block, dm: don't copy bios for request clones
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 };
90
91 /*
92 * For request-based dm - the bio clones we allocate are embedded in these
93 * structs.
94 *
95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96 * the bioset is created - this means the bio has to come at the end of the
97 * struct.
98 */
99 struct dm_rq_clone_bio_info {
100 struct bio *orig;
101 struct dm_rq_target_io *tio;
102 struct bio clone;
103 };
104
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 if (rq && rq->end_io_data)
108 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112
113 #define MINOR_ALLOCED ((void *)-1)
114
115 /*
116 * Bits for the md->flags field.
117 */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127
128 /*
129 * A dummy definition to make RCU happy.
130 * struct dm_table should never be dereferenced in this file.
131 */
132 struct dm_table {
133 int undefined__;
134 };
135
136 /*
137 * Work processed by per-device workqueue.
138 */
139 struct mapped_device {
140 struct srcu_struct io_barrier;
141 struct mutex suspend_lock;
142 atomic_t holders;
143 atomic_t open_count;
144
145 /*
146 * The current mapping.
147 * Use dm_get_live_table{_fast} or take suspend_lock for
148 * dereference.
149 */
150 struct dm_table __rcu *map;
151
152 struct list_head table_devices;
153 struct mutex table_devices_lock;
154
155 unsigned long flags;
156
157 struct request_queue *queue;
158 unsigned type;
159 /* Protect queue and type against concurrent access. */
160 struct mutex type_lock;
161
162 struct target_type *immutable_target_type;
163
164 struct gendisk *disk;
165 char name[16];
166
167 void *interface_ptr;
168
169 /*
170 * A list of ios that arrived while we were suspended.
171 */
172 atomic_t pending[2];
173 wait_queue_head_t wait;
174 struct work_struct work;
175 struct bio_list deferred;
176 spinlock_t deferred_lock;
177
178 /*
179 * Processing queue (flush)
180 */
181 struct workqueue_struct *wq;
182
183 /*
184 * io objects are allocated from here.
185 */
186 mempool_t *io_pool;
187 mempool_t *rq_pool;
188
189 struct bio_set *bs;
190
191 /*
192 * Event handling.
193 */
194 atomic_t event_nr;
195 wait_queue_head_t eventq;
196 atomic_t uevent_seq;
197 struct list_head uevent_list;
198 spinlock_t uevent_lock; /* Protect access to uevent_list */
199
200 /*
201 * freeze/thaw support require holding onto a super block
202 */
203 struct super_block *frozen_sb;
204 struct block_device *bdev;
205
206 /* forced geometry settings */
207 struct hd_geometry geometry;
208
209 /* kobject and completion */
210 struct dm_kobject_holder kobj_holder;
211
212 /* zero-length flush that will be cloned and submitted to targets */
213 struct bio flush_bio;
214
215 /* the number of internal suspends */
216 unsigned internal_suspend_count;
217
218 struct dm_stats stats;
219
220 struct kthread_worker kworker;
221 struct task_struct *kworker_task;
222
223 /* for request-based merge heuristic in dm_request_fn() */
224 unsigned seq_rq_merge_deadline_usecs;
225 int last_rq_rw;
226 sector_t last_rq_pos;
227 ktime_t last_rq_start_time;
228
229 /* for blk-mq request-based DM support */
230 struct blk_mq_tag_set tag_set;
231 bool use_blk_mq;
232 };
233
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
236 #else
237 static bool use_blk_mq = false;
238 #endif
239
240 bool dm_use_blk_mq(struct mapped_device *md)
241 {
242 return md->use_blk_mq;
243 }
244
245 /*
246 * For mempools pre-allocation at the table loading time.
247 */
248 struct dm_md_mempools {
249 mempool_t *io_pool;
250 mempool_t *rq_pool;
251 struct bio_set *bs;
252 };
253
254 struct table_device {
255 struct list_head list;
256 atomic_t count;
257 struct dm_dev dm_dev;
258 };
259
260 #define RESERVED_BIO_BASED_IOS 16
261 #define RESERVED_REQUEST_BASED_IOS 256
262 #define RESERVED_MAX_IOS 1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
266
267 /*
268 * Bio-based DM's mempools' reserved IOs set by the user.
269 */
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271
272 /*
273 * Request-based DM's mempools' reserved IOs set by the user.
274 */
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276
277 static unsigned __dm_get_module_param(unsigned *module_param,
278 unsigned def, unsigned max)
279 {
280 unsigned param = ACCESS_ONCE(*module_param);
281 unsigned modified_param = 0;
282
283 if (!param)
284 modified_param = def;
285 else if (param > max)
286 modified_param = max;
287
288 if (modified_param) {
289 (void)cmpxchg(module_param, param, modified_param);
290 param = modified_param;
291 }
292
293 return param;
294 }
295
296 unsigned dm_get_reserved_bio_based_ios(void)
297 {
298 return __dm_get_module_param(&reserved_bio_based_ios,
299 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300 }
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302
303 unsigned dm_get_reserved_rq_based_ios(void)
304 {
305 return __dm_get_module_param(&reserved_rq_based_ios,
306 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307 }
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309
310 static int __init local_init(void)
311 {
312 int r = -ENOMEM;
313
314 /* allocate a slab for the dm_ios */
315 _io_cache = KMEM_CACHE(dm_io, 0);
316 if (!_io_cache)
317 return r;
318
319 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320 if (!_rq_tio_cache)
321 goto out_free_io_cache;
322
323 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 __alignof__(struct request), 0, NULL);
325 if (!_rq_cache)
326 goto out_free_rq_tio_cache;
327
328 r = dm_uevent_init();
329 if (r)
330 goto out_free_rq_cache;
331
332 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 if (!deferred_remove_workqueue) {
334 r = -ENOMEM;
335 goto out_uevent_exit;
336 }
337
338 _major = major;
339 r = register_blkdev(_major, _name);
340 if (r < 0)
341 goto out_free_workqueue;
342
343 if (!_major)
344 _major = r;
345
346 return 0;
347
348 out_free_workqueue:
349 destroy_workqueue(deferred_remove_workqueue);
350 out_uevent_exit:
351 dm_uevent_exit();
352 out_free_rq_cache:
353 kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 kmem_cache_destroy(_rq_tio_cache);
356 out_free_io_cache:
357 kmem_cache_destroy(_io_cache);
358
359 return r;
360 }
361
362 static void local_exit(void)
363 {
364 flush_scheduled_work();
365 destroy_workqueue(deferred_remove_workqueue);
366
367 kmem_cache_destroy(_rq_cache);
368 kmem_cache_destroy(_rq_tio_cache);
369 kmem_cache_destroy(_io_cache);
370 unregister_blkdev(_major, _name);
371 dm_uevent_exit();
372
373 _major = 0;
374
375 DMINFO("cleaned up");
376 }
377
378 static int (*_inits[])(void) __initdata = {
379 local_init,
380 dm_target_init,
381 dm_linear_init,
382 dm_stripe_init,
383 dm_io_init,
384 dm_kcopyd_init,
385 dm_interface_init,
386 dm_statistics_init,
387 };
388
389 static void (*_exits[])(void) = {
390 local_exit,
391 dm_target_exit,
392 dm_linear_exit,
393 dm_stripe_exit,
394 dm_io_exit,
395 dm_kcopyd_exit,
396 dm_interface_exit,
397 dm_statistics_exit,
398 };
399
400 static int __init dm_init(void)
401 {
402 const int count = ARRAY_SIZE(_inits);
403
404 int r, i;
405
406 for (i = 0; i < count; i++) {
407 r = _inits[i]();
408 if (r)
409 goto bad;
410 }
411
412 return 0;
413
414 bad:
415 while (i--)
416 _exits[i]();
417
418 return r;
419 }
420
421 static void __exit dm_exit(void)
422 {
423 int i = ARRAY_SIZE(_exits);
424
425 while (i--)
426 _exits[i]();
427
428 /*
429 * Should be empty by this point.
430 */
431 idr_destroy(&_minor_idr);
432 }
433
434 /*
435 * Block device functions
436 */
437 int dm_deleting_md(struct mapped_device *md)
438 {
439 return test_bit(DMF_DELETING, &md->flags);
440 }
441
442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443 {
444 struct mapped_device *md;
445
446 spin_lock(&_minor_lock);
447
448 md = bdev->bd_disk->private_data;
449 if (!md)
450 goto out;
451
452 if (test_bit(DMF_FREEING, &md->flags) ||
453 dm_deleting_md(md)) {
454 md = NULL;
455 goto out;
456 }
457
458 dm_get(md);
459 atomic_inc(&md->open_count);
460 out:
461 spin_unlock(&_minor_lock);
462
463 return md ? 0 : -ENXIO;
464 }
465
466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467 {
468 struct mapped_device *md;
469
470 spin_lock(&_minor_lock);
471
472 md = disk->private_data;
473 if (WARN_ON(!md))
474 goto out;
475
476 if (atomic_dec_and_test(&md->open_count) &&
477 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 queue_work(deferred_remove_workqueue, &deferred_remove_work);
479
480 dm_put(md);
481 out:
482 spin_unlock(&_minor_lock);
483 }
484
485 int dm_open_count(struct mapped_device *md)
486 {
487 return atomic_read(&md->open_count);
488 }
489
490 /*
491 * Guarantees nothing is using the device before it's deleted.
492 */
493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494 {
495 int r = 0;
496
497 spin_lock(&_minor_lock);
498
499 if (dm_open_count(md)) {
500 r = -EBUSY;
501 if (mark_deferred)
502 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504 r = -EEXIST;
505 else
506 set_bit(DMF_DELETING, &md->flags);
507
508 spin_unlock(&_minor_lock);
509
510 return r;
511 }
512
513 int dm_cancel_deferred_remove(struct mapped_device *md)
514 {
515 int r = 0;
516
517 spin_lock(&_minor_lock);
518
519 if (test_bit(DMF_DELETING, &md->flags))
520 r = -EBUSY;
521 else
522 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523
524 spin_unlock(&_minor_lock);
525
526 return r;
527 }
528
529 static void do_deferred_remove(struct work_struct *w)
530 {
531 dm_deferred_remove();
532 }
533
534 sector_t dm_get_size(struct mapped_device *md)
535 {
536 return get_capacity(md->disk);
537 }
538
539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
540 {
541 return md->queue;
542 }
543
544 struct dm_stats *dm_get_stats(struct mapped_device *md)
545 {
546 return &md->stats;
547 }
548
549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550 {
551 struct mapped_device *md = bdev->bd_disk->private_data;
552
553 return dm_get_geometry(md, geo);
554 }
555
556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 unsigned int cmd, unsigned long arg)
558 {
559 struct mapped_device *md = bdev->bd_disk->private_data;
560 int srcu_idx;
561 struct dm_table *map;
562 struct dm_target *tgt;
563 int r = -ENOTTY;
564
565 retry:
566 map = dm_get_live_table(md, &srcu_idx);
567
568 if (!map || !dm_table_get_size(map))
569 goto out;
570
571 /* We only support devices that have a single target */
572 if (dm_table_get_num_targets(map) != 1)
573 goto out;
574
575 tgt = dm_table_get_target(map, 0);
576 if (!tgt->type->ioctl)
577 goto out;
578
579 if (dm_suspended_md(md)) {
580 r = -EAGAIN;
581 goto out;
582 }
583
584 r = tgt->type->ioctl(tgt, cmd, arg);
585
586 out:
587 dm_put_live_table(md, srcu_idx);
588
589 if (r == -ENOTCONN) {
590 msleep(10);
591 goto retry;
592 }
593
594 return r;
595 }
596
597 static struct dm_io *alloc_io(struct mapped_device *md)
598 {
599 return mempool_alloc(md->io_pool, GFP_NOIO);
600 }
601
602 static void free_io(struct mapped_device *md, struct dm_io *io)
603 {
604 mempool_free(io, md->io_pool);
605 }
606
607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608 {
609 bio_put(&tio->clone);
610 }
611
612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613 gfp_t gfp_mask)
614 {
615 return mempool_alloc(md->io_pool, gfp_mask);
616 }
617
618 static void free_rq_tio(struct dm_rq_target_io *tio)
619 {
620 mempool_free(tio, tio->md->io_pool);
621 }
622
623 static struct request *alloc_clone_request(struct mapped_device *md,
624 gfp_t gfp_mask)
625 {
626 return mempool_alloc(md->rq_pool, gfp_mask);
627 }
628
629 static void free_clone_request(struct mapped_device *md, struct request *rq)
630 {
631 mempool_free(rq, md->rq_pool);
632 }
633
634 static int md_in_flight(struct mapped_device *md)
635 {
636 return atomic_read(&md->pending[READ]) +
637 atomic_read(&md->pending[WRITE]);
638 }
639
640 static void start_io_acct(struct dm_io *io)
641 {
642 struct mapped_device *md = io->md;
643 struct bio *bio = io->bio;
644 int cpu;
645 int rw = bio_data_dir(bio);
646
647 io->start_time = jiffies;
648
649 cpu = part_stat_lock();
650 part_round_stats(cpu, &dm_disk(md)->part0);
651 part_stat_unlock();
652 atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 atomic_inc_return(&md->pending[rw]));
654
655 if (unlikely(dm_stats_used(&md->stats)))
656 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 bio_sectors(bio), false, 0, &io->stats_aux);
658 }
659
660 static void end_io_acct(struct dm_io *io)
661 {
662 struct mapped_device *md = io->md;
663 struct bio *bio = io->bio;
664 unsigned long duration = jiffies - io->start_time;
665 int pending;
666 int rw = bio_data_dir(bio);
667
668 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669
670 if (unlikely(dm_stats_used(&md->stats)))
671 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 bio_sectors(bio), true, duration, &io->stats_aux);
673
674 /*
675 * After this is decremented the bio must not be touched if it is
676 * a flush.
677 */
678 pending = atomic_dec_return(&md->pending[rw]);
679 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 pending += atomic_read(&md->pending[rw^0x1]);
681
682 /* nudge anyone waiting on suspend queue */
683 if (!pending)
684 wake_up(&md->wait);
685 }
686
687 /*
688 * Add the bio to the list of deferred io.
689 */
690 static void queue_io(struct mapped_device *md, struct bio *bio)
691 {
692 unsigned long flags;
693
694 spin_lock_irqsave(&md->deferred_lock, flags);
695 bio_list_add(&md->deferred, bio);
696 spin_unlock_irqrestore(&md->deferred_lock, flags);
697 queue_work(md->wq, &md->work);
698 }
699
700 /*
701 * Everyone (including functions in this file), should use this
702 * function to access the md->map field, and make sure they call
703 * dm_put_live_table() when finished.
704 */
705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706 {
707 *srcu_idx = srcu_read_lock(&md->io_barrier);
708
709 return srcu_dereference(md->map, &md->io_barrier);
710 }
711
712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713 {
714 srcu_read_unlock(&md->io_barrier, srcu_idx);
715 }
716
717 void dm_sync_table(struct mapped_device *md)
718 {
719 synchronize_srcu(&md->io_barrier);
720 synchronize_rcu_expedited();
721 }
722
723 /*
724 * A fast alternative to dm_get_live_table/dm_put_live_table.
725 * The caller must not block between these two functions.
726 */
727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728 {
729 rcu_read_lock();
730 return rcu_dereference(md->map);
731 }
732
733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734 {
735 rcu_read_unlock();
736 }
737
738 /*
739 * Open a table device so we can use it as a map destination.
740 */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 struct mapped_device *md)
743 {
744 static char *_claim_ptr = "I belong to device-mapper";
745 struct block_device *bdev;
746
747 int r;
748
749 BUG_ON(td->dm_dev.bdev);
750
751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752 if (IS_ERR(bdev))
753 return PTR_ERR(bdev);
754
755 r = bd_link_disk_holder(bdev, dm_disk(md));
756 if (r) {
757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 return r;
759 }
760
761 td->dm_dev.bdev = bdev;
762 return 0;
763 }
764
765 /*
766 * Close a table device that we've been using.
767 */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 if (!td->dm_dev.bdev)
771 return;
772
773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 td->dm_dev.bdev = NULL;
776 }
777
778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779 fmode_t mode) {
780 struct table_device *td;
781
782 list_for_each_entry(td, l, list)
783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 return td;
785
786 return NULL;
787 }
788
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 struct dm_dev **result) {
791 int r;
792 struct table_device *td;
793
794 mutex_lock(&md->table_devices_lock);
795 td = find_table_device(&md->table_devices, dev, mode);
796 if (!td) {
797 td = kmalloc(sizeof(*td), GFP_KERNEL);
798 if (!td) {
799 mutex_unlock(&md->table_devices_lock);
800 return -ENOMEM;
801 }
802
803 td->dm_dev.mode = mode;
804 td->dm_dev.bdev = NULL;
805
806 if ((r = open_table_device(td, dev, md))) {
807 mutex_unlock(&md->table_devices_lock);
808 kfree(td);
809 return r;
810 }
811
812 format_dev_t(td->dm_dev.name, dev);
813
814 atomic_set(&td->count, 0);
815 list_add(&td->list, &md->table_devices);
816 }
817 atomic_inc(&td->count);
818 mutex_unlock(&md->table_devices_lock);
819
820 *result = &td->dm_dev;
821 return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 struct table_device *td = container_of(d, struct table_device, dm_dev);
828
829 mutex_lock(&md->table_devices_lock);
830 if (atomic_dec_and_test(&td->count)) {
831 close_table_device(td, md);
832 list_del(&td->list);
833 kfree(td);
834 }
835 mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838
839 static void free_table_devices(struct list_head *devices)
840 {
841 struct list_head *tmp, *next;
842
843 list_for_each_safe(tmp, next, devices) {
844 struct table_device *td = list_entry(tmp, struct table_device, list);
845
846 DMWARN("dm_destroy: %s still exists with %d references",
847 td->dm_dev.name, atomic_read(&td->count));
848 kfree(td);
849 }
850 }
851
852 /*
853 * Get the geometry associated with a dm device
854 */
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 *geo = md->geometry;
858
859 return 0;
860 }
861
862 /*
863 * Set the geometry of a device.
864 */
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868
869 if (geo->start > sz) {
870 DMWARN("Start sector is beyond the geometry limits.");
871 return -EINVAL;
872 }
873
874 md->geometry = *geo;
875
876 return 0;
877 }
878
879 /*-----------------------------------------------------------------
880 * CRUD START:
881 * A more elegant soln is in the works that uses the queue
882 * merge fn, unfortunately there are a couple of changes to
883 * the block layer that I want to make for this. So in the
884 * interests of getting something for people to use I give
885 * you this clearly demarcated crap.
886 *---------------------------------------------------------------*/
887
888 static int __noflush_suspending(struct mapped_device *md)
889 {
890 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891 }
892
893 /*
894 * Decrements the number of outstanding ios that a bio has been
895 * cloned into, completing the original io if necc.
896 */
897 static void dec_pending(struct dm_io *io, int error)
898 {
899 unsigned long flags;
900 int io_error;
901 struct bio *bio;
902 struct mapped_device *md = io->md;
903
904 /* Push-back supersedes any I/O errors */
905 if (unlikely(error)) {
906 spin_lock_irqsave(&io->endio_lock, flags);
907 if (!(io->error > 0 && __noflush_suspending(md)))
908 io->error = error;
909 spin_unlock_irqrestore(&io->endio_lock, flags);
910 }
911
912 if (atomic_dec_and_test(&io->io_count)) {
913 if (io->error == DM_ENDIO_REQUEUE) {
914 /*
915 * Target requested pushing back the I/O.
916 */
917 spin_lock_irqsave(&md->deferred_lock, flags);
918 if (__noflush_suspending(md))
919 bio_list_add_head(&md->deferred, io->bio);
920 else
921 /* noflush suspend was interrupted. */
922 io->error = -EIO;
923 spin_unlock_irqrestore(&md->deferred_lock, flags);
924 }
925
926 io_error = io->error;
927 bio = io->bio;
928 end_io_acct(io);
929 free_io(md, io);
930
931 if (io_error == DM_ENDIO_REQUEUE)
932 return;
933
934 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935 /*
936 * Preflush done for flush with data, reissue
937 * without REQ_FLUSH.
938 */
939 bio->bi_rw &= ~REQ_FLUSH;
940 queue_io(md, bio);
941 } else {
942 /* done with normal IO or empty flush */
943 trace_block_bio_complete(md->queue, bio, io_error);
944 bio_endio(bio, io_error);
945 }
946 }
947 }
948
949 static void disable_write_same(struct mapped_device *md)
950 {
951 struct queue_limits *limits = dm_get_queue_limits(md);
952
953 /* device doesn't really support WRITE SAME, disable it */
954 limits->max_write_same_sectors = 0;
955 }
956
957 static void clone_endio(struct bio *bio, int error)
958 {
959 int r = error;
960 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 struct dm_io *io = tio->io;
962 struct mapped_device *md = tio->io->md;
963 dm_endio_fn endio = tio->ti->type->end_io;
964
965 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966 error = -EIO;
967
968 if (endio) {
969 r = endio(tio->ti, bio, error);
970 if (r < 0 || r == DM_ENDIO_REQUEUE)
971 /*
972 * error and requeue request are handled
973 * in dec_pending().
974 */
975 error = r;
976 else if (r == DM_ENDIO_INCOMPLETE)
977 /* The target will handle the io */
978 return;
979 else if (r) {
980 DMWARN("unimplemented target endio return value: %d", r);
981 BUG();
982 }
983 }
984
985 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 disable_write_same(md);
988
989 free_tio(md, tio);
990 dec_pending(io, error);
991 }
992
993 static struct dm_rq_target_io *tio_from_request(struct request *rq)
994 {
995 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
996 }
997
998 /*
999 * Don't touch any member of the md after calling this function because
1000 * the md may be freed in dm_put() at the end of this function.
1001 * Or do dm_get() before calling this function and dm_put() later.
1002 */
1003 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1004 {
1005 int nr_requests_pending;
1006
1007 atomic_dec(&md->pending[rw]);
1008
1009 /* nudge anyone waiting on suspend queue */
1010 nr_requests_pending = md_in_flight(md);
1011 if (!nr_requests_pending)
1012 wake_up(&md->wait);
1013
1014 /*
1015 * Run this off this callpath, as drivers could invoke end_io while
1016 * inside their request_fn (and holding the queue lock). Calling
1017 * back into ->request_fn() could deadlock attempting to grab the
1018 * queue lock again.
1019 */
1020 if (run_queue) {
1021 if (md->queue->mq_ops)
1022 blk_mq_run_hw_queues(md->queue, true);
1023 else if (!nr_requests_pending ||
1024 (nr_requests_pending >= md->queue->nr_congestion_on))
1025 blk_run_queue_async(md->queue);
1026 }
1027
1028 /*
1029 * dm_put() must be at the end of this function. See the comment above
1030 */
1031 dm_put(md);
1032 }
1033
1034 static void free_rq_clone(struct request *clone, bool must_be_mapped)
1035 {
1036 struct dm_rq_target_io *tio = clone->end_io_data;
1037 struct mapped_device *md = tio->md;
1038
1039 WARN_ON_ONCE(must_be_mapped && !clone->q);
1040
1041 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1042 /* stacked on blk-mq queue(s) */
1043 tio->ti->type->release_clone_rq(clone);
1044 else if (!md->queue->mq_ops)
1045 /* request_fn queue stacked on request_fn queue(s) */
1046 free_clone_request(md, clone);
1047 /*
1048 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1049 * no need to call free_clone_request() because we leverage blk-mq by
1050 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1051 */
1052
1053 if (!md->queue->mq_ops)
1054 free_rq_tio(tio);
1055 }
1056
1057 /*
1058 * Complete the clone and the original request.
1059 * Must be called without clone's queue lock held,
1060 * see end_clone_request() for more details.
1061 */
1062 static void dm_end_request(struct request *clone, int error)
1063 {
1064 int rw = rq_data_dir(clone);
1065 struct dm_rq_target_io *tio = clone->end_io_data;
1066 struct mapped_device *md = tio->md;
1067 struct request *rq = tio->orig;
1068
1069 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1070 rq->errors = clone->errors;
1071 rq->resid_len = clone->resid_len;
1072
1073 if (rq->sense)
1074 /*
1075 * We are using the sense buffer of the original
1076 * request.
1077 * So setting the length of the sense data is enough.
1078 */
1079 rq->sense_len = clone->sense_len;
1080 }
1081
1082 free_rq_clone(clone, true);
1083 if (!rq->q->mq_ops)
1084 blk_end_request_all(rq, error);
1085 else
1086 blk_mq_end_request(rq, error);
1087 rq_completed(md, rw, true);
1088 }
1089
1090 static void dm_unprep_request(struct request *rq)
1091 {
1092 struct dm_rq_target_io *tio = tio_from_request(rq);
1093 struct request *clone = tio->clone;
1094
1095 if (!rq->q->mq_ops) {
1096 rq->special = NULL;
1097 rq->cmd_flags &= ~REQ_DONTPREP;
1098 }
1099
1100 if (clone)
1101 free_rq_clone(clone, false);
1102 }
1103
1104 /*
1105 * Requeue the original request of a clone.
1106 */
1107 static void old_requeue_request(struct request *rq)
1108 {
1109 struct request_queue *q = rq->q;
1110 unsigned long flags;
1111
1112 spin_lock_irqsave(q->queue_lock, flags);
1113 blk_requeue_request(q, rq);
1114 spin_unlock_irqrestore(q->queue_lock, flags);
1115 }
1116
1117 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1118 struct request *rq)
1119 {
1120 int rw = rq_data_dir(rq);
1121
1122 dm_unprep_request(rq);
1123
1124 if (!rq->q->mq_ops)
1125 old_requeue_request(rq);
1126 else {
1127 blk_mq_requeue_request(rq);
1128 blk_mq_kick_requeue_list(rq->q);
1129 }
1130
1131 rq_completed(md, rw, false);
1132 }
1133
1134 static void dm_requeue_unmapped_request(struct request *clone)
1135 {
1136 struct dm_rq_target_io *tio = clone->end_io_data;
1137
1138 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1139 }
1140
1141 static void old_stop_queue(struct request_queue *q)
1142 {
1143 unsigned long flags;
1144
1145 if (blk_queue_stopped(q))
1146 return;
1147
1148 spin_lock_irqsave(q->queue_lock, flags);
1149 blk_stop_queue(q);
1150 spin_unlock_irqrestore(q->queue_lock, flags);
1151 }
1152
1153 static void stop_queue(struct request_queue *q)
1154 {
1155 if (!q->mq_ops)
1156 old_stop_queue(q);
1157 else
1158 blk_mq_stop_hw_queues(q);
1159 }
1160
1161 static void old_start_queue(struct request_queue *q)
1162 {
1163 unsigned long flags;
1164
1165 spin_lock_irqsave(q->queue_lock, flags);
1166 if (blk_queue_stopped(q))
1167 blk_start_queue(q);
1168 spin_unlock_irqrestore(q->queue_lock, flags);
1169 }
1170
1171 static void start_queue(struct request_queue *q)
1172 {
1173 if (!q->mq_ops)
1174 old_start_queue(q);
1175 else
1176 blk_mq_start_stopped_hw_queues(q, true);
1177 }
1178
1179 static void dm_done(struct request *clone, int error, bool mapped)
1180 {
1181 int r = error;
1182 struct dm_rq_target_io *tio = clone->end_io_data;
1183 dm_request_endio_fn rq_end_io = NULL;
1184
1185 if (tio->ti) {
1186 rq_end_io = tio->ti->type->rq_end_io;
1187
1188 if (mapped && rq_end_io)
1189 r = rq_end_io(tio->ti, clone, error, &tio->info);
1190 }
1191
1192 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1193 !clone->q->limits.max_write_same_sectors))
1194 disable_write_same(tio->md);
1195
1196 if (r <= 0)
1197 /* The target wants to complete the I/O */
1198 dm_end_request(clone, r);
1199 else if (r == DM_ENDIO_INCOMPLETE)
1200 /* The target will handle the I/O */
1201 return;
1202 else if (r == DM_ENDIO_REQUEUE)
1203 /* The target wants to requeue the I/O */
1204 dm_requeue_unmapped_request(clone);
1205 else {
1206 DMWARN("unimplemented target endio return value: %d", r);
1207 BUG();
1208 }
1209 }
1210
1211 /*
1212 * Request completion handler for request-based dm
1213 */
1214 static void dm_softirq_done(struct request *rq)
1215 {
1216 bool mapped = true;
1217 struct dm_rq_target_io *tio = tio_from_request(rq);
1218 struct request *clone = tio->clone;
1219 int rw;
1220
1221 if (!clone) {
1222 rw = rq_data_dir(rq);
1223 if (!rq->q->mq_ops) {
1224 blk_end_request_all(rq, tio->error);
1225 rq_completed(tio->md, rw, false);
1226 free_rq_tio(tio);
1227 } else {
1228 blk_mq_end_request(rq, tio->error);
1229 rq_completed(tio->md, rw, false);
1230 }
1231 return;
1232 }
1233
1234 if (rq->cmd_flags & REQ_FAILED)
1235 mapped = false;
1236
1237 dm_done(clone, tio->error, mapped);
1238 }
1239
1240 /*
1241 * Complete the clone and the original request with the error status
1242 * through softirq context.
1243 */
1244 static void dm_complete_request(struct request *rq, int error)
1245 {
1246 struct dm_rq_target_io *tio = tio_from_request(rq);
1247
1248 tio->error = error;
1249 blk_complete_request(rq);
1250 }
1251
1252 /*
1253 * Complete the not-mapped clone and the original request with the error status
1254 * through softirq context.
1255 * Target's rq_end_io() function isn't called.
1256 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1257 */
1258 static void dm_kill_unmapped_request(struct request *rq, int error)
1259 {
1260 rq->cmd_flags |= REQ_FAILED;
1261 dm_complete_request(rq, error);
1262 }
1263
1264 /*
1265 * Called with the clone's queue lock held (for non-blk-mq)
1266 */
1267 static void end_clone_request(struct request *clone, int error)
1268 {
1269 struct dm_rq_target_io *tio = clone->end_io_data;
1270
1271 if (!clone->q->mq_ops) {
1272 /*
1273 * For just cleaning up the information of the queue in which
1274 * the clone was dispatched.
1275 * The clone is *NOT* freed actually here because it is alloced
1276 * from dm own mempool (REQ_ALLOCED isn't set).
1277 */
1278 __blk_put_request(clone->q, clone);
1279 }
1280
1281 /*
1282 * Actual request completion is done in a softirq context which doesn't
1283 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1284 * - another request may be submitted by the upper level driver
1285 * of the stacking during the completion
1286 * - the submission which requires queue lock may be done
1287 * against this clone's queue
1288 */
1289 dm_complete_request(tio->orig, error);
1290 }
1291
1292 /*
1293 * Return maximum size of I/O possible at the supplied sector up to the current
1294 * target boundary.
1295 */
1296 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1297 {
1298 sector_t target_offset = dm_target_offset(ti, sector);
1299
1300 return ti->len - target_offset;
1301 }
1302
1303 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1304 {
1305 sector_t len = max_io_len_target_boundary(sector, ti);
1306 sector_t offset, max_len;
1307
1308 /*
1309 * Does the target need to split even further?
1310 */
1311 if (ti->max_io_len) {
1312 offset = dm_target_offset(ti, sector);
1313 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1314 max_len = sector_div(offset, ti->max_io_len);
1315 else
1316 max_len = offset & (ti->max_io_len - 1);
1317 max_len = ti->max_io_len - max_len;
1318
1319 if (len > max_len)
1320 len = max_len;
1321 }
1322
1323 return len;
1324 }
1325
1326 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1327 {
1328 if (len > UINT_MAX) {
1329 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1330 (unsigned long long)len, UINT_MAX);
1331 ti->error = "Maximum size of target IO is too large";
1332 return -EINVAL;
1333 }
1334
1335 ti->max_io_len = (uint32_t) len;
1336
1337 return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1340
1341 /*
1342 * A target may call dm_accept_partial_bio only from the map routine. It is
1343 * allowed for all bio types except REQ_FLUSH.
1344 *
1345 * dm_accept_partial_bio informs the dm that the target only wants to process
1346 * additional n_sectors sectors of the bio and the rest of the data should be
1347 * sent in a next bio.
1348 *
1349 * A diagram that explains the arithmetics:
1350 * +--------------------+---------------+-------+
1351 * | 1 | 2 | 3 |
1352 * +--------------------+---------------+-------+
1353 *
1354 * <-------------- *tio->len_ptr --------------->
1355 * <------- bi_size ------->
1356 * <-- n_sectors -->
1357 *
1358 * Region 1 was already iterated over with bio_advance or similar function.
1359 * (it may be empty if the target doesn't use bio_advance)
1360 * Region 2 is the remaining bio size that the target wants to process.
1361 * (it may be empty if region 1 is non-empty, although there is no reason
1362 * to make it empty)
1363 * The target requires that region 3 is to be sent in the next bio.
1364 *
1365 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1366 * the partially processed part (the sum of regions 1+2) must be the same for all
1367 * copies of the bio.
1368 */
1369 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1370 {
1371 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1372 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1373 BUG_ON(bio->bi_rw & REQ_FLUSH);
1374 BUG_ON(bi_size > *tio->len_ptr);
1375 BUG_ON(n_sectors > bi_size);
1376 *tio->len_ptr -= bi_size - n_sectors;
1377 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1378 }
1379 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1380
1381 static void __map_bio(struct dm_target_io *tio)
1382 {
1383 int r;
1384 sector_t sector;
1385 struct mapped_device *md;
1386 struct bio *clone = &tio->clone;
1387 struct dm_target *ti = tio->ti;
1388
1389 clone->bi_end_io = clone_endio;
1390
1391 /*
1392 * Map the clone. If r == 0 we don't need to do
1393 * anything, the target has assumed ownership of
1394 * this io.
1395 */
1396 atomic_inc(&tio->io->io_count);
1397 sector = clone->bi_iter.bi_sector;
1398 r = ti->type->map(ti, clone);
1399 if (r == DM_MAPIO_REMAPPED) {
1400 /* the bio has been remapped so dispatch it */
1401
1402 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1403 tio->io->bio->bi_bdev->bd_dev, sector);
1404
1405 generic_make_request(clone);
1406 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1407 /* error the io and bail out, or requeue it if needed */
1408 md = tio->io->md;
1409 dec_pending(tio->io, r);
1410 free_tio(md, tio);
1411 } else if (r) {
1412 DMWARN("unimplemented target map return value: %d", r);
1413 BUG();
1414 }
1415 }
1416
1417 struct clone_info {
1418 struct mapped_device *md;
1419 struct dm_table *map;
1420 struct bio *bio;
1421 struct dm_io *io;
1422 sector_t sector;
1423 unsigned sector_count;
1424 };
1425
1426 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1427 {
1428 bio->bi_iter.bi_sector = sector;
1429 bio->bi_iter.bi_size = to_bytes(len);
1430 }
1431
1432 /*
1433 * Creates a bio that consists of range of complete bvecs.
1434 */
1435 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1436 sector_t sector, unsigned len)
1437 {
1438 struct bio *clone = &tio->clone;
1439
1440 __bio_clone_fast(clone, bio);
1441
1442 if (bio_integrity(bio))
1443 bio_integrity_clone(clone, bio, GFP_NOIO);
1444
1445 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1446 clone->bi_iter.bi_size = to_bytes(len);
1447
1448 if (bio_integrity(bio))
1449 bio_integrity_trim(clone, 0, len);
1450 }
1451
1452 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1453 struct dm_target *ti,
1454 unsigned target_bio_nr)
1455 {
1456 struct dm_target_io *tio;
1457 struct bio *clone;
1458
1459 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1460 tio = container_of(clone, struct dm_target_io, clone);
1461
1462 tio->io = ci->io;
1463 tio->ti = ti;
1464 tio->target_bio_nr = target_bio_nr;
1465
1466 return tio;
1467 }
1468
1469 static void __clone_and_map_simple_bio(struct clone_info *ci,
1470 struct dm_target *ti,
1471 unsigned target_bio_nr, unsigned *len)
1472 {
1473 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1474 struct bio *clone = &tio->clone;
1475
1476 tio->len_ptr = len;
1477
1478 __bio_clone_fast(clone, ci->bio);
1479 if (len)
1480 bio_setup_sector(clone, ci->sector, *len);
1481
1482 __map_bio(tio);
1483 }
1484
1485 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1486 unsigned num_bios, unsigned *len)
1487 {
1488 unsigned target_bio_nr;
1489
1490 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1491 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1492 }
1493
1494 static int __send_empty_flush(struct clone_info *ci)
1495 {
1496 unsigned target_nr = 0;
1497 struct dm_target *ti;
1498
1499 BUG_ON(bio_has_data(ci->bio));
1500 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1501 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1502
1503 return 0;
1504 }
1505
1506 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1507 sector_t sector, unsigned *len)
1508 {
1509 struct bio *bio = ci->bio;
1510 struct dm_target_io *tio;
1511 unsigned target_bio_nr;
1512 unsigned num_target_bios = 1;
1513
1514 /*
1515 * Does the target want to receive duplicate copies of the bio?
1516 */
1517 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1518 num_target_bios = ti->num_write_bios(ti, bio);
1519
1520 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1521 tio = alloc_tio(ci, ti, target_bio_nr);
1522 tio->len_ptr = len;
1523 clone_bio(tio, bio, sector, *len);
1524 __map_bio(tio);
1525 }
1526 }
1527
1528 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1529
1530 static unsigned get_num_discard_bios(struct dm_target *ti)
1531 {
1532 return ti->num_discard_bios;
1533 }
1534
1535 static unsigned get_num_write_same_bios(struct dm_target *ti)
1536 {
1537 return ti->num_write_same_bios;
1538 }
1539
1540 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1541
1542 static bool is_split_required_for_discard(struct dm_target *ti)
1543 {
1544 return ti->split_discard_bios;
1545 }
1546
1547 static int __send_changing_extent_only(struct clone_info *ci,
1548 get_num_bios_fn get_num_bios,
1549 is_split_required_fn is_split_required)
1550 {
1551 struct dm_target *ti;
1552 unsigned len;
1553 unsigned num_bios;
1554
1555 do {
1556 ti = dm_table_find_target(ci->map, ci->sector);
1557 if (!dm_target_is_valid(ti))
1558 return -EIO;
1559
1560 /*
1561 * Even though the device advertised support for this type of
1562 * request, that does not mean every target supports it, and
1563 * reconfiguration might also have changed that since the
1564 * check was performed.
1565 */
1566 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1567 if (!num_bios)
1568 return -EOPNOTSUPP;
1569
1570 if (is_split_required && !is_split_required(ti))
1571 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1572 else
1573 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1574
1575 __send_duplicate_bios(ci, ti, num_bios, &len);
1576
1577 ci->sector += len;
1578 } while (ci->sector_count -= len);
1579
1580 return 0;
1581 }
1582
1583 static int __send_discard(struct clone_info *ci)
1584 {
1585 return __send_changing_extent_only(ci, get_num_discard_bios,
1586 is_split_required_for_discard);
1587 }
1588
1589 static int __send_write_same(struct clone_info *ci)
1590 {
1591 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1592 }
1593
1594 /*
1595 * Select the correct strategy for processing a non-flush bio.
1596 */
1597 static int __split_and_process_non_flush(struct clone_info *ci)
1598 {
1599 struct bio *bio = ci->bio;
1600 struct dm_target *ti;
1601 unsigned len;
1602
1603 if (unlikely(bio->bi_rw & REQ_DISCARD))
1604 return __send_discard(ci);
1605 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1606 return __send_write_same(ci);
1607
1608 ti = dm_table_find_target(ci->map, ci->sector);
1609 if (!dm_target_is_valid(ti))
1610 return -EIO;
1611
1612 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1613
1614 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1615
1616 ci->sector += len;
1617 ci->sector_count -= len;
1618
1619 return 0;
1620 }
1621
1622 /*
1623 * Entry point to split a bio into clones and submit them to the targets.
1624 */
1625 static void __split_and_process_bio(struct mapped_device *md,
1626 struct dm_table *map, struct bio *bio)
1627 {
1628 struct clone_info ci;
1629 int error = 0;
1630
1631 if (unlikely(!map)) {
1632 bio_io_error(bio);
1633 return;
1634 }
1635
1636 ci.map = map;
1637 ci.md = md;
1638 ci.io = alloc_io(md);
1639 ci.io->error = 0;
1640 atomic_set(&ci.io->io_count, 1);
1641 ci.io->bio = bio;
1642 ci.io->md = md;
1643 spin_lock_init(&ci.io->endio_lock);
1644 ci.sector = bio->bi_iter.bi_sector;
1645
1646 start_io_acct(ci.io);
1647
1648 if (bio->bi_rw & REQ_FLUSH) {
1649 ci.bio = &ci.md->flush_bio;
1650 ci.sector_count = 0;
1651 error = __send_empty_flush(&ci);
1652 /* dec_pending submits any data associated with flush */
1653 } else {
1654 ci.bio = bio;
1655 ci.sector_count = bio_sectors(bio);
1656 while (ci.sector_count && !error)
1657 error = __split_and_process_non_flush(&ci);
1658 }
1659
1660 /* drop the extra reference count */
1661 dec_pending(ci.io, error);
1662 }
1663 /*-----------------------------------------------------------------
1664 * CRUD END
1665 *---------------------------------------------------------------*/
1666
1667 static int dm_merge_bvec(struct request_queue *q,
1668 struct bvec_merge_data *bvm,
1669 struct bio_vec *biovec)
1670 {
1671 struct mapped_device *md = q->queuedata;
1672 struct dm_table *map = dm_get_live_table_fast(md);
1673 struct dm_target *ti;
1674 sector_t max_sectors;
1675 int max_size = 0;
1676
1677 if (unlikely(!map))
1678 goto out;
1679
1680 ti = dm_table_find_target(map, bvm->bi_sector);
1681 if (!dm_target_is_valid(ti))
1682 goto out;
1683
1684 /*
1685 * Find maximum amount of I/O that won't need splitting
1686 */
1687 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1688 (sector_t) queue_max_sectors(q));
1689 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1690 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1691 max_size = 0;
1692
1693 /*
1694 * merge_bvec_fn() returns number of bytes
1695 * it can accept at this offset
1696 * max is precomputed maximal io size
1697 */
1698 if (max_size && ti->type->merge)
1699 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1700 /*
1701 * If the target doesn't support merge method and some of the devices
1702 * provided their merge_bvec method (we know this by looking for the
1703 * max_hw_sectors that dm_set_device_limits may set), then we can't
1704 * allow bios with multiple vector entries. So always set max_size
1705 * to 0, and the code below allows just one page.
1706 */
1707 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1708 max_size = 0;
1709
1710 out:
1711 dm_put_live_table_fast(md);
1712 /*
1713 * Always allow an entire first page
1714 */
1715 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1716 max_size = biovec->bv_len;
1717
1718 return max_size;
1719 }
1720
1721 /*
1722 * The request function that just remaps the bio built up by
1723 * dm_merge_bvec.
1724 */
1725 static void dm_make_request(struct request_queue *q, struct bio *bio)
1726 {
1727 int rw = bio_data_dir(bio);
1728 struct mapped_device *md = q->queuedata;
1729 int srcu_idx;
1730 struct dm_table *map;
1731
1732 map = dm_get_live_table(md, &srcu_idx);
1733
1734 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1735
1736 /* if we're suspended, we have to queue this io for later */
1737 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1738 dm_put_live_table(md, srcu_idx);
1739
1740 if (bio_rw(bio) != READA)
1741 queue_io(md, bio);
1742 else
1743 bio_io_error(bio);
1744 return;
1745 }
1746
1747 __split_and_process_bio(md, map, bio);
1748 dm_put_live_table(md, srcu_idx);
1749 return;
1750 }
1751
1752 int dm_request_based(struct mapped_device *md)
1753 {
1754 return blk_queue_stackable(md->queue);
1755 }
1756
1757 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1758 {
1759 int r;
1760
1761 if (blk_queue_io_stat(clone->q))
1762 clone->cmd_flags |= REQ_IO_STAT;
1763
1764 clone->start_time = jiffies;
1765 r = blk_insert_cloned_request(clone->q, clone);
1766 if (r)
1767 /* must complete clone in terms of original request */
1768 dm_complete_request(rq, r);
1769 }
1770
1771 static void setup_clone(struct request *clone, struct request *rq,
1772 struct dm_rq_target_io *tio)
1773 {
1774 blk_rq_prep_clone(clone, rq);
1775 clone->end_io = end_clone_request;
1776 clone->end_io_data = tio;
1777 tio->clone = clone;
1778 }
1779
1780 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1781 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1782 {
1783 /*
1784 * Do not allocate a clone if tio->clone was already set
1785 * (see: dm_mq_queue_rq).
1786 */
1787 bool alloc_clone = !tio->clone;
1788 struct request *clone;
1789
1790 if (alloc_clone) {
1791 clone = alloc_clone_request(md, gfp_mask);
1792 if (!clone)
1793 return NULL;
1794 } else
1795 clone = tio->clone;
1796
1797 blk_rq_init(NULL, clone);
1798 setup_clone(clone, rq, tio);
1799
1800 return clone;
1801 }
1802
1803 static void map_tio_request(struct kthread_work *work);
1804
1805 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1806 struct mapped_device *md)
1807 {
1808 tio->md = md;
1809 tio->ti = NULL;
1810 tio->clone = NULL;
1811 tio->orig = rq;
1812 tio->error = 0;
1813 memset(&tio->info, 0, sizeof(tio->info));
1814 if (md->kworker_task)
1815 init_kthread_work(&tio->work, map_tio_request);
1816 }
1817
1818 static struct dm_rq_target_io *prep_tio(struct request *rq,
1819 struct mapped_device *md, gfp_t gfp_mask)
1820 {
1821 struct dm_rq_target_io *tio;
1822 int srcu_idx;
1823 struct dm_table *table;
1824
1825 tio = alloc_rq_tio(md, gfp_mask);
1826 if (!tio)
1827 return NULL;
1828
1829 init_tio(tio, rq, md);
1830
1831 table = dm_get_live_table(md, &srcu_idx);
1832 if (!dm_table_mq_request_based(table)) {
1833 if (!clone_rq(rq, md, tio, gfp_mask)) {
1834 dm_put_live_table(md, srcu_idx);
1835 free_rq_tio(tio);
1836 return NULL;
1837 }
1838 }
1839 dm_put_live_table(md, srcu_idx);
1840
1841 return tio;
1842 }
1843
1844 /*
1845 * Called with the queue lock held.
1846 */
1847 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1848 {
1849 struct mapped_device *md = q->queuedata;
1850 struct dm_rq_target_io *tio;
1851
1852 if (unlikely(rq->special)) {
1853 DMWARN("Already has something in rq->special.");
1854 return BLKPREP_KILL;
1855 }
1856
1857 tio = prep_tio(rq, md, GFP_ATOMIC);
1858 if (!tio)
1859 return BLKPREP_DEFER;
1860
1861 rq->special = tio;
1862 rq->cmd_flags |= REQ_DONTPREP;
1863
1864 return BLKPREP_OK;
1865 }
1866
1867 /*
1868 * Returns:
1869 * 0 : the request has been processed
1870 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1871 * < 0 : the request was completed due to failure
1872 */
1873 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1874 struct mapped_device *md)
1875 {
1876 int r;
1877 struct dm_target *ti = tio->ti;
1878 struct request *clone = NULL;
1879
1880 if (tio->clone) {
1881 clone = tio->clone;
1882 r = ti->type->map_rq(ti, clone, &tio->info);
1883 } else {
1884 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1885 if (r < 0) {
1886 /* The target wants to complete the I/O */
1887 dm_kill_unmapped_request(rq, r);
1888 return r;
1889 }
1890 if (IS_ERR(clone))
1891 return DM_MAPIO_REQUEUE;
1892 setup_clone(clone, rq, tio);
1893 }
1894
1895 switch (r) {
1896 case DM_MAPIO_SUBMITTED:
1897 /* The target has taken the I/O to submit by itself later */
1898 break;
1899 case DM_MAPIO_REMAPPED:
1900 /* The target has remapped the I/O so dispatch it */
1901 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1902 blk_rq_pos(rq));
1903 dm_dispatch_clone_request(clone, rq);
1904 break;
1905 case DM_MAPIO_REQUEUE:
1906 /* The target wants to requeue the I/O */
1907 dm_requeue_unmapped_request(clone);
1908 break;
1909 default:
1910 if (r > 0) {
1911 DMWARN("unimplemented target map return value: %d", r);
1912 BUG();
1913 }
1914
1915 /* The target wants to complete the I/O */
1916 dm_kill_unmapped_request(rq, r);
1917 return r;
1918 }
1919
1920 return 0;
1921 }
1922
1923 static void map_tio_request(struct kthread_work *work)
1924 {
1925 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1926 struct request *rq = tio->orig;
1927 struct mapped_device *md = tio->md;
1928
1929 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1930 dm_requeue_unmapped_original_request(md, rq);
1931 }
1932
1933 static void dm_start_request(struct mapped_device *md, struct request *orig)
1934 {
1935 if (!orig->q->mq_ops)
1936 blk_start_request(orig);
1937 else
1938 blk_mq_start_request(orig);
1939 atomic_inc(&md->pending[rq_data_dir(orig)]);
1940
1941 if (md->seq_rq_merge_deadline_usecs) {
1942 md->last_rq_pos = rq_end_sector(orig);
1943 md->last_rq_rw = rq_data_dir(orig);
1944 md->last_rq_start_time = ktime_get();
1945 }
1946
1947 /*
1948 * Hold the md reference here for the in-flight I/O.
1949 * We can't rely on the reference count by device opener,
1950 * because the device may be closed during the request completion
1951 * when all bios are completed.
1952 * See the comment in rq_completed() too.
1953 */
1954 dm_get(md);
1955 }
1956
1957 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
1958
1959 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
1960 {
1961 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
1962 }
1963
1964 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
1965 const char *buf, size_t count)
1966 {
1967 unsigned deadline;
1968
1969 if (!dm_request_based(md) || md->use_blk_mq)
1970 return count;
1971
1972 if (kstrtouint(buf, 10, &deadline))
1973 return -EINVAL;
1974
1975 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
1976 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
1977
1978 md->seq_rq_merge_deadline_usecs = deadline;
1979
1980 return count;
1981 }
1982
1983 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
1984 {
1985 ktime_t kt_deadline;
1986
1987 if (!md->seq_rq_merge_deadline_usecs)
1988 return false;
1989
1990 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
1991 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
1992
1993 return !ktime_after(ktime_get(), kt_deadline);
1994 }
1995
1996 /*
1997 * q->request_fn for request-based dm.
1998 * Called with the queue lock held.
1999 */
2000 static void dm_request_fn(struct request_queue *q)
2001 {
2002 struct mapped_device *md = q->queuedata;
2003 int srcu_idx;
2004 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2005 struct dm_target *ti;
2006 struct request *rq;
2007 struct dm_rq_target_io *tio;
2008 sector_t pos;
2009
2010 /*
2011 * For suspend, check blk_queue_stopped() and increment
2012 * ->pending within a single queue_lock not to increment the
2013 * number of in-flight I/Os after the queue is stopped in
2014 * dm_suspend().
2015 */
2016 while (!blk_queue_stopped(q)) {
2017 rq = blk_peek_request(q);
2018 if (!rq)
2019 goto out;
2020
2021 /* always use block 0 to find the target for flushes for now */
2022 pos = 0;
2023 if (!(rq->cmd_flags & REQ_FLUSH))
2024 pos = blk_rq_pos(rq);
2025
2026 ti = dm_table_find_target(map, pos);
2027 if (!dm_target_is_valid(ti)) {
2028 /*
2029 * Must perform setup, that rq_completed() requires,
2030 * before calling dm_kill_unmapped_request
2031 */
2032 DMERR_LIMIT("request attempted access beyond the end of device");
2033 dm_start_request(md, rq);
2034 dm_kill_unmapped_request(rq, -EIO);
2035 continue;
2036 }
2037
2038 if (dm_request_peeked_before_merge_deadline(md) &&
2039 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2040 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2041 goto delay_and_out;
2042
2043 if (ti->type->busy && ti->type->busy(ti))
2044 goto delay_and_out;
2045
2046 dm_start_request(md, rq);
2047
2048 tio = tio_from_request(rq);
2049 /* Establish tio->ti before queuing work (map_tio_request) */
2050 tio->ti = ti;
2051 queue_kthread_work(&md->kworker, &tio->work);
2052 BUG_ON(!irqs_disabled());
2053 }
2054
2055 goto out;
2056
2057 delay_and_out:
2058 blk_delay_queue(q, HZ / 100);
2059 out:
2060 dm_put_live_table(md, srcu_idx);
2061 }
2062
2063 static int dm_any_congested(void *congested_data, int bdi_bits)
2064 {
2065 int r = bdi_bits;
2066 struct mapped_device *md = congested_data;
2067 struct dm_table *map;
2068
2069 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2070 map = dm_get_live_table_fast(md);
2071 if (map) {
2072 /*
2073 * Request-based dm cares about only own queue for
2074 * the query about congestion status of request_queue
2075 */
2076 if (dm_request_based(md))
2077 r = md->queue->backing_dev_info.state &
2078 bdi_bits;
2079 else
2080 r = dm_table_any_congested(map, bdi_bits);
2081 }
2082 dm_put_live_table_fast(md);
2083 }
2084
2085 return r;
2086 }
2087
2088 /*-----------------------------------------------------------------
2089 * An IDR is used to keep track of allocated minor numbers.
2090 *---------------------------------------------------------------*/
2091 static void free_minor(int minor)
2092 {
2093 spin_lock(&_minor_lock);
2094 idr_remove(&_minor_idr, minor);
2095 spin_unlock(&_minor_lock);
2096 }
2097
2098 /*
2099 * See if the device with a specific minor # is free.
2100 */
2101 static int specific_minor(int minor)
2102 {
2103 int r;
2104
2105 if (minor >= (1 << MINORBITS))
2106 return -EINVAL;
2107
2108 idr_preload(GFP_KERNEL);
2109 spin_lock(&_minor_lock);
2110
2111 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2112
2113 spin_unlock(&_minor_lock);
2114 idr_preload_end();
2115 if (r < 0)
2116 return r == -ENOSPC ? -EBUSY : r;
2117 return 0;
2118 }
2119
2120 static int next_free_minor(int *minor)
2121 {
2122 int r;
2123
2124 idr_preload(GFP_KERNEL);
2125 spin_lock(&_minor_lock);
2126
2127 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2128
2129 spin_unlock(&_minor_lock);
2130 idr_preload_end();
2131 if (r < 0)
2132 return r;
2133 *minor = r;
2134 return 0;
2135 }
2136
2137 static const struct block_device_operations dm_blk_dops;
2138
2139 static void dm_wq_work(struct work_struct *work);
2140
2141 static void dm_init_md_queue(struct mapped_device *md)
2142 {
2143 /*
2144 * Request-based dm devices cannot be stacked on top of bio-based dm
2145 * devices. The type of this dm device may not have been decided yet.
2146 * The type is decided at the first table loading time.
2147 * To prevent problematic device stacking, clear the queue flag
2148 * for request stacking support until then.
2149 *
2150 * This queue is new, so no concurrency on the queue_flags.
2151 */
2152 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2153 }
2154
2155 static void dm_init_old_md_queue(struct mapped_device *md)
2156 {
2157 md->use_blk_mq = false;
2158 dm_init_md_queue(md);
2159
2160 /*
2161 * Initialize aspects of queue that aren't relevant for blk-mq
2162 */
2163 md->queue->queuedata = md;
2164 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2165 md->queue->backing_dev_info.congested_data = md;
2166
2167 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2168 }
2169
2170 /*
2171 * Allocate and initialise a blank device with a given minor.
2172 */
2173 static struct mapped_device *alloc_dev(int minor)
2174 {
2175 int r;
2176 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2177 void *old_md;
2178
2179 if (!md) {
2180 DMWARN("unable to allocate device, out of memory.");
2181 return NULL;
2182 }
2183
2184 if (!try_module_get(THIS_MODULE))
2185 goto bad_module_get;
2186
2187 /* get a minor number for the dev */
2188 if (minor == DM_ANY_MINOR)
2189 r = next_free_minor(&minor);
2190 else
2191 r = specific_minor(minor);
2192 if (r < 0)
2193 goto bad_minor;
2194
2195 r = init_srcu_struct(&md->io_barrier);
2196 if (r < 0)
2197 goto bad_io_barrier;
2198
2199 md->use_blk_mq = use_blk_mq;
2200 md->type = DM_TYPE_NONE;
2201 mutex_init(&md->suspend_lock);
2202 mutex_init(&md->type_lock);
2203 mutex_init(&md->table_devices_lock);
2204 spin_lock_init(&md->deferred_lock);
2205 atomic_set(&md->holders, 1);
2206 atomic_set(&md->open_count, 0);
2207 atomic_set(&md->event_nr, 0);
2208 atomic_set(&md->uevent_seq, 0);
2209 INIT_LIST_HEAD(&md->uevent_list);
2210 INIT_LIST_HEAD(&md->table_devices);
2211 spin_lock_init(&md->uevent_lock);
2212
2213 md->queue = blk_alloc_queue(GFP_KERNEL);
2214 if (!md->queue)
2215 goto bad_queue;
2216
2217 dm_init_md_queue(md);
2218
2219 md->disk = alloc_disk(1);
2220 if (!md->disk)
2221 goto bad_disk;
2222
2223 atomic_set(&md->pending[0], 0);
2224 atomic_set(&md->pending[1], 0);
2225 init_waitqueue_head(&md->wait);
2226 INIT_WORK(&md->work, dm_wq_work);
2227 init_waitqueue_head(&md->eventq);
2228 init_completion(&md->kobj_holder.completion);
2229 md->kworker_task = NULL;
2230
2231 md->disk->major = _major;
2232 md->disk->first_minor = minor;
2233 md->disk->fops = &dm_blk_dops;
2234 md->disk->queue = md->queue;
2235 md->disk->private_data = md;
2236 sprintf(md->disk->disk_name, "dm-%d", minor);
2237 add_disk(md->disk);
2238 format_dev_t(md->name, MKDEV(_major, minor));
2239
2240 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2241 if (!md->wq)
2242 goto bad_thread;
2243
2244 md->bdev = bdget_disk(md->disk, 0);
2245 if (!md->bdev)
2246 goto bad_bdev;
2247
2248 bio_init(&md->flush_bio);
2249 md->flush_bio.bi_bdev = md->bdev;
2250 md->flush_bio.bi_rw = WRITE_FLUSH;
2251
2252 dm_stats_init(&md->stats);
2253
2254 /* Populate the mapping, nobody knows we exist yet */
2255 spin_lock(&_minor_lock);
2256 old_md = idr_replace(&_minor_idr, md, minor);
2257 spin_unlock(&_minor_lock);
2258
2259 BUG_ON(old_md != MINOR_ALLOCED);
2260
2261 return md;
2262
2263 bad_bdev:
2264 destroy_workqueue(md->wq);
2265 bad_thread:
2266 del_gendisk(md->disk);
2267 put_disk(md->disk);
2268 bad_disk:
2269 blk_cleanup_queue(md->queue);
2270 bad_queue:
2271 cleanup_srcu_struct(&md->io_barrier);
2272 bad_io_barrier:
2273 free_minor(minor);
2274 bad_minor:
2275 module_put(THIS_MODULE);
2276 bad_module_get:
2277 kfree(md);
2278 return NULL;
2279 }
2280
2281 static void unlock_fs(struct mapped_device *md);
2282
2283 static void free_dev(struct mapped_device *md)
2284 {
2285 int minor = MINOR(disk_devt(md->disk));
2286
2287 unlock_fs(md);
2288 destroy_workqueue(md->wq);
2289
2290 if (md->kworker_task)
2291 kthread_stop(md->kworker_task);
2292 if (md->io_pool)
2293 mempool_destroy(md->io_pool);
2294 if (md->rq_pool)
2295 mempool_destroy(md->rq_pool);
2296 if (md->bs)
2297 bioset_free(md->bs);
2298
2299 cleanup_srcu_struct(&md->io_barrier);
2300 free_table_devices(&md->table_devices);
2301 dm_stats_cleanup(&md->stats);
2302
2303 spin_lock(&_minor_lock);
2304 md->disk->private_data = NULL;
2305 spin_unlock(&_minor_lock);
2306 if (blk_get_integrity(md->disk))
2307 blk_integrity_unregister(md->disk);
2308 del_gendisk(md->disk);
2309 put_disk(md->disk);
2310 blk_cleanup_queue(md->queue);
2311 if (md->use_blk_mq)
2312 blk_mq_free_tag_set(&md->tag_set);
2313 bdput(md->bdev);
2314 free_minor(minor);
2315
2316 module_put(THIS_MODULE);
2317 kfree(md);
2318 }
2319
2320 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2321 {
2322 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2323
2324 if (md->bs) {
2325 /* The md already has necessary mempools. */
2326 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2327 /*
2328 * Reload bioset because front_pad may have changed
2329 * because a different table was loaded.
2330 */
2331 bioset_free(md->bs);
2332 md->bs = p->bs;
2333 p->bs = NULL;
2334 }
2335 /*
2336 * There's no need to reload with request-based dm
2337 * because the size of front_pad doesn't change.
2338 * Note for future: If you are to reload bioset,
2339 * prep-ed requests in the queue may refer
2340 * to bio from the old bioset, so you must walk
2341 * through the queue to unprep.
2342 */
2343 goto out;
2344 }
2345
2346 md->io_pool = p->io_pool;
2347 p->io_pool = NULL;
2348 md->rq_pool = p->rq_pool;
2349 p->rq_pool = NULL;
2350 md->bs = p->bs;
2351 p->bs = NULL;
2352
2353 out:
2354 /* mempool bind completed, no longer need any mempools in the table */
2355 dm_table_free_md_mempools(t);
2356 }
2357
2358 /*
2359 * Bind a table to the device.
2360 */
2361 static void event_callback(void *context)
2362 {
2363 unsigned long flags;
2364 LIST_HEAD(uevents);
2365 struct mapped_device *md = (struct mapped_device *) context;
2366
2367 spin_lock_irqsave(&md->uevent_lock, flags);
2368 list_splice_init(&md->uevent_list, &uevents);
2369 spin_unlock_irqrestore(&md->uevent_lock, flags);
2370
2371 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2372
2373 atomic_inc(&md->event_nr);
2374 wake_up(&md->eventq);
2375 }
2376
2377 /*
2378 * Protected by md->suspend_lock obtained by dm_swap_table().
2379 */
2380 static void __set_size(struct mapped_device *md, sector_t size)
2381 {
2382 set_capacity(md->disk, size);
2383
2384 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2385 }
2386
2387 /*
2388 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2389 *
2390 * If this function returns 0, then the device is either a non-dm
2391 * device without a merge_bvec_fn, or it is a dm device that is
2392 * able to split any bios it receives that are too big.
2393 */
2394 int dm_queue_merge_is_compulsory(struct request_queue *q)
2395 {
2396 struct mapped_device *dev_md;
2397
2398 if (!q->merge_bvec_fn)
2399 return 0;
2400
2401 if (q->make_request_fn == dm_make_request) {
2402 dev_md = q->queuedata;
2403 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2404 return 0;
2405 }
2406
2407 return 1;
2408 }
2409
2410 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2411 struct dm_dev *dev, sector_t start,
2412 sector_t len, void *data)
2413 {
2414 struct block_device *bdev = dev->bdev;
2415 struct request_queue *q = bdev_get_queue(bdev);
2416
2417 return dm_queue_merge_is_compulsory(q);
2418 }
2419
2420 /*
2421 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2422 * on the properties of the underlying devices.
2423 */
2424 static int dm_table_merge_is_optional(struct dm_table *table)
2425 {
2426 unsigned i = 0;
2427 struct dm_target *ti;
2428
2429 while (i < dm_table_get_num_targets(table)) {
2430 ti = dm_table_get_target(table, i++);
2431
2432 if (ti->type->iterate_devices &&
2433 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2434 return 0;
2435 }
2436
2437 return 1;
2438 }
2439
2440 /*
2441 * Returns old map, which caller must destroy.
2442 */
2443 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2444 struct queue_limits *limits)
2445 {
2446 struct dm_table *old_map;
2447 struct request_queue *q = md->queue;
2448 sector_t size;
2449 int merge_is_optional;
2450
2451 size = dm_table_get_size(t);
2452
2453 /*
2454 * Wipe any geometry if the size of the table changed.
2455 */
2456 if (size != dm_get_size(md))
2457 memset(&md->geometry, 0, sizeof(md->geometry));
2458
2459 __set_size(md, size);
2460
2461 dm_table_event_callback(t, event_callback, md);
2462
2463 /*
2464 * The queue hasn't been stopped yet, if the old table type wasn't
2465 * for request-based during suspension. So stop it to prevent
2466 * I/O mapping before resume.
2467 * This must be done before setting the queue restrictions,
2468 * because request-based dm may be run just after the setting.
2469 */
2470 if (dm_table_request_based(t))
2471 stop_queue(q);
2472
2473 __bind_mempools(md, t);
2474
2475 merge_is_optional = dm_table_merge_is_optional(t);
2476
2477 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2478 rcu_assign_pointer(md->map, t);
2479 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2480
2481 dm_table_set_restrictions(t, q, limits);
2482 if (merge_is_optional)
2483 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2484 else
2485 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2486 if (old_map)
2487 dm_sync_table(md);
2488
2489 return old_map;
2490 }
2491
2492 /*
2493 * Returns unbound table for the caller to free.
2494 */
2495 static struct dm_table *__unbind(struct mapped_device *md)
2496 {
2497 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2498
2499 if (!map)
2500 return NULL;
2501
2502 dm_table_event_callback(map, NULL, NULL);
2503 RCU_INIT_POINTER(md->map, NULL);
2504 dm_sync_table(md);
2505
2506 return map;
2507 }
2508
2509 /*
2510 * Constructor for a new device.
2511 */
2512 int dm_create(int minor, struct mapped_device **result)
2513 {
2514 struct mapped_device *md;
2515
2516 md = alloc_dev(minor);
2517 if (!md)
2518 return -ENXIO;
2519
2520 dm_sysfs_init(md);
2521
2522 *result = md;
2523 return 0;
2524 }
2525
2526 /*
2527 * Functions to manage md->type.
2528 * All are required to hold md->type_lock.
2529 */
2530 void dm_lock_md_type(struct mapped_device *md)
2531 {
2532 mutex_lock(&md->type_lock);
2533 }
2534
2535 void dm_unlock_md_type(struct mapped_device *md)
2536 {
2537 mutex_unlock(&md->type_lock);
2538 }
2539
2540 void dm_set_md_type(struct mapped_device *md, unsigned type)
2541 {
2542 BUG_ON(!mutex_is_locked(&md->type_lock));
2543 md->type = type;
2544 }
2545
2546 unsigned dm_get_md_type(struct mapped_device *md)
2547 {
2548 BUG_ON(!mutex_is_locked(&md->type_lock));
2549 return md->type;
2550 }
2551
2552 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2553 {
2554 return md->immutable_target_type;
2555 }
2556
2557 /*
2558 * The queue_limits are only valid as long as you have a reference
2559 * count on 'md'.
2560 */
2561 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2562 {
2563 BUG_ON(!atomic_read(&md->holders));
2564 return &md->queue->limits;
2565 }
2566 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2567
2568 static void init_rq_based_worker_thread(struct mapped_device *md)
2569 {
2570 /* Initialize the request-based DM worker thread */
2571 init_kthread_worker(&md->kworker);
2572 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2573 "kdmwork-%s", dm_device_name(md));
2574 }
2575
2576 /*
2577 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2578 */
2579 static int dm_init_request_based_queue(struct mapped_device *md)
2580 {
2581 struct request_queue *q = NULL;
2582
2583 /* Fully initialize the queue */
2584 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2585 if (!q)
2586 return -EINVAL;
2587
2588 /* disable dm_request_fn's merge heuristic by default */
2589 md->seq_rq_merge_deadline_usecs = 0;
2590
2591 md->queue = q;
2592 dm_init_old_md_queue(md);
2593 blk_queue_softirq_done(md->queue, dm_softirq_done);
2594 blk_queue_prep_rq(md->queue, dm_prep_fn);
2595
2596 init_rq_based_worker_thread(md);
2597
2598 elv_register_queue(md->queue);
2599
2600 return 0;
2601 }
2602
2603 static int dm_mq_init_request(void *data, struct request *rq,
2604 unsigned int hctx_idx, unsigned int request_idx,
2605 unsigned int numa_node)
2606 {
2607 struct mapped_device *md = data;
2608 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2609
2610 /*
2611 * Must initialize md member of tio, otherwise it won't
2612 * be available in dm_mq_queue_rq.
2613 */
2614 tio->md = md;
2615
2616 return 0;
2617 }
2618
2619 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2620 const struct blk_mq_queue_data *bd)
2621 {
2622 struct request *rq = bd->rq;
2623 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2624 struct mapped_device *md = tio->md;
2625 int srcu_idx;
2626 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2627 struct dm_target *ti;
2628 sector_t pos;
2629
2630 /* always use block 0 to find the target for flushes for now */
2631 pos = 0;
2632 if (!(rq->cmd_flags & REQ_FLUSH))
2633 pos = blk_rq_pos(rq);
2634
2635 ti = dm_table_find_target(map, pos);
2636 if (!dm_target_is_valid(ti)) {
2637 dm_put_live_table(md, srcu_idx);
2638 DMERR_LIMIT("request attempted access beyond the end of device");
2639 /*
2640 * Must perform setup, that rq_completed() requires,
2641 * before returning BLK_MQ_RQ_QUEUE_ERROR
2642 */
2643 dm_start_request(md, rq);
2644 return BLK_MQ_RQ_QUEUE_ERROR;
2645 }
2646 dm_put_live_table(md, srcu_idx);
2647
2648 if (ti->type->busy && ti->type->busy(ti))
2649 return BLK_MQ_RQ_QUEUE_BUSY;
2650
2651 dm_start_request(md, rq);
2652
2653 /* Init tio using md established in .init_request */
2654 init_tio(tio, rq, md);
2655
2656 /*
2657 * Establish tio->ti before queuing work (map_tio_request)
2658 * or making direct call to map_request().
2659 */
2660 tio->ti = ti;
2661
2662 /* Clone the request if underlying devices aren't blk-mq */
2663 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2664 /* clone request is allocated at the end of the pdu */
2665 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2666 if (!clone_rq(rq, md, tio, GFP_ATOMIC))
2667 return BLK_MQ_RQ_QUEUE_BUSY;
2668 queue_kthread_work(&md->kworker, &tio->work);
2669 } else {
2670 /* Direct call is fine since .queue_rq allows allocations */
2671 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2672 dm_requeue_unmapped_original_request(md, rq);
2673 }
2674
2675 return BLK_MQ_RQ_QUEUE_OK;
2676 }
2677
2678 static struct blk_mq_ops dm_mq_ops = {
2679 .queue_rq = dm_mq_queue_rq,
2680 .map_queue = blk_mq_map_queue,
2681 .complete = dm_softirq_done,
2682 .init_request = dm_mq_init_request,
2683 };
2684
2685 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2686 {
2687 unsigned md_type = dm_get_md_type(md);
2688 struct request_queue *q;
2689 int err;
2690
2691 memset(&md->tag_set, 0, sizeof(md->tag_set));
2692 md->tag_set.ops = &dm_mq_ops;
2693 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2694 md->tag_set.numa_node = NUMA_NO_NODE;
2695 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2696 md->tag_set.nr_hw_queues = 1;
2697 if (md_type == DM_TYPE_REQUEST_BASED) {
2698 /* make the memory for non-blk-mq clone part of the pdu */
2699 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2700 } else
2701 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2702 md->tag_set.driver_data = md;
2703
2704 err = blk_mq_alloc_tag_set(&md->tag_set);
2705 if (err)
2706 return err;
2707
2708 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2709 if (IS_ERR(q)) {
2710 err = PTR_ERR(q);
2711 goto out_tag_set;
2712 }
2713 md->queue = q;
2714 dm_init_md_queue(md);
2715
2716 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2717 blk_mq_register_disk(md->disk);
2718
2719 if (md_type == DM_TYPE_REQUEST_BASED)
2720 init_rq_based_worker_thread(md);
2721
2722 return 0;
2723
2724 out_tag_set:
2725 blk_mq_free_tag_set(&md->tag_set);
2726 return err;
2727 }
2728
2729 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2730 {
2731 if (type == DM_TYPE_BIO_BASED)
2732 return type;
2733
2734 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2735 }
2736
2737 /*
2738 * Setup the DM device's queue based on md's type
2739 */
2740 int dm_setup_md_queue(struct mapped_device *md)
2741 {
2742 int r;
2743 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2744
2745 switch (md_type) {
2746 case DM_TYPE_REQUEST_BASED:
2747 r = dm_init_request_based_queue(md);
2748 if (r) {
2749 DMWARN("Cannot initialize queue for request-based mapped device");
2750 return r;
2751 }
2752 break;
2753 case DM_TYPE_MQ_REQUEST_BASED:
2754 r = dm_init_request_based_blk_mq_queue(md);
2755 if (r) {
2756 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2757 return r;
2758 }
2759 break;
2760 case DM_TYPE_BIO_BASED:
2761 dm_init_old_md_queue(md);
2762 blk_queue_make_request(md->queue, dm_make_request);
2763 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2764 break;
2765 }
2766
2767 return 0;
2768 }
2769
2770 struct mapped_device *dm_get_md(dev_t dev)
2771 {
2772 struct mapped_device *md;
2773 unsigned minor = MINOR(dev);
2774
2775 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2776 return NULL;
2777
2778 spin_lock(&_minor_lock);
2779
2780 md = idr_find(&_minor_idr, minor);
2781 if (md) {
2782 if ((md == MINOR_ALLOCED ||
2783 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2784 dm_deleting_md(md) ||
2785 test_bit(DMF_FREEING, &md->flags))) {
2786 md = NULL;
2787 goto out;
2788 }
2789 dm_get(md);
2790 }
2791
2792 out:
2793 spin_unlock(&_minor_lock);
2794
2795 return md;
2796 }
2797 EXPORT_SYMBOL_GPL(dm_get_md);
2798
2799 void *dm_get_mdptr(struct mapped_device *md)
2800 {
2801 return md->interface_ptr;
2802 }
2803
2804 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2805 {
2806 md->interface_ptr = ptr;
2807 }
2808
2809 void dm_get(struct mapped_device *md)
2810 {
2811 atomic_inc(&md->holders);
2812 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2813 }
2814
2815 int dm_hold(struct mapped_device *md)
2816 {
2817 spin_lock(&_minor_lock);
2818 if (test_bit(DMF_FREEING, &md->flags)) {
2819 spin_unlock(&_minor_lock);
2820 return -EBUSY;
2821 }
2822 dm_get(md);
2823 spin_unlock(&_minor_lock);
2824 return 0;
2825 }
2826 EXPORT_SYMBOL_GPL(dm_hold);
2827
2828 const char *dm_device_name(struct mapped_device *md)
2829 {
2830 return md->name;
2831 }
2832 EXPORT_SYMBOL_GPL(dm_device_name);
2833
2834 static void __dm_destroy(struct mapped_device *md, bool wait)
2835 {
2836 struct dm_table *map;
2837 int srcu_idx;
2838
2839 might_sleep();
2840
2841 map = dm_get_live_table(md, &srcu_idx);
2842
2843 spin_lock(&_minor_lock);
2844 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2845 set_bit(DMF_FREEING, &md->flags);
2846 spin_unlock(&_minor_lock);
2847
2848 if (dm_request_based(md) && md->kworker_task)
2849 flush_kthread_worker(&md->kworker);
2850
2851 /*
2852 * Take suspend_lock so that presuspend and postsuspend methods
2853 * do not race with internal suspend.
2854 */
2855 mutex_lock(&md->suspend_lock);
2856 if (!dm_suspended_md(md)) {
2857 dm_table_presuspend_targets(map);
2858 dm_table_postsuspend_targets(map);
2859 }
2860 mutex_unlock(&md->suspend_lock);
2861
2862 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2863 dm_put_live_table(md, srcu_idx);
2864
2865 /*
2866 * Rare, but there may be I/O requests still going to complete,
2867 * for example. Wait for all references to disappear.
2868 * No one should increment the reference count of the mapped_device,
2869 * after the mapped_device state becomes DMF_FREEING.
2870 */
2871 if (wait)
2872 while (atomic_read(&md->holders))
2873 msleep(1);
2874 else if (atomic_read(&md->holders))
2875 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2876 dm_device_name(md), atomic_read(&md->holders));
2877
2878 dm_sysfs_exit(md);
2879 dm_table_destroy(__unbind(md));
2880 free_dev(md);
2881 }
2882
2883 void dm_destroy(struct mapped_device *md)
2884 {
2885 __dm_destroy(md, true);
2886 }
2887
2888 void dm_destroy_immediate(struct mapped_device *md)
2889 {
2890 __dm_destroy(md, false);
2891 }
2892
2893 void dm_put(struct mapped_device *md)
2894 {
2895 atomic_dec(&md->holders);
2896 }
2897 EXPORT_SYMBOL_GPL(dm_put);
2898
2899 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2900 {
2901 int r = 0;
2902 DECLARE_WAITQUEUE(wait, current);
2903
2904 add_wait_queue(&md->wait, &wait);
2905
2906 while (1) {
2907 set_current_state(interruptible);
2908
2909 if (!md_in_flight(md))
2910 break;
2911
2912 if (interruptible == TASK_INTERRUPTIBLE &&
2913 signal_pending(current)) {
2914 r = -EINTR;
2915 break;
2916 }
2917
2918 io_schedule();
2919 }
2920 set_current_state(TASK_RUNNING);
2921
2922 remove_wait_queue(&md->wait, &wait);
2923
2924 return r;
2925 }
2926
2927 /*
2928 * Process the deferred bios
2929 */
2930 static void dm_wq_work(struct work_struct *work)
2931 {
2932 struct mapped_device *md = container_of(work, struct mapped_device,
2933 work);
2934 struct bio *c;
2935 int srcu_idx;
2936 struct dm_table *map;
2937
2938 map = dm_get_live_table(md, &srcu_idx);
2939
2940 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2941 spin_lock_irq(&md->deferred_lock);
2942 c = bio_list_pop(&md->deferred);
2943 spin_unlock_irq(&md->deferred_lock);
2944
2945 if (!c)
2946 break;
2947
2948 if (dm_request_based(md))
2949 generic_make_request(c);
2950 else
2951 __split_and_process_bio(md, map, c);
2952 }
2953
2954 dm_put_live_table(md, srcu_idx);
2955 }
2956
2957 static void dm_queue_flush(struct mapped_device *md)
2958 {
2959 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2960 smp_mb__after_atomic();
2961 queue_work(md->wq, &md->work);
2962 }
2963
2964 /*
2965 * Swap in a new table, returning the old one for the caller to destroy.
2966 */
2967 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2968 {
2969 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2970 struct queue_limits limits;
2971 int r;
2972
2973 mutex_lock(&md->suspend_lock);
2974
2975 /* device must be suspended */
2976 if (!dm_suspended_md(md))
2977 goto out;
2978
2979 /*
2980 * If the new table has no data devices, retain the existing limits.
2981 * This helps multipath with queue_if_no_path if all paths disappear,
2982 * then new I/O is queued based on these limits, and then some paths
2983 * reappear.
2984 */
2985 if (dm_table_has_no_data_devices(table)) {
2986 live_map = dm_get_live_table_fast(md);
2987 if (live_map)
2988 limits = md->queue->limits;
2989 dm_put_live_table_fast(md);
2990 }
2991
2992 if (!live_map) {
2993 r = dm_calculate_queue_limits(table, &limits);
2994 if (r) {
2995 map = ERR_PTR(r);
2996 goto out;
2997 }
2998 }
2999
3000 map = __bind(md, table, &limits);
3001
3002 out:
3003 mutex_unlock(&md->suspend_lock);
3004 return map;
3005 }
3006
3007 /*
3008 * Functions to lock and unlock any filesystem running on the
3009 * device.
3010 */
3011 static int lock_fs(struct mapped_device *md)
3012 {
3013 int r;
3014
3015 WARN_ON(md->frozen_sb);
3016
3017 md->frozen_sb = freeze_bdev(md->bdev);
3018 if (IS_ERR(md->frozen_sb)) {
3019 r = PTR_ERR(md->frozen_sb);
3020 md->frozen_sb = NULL;
3021 return r;
3022 }
3023
3024 set_bit(DMF_FROZEN, &md->flags);
3025
3026 return 0;
3027 }
3028
3029 static void unlock_fs(struct mapped_device *md)
3030 {
3031 if (!test_bit(DMF_FROZEN, &md->flags))
3032 return;
3033
3034 thaw_bdev(md->bdev, md->frozen_sb);
3035 md->frozen_sb = NULL;
3036 clear_bit(DMF_FROZEN, &md->flags);
3037 }
3038
3039 /*
3040 * If __dm_suspend returns 0, the device is completely quiescent
3041 * now. There is no request-processing activity. All new requests
3042 * are being added to md->deferred list.
3043 *
3044 * Caller must hold md->suspend_lock
3045 */
3046 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3047 unsigned suspend_flags, int interruptible)
3048 {
3049 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3050 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3051 int r;
3052
3053 /*
3054 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3055 * This flag is cleared before dm_suspend returns.
3056 */
3057 if (noflush)
3058 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3059
3060 /*
3061 * This gets reverted if there's an error later and the targets
3062 * provide the .presuspend_undo hook.
3063 */
3064 dm_table_presuspend_targets(map);
3065
3066 /*
3067 * Flush I/O to the device.
3068 * Any I/O submitted after lock_fs() may not be flushed.
3069 * noflush takes precedence over do_lockfs.
3070 * (lock_fs() flushes I/Os and waits for them to complete.)
3071 */
3072 if (!noflush && do_lockfs) {
3073 r = lock_fs(md);
3074 if (r) {
3075 dm_table_presuspend_undo_targets(map);
3076 return r;
3077 }
3078 }
3079
3080 /*
3081 * Here we must make sure that no processes are submitting requests
3082 * to target drivers i.e. no one may be executing
3083 * __split_and_process_bio. This is called from dm_request and
3084 * dm_wq_work.
3085 *
3086 * To get all processes out of __split_and_process_bio in dm_request,
3087 * we take the write lock. To prevent any process from reentering
3088 * __split_and_process_bio from dm_request and quiesce the thread
3089 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3090 * flush_workqueue(md->wq).
3091 */
3092 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3093 if (map)
3094 synchronize_srcu(&md->io_barrier);
3095
3096 /*
3097 * Stop md->queue before flushing md->wq in case request-based
3098 * dm defers requests to md->wq from md->queue.
3099 */
3100 if (dm_request_based(md)) {
3101 stop_queue(md->queue);
3102 if (md->kworker_task)
3103 flush_kthread_worker(&md->kworker);
3104 }
3105
3106 flush_workqueue(md->wq);
3107
3108 /*
3109 * At this point no more requests are entering target request routines.
3110 * We call dm_wait_for_completion to wait for all existing requests
3111 * to finish.
3112 */
3113 r = dm_wait_for_completion(md, interruptible);
3114
3115 if (noflush)
3116 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3117 if (map)
3118 synchronize_srcu(&md->io_barrier);
3119
3120 /* were we interrupted ? */
3121 if (r < 0) {
3122 dm_queue_flush(md);
3123
3124 if (dm_request_based(md))
3125 start_queue(md->queue);
3126
3127 unlock_fs(md);
3128 dm_table_presuspend_undo_targets(map);
3129 /* pushback list is already flushed, so skip flush */
3130 }
3131
3132 return r;
3133 }
3134
3135 /*
3136 * We need to be able to change a mapping table under a mounted
3137 * filesystem. For example we might want to move some data in
3138 * the background. Before the table can be swapped with
3139 * dm_bind_table, dm_suspend must be called to flush any in
3140 * flight bios and ensure that any further io gets deferred.
3141 */
3142 /*
3143 * Suspend mechanism in request-based dm.
3144 *
3145 * 1. Flush all I/Os by lock_fs() if needed.
3146 * 2. Stop dispatching any I/O by stopping the request_queue.
3147 * 3. Wait for all in-flight I/Os to be completed or requeued.
3148 *
3149 * To abort suspend, start the request_queue.
3150 */
3151 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3152 {
3153 struct dm_table *map = NULL;
3154 int r = 0;
3155
3156 retry:
3157 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3158
3159 if (dm_suspended_md(md)) {
3160 r = -EINVAL;
3161 goto out_unlock;
3162 }
3163
3164 if (dm_suspended_internally_md(md)) {
3165 /* already internally suspended, wait for internal resume */
3166 mutex_unlock(&md->suspend_lock);
3167 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3168 if (r)
3169 return r;
3170 goto retry;
3171 }
3172
3173 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3174
3175 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3176 if (r)
3177 goto out_unlock;
3178
3179 set_bit(DMF_SUSPENDED, &md->flags);
3180
3181 dm_table_postsuspend_targets(map);
3182
3183 out_unlock:
3184 mutex_unlock(&md->suspend_lock);
3185 return r;
3186 }
3187
3188 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3189 {
3190 if (map) {
3191 int r = dm_table_resume_targets(map);
3192 if (r)
3193 return r;
3194 }
3195
3196 dm_queue_flush(md);
3197
3198 /*
3199 * Flushing deferred I/Os must be done after targets are resumed
3200 * so that mapping of targets can work correctly.
3201 * Request-based dm is queueing the deferred I/Os in its request_queue.
3202 */
3203 if (dm_request_based(md))
3204 start_queue(md->queue);
3205
3206 unlock_fs(md);
3207
3208 return 0;
3209 }
3210
3211 int dm_resume(struct mapped_device *md)
3212 {
3213 int r = -EINVAL;
3214 struct dm_table *map = NULL;
3215
3216 retry:
3217 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3218
3219 if (!dm_suspended_md(md))
3220 goto out;
3221
3222 if (dm_suspended_internally_md(md)) {
3223 /* already internally suspended, wait for internal resume */
3224 mutex_unlock(&md->suspend_lock);
3225 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3226 if (r)
3227 return r;
3228 goto retry;
3229 }
3230
3231 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3232 if (!map || !dm_table_get_size(map))
3233 goto out;
3234
3235 r = __dm_resume(md, map);
3236 if (r)
3237 goto out;
3238
3239 clear_bit(DMF_SUSPENDED, &md->flags);
3240
3241 r = 0;
3242 out:
3243 mutex_unlock(&md->suspend_lock);
3244
3245 return r;
3246 }
3247
3248 /*
3249 * Internal suspend/resume works like userspace-driven suspend. It waits
3250 * until all bios finish and prevents issuing new bios to the target drivers.
3251 * It may be used only from the kernel.
3252 */
3253
3254 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3255 {
3256 struct dm_table *map = NULL;
3257
3258 if (md->internal_suspend_count++)
3259 return; /* nested internal suspend */
3260
3261 if (dm_suspended_md(md)) {
3262 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3263 return; /* nest suspend */
3264 }
3265
3266 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3267
3268 /*
3269 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3270 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3271 * would require changing .presuspend to return an error -- avoid this
3272 * until there is a need for more elaborate variants of internal suspend.
3273 */
3274 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3275
3276 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3277
3278 dm_table_postsuspend_targets(map);
3279 }
3280
3281 static void __dm_internal_resume(struct mapped_device *md)
3282 {
3283 BUG_ON(!md->internal_suspend_count);
3284
3285 if (--md->internal_suspend_count)
3286 return; /* resume from nested internal suspend */
3287
3288 if (dm_suspended_md(md))
3289 goto done; /* resume from nested suspend */
3290
3291 /*
3292 * NOTE: existing callers don't need to call dm_table_resume_targets
3293 * (which may fail -- so best to avoid it for now by passing NULL map)
3294 */
3295 (void) __dm_resume(md, NULL);
3296
3297 done:
3298 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3299 smp_mb__after_atomic();
3300 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3301 }
3302
3303 void dm_internal_suspend_noflush(struct mapped_device *md)
3304 {
3305 mutex_lock(&md->suspend_lock);
3306 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3307 mutex_unlock(&md->suspend_lock);
3308 }
3309 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3310
3311 void dm_internal_resume(struct mapped_device *md)
3312 {
3313 mutex_lock(&md->suspend_lock);
3314 __dm_internal_resume(md);
3315 mutex_unlock(&md->suspend_lock);
3316 }
3317 EXPORT_SYMBOL_GPL(dm_internal_resume);
3318
3319 /*
3320 * Fast variants of internal suspend/resume hold md->suspend_lock,
3321 * which prevents interaction with userspace-driven suspend.
3322 */
3323
3324 void dm_internal_suspend_fast(struct mapped_device *md)
3325 {
3326 mutex_lock(&md->suspend_lock);
3327 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3328 return;
3329
3330 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3331 synchronize_srcu(&md->io_barrier);
3332 flush_workqueue(md->wq);
3333 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3334 }
3335 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3336
3337 void dm_internal_resume_fast(struct mapped_device *md)
3338 {
3339 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3340 goto done;
3341
3342 dm_queue_flush(md);
3343
3344 done:
3345 mutex_unlock(&md->suspend_lock);
3346 }
3347 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3348
3349 /*-----------------------------------------------------------------
3350 * Event notification.
3351 *---------------------------------------------------------------*/
3352 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3353 unsigned cookie)
3354 {
3355 char udev_cookie[DM_COOKIE_LENGTH];
3356 char *envp[] = { udev_cookie, NULL };
3357
3358 if (!cookie)
3359 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3360 else {
3361 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3362 DM_COOKIE_ENV_VAR_NAME, cookie);
3363 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3364 action, envp);
3365 }
3366 }
3367
3368 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3369 {
3370 return atomic_add_return(1, &md->uevent_seq);
3371 }
3372
3373 uint32_t dm_get_event_nr(struct mapped_device *md)
3374 {
3375 return atomic_read(&md->event_nr);
3376 }
3377
3378 int dm_wait_event(struct mapped_device *md, int event_nr)
3379 {
3380 return wait_event_interruptible(md->eventq,
3381 (event_nr != atomic_read(&md->event_nr)));
3382 }
3383
3384 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3385 {
3386 unsigned long flags;
3387
3388 spin_lock_irqsave(&md->uevent_lock, flags);
3389 list_add(elist, &md->uevent_list);
3390 spin_unlock_irqrestore(&md->uevent_lock, flags);
3391 }
3392
3393 /*
3394 * The gendisk is only valid as long as you have a reference
3395 * count on 'md'.
3396 */
3397 struct gendisk *dm_disk(struct mapped_device *md)
3398 {
3399 return md->disk;
3400 }
3401 EXPORT_SYMBOL_GPL(dm_disk);
3402
3403 struct kobject *dm_kobject(struct mapped_device *md)
3404 {
3405 return &md->kobj_holder.kobj;
3406 }
3407
3408 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3409 {
3410 struct mapped_device *md;
3411
3412 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3413
3414 if (test_bit(DMF_FREEING, &md->flags) ||
3415 dm_deleting_md(md))
3416 return NULL;
3417
3418 dm_get(md);
3419 return md;
3420 }
3421
3422 int dm_suspended_md(struct mapped_device *md)
3423 {
3424 return test_bit(DMF_SUSPENDED, &md->flags);
3425 }
3426
3427 int dm_suspended_internally_md(struct mapped_device *md)
3428 {
3429 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3430 }
3431
3432 int dm_test_deferred_remove_flag(struct mapped_device *md)
3433 {
3434 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3435 }
3436
3437 int dm_suspended(struct dm_target *ti)
3438 {
3439 return dm_suspended_md(dm_table_get_md(ti->table));
3440 }
3441 EXPORT_SYMBOL_GPL(dm_suspended);
3442
3443 int dm_noflush_suspending(struct dm_target *ti)
3444 {
3445 return __noflush_suspending(dm_table_get_md(ti->table));
3446 }
3447 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3448
3449 struct dm_md_mempools *dm_alloc_bio_mempools(unsigned integrity,
3450 unsigned per_bio_data_size)
3451 {
3452 struct dm_md_mempools *pools;
3453 unsigned int pool_size = dm_get_reserved_bio_based_ios();
3454 unsigned int front_pad;
3455
3456 pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3457 if (!pools)
3458 return NULL;
3459
3460 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) +
3461 offsetof(struct dm_target_io, clone);
3462
3463 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
3464 if (!pools->io_pool)
3465 goto out;
3466
3467 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3468 if (!pools->bs)
3469 goto out;
3470
3471 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3472 goto out;
3473
3474 return pools;
3475 out:
3476 dm_free_md_mempools(pools);
3477 return NULL;
3478 }
3479
3480 struct dm_md_mempools *dm_alloc_rq_mempools(struct mapped_device *md,
3481 unsigned type)
3482 {
3483 unsigned int pool_size = dm_get_reserved_rq_based_ios();
3484 struct dm_md_mempools *pools;
3485
3486 pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3487 if (!pools)
3488 return NULL;
3489
3490 if (filter_md_type(type, md) == DM_TYPE_REQUEST_BASED) {
3491 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3492 if (!pools->rq_pool)
3493 goto out;
3494 }
3495
3496 pools->io_pool = mempool_create_slab_pool(pool_size, _rq_tio_cache);
3497 if (!pools->io_pool)
3498 goto out;
3499
3500 return pools;
3501 out:
3502 dm_free_md_mempools(pools);
3503 return NULL;
3504 }
3505
3506 void dm_free_md_mempools(struct dm_md_mempools *pools)
3507 {
3508 if (!pools)
3509 return;
3510
3511 if (pools->io_pool)
3512 mempool_destroy(pools->io_pool);
3513
3514 if (pools->rq_pool)
3515 mempool_destroy(pools->rq_pool);
3516
3517 if (pools->bs)
3518 bioset_free(pools->bs);
3519
3520 kfree(pools);
3521 }
3522
3523 static const struct block_device_operations dm_blk_dops = {
3524 .open = dm_blk_open,
3525 .release = dm_blk_close,
3526 .ioctl = dm_blk_ioctl,
3527 .getgeo = dm_blk_getgeo,
3528 .owner = THIS_MODULE
3529 };
3530
3531 /*
3532 * module hooks
3533 */
3534 module_init(dm_init);
3535 module_exit(dm_exit);
3536
3537 module_param(major, uint, 0);
3538 MODULE_PARM_DESC(major, "The major number of the device mapper");
3539
3540 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3541 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3542
3543 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3544 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3545
3546 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3547 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3548
3549 MODULE_DESCRIPTION(DM_NAME " driver");
3550 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3551 MODULE_LICENSE("GPL");
This page took 0.158805 seconds and 5 git commands to generate.