36142e947ffc3ea84f8446d6665ea9968930f1ea
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 static const char *_name = DM_NAME;
28
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34 * For bio-based dm.
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
43 };
44
45 /*
46 * For bio-based dm.
47 * One of these is allocated per target within a bio. Hopefully
48 * this will be simplified out one day.
49 */
50 struct dm_target_io {
51 struct dm_io *io;
52 struct dm_target *ti;
53 union map_info info;
54 };
55
56 /*
57 * For request-based dm.
58 * One of these is allocated per request.
59 */
60 struct dm_rq_target_io {
61 struct mapped_device *md;
62 struct dm_target *ti;
63 struct request *orig, clone;
64 int error;
65 union map_info info;
66 };
67
68 /*
69 * For request-based dm.
70 * One of these is allocated per bio.
71 */
72 struct dm_rq_clone_bio_info {
73 struct bio *orig;
74 struct request *rq;
75 };
76
77 union map_info *dm_get_mapinfo(struct bio *bio)
78 {
79 if (bio && bio->bi_private)
80 return &((struct dm_target_io *)bio->bi_private)->info;
81 return NULL;
82 }
83
84 #define MINOR_ALLOCED ((void *)-1)
85
86 /*
87 * Bits for the md->flags field.
88 */
89 #define DMF_BLOCK_IO_FOR_SUSPEND 0
90 #define DMF_SUSPENDED 1
91 #define DMF_FROZEN 2
92 #define DMF_FREEING 3
93 #define DMF_DELETING 4
94 #define DMF_NOFLUSH_SUSPENDING 5
95 #define DMF_QUEUE_IO_TO_THREAD 6
96
97 /*
98 * Work processed by per-device workqueue.
99 */
100 struct mapped_device {
101 struct rw_semaphore io_lock;
102 struct mutex suspend_lock;
103 rwlock_t map_lock;
104 atomic_t holders;
105 atomic_t open_count;
106
107 unsigned long flags;
108
109 struct request_queue *queue;
110 struct gendisk *disk;
111 char name[16];
112
113 void *interface_ptr;
114
115 /*
116 * A list of ios that arrived while we were suspended.
117 */
118 atomic_t pending;
119 wait_queue_head_t wait;
120 struct work_struct work;
121 struct bio_list deferred;
122 spinlock_t deferred_lock;
123
124 /*
125 * An error from the barrier request currently being processed.
126 */
127 int barrier_error;
128
129 /*
130 * Processing queue (flush/barriers)
131 */
132 struct workqueue_struct *wq;
133
134 /*
135 * The current mapping.
136 */
137 struct dm_table *map;
138
139 /*
140 * io objects are allocated from here.
141 */
142 mempool_t *io_pool;
143 mempool_t *tio_pool;
144
145 struct bio_set *bs;
146
147 /*
148 * Event handling.
149 */
150 atomic_t event_nr;
151 wait_queue_head_t eventq;
152 atomic_t uevent_seq;
153 struct list_head uevent_list;
154 spinlock_t uevent_lock; /* Protect access to uevent_list */
155
156 /*
157 * freeze/thaw support require holding onto a super block
158 */
159 struct super_block *frozen_sb;
160 struct block_device *bdev;
161
162 /* forced geometry settings */
163 struct hd_geometry geometry;
164
165 /* sysfs handle */
166 struct kobject kobj;
167
168 /* zero-length barrier that will be cloned and submitted to targets */
169 struct bio barrier_bio;
170 };
171
172 #define MIN_IOS 256
173 static struct kmem_cache *_io_cache;
174 static struct kmem_cache *_tio_cache;
175 static struct kmem_cache *_rq_tio_cache;
176 static struct kmem_cache *_rq_bio_info_cache;
177
178 static int __init local_init(void)
179 {
180 int r = -ENOMEM;
181
182 /* allocate a slab for the dm_ios */
183 _io_cache = KMEM_CACHE(dm_io, 0);
184 if (!_io_cache)
185 return r;
186
187 /* allocate a slab for the target ios */
188 _tio_cache = KMEM_CACHE(dm_target_io, 0);
189 if (!_tio_cache)
190 goto out_free_io_cache;
191
192 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
193 if (!_rq_tio_cache)
194 goto out_free_tio_cache;
195
196 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
197 if (!_rq_bio_info_cache)
198 goto out_free_rq_tio_cache;
199
200 r = dm_uevent_init();
201 if (r)
202 goto out_free_rq_bio_info_cache;
203
204 _major = major;
205 r = register_blkdev(_major, _name);
206 if (r < 0)
207 goto out_uevent_exit;
208
209 if (!_major)
210 _major = r;
211
212 return 0;
213
214 out_uevent_exit:
215 dm_uevent_exit();
216 out_free_rq_bio_info_cache:
217 kmem_cache_destroy(_rq_bio_info_cache);
218 out_free_rq_tio_cache:
219 kmem_cache_destroy(_rq_tio_cache);
220 out_free_tio_cache:
221 kmem_cache_destroy(_tio_cache);
222 out_free_io_cache:
223 kmem_cache_destroy(_io_cache);
224
225 return r;
226 }
227
228 static void local_exit(void)
229 {
230 kmem_cache_destroy(_rq_bio_info_cache);
231 kmem_cache_destroy(_rq_tio_cache);
232 kmem_cache_destroy(_tio_cache);
233 kmem_cache_destroy(_io_cache);
234 unregister_blkdev(_major, _name);
235 dm_uevent_exit();
236
237 _major = 0;
238
239 DMINFO("cleaned up");
240 }
241
242 static int (*_inits[])(void) __initdata = {
243 local_init,
244 dm_target_init,
245 dm_linear_init,
246 dm_stripe_init,
247 dm_kcopyd_init,
248 dm_interface_init,
249 };
250
251 static void (*_exits[])(void) = {
252 local_exit,
253 dm_target_exit,
254 dm_linear_exit,
255 dm_stripe_exit,
256 dm_kcopyd_exit,
257 dm_interface_exit,
258 };
259
260 static int __init dm_init(void)
261 {
262 const int count = ARRAY_SIZE(_inits);
263
264 int r, i;
265
266 for (i = 0; i < count; i++) {
267 r = _inits[i]();
268 if (r)
269 goto bad;
270 }
271
272 return 0;
273
274 bad:
275 while (i--)
276 _exits[i]();
277
278 return r;
279 }
280
281 static void __exit dm_exit(void)
282 {
283 int i = ARRAY_SIZE(_exits);
284
285 while (i--)
286 _exits[i]();
287 }
288
289 /*
290 * Block device functions
291 */
292 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
293 {
294 struct mapped_device *md;
295
296 spin_lock(&_minor_lock);
297
298 md = bdev->bd_disk->private_data;
299 if (!md)
300 goto out;
301
302 if (test_bit(DMF_FREEING, &md->flags) ||
303 test_bit(DMF_DELETING, &md->flags)) {
304 md = NULL;
305 goto out;
306 }
307
308 dm_get(md);
309 atomic_inc(&md->open_count);
310
311 out:
312 spin_unlock(&_minor_lock);
313
314 return md ? 0 : -ENXIO;
315 }
316
317 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
318 {
319 struct mapped_device *md = disk->private_data;
320 atomic_dec(&md->open_count);
321 dm_put(md);
322 return 0;
323 }
324
325 int dm_open_count(struct mapped_device *md)
326 {
327 return atomic_read(&md->open_count);
328 }
329
330 /*
331 * Guarantees nothing is using the device before it's deleted.
332 */
333 int dm_lock_for_deletion(struct mapped_device *md)
334 {
335 int r = 0;
336
337 spin_lock(&_minor_lock);
338
339 if (dm_open_count(md))
340 r = -EBUSY;
341 else
342 set_bit(DMF_DELETING, &md->flags);
343
344 spin_unlock(&_minor_lock);
345
346 return r;
347 }
348
349 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
350 {
351 struct mapped_device *md = bdev->bd_disk->private_data;
352
353 return dm_get_geometry(md, geo);
354 }
355
356 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
357 unsigned int cmd, unsigned long arg)
358 {
359 struct mapped_device *md = bdev->bd_disk->private_data;
360 struct dm_table *map = dm_get_table(md);
361 struct dm_target *tgt;
362 int r = -ENOTTY;
363
364 if (!map || !dm_table_get_size(map))
365 goto out;
366
367 /* We only support devices that have a single target */
368 if (dm_table_get_num_targets(map) != 1)
369 goto out;
370
371 tgt = dm_table_get_target(map, 0);
372
373 if (dm_suspended(md)) {
374 r = -EAGAIN;
375 goto out;
376 }
377
378 if (tgt->type->ioctl)
379 r = tgt->type->ioctl(tgt, cmd, arg);
380
381 out:
382 dm_table_put(map);
383
384 return r;
385 }
386
387 static struct dm_io *alloc_io(struct mapped_device *md)
388 {
389 return mempool_alloc(md->io_pool, GFP_NOIO);
390 }
391
392 static void free_io(struct mapped_device *md, struct dm_io *io)
393 {
394 mempool_free(io, md->io_pool);
395 }
396
397 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
398 {
399 mempool_free(tio, md->tio_pool);
400 }
401
402 static void start_io_acct(struct dm_io *io)
403 {
404 struct mapped_device *md = io->md;
405 int cpu;
406
407 io->start_time = jiffies;
408
409 cpu = part_stat_lock();
410 part_round_stats(cpu, &dm_disk(md)->part0);
411 part_stat_unlock();
412 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
413 }
414
415 static void end_io_acct(struct dm_io *io)
416 {
417 struct mapped_device *md = io->md;
418 struct bio *bio = io->bio;
419 unsigned long duration = jiffies - io->start_time;
420 int pending, cpu;
421 int rw = bio_data_dir(bio);
422
423 cpu = part_stat_lock();
424 part_round_stats(cpu, &dm_disk(md)->part0);
425 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
426 part_stat_unlock();
427
428 /*
429 * After this is decremented the bio must not be touched if it is
430 * a barrier.
431 */
432 dm_disk(md)->part0.in_flight = pending =
433 atomic_dec_return(&md->pending);
434
435 /* nudge anyone waiting on suspend queue */
436 if (!pending)
437 wake_up(&md->wait);
438 }
439
440 /*
441 * Add the bio to the list of deferred io.
442 */
443 static void queue_io(struct mapped_device *md, struct bio *bio)
444 {
445 down_write(&md->io_lock);
446
447 spin_lock_irq(&md->deferred_lock);
448 bio_list_add(&md->deferred, bio);
449 spin_unlock_irq(&md->deferred_lock);
450
451 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
452 queue_work(md->wq, &md->work);
453
454 up_write(&md->io_lock);
455 }
456
457 /*
458 * Everyone (including functions in this file), should use this
459 * function to access the md->map field, and make sure they call
460 * dm_table_put() when finished.
461 */
462 struct dm_table *dm_get_table(struct mapped_device *md)
463 {
464 struct dm_table *t;
465
466 read_lock(&md->map_lock);
467 t = md->map;
468 if (t)
469 dm_table_get(t);
470 read_unlock(&md->map_lock);
471
472 return t;
473 }
474
475 /*
476 * Get the geometry associated with a dm device
477 */
478 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
479 {
480 *geo = md->geometry;
481
482 return 0;
483 }
484
485 /*
486 * Set the geometry of a device.
487 */
488 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
489 {
490 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
491
492 if (geo->start > sz) {
493 DMWARN("Start sector is beyond the geometry limits.");
494 return -EINVAL;
495 }
496
497 md->geometry = *geo;
498
499 return 0;
500 }
501
502 /*-----------------------------------------------------------------
503 * CRUD START:
504 * A more elegant soln is in the works that uses the queue
505 * merge fn, unfortunately there are a couple of changes to
506 * the block layer that I want to make for this. So in the
507 * interests of getting something for people to use I give
508 * you this clearly demarcated crap.
509 *---------------------------------------------------------------*/
510
511 static int __noflush_suspending(struct mapped_device *md)
512 {
513 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
514 }
515
516 /*
517 * Decrements the number of outstanding ios that a bio has been
518 * cloned into, completing the original io if necc.
519 */
520 static void dec_pending(struct dm_io *io, int error)
521 {
522 unsigned long flags;
523 int io_error;
524 struct bio *bio;
525 struct mapped_device *md = io->md;
526
527 /* Push-back supersedes any I/O errors */
528 if (error && !(io->error > 0 && __noflush_suspending(md)))
529 io->error = error;
530
531 if (atomic_dec_and_test(&io->io_count)) {
532 if (io->error == DM_ENDIO_REQUEUE) {
533 /*
534 * Target requested pushing back the I/O.
535 */
536 spin_lock_irqsave(&md->deferred_lock, flags);
537 if (__noflush_suspending(md)) {
538 if (!bio_barrier(io->bio))
539 bio_list_add_head(&md->deferred,
540 io->bio);
541 } else
542 /* noflush suspend was interrupted. */
543 io->error = -EIO;
544 spin_unlock_irqrestore(&md->deferred_lock, flags);
545 }
546
547 io_error = io->error;
548 bio = io->bio;
549
550 if (bio_barrier(bio)) {
551 /*
552 * There can be just one barrier request so we use
553 * a per-device variable for error reporting.
554 * Note that you can't touch the bio after end_io_acct
555 */
556 if (!md->barrier_error && io_error != -EOPNOTSUPP)
557 md->barrier_error = io_error;
558 end_io_acct(io);
559 } else {
560 end_io_acct(io);
561
562 if (io_error != DM_ENDIO_REQUEUE) {
563 trace_block_bio_complete(md->queue, bio);
564
565 bio_endio(bio, io_error);
566 }
567 }
568
569 free_io(md, io);
570 }
571 }
572
573 static void clone_endio(struct bio *bio, int error)
574 {
575 int r = 0;
576 struct dm_target_io *tio = bio->bi_private;
577 struct dm_io *io = tio->io;
578 struct mapped_device *md = tio->io->md;
579 dm_endio_fn endio = tio->ti->type->end_io;
580
581 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
582 error = -EIO;
583
584 if (endio) {
585 r = endio(tio->ti, bio, error, &tio->info);
586 if (r < 0 || r == DM_ENDIO_REQUEUE)
587 /*
588 * error and requeue request are handled
589 * in dec_pending().
590 */
591 error = r;
592 else if (r == DM_ENDIO_INCOMPLETE)
593 /* The target will handle the io */
594 return;
595 else if (r) {
596 DMWARN("unimplemented target endio return value: %d", r);
597 BUG();
598 }
599 }
600
601 /*
602 * Store md for cleanup instead of tio which is about to get freed.
603 */
604 bio->bi_private = md->bs;
605
606 free_tio(md, tio);
607 bio_put(bio);
608 dec_pending(io, error);
609 }
610
611 static sector_t max_io_len(struct mapped_device *md,
612 sector_t sector, struct dm_target *ti)
613 {
614 sector_t offset = sector - ti->begin;
615 sector_t len = ti->len - offset;
616
617 /*
618 * Does the target need to split even further ?
619 */
620 if (ti->split_io) {
621 sector_t boundary;
622 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
623 - offset;
624 if (len > boundary)
625 len = boundary;
626 }
627
628 return len;
629 }
630
631 static void __map_bio(struct dm_target *ti, struct bio *clone,
632 struct dm_target_io *tio)
633 {
634 int r;
635 sector_t sector;
636 struct mapped_device *md;
637
638 clone->bi_end_io = clone_endio;
639 clone->bi_private = tio;
640
641 /*
642 * Map the clone. If r == 0 we don't need to do
643 * anything, the target has assumed ownership of
644 * this io.
645 */
646 atomic_inc(&tio->io->io_count);
647 sector = clone->bi_sector;
648 r = ti->type->map(ti, clone, &tio->info);
649 if (r == DM_MAPIO_REMAPPED) {
650 /* the bio has been remapped so dispatch it */
651
652 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
653 tio->io->bio->bi_bdev->bd_dev, sector);
654
655 generic_make_request(clone);
656 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
657 /* error the io and bail out, or requeue it if needed */
658 md = tio->io->md;
659 dec_pending(tio->io, r);
660 /*
661 * Store bio_set for cleanup.
662 */
663 clone->bi_private = md->bs;
664 bio_put(clone);
665 free_tio(md, tio);
666 } else if (r) {
667 DMWARN("unimplemented target map return value: %d", r);
668 BUG();
669 }
670 }
671
672 struct clone_info {
673 struct mapped_device *md;
674 struct dm_table *map;
675 struct bio *bio;
676 struct dm_io *io;
677 sector_t sector;
678 sector_t sector_count;
679 unsigned short idx;
680 };
681
682 static void dm_bio_destructor(struct bio *bio)
683 {
684 struct bio_set *bs = bio->bi_private;
685
686 bio_free(bio, bs);
687 }
688
689 /*
690 * Creates a little bio that is just does part of a bvec.
691 */
692 static struct bio *split_bvec(struct bio *bio, sector_t sector,
693 unsigned short idx, unsigned int offset,
694 unsigned int len, struct bio_set *bs)
695 {
696 struct bio *clone;
697 struct bio_vec *bv = bio->bi_io_vec + idx;
698
699 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
700 clone->bi_destructor = dm_bio_destructor;
701 *clone->bi_io_vec = *bv;
702
703 clone->bi_sector = sector;
704 clone->bi_bdev = bio->bi_bdev;
705 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
706 clone->bi_vcnt = 1;
707 clone->bi_size = to_bytes(len);
708 clone->bi_io_vec->bv_offset = offset;
709 clone->bi_io_vec->bv_len = clone->bi_size;
710 clone->bi_flags |= 1 << BIO_CLONED;
711
712 if (bio_integrity(bio)) {
713 bio_integrity_clone(clone, bio, GFP_NOIO);
714 bio_integrity_trim(clone,
715 bio_sector_offset(bio, idx, offset), len);
716 }
717
718 return clone;
719 }
720
721 /*
722 * Creates a bio that consists of range of complete bvecs.
723 */
724 static struct bio *clone_bio(struct bio *bio, sector_t sector,
725 unsigned short idx, unsigned short bv_count,
726 unsigned int len, struct bio_set *bs)
727 {
728 struct bio *clone;
729
730 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
731 __bio_clone(clone, bio);
732 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
733 clone->bi_destructor = dm_bio_destructor;
734 clone->bi_sector = sector;
735 clone->bi_idx = idx;
736 clone->bi_vcnt = idx + bv_count;
737 clone->bi_size = to_bytes(len);
738 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
739
740 if (bio_integrity(bio)) {
741 bio_integrity_clone(clone, bio, GFP_NOIO);
742
743 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
744 bio_integrity_trim(clone,
745 bio_sector_offset(bio, idx, 0), len);
746 }
747
748 return clone;
749 }
750
751 static struct dm_target_io *alloc_tio(struct clone_info *ci,
752 struct dm_target *ti)
753 {
754 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
755
756 tio->io = ci->io;
757 tio->ti = ti;
758 memset(&tio->info, 0, sizeof(tio->info));
759
760 return tio;
761 }
762
763 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
764 unsigned flush_nr)
765 {
766 struct dm_target_io *tio = alloc_tio(ci, ti);
767 struct bio *clone;
768
769 tio->info.flush_request = flush_nr;
770
771 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
772 __bio_clone(clone, ci->bio);
773 clone->bi_destructor = dm_bio_destructor;
774
775 __map_bio(ti, clone, tio);
776 }
777
778 static int __clone_and_map_empty_barrier(struct clone_info *ci)
779 {
780 unsigned target_nr = 0, flush_nr;
781 struct dm_target *ti;
782
783 while ((ti = dm_table_get_target(ci->map, target_nr++)))
784 for (flush_nr = 0; flush_nr < ti->num_flush_requests;
785 flush_nr++)
786 __flush_target(ci, ti, flush_nr);
787
788 ci->sector_count = 0;
789
790 return 0;
791 }
792
793 static int __clone_and_map(struct clone_info *ci)
794 {
795 struct bio *clone, *bio = ci->bio;
796 struct dm_target *ti;
797 sector_t len = 0, max;
798 struct dm_target_io *tio;
799
800 if (unlikely(bio_empty_barrier(bio)))
801 return __clone_and_map_empty_barrier(ci);
802
803 ti = dm_table_find_target(ci->map, ci->sector);
804 if (!dm_target_is_valid(ti))
805 return -EIO;
806
807 max = max_io_len(ci->md, ci->sector, ti);
808
809 /*
810 * Allocate a target io object.
811 */
812 tio = alloc_tio(ci, ti);
813
814 if (ci->sector_count <= max) {
815 /*
816 * Optimise for the simple case where we can do all of
817 * the remaining io with a single clone.
818 */
819 clone = clone_bio(bio, ci->sector, ci->idx,
820 bio->bi_vcnt - ci->idx, ci->sector_count,
821 ci->md->bs);
822 __map_bio(ti, clone, tio);
823 ci->sector_count = 0;
824
825 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
826 /*
827 * There are some bvecs that don't span targets.
828 * Do as many of these as possible.
829 */
830 int i;
831 sector_t remaining = max;
832 sector_t bv_len;
833
834 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
835 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
836
837 if (bv_len > remaining)
838 break;
839
840 remaining -= bv_len;
841 len += bv_len;
842 }
843
844 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
845 ci->md->bs);
846 __map_bio(ti, clone, tio);
847
848 ci->sector += len;
849 ci->sector_count -= len;
850 ci->idx = i;
851
852 } else {
853 /*
854 * Handle a bvec that must be split between two or more targets.
855 */
856 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
857 sector_t remaining = to_sector(bv->bv_len);
858 unsigned int offset = 0;
859
860 do {
861 if (offset) {
862 ti = dm_table_find_target(ci->map, ci->sector);
863 if (!dm_target_is_valid(ti))
864 return -EIO;
865
866 max = max_io_len(ci->md, ci->sector, ti);
867
868 tio = alloc_tio(ci, ti);
869 }
870
871 len = min(remaining, max);
872
873 clone = split_bvec(bio, ci->sector, ci->idx,
874 bv->bv_offset + offset, len,
875 ci->md->bs);
876
877 __map_bio(ti, clone, tio);
878
879 ci->sector += len;
880 ci->sector_count -= len;
881 offset += to_bytes(len);
882 } while (remaining -= len);
883
884 ci->idx++;
885 }
886
887 return 0;
888 }
889
890 /*
891 * Split the bio into several clones and submit it to targets.
892 */
893 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
894 {
895 struct clone_info ci;
896 int error = 0;
897
898 ci.map = dm_get_table(md);
899 if (unlikely(!ci.map)) {
900 if (!bio_barrier(bio))
901 bio_io_error(bio);
902 else
903 if (!md->barrier_error)
904 md->barrier_error = -EIO;
905 return;
906 }
907
908 ci.md = md;
909 ci.bio = bio;
910 ci.io = alloc_io(md);
911 ci.io->error = 0;
912 atomic_set(&ci.io->io_count, 1);
913 ci.io->bio = bio;
914 ci.io->md = md;
915 ci.sector = bio->bi_sector;
916 ci.sector_count = bio_sectors(bio);
917 if (unlikely(bio_empty_barrier(bio)))
918 ci.sector_count = 1;
919 ci.idx = bio->bi_idx;
920
921 start_io_acct(ci.io);
922 while (ci.sector_count && !error)
923 error = __clone_and_map(&ci);
924
925 /* drop the extra reference count */
926 dec_pending(ci.io, error);
927 dm_table_put(ci.map);
928 }
929 /*-----------------------------------------------------------------
930 * CRUD END
931 *---------------------------------------------------------------*/
932
933 static int dm_merge_bvec(struct request_queue *q,
934 struct bvec_merge_data *bvm,
935 struct bio_vec *biovec)
936 {
937 struct mapped_device *md = q->queuedata;
938 struct dm_table *map = dm_get_table(md);
939 struct dm_target *ti;
940 sector_t max_sectors;
941 int max_size = 0;
942
943 if (unlikely(!map))
944 goto out;
945
946 ti = dm_table_find_target(map, bvm->bi_sector);
947 if (!dm_target_is_valid(ti))
948 goto out_table;
949
950 /*
951 * Find maximum amount of I/O that won't need splitting
952 */
953 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
954 (sector_t) BIO_MAX_SECTORS);
955 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
956 if (max_size < 0)
957 max_size = 0;
958
959 /*
960 * merge_bvec_fn() returns number of bytes
961 * it can accept at this offset
962 * max is precomputed maximal io size
963 */
964 if (max_size && ti->type->merge)
965 max_size = ti->type->merge(ti, bvm, biovec, max_size);
966 /*
967 * If the target doesn't support merge method and some of the devices
968 * provided their merge_bvec method (we know this by looking at
969 * queue_max_hw_sectors), then we can't allow bios with multiple vector
970 * entries. So always set max_size to 0, and the code below allows
971 * just one page.
972 */
973 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
974
975 max_size = 0;
976
977 out_table:
978 dm_table_put(map);
979
980 out:
981 /*
982 * Always allow an entire first page
983 */
984 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
985 max_size = biovec->bv_len;
986
987 return max_size;
988 }
989
990 /*
991 * The request function that just remaps the bio built up by
992 * dm_merge_bvec.
993 */
994 static int dm_request(struct request_queue *q, struct bio *bio)
995 {
996 int rw = bio_data_dir(bio);
997 struct mapped_device *md = q->queuedata;
998 int cpu;
999
1000 down_read(&md->io_lock);
1001
1002 cpu = part_stat_lock();
1003 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1004 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1005 part_stat_unlock();
1006
1007 /*
1008 * If we're suspended or the thread is processing barriers
1009 * we have to queue this io for later.
1010 */
1011 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1012 unlikely(bio_barrier(bio))) {
1013 up_read(&md->io_lock);
1014
1015 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1016 bio_rw(bio) == READA) {
1017 bio_io_error(bio);
1018 return 0;
1019 }
1020
1021 queue_io(md, bio);
1022
1023 return 0;
1024 }
1025
1026 __split_and_process_bio(md, bio);
1027 up_read(&md->io_lock);
1028 return 0;
1029 }
1030
1031 static void dm_unplug_all(struct request_queue *q)
1032 {
1033 struct mapped_device *md = q->queuedata;
1034 struct dm_table *map = dm_get_table(md);
1035
1036 if (map) {
1037 dm_table_unplug_all(map);
1038 dm_table_put(map);
1039 }
1040 }
1041
1042 static int dm_any_congested(void *congested_data, int bdi_bits)
1043 {
1044 int r = bdi_bits;
1045 struct mapped_device *md = congested_data;
1046 struct dm_table *map;
1047
1048 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1049 map = dm_get_table(md);
1050 if (map) {
1051 r = dm_table_any_congested(map, bdi_bits);
1052 dm_table_put(map);
1053 }
1054 }
1055
1056 return r;
1057 }
1058
1059 /*-----------------------------------------------------------------
1060 * An IDR is used to keep track of allocated minor numbers.
1061 *---------------------------------------------------------------*/
1062 static DEFINE_IDR(_minor_idr);
1063
1064 static void free_minor(int minor)
1065 {
1066 spin_lock(&_minor_lock);
1067 idr_remove(&_minor_idr, minor);
1068 spin_unlock(&_minor_lock);
1069 }
1070
1071 /*
1072 * See if the device with a specific minor # is free.
1073 */
1074 static int specific_minor(int minor)
1075 {
1076 int r, m;
1077
1078 if (minor >= (1 << MINORBITS))
1079 return -EINVAL;
1080
1081 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1082 if (!r)
1083 return -ENOMEM;
1084
1085 spin_lock(&_minor_lock);
1086
1087 if (idr_find(&_minor_idr, minor)) {
1088 r = -EBUSY;
1089 goto out;
1090 }
1091
1092 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1093 if (r)
1094 goto out;
1095
1096 if (m != minor) {
1097 idr_remove(&_minor_idr, m);
1098 r = -EBUSY;
1099 goto out;
1100 }
1101
1102 out:
1103 spin_unlock(&_minor_lock);
1104 return r;
1105 }
1106
1107 static int next_free_minor(int *minor)
1108 {
1109 int r, m;
1110
1111 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1112 if (!r)
1113 return -ENOMEM;
1114
1115 spin_lock(&_minor_lock);
1116
1117 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1118 if (r)
1119 goto out;
1120
1121 if (m >= (1 << MINORBITS)) {
1122 idr_remove(&_minor_idr, m);
1123 r = -ENOSPC;
1124 goto out;
1125 }
1126
1127 *minor = m;
1128
1129 out:
1130 spin_unlock(&_minor_lock);
1131 return r;
1132 }
1133
1134 static struct block_device_operations dm_blk_dops;
1135
1136 static void dm_wq_work(struct work_struct *work);
1137
1138 /*
1139 * Allocate and initialise a blank device with a given minor.
1140 */
1141 static struct mapped_device *alloc_dev(int minor)
1142 {
1143 int r;
1144 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1145 void *old_md;
1146
1147 if (!md) {
1148 DMWARN("unable to allocate device, out of memory.");
1149 return NULL;
1150 }
1151
1152 if (!try_module_get(THIS_MODULE))
1153 goto bad_module_get;
1154
1155 /* get a minor number for the dev */
1156 if (minor == DM_ANY_MINOR)
1157 r = next_free_minor(&minor);
1158 else
1159 r = specific_minor(minor);
1160 if (r < 0)
1161 goto bad_minor;
1162
1163 init_rwsem(&md->io_lock);
1164 mutex_init(&md->suspend_lock);
1165 spin_lock_init(&md->deferred_lock);
1166 rwlock_init(&md->map_lock);
1167 atomic_set(&md->holders, 1);
1168 atomic_set(&md->open_count, 0);
1169 atomic_set(&md->event_nr, 0);
1170 atomic_set(&md->uevent_seq, 0);
1171 INIT_LIST_HEAD(&md->uevent_list);
1172 spin_lock_init(&md->uevent_lock);
1173
1174 md->queue = blk_alloc_queue(GFP_KERNEL);
1175 if (!md->queue)
1176 goto bad_queue;
1177
1178 md->queue->queuedata = md;
1179 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1180 md->queue->backing_dev_info.congested_data = md;
1181 blk_queue_make_request(md->queue, dm_request);
1182 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1183 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1184 md->queue->unplug_fn = dm_unplug_all;
1185 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1186
1187 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1188 if (!md->io_pool)
1189 goto bad_io_pool;
1190
1191 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1192 if (!md->tio_pool)
1193 goto bad_tio_pool;
1194
1195 md->bs = bioset_create(16, 0);
1196 if (!md->bs)
1197 goto bad_no_bioset;
1198
1199 md->disk = alloc_disk(1);
1200 if (!md->disk)
1201 goto bad_disk;
1202
1203 atomic_set(&md->pending, 0);
1204 init_waitqueue_head(&md->wait);
1205 INIT_WORK(&md->work, dm_wq_work);
1206 init_waitqueue_head(&md->eventq);
1207
1208 md->disk->major = _major;
1209 md->disk->first_minor = minor;
1210 md->disk->fops = &dm_blk_dops;
1211 md->disk->queue = md->queue;
1212 md->disk->private_data = md;
1213 sprintf(md->disk->disk_name, "dm-%d", minor);
1214 add_disk(md->disk);
1215 format_dev_t(md->name, MKDEV(_major, minor));
1216
1217 md->wq = create_singlethread_workqueue("kdmflush");
1218 if (!md->wq)
1219 goto bad_thread;
1220
1221 md->bdev = bdget_disk(md->disk, 0);
1222 if (!md->bdev)
1223 goto bad_bdev;
1224
1225 /* Populate the mapping, nobody knows we exist yet */
1226 spin_lock(&_minor_lock);
1227 old_md = idr_replace(&_minor_idr, md, minor);
1228 spin_unlock(&_minor_lock);
1229
1230 BUG_ON(old_md != MINOR_ALLOCED);
1231
1232 return md;
1233
1234 bad_bdev:
1235 destroy_workqueue(md->wq);
1236 bad_thread:
1237 put_disk(md->disk);
1238 bad_disk:
1239 bioset_free(md->bs);
1240 bad_no_bioset:
1241 mempool_destroy(md->tio_pool);
1242 bad_tio_pool:
1243 mempool_destroy(md->io_pool);
1244 bad_io_pool:
1245 blk_cleanup_queue(md->queue);
1246 bad_queue:
1247 free_minor(minor);
1248 bad_minor:
1249 module_put(THIS_MODULE);
1250 bad_module_get:
1251 kfree(md);
1252 return NULL;
1253 }
1254
1255 static void unlock_fs(struct mapped_device *md);
1256
1257 static void free_dev(struct mapped_device *md)
1258 {
1259 int minor = MINOR(disk_devt(md->disk));
1260
1261 unlock_fs(md);
1262 bdput(md->bdev);
1263 destroy_workqueue(md->wq);
1264 mempool_destroy(md->tio_pool);
1265 mempool_destroy(md->io_pool);
1266 bioset_free(md->bs);
1267 blk_integrity_unregister(md->disk);
1268 del_gendisk(md->disk);
1269 free_minor(minor);
1270
1271 spin_lock(&_minor_lock);
1272 md->disk->private_data = NULL;
1273 spin_unlock(&_minor_lock);
1274
1275 put_disk(md->disk);
1276 blk_cleanup_queue(md->queue);
1277 module_put(THIS_MODULE);
1278 kfree(md);
1279 }
1280
1281 /*
1282 * Bind a table to the device.
1283 */
1284 static void event_callback(void *context)
1285 {
1286 unsigned long flags;
1287 LIST_HEAD(uevents);
1288 struct mapped_device *md = (struct mapped_device *) context;
1289
1290 spin_lock_irqsave(&md->uevent_lock, flags);
1291 list_splice_init(&md->uevent_list, &uevents);
1292 spin_unlock_irqrestore(&md->uevent_lock, flags);
1293
1294 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1295
1296 atomic_inc(&md->event_nr);
1297 wake_up(&md->eventq);
1298 }
1299
1300 static void __set_size(struct mapped_device *md, sector_t size)
1301 {
1302 set_capacity(md->disk, size);
1303
1304 mutex_lock(&md->bdev->bd_inode->i_mutex);
1305 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1306 mutex_unlock(&md->bdev->bd_inode->i_mutex);
1307 }
1308
1309 static int __bind(struct mapped_device *md, struct dm_table *t)
1310 {
1311 struct request_queue *q = md->queue;
1312 sector_t size;
1313
1314 size = dm_table_get_size(t);
1315
1316 /*
1317 * Wipe any geometry if the size of the table changed.
1318 */
1319 if (size != get_capacity(md->disk))
1320 memset(&md->geometry, 0, sizeof(md->geometry));
1321
1322 __set_size(md, size);
1323
1324 if (!size) {
1325 dm_table_destroy(t);
1326 return 0;
1327 }
1328
1329 dm_table_event_callback(t, event_callback, md);
1330
1331 write_lock(&md->map_lock);
1332 md->map = t;
1333 dm_table_set_restrictions(t, q);
1334 write_unlock(&md->map_lock);
1335
1336 return 0;
1337 }
1338
1339 static void __unbind(struct mapped_device *md)
1340 {
1341 struct dm_table *map = md->map;
1342
1343 if (!map)
1344 return;
1345
1346 dm_table_event_callback(map, NULL, NULL);
1347 write_lock(&md->map_lock);
1348 md->map = NULL;
1349 write_unlock(&md->map_lock);
1350 dm_table_destroy(map);
1351 }
1352
1353 /*
1354 * Constructor for a new device.
1355 */
1356 int dm_create(int minor, struct mapped_device **result)
1357 {
1358 struct mapped_device *md;
1359
1360 md = alloc_dev(minor);
1361 if (!md)
1362 return -ENXIO;
1363
1364 dm_sysfs_init(md);
1365
1366 *result = md;
1367 return 0;
1368 }
1369
1370 static struct mapped_device *dm_find_md(dev_t dev)
1371 {
1372 struct mapped_device *md;
1373 unsigned minor = MINOR(dev);
1374
1375 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1376 return NULL;
1377
1378 spin_lock(&_minor_lock);
1379
1380 md = idr_find(&_minor_idr, minor);
1381 if (md && (md == MINOR_ALLOCED ||
1382 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1383 test_bit(DMF_FREEING, &md->flags))) {
1384 md = NULL;
1385 goto out;
1386 }
1387
1388 out:
1389 spin_unlock(&_minor_lock);
1390
1391 return md;
1392 }
1393
1394 struct mapped_device *dm_get_md(dev_t dev)
1395 {
1396 struct mapped_device *md = dm_find_md(dev);
1397
1398 if (md)
1399 dm_get(md);
1400
1401 return md;
1402 }
1403
1404 void *dm_get_mdptr(struct mapped_device *md)
1405 {
1406 return md->interface_ptr;
1407 }
1408
1409 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1410 {
1411 md->interface_ptr = ptr;
1412 }
1413
1414 void dm_get(struct mapped_device *md)
1415 {
1416 atomic_inc(&md->holders);
1417 }
1418
1419 const char *dm_device_name(struct mapped_device *md)
1420 {
1421 return md->name;
1422 }
1423 EXPORT_SYMBOL_GPL(dm_device_name);
1424
1425 void dm_put(struct mapped_device *md)
1426 {
1427 struct dm_table *map;
1428
1429 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1430
1431 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1432 map = dm_get_table(md);
1433 idr_replace(&_minor_idr, MINOR_ALLOCED,
1434 MINOR(disk_devt(dm_disk(md))));
1435 set_bit(DMF_FREEING, &md->flags);
1436 spin_unlock(&_minor_lock);
1437 if (!dm_suspended(md)) {
1438 dm_table_presuspend_targets(map);
1439 dm_table_postsuspend_targets(map);
1440 }
1441 dm_sysfs_exit(md);
1442 dm_table_put(map);
1443 __unbind(md);
1444 free_dev(md);
1445 }
1446 }
1447 EXPORT_SYMBOL_GPL(dm_put);
1448
1449 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1450 {
1451 int r = 0;
1452 DECLARE_WAITQUEUE(wait, current);
1453
1454 dm_unplug_all(md->queue);
1455
1456 add_wait_queue(&md->wait, &wait);
1457
1458 while (1) {
1459 set_current_state(interruptible);
1460
1461 smp_mb();
1462 if (!atomic_read(&md->pending))
1463 break;
1464
1465 if (interruptible == TASK_INTERRUPTIBLE &&
1466 signal_pending(current)) {
1467 r = -EINTR;
1468 break;
1469 }
1470
1471 io_schedule();
1472 }
1473 set_current_state(TASK_RUNNING);
1474
1475 remove_wait_queue(&md->wait, &wait);
1476
1477 return r;
1478 }
1479
1480 static void dm_flush(struct mapped_device *md)
1481 {
1482 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1483
1484 bio_init(&md->barrier_bio);
1485 md->barrier_bio.bi_bdev = md->bdev;
1486 md->barrier_bio.bi_rw = WRITE_BARRIER;
1487 __split_and_process_bio(md, &md->barrier_bio);
1488
1489 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1490 }
1491
1492 static void process_barrier(struct mapped_device *md, struct bio *bio)
1493 {
1494 md->barrier_error = 0;
1495
1496 dm_flush(md);
1497
1498 if (!bio_empty_barrier(bio)) {
1499 __split_and_process_bio(md, bio);
1500 dm_flush(md);
1501 }
1502
1503 if (md->barrier_error != DM_ENDIO_REQUEUE)
1504 bio_endio(bio, md->barrier_error);
1505 else {
1506 spin_lock_irq(&md->deferred_lock);
1507 bio_list_add_head(&md->deferred, bio);
1508 spin_unlock_irq(&md->deferred_lock);
1509 }
1510 }
1511
1512 /*
1513 * Process the deferred bios
1514 */
1515 static void dm_wq_work(struct work_struct *work)
1516 {
1517 struct mapped_device *md = container_of(work, struct mapped_device,
1518 work);
1519 struct bio *c;
1520
1521 down_write(&md->io_lock);
1522
1523 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1524 spin_lock_irq(&md->deferred_lock);
1525 c = bio_list_pop(&md->deferred);
1526 spin_unlock_irq(&md->deferred_lock);
1527
1528 if (!c) {
1529 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1530 break;
1531 }
1532
1533 up_write(&md->io_lock);
1534
1535 if (bio_barrier(c))
1536 process_barrier(md, c);
1537 else
1538 __split_and_process_bio(md, c);
1539
1540 down_write(&md->io_lock);
1541 }
1542
1543 up_write(&md->io_lock);
1544 }
1545
1546 static void dm_queue_flush(struct mapped_device *md)
1547 {
1548 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1549 smp_mb__after_clear_bit();
1550 queue_work(md->wq, &md->work);
1551 }
1552
1553 /*
1554 * Swap in a new table (destroying old one).
1555 */
1556 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1557 {
1558 int r = -EINVAL;
1559
1560 mutex_lock(&md->suspend_lock);
1561
1562 /* device must be suspended */
1563 if (!dm_suspended(md))
1564 goto out;
1565
1566 __unbind(md);
1567 r = __bind(md, table);
1568
1569 out:
1570 mutex_unlock(&md->suspend_lock);
1571 return r;
1572 }
1573
1574 /*
1575 * Functions to lock and unlock any filesystem running on the
1576 * device.
1577 */
1578 static int lock_fs(struct mapped_device *md)
1579 {
1580 int r;
1581
1582 WARN_ON(md->frozen_sb);
1583
1584 md->frozen_sb = freeze_bdev(md->bdev);
1585 if (IS_ERR(md->frozen_sb)) {
1586 r = PTR_ERR(md->frozen_sb);
1587 md->frozen_sb = NULL;
1588 return r;
1589 }
1590
1591 set_bit(DMF_FROZEN, &md->flags);
1592
1593 return 0;
1594 }
1595
1596 static void unlock_fs(struct mapped_device *md)
1597 {
1598 if (!test_bit(DMF_FROZEN, &md->flags))
1599 return;
1600
1601 thaw_bdev(md->bdev, md->frozen_sb);
1602 md->frozen_sb = NULL;
1603 clear_bit(DMF_FROZEN, &md->flags);
1604 }
1605
1606 /*
1607 * We need to be able to change a mapping table under a mounted
1608 * filesystem. For example we might want to move some data in
1609 * the background. Before the table can be swapped with
1610 * dm_bind_table, dm_suspend must be called to flush any in
1611 * flight bios and ensure that any further io gets deferred.
1612 */
1613 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1614 {
1615 struct dm_table *map = NULL;
1616 int r = 0;
1617 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1618 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1619
1620 mutex_lock(&md->suspend_lock);
1621
1622 if (dm_suspended(md)) {
1623 r = -EINVAL;
1624 goto out_unlock;
1625 }
1626
1627 map = dm_get_table(md);
1628
1629 /*
1630 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1631 * This flag is cleared before dm_suspend returns.
1632 */
1633 if (noflush)
1634 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1635
1636 /* This does not get reverted if there's an error later. */
1637 dm_table_presuspend_targets(map);
1638
1639 /*
1640 * Flush I/O to the device. noflush supersedes do_lockfs,
1641 * because lock_fs() needs to flush I/Os.
1642 */
1643 if (!noflush && do_lockfs) {
1644 r = lock_fs(md);
1645 if (r)
1646 goto out;
1647 }
1648
1649 /*
1650 * Here we must make sure that no processes are submitting requests
1651 * to target drivers i.e. no one may be executing
1652 * __split_and_process_bio. This is called from dm_request and
1653 * dm_wq_work.
1654 *
1655 * To get all processes out of __split_and_process_bio in dm_request,
1656 * we take the write lock. To prevent any process from reentering
1657 * __split_and_process_bio from dm_request, we set
1658 * DMF_QUEUE_IO_TO_THREAD.
1659 *
1660 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1661 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1662 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1663 * further calls to __split_and_process_bio from dm_wq_work.
1664 */
1665 down_write(&md->io_lock);
1666 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1667 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1668 up_write(&md->io_lock);
1669
1670 flush_workqueue(md->wq);
1671
1672 /*
1673 * At this point no more requests are entering target request routines.
1674 * We call dm_wait_for_completion to wait for all existing requests
1675 * to finish.
1676 */
1677 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1678
1679 down_write(&md->io_lock);
1680 if (noflush)
1681 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1682 up_write(&md->io_lock);
1683
1684 /* were we interrupted ? */
1685 if (r < 0) {
1686 dm_queue_flush(md);
1687
1688 unlock_fs(md);
1689 goto out; /* pushback list is already flushed, so skip flush */
1690 }
1691
1692 /*
1693 * If dm_wait_for_completion returned 0, the device is completely
1694 * quiescent now. There is no request-processing activity. All new
1695 * requests are being added to md->deferred list.
1696 */
1697
1698 dm_table_postsuspend_targets(map);
1699
1700 set_bit(DMF_SUSPENDED, &md->flags);
1701
1702 out:
1703 dm_table_put(map);
1704
1705 out_unlock:
1706 mutex_unlock(&md->suspend_lock);
1707 return r;
1708 }
1709
1710 int dm_resume(struct mapped_device *md)
1711 {
1712 int r = -EINVAL;
1713 struct dm_table *map = NULL;
1714
1715 mutex_lock(&md->suspend_lock);
1716 if (!dm_suspended(md))
1717 goto out;
1718
1719 map = dm_get_table(md);
1720 if (!map || !dm_table_get_size(map))
1721 goto out;
1722
1723 r = dm_table_resume_targets(map);
1724 if (r)
1725 goto out;
1726
1727 dm_queue_flush(md);
1728
1729 unlock_fs(md);
1730
1731 clear_bit(DMF_SUSPENDED, &md->flags);
1732
1733 dm_table_unplug_all(map);
1734
1735 dm_kobject_uevent(md);
1736
1737 r = 0;
1738
1739 out:
1740 dm_table_put(map);
1741 mutex_unlock(&md->suspend_lock);
1742
1743 return r;
1744 }
1745
1746 /*-----------------------------------------------------------------
1747 * Event notification.
1748 *---------------------------------------------------------------*/
1749 void dm_kobject_uevent(struct mapped_device *md)
1750 {
1751 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1752 }
1753
1754 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1755 {
1756 return atomic_add_return(1, &md->uevent_seq);
1757 }
1758
1759 uint32_t dm_get_event_nr(struct mapped_device *md)
1760 {
1761 return atomic_read(&md->event_nr);
1762 }
1763
1764 int dm_wait_event(struct mapped_device *md, int event_nr)
1765 {
1766 return wait_event_interruptible(md->eventq,
1767 (event_nr != atomic_read(&md->event_nr)));
1768 }
1769
1770 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1771 {
1772 unsigned long flags;
1773
1774 spin_lock_irqsave(&md->uevent_lock, flags);
1775 list_add(elist, &md->uevent_list);
1776 spin_unlock_irqrestore(&md->uevent_lock, flags);
1777 }
1778
1779 /*
1780 * The gendisk is only valid as long as you have a reference
1781 * count on 'md'.
1782 */
1783 struct gendisk *dm_disk(struct mapped_device *md)
1784 {
1785 return md->disk;
1786 }
1787
1788 struct kobject *dm_kobject(struct mapped_device *md)
1789 {
1790 return &md->kobj;
1791 }
1792
1793 /*
1794 * struct mapped_device should not be exported outside of dm.c
1795 * so use this check to verify that kobj is part of md structure
1796 */
1797 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1798 {
1799 struct mapped_device *md;
1800
1801 md = container_of(kobj, struct mapped_device, kobj);
1802 if (&md->kobj != kobj)
1803 return NULL;
1804
1805 if (test_bit(DMF_FREEING, &md->flags) ||
1806 test_bit(DMF_DELETING, &md->flags))
1807 return NULL;
1808
1809 dm_get(md);
1810 return md;
1811 }
1812
1813 int dm_suspended(struct mapped_device *md)
1814 {
1815 return test_bit(DMF_SUSPENDED, &md->flags);
1816 }
1817
1818 int dm_noflush_suspending(struct dm_target *ti)
1819 {
1820 struct mapped_device *md = dm_table_get_md(ti->table);
1821 int r = __noflush_suspending(md);
1822
1823 dm_put(md);
1824
1825 return r;
1826 }
1827 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1828
1829 static struct block_device_operations dm_blk_dops = {
1830 .open = dm_blk_open,
1831 .release = dm_blk_close,
1832 .ioctl = dm_blk_ioctl,
1833 .getgeo = dm_blk_getgeo,
1834 .owner = THIS_MODULE
1835 };
1836
1837 EXPORT_SYMBOL(dm_get_mapinfo);
1838
1839 /*
1840 * module hooks
1841 */
1842 module_init(dm_init);
1843 module_exit(dm_exit);
1844
1845 module_param(major, uint, 0);
1846 MODULE_PARM_DESC(major, "The major number of the device mapper");
1847 MODULE_DESCRIPTION(DM_NAME " driver");
1848 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1849 MODULE_LICENSE("GPL");
This page took 0.076368 seconds and 4 git commands to generate.