 * calling the resume method individually after userspace has
2328 * grown the data device in reaction to a table event.
2329 */
2330 static int pool_preresume(struct dm_target *ti)
2331 {
2332 int r;
2333 bool need_commit1, need_commit2;
2334 struct pool_c *pt = ti->private;
2335 struct pool *pool = pt->pool;
2336
2337 /*
2338 * Take control of the pool object.
2339 */
2340 r = bind_control_target(pool, ti);
2341 if (r)
2342 return r;
2343
2344 r = maybe_resize_data_dev(ti, &need_commit1);
2345 if (r)
2346 return r;
2347
2348 r = maybe_resize_metadata_dev(ti, &need_commit2);
2349 if (r)
2350 return r;
2351
2352 if (need_commit1 || need_commit2)
2353 (void) commit(pool);
2354
2355 return 0;
2356 }
2357
2358 static void pool_resume(struct dm_target *ti)
2359 {
2360 struct pool_c *pt = ti->private;
2361 struct pool *pool = pt->pool;
2362 unsigned long flags;
2363
2364 spin_lock_irqsave(&pool->lock, flags);
2365 pool->low_water_triggered = false;
2366 __requeue_bios(pool);
2367 spin_unlock_irqrestore(&pool->lock, flags);
2368
2369 do_waker(&pool->waker.work);
2370 }
2371
2372 static void pool_postsuspend(struct dm_target *ti)
2373 {
2374 struct pool_c *pt = ti->private;
2375 struct pool *pool = pt->pool;
2376
2377 cancel_delayed_work(&pool->waker);
2378 flush_workqueue(pool->wq);
2379 (void) commit(pool);
2380 }
2381
2382 static int check_arg_count(unsigned argc, unsigned args_required)
2383 {
2384 if (argc != args_required) {
2385 DMWARN("Message received with %u arguments instead of %u.",
2386 argc, args_required);
2387 return -EINVAL;
2388 }
2389
2390 return 0;
2391 }
2392
2393 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2394 {
2395 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2396 *dev_id <= MAX_DEV_ID)
2397 return 0;
2398
2399 if (warning)
2400 DMWARN("Message received with invalid device id: %s", arg);
2401
2402 return -EINVAL;
2403 }
2404
2405 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2406 {
2407 dm_thin_id dev_id;
2408 int r;
2409
2410 r = check_arg_count(argc, 2);
2411 if (r)
2412 return r;
2413
2414 r = read_dev_id(argv[1], &dev_id, 1);
2415 if (r)
2416 return r;
2417
2418 r = dm_pool_create_thin(pool->pmd, dev_id);
2419 if (r) {
2420 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2421 argv[1]);
2422 return r;
2423 }
2424
2425 return 0;
2426 }
2427
2428 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2429 {
2430 dm_thin_id dev_id;
2431 dm_thin_id origin_dev_id;
2432 int r;
2433
2434 r = check_arg_count(argc, 3);
2435 if (r)
2436 return r;
2437
2438 r = read_dev_id(argv[1], &dev_id, 1);
2439 if (r)
2440 return r;
2441
2442 r = read_dev_id(argv[2], &origin_dev_id, 1);
2443 if (r)
2444 return r;
2445
2446 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2447 if (r) {
2448 DMWARN("Creation of new snapshot %s of device %s failed.",
2449 argv[1], argv[2]);
2450 return r;
2451 }
2452
2453 return 0;
2454 }
2455
2456 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2457 {
2458 dm_thin_id dev_id;
2459 int r;
2460
2461 r = check_arg_count(argc, 2);
2462 if (r)
2463 return r;
2464
2465 r = read_dev_id(argv[1], &dev_id, 1);
2466 if (r)
2467 return r;
2468
2469 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2470 if (r)
2471 DMWARN("Deletion of thin device %s failed.", argv[1]);
2472
2473 return r;
2474 }
2475
2476 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2477 {
2478 dm_thin_id old_id, new_id;
2479 int r;
2480
2481 r = check_arg_count(argc, 3);
2482 if (r)
2483 return r;
2484
2485 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2486 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2487 return -EINVAL;
2488 }
2489
2490 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2491 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2492 return -EINVAL;
2493 }
2494
2495 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2496 if (r) {
2497 DMWARN("Failed to change transaction id from %s to %s.",
2498 argv[1], argv[2]);
2499 return r;
2500 }
2501
2502 return 0;
2503 }
2504
2505 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2506 {
2507 int r;
2508
2509 r = check_arg_count(argc, 1);
2510 if (r)
2511 return r;
2512
2513 (void) commit(pool);
2514
2515 r = dm_pool_reserve_metadata_snap(pool->pmd);
2516 if (r)
2517 DMWARN("reserve_metadata_snap message failed.");
2518
2519 return r;
2520 }
2521
2522 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2523 {
2524 int r;
2525
2526 r = check_arg_count(argc, 1);
2527 if (r)
2528 return r;
2529
2530 r = dm_pool_release_metadata_snap(pool->pmd);
2531 if (r)
2532 DMWARN("release_metadata_snap message failed.");
2533
2534 return r;
2535 }
2536
2537 /*
2538 * Messages supported:
2539 * create_thin <dev_id>
2540 * create_snap <dev_id> <origin_id>
2541 * delete <dev_id>
2542 * trim <dev_id> <new_size_in_sectors>
2543 * set_transaction_id <current_trans_id> <new_trans_id>
2544 * reserve_metadata_snap
2545 * release_metadata_snap
2546 */
2547 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2548 {
2549 int r = -EINVAL;
2550 struct pool_c *pt = ti->private;
2551 struct pool *pool = pt->pool;
2552
2553 if (!strcasecmp(argv[0], "create_thin"))
2554 r = process_create_thin_mesg(argc, argv, pool);
2555
2556 else if (!strcasecmp(argv[0], "create_snap"))
2557 r = process_create_snap_mesg(argc, argv, pool);
2558
2559 else if (!strcasecmp(argv[0], "delete"))
2560 r = process_delete_mesg(argc, argv, pool);
2561
2562 else if (!strcasecmp(argv[0], "set_transaction_id"))
2563 r = process_set_transaction_id_mesg(argc, argv, pool);
2564
2565 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2566 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2567
2568 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2569 r = process_release_metadata_snap_mesg(argc, argv, pool);
2570
2571 else
2572 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2573
2574 if (!r)
2575 (void) commit(pool);
2576
2577 return r;
2578 }
2579
2580 static void emit_flags(struct pool_features *pf, char *result,
2581 unsigned sz, unsigned maxlen)
2582 {
2583 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2584 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2585 pf->error_if_no_space;
2586 DMEMIT("%u ", count);
2587
2588 if (!pf->zero_new_blocks)
2589 DMEMIT("skip_block_zeroing ");
2590
2591 if (!pf->discard_enabled)
2592 DMEMIT("ignore_discard ");
2593
2594 if (!pf->discard_passdown)
2595 DMEMIT("no_discard_passdown ");
2596
2597 if (pf->mode == PM_READ_ONLY)
2598 DMEMIT("read_only ");
2599
2600 if (pf->error_if_no_space)
2601 DMEMIT("error_if_no_space ");
2602 }
2603
2604 /*
2605 * Status line is:
2606 * <transaction id> <used metadata sectors>/<total metadata sectors>
2607 * <used data sectors>/<total data sectors> <held metadata root>
2608 */
2609 static void pool_status(struct dm_target *ti, status_type_t type,
2610 unsigned status_flags, char *result, unsigned maxlen)
2611 {
2612 int r;
2613 unsigned sz = 0;
2614 uint64_t transaction_id;
2615 dm_block_t nr_free_blocks_data;
2616 dm_block_t nr_free_blocks_metadata;
2617 dm_block_t nr_blocks_data;
2618 dm_block_t nr_blocks_metadata;
2619 dm_block_t held_root;
2620 char buf[BDEVNAME_SIZE];
2621 char buf2[BDEVNAME_SIZE];
2622 struct pool_c *pt = ti->private;
2623 struct pool *pool = pt->pool;
2624
2625 switch (type) {
2626 case STATUSTYPE_INFO:
2627 if (get_pool_mode(pool) == PM_FAIL) {
2628 DMEMIT("Fail");
2629 break;
2630 }
2631
2632 /* Commit to ensure statistics aren't out-of-date */
2633 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2634 (void) commit(pool);
2635
2636 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2637 if (r) {
2638 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2639 dm_device_name(pool->pool_md), r);
2640 goto err;
2641 }
2642
2643 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2644 if (r) {
2645 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2646 dm_device_name(pool->pool_md), r);
2647 goto err;
2648 }
2649
2650 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2651 if (r) {
2652 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2653 dm_device_name(pool->pool_md), r);
2654 goto err;
2655 }
2656
2657 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2658 if (r) {
2659 DMERR("%s: dm_pool_get_free_block_count returned %d",
2660 dm_device_name(pool->pool_md), r);
2661 goto err;
2662 }
2663
2664 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2665 if (r) {
2666 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2667 dm_device_name(pool->pool_md), r);
2668 goto err;
2669 }
2670
2671 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2672 if (r) {
2673 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2674 dm_device_name(pool->pool_md), r);
2675 goto err;
2676 }
2677
2678 DMEMIT("%llu %llu/%llu %llu/%llu ",
2679 (unsigned long long)transaction_id,
2680 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2681 (unsigned long long)nr_blocks_metadata,
2682 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2683 (unsigned long long)nr_blocks_data);
2684
2685 if (held_root)
2686 DMEMIT("%llu ", held_root);
2687 else
2688 DMEMIT("- ");
2689
2690 if (pool->pf.mode == PM_READ_ONLY)
2691 DMEMIT("ro ");
2692 else
2693 DMEMIT("rw ");
2694
2695 if (!pool->pf.discard_enabled)
2696 DMEMIT("ignore_discard ");
2697 else if (pool->pf.discard_passdown)
2698 DMEMIT("discard_passdown ");
2699 else
2700 DMEMIT("no_discard_passdown ");
2701
2702 if (pool->pf.error_if_no_space)
2703 DMEMIT("error_if_no_space ");
2704 else
2705 DMEMIT("queue_if_no_space ");
2706
2707 break;
2708
2709 case STATUSTYPE_TABLE:
2710 DMEMIT("%s %s %lu %llu ",
2711 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2712 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2713 (unsigned long)pool->sectors_per_block,
2714 (unsigned long long)pt->low_water_blocks);
2715 emit_flags(&pt->requested_pf, result, sz, maxlen);
2716 break;
2717 }
2718 return;
2719
2720 err:
2721 DMEMIT("Error");
2722 }
2723
2724 static int pool_iterate_devices(struct dm_target *ti,
2725 iterate_devices_callout_fn fn, void *data)
2726 {
2727 struct pool_c *pt = ti->private;
2728
2729 return fn(ti, pt->data_dev, 0, ti->len, data);
2730 }
2731
2732 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2733 struct bio_vec *biovec, int max_size)
2734 {
2735 struct pool_c *pt = ti->private;
2736 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2737
2738 if (!q->merge_bvec_fn)
2739 return max_size;
2740
2741 bvm->bi_bdev = pt->data_dev->bdev;
2742
2743 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2744 }
2745
2746 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2747 {
2748 struct pool *pool = pt->pool;
2749 struct queue_limits *data_limits;
2750
2751 limits->max_discard_sectors = pool->sectors_per_block;
2752
2753 /*
2754 * discard_granularity is just a hint, and not enforced.
2755 */
2756 if (pt->adjusted_pf.discard_passdown) {
2757 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2758 limits->discard_granularity = data_limits->discard_granularity;
2759 } else
2760 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2761 }
2762
2763 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2764 {
2765 struct pool_c *pt = ti->private;
2766 struct pool *pool = pt->pool;
2767 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2768
2769 /*
2770 * If the system-determined stacked limits are compatible with the
2771 * pool's blocksize (io_opt is a factor) do not override them.
2772 */
2773 if (io_opt_sectors < pool->sectors_per_block ||
2774 do_div(io_opt_sectors, pool->sectors_per_block)) {
2775 blk_limits_io_min(limits, 0);
2776 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2777 }
2778
2779 /*
2780 * pt->adjusted_pf is a staging area for the actual features to use.
2781 * They get transferred to the live pool in bind_control_target()
2782 * called from pool_preresume().
2783 */
2784 if (!pt->adjusted_pf.discard_enabled) {
2785 /*
2786 * Must explicitly disallow stacking discard limits otherwise the
2787 * block layer will stack them if pool's data device has support.
2788 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2789 * user to see that, so make sure to set all discard limits to 0.
2790 */
2791 limits->discard_granularity = 0;
2792 return;
2793 }
2794
2795 disable_passdown_if_not_supported(pt);
2796
2797 set_discard_limits(pt, limits);
2798 }
2799
2800 static struct target_type pool_target = {
2801 .name = "thin-pool",
2802 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2803 DM_TARGET_IMMUTABLE,
2804 .version = {1, 10, 0},
2805 .module = THIS_MODULE,
2806 .ctr = pool_ctr,
2807 .dtr = pool_dtr,
2808 .map = pool_map,
2809 .postsuspend = pool_postsuspend,
2810 .preresume = pool_preresume,
2811 .resume = pool_resume,
2812 .message = pool_message,
2813 .status = pool_status,
2814 .merge = pool_merge,
2815 .iterate_devices = pool_iterate_devices,
2816 .io_hints = pool_io_hints,
2817 };
2818
2819 /*----------------------------------------------------------------
2820 * Thin target methods
2821 *--------------------------------------------------------------*/
2822 static void thin_dtr(struct dm_target *ti)
2823 {
2824 struct thin_c *tc = ti->private;
2825
2826 mutex_lock(&dm_thin_pool_table.mutex);
2827
2828 __pool_dec(tc->pool);
2829 dm_pool_close_thin_device(tc->td);
2830 dm_put_device(ti, tc->pool_dev);
2831 if (tc->origin_dev)
2832 dm_put_device(ti, tc->origin_dev);
2833 kfree(tc);
2834
2835 mutex_unlock(&dm_thin_pool_table.mutex);
2836 }
2837
2838 /*
2839 * Thin target parameters:
2840 *
2841 * <pool_dev> <dev_id> [origin_dev]
2842 *
2843 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2844 * dev_id: the internal device identifier
2845 * origin_dev: a device external to the pool that should act as the origin
2846 *
2847 * If the pool device has discards disabled, they get disabled for the thin
2848 * device as well.
2849 */
2850 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2851 {
2852 int r;
2853 struct thin_c *tc;
2854 struct dm_dev *pool_dev, *origin_dev;
2855 struct mapped_device *pool_md;
2856
2857 mutex_lock(&dm_thin_pool_table.mutex);
2858
2859 if (argc != 2 && argc != 3) {
2860 ti->error = "Invalid argument count";
2861 r = -EINVAL;
2862 goto out_unlock;
2863 }
2864
2865 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2866 if (!tc) {
2867 ti->error = "Out of memory";
2868 r = -ENOMEM;
2869 goto out_unlock;
2870 }
2871
2872 if (argc == 3) {
2873 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2874 if (r) {
2875 ti->error = "Error opening origin device";
2876 goto bad_origin_dev;
2877 }
2878 tc->origin_dev = origin_dev;
2879 }
2880
2881 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2882 if (r) {
2883 ti->error = "Error opening pool device";
2884 goto bad_pool_dev;
2885 }
2886 tc->pool_dev = pool_dev;
2887
2888 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2889 ti->error = "Invalid device id";
2890 r = -EINVAL;
2891 goto bad_common;
2892 }
2893
2894 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2895 if (!pool_md) {
2896 ti->error = "Couldn't get pool mapped device";
2897 r = -EINVAL;
2898 goto bad_common;
2899 }
2900
2901 tc->pool = __pool_table_lookup(pool_md);
2902 if (!tc->pool) {
2903 ti->error = "Couldn't find pool object";
2904 r = -EINVAL;
2905 goto bad_pool_lookup;
2906 }
2907 __pool_inc(tc->pool);
2908
2909 if (get_pool_mode(tc->pool) == PM_FAIL) {
2910 ti->error = "Couldn't open thin device, Pool is in fail mode";
2911 r = -EINVAL;
2912 goto bad_thin_open;
2913 }
2914
2915 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2916 if (r) {
2917 ti->error = "Couldn't open thin internal device";
2918 goto bad_thin_open;
2919 }
2920
2921 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2922 if (r)
2923 goto bad_target_max_io_len;
2924
2925 ti->num_flush_bios = 1;
2926 ti->flush_supported = true;
2927 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2928
2929 /* In case the pool supports discards, pass them on. */
2930 ti->discard_zeroes_data_unsupported = true;
2931 if (tc->pool->pf.discard_enabled) {
2932 ti->discards_supported = true;
2933 ti->num_discard_bios = 1;
2934 /* Discard bios must be split on a block boundary */
2935 ti->split_discard_bios = true;
2936 }
2937
2938 dm_put(pool_md);
2939
2940 mutex_unlock(&dm_thin_pool_table.mutex);
2941
2942 return 0;
2943
2944 bad_target_max_io_len:
2945 dm_pool_close_thin_device(tc->td);
2946 bad_thin_open:
2947 __pool_dec(tc->pool);
2948 bad_pool_lookup:
2949 dm_put(pool_md);
2950 bad_common:
2951 dm_put_device(ti, tc->pool_dev);
2952 bad_pool_dev:
2953 if (tc->origin_dev)
2954 dm_put_device(ti, tc->origin_dev);
2955 bad_origin_dev:
2956 kfree(tc);
2957 out_unlock:
2958 mutex_unlock(&dm_thin_pool_table.mutex);
2959
2960 return r;
2961 }
2962
2963 static int thin_map(struct dm_target *ti, struct bio *bio)
2964 {
2965 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2966
2967 return thin_bio_map(ti, bio);
2968 }
2969
2970 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2971 {
2972 unsigned long flags;
2973 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2974 struct list_head work;
2975 struct dm_thin_new_mapping *m, *tmp;
2976 struct pool *pool = h->tc->pool;
2977
2978 if (h->shared_read_entry) {
2979 INIT_LIST_HEAD(&work);
2980 dm_deferred_entry_dec(h->shared_read_entry, &work);
2981
2982 spin_lock_irqsave(&pool->lock, flags);
2983 list_for_each_entry_safe(m, tmp, &work, list) {
2984 list_del(&m->list);
2985 m->quiesced = true;
2986 __maybe_add_mapping(m);
2987 }
2988 spin_unlock_irqrestore(&pool->lock, flags);
2989 }
2990
2991 if (h->all_io_entry) {
2992 INIT_LIST_HEAD(&work);
2993 dm_deferred_entry_dec(h->all_io_entry, &work);
2994 if (!list_empty(&work)) {
2995 spin_lock_irqsave(&pool->lock, flags);
2996 list_for_each_entry_safe(m, tmp, &work, list)
2997 list_add_tail(&m->list, &pool->prepared_discards);
2998 spin_unlock_irqrestore(&pool->lock, flags);
2999 wake_worker(pool);
3000 }
3001 }
3002
3003 return 0;
3004 }
3005
3006 static void thin_postsuspend(struct dm_target *ti)
3007 {
3008 if (dm_noflush_suspending(ti))
3009 requeue_io((struct thin_c *)ti->private);
3010 }
3011
3012 /*
3013 * <nr mapped sectors> <highest mapped sector>
3014 */
3015 static void thin_status(struct dm_target *ti, status_type_t type,
3016 unsigned status_flags, char *result, unsigned maxlen)
3017 {
3018 int r;
3019 ssize_t sz = 0;
3020 dm_block_t mapped, highest;
3021 char buf[BDEVNAME_SIZE];
3022 struct thin_c *tc = ti->private;
3023
3024 if (get_pool_mode(tc->pool) == PM_FAIL) {
3025 DMEMIT("Fail");
3026 return;
3027 }
3028
3029 if (!tc->td)
3030 DMEMIT("-");
3031 else {
3032 switch (type) {
3033 case STATUSTYPE_INFO:
3034 r = dm_thin_get_mapped_count(tc->td, &mapped);
3035 if (r) {
3036 DMERR("dm_thin_get_mapped_count returned %d", r);
3037 goto err;
3038 }
3039
3040 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3041 if (r < 0) {
3042 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3043 goto err;
3044 }
3045
3046 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3047 if (r)
3048 DMEMIT("%llu", ((highest + 1) *
3049 tc->pool->sectors_per_block) - 1);
3050 else
3051 DMEMIT("-");
3052 break;
3053
3054 case STATUSTYPE_TABLE:
3055 DMEMIT("%s %lu",
3056 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3057 (unsigned long) tc->dev_id);
3058 if (tc->origin_dev)
3059 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3060 break;
3061 }
3062 }
3063
3064 return;
3065
3066 err:
3067 DMEMIT("Error");
3068 }
3069
3070 static int thin_iterate_devices(struct dm_target *ti,
3071 iterate_devices_callout_fn fn, void *data)
3072 {
3073 sector_t blocks;
3074 struct thin_c *tc = ti->private;
3075 struct pool *pool = tc->pool;
3076
3077 /*
3078 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3079 * we follow a more convoluted path through to the pool's target.
3080 */
3081 if (!pool->ti)
3082 return 0; /* nothing is bound */
3083
3084 blocks = pool->ti->len;
3085 (void) sector_div(blocks, pool->sectors_per_block);
3086 if (blocks)
3087 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3088
3089 return 0;
3090 }
3091
3092 static struct target_type thin_target = {
3093 .name = "thin",
3094 .version = {1, 10, 0},
3095 .module = THIS_MODULE,
3096 .ctr = thin_ctr,
3097 .dtr = thin_dtr,
3098 .map = thin_map,
3099 .end_io = thin_endio,
3100 .postsuspend = thin_postsuspend,
3101 .status = thin_status,
3102 .iterate_devices = thin_iterate_devices,
3103 };
3104
3105 /*----------------------------------------------------------------*/
3106
3107 static int __init dm_thin_init(void)
3108 {
3109 int r;
3110
3111 pool_table_init();
3112
3113 r = dm_register_target(&thin_target);
3114 if (r)
3115 return r;
3116
3117 r = dm_register_target(&pool_target);
3118 if (r)
3119 goto bad_pool_target;
3120
3121 r = -ENOMEM;
3122
3123 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3124 if (!_new_mapping_cache)
3125 goto bad_new_mapping_cache;
3126
3127 return 0;
3128
3129 bad_new_mapping_cache:
3130 dm_unregister_target(&pool_target);
3131 bad_pool_target:
3132 dm_unregister_target(&thin_target);
3133
3134 return r;
3135 }
3136
3137 static void dm_thin_exit(void)
3138 {
3139 dm_unregister_target(&thin_target);
3140 dm_unregister_target(&pool_target);
3141
3142 kmem_cache_destroy(_new_mapping_cache);
3143 }
3144
3145 module_init(dm_thin_init);
3146 module_exit(dm_thin_exit);
3147
3148 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3149 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3150 MODULE_LICENSE("GPL");
This page took 0.090591 seconds and 6 git commands to generate.