Merge tag 'ecryptfs-3.6-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
69 */
70 struct dm_target_io {
71 struct dm_io *io;
72 struct dm_target *ti;
73 union map_info info;
74 };
75
76 /*
77 * For request-based dm.
78 * One of these is allocated per request.
79 */
80 struct dm_rq_target_io {
81 struct mapped_device *md;
82 struct dm_target *ti;
83 struct request *orig, clone;
84 int error;
85 union map_info info;
86 };
87
88 /*
89 * For request-based dm.
90 * One of these is allocated per bio.
91 */
92 struct dm_rq_clone_bio_info {
93 struct bio *orig;
94 struct dm_rq_target_io *tio;
95 };
96
97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 if (bio && bio->bi_private)
100 return &((struct dm_target_io *)bio->bi_private)->info;
101 return NULL;
102 }
103
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 if (rq && rq->end_io_data)
107 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111
112 #define MINOR_ALLOCED ((void *)-1)
113
114 /*
115 * Bits for the md->flags field.
116 */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124
125 /*
126 * Work processed by per-device workqueue.
127 */
128 struct mapped_device {
129 struct rw_semaphore io_lock;
130 struct mutex suspend_lock;
131 rwlock_t map_lock;
132 atomic_t holders;
133 atomic_t open_count;
134
135 unsigned long flags;
136
137 struct request_queue *queue;
138 unsigned type;
139 /* Protect queue and type against concurrent access. */
140 struct mutex type_lock;
141
142 struct target_type *immutable_target_type;
143
144 struct gendisk *disk;
145 char name[16];
146
147 void *interface_ptr;
148
149 /*
150 * A list of ios that arrived while we were suspended.
151 */
152 atomic_t pending[2];
153 wait_queue_head_t wait;
154 struct work_struct work;
155 struct bio_list deferred;
156 spinlock_t deferred_lock;
157
158 /*
159 * Processing queue (flush)
160 */
161 struct workqueue_struct *wq;
162
163 /*
164 * The current mapping.
165 */
166 struct dm_table *map;
167
168 /*
169 * io objects are allocated from here.
170 */
171 mempool_t *io_pool;
172 mempool_t *tio_pool;
173
174 struct bio_set *bs;
175
176 /*
177 * Event handling.
178 */
179 atomic_t event_nr;
180 wait_queue_head_t eventq;
181 atomic_t uevent_seq;
182 struct list_head uevent_list;
183 spinlock_t uevent_lock; /* Protect access to uevent_list */
184
185 /*
186 * freeze/thaw support require holding onto a super block
187 */
188 struct super_block *frozen_sb;
189 struct block_device *bdev;
190
191 /* forced geometry settings */
192 struct hd_geometry geometry;
193
194 /* sysfs handle */
195 struct kobject kobj;
196
197 /* zero-length flush that will be cloned and submitted to targets */
198 struct bio flush_bio;
199 };
200
201 /*
202 * For mempools pre-allocation at the table loading time.
203 */
204 struct dm_md_mempools {
205 mempool_t *io_pool;
206 mempool_t *tio_pool;
207 struct bio_set *bs;
208 };
209
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215
216 static int __init local_init(void)
217 {
218 int r = -ENOMEM;
219
220 /* allocate a slab for the dm_ios */
221 _io_cache = KMEM_CACHE(dm_io, 0);
222 if (!_io_cache)
223 return r;
224
225 /* allocate a slab for the target ios */
226 _tio_cache = KMEM_CACHE(dm_target_io, 0);
227 if (!_tio_cache)
228 goto out_free_io_cache;
229
230 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 if (!_rq_tio_cache)
232 goto out_free_tio_cache;
233
234 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 if (!_rq_bio_info_cache)
236 goto out_free_rq_tio_cache;
237
238 r = dm_uevent_init();
239 if (r)
240 goto out_free_rq_bio_info_cache;
241
242 _major = major;
243 r = register_blkdev(_major, _name);
244 if (r < 0)
245 goto out_uevent_exit;
246
247 if (!_major)
248 _major = r;
249
250 return 0;
251
252 out_uevent_exit:
253 dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 kmem_cache_destroy(_io_cache);
262
263 return r;
264 }
265
266 static void local_exit(void)
267 {
268 kmem_cache_destroy(_rq_bio_info_cache);
269 kmem_cache_destroy(_rq_tio_cache);
270 kmem_cache_destroy(_tio_cache);
271 kmem_cache_destroy(_io_cache);
272 unregister_blkdev(_major, _name);
273 dm_uevent_exit();
274
275 _major = 0;
276
277 DMINFO("cleaned up");
278 }
279
280 static int (*_inits[])(void) __initdata = {
281 local_init,
282 dm_target_init,
283 dm_linear_init,
284 dm_stripe_init,
285 dm_io_init,
286 dm_kcopyd_init,
287 dm_interface_init,
288 };
289
290 static void (*_exits[])(void) = {
291 local_exit,
292 dm_target_exit,
293 dm_linear_exit,
294 dm_stripe_exit,
295 dm_io_exit,
296 dm_kcopyd_exit,
297 dm_interface_exit,
298 };
299
300 static int __init dm_init(void)
301 {
302 const int count = ARRAY_SIZE(_inits);
303
304 int r, i;
305
306 for (i = 0; i < count; i++) {
307 r = _inits[i]();
308 if (r)
309 goto bad;
310 }
311
312 return 0;
313
314 bad:
315 while (i--)
316 _exits[i]();
317
318 return r;
319 }
320
321 static void __exit dm_exit(void)
322 {
323 int i = ARRAY_SIZE(_exits);
324
325 while (i--)
326 _exits[i]();
327
328 /*
329 * Should be empty by this point.
330 */
331 idr_remove_all(&_minor_idr);
332 idr_destroy(&_minor_idr);
333 }
334
335 /*
336 * Block device functions
337 */
338 int dm_deleting_md(struct mapped_device *md)
339 {
340 return test_bit(DMF_DELETING, &md->flags);
341 }
342
343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 struct mapped_device *md;
346
347 spin_lock(&_minor_lock);
348
349 md = bdev->bd_disk->private_data;
350 if (!md)
351 goto out;
352
353 if (test_bit(DMF_FREEING, &md->flags) ||
354 dm_deleting_md(md)) {
355 md = NULL;
356 goto out;
357 }
358
359 dm_get(md);
360 atomic_inc(&md->open_count);
361
362 out:
363 spin_unlock(&_minor_lock);
364
365 return md ? 0 : -ENXIO;
366 }
367
368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 struct mapped_device *md = disk->private_data;
371
372 spin_lock(&_minor_lock);
373
374 atomic_dec(&md->open_count);
375 dm_put(md);
376
377 spin_unlock(&_minor_lock);
378
379 return 0;
380 }
381
382 int dm_open_count(struct mapped_device *md)
383 {
384 return atomic_read(&md->open_count);
385 }
386
387 /*
388 * Guarantees nothing is using the device before it's deleted.
389 */
390 int dm_lock_for_deletion(struct mapped_device *md)
391 {
392 int r = 0;
393
394 spin_lock(&_minor_lock);
395
396 if (dm_open_count(md))
397 r = -EBUSY;
398 else
399 set_bit(DMF_DELETING, &md->flags);
400
401 spin_unlock(&_minor_lock);
402
403 return r;
404 }
405
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 unsigned int cmd, unsigned long arg)
415 {
416 struct mapped_device *md = bdev->bd_disk->private_data;
417 struct dm_table *map = dm_get_live_table(md);
418 struct dm_target *tgt;
419 int r = -ENOTTY;
420
421 if (!map || !dm_table_get_size(map))
422 goto out;
423
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map) != 1)
426 goto out;
427
428 tgt = dm_table_get_target(map, 0);
429
430 if (dm_suspended_md(md)) {
431 r = -EAGAIN;
432 goto out;
433 }
434
435 if (tgt->type->ioctl)
436 r = tgt->type->ioctl(tgt, cmd, arg);
437
438 out:
439 dm_table_put(map);
440
441 return r;
442 }
443
444 static struct dm_io *alloc_io(struct mapped_device *md)
445 {
446 return mempool_alloc(md->io_pool, GFP_NOIO);
447 }
448
449 static void free_io(struct mapped_device *md, struct dm_io *io)
450 {
451 mempool_free(io, md->io_pool);
452 }
453
454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455 {
456 mempool_free(tio, md->tio_pool);
457 }
458
459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 gfp_t gfp_mask)
461 {
462 return mempool_alloc(md->tio_pool, gfp_mask);
463 }
464
465 static void free_rq_tio(struct dm_rq_target_io *tio)
466 {
467 mempool_free(tio, tio->md->tio_pool);
468 }
469
470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471 {
472 return mempool_alloc(md->io_pool, GFP_ATOMIC);
473 }
474
475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
476 {
477 mempool_free(info, info->tio->md->io_pool);
478 }
479
480 static int md_in_flight(struct mapped_device *md)
481 {
482 return atomic_read(&md->pending[READ]) +
483 atomic_read(&md->pending[WRITE]);
484 }
485
486 static void start_io_acct(struct dm_io *io)
487 {
488 struct mapped_device *md = io->md;
489 int cpu;
490 int rw = bio_data_dir(io->bio);
491
492 io->start_time = jiffies;
493
494 cpu = part_stat_lock();
495 part_round_stats(cpu, &dm_disk(md)->part0);
496 part_stat_unlock();
497 atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 atomic_inc_return(&md->pending[rw]));
499 }
500
501 static void end_io_acct(struct dm_io *io)
502 {
503 struct mapped_device *md = io->md;
504 struct bio *bio = io->bio;
505 unsigned long duration = jiffies - io->start_time;
506 int pending, cpu;
507 int rw = bio_data_dir(bio);
508
509 cpu = part_stat_lock();
510 part_round_stats(cpu, &dm_disk(md)->part0);
511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 part_stat_unlock();
513
514 /*
515 * After this is decremented the bio must not be touched if it is
516 * a flush.
517 */
518 pending = atomic_dec_return(&md->pending[rw]);
519 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 pending += atomic_read(&md->pending[rw^0x1]);
521
522 /* nudge anyone waiting on suspend queue */
523 if (!pending)
524 wake_up(&md->wait);
525 }
526
527 /*
528 * Add the bio to the list of deferred io.
529 */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 unsigned long flags;
533
534 spin_lock_irqsave(&md->deferred_lock, flags);
535 bio_list_add(&md->deferred, bio);
536 spin_unlock_irqrestore(&md->deferred_lock, flags);
537 queue_work(md->wq, &md->work);
538 }
539
540 /*
541 * Everyone (including functions in this file), should use this
542 * function to access the md->map field, and make sure they call
543 * dm_table_put() when finished.
544 */
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 struct dm_table *t;
548 unsigned long flags;
549
550 read_lock_irqsave(&md->map_lock, flags);
551 t = md->map;
552 if (t)
553 dm_table_get(t);
554 read_unlock_irqrestore(&md->map_lock, flags);
555
556 return t;
557 }
558
559 /*
560 * Get the geometry associated with a dm device
561 */
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 *geo = md->geometry;
565
566 return 0;
567 }
568
569 /*
570 * Set the geometry of a device.
571 */
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575
576 if (geo->start > sz) {
577 DMWARN("Start sector is beyond the geometry limits.");
578 return -EINVAL;
579 }
580
581 md->geometry = *geo;
582
583 return 0;
584 }
585
586 /*-----------------------------------------------------------------
587 * CRUD START:
588 * A more elegant soln is in the works that uses the queue
589 * merge fn, unfortunately there are a couple of changes to
590 * the block layer that I want to make for this. So in the
591 * interests of getting something for people to use I give
592 * you this clearly demarcated crap.
593 *---------------------------------------------------------------*/
594
595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599
600 /*
601 * Decrements the number of outstanding ios that a bio has been
602 * cloned into, completing the original io if necc.
603 */
604 static void dec_pending(struct dm_io *io, int error)
605 {
606 unsigned long flags;
607 int io_error;
608 struct bio *bio;
609 struct mapped_device *md = io->md;
610
611 /* Push-back supersedes any I/O errors */
612 if (unlikely(error)) {
613 spin_lock_irqsave(&io->endio_lock, flags);
614 if (!(io->error > 0 && __noflush_suspending(md)))
615 io->error = error;
616 spin_unlock_irqrestore(&io->endio_lock, flags);
617 }
618
619 if (atomic_dec_and_test(&io->io_count)) {
620 if (io->error == DM_ENDIO_REQUEUE) {
621 /*
622 * Target requested pushing back the I/O.
623 */
624 spin_lock_irqsave(&md->deferred_lock, flags);
625 if (__noflush_suspending(md))
626 bio_list_add_head(&md->deferred, io->bio);
627 else
628 /* noflush suspend was interrupted. */
629 io->error = -EIO;
630 spin_unlock_irqrestore(&md->deferred_lock, flags);
631 }
632
633 io_error = io->error;
634 bio = io->bio;
635 end_io_acct(io);
636 free_io(md, io);
637
638 if (io_error == DM_ENDIO_REQUEUE)
639 return;
640
641 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 /*
643 * Preflush done for flush with data, reissue
644 * without REQ_FLUSH.
645 */
646 bio->bi_rw &= ~REQ_FLUSH;
647 queue_io(md, bio);
648 } else {
649 /* done with normal IO or empty flush */
650 trace_block_bio_complete(md->queue, bio, io_error);
651 bio_endio(bio, io_error);
652 }
653 }
654 }
655
656 static void clone_endio(struct bio *bio, int error)
657 {
658 int r = 0;
659 struct dm_target_io *tio = bio->bi_private;
660 struct dm_io *io = tio->io;
661 struct mapped_device *md = tio->io->md;
662 dm_endio_fn endio = tio->ti->type->end_io;
663
664 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 error = -EIO;
666
667 if (endio) {
668 r = endio(tio->ti, bio, error, &tio->info);
669 if (r < 0 || r == DM_ENDIO_REQUEUE)
670 /*
671 * error and requeue request are handled
672 * in dec_pending().
673 */
674 error = r;
675 else if (r == DM_ENDIO_INCOMPLETE)
676 /* The target will handle the io */
677 return;
678 else if (r) {
679 DMWARN("unimplemented target endio return value: %d", r);
680 BUG();
681 }
682 }
683
684 /*
685 * Store md for cleanup instead of tio which is about to get freed.
686 */
687 bio->bi_private = md->bs;
688
689 free_tio(md, tio);
690 bio_put(bio);
691 dec_pending(io, error);
692 }
693
694 /*
695 * Partial completion handling for request-based dm
696 */
697 static void end_clone_bio(struct bio *clone, int error)
698 {
699 struct dm_rq_clone_bio_info *info = clone->bi_private;
700 struct dm_rq_target_io *tio = info->tio;
701 struct bio *bio = info->orig;
702 unsigned int nr_bytes = info->orig->bi_size;
703
704 bio_put(clone);
705
706 if (tio->error)
707 /*
708 * An error has already been detected on the request.
709 * Once error occurred, just let clone->end_io() handle
710 * the remainder.
711 */
712 return;
713 else if (error) {
714 /*
715 * Don't notice the error to the upper layer yet.
716 * The error handling decision is made by the target driver,
717 * when the request is completed.
718 */
719 tio->error = error;
720 return;
721 }
722
723 /*
724 * I/O for the bio successfully completed.
725 * Notice the data completion to the upper layer.
726 */
727
728 /*
729 * bios are processed from the head of the list.
730 * So the completing bio should always be rq->bio.
731 * If it's not, something wrong is happening.
732 */
733 if (tio->orig->bio != bio)
734 DMERR("bio completion is going in the middle of the request");
735
736 /*
737 * Update the original request.
738 * Do not use blk_end_request() here, because it may complete
739 * the original request before the clone, and break the ordering.
740 */
741 blk_update_request(tio->orig, 0, nr_bytes);
742 }
743
744 /*
745 * Don't touch any member of the md after calling this function because
746 * the md may be freed in dm_put() at the end of this function.
747 * Or do dm_get() before calling this function and dm_put() later.
748 */
749 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
750 {
751 atomic_dec(&md->pending[rw]);
752
753 /* nudge anyone waiting on suspend queue */
754 if (!md_in_flight(md))
755 wake_up(&md->wait);
756
757 if (run_queue)
758 blk_run_queue(md->queue);
759
760 /*
761 * dm_put() must be at the end of this function. See the comment above
762 */
763 dm_put(md);
764 }
765
766 static void free_rq_clone(struct request *clone)
767 {
768 struct dm_rq_target_io *tio = clone->end_io_data;
769
770 blk_rq_unprep_clone(clone);
771 free_rq_tio(tio);
772 }
773
774 /*
775 * Complete the clone and the original request.
776 * Must be called without queue lock.
777 */
778 static void dm_end_request(struct request *clone, int error)
779 {
780 int rw = rq_data_dir(clone);
781 struct dm_rq_target_io *tio = clone->end_io_data;
782 struct mapped_device *md = tio->md;
783 struct request *rq = tio->orig;
784
785 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
786 rq->errors = clone->errors;
787 rq->resid_len = clone->resid_len;
788
789 if (rq->sense)
790 /*
791 * We are using the sense buffer of the original
792 * request.
793 * So setting the length of the sense data is enough.
794 */
795 rq->sense_len = clone->sense_len;
796 }
797
798 free_rq_clone(clone);
799 blk_end_request_all(rq, error);
800 rq_completed(md, rw, true);
801 }
802
803 static void dm_unprep_request(struct request *rq)
804 {
805 struct request *clone = rq->special;
806
807 rq->special = NULL;
808 rq->cmd_flags &= ~REQ_DONTPREP;
809
810 free_rq_clone(clone);
811 }
812
813 /*
814 * Requeue the original request of a clone.
815 */
816 void dm_requeue_unmapped_request(struct request *clone)
817 {
818 int rw = rq_data_dir(clone);
819 struct dm_rq_target_io *tio = clone->end_io_data;
820 struct mapped_device *md = tio->md;
821 struct request *rq = tio->orig;
822 struct request_queue *q = rq->q;
823 unsigned long flags;
824
825 dm_unprep_request(rq);
826
827 spin_lock_irqsave(q->queue_lock, flags);
828 blk_requeue_request(q, rq);
829 spin_unlock_irqrestore(q->queue_lock, flags);
830
831 rq_completed(md, rw, 0);
832 }
833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
834
835 static void __stop_queue(struct request_queue *q)
836 {
837 blk_stop_queue(q);
838 }
839
840 static void stop_queue(struct request_queue *q)
841 {
842 unsigned long flags;
843
844 spin_lock_irqsave(q->queue_lock, flags);
845 __stop_queue(q);
846 spin_unlock_irqrestore(q->queue_lock, flags);
847 }
848
849 static void __start_queue(struct request_queue *q)
850 {
851 if (blk_queue_stopped(q))
852 blk_start_queue(q);
853 }
854
855 static void start_queue(struct request_queue *q)
856 {
857 unsigned long flags;
858
859 spin_lock_irqsave(q->queue_lock, flags);
860 __start_queue(q);
861 spin_unlock_irqrestore(q->queue_lock, flags);
862 }
863
864 static void dm_done(struct request *clone, int error, bool mapped)
865 {
866 int r = error;
867 struct dm_rq_target_io *tio = clone->end_io_data;
868 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
869
870 if (mapped && rq_end_io)
871 r = rq_end_io(tio->ti, clone, error, &tio->info);
872
873 if (r <= 0)
874 /* The target wants to complete the I/O */
875 dm_end_request(clone, r);
876 else if (r == DM_ENDIO_INCOMPLETE)
877 /* The target will handle the I/O */
878 return;
879 else if (r == DM_ENDIO_REQUEUE)
880 /* The target wants to requeue the I/O */
881 dm_requeue_unmapped_request(clone);
882 else {
883 DMWARN("unimplemented target endio return value: %d", r);
884 BUG();
885 }
886 }
887
888 /*
889 * Request completion handler for request-based dm
890 */
891 static void dm_softirq_done(struct request *rq)
892 {
893 bool mapped = true;
894 struct request *clone = rq->completion_data;
895 struct dm_rq_target_io *tio = clone->end_io_data;
896
897 if (rq->cmd_flags & REQ_FAILED)
898 mapped = false;
899
900 dm_done(clone, tio->error, mapped);
901 }
902
903 /*
904 * Complete the clone and the original request with the error status
905 * through softirq context.
906 */
907 static void dm_complete_request(struct request *clone, int error)
908 {
909 struct dm_rq_target_io *tio = clone->end_io_data;
910 struct request *rq = tio->orig;
911
912 tio->error = error;
913 rq->completion_data = clone;
914 blk_complete_request(rq);
915 }
916
917 /*
918 * Complete the not-mapped clone and the original request with the error status
919 * through softirq context.
920 * Target's rq_end_io() function isn't called.
921 * This may be used when the target's map_rq() function fails.
922 */
923 void dm_kill_unmapped_request(struct request *clone, int error)
924 {
925 struct dm_rq_target_io *tio = clone->end_io_data;
926 struct request *rq = tio->orig;
927
928 rq->cmd_flags |= REQ_FAILED;
929 dm_complete_request(clone, error);
930 }
931 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
932
933 /*
934 * Called with the queue lock held
935 */
936 static void end_clone_request(struct request *clone, int error)
937 {
938 /*
939 * For just cleaning up the information of the queue in which
940 * the clone was dispatched.
941 * The clone is *NOT* freed actually here because it is alloced from
942 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
943 */
944 __blk_put_request(clone->q, clone);
945
946 /*
947 * Actual request completion is done in a softirq context which doesn't
948 * hold the queue lock. Otherwise, deadlock could occur because:
949 * - another request may be submitted by the upper level driver
950 * of the stacking during the completion
951 * - the submission which requires queue lock may be done
952 * against this queue
953 */
954 dm_complete_request(clone, error);
955 }
956
957 /*
958 * Return maximum size of I/O possible at the supplied sector up to the current
959 * target boundary.
960 */
961 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
962 {
963 sector_t target_offset = dm_target_offset(ti, sector);
964
965 return ti->len - target_offset;
966 }
967
968 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
969 {
970 sector_t len = max_io_len_target_boundary(sector, ti);
971 sector_t offset, max_len;
972
973 /*
974 * Does the target need to split even further?
975 */
976 if (ti->max_io_len) {
977 offset = dm_target_offset(ti, sector);
978 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
979 max_len = sector_div(offset, ti->max_io_len);
980 else
981 max_len = offset & (ti->max_io_len - 1);
982 max_len = ti->max_io_len - max_len;
983
984 if (len > max_len)
985 len = max_len;
986 }
987
988 return len;
989 }
990
991 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
992 {
993 if (len > UINT_MAX) {
994 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
995 (unsigned long long)len, UINT_MAX);
996 ti->error = "Maximum size of target IO is too large";
997 return -EINVAL;
998 }
999
1000 ti->max_io_len = (uint32_t) len;
1001
1002 return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1005
1006 static void __map_bio(struct dm_target *ti, struct bio *clone,
1007 struct dm_target_io *tio)
1008 {
1009 int r;
1010 sector_t sector;
1011 struct mapped_device *md;
1012
1013 clone->bi_end_io = clone_endio;
1014 clone->bi_private = tio;
1015
1016 /*
1017 * Map the clone. If r == 0 we don't need to do
1018 * anything, the target has assumed ownership of
1019 * this io.
1020 */
1021 atomic_inc(&tio->io->io_count);
1022 sector = clone->bi_sector;
1023 r = ti->type->map(ti, clone, &tio->info);
1024 if (r == DM_MAPIO_REMAPPED) {
1025 /* the bio has been remapped so dispatch it */
1026
1027 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1028 tio->io->bio->bi_bdev->bd_dev, sector);
1029
1030 generic_make_request(clone);
1031 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1032 /* error the io and bail out, or requeue it if needed */
1033 md = tio->io->md;
1034 dec_pending(tio->io, r);
1035 /*
1036 * Store bio_set for cleanup.
1037 */
1038 clone->bi_end_io = NULL;
1039 clone->bi_private = md->bs;
1040 bio_put(clone);
1041 free_tio(md, tio);
1042 } else if (r) {
1043 DMWARN("unimplemented target map return value: %d", r);
1044 BUG();
1045 }
1046 }
1047
1048 struct clone_info {
1049 struct mapped_device *md;
1050 struct dm_table *map;
1051 struct bio *bio;
1052 struct dm_io *io;
1053 sector_t sector;
1054 sector_t sector_count;
1055 unsigned short idx;
1056 };
1057
1058 static void dm_bio_destructor(struct bio *bio)
1059 {
1060 struct bio_set *bs = bio->bi_private;
1061
1062 bio_free(bio, bs);
1063 }
1064
1065 /*
1066 * Creates a little bio that just does part of a bvec.
1067 */
1068 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1069 unsigned short idx, unsigned int offset,
1070 unsigned int len, struct bio_set *bs)
1071 {
1072 struct bio *clone;
1073 struct bio_vec *bv = bio->bi_io_vec + idx;
1074
1075 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1076 clone->bi_destructor = dm_bio_destructor;
1077 *clone->bi_io_vec = *bv;
1078
1079 clone->bi_sector = sector;
1080 clone->bi_bdev = bio->bi_bdev;
1081 clone->bi_rw = bio->bi_rw;
1082 clone->bi_vcnt = 1;
1083 clone->bi_size = to_bytes(len);
1084 clone->bi_io_vec->bv_offset = offset;
1085 clone->bi_io_vec->bv_len = clone->bi_size;
1086 clone->bi_flags |= 1 << BIO_CLONED;
1087
1088 if (bio_integrity(bio)) {
1089 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1090 bio_integrity_trim(clone,
1091 bio_sector_offset(bio, idx, offset), len);
1092 }
1093
1094 return clone;
1095 }
1096
1097 /*
1098 * Creates a bio that consists of range of complete bvecs.
1099 */
1100 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1101 unsigned short idx, unsigned short bv_count,
1102 unsigned int len, struct bio_set *bs)
1103 {
1104 struct bio *clone;
1105
1106 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1107 __bio_clone(clone, bio);
1108 clone->bi_destructor = dm_bio_destructor;
1109 clone->bi_sector = sector;
1110 clone->bi_idx = idx;
1111 clone->bi_vcnt = idx + bv_count;
1112 clone->bi_size = to_bytes(len);
1113 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1114
1115 if (bio_integrity(bio)) {
1116 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1117
1118 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1119 bio_integrity_trim(clone,
1120 bio_sector_offset(bio, idx, 0), len);
1121 }
1122
1123 return clone;
1124 }
1125
1126 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1127 struct dm_target *ti)
1128 {
1129 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1130
1131 tio->io = ci->io;
1132 tio->ti = ti;
1133 memset(&tio->info, 0, sizeof(tio->info));
1134
1135 return tio;
1136 }
1137
1138 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1139 unsigned request_nr, sector_t len)
1140 {
1141 struct dm_target_io *tio = alloc_tio(ci, ti);
1142 struct bio *clone;
1143
1144 tio->info.target_request_nr = request_nr;
1145
1146 /*
1147 * Discard requests require the bio's inline iovecs be initialized.
1148 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1149 * and discard, so no need for concern about wasted bvec allocations.
1150 */
1151 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1152 __bio_clone(clone, ci->bio);
1153 clone->bi_destructor = dm_bio_destructor;
1154 if (len) {
1155 clone->bi_sector = ci->sector;
1156 clone->bi_size = to_bytes(len);
1157 }
1158
1159 __map_bio(ti, clone, tio);
1160 }
1161
1162 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1163 unsigned num_requests, sector_t len)
1164 {
1165 unsigned request_nr;
1166
1167 for (request_nr = 0; request_nr < num_requests; request_nr++)
1168 __issue_target_request(ci, ti, request_nr, len);
1169 }
1170
1171 static int __clone_and_map_empty_flush(struct clone_info *ci)
1172 {
1173 unsigned target_nr = 0;
1174 struct dm_target *ti;
1175
1176 BUG_ON(bio_has_data(ci->bio));
1177 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1178 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1179
1180 return 0;
1181 }
1182
1183 /*
1184 * Perform all io with a single clone.
1185 */
1186 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1187 {
1188 struct bio *clone, *bio = ci->bio;
1189 struct dm_target_io *tio;
1190
1191 tio = alloc_tio(ci, ti);
1192 clone = clone_bio(bio, ci->sector, ci->idx,
1193 bio->bi_vcnt - ci->idx, ci->sector_count,
1194 ci->md->bs);
1195 __map_bio(ti, clone, tio);
1196 ci->sector_count = 0;
1197 }
1198
1199 static int __clone_and_map_discard(struct clone_info *ci)
1200 {
1201 struct dm_target *ti;
1202 sector_t len;
1203
1204 do {
1205 ti = dm_table_find_target(ci->map, ci->sector);
1206 if (!dm_target_is_valid(ti))
1207 return -EIO;
1208
1209 /*
1210 * Even though the device advertised discard support,
1211 * that does not mean every target supports it, and
1212 * reconfiguration might also have changed that since the
1213 * check was performed.
1214 */
1215 if (!ti->num_discard_requests)
1216 return -EOPNOTSUPP;
1217
1218 if (!ti->split_discard_requests)
1219 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1220 else
1221 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1222
1223 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1224
1225 ci->sector += len;
1226 } while (ci->sector_count -= len);
1227
1228 return 0;
1229 }
1230
1231 static int __clone_and_map(struct clone_info *ci)
1232 {
1233 struct bio *clone, *bio = ci->bio;
1234 struct dm_target *ti;
1235 sector_t len = 0, max;
1236 struct dm_target_io *tio;
1237
1238 if (unlikely(bio->bi_rw & REQ_DISCARD))
1239 return __clone_and_map_discard(ci);
1240
1241 ti = dm_table_find_target(ci->map, ci->sector);
1242 if (!dm_target_is_valid(ti))
1243 return -EIO;
1244
1245 max = max_io_len(ci->sector, ti);
1246
1247 if (ci->sector_count <= max) {
1248 /*
1249 * Optimise for the simple case where we can do all of
1250 * the remaining io with a single clone.
1251 */
1252 __clone_and_map_simple(ci, ti);
1253
1254 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1255 /*
1256 * There are some bvecs that don't span targets.
1257 * Do as many of these as possible.
1258 */
1259 int i;
1260 sector_t remaining = max;
1261 sector_t bv_len;
1262
1263 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1264 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1265
1266 if (bv_len > remaining)
1267 break;
1268
1269 remaining -= bv_len;
1270 len += bv_len;
1271 }
1272
1273 tio = alloc_tio(ci, ti);
1274 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1275 ci->md->bs);
1276 __map_bio(ti, clone, tio);
1277
1278 ci->sector += len;
1279 ci->sector_count -= len;
1280 ci->idx = i;
1281
1282 } else {
1283 /*
1284 * Handle a bvec that must be split between two or more targets.
1285 */
1286 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1287 sector_t remaining = to_sector(bv->bv_len);
1288 unsigned int offset = 0;
1289
1290 do {
1291 if (offset) {
1292 ti = dm_table_find_target(ci->map, ci->sector);
1293 if (!dm_target_is_valid(ti))
1294 return -EIO;
1295
1296 max = max_io_len(ci->sector, ti);
1297 }
1298
1299 len = min(remaining, max);
1300
1301 tio = alloc_tio(ci, ti);
1302 clone = split_bvec(bio, ci->sector, ci->idx,
1303 bv->bv_offset + offset, len,
1304 ci->md->bs);
1305
1306 __map_bio(ti, clone, tio);
1307
1308 ci->sector += len;
1309 ci->sector_count -= len;
1310 offset += to_bytes(len);
1311 } while (remaining -= len);
1312
1313 ci->idx++;
1314 }
1315
1316 return 0;
1317 }
1318
1319 /*
1320 * Split the bio into several clones and submit it to targets.
1321 */
1322 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1323 {
1324 struct clone_info ci;
1325 int error = 0;
1326
1327 ci.map = dm_get_live_table(md);
1328 if (unlikely(!ci.map)) {
1329 bio_io_error(bio);
1330 return;
1331 }
1332
1333 ci.md = md;
1334 ci.io = alloc_io(md);
1335 ci.io->error = 0;
1336 atomic_set(&ci.io->io_count, 1);
1337 ci.io->bio = bio;
1338 ci.io->md = md;
1339 spin_lock_init(&ci.io->endio_lock);
1340 ci.sector = bio->bi_sector;
1341 ci.idx = bio->bi_idx;
1342
1343 start_io_acct(ci.io);
1344 if (bio->bi_rw & REQ_FLUSH) {
1345 ci.bio = &ci.md->flush_bio;
1346 ci.sector_count = 0;
1347 error = __clone_and_map_empty_flush(&ci);
1348 /* dec_pending submits any data associated with flush */
1349 } else {
1350 ci.bio = bio;
1351 ci.sector_count = bio_sectors(bio);
1352 while (ci.sector_count && !error)
1353 error = __clone_and_map(&ci);
1354 }
1355
1356 /* drop the extra reference count */
1357 dec_pending(ci.io, error);
1358 dm_table_put(ci.map);
1359 }
1360 /*-----------------------------------------------------------------
1361 * CRUD END
1362 *---------------------------------------------------------------*/
1363
1364 static int dm_merge_bvec(struct request_queue *q,
1365 struct bvec_merge_data *bvm,
1366 struct bio_vec *biovec)
1367 {
1368 struct mapped_device *md = q->queuedata;
1369 struct dm_table *map = dm_get_live_table(md);
1370 struct dm_target *ti;
1371 sector_t max_sectors;
1372 int max_size = 0;
1373
1374 if (unlikely(!map))
1375 goto out;
1376
1377 ti = dm_table_find_target(map, bvm->bi_sector);
1378 if (!dm_target_is_valid(ti))
1379 goto out_table;
1380
1381 /*
1382 * Find maximum amount of I/O that won't need splitting
1383 */
1384 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1385 (sector_t) BIO_MAX_SECTORS);
1386 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1387 if (max_size < 0)
1388 max_size = 0;
1389
1390 /*
1391 * merge_bvec_fn() returns number of bytes
1392 * it can accept at this offset
1393 * max is precomputed maximal io size
1394 */
1395 if (max_size && ti->type->merge)
1396 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1397 /*
1398 * If the target doesn't support merge method and some of the devices
1399 * provided their merge_bvec method (we know this by looking at
1400 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1401 * entries. So always set max_size to 0, and the code below allows
1402 * just one page.
1403 */
1404 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1405
1406 max_size = 0;
1407
1408 out_table:
1409 dm_table_put(map);
1410
1411 out:
1412 /*
1413 * Always allow an entire first page
1414 */
1415 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1416 max_size = biovec->bv_len;
1417
1418 return max_size;
1419 }
1420
1421 /*
1422 * The request function that just remaps the bio built up by
1423 * dm_merge_bvec.
1424 */
1425 static void _dm_request(struct request_queue *q, struct bio *bio)
1426 {
1427 int rw = bio_data_dir(bio);
1428 struct mapped_device *md = q->queuedata;
1429 int cpu;
1430
1431 down_read(&md->io_lock);
1432
1433 cpu = part_stat_lock();
1434 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1435 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1436 part_stat_unlock();
1437
1438 /* if we're suspended, we have to queue this io for later */
1439 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1440 up_read(&md->io_lock);
1441
1442 if (bio_rw(bio) != READA)
1443 queue_io(md, bio);
1444 else
1445 bio_io_error(bio);
1446 return;
1447 }
1448
1449 __split_and_process_bio(md, bio);
1450 up_read(&md->io_lock);
1451 return;
1452 }
1453
1454 static int dm_request_based(struct mapped_device *md)
1455 {
1456 return blk_queue_stackable(md->queue);
1457 }
1458
1459 static void dm_request(struct request_queue *q, struct bio *bio)
1460 {
1461 struct mapped_device *md = q->queuedata;
1462
1463 if (dm_request_based(md))
1464 blk_queue_bio(q, bio);
1465 else
1466 _dm_request(q, bio);
1467 }
1468
1469 void dm_dispatch_request(struct request *rq)
1470 {
1471 int r;
1472
1473 if (blk_queue_io_stat(rq->q))
1474 rq->cmd_flags |= REQ_IO_STAT;
1475
1476 rq->start_time = jiffies;
1477 r = blk_insert_cloned_request(rq->q, rq);
1478 if (r)
1479 dm_complete_request(rq, r);
1480 }
1481 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1482
1483 static void dm_rq_bio_destructor(struct bio *bio)
1484 {
1485 struct dm_rq_clone_bio_info *info = bio->bi_private;
1486 struct mapped_device *md = info->tio->md;
1487
1488 free_bio_info(info);
1489 bio_free(bio, md->bs);
1490 }
1491
1492 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1493 void *data)
1494 {
1495 struct dm_rq_target_io *tio = data;
1496 struct mapped_device *md = tio->md;
1497 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1498
1499 if (!info)
1500 return -ENOMEM;
1501
1502 info->orig = bio_orig;
1503 info->tio = tio;
1504 bio->bi_end_io = end_clone_bio;
1505 bio->bi_private = info;
1506 bio->bi_destructor = dm_rq_bio_destructor;
1507
1508 return 0;
1509 }
1510
1511 static int setup_clone(struct request *clone, struct request *rq,
1512 struct dm_rq_target_io *tio)
1513 {
1514 int r;
1515
1516 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1517 dm_rq_bio_constructor, tio);
1518 if (r)
1519 return r;
1520
1521 clone->cmd = rq->cmd;
1522 clone->cmd_len = rq->cmd_len;
1523 clone->sense = rq->sense;
1524 clone->buffer = rq->buffer;
1525 clone->end_io = end_clone_request;
1526 clone->end_io_data = tio;
1527
1528 return 0;
1529 }
1530
1531 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1532 gfp_t gfp_mask)
1533 {
1534 struct request *clone;
1535 struct dm_rq_target_io *tio;
1536
1537 tio = alloc_rq_tio(md, gfp_mask);
1538 if (!tio)
1539 return NULL;
1540
1541 tio->md = md;
1542 tio->ti = NULL;
1543 tio->orig = rq;
1544 tio->error = 0;
1545 memset(&tio->info, 0, sizeof(tio->info));
1546
1547 clone = &tio->clone;
1548 if (setup_clone(clone, rq, tio)) {
1549 /* -ENOMEM */
1550 free_rq_tio(tio);
1551 return NULL;
1552 }
1553
1554 return clone;
1555 }
1556
1557 /*
1558 * Called with the queue lock held.
1559 */
1560 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1561 {
1562 struct mapped_device *md = q->queuedata;
1563 struct request *clone;
1564
1565 if (unlikely(rq->special)) {
1566 DMWARN("Already has something in rq->special.");
1567 return BLKPREP_KILL;
1568 }
1569
1570 clone = clone_rq(rq, md, GFP_ATOMIC);
1571 if (!clone)
1572 return BLKPREP_DEFER;
1573
1574 rq->special = clone;
1575 rq->cmd_flags |= REQ_DONTPREP;
1576
1577 return BLKPREP_OK;
1578 }
1579
1580 /*
1581 * Returns:
1582 * 0 : the request has been processed (not requeued)
1583 * !0 : the request has been requeued
1584 */
1585 static int map_request(struct dm_target *ti, struct request *clone,
1586 struct mapped_device *md)
1587 {
1588 int r, requeued = 0;
1589 struct dm_rq_target_io *tio = clone->end_io_data;
1590
1591 /*
1592 * Hold the md reference here for the in-flight I/O.
1593 * We can't rely on the reference count by device opener,
1594 * because the device may be closed during the request completion
1595 * when all bios are completed.
1596 * See the comment in rq_completed() too.
1597 */
1598 dm_get(md);
1599
1600 tio->ti = ti;
1601 r = ti->type->map_rq(ti, clone, &tio->info);
1602 switch (r) {
1603 case DM_MAPIO_SUBMITTED:
1604 /* The target has taken the I/O to submit by itself later */
1605 break;
1606 case DM_MAPIO_REMAPPED:
1607 /* The target has remapped the I/O so dispatch it */
1608 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1609 blk_rq_pos(tio->orig));
1610 dm_dispatch_request(clone);
1611 break;
1612 case DM_MAPIO_REQUEUE:
1613 /* The target wants to requeue the I/O */
1614 dm_requeue_unmapped_request(clone);
1615 requeued = 1;
1616 break;
1617 default:
1618 if (r > 0) {
1619 DMWARN("unimplemented target map return value: %d", r);
1620 BUG();
1621 }
1622
1623 /* The target wants to complete the I/O */
1624 dm_kill_unmapped_request(clone, r);
1625 break;
1626 }
1627
1628 return requeued;
1629 }
1630
1631 /*
1632 * q->request_fn for request-based dm.
1633 * Called with the queue lock held.
1634 */
1635 static void dm_request_fn(struct request_queue *q)
1636 {
1637 struct mapped_device *md = q->queuedata;
1638 struct dm_table *map = dm_get_live_table(md);
1639 struct dm_target *ti;
1640 struct request *rq, *clone;
1641 sector_t pos;
1642
1643 /*
1644 * For suspend, check blk_queue_stopped() and increment
1645 * ->pending within a single queue_lock not to increment the
1646 * number of in-flight I/Os after the queue is stopped in
1647 * dm_suspend().
1648 */
1649 while (!blk_queue_stopped(q)) {
1650 rq = blk_peek_request(q);
1651 if (!rq)
1652 goto delay_and_out;
1653
1654 /* always use block 0 to find the target for flushes for now */
1655 pos = 0;
1656 if (!(rq->cmd_flags & REQ_FLUSH))
1657 pos = blk_rq_pos(rq);
1658
1659 ti = dm_table_find_target(map, pos);
1660 BUG_ON(!dm_target_is_valid(ti));
1661
1662 if (ti->type->busy && ti->type->busy(ti))
1663 goto delay_and_out;
1664
1665 blk_start_request(rq);
1666 clone = rq->special;
1667 atomic_inc(&md->pending[rq_data_dir(clone)]);
1668
1669 spin_unlock(q->queue_lock);
1670 if (map_request(ti, clone, md))
1671 goto requeued;
1672
1673 BUG_ON(!irqs_disabled());
1674 spin_lock(q->queue_lock);
1675 }
1676
1677 goto out;
1678
1679 requeued:
1680 BUG_ON(!irqs_disabled());
1681 spin_lock(q->queue_lock);
1682
1683 delay_and_out:
1684 blk_delay_queue(q, HZ / 10);
1685 out:
1686 dm_table_put(map);
1687
1688 return;
1689 }
1690
1691 int dm_underlying_device_busy(struct request_queue *q)
1692 {
1693 return blk_lld_busy(q);
1694 }
1695 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1696
1697 static int dm_lld_busy(struct request_queue *q)
1698 {
1699 int r;
1700 struct mapped_device *md = q->queuedata;
1701 struct dm_table *map = dm_get_live_table(md);
1702
1703 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1704 r = 1;
1705 else
1706 r = dm_table_any_busy_target(map);
1707
1708 dm_table_put(map);
1709
1710 return r;
1711 }
1712
1713 static int dm_any_congested(void *congested_data, int bdi_bits)
1714 {
1715 int r = bdi_bits;
1716 struct mapped_device *md = congested_data;
1717 struct dm_table *map;
1718
1719 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1720 map = dm_get_live_table(md);
1721 if (map) {
1722 /*
1723 * Request-based dm cares about only own queue for
1724 * the query about congestion status of request_queue
1725 */
1726 if (dm_request_based(md))
1727 r = md->queue->backing_dev_info.state &
1728 bdi_bits;
1729 else
1730 r = dm_table_any_congested(map, bdi_bits);
1731
1732 dm_table_put(map);
1733 }
1734 }
1735
1736 return r;
1737 }
1738
1739 /*-----------------------------------------------------------------
1740 * An IDR is used to keep track of allocated minor numbers.
1741 *---------------------------------------------------------------*/
1742 static void free_minor(int minor)
1743 {
1744 spin_lock(&_minor_lock);
1745 idr_remove(&_minor_idr, minor);
1746 spin_unlock(&_minor_lock);
1747 }
1748
1749 /*
1750 * See if the device with a specific minor # is free.
1751 */
1752 static int specific_minor(int minor)
1753 {
1754 int r, m;
1755
1756 if (minor >= (1 << MINORBITS))
1757 return -EINVAL;
1758
1759 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1760 if (!r)
1761 return -ENOMEM;
1762
1763 spin_lock(&_minor_lock);
1764
1765 if (idr_find(&_minor_idr, minor)) {
1766 r = -EBUSY;
1767 goto out;
1768 }
1769
1770 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1771 if (r)
1772 goto out;
1773
1774 if (m != minor) {
1775 idr_remove(&_minor_idr, m);
1776 r = -EBUSY;
1777 goto out;
1778 }
1779
1780 out:
1781 spin_unlock(&_minor_lock);
1782 return r;
1783 }
1784
1785 static int next_free_minor(int *minor)
1786 {
1787 int r, m;
1788
1789 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1790 if (!r)
1791 return -ENOMEM;
1792
1793 spin_lock(&_minor_lock);
1794
1795 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1796 if (r)
1797 goto out;
1798
1799 if (m >= (1 << MINORBITS)) {
1800 idr_remove(&_minor_idr, m);
1801 r = -ENOSPC;
1802 goto out;
1803 }
1804
1805 *minor = m;
1806
1807 out:
1808 spin_unlock(&_minor_lock);
1809 return r;
1810 }
1811
1812 static const struct block_device_operations dm_blk_dops;
1813
1814 static void dm_wq_work(struct work_struct *work);
1815
1816 static void dm_init_md_queue(struct mapped_device *md)
1817 {
1818 /*
1819 * Request-based dm devices cannot be stacked on top of bio-based dm
1820 * devices. The type of this dm device has not been decided yet.
1821 * The type is decided at the first table loading time.
1822 * To prevent problematic device stacking, clear the queue flag
1823 * for request stacking support until then.
1824 *
1825 * This queue is new, so no concurrency on the queue_flags.
1826 */
1827 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1828
1829 md->queue->queuedata = md;
1830 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1831 md->queue->backing_dev_info.congested_data = md;
1832 blk_queue_make_request(md->queue, dm_request);
1833 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1834 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1835 }
1836
1837 /*
1838 * Allocate and initialise a blank device with a given minor.
1839 */
1840 static struct mapped_device *alloc_dev(int minor)
1841 {
1842 int r;
1843 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1844 void *old_md;
1845
1846 if (!md) {
1847 DMWARN("unable to allocate device, out of memory.");
1848 return NULL;
1849 }
1850
1851 if (!try_module_get(THIS_MODULE))
1852 goto bad_module_get;
1853
1854 /* get a minor number for the dev */
1855 if (minor == DM_ANY_MINOR)
1856 r = next_free_minor(&minor);
1857 else
1858 r = specific_minor(minor);
1859 if (r < 0)
1860 goto bad_minor;
1861
1862 md->type = DM_TYPE_NONE;
1863 init_rwsem(&md->io_lock);
1864 mutex_init(&md->suspend_lock);
1865 mutex_init(&md->type_lock);
1866 spin_lock_init(&md->deferred_lock);
1867 rwlock_init(&md->map_lock);
1868 atomic_set(&md->holders, 1);
1869 atomic_set(&md->open_count, 0);
1870 atomic_set(&md->event_nr, 0);
1871 atomic_set(&md->uevent_seq, 0);
1872 INIT_LIST_HEAD(&md->uevent_list);
1873 spin_lock_init(&md->uevent_lock);
1874
1875 md->queue = blk_alloc_queue(GFP_KERNEL);
1876 if (!md->queue)
1877 goto bad_queue;
1878
1879 dm_init_md_queue(md);
1880
1881 md->disk = alloc_disk(1);
1882 if (!md->disk)
1883 goto bad_disk;
1884
1885 atomic_set(&md->pending[0], 0);
1886 atomic_set(&md->pending[1], 0);
1887 init_waitqueue_head(&md->wait);
1888 INIT_WORK(&md->work, dm_wq_work);
1889 init_waitqueue_head(&md->eventq);
1890
1891 md->disk->major = _major;
1892 md->disk->first_minor = minor;
1893 md->disk->fops = &dm_blk_dops;
1894 md->disk->queue = md->queue;
1895 md->disk->private_data = md;
1896 sprintf(md->disk->disk_name, "dm-%d", minor);
1897 add_disk(md->disk);
1898 format_dev_t(md->name, MKDEV(_major, minor));
1899
1900 md->wq = alloc_workqueue("kdmflush",
1901 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1902 if (!md->wq)
1903 goto bad_thread;
1904
1905 md->bdev = bdget_disk(md->disk, 0);
1906 if (!md->bdev)
1907 goto bad_bdev;
1908
1909 bio_init(&md->flush_bio);
1910 md->flush_bio.bi_bdev = md->bdev;
1911 md->flush_bio.bi_rw = WRITE_FLUSH;
1912
1913 /* Populate the mapping, nobody knows we exist yet */
1914 spin_lock(&_minor_lock);
1915 old_md = idr_replace(&_minor_idr, md, minor);
1916 spin_unlock(&_minor_lock);
1917
1918 BUG_ON(old_md != MINOR_ALLOCED);
1919
1920 return md;
1921
1922 bad_bdev:
1923 destroy_workqueue(md->wq);
1924 bad_thread:
1925 del_gendisk(md->disk);
1926 put_disk(md->disk);
1927 bad_disk:
1928 blk_cleanup_queue(md->queue);
1929 bad_queue:
1930 free_minor(minor);
1931 bad_minor:
1932 module_put(THIS_MODULE);
1933 bad_module_get:
1934 kfree(md);
1935 return NULL;
1936 }
1937
1938 static void unlock_fs(struct mapped_device *md);
1939
1940 static void free_dev(struct mapped_device *md)
1941 {
1942 int minor = MINOR(disk_devt(md->disk));
1943
1944 unlock_fs(md);
1945 bdput(md->bdev);
1946 destroy_workqueue(md->wq);
1947 if (md->tio_pool)
1948 mempool_destroy(md->tio_pool);
1949 if (md->io_pool)
1950 mempool_destroy(md->io_pool);
1951 if (md->bs)
1952 bioset_free(md->bs);
1953 blk_integrity_unregister(md->disk);
1954 del_gendisk(md->disk);
1955 free_minor(minor);
1956
1957 spin_lock(&_minor_lock);
1958 md->disk->private_data = NULL;
1959 spin_unlock(&_minor_lock);
1960
1961 put_disk(md->disk);
1962 blk_cleanup_queue(md->queue);
1963 module_put(THIS_MODULE);
1964 kfree(md);
1965 }
1966
1967 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1968 {
1969 struct dm_md_mempools *p;
1970
1971 if (md->io_pool && md->tio_pool && md->bs)
1972 /* the md already has necessary mempools */
1973 goto out;
1974
1975 p = dm_table_get_md_mempools(t);
1976 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1977
1978 md->io_pool = p->io_pool;
1979 p->io_pool = NULL;
1980 md->tio_pool = p->tio_pool;
1981 p->tio_pool = NULL;
1982 md->bs = p->bs;
1983 p->bs = NULL;
1984
1985 out:
1986 /* mempool bind completed, now no need any mempools in the table */
1987 dm_table_free_md_mempools(t);
1988 }
1989
1990 /*
1991 * Bind a table to the device.
1992 */
1993 static void event_callback(void *context)
1994 {
1995 unsigned long flags;
1996 LIST_HEAD(uevents);
1997 struct mapped_device *md = (struct mapped_device *) context;
1998
1999 spin_lock_irqsave(&md->uevent_lock, flags);
2000 list_splice_init(&md->uevent_list, &uevents);
2001 spin_unlock_irqrestore(&md->uevent_lock, flags);
2002
2003 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2004
2005 atomic_inc(&md->event_nr);
2006 wake_up(&md->eventq);
2007 }
2008
2009 /*
2010 * Protected by md->suspend_lock obtained by dm_swap_table().
2011 */
2012 static void __set_size(struct mapped_device *md, sector_t size)
2013 {
2014 set_capacity(md->disk, size);
2015
2016 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2017 }
2018
2019 /*
2020 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2021 *
2022 * If this function returns 0, then the device is either a non-dm
2023 * device without a merge_bvec_fn, or it is a dm device that is
2024 * able to split any bios it receives that are too big.
2025 */
2026 int dm_queue_merge_is_compulsory(struct request_queue *q)
2027 {
2028 struct mapped_device *dev_md;
2029
2030 if (!q->merge_bvec_fn)
2031 return 0;
2032
2033 if (q->make_request_fn == dm_request) {
2034 dev_md = q->queuedata;
2035 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2036 return 0;
2037 }
2038
2039 return 1;
2040 }
2041
2042 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2043 struct dm_dev *dev, sector_t start,
2044 sector_t len, void *data)
2045 {
2046 struct block_device *bdev = dev->bdev;
2047 struct request_queue *q = bdev_get_queue(bdev);
2048
2049 return dm_queue_merge_is_compulsory(q);
2050 }
2051
2052 /*
2053 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2054 * on the properties of the underlying devices.
2055 */
2056 static int dm_table_merge_is_optional(struct dm_table *table)
2057 {
2058 unsigned i = 0;
2059 struct dm_target *ti;
2060
2061 while (i < dm_table_get_num_targets(table)) {
2062 ti = dm_table_get_target(table, i++);
2063
2064 if (ti->type->iterate_devices &&
2065 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2066 return 0;
2067 }
2068
2069 return 1;
2070 }
2071
2072 /*
2073 * Returns old map, which caller must destroy.
2074 */
2075 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2076 struct queue_limits *limits)
2077 {
2078 struct dm_table *old_map;
2079 struct request_queue *q = md->queue;
2080 sector_t size;
2081 unsigned long flags;
2082 int merge_is_optional;
2083
2084 size = dm_table_get_size(t);
2085
2086 /*
2087 * Wipe any geometry if the size of the table changed.
2088 */
2089 if (size != get_capacity(md->disk))
2090 memset(&md->geometry, 0, sizeof(md->geometry));
2091
2092 __set_size(md, size);
2093
2094 dm_table_event_callback(t, event_callback, md);
2095
2096 /*
2097 * The queue hasn't been stopped yet, if the old table type wasn't
2098 * for request-based during suspension. So stop it to prevent
2099 * I/O mapping before resume.
2100 * This must be done before setting the queue restrictions,
2101 * because request-based dm may be run just after the setting.
2102 */
2103 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2104 stop_queue(q);
2105
2106 __bind_mempools(md, t);
2107
2108 merge_is_optional = dm_table_merge_is_optional(t);
2109
2110 write_lock_irqsave(&md->map_lock, flags);
2111 old_map = md->map;
2112 md->map = t;
2113 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2114
2115 dm_table_set_restrictions(t, q, limits);
2116 if (merge_is_optional)
2117 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2118 else
2119 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2120 write_unlock_irqrestore(&md->map_lock, flags);
2121
2122 return old_map;
2123 }
2124
2125 /*
2126 * Returns unbound table for the caller to free.
2127 */
2128 static struct dm_table *__unbind(struct mapped_device *md)
2129 {
2130 struct dm_table *map = md->map;
2131 unsigned long flags;
2132
2133 if (!map)
2134 return NULL;
2135
2136 dm_table_event_callback(map, NULL, NULL);
2137 write_lock_irqsave(&md->map_lock, flags);
2138 md->map = NULL;
2139 write_unlock_irqrestore(&md->map_lock, flags);
2140
2141 return map;
2142 }
2143
2144 /*
2145 * Constructor for a new device.
2146 */
2147 int dm_create(int minor, struct mapped_device **result)
2148 {
2149 struct mapped_device *md;
2150
2151 md = alloc_dev(minor);
2152 if (!md)
2153 return -ENXIO;
2154
2155 dm_sysfs_init(md);
2156
2157 *result = md;
2158 return 0;
2159 }
2160
2161 /*
2162 * Functions to manage md->type.
2163 * All are required to hold md->type_lock.
2164 */
2165 void dm_lock_md_type(struct mapped_device *md)
2166 {
2167 mutex_lock(&md->type_lock);
2168 }
2169
2170 void dm_unlock_md_type(struct mapped_device *md)
2171 {
2172 mutex_unlock(&md->type_lock);
2173 }
2174
2175 void dm_set_md_type(struct mapped_device *md, unsigned type)
2176 {
2177 md->type = type;
2178 }
2179
2180 unsigned dm_get_md_type(struct mapped_device *md)
2181 {
2182 return md->type;
2183 }
2184
2185 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2186 {
2187 return md->immutable_target_type;
2188 }
2189
2190 /*
2191 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2192 */
2193 static int dm_init_request_based_queue(struct mapped_device *md)
2194 {
2195 struct request_queue *q = NULL;
2196
2197 if (md->queue->elevator)
2198 return 1;
2199
2200 /* Fully initialize the queue */
2201 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2202 if (!q)
2203 return 0;
2204
2205 md->queue = q;
2206 dm_init_md_queue(md);
2207 blk_queue_softirq_done(md->queue, dm_softirq_done);
2208 blk_queue_prep_rq(md->queue, dm_prep_fn);
2209 blk_queue_lld_busy(md->queue, dm_lld_busy);
2210
2211 elv_register_queue(md->queue);
2212
2213 return 1;
2214 }
2215
2216 /*
2217 * Setup the DM device's queue based on md's type
2218 */
2219 int dm_setup_md_queue(struct mapped_device *md)
2220 {
2221 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2222 !dm_init_request_based_queue(md)) {
2223 DMWARN("Cannot initialize queue for request-based mapped device");
2224 return -EINVAL;
2225 }
2226
2227 return 0;
2228 }
2229
2230 static struct mapped_device *dm_find_md(dev_t dev)
2231 {
2232 struct mapped_device *md;
2233 unsigned minor = MINOR(dev);
2234
2235 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2236 return NULL;
2237
2238 spin_lock(&_minor_lock);
2239
2240 md = idr_find(&_minor_idr, minor);
2241 if (md && (md == MINOR_ALLOCED ||
2242 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2243 dm_deleting_md(md) ||
2244 test_bit(DMF_FREEING, &md->flags))) {
2245 md = NULL;
2246 goto out;
2247 }
2248
2249 out:
2250 spin_unlock(&_minor_lock);
2251
2252 return md;
2253 }
2254
2255 struct mapped_device *dm_get_md(dev_t dev)
2256 {
2257 struct mapped_device *md = dm_find_md(dev);
2258
2259 if (md)
2260 dm_get(md);
2261
2262 return md;
2263 }
2264 EXPORT_SYMBOL_GPL(dm_get_md);
2265
2266 void *dm_get_mdptr(struct mapped_device *md)
2267 {
2268 return md->interface_ptr;
2269 }
2270
2271 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2272 {
2273 md->interface_ptr = ptr;
2274 }
2275
2276 void dm_get(struct mapped_device *md)
2277 {
2278 atomic_inc(&md->holders);
2279 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2280 }
2281
2282 const char *dm_device_name(struct mapped_device *md)
2283 {
2284 return md->name;
2285 }
2286 EXPORT_SYMBOL_GPL(dm_device_name);
2287
2288 static void __dm_destroy(struct mapped_device *md, bool wait)
2289 {
2290 struct dm_table *map;
2291
2292 might_sleep();
2293
2294 spin_lock(&_minor_lock);
2295 map = dm_get_live_table(md);
2296 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2297 set_bit(DMF_FREEING, &md->flags);
2298 spin_unlock(&_minor_lock);
2299
2300 if (!dm_suspended_md(md)) {
2301 dm_table_presuspend_targets(map);
2302 dm_table_postsuspend_targets(map);
2303 }
2304
2305 /*
2306 * Rare, but there may be I/O requests still going to complete,
2307 * for example. Wait for all references to disappear.
2308 * No one should increment the reference count of the mapped_device,
2309 * after the mapped_device state becomes DMF_FREEING.
2310 */
2311 if (wait)
2312 while (atomic_read(&md->holders))
2313 msleep(1);
2314 else if (atomic_read(&md->holders))
2315 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2316 dm_device_name(md), atomic_read(&md->holders));
2317
2318 dm_sysfs_exit(md);
2319 dm_table_put(map);
2320 dm_table_destroy(__unbind(md));
2321 free_dev(md);
2322 }
2323
2324 void dm_destroy(struct mapped_device *md)
2325 {
2326 __dm_destroy(md, true);
2327 }
2328
2329 void dm_destroy_immediate(struct mapped_device *md)
2330 {
2331 __dm_destroy(md, false);
2332 }
2333
2334 void dm_put(struct mapped_device *md)
2335 {
2336 atomic_dec(&md->holders);
2337 }
2338 EXPORT_SYMBOL_GPL(dm_put);
2339
2340 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2341 {
2342 int r = 0;
2343 DECLARE_WAITQUEUE(wait, current);
2344
2345 add_wait_queue(&md->wait, &wait);
2346
2347 while (1) {
2348 set_current_state(interruptible);
2349
2350 if (!md_in_flight(md))
2351 break;
2352
2353 if (interruptible == TASK_INTERRUPTIBLE &&
2354 signal_pending(current)) {
2355 r = -EINTR;
2356 break;
2357 }
2358
2359 io_schedule();
2360 }
2361 set_current_state(TASK_RUNNING);
2362
2363 remove_wait_queue(&md->wait, &wait);
2364
2365 return r;
2366 }
2367
2368 /*
2369 * Process the deferred bios
2370 */
2371 static void dm_wq_work(struct work_struct *work)
2372 {
2373 struct mapped_device *md = container_of(work, struct mapped_device,
2374 work);
2375 struct bio *c;
2376
2377 down_read(&md->io_lock);
2378
2379 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2380 spin_lock_irq(&md->deferred_lock);
2381 c = bio_list_pop(&md->deferred);
2382 spin_unlock_irq(&md->deferred_lock);
2383
2384 if (!c)
2385 break;
2386
2387 up_read(&md->io_lock);
2388
2389 if (dm_request_based(md))
2390 generic_make_request(c);
2391 else
2392 __split_and_process_bio(md, c);
2393
2394 down_read(&md->io_lock);
2395 }
2396
2397 up_read(&md->io_lock);
2398 }
2399
2400 static void dm_queue_flush(struct mapped_device *md)
2401 {
2402 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2403 smp_mb__after_clear_bit();
2404 queue_work(md->wq, &md->work);
2405 }
2406
2407 /*
2408 * Swap in a new table, returning the old one for the caller to destroy.
2409 */
2410 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2411 {
2412 struct dm_table *map = ERR_PTR(-EINVAL);
2413 struct queue_limits limits;
2414 int r;
2415
2416 mutex_lock(&md->suspend_lock);
2417
2418 /* device must be suspended */
2419 if (!dm_suspended_md(md))
2420 goto out;
2421
2422 r = dm_calculate_queue_limits(table, &limits);
2423 if (r) {
2424 map = ERR_PTR(r);
2425 goto out;
2426 }
2427
2428 map = __bind(md, table, &limits);
2429
2430 out:
2431 mutex_unlock(&md->suspend_lock);
2432 return map;
2433 }
2434
2435 /*
2436 * Functions to lock and unlock any filesystem running on the
2437 * device.
2438 */
2439 static int lock_fs(struct mapped_device *md)
2440 {
2441 int r;
2442
2443 WARN_ON(md->frozen_sb);
2444
2445 md->frozen_sb = freeze_bdev(md->bdev);
2446 if (IS_ERR(md->frozen_sb)) {
2447 r = PTR_ERR(md->frozen_sb);
2448 md->frozen_sb = NULL;
2449 return r;
2450 }
2451
2452 set_bit(DMF_FROZEN, &md->flags);
2453
2454 return 0;
2455 }
2456
2457 static void unlock_fs(struct mapped_device *md)
2458 {
2459 if (!test_bit(DMF_FROZEN, &md->flags))
2460 return;
2461
2462 thaw_bdev(md->bdev, md->frozen_sb);
2463 md->frozen_sb = NULL;
2464 clear_bit(DMF_FROZEN, &md->flags);
2465 }
2466
2467 /*
2468 * We need to be able to change a mapping table under a mounted
2469 * filesystem. For example we might want to move some data in
2470 * the background. Before the table can be swapped with
2471 * dm_bind_table, dm_suspend must be called to flush any in
2472 * flight bios and ensure that any further io gets deferred.
2473 */
2474 /*
2475 * Suspend mechanism in request-based dm.
2476 *
2477 * 1. Flush all I/Os by lock_fs() if needed.
2478 * 2. Stop dispatching any I/O by stopping the request_queue.
2479 * 3. Wait for all in-flight I/Os to be completed or requeued.
2480 *
2481 * To abort suspend, start the request_queue.
2482 */
2483 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2484 {
2485 struct dm_table *map = NULL;
2486 int r = 0;
2487 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2488 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2489
2490 mutex_lock(&md->suspend_lock);
2491
2492 if (dm_suspended_md(md)) {
2493 r = -EINVAL;
2494 goto out_unlock;
2495 }
2496
2497 map = dm_get_live_table(md);
2498
2499 /*
2500 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501 * This flag is cleared before dm_suspend returns.
2502 */
2503 if (noflush)
2504 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2505
2506 /* This does not get reverted if there's an error later. */
2507 dm_table_presuspend_targets(map);
2508
2509 /*
2510 * Flush I/O to the device.
2511 * Any I/O submitted after lock_fs() may not be flushed.
2512 * noflush takes precedence over do_lockfs.
2513 * (lock_fs() flushes I/Os and waits for them to complete.)
2514 */
2515 if (!noflush && do_lockfs) {
2516 r = lock_fs(md);
2517 if (r)
2518 goto out;
2519 }
2520
2521 /*
2522 * Here we must make sure that no processes are submitting requests
2523 * to target drivers i.e. no one may be executing
2524 * __split_and_process_bio. This is called from dm_request and
2525 * dm_wq_work.
2526 *
2527 * To get all processes out of __split_and_process_bio in dm_request,
2528 * we take the write lock. To prevent any process from reentering
2529 * __split_and_process_bio from dm_request and quiesce the thread
2530 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2531 * flush_workqueue(md->wq).
2532 */
2533 down_write(&md->io_lock);
2534 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2535 up_write(&md->io_lock);
2536
2537 /*
2538 * Stop md->queue before flushing md->wq in case request-based
2539 * dm defers requests to md->wq from md->queue.
2540 */
2541 if (dm_request_based(md))
2542 stop_queue(md->queue);
2543
2544 flush_workqueue(md->wq);
2545
2546 /*
2547 * At this point no more requests are entering target request routines.
2548 * We call dm_wait_for_completion to wait for all existing requests
2549 * to finish.
2550 */
2551 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2552
2553 down_write(&md->io_lock);
2554 if (noflush)
2555 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2556 up_write(&md->io_lock);
2557
2558 /* were we interrupted ? */
2559 if (r < 0) {
2560 dm_queue_flush(md);
2561
2562 if (dm_request_based(md))
2563 start_queue(md->queue);
2564
2565 unlock_fs(md);
2566 goto out; /* pushback list is already flushed, so skip flush */
2567 }
2568
2569 /*
2570 * If dm_wait_for_completion returned 0, the device is completely
2571 * quiescent now. There is no request-processing activity. All new
2572 * requests are being added to md->deferred list.
2573 */
2574
2575 set_bit(DMF_SUSPENDED, &md->flags);
2576
2577 dm_table_postsuspend_targets(map);
2578
2579 out:
2580 dm_table_put(map);
2581
2582 out_unlock:
2583 mutex_unlock(&md->suspend_lock);
2584 return r;
2585 }
2586
2587 int dm_resume(struct mapped_device *md)
2588 {
2589 int r = -EINVAL;
2590 struct dm_table *map = NULL;
2591
2592 mutex_lock(&md->suspend_lock);
2593 if (!dm_suspended_md(md))
2594 goto out;
2595
2596 map = dm_get_live_table(md);
2597 if (!map || !dm_table_get_size(map))
2598 goto out;
2599
2600 r = dm_table_resume_targets(map);
2601 if (r)
2602 goto out;
2603
2604 dm_queue_flush(md);
2605
2606 /*
2607 * Flushing deferred I/Os must be done after targets are resumed
2608 * so that mapping of targets can work correctly.
2609 * Request-based dm is queueing the deferred I/Os in its request_queue.
2610 */
2611 if (dm_request_based(md))
2612 start_queue(md->queue);
2613
2614 unlock_fs(md);
2615
2616 clear_bit(DMF_SUSPENDED, &md->flags);
2617
2618 r = 0;
2619 out:
2620 dm_table_put(map);
2621 mutex_unlock(&md->suspend_lock);
2622
2623 return r;
2624 }
2625
2626 /*-----------------------------------------------------------------
2627 * Event notification.
2628 *---------------------------------------------------------------*/
2629 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2630 unsigned cookie)
2631 {
2632 char udev_cookie[DM_COOKIE_LENGTH];
2633 char *envp[] = { udev_cookie, NULL };
2634
2635 if (!cookie)
2636 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2637 else {
2638 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2639 DM_COOKIE_ENV_VAR_NAME, cookie);
2640 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2641 action, envp);
2642 }
2643 }
2644
2645 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2646 {
2647 return atomic_add_return(1, &md->uevent_seq);
2648 }
2649
2650 uint32_t dm_get_event_nr(struct mapped_device *md)
2651 {
2652 return atomic_read(&md->event_nr);
2653 }
2654
2655 int dm_wait_event(struct mapped_device *md, int event_nr)
2656 {
2657 return wait_event_interruptible(md->eventq,
2658 (event_nr != atomic_read(&md->event_nr)));
2659 }
2660
2661 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2662 {
2663 unsigned long flags;
2664
2665 spin_lock_irqsave(&md->uevent_lock, flags);
2666 list_add(elist, &md->uevent_list);
2667 spin_unlock_irqrestore(&md->uevent_lock, flags);
2668 }
2669
2670 /*
2671 * The gendisk is only valid as long as you have a reference
2672 * count on 'md'.
2673 */
2674 struct gendisk *dm_disk(struct mapped_device *md)
2675 {
2676 return md->disk;
2677 }
2678
2679 struct kobject *dm_kobject(struct mapped_device *md)
2680 {
2681 return &md->kobj;
2682 }
2683
2684 /*
2685 * struct mapped_device should not be exported outside of dm.c
2686 * so use this check to verify that kobj is part of md structure
2687 */
2688 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2689 {
2690 struct mapped_device *md;
2691
2692 md = container_of(kobj, struct mapped_device, kobj);
2693 if (&md->kobj != kobj)
2694 return NULL;
2695
2696 if (test_bit(DMF_FREEING, &md->flags) ||
2697 dm_deleting_md(md))
2698 return NULL;
2699
2700 dm_get(md);
2701 return md;
2702 }
2703
2704 int dm_suspended_md(struct mapped_device *md)
2705 {
2706 return test_bit(DMF_SUSPENDED, &md->flags);
2707 }
2708
2709 int dm_suspended(struct dm_target *ti)
2710 {
2711 return dm_suspended_md(dm_table_get_md(ti->table));
2712 }
2713 EXPORT_SYMBOL_GPL(dm_suspended);
2714
2715 int dm_noflush_suspending(struct dm_target *ti)
2716 {
2717 return __noflush_suspending(dm_table_get_md(ti->table));
2718 }
2719 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2720
2721 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2722 {
2723 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2724 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2725
2726 if (!pools)
2727 return NULL;
2728
2729 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2730 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2731 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2732 if (!pools->io_pool)
2733 goto free_pools_and_out;
2734
2735 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2736 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2737 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2738 if (!pools->tio_pool)
2739 goto free_io_pool_and_out;
2740
2741 pools->bs = bioset_create(pool_size, 0);
2742 if (!pools->bs)
2743 goto free_tio_pool_and_out;
2744
2745 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2746 goto free_bioset_and_out;
2747
2748 return pools;
2749
2750 free_bioset_and_out:
2751 bioset_free(pools->bs);
2752
2753 free_tio_pool_and_out:
2754 mempool_destroy(pools->tio_pool);
2755
2756 free_io_pool_and_out:
2757 mempool_destroy(pools->io_pool);
2758
2759 free_pools_and_out:
2760 kfree(pools);
2761
2762 return NULL;
2763 }
2764
2765 void dm_free_md_mempools(struct dm_md_mempools *pools)
2766 {
2767 if (!pools)
2768 return;
2769
2770 if (pools->io_pool)
2771 mempool_destroy(pools->io_pool);
2772
2773 if (pools->tio_pool)
2774 mempool_destroy(pools->tio_pool);
2775
2776 if (pools->bs)
2777 bioset_free(pools->bs);
2778
2779 kfree(pools);
2780 }
2781
2782 static const struct block_device_operations dm_blk_dops = {
2783 .open = dm_blk_open,
2784 .release = dm_blk_close,
2785 .ioctl = dm_blk_ioctl,
2786 .getgeo = dm_blk_getgeo,
2787 .owner = THIS_MODULE
2788 };
2789
2790 EXPORT_SYMBOL(dm_get_mapinfo);
2791
2792 /*
2793 * module hooks
2794 */
2795 module_init(dm_init);
2796 module_exit(dm_exit);
2797
2798 module_param(major, uint, 0);
2799 MODULE_PARM_DESC(major, "The major number of the device mapper");
2800 MODULE_DESCRIPTION(DM_NAME " driver");
2801 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2802 MODULE_LICENSE("GPL");
This page took 0.088376 seconds and 5 git commands to generate.