drm/radeon: Print PCI ID of cards when probing
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * For bio-based dm.
36 * One of these is allocated per bio.
37 */
38 struct dm_io {
39 struct mapped_device *md;
40 int error;
41 atomic_t io_count;
42 struct bio *bio;
43 unsigned long start_time;
44 };
45
46 /*
47 * For bio-based dm.
48 * One of these is allocated per target within a bio. Hopefully
49 * this will be simplified out one day.
50 */
51 struct dm_target_io {
52 struct dm_io *io;
53 struct dm_target *ti;
54 union map_info info;
55 };
56
57 DEFINE_TRACE(block_bio_complete);
58
59 /*
60 * For request-based dm.
61 * One of these is allocated per request.
62 */
63 struct dm_rq_target_io {
64 struct mapped_device *md;
65 struct dm_target *ti;
66 struct request *orig, clone;
67 int error;
68 union map_info info;
69 };
70
71 /*
72 * For request-based dm.
73 * One of these is allocated per bio.
74 */
75 struct dm_rq_clone_bio_info {
76 struct bio *orig;
77 struct request *rq;
78 };
79
80 union map_info *dm_get_mapinfo(struct bio *bio)
81 {
82 if (bio && bio->bi_private)
83 return &((struct dm_target_io *)bio->bi_private)->info;
84 return NULL;
85 }
86
87 #define MINOR_ALLOCED ((void *)-1)
88
89 /*
90 * Bits for the md->flags field.
91 */
92 #define DMF_BLOCK_IO 0
93 #define DMF_SUSPENDED 1
94 #define DMF_FROZEN 2
95 #define DMF_FREEING 3
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
98
99 /*
100 * Work processed by per-device workqueue.
101 */
102 struct dm_wq_req {
103 enum {
104 DM_WQ_FLUSH_DEFERRED,
105 } type;
106 struct work_struct work;
107 struct mapped_device *md;
108 void *context;
109 };
110
111 struct mapped_device {
112 struct rw_semaphore io_lock;
113 struct mutex suspend_lock;
114 spinlock_t pushback_lock;
115 rwlock_t map_lock;
116 atomic_t holders;
117 atomic_t open_count;
118
119 unsigned long flags;
120
121 struct request_queue *queue;
122 struct gendisk *disk;
123 char name[16];
124
125 void *interface_ptr;
126
127 /*
128 * A list of ios that arrived while we were suspended.
129 */
130 atomic_t pending;
131 wait_queue_head_t wait;
132 struct bio_list deferred;
133 struct bio_list pushback;
134
135 /*
136 * Processing queue (flush/barriers)
137 */
138 struct workqueue_struct *wq;
139
140 /*
141 * The current mapping.
142 */
143 struct dm_table *map;
144
145 /*
146 * io objects are allocated from here.
147 */
148 mempool_t *io_pool;
149 mempool_t *tio_pool;
150
151 struct bio_set *bs;
152
153 /*
154 * Event handling.
155 */
156 atomic_t event_nr;
157 wait_queue_head_t eventq;
158 atomic_t uevent_seq;
159 struct list_head uevent_list;
160 spinlock_t uevent_lock; /* Protect access to uevent_list */
161
162 /*
163 * freeze/thaw support require holding onto a super block
164 */
165 struct super_block *frozen_sb;
166 struct block_device *suspended_bdev;
167
168 /* forced geometry settings */
169 struct hd_geometry geometry;
170
171 /* sysfs handle */
172 struct kobject kobj;
173 };
174
175 #define MIN_IOS 256
176 static struct kmem_cache *_io_cache;
177 static struct kmem_cache *_tio_cache;
178 static struct kmem_cache *_rq_tio_cache;
179 static struct kmem_cache *_rq_bio_info_cache;
180
181 static int __init local_init(void)
182 {
183 int r = -ENOMEM;
184
185 /* allocate a slab for the dm_ios */
186 _io_cache = KMEM_CACHE(dm_io, 0);
187 if (!_io_cache)
188 return r;
189
190 /* allocate a slab for the target ios */
191 _tio_cache = KMEM_CACHE(dm_target_io, 0);
192 if (!_tio_cache)
193 goto out_free_io_cache;
194
195 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
196 if (!_rq_tio_cache)
197 goto out_free_tio_cache;
198
199 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
200 if (!_rq_bio_info_cache)
201 goto out_free_rq_tio_cache;
202
203 r = dm_uevent_init();
204 if (r)
205 goto out_free_rq_bio_info_cache;
206
207 _major = major;
208 r = register_blkdev(_major, _name);
209 if (r < 0)
210 goto out_uevent_exit;
211
212 if (!_major)
213 _major = r;
214
215 return 0;
216
217 out_uevent_exit:
218 dm_uevent_exit();
219 out_free_rq_bio_info_cache:
220 kmem_cache_destroy(_rq_bio_info_cache);
221 out_free_rq_tio_cache:
222 kmem_cache_destroy(_rq_tio_cache);
223 out_free_tio_cache:
224 kmem_cache_destroy(_tio_cache);
225 out_free_io_cache:
226 kmem_cache_destroy(_io_cache);
227
228 return r;
229 }
230
231 static void local_exit(void)
232 {
233 kmem_cache_destroy(_rq_bio_info_cache);
234 kmem_cache_destroy(_rq_tio_cache);
235 kmem_cache_destroy(_tio_cache);
236 kmem_cache_destroy(_io_cache);
237 unregister_blkdev(_major, _name);
238 dm_uevent_exit();
239
240 _major = 0;
241
242 DMINFO("cleaned up");
243 }
244
245 static int (*_inits[])(void) __initdata = {
246 local_init,
247 dm_target_init,
248 dm_linear_init,
249 dm_stripe_init,
250 dm_kcopyd_init,
251 dm_interface_init,
252 };
253
254 static void (*_exits[])(void) = {
255 local_exit,
256 dm_target_exit,
257 dm_linear_exit,
258 dm_stripe_exit,
259 dm_kcopyd_exit,
260 dm_interface_exit,
261 };
262
263 static int __init dm_init(void)
264 {
265 const int count = ARRAY_SIZE(_inits);
266
267 int r, i;
268
269 for (i = 0; i < count; i++) {
270 r = _inits[i]();
271 if (r)
272 goto bad;
273 }
274
275 return 0;
276
277 bad:
278 while (i--)
279 _exits[i]();
280
281 return r;
282 }
283
284 static void __exit dm_exit(void)
285 {
286 int i = ARRAY_SIZE(_exits);
287
288 while (i--)
289 _exits[i]();
290 }
291
292 /*
293 * Block device functions
294 */
295 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
296 {
297 struct mapped_device *md;
298
299 spin_lock(&_minor_lock);
300
301 md = bdev->bd_disk->private_data;
302 if (!md)
303 goto out;
304
305 if (test_bit(DMF_FREEING, &md->flags) ||
306 test_bit(DMF_DELETING, &md->flags)) {
307 md = NULL;
308 goto out;
309 }
310
311 dm_get(md);
312 atomic_inc(&md->open_count);
313
314 out:
315 spin_unlock(&_minor_lock);
316
317 return md ? 0 : -ENXIO;
318 }
319
320 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
321 {
322 struct mapped_device *md = disk->private_data;
323 atomic_dec(&md->open_count);
324 dm_put(md);
325 return 0;
326 }
327
328 int dm_open_count(struct mapped_device *md)
329 {
330 return atomic_read(&md->open_count);
331 }
332
333 /*
334 * Guarantees nothing is using the device before it's deleted.
335 */
336 int dm_lock_for_deletion(struct mapped_device *md)
337 {
338 int r = 0;
339
340 spin_lock(&_minor_lock);
341
342 if (dm_open_count(md))
343 r = -EBUSY;
344 else
345 set_bit(DMF_DELETING, &md->flags);
346
347 spin_unlock(&_minor_lock);
348
349 return r;
350 }
351
352 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
353 {
354 struct mapped_device *md = bdev->bd_disk->private_data;
355
356 return dm_get_geometry(md, geo);
357 }
358
359 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
360 unsigned int cmd, unsigned long arg)
361 {
362 struct mapped_device *md = bdev->bd_disk->private_data;
363 struct dm_table *map = dm_get_table(md);
364 struct dm_target *tgt;
365 int r = -ENOTTY;
366
367 if (!map || !dm_table_get_size(map))
368 goto out;
369
370 /* We only support devices that have a single target */
371 if (dm_table_get_num_targets(map) != 1)
372 goto out;
373
374 tgt = dm_table_get_target(map, 0);
375
376 if (dm_suspended(md)) {
377 r = -EAGAIN;
378 goto out;
379 }
380
381 if (tgt->type->ioctl)
382 r = tgt->type->ioctl(tgt, cmd, arg);
383
384 out:
385 dm_table_put(map);
386
387 return r;
388 }
389
390 static struct dm_io *alloc_io(struct mapped_device *md)
391 {
392 return mempool_alloc(md->io_pool, GFP_NOIO);
393 }
394
395 static void free_io(struct mapped_device *md, struct dm_io *io)
396 {
397 mempool_free(io, md->io_pool);
398 }
399
400 static struct dm_target_io *alloc_tio(struct mapped_device *md)
401 {
402 return mempool_alloc(md->tio_pool, GFP_NOIO);
403 }
404
405 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
406 {
407 mempool_free(tio, md->tio_pool);
408 }
409
410 static void start_io_acct(struct dm_io *io)
411 {
412 struct mapped_device *md = io->md;
413 int cpu;
414
415 io->start_time = jiffies;
416
417 cpu = part_stat_lock();
418 part_round_stats(cpu, &dm_disk(md)->part0);
419 part_stat_unlock();
420 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
421 }
422
423 static void end_io_acct(struct dm_io *io)
424 {
425 struct mapped_device *md = io->md;
426 struct bio *bio = io->bio;
427 unsigned long duration = jiffies - io->start_time;
428 int pending, cpu;
429 int rw = bio_data_dir(bio);
430
431 cpu = part_stat_lock();
432 part_round_stats(cpu, &dm_disk(md)->part0);
433 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
434 part_stat_unlock();
435
436 dm_disk(md)->part0.in_flight = pending =
437 atomic_dec_return(&md->pending);
438
439 /* nudge anyone waiting on suspend queue */
440 if (!pending)
441 wake_up(&md->wait);
442 }
443
444 /*
445 * Add the bio to the list of deferred io.
446 */
447 static int queue_io(struct mapped_device *md, struct bio *bio)
448 {
449 down_write(&md->io_lock);
450
451 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
452 up_write(&md->io_lock);
453 return 1;
454 }
455
456 bio_list_add(&md->deferred, bio);
457
458 up_write(&md->io_lock);
459 return 0; /* deferred successfully */
460 }
461
462 /*
463 * Everyone (including functions in this file), should use this
464 * function to access the md->map field, and make sure they call
465 * dm_table_put() when finished.
466 */
467 struct dm_table *dm_get_table(struct mapped_device *md)
468 {
469 struct dm_table *t;
470
471 read_lock(&md->map_lock);
472 t = md->map;
473 if (t)
474 dm_table_get(t);
475 read_unlock(&md->map_lock);
476
477 return t;
478 }
479
480 /*
481 * Get the geometry associated with a dm device
482 */
483 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
484 {
485 *geo = md->geometry;
486
487 return 0;
488 }
489
490 /*
491 * Set the geometry of a device.
492 */
493 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
494 {
495 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
496
497 if (geo->start > sz) {
498 DMWARN("Start sector is beyond the geometry limits.");
499 return -EINVAL;
500 }
501
502 md->geometry = *geo;
503
504 return 0;
505 }
506
507 /*-----------------------------------------------------------------
508 * CRUD START:
509 * A more elegant soln is in the works that uses the queue
510 * merge fn, unfortunately there are a couple of changes to
511 * the block layer that I want to make for this. So in the
512 * interests of getting something for people to use I give
513 * you this clearly demarcated crap.
514 *---------------------------------------------------------------*/
515
516 static int __noflush_suspending(struct mapped_device *md)
517 {
518 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
519 }
520
521 /*
522 * Decrements the number of outstanding ios that a bio has been
523 * cloned into, completing the original io if necc.
524 */
525 static void dec_pending(struct dm_io *io, int error)
526 {
527 unsigned long flags;
528
529 /* Push-back supersedes any I/O errors */
530 if (error && !(io->error > 0 && __noflush_suspending(io->md)))
531 io->error = error;
532
533 if (atomic_dec_and_test(&io->io_count)) {
534 if (io->error == DM_ENDIO_REQUEUE) {
535 /*
536 * Target requested pushing back the I/O.
537 * This must be handled before the sleeper on
538 * suspend queue merges the pushback list.
539 */
540 spin_lock_irqsave(&io->md->pushback_lock, flags);
541 if (__noflush_suspending(io->md))
542 bio_list_add(&io->md->pushback, io->bio);
543 else
544 /* noflush suspend was interrupted. */
545 io->error = -EIO;
546 spin_unlock_irqrestore(&io->md->pushback_lock, flags);
547 }
548
549 end_io_acct(io);
550
551 if (io->error != DM_ENDIO_REQUEUE) {
552 trace_block_bio_complete(io->md->queue, io->bio);
553
554 bio_endio(io->bio, io->error);
555 }
556
557 free_io(io->md, io);
558 }
559 }
560
561 static void clone_endio(struct bio *bio, int error)
562 {
563 int r = 0;
564 struct dm_target_io *tio = bio->bi_private;
565 struct mapped_device *md = tio->io->md;
566 dm_endio_fn endio = tio->ti->type->end_io;
567
568 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
569 error = -EIO;
570
571 if (endio) {
572 r = endio(tio->ti, bio, error, &tio->info);
573 if (r < 0 || r == DM_ENDIO_REQUEUE)
574 /*
575 * error and requeue request are handled
576 * in dec_pending().
577 */
578 error = r;
579 else if (r == DM_ENDIO_INCOMPLETE)
580 /* The target will handle the io */
581 return;
582 else if (r) {
583 DMWARN("unimplemented target endio return value: %d", r);
584 BUG();
585 }
586 }
587
588 dec_pending(tio->io, error);
589
590 /*
591 * Store md for cleanup instead of tio which is about to get freed.
592 */
593 bio->bi_private = md->bs;
594
595 bio_put(bio);
596 free_tio(md, tio);
597 }
598
599 static sector_t max_io_len(struct mapped_device *md,
600 sector_t sector, struct dm_target *ti)
601 {
602 sector_t offset = sector - ti->begin;
603 sector_t len = ti->len - offset;
604
605 /*
606 * Does the target need to split even further ?
607 */
608 if (ti->split_io) {
609 sector_t boundary;
610 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
611 - offset;
612 if (len > boundary)
613 len = boundary;
614 }
615
616 return len;
617 }
618
619 static void __map_bio(struct dm_target *ti, struct bio *clone,
620 struct dm_target_io *tio)
621 {
622 int r;
623 sector_t sector;
624 struct mapped_device *md;
625
626 /*
627 * Sanity checks.
628 */
629 BUG_ON(!clone->bi_size);
630
631 clone->bi_end_io = clone_endio;
632 clone->bi_private = tio;
633
634 /*
635 * Map the clone. If r == 0 we don't need to do
636 * anything, the target has assumed ownership of
637 * this io.
638 */
639 atomic_inc(&tio->io->io_count);
640 sector = clone->bi_sector;
641 r = ti->type->map(ti, clone, &tio->info);
642 if (r == DM_MAPIO_REMAPPED) {
643 /* the bio has been remapped so dispatch it */
644
645 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
646 tio->io->bio->bi_bdev->bd_dev,
647 clone->bi_sector, sector);
648
649 generic_make_request(clone);
650 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
651 /* error the io and bail out, or requeue it if needed */
652 md = tio->io->md;
653 dec_pending(tio->io, r);
654 /*
655 * Store bio_set for cleanup.
656 */
657 clone->bi_private = md->bs;
658 bio_put(clone);
659 free_tio(md, tio);
660 } else if (r) {
661 DMWARN("unimplemented target map return value: %d", r);
662 BUG();
663 }
664 }
665
666 struct clone_info {
667 struct mapped_device *md;
668 struct dm_table *map;
669 struct bio *bio;
670 struct dm_io *io;
671 sector_t sector;
672 sector_t sector_count;
673 unsigned short idx;
674 };
675
676 static void dm_bio_destructor(struct bio *bio)
677 {
678 struct bio_set *bs = bio->bi_private;
679
680 bio_free(bio, bs);
681 }
682
683 /*
684 * Creates a little bio that is just does part of a bvec.
685 */
686 static struct bio *split_bvec(struct bio *bio, sector_t sector,
687 unsigned short idx, unsigned int offset,
688 unsigned int len, struct bio_set *bs)
689 {
690 struct bio *clone;
691 struct bio_vec *bv = bio->bi_io_vec + idx;
692
693 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
694 clone->bi_destructor = dm_bio_destructor;
695 *clone->bi_io_vec = *bv;
696
697 clone->bi_sector = sector;
698 clone->bi_bdev = bio->bi_bdev;
699 clone->bi_rw = bio->bi_rw;
700 clone->bi_vcnt = 1;
701 clone->bi_size = to_bytes(len);
702 clone->bi_io_vec->bv_offset = offset;
703 clone->bi_io_vec->bv_len = clone->bi_size;
704 clone->bi_flags |= 1 << BIO_CLONED;
705
706 return clone;
707 }
708
709 /*
710 * Creates a bio that consists of range of complete bvecs.
711 */
712 static struct bio *clone_bio(struct bio *bio, sector_t sector,
713 unsigned short idx, unsigned short bv_count,
714 unsigned int len, struct bio_set *bs)
715 {
716 struct bio *clone;
717
718 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
719 __bio_clone(clone, bio);
720 clone->bi_destructor = dm_bio_destructor;
721 clone->bi_sector = sector;
722 clone->bi_idx = idx;
723 clone->bi_vcnt = idx + bv_count;
724 clone->bi_size = to_bytes(len);
725 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
726
727 return clone;
728 }
729
730 static int __clone_and_map(struct clone_info *ci)
731 {
732 struct bio *clone, *bio = ci->bio;
733 struct dm_target *ti;
734 sector_t len = 0, max;
735 struct dm_target_io *tio;
736
737 ti = dm_table_find_target(ci->map, ci->sector);
738 if (!dm_target_is_valid(ti))
739 return -EIO;
740
741 max = max_io_len(ci->md, ci->sector, ti);
742
743 /*
744 * Allocate a target io object.
745 */
746 tio = alloc_tio(ci->md);
747 tio->io = ci->io;
748 tio->ti = ti;
749 memset(&tio->info, 0, sizeof(tio->info));
750
751 if (ci->sector_count <= max) {
752 /*
753 * Optimise for the simple case where we can do all of
754 * the remaining io with a single clone.
755 */
756 clone = clone_bio(bio, ci->sector, ci->idx,
757 bio->bi_vcnt - ci->idx, ci->sector_count,
758 ci->md->bs);
759 __map_bio(ti, clone, tio);
760 ci->sector_count = 0;
761
762 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
763 /*
764 * There are some bvecs that don't span targets.
765 * Do as many of these as possible.
766 */
767 int i;
768 sector_t remaining = max;
769 sector_t bv_len;
770
771 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
772 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
773
774 if (bv_len > remaining)
775 break;
776
777 remaining -= bv_len;
778 len += bv_len;
779 }
780
781 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
782 ci->md->bs);
783 __map_bio(ti, clone, tio);
784
785 ci->sector += len;
786 ci->sector_count -= len;
787 ci->idx = i;
788
789 } else {
790 /*
791 * Handle a bvec that must be split between two or more targets.
792 */
793 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
794 sector_t remaining = to_sector(bv->bv_len);
795 unsigned int offset = 0;
796
797 do {
798 if (offset) {
799 ti = dm_table_find_target(ci->map, ci->sector);
800 if (!dm_target_is_valid(ti))
801 return -EIO;
802
803 max = max_io_len(ci->md, ci->sector, ti);
804
805 tio = alloc_tio(ci->md);
806 tio->io = ci->io;
807 tio->ti = ti;
808 memset(&tio->info, 0, sizeof(tio->info));
809 }
810
811 len = min(remaining, max);
812
813 clone = split_bvec(bio, ci->sector, ci->idx,
814 bv->bv_offset + offset, len,
815 ci->md->bs);
816
817 __map_bio(ti, clone, tio);
818
819 ci->sector += len;
820 ci->sector_count -= len;
821 offset += to_bytes(len);
822 } while (remaining -= len);
823
824 ci->idx++;
825 }
826
827 return 0;
828 }
829
830 /*
831 * Split the bio into several clones.
832 */
833 static int __split_bio(struct mapped_device *md, struct bio *bio)
834 {
835 struct clone_info ci;
836 int error = 0;
837
838 ci.map = dm_get_table(md);
839 if (unlikely(!ci.map))
840 return -EIO;
841 if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) {
842 dm_table_put(ci.map);
843 bio_endio(bio, -EOPNOTSUPP);
844 return 0;
845 }
846 ci.md = md;
847 ci.bio = bio;
848 ci.io = alloc_io(md);
849 ci.io->error = 0;
850 atomic_set(&ci.io->io_count, 1);
851 ci.io->bio = bio;
852 ci.io->md = md;
853 ci.sector = bio->bi_sector;
854 ci.sector_count = bio_sectors(bio);
855 ci.idx = bio->bi_idx;
856
857 start_io_acct(ci.io);
858 while (ci.sector_count && !error)
859 error = __clone_and_map(&ci);
860
861 /* drop the extra reference count */
862 dec_pending(ci.io, error);
863 dm_table_put(ci.map);
864
865 return 0;
866 }
867 /*-----------------------------------------------------------------
868 * CRUD END
869 *---------------------------------------------------------------*/
870
871 static int dm_merge_bvec(struct request_queue *q,
872 struct bvec_merge_data *bvm,
873 struct bio_vec *biovec)
874 {
875 struct mapped_device *md = q->queuedata;
876 struct dm_table *map = dm_get_table(md);
877 struct dm_target *ti;
878 sector_t max_sectors;
879 int max_size = 0;
880
881 if (unlikely(!map))
882 goto out;
883
884 ti = dm_table_find_target(map, bvm->bi_sector);
885 if (!dm_target_is_valid(ti))
886 goto out_table;
887
888 /*
889 * Find maximum amount of I/O that won't need splitting
890 */
891 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
892 (sector_t) BIO_MAX_SECTORS);
893 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
894 if (max_size < 0)
895 max_size = 0;
896
897 /*
898 * merge_bvec_fn() returns number of bytes
899 * it can accept at this offset
900 * max is precomputed maximal io size
901 */
902 if (max_size && ti->type->merge)
903 max_size = ti->type->merge(ti, bvm, biovec, max_size);
904
905 out_table:
906 dm_table_put(map);
907
908 out:
909 /*
910 * Always allow an entire first page
911 */
912 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
913 max_size = biovec->bv_len;
914
915 return max_size;
916 }
917
918 /*
919 * The request function that just remaps the bio built up by
920 * dm_merge_bvec.
921 */
922 static int dm_request(struct request_queue *q, struct bio *bio)
923 {
924 int r = -EIO;
925 int rw = bio_data_dir(bio);
926 struct mapped_device *md = q->queuedata;
927 int cpu;
928
929 down_read(&md->io_lock);
930
931 cpu = part_stat_lock();
932 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
933 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
934 part_stat_unlock();
935
936 /*
937 * If we're suspended we have to queue
938 * this io for later.
939 */
940 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
941 up_read(&md->io_lock);
942
943 if (bio_rw(bio) != READA)
944 r = queue_io(md, bio);
945
946 if (r <= 0)
947 goto out_req;
948
949 /*
950 * We're in a while loop, because someone could suspend
951 * before we get to the following read lock.
952 */
953 down_read(&md->io_lock);
954 }
955
956 r = __split_bio(md, bio);
957 up_read(&md->io_lock);
958
959 out_req:
960 if (r < 0)
961 bio_io_error(bio);
962
963 return 0;
964 }
965
966 static void dm_unplug_all(struct request_queue *q)
967 {
968 struct mapped_device *md = q->queuedata;
969 struct dm_table *map = dm_get_table(md);
970
971 if (map) {
972 dm_table_unplug_all(map);
973 dm_table_put(map);
974 }
975 }
976
977 static int dm_any_congested(void *congested_data, int bdi_bits)
978 {
979 int r = bdi_bits;
980 struct mapped_device *md = congested_data;
981 struct dm_table *map;
982
983 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
984 map = dm_get_table(md);
985 if (map) {
986 r = dm_table_any_congested(map, bdi_bits);
987 dm_table_put(map);
988 }
989 }
990
991 return r;
992 }
993
994 /*-----------------------------------------------------------------
995 * An IDR is used to keep track of allocated minor numbers.
996 *---------------------------------------------------------------*/
997 static DEFINE_IDR(_minor_idr);
998
999 static void free_minor(int minor)
1000 {
1001 spin_lock(&_minor_lock);
1002 idr_remove(&_minor_idr, minor);
1003 spin_unlock(&_minor_lock);
1004 }
1005
1006 /*
1007 * See if the device with a specific minor # is free.
1008 */
1009 static int specific_minor(int minor)
1010 {
1011 int r, m;
1012
1013 if (minor >= (1 << MINORBITS))
1014 return -EINVAL;
1015
1016 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1017 if (!r)
1018 return -ENOMEM;
1019
1020 spin_lock(&_minor_lock);
1021
1022 if (idr_find(&_minor_idr, minor)) {
1023 r = -EBUSY;
1024 goto out;
1025 }
1026
1027 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1028 if (r)
1029 goto out;
1030
1031 if (m != minor) {
1032 idr_remove(&_minor_idr, m);
1033 r = -EBUSY;
1034 goto out;
1035 }
1036
1037 out:
1038 spin_unlock(&_minor_lock);
1039 return r;
1040 }
1041
1042 static int next_free_minor(int *minor)
1043 {
1044 int r, m;
1045
1046 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1047 if (!r)
1048 return -ENOMEM;
1049
1050 spin_lock(&_minor_lock);
1051
1052 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1053 if (r)
1054 goto out;
1055
1056 if (m >= (1 << MINORBITS)) {
1057 idr_remove(&_minor_idr, m);
1058 r = -ENOSPC;
1059 goto out;
1060 }
1061
1062 *minor = m;
1063
1064 out:
1065 spin_unlock(&_minor_lock);
1066 return r;
1067 }
1068
1069 static struct block_device_operations dm_blk_dops;
1070
1071 /*
1072 * Allocate and initialise a blank device with a given minor.
1073 */
1074 static struct mapped_device *alloc_dev(int minor)
1075 {
1076 int r;
1077 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1078 void *old_md;
1079
1080 if (!md) {
1081 DMWARN("unable to allocate device, out of memory.");
1082 return NULL;
1083 }
1084
1085 if (!try_module_get(THIS_MODULE))
1086 goto bad_module_get;
1087
1088 /* get a minor number for the dev */
1089 if (minor == DM_ANY_MINOR)
1090 r = next_free_minor(&minor);
1091 else
1092 r = specific_minor(minor);
1093 if (r < 0)
1094 goto bad_minor;
1095
1096 init_rwsem(&md->io_lock);
1097 mutex_init(&md->suspend_lock);
1098 spin_lock_init(&md->pushback_lock);
1099 rwlock_init(&md->map_lock);
1100 atomic_set(&md->holders, 1);
1101 atomic_set(&md->open_count, 0);
1102 atomic_set(&md->event_nr, 0);
1103 atomic_set(&md->uevent_seq, 0);
1104 INIT_LIST_HEAD(&md->uevent_list);
1105 spin_lock_init(&md->uevent_lock);
1106
1107 md->queue = blk_alloc_queue(GFP_KERNEL);
1108 if (!md->queue)
1109 goto bad_queue;
1110
1111 md->queue->queuedata = md;
1112 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1113 md->queue->backing_dev_info.congested_data = md;
1114 blk_queue_make_request(md->queue, dm_request);
1115 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1116 md->queue->unplug_fn = dm_unplug_all;
1117 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1118
1119 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1120 if (!md->io_pool)
1121 goto bad_io_pool;
1122
1123 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1124 if (!md->tio_pool)
1125 goto bad_tio_pool;
1126
1127 md->bs = bioset_create(16, 0);
1128 if (!md->bs)
1129 goto bad_no_bioset;
1130
1131 md->disk = alloc_disk(1);
1132 if (!md->disk)
1133 goto bad_disk;
1134
1135 atomic_set(&md->pending, 0);
1136 init_waitqueue_head(&md->wait);
1137 init_waitqueue_head(&md->eventq);
1138
1139 md->disk->major = _major;
1140 md->disk->first_minor = minor;
1141 md->disk->fops = &dm_blk_dops;
1142 md->disk->queue = md->queue;
1143 md->disk->private_data = md;
1144 sprintf(md->disk->disk_name, "dm-%d", minor);
1145 add_disk(md->disk);
1146 format_dev_t(md->name, MKDEV(_major, minor));
1147
1148 md->wq = create_singlethread_workqueue("kdmflush");
1149 if (!md->wq)
1150 goto bad_thread;
1151
1152 /* Populate the mapping, nobody knows we exist yet */
1153 spin_lock(&_minor_lock);
1154 old_md = idr_replace(&_minor_idr, md, minor);
1155 spin_unlock(&_minor_lock);
1156
1157 BUG_ON(old_md != MINOR_ALLOCED);
1158
1159 return md;
1160
1161 bad_thread:
1162 put_disk(md->disk);
1163 bad_disk:
1164 bioset_free(md->bs);
1165 bad_no_bioset:
1166 mempool_destroy(md->tio_pool);
1167 bad_tio_pool:
1168 mempool_destroy(md->io_pool);
1169 bad_io_pool:
1170 blk_cleanup_queue(md->queue);
1171 bad_queue:
1172 free_minor(minor);
1173 bad_minor:
1174 module_put(THIS_MODULE);
1175 bad_module_get:
1176 kfree(md);
1177 return NULL;
1178 }
1179
1180 static void unlock_fs(struct mapped_device *md);
1181
1182 static void free_dev(struct mapped_device *md)
1183 {
1184 int minor = MINOR(disk_devt(md->disk));
1185
1186 if (md->suspended_bdev) {
1187 unlock_fs(md);
1188 bdput(md->suspended_bdev);
1189 }
1190 destroy_workqueue(md->wq);
1191 mempool_destroy(md->tio_pool);
1192 mempool_destroy(md->io_pool);
1193 bioset_free(md->bs);
1194 del_gendisk(md->disk);
1195 free_minor(minor);
1196
1197 spin_lock(&_minor_lock);
1198 md->disk->private_data = NULL;
1199 spin_unlock(&_minor_lock);
1200
1201 put_disk(md->disk);
1202 blk_cleanup_queue(md->queue);
1203 module_put(THIS_MODULE);
1204 kfree(md);
1205 }
1206
1207 /*
1208 * Bind a table to the device.
1209 */
1210 static void event_callback(void *context)
1211 {
1212 unsigned long flags;
1213 LIST_HEAD(uevents);
1214 struct mapped_device *md = (struct mapped_device *) context;
1215
1216 spin_lock_irqsave(&md->uevent_lock, flags);
1217 list_splice_init(&md->uevent_list, &uevents);
1218 spin_unlock_irqrestore(&md->uevent_lock, flags);
1219
1220 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1221
1222 atomic_inc(&md->event_nr);
1223 wake_up(&md->eventq);
1224 }
1225
1226 static void __set_size(struct mapped_device *md, sector_t size)
1227 {
1228 set_capacity(md->disk, size);
1229
1230 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1231 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1232 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1233 }
1234
1235 static int __bind(struct mapped_device *md, struct dm_table *t)
1236 {
1237 struct request_queue *q = md->queue;
1238 sector_t size;
1239
1240 size = dm_table_get_size(t);
1241
1242 /*
1243 * Wipe any geometry if the size of the table changed.
1244 */
1245 if (size != get_capacity(md->disk))
1246 memset(&md->geometry, 0, sizeof(md->geometry));
1247
1248 if (md->suspended_bdev)
1249 __set_size(md, size);
1250
1251 if (!size) {
1252 dm_table_destroy(t);
1253 return 0;
1254 }
1255
1256 dm_table_event_callback(t, event_callback, md);
1257
1258 write_lock(&md->map_lock);
1259 md->map = t;
1260 dm_table_set_restrictions(t, q);
1261 write_unlock(&md->map_lock);
1262
1263 return 0;
1264 }
1265
1266 static void __unbind(struct mapped_device *md)
1267 {
1268 struct dm_table *map = md->map;
1269
1270 if (!map)
1271 return;
1272
1273 dm_table_event_callback(map, NULL, NULL);
1274 write_lock(&md->map_lock);
1275 md->map = NULL;
1276 write_unlock(&md->map_lock);
1277 dm_table_destroy(map);
1278 }
1279
1280 /*
1281 * Constructor for a new device.
1282 */
1283 int dm_create(int minor, struct mapped_device **result)
1284 {
1285 struct mapped_device *md;
1286
1287 md = alloc_dev(minor);
1288 if (!md)
1289 return -ENXIO;
1290
1291 dm_sysfs_init(md);
1292
1293 *result = md;
1294 return 0;
1295 }
1296
1297 static struct mapped_device *dm_find_md(dev_t dev)
1298 {
1299 struct mapped_device *md;
1300 unsigned minor = MINOR(dev);
1301
1302 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1303 return NULL;
1304
1305 spin_lock(&_minor_lock);
1306
1307 md = idr_find(&_minor_idr, minor);
1308 if (md && (md == MINOR_ALLOCED ||
1309 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1310 test_bit(DMF_FREEING, &md->flags))) {
1311 md = NULL;
1312 goto out;
1313 }
1314
1315 out:
1316 spin_unlock(&_minor_lock);
1317
1318 return md;
1319 }
1320
1321 struct mapped_device *dm_get_md(dev_t dev)
1322 {
1323 struct mapped_device *md = dm_find_md(dev);
1324
1325 if (md)
1326 dm_get(md);
1327
1328 return md;
1329 }
1330
1331 void *dm_get_mdptr(struct mapped_device *md)
1332 {
1333 return md->interface_ptr;
1334 }
1335
1336 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1337 {
1338 md->interface_ptr = ptr;
1339 }
1340
1341 void dm_get(struct mapped_device *md)
1342 {
1343 atomic_inc(&md->holders);
1344 }
1345
1346 const char *dm_device_name(struct mapped_device *md)
1347 {
1348 return md->name;
1349 }
1350 EXPORT_SYMBOL_GPL(dm_device_name);
1351
1352 void dm_put(struct mapped_device *md)
1353 {
1354 struct dm_table *map;
1355
1356 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1357
1358 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1359 map = dm_get_table(md);
1360 idr_replace(&_minor_idr, MINOR_ALLOCED,
1361 MINOR(disk_devt(dm_disk(md))));
1362 set_bit(DMF_FREEING, &md->flags);
1363 spin_unlock(&_minor_lock);
1364 if (!dm_suspended(md)) {
1365 dm_table_presuspend_targets(map);
1366 dm_table_postsuspend_targets(map);
1367 }
1368 dm_sysfs_exit(md);
1369 dm_table_put(map);
1370 __unbind(md);
1371 free_dev(md);
1372 }
1373 }
1374 EXPORT_SYMBOL_GPL(dm_put);
1375
1376 static int dm_wait_for_completion(struct mapped_device *md)
1377 {
1378 int r = 0;
1379
1380 while (1) {
1381 set_current_state(TASK_INTERRUPTIBLE);
1382
1383 smp_mb();
1384 if (!atomic_read(&md->pending))
1385 break;
1386
1387 if (signal_pending(current)) {
1388 r = -EINTR;
1389 break;
1390 }
1391
1392 io_schedule();
1393 }
1394 set_current_state(TASK_RUNNING);
1395
1396 return r;
1397 }
1398
1399 /*
1400 * Process the deferred bios
1401 */
1402 static void __flush_deferred_io(struct mapped_device *md)
1403 {
1404 struct bio *c;
1405
1406 while ((c = bio_list_pop(&md->deferred))) {
1407 if (__split_bio(md, c))
1408 bio_io_error(c);
1409 }
1410
1411 clear_bit(DMF_BLOCK_IO, &md->flags);
1412 }
1413
1414 static void __merge_pushback_list(struct mapped_device *md)
1415 {
1416 unsigned long flags;
1417
1418 spin_lock_irqsave(&md->pushback_lock, flags);
1419 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1420 bio_list_merge_head(&md->deferred, &md->pushback);
1421 bio_list_init(&md->pushback);
1422 spin_unlock_irqrestore(&md->pushback_lock, flags);
1423 }
1424
1425 static void dm_wq_work(struct work_struct *work)
1426 {
1427 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1428 struct mapped_device *md = req->md;
1429
1430 down_write(&md->io_lock);
1431 switch (req->type) {
1432 case DM_WQ_FLUSH_DEFERRED:
1433 __flush_deferred_io(md);
1434 break;
1435 default:
1436 DMERR("dm_wq_work: unrecognised work type %d", req->type);
1437 BUG();
1438 }
1439 up_write(&md->io_lock);
1440 }
1441
1442 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1443 struct dm_wq_req *req)
1444 {
1445 req->type = type;
1446 req->md = md;
1447 req->context = context;
1448 INIT_WORK(&req->work, dm_wq_work);
1449 queue_work(md->wq, &req->work);
1450 }
1451
1452 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1453 {
1454 struct dm_wq_req req;
1455
1456 dm_wq_queue(md, type, context, &req);
1457 flush_workqueue(md->wq);
1458 }
1459
1460 /*
1461 * Swap in a new table (destroying old one).
1462 */
1463 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1464 {
1465 int r = -EINVAL;
1466
1467 mutex_lock(&md->suspend_lock);
1468
1469 /* device must be suspended */
1470 if (!dm_suspended(md))
1471 goto out;
1472
1473 /* without bdev, the device size cannot be changed */
1474 if (!md->suspended_bdev)
1475 if (get_capacity(md->disk) != dm_table_get_size(table))
1476 goto out;
1477
1478 __unbind(md);
1479 r = __bind(md, table);
1480
1481 out:
1482 mutex_unlock(&md->suspend_lock);
1483 return r;
1484 }
1485
1486 /*
1487 * Functions to lock and unlock any filesystem running on the
1488 * device.
1489 */
1490 static int lock_fs(struct mapped_device *md)
1491 {
1492 int r;
1493
1494 WARN_ON(md->frozen_sb);
1495
1496 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1497 if (IS_ERR(md->frozen_sb)) {
1498 r = PTR_ERR(md->frozen_sb);
1499 md->frozen_sb = NULL;
1500 return r;
1501 }
1502
1503 set_bit(DMF_FROZEN, &md->flags);
1504
1505 /* don't bdput right now, we don't want the bdev
1506 * to go away while it is locked.
1507 */
1508 return 0;
1509 }
1510
1511 static void unlock_fs(struct mapped_device *md)
1512 {
1513 if (!test_bit(DMF_FROZEN, &md->flags))
1514 return;
1515
1516 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1517 md->frozen_sb = NULL;
1518 clear_bit(DMF_FROZEN, &md->flags);
1519 }
1520
1521 /*
1522 * We need to be able to change a mapping table under a mounted
1523 * filesystem. For example we might want to move some data in
1524 * the background. Before the table can be swapped with
1525 * dm_bind_table, dm_suspend must be called to flush any in
1526 * flight bios and ensure that any further io gets deferred.
1527 */
1528 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1529 {
1530 struct dm_table *map = NULL;
1531 DECLARE_WAITQUEUE(wait, current);
1532 int r = 0;
1533 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1534 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1535
1536 mutex_lock(&md->suspend_lock);
1537
1538 if (dm_suspended(md)) {
1539 r = -EINVAL;
1540 goto out_unlock;
1541 }
1542
1543 map = dm_get_table(md);
1544
1545 /*
1546 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1547 * This flag is cleared before dm_suspend returns.
1548 */
1549 if (noflush)
1550 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1551
1552 /* This does not get reverted if there's an error later. */
1553 dm_table_presuspend_targets(map);
1554
1555 /* bdget() can stall if the pending I/Os are not flushed */
1556 if (!noflush) {
1557 md->suspended_bdev = bdget_disk(md->disk, 0);
1558 if (!md->suspended_bdev) {
1559 DMWARN("bdget failed in dm_suspend");
1560 r = -ENOMEM;
1561 goto out;
1562 }
1563
1564 /*
1565 * Flush I/O to the device. noflush supersedes do_lockfs,
1566 * because lock_fs() needs to flush I/Os.
1567 */
1568 if (do_lockfs) {
1569 r = lock_fs(md);
1570 if (r)
1571 goto out;
1572 }
1573 }
1574
1575 /*
1576 * First we set the BLOCK_IO flag so no more ios will be mapped.
1577 */
1578 down_write(&md->io_lock);
1579 set_bit(DMF_BLOCK_IO, &md->flags);
1580
1581 add_wait_queue(&md->wait, &wait);
1582 up_write(&md->io_lock);
1583
1584 /* unplug */
1585 if (map)
1586 dm_table_unplug_all(map);
1587
1588 /*
1589 * Wait for the already-mapped ios to complete.
1590 */
1591 r = dm_wait_for_completion(md);
1592
1593 down_write(&md->io_lock);
1594 remove_wait_queue(&md->wait, &wait);
1595
1596 if (noflush)
1597 __merge_pushback_list(md);
1598 up_write(&md->io_lock);
1599
1600 /* were we interrupted ? */
1601 if (r < 0) {
1602 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1603
1604 unlock_fs(md);
1605 goto out; /* pushback list is already flushed, so skip flush */
1606 }
1607
1608 dm_table_postsuspend_targets(map);
1609
1610 set_bit(DMF_SUSPENDED, &md->flags);
1611
1612 out:
1613 if (r && md->suspended_bdev) {
1614 bdput(md->suspended_bdev);
1615 md->suspended_bdev = NULL;
1616 }
1617
1618 dm_table_put(map);
1619
1620 out_unlock:
1621 mutex_unlock(&md->suspend_lock);
1622 return r;
1623 }
1624
1625 int dm_resume(struct mapped_device *md)
1626 {
1627 int r = -EINVAL;
1628 struct dm_table *map = NULL;
1629
1630 mutex_lock(&md->suspend_lock);
1631 if (!dm_suspended(md))
1632 goto out;
1633
1634 map = dm_get_table(md);
1635 if (!map || !dm_table_get_size(map))
1636 goto out;
1637
1638 r = dm_table_resume_targets(map);
1639 if (r)
1640 goto out;
1641
1642 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1643
1644 unlock_fs(md);
1645
1646 if (md->suspended_bdev) {
1647 bdput(md->suspended_bdev);
1648 md->suspended_bdev = NULL;
1649 }
1650
1651 clear_bit(DMF_SUSPENDED, &md->flags);
1652
1653 dm_table_unplug_all(map);
1654
1655 dm_kobject_uevent(md);
1656
1657 r = 0;
1658
1659 out:
1660 dm_table_put(map);
1661 mutex_unlock(&md->suspend_lock);
1662
1663 return r;
1664 }
1665
1666 /*-----------------------------------------------------------------
1667 * Event notification.
1668 *---------------------------------------------------------------*/
1669 void dm_kobject_uevent(struct mapped_device *md)
1670 {
1671 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1672 }
1673
1674 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1675 {
1676 return atomic_add_return(1, &md->uevent_seq);
1677 }
1678
1679 uint32_t dm_get_event_nr(struct mapped_device *md)
1680 {
1681 return atomic_read(&md->event_nr);
1682 }
1683
1684 int dm_wait_event(struct mapped_device *md, int event_nr)
1685 {
1686 return wait_event_interruptible(md->eventq,
1687 (event_nr != atomic_read(&md->event_nr)));
1688 }
1689
1690 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1691 {
1692 unsigned long flags;
1693
1694 spin_lock_irqsave(&md->uevent_lock, flags);
1695 list_add(elist, &md->uevent_list);
1696 spin_unlock_irqrestore(&md->uevent_lock, flags);
1697 }
1698
1699 /*
1700 * The gendisk is only valid as long as you have a reference
1701 * count on 'md'.
1702 */
1703 struct gendisk *dm_disk(struct mapped_device *md)
1704 {
1705 return md->disk;
1706 }
1707
1708 struct kobject *dm_kobject(struct mapped_device *md)
1709 {
1710 return &md->kobj;
1711 }
1712
1713 /*
1714 * struct mapped_device should not be exported outside of dm.c
1715 * so use this check to verify that kobj is part of md structure
1716 */
1717 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1718 {
1719 struct mapped_device *md;
1720
1721 md = container_of(kobj, struct mapped_device, kobj);
1722 if (&md->kobj != kobj)
1723 return NULL;
1724
1725 dm_get(md);
1726 return md;
1727 }
1728
1729 int dm_suspended(struct mapped_device *md)
1730 {
1731 return test_bit(DMF_SUSPENDED, &md->flags);
1732 }
1733
1734 int dm_noflush_suspending(struct dm_target *ti)
1735 {
1736 struct mapped_device *md = dm_table_get_md(ti->table);
1737 int r = __noflush_suspending(md);
1738
1739 dm_put(md);
1740
1741 return r;
1742 }
1743 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1744
1745 static struct block_device_operations dm_blk_dops = {
1746 .open = dm_blk_open,
1747 .release = dm_blk_close,
1748 .ioctl = dm_blk_ioctl,
1749 .getgeo = dm_blk_getgeo,
1750 .owner = THIS_MODULE
1751 };
1752
1753 EXPORT_SYMBOL(dm_get_mapinfo);
1754
1755 /*
1756 * module hooks
1757 */
1758 module_init(dm_init);
1759 module_exit(dm_exit);
1760
1761 module_param(major, uint, 0);
1762 MODULE_PARM_DESC(major, "The major number of the device mapper");
1763 MODULE_DESCRIPTION(DM_NAME " driver");
1764 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1765 MODULE_LICENSE("GPL");
This page took 0.077838 seconds and 5 git commands to generate.