dm: optimize dm_mq_queue_rq to _not_ use kthread if using pure blk-mq
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 };
90
91 /*
92 * For request-based dm - the bio clones we allocate are embedded in these
93 * structs.
94 *
95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96 * the bioset is created - this means the bio has to come at the end of the
97 * struct.
98 */
99 struct dm_rq_clone_bio_info {
100 struct bio *orig;
101 struct dm_rq_target_io *tio;
102 struct bio clone;
103 };
104
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 if (rq && rq->end_io_data)
108 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112
113 #define MINOR_ALLOCED ((void *)-1)
114
115 /*
116 * Bits for the md->flags field.
117 */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127
128 /*
129 * A dummy definition to make RCU happy.
130 * struct dm_table should never be dereferenced in this file.
131 */
132 struct dm_table {
133 int undefined__;
134 };
135
136 /*
137 * Work processed by per-device workqueue.
138 */
139 struct mapped_device {
140 struct srcu_struct io_barrier;
141 struct mutex suspend_lock;
142 atomic_t holders;
143 atomic_t open_count;
144
145 /*
146 * The current mapping.
147 * Use dm_get_live_table{_fast} or take suspend_lock for
148 * dereference.
149 */
150 struct dm_table __rcu *map;
151
152 struct list_head table_devices;
153 struct mutex table_devices_lock;
154
155 unsigned long flags;
156
157 struct request_queue *queue;
158 unsigned type;
159 /* Protect queue and type against concurrent access. */
160 struct mutex type_lock;
161
162 struct target_type *immutable_target_type;
163
164 struct gendisk *disk;
165 char name[16];
166
167 void *interface_ptr;
168
169 /*
170 * A list of ios that arrived while we were suspended.
171 */
172 atomic_t pending[2];
173 wait_queue_head_t wait;
174 struct work_struct work;
175 struct bio_list deferred;
176 spinlock_t deferred_lock;
177
178 /*
179 * Processing queue (flush)
180 */
181 struct workqueue_struct *wq;
182
183 /*
184 * io objects are allocated from here.
185 */
186 mempool_t *io_pool;
187 mempool_t *rq_pool;
188
189 struct bio_set *bs;
190
191 /*
192 * Event handling.
193 */
194 atomic_t event_nr;
195 wait_queue_head_t eventq;
196 atomic_t uevent_seq;
197 struct list_head uevent_list;
198 spinlock_t uevent_lock; /* Protect access to uevent_list */
199
200 /*
201 * freeze/thaw support require holding onto a super block
202 */
203 struct super_block *frozen_sb;
204 struct block_device *bdev;
205
206 /* forced geometry settings */
207 struct hd_geometry geometry;
208
209 /* kobject and completion */
210 struct dm_kobject_holder kobj_holder;
211
212 /* zero-length flush that will be cloned and submitted to targets */
213 struct bio flush_bio;
214
215 /* the number of internal suspends */
216 unsigned internal_suspend_count;
217
218 struct dm_stats stats;
219
220 struct kthread_worker kworker;
221 struct task_struct *kworker_task;
222
223 /* for request-based merge heuristic in dm_request_fn() */
224 unsigned seq_rq_merge_deadline_usecs;
225 int last_rq_rw;
226 sector_t last_rq_pos;
227 ktime_t last_rq_start_time;
228
229 /* for blk-mq request-based DM support */
230 struct blk_mq_tag_set tag_set;
231 };
232
233 /*
234 * For mempools pre-allocation at the table loading time.
235 */
236 struct dm_md_mempools {
237 mempool_t *io_pool;
238 mempool_t *rq_pool;
239 struct bio_set *bs;
240 };
241
242 struct table_device {
243 struct list_head list;
244 atomic_t count;
245 struct dm_dev dm_dev;
246 };
247
248 #define RESERVED_BIO_BASED_IOS 16
249 #define RESERVED_REQUEST_BASED_IOS 256
250 #define RESERVED_MAX_IOS 1024
251 static struct kmem_cache *_io_cache;
252 static struct kmem_cache *_rq_tio_cache;
253 static struct kmem_cache *_rq_cache;
254
255 /*
256 * Bio-based DM's mempools' reserved IOs set by the user.
257 */
258 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
259
260 /*
261 * Request-based DM's mempools' reserved IOs set by the user.
262 */
263 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
264
265 static unsigned __dm_get_module_param(unsigned *module_param,
266 unsigned def, unsigned max)
267 {
268 unsigned param = ACCESS_ONCE(*module_param);
269 unsigned modified_param = 0;
270
271 if (!param)
272 modified_param = def;
273 else if (param > max)
274 modified_param = max;
275
276 if (modified_param) {
277 (void)cmpxchg(module_param, param, modified_param);
278 param = modified_param;
279 }
280
281 return param;
282 }
283
284 unsigned dm_get_reserved_bio_based_ios(void)
285 {
286 return __dm_get_module_param(&reserved_bio_based_ios,
287 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
288 }
289 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
290
291 unsigned dm_get_reserved_rq_based_ios(void)
292 {
293 return __dm_get_module_param(&reserved_rq_based_ios,
294 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
295 }
296 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
297
298 static int __init local_init(void)
299 {
300 int r = -ENOMEM;
301
302 /* allocate a slab for the dm_ios */
303 _io_cache = KMEM_CACHE(dm_io, 0);
304 if (!_io_cache)
305 return r;
306
307 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
308 if (!_rq_tio_cache)
309 goto out_free_io_cache;
310
311 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
312 __alignof__(struct request), 0, NULL);
313 if (!_rq_cache)
314 goto out_free_rq_tio_cache;
315
316 r = dm_uevent_init();
317 if (r)
318 goto out_free_rq_cache;
319
320 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
321 if (!deferred_remove_workqueue) {
322 r = -ENOMEM;
323 goto out_uevent_exit;
324 }
325
326 _major = major;
327 r = register_blkdev(_major, _name);
328 if (r < 0)
329 goto out_free_workqueue;
330
331 if (!_major)
332 _major = r;
333
334 return 0;
335
336 out_free_workqueue:
337 destroy_workqueue(deferred_remove_workqueue);
338 out_uevent_exit:
339 dm_uevent_exit();
340 out_free_rq_cache:
341 kmem_cache_destroy(_rq_cache);
342 out_free_rq_tio_cache:
343 kmem_cache_destroy(_rq_tio_cache);
344 out_free_io_cache:
345 kmem_cache_destroy(_io_cache);
346
347 return r;
348 }
349
350 static void local_exit(void)
351 {
352 flush_scheduled_work();
353 destroy_workqueue(deferred_remove_workqueue);
354
355 kmem_cache_destroy(_rq_cache);
356 kmem_cache_destroy(_rq_tio_cache);
357 kmem_cache_destroy(_io_cache);
358 unregister_blkdev(_major, _name);
359 dm_uevent_exit();
360
361 _major = 0;
362
363 DMINFO("cleaned up");
364 }
365
366 static int (*_inits[])(void) __initdata = {
367 local_init,
368 dm_target_init,
369 dm_linear_init,
370 dm_stripe_init,
371 dm_io_init,
372 dm_kcopyd_init,
373 dm_interface_init,
374 dm_statistics_init,
375 };
376
377 static void (*_exits[])(void) = {
378 local_exit,
379 dm_target_exit,
380 dm_linear_exit,
381 dm_stripe_exit,
382 dm_io_exit,
383 dm_kcopyd_exit,
384 dm_interface_exit,
385 dm_statistics_exit,
386 };
387
388 static int __init dm_init(void)
389 {
390 const int count = ARRAY_SIZE(_inits);
391
392 int r, i;
393
394 for (i = 0; i < count; i++) {
395 r = _inits[i]();
396 if (r)
397 goto bad;
398 }
399
400 return 0;
401
402 bad:
403 while (i--)
404 _exits[i]();
405
406 return r;
407 }
408
409 static void __exit dm_exit(void)
410 {
411 int i = ARRAY_SIZE(_exits);
412
413 while (i--)
414 _exits[i]();
415
416 /*
417 * Should be empty by this point.
418 */
419 idr_destroy(&_minor_idr);
420 }
421
422 /*
423 * Block device functions
424 */
425 int dm_deleting_md(struct mapped_device *md)
426 {
427 return test_bit(DMF_DELETING, &md->flags);
428 }
429
430 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
431 {
432 struct mapped_device *md;
433
434 spin_lock(&_minor_lock);
435
436 md = bdev->bd_disk->private_data;
437 if (!md)
438 goto out;
439
440 if (test_bit(DMF_FREEING, &md->flags) ||
441 dm_deleting_md(md)) {
442 md = NULL;
443 goto out;
444 }
445
446 dm_get(md);
447 atomic_inc(&md->open_count);
448 out:
449 spin_unlock(&_minor_lock);
450
451 return md ? 0 : -ENXIO;
452 }
453
454 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
455 {
456 struct mapped_device *md;
457
458 spin_lock(&_minor_lock);
459
460 md = disk->private_data;
461 if (WARN_ON(!md))
462 goto out;
463
464 if (atomic_dec_and_test(&md->open_count) &&
465 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
466 queue_work(deferred_remove_workqueue, &deferred_remove_work);
467
468 dm_put(md);
469 out:
470 spin_unlock(&_minor_lock);
471 }
472
473 int dm_open_count(struct mapped_device *md)
474 {
475 return atomic_read(&md->open_count);
476 }
477
478 /*
479 * Guarantees nothing is using the device before it's deleted.
480 */
481 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
482 {
483 int r = 0;
484
485 spin_lock(&_minor_lock);
486
487 if (dm_open_count(md)) {
488 r = -EBUSY;
489 if (mark_deferred)
490 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
491 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
492 r = -EEXIST;
493 else
494 set_bit(DMF_DELETING, &md->flags);
495
496 spin_unlock(&_minor_lock);
497
498 return r;
499 }
500
501 int dm_cancel_deferred_remove(struct mapped_device *md)
502 {
503 int r = 0;
504
505 spin_lock(&_minor_lock);
506
507 if (test_bit(DMF_DELETING, &md->flags))
508 r = -EBUSY;
509 else
510 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
511
512 spin_unlock(&_minor_lock);
513
514 return r;
515 }
516
517 static void do_deferred_remove(struct work_struct *w)
518 {
519 dm_deferred_remove();
520 }
521
522 sector_t dm_get_size(struct mapped_device *md)
523 {
524 return get_capacity(md->disk);
525 }
526
527 struct request_queue *dm_get_md_queue(struct mapped_device *md)
528 {
529 return md->queue;
530 }
531
532 struct dm_stats *dm_get_stats(struct mapped_device *md)
533 {
534 return &md->stats;
535 }
536
537 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
538 {
539 struct mapped_device *md = bdev->bd_disk->private_data;
540
541 return dm_get_geometry(md, geo);
542 }
543
544 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
545 unsigned int cmd, unsigned long arg)
546 {
547 struct mapped_device *md = bdev->bd_disk->private_data;
548 int srcu_idx;
549 struct dm_table *map;
550 struct dm_target *tgt;
551 int r = -ENOTTY;
552
553 retry:
554 map = dm_get_live_table(md, &srcu_idx);
555
556 if (!map || !dm_table_get_size(map))
557 goto out;
558
559 /* We only support devices that have a single target */
560 if (dm_table_get_num_targets(map) != 1)
561 goto out;
562
563 tgt = dm_table_get_target(map, 0);
564 if (!tgt->type->ioctl)
565 goto out;
566
567 if (dm_suspended_md(md)) {
568 r = -EAGAIN;
569 goto out;
570 }
571
572 r = tgt->type->ioctl(tgt, cmd, arg);
573
574 out:
575 dm_put_live_table(md, srcu_idx);
576
577 if (r == -ENOTCONN) {
578 msleep(10);
579 goto retry;
580 }
581
582 return r;
583 }
584
585 static struct dm_io *alloc_io(struct mapped_device *md)
586 {
587 return mempool_alloc(md->io_pool, GFP_NOIO);
588 }
589
590 static void free_io(struct mapped_device *md, struct dm_io *io)
591 {
592 mempool_free(io, md->io_pool);
593 }
594
595 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
596 {
597 bio_put(&tio->clone);
598 }
599
600 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
601 gfp_t gfp_mask)
602 {
603 return mempool_alloc(md->io_pool, gfp_mask);
604 }
605
606 static void free_rq_tio(struct dm_rq_target_io *tio)
607 {
608 mempool_free(tio, tio->md->io_pool);
609 }
610
611 static struct request *alloc_clone_request(struct mapped_device *md,
612 gfp_t gfp_mask)
613 {
614 return mempool_alloc(md->rq_pool, gfp_mask);
615 }
616
617 static void free_clone_request(struct mapped_device *md, struct request *rq)
618 {
619 mempool_free(rq, md->rq_pool);
620 }
621
622 static int md_in_flight(struct mapped_device *md)
623 {
624 return atomic_read(&md->pending[READ]) +
625 atomic_read(&md->pending[WRITE]);
626 }
627
628 static void start_io_acct(struct dm_io *io)
629 {
630 struct mapped_device *md = io->md;
631 struct bio *bio = io->bio;
632 int cpu;
633 int rw = bio_data_dir(bio);
634
635 io->start_time = jiffies;
636
637 cpu = part_stat_lock();
638 part_round_stats(cpu, &dm_disk(md)->part0);
639 part_stat_unlock();
640 atomic_set(&dm_disk(md)->part0.in_flight[rw],
641 atomic_inc_return(&md->pending[rw]));
642
643 if (unlikely(dm_stats_used(&md->stats)))
644 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
645 bio_sectors(bio), false, 0, &io->stats_aux);
646 }
647
648 static void end_io_acct(struct dm_io *io)
649 {
650 struct mapped_device *md = io->md;
651 struct bio *bio = io->bio;
652 unsigned long duration = jiffies - io->start_time;
653 int pending;
654 int rw = bio_data_dir(bio);
655
656 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
657
658 if (unlikely(dm_stats_used(&md->stats)))
659 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
660 bio_sectors(bio), true, duration, &io->stats_aux);
661
662 /*
663 * After this is decremented the bio must not be touched if it is
664 * a flush.
665 */
666 pending = atomic_dec_return(&md->pending[rw]);
667 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
668 pending += atomic_read(&md->pending[rw^0x1]);
669
670 /* nudge anyone waiting on suspend queue */
671 if (!pending)
672 wake_up(&md->wait);
673 }
674
675 /*
676 * Add the bio to the list of deferred io.
677 */
678 static void queue_io(struct mapped_device *md, struct bio *bio)
679 {
680 unsigned long flags;
681
682 spin_lock_irqsave(&md->deferred_lock, flags);
683 bio_list_add(&md->deferred, bio);
684 spin_unlock_irqrestore(&md->deferred_lock, flags);
685 queue_work(md->wq, &md->work);
686 }
687
688 /*
689 * Everyone (including functions in this file), should use this
690 * function to access the md->map field, and make sure they call
691 * dm_put_live_table() when finished.
692 */
693 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
694 {
695 *srcu_idx = srcu_read_lock(&md->io_barrier);
696
697 return srcu_dereference(md->map, &md->io_barrier);
698 }
699
700 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
701 {
702 srcu_read_unlock(&md->io_barrier, srcu_idx);
703 }
704
705 void dm_sync_table(struct mapped_device *md)
706 {
707 synchronize_srcu(&md->io_barrier);
708 synchronize_rcu_expedited();
709 }
710
711 /*
712 * A fast alternative to dm_get_live_table/dm_put_live_table.
713 * The caller must not block between these two functions.
714 */
715 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
716 {
717 rcu_read_lock();
718 return rcu_dereference(md->map);
719 }
720
721 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
722 {
723 rcu_read_unlock();
724 }
725
726 /*
727 * Open a table device so we can use it as a map destination.
728 */
729 static int open_table_device(struct table_device *td, dev_t dev,
730 struct mapped_device *md)
731 {
732 static char *_claim_ptr = "I belong to device-mapper";
733 struct block_device *bdev;
734
735 int r;
736
737 BUG_ON(td->dm_dev.bdev);
738
739 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
740 if (IS_ERR(bdev))
741 return PTR_ERR(bdev);
742
743 r = bd_link_disk_holder(bdev, dm_disk(md));
744 if (r) {
745 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
746 return r;
747 }
748
749 td->dm_dev.bdev = bdev;
750 return 0;
751 }
752
753 /*
754 * Close a table device that we've been using.
755 */
756 static void close_table_device(struct table_device *td, struct mapped_device *md)
757 {
758 if (!td->dm_dev.bdev)
759 return;
760
761 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
762 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
763 td->dm_dev.bdev = NULL;
764 }
765
766 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
767 fmode_t mode) {
768 struct table_device *td;
769
770 list_for_each_entry(td, l, list)
771 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
772 return td;
773
774 return NULL;
775 }
776
777 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
778 struct dm_dev **result) {
779 int r;
780 struct table_device *td;
781
782 mutex_lock(&md->table_devices_lock);
783 td = find_table_device(&md->table_devices, dev, mode);
784 if (!td) {
785 td = kmalloc(sizeof(*td), GFP_KERNEL);
786 if (!td) {
787 mutex_unlock(&md->table_devices_lock);
788 return -ENOMEM;
789 }
790
791 td->dm_dev.mode = mode;
792 td->dm_dev.bdev = NULL;
793
794 if ((r = open_table_device(td, dev, md))) {
795 mutex_unlock(&md->table_devices_lock);
796 kfree(td);
797 return r;
798 }
799
800 format_dev_t(td->dm_dev.name, dev);
801
802 atomic_set(&td->count, 0);
803 list_add(&td->list, &md->table_devices);
804 }
805 atomic_inc(&td->count);
806 mutex_unlock(&md->table_devices_lock);
807
808 *result = &td->dm_dev;
809 return 0;
810 }
811 EXPORT_SYMBOL_GPL(dm_get_table_device);
812
813 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
814 {
815 struct table_device *td = container_of(d, struct table_device, dm_dev);
816
817 mutex_lock(&md->table_devices_lock);
818 if (atomic_dec_and_test(&td->count)) {
819 close_table_device(td, md);
820 list_del(&td->list);
821 kfree(td);
822 }
823 mutex_unlock(&md->table_devices_lock);
824 }
825 EXPORT_SYMBOL(dm_put_table_device);
826
827 static void free_table_devices(struct list_head *devices)
828 {
829 struct list_head *tmp, *next;
830
831 list_for_each_safe(tmp, next, devices) {
832 struct table_device *td = list_entry(tmp, struct table_device, list);
833
834 DMWARN("dm_destroy: %s still exists with %d references",
835 td->dm_dev.name, atomic_read(&td->count));
836 kfree(td);
837 }
838 }
839
840 /*
841 * Get the geometry associated with a dm device
842 */
843 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
844 {
845 *geo = md->geometry;
846
847 return 0;
848 }
849
850 /*
851 * Set the geometry of a device.
852 */
853 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
854 {
855 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
856
857 if (geo->start > sz) {
858 DMWARN("Start sector is beyond the geometry limits.");
859 return -EINVAL;
860 }
861
862 md->geometry = *geo;
863
864 return 0;
865 }
866
867 /*-----------------------------------------------------------------
868 * CRUD START:
869 * A more elegant soln is in the works that uses the queue
870 * merge fn, unfortunately there are a couple of changes to
871 * the block layer that I want to make for this. So in the
872 * interests of getting something for people to use I give
873 * you this clearly demarcated crap.
874 *---------------------------------------------------------------*/
875
876 static int __noflush_suspending(struct mapped_device *md)
877 {
878 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
879 }
880
881 /*
882 * Decrements the number of outstanding ios that a bio has been
883 * cloned into, completing the original io if necc.
884 */
885 static void dec_pending(struct dm_io *io, int error)
886 {
887 unsigned long flags;
888 int io_error;
889 struct bio *bio;
890 struct mapped_device *md = io->md;
891
892 /* Push-back supersedes any I/O errors */
893 if (unlikely(error)) {
894 spin_lock_irqsave(&io->endio_lock, flags);
895 if (!(io->error > 0 && __noflush_suspending(md)))
896 io->error = error;
897 spin_unlock_irqrestore(&io->endio_lock, flags);
898 }
899
900 if (atomic_dec_and_test(&io->io_count)) {
901 if (io->error == DM_ENDIO_REQUEUE) {
902 /*
903 * Target requested pushing back the I/O.
904 */
905 spin_lock_irqsave(&md->deferred_lock, flags);
906 if (__noflush_suspending(md))
907 bio_list_add_head(&md->deferred, io->bio);
908 else
909 /* noflush suspend was interrupted. */
910 io->error = -EIO;
911 spin_unlock_irqrestore(&md->deferred_lock, flags);
912 }
913
914 io_error = io->error;
915 bio = io->bio;
916 end_io_acct(io);
917 free_io(md, io);
918
919 if (io_error == DM_ENDIO_REQUEUE)
920 return;
921
922 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
923 /*
924 * Preflush done for flush with data, reissue
925 * without REQ_FLUSH.
926 */
927 bio->bi_rw &= ~REQ_FLUSH;
928 queue_io(md, bio);
929 } else {
930 /* done with normal IO or empty flush */
931 trace_block_bio_complete(md->queue, bio, io_error);
932 bio_endio(bio, io_error);
933 }
934 }
935 }
936
937 static void disable_write_same(struct mapped_device *md)
938 {
939 struct queue_limits *limits = dm_get_queue_limits(md);
940
941 /* device doesn't really support WRITE SAME, disable it */
942 limits->max_write_same_sectors = 0;
943 }
944
945 static void clone_endio(struct bio *bio, int error)
946 {
947 int r = error;
948 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
949 struct dm_io *io = tio->io;
950 struct mapped_device *md = tio->io->md;
951 dm_endio_fn endio = tio->ti->type->end_io;
952
953 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
954 error = -EIO;
955
956 if (endio) {
957 r = endio(tio->ti, bio, error);
958 if (r < 0 || r == DM_ENDIO_REQUEUE)
959 /*
960 * error and requeue request are handled
961 * in dec_pending().
962 */
963 error = r;
964 else if (r == DM_ENDIO_INCOMPLETE)
965 /* The target will handle the io */
966 return;
967 else if (r) {
968 DMWARN("unimplemented target endio return value: %d", r);
969 BUG();
970 }
971 }
972
973 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
974 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
975 disable_write_same(md);
976
977 free_tio(md, tio);
978 dec_pending(io, error);
979 }
980
981 /*
982 * Partial completion handling for request-based dm
983 */
984 static void end_clone_bio(struct bio *clone, int error)
985 {
986 struct dm_rq_clone_bio_info *info =
987 container_of(clone, struct dm_rq_clone_bio_info, clone);
988 struct dm_rq_target_io *tio = info->tio;
989 struct bio *bio = info->orig;
990 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
991
992 bio_put(clone);
993
994 if (tio->error)
995 /*
996 * An error has already been detected on the request.
997 * Once error occurred, just let clone->end_io() handle
998 * the remainder.
999 */
1000 return;
1001 else if (error) {
1002 /*
1003 * Don't notice the error to the upper layer yet.
1004 * The error handling decision is made by the target driver,
1005 * when the request is completed.
1006 */
1007 tio->error = error;
1008 return;
1009 }
1010
1011 /*
1012 * I/O for the bio successfully completed.
1013 * Notice the data completion to the upper layer.
1014 */
1015
1016 /*
1017 * bios are processed from the head of the list.
1018 * So the completing bio should always be rq->bio.
1019 * If it's not, something wrong is happening.
1020 */
1021 if (tio->orig->bio != bio)
1022 DMERR("bio completion is going in the middle of the request");
1023
1024 /*
1025 * Update the original request.
1026 * Do not use blk_end_request() here, because it may complete
1027 * the original request before the clone, and break the ordering.
1028 */
1029 blk_update_request(tio->orig, 0, nr_bytes);
1030 }
1031
1032 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1033 {
1034 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1035 }
1036
1037 /*
1038 * Don't touch any member of the md after calling this function because
1039 * the md may be freed in dm_put() at the end of this function.
1040 * Or do dm_get() before calling this function and dm_put() later.
1041 */
1042 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1043 {
1044 int nr_requests_pending;
1045
1046 atomic_dec(&md->pending[rw]);
1047
1048 /* nudge anyone waiting on suspend queue */
1049 nr_requests_pending = md_in_flight(md);
1050 if (!nr_requests_pending)
1051 wake_up(&md->wait);
1052
1053 /*
1054 * Run this off this callpath, as drivers could invoke end_io while
1055 * inside their request_fn (and holding the queue lock). Calling
1056 * back into ->request_fn() could deadlock attempting to grab the
1057 * queue lock again.
1058 */
1059 if (run_queue) {
1060 if (md->queue->mq_ops)
1061 blk_mq_run_hw_queues(md->queue, true);
1062 else if (!nr_requests_pending ||
1063 (nr_requests_pending >= md->queue->nr_congestion_on))
1064 blk_run_queue_async(md->queue);
1065 }
1066
1067 /*
1068 * dm_put() must be at the end of this function. See the comment above
1069 */
1070 dm_put(md);
1071 }
1072
1073 static void free_rq_clone(struct request *clone)
1074 {
1075 struct dm_rq_target_io *tio = clone->end_io_data;
1076 struct mapped_device *md = tio->md;
1077
1078 blk_rq_unprep_clone(clone);
1079
1080 if (clone->q->mq_ops)
1081 tio->ti->type->release_clone_rq(clone);
1082 else if (!md->queue->mq_ops)
1083 /* request_fn queue stacked on request_fn queue(s) */
1084 free_clone_request(md, clone);
1085
1086 if (!md->queue->mq_ops)
1087 free_rq_tio(tio);
1088 }
1089
1090 /*
1091 * Complete the clone and the original request.
1092 * Must be called without clone's queue lock held,
1093 * see end_clone_request() for more details.
1094 */
1095 static void dm_end_request(struct request *clone, int error)
1096 {
1097 int rw = rq_data_dir(clone);
1098 struct dm_rq_target_io *tio = clone->end_io_data;
1099 struct mapped_device *md = tio->md;
1100 struct request *rq = tio->orig;
1101
1102 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1103 rq->errors = clone->errors;
1104 rq->resid_len = clone->resid_len;
1105
1106 if (rq->sense)
1107 /*
1108 * We are using the sense buffer of the original
1109 * request.
1110 * So setting the length of the sense data is enough.
1111 */
1112 rq->sense_len = clone->sense_len;
1113 }
1114
1115 free_rq_clone(clone);
1116 if (!rq->q->mq_ops)
1117 blk_end_request_all(rq, error);
1118 else
1119 blk_mq_end_request(rq, error);
1120 rq_completed(md, rw, true);
1121 }
1122
1123 static void dm_unprep_request(struct request *rq)
1124 {
1125 struct dm_rq_target_io *tio = tio_from_request(rq);
1126 struct request *clone = tio->clone;
1127
1128 if (!rq->q->mq_ops) {
1129 rq->special = NULL;
1130 rq->cmd_flags &= ~REQ_DONTPREP;
1131 }
1132
1133 if (clone)
1134 free_rq_clone(clone);
1135 }
1136
1137 /*
1138 * Requeue the original request of a clone.
1139 */
1140 static void old_requeue_request(struct request *rq)
1141 {
1142 struct request_queue *q = rq->q;
1143 unsigned long flags;
1144
1145 spin_lock_irqsave(q->queue_lock, flags);
1146 blk_requeue_request(q, rq);
1147 spin_unlock_irqrestore(q->queue_lock, flags);
1148 }
1149
1150 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1151 struct request *rq)
1152 {
1153 int rw = rq_data_dir(rq);
1154
1155 dm_unprep_request(rq);
1156
1157 if (!rq->q->mq_ops)
1158 old_requeue_request(rq);
1159 else {
1160 blk_mq_requeue_request(rq);
1161 blk_mq_kick_requeue_list(rq->q);
1162 }
1163
1164 rq_completed(md, rw, false);
1165 }
1166
1167 static void dm_requeue_unmapped_request(struct request *clone)
1168 {
1169 struct dm_rq_target_io *tio = clone->end_io_data;
1170
1171 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1172 }
1173
1174 static void old_stop_queue(struct request_queue *q)
1175 {
1176 unsigned long flags;
1177
1178 if (blk_queue_stopped(q))
1179 return;
1180
1181 spin_lock_irqsave(q->queue_lock, flags);
1182 blk_stop_queue(q);
1183 spin_unlock_irqrestore(q->queue_lock, flags);
1184 }
1185
1186 static void stop_queue(struct request_queue *q)
1187 {
1188 if (!q->mq_ops)
1189 old_stop_queue(q);
1190 else
1191 blk_mq_stop_hw_queues(q);
1192 }
1193
1194 static void old_start_queue(struct request_queue *q)
1195 {
1196 unsigned long flags;
1197
1198 spin_lock_irqsave(q->queue_lock, flags);
1199 if (blk_queue_stopped(q))
1200 blk_start_queue(q);
1201 spin_unlock_irqrestore(q->queue_lock, flags);
1202 }
1203
1204 static void start_queue(struct request_queue *q)
1205 {
1206 if (!q->mq_ops)
1207 old_start_queue(q);
1208 else
1209 blk_mq_start_stopped_hw_queues(q, true);
1210 }
1211
1212 static void dm_done(struct request *clone, int error, bool mapped)
1213 {
1214 int r = error;
1215 struct dm_rq_target_io *tio = clone->end_io_data;
1216 dm_request_endio_fn rq_end_io = NULL;
1217
1218 if (tio->ti) {
1219 rq_end_io = tio->ti->type->rq_end_io;
1220
1221 if (mapped && rq_end_io)
1222 r = rq_end_io(tio->ti, clone, error, &tio->info);
1223 }
1224
1225 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1226 !clone->q->limits.max_write_same_sectors))
1227 disable_write_same(tio->md);
1228
1229 if (r <= 0)
1230 /* The target wants to complete the I/O */
1231 dm_end_request(clone, r);
1232 else if (r == DM_ENDIO_INCOMPLETE)
1233 /* The target will handle the I/O */
1234 return;
1235 else if (r == DM_ENDIO_REQUEUE)
1236 /* The target wants to requeue the I/O */
1237 dm_requeue_unmapped_request(clone);
1238 else {
1239 DMWARN("unimplemented target endio return value: %d", r);
1240 BUG();
1241 }
1242 }
1243
1244 /*
1245 * Request completion handler for request-based dm
1246 */
1247 static void dm_softirq_done(struct request *rq)
1248 {
1249 bool mapped = true;
1250 struct dm_rq_target_io *tio = tio_from_request(rq);
1251 struct request *clone = tio->clone;
1252 int rw;
1253
1254 if (!clone) {
1255 rw = rq_data_dir(rq);
1256 if (!rq->q->mq_ops) {
1257 blk_end_request_all(rq, tio->error);
1258 rq_completed(tio->md, rw, false);
1259 free_rq_tio(tio);
1260 } else {
1261 blk_mq_end_request(rq, tio->error);
1262 rq_completed(tio->md, rw, false);
1263 }
1264 return;
1265 }
1266
1267 if (rq->cmd_flags & REQ_FAILED)
1268 mapped = false;
1269
1270 dm_done(clone, tio->error, mapped);
1271 }
1272
1273 /*
1274 * Complete the clone and the original request with the error status
1275 * through softirq context.
1276 */
1277 static void dm_complete_request(struct request *rq, int error)
1278 {
1279 struct dm_rq_target_io *tio = tio_from_request(rq);
1280
1281 tio->error = error;
1282 blk_complete_request(rq);
1283 }
1284
1285 /*
1286 * Complete the not-mapped clone and the original request with the error status
1287 * through softirq context.
1288 * Target's rq_end_io() function isn't called.
1289 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1290 */
1291 static void dm_kill_unmapped_request(struct request *rq, int error)
1292 {
1293 rq->cmd_flags |= REQ_FAILED;
1294 dm_complete_request(rq, error);
1295 }
1296
1297 /*
1298 * Called with the clone's queue lock held (for non-blk-mq)
1299 */
1300 static void end_clone_request(struct request *clone, int error)
1301 {
1302 struct dm_rq_target_io *tio = clone->end_io_data;
1303
1304 if (!clone->q->mq_ops) {
1305 /*
1306 * For just cleaning up the information of the queue in which
1307 * the clone was dispatched.
1308 * The clone is *NOT* freed actually here because it is alloced
1309 * from dm own mempool (REQ_ALLOCED isn't set).
1310 */
1311 __blk_put_request(clone->q, clone);
1312 }
1313
1314 /*
1315 * Actual request completion is done in a softirq context which doesn't
1316 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1317 * - another request may be submitted by the upper level driver
1318 * of the stacking during the completion
1319 * - the submission which requires queue lock may be done
1320 * against this clone's queue
1321 */
1322 dm_complete_request(tio->orig, error);
1323 }
1324
1325 /*
1326 * Return maximum size of I/O possible at the supplied sector up to the current
1327 * target boundary.
1328 */
1329 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1330 {
1331 sector_t target_offset = dm_target_offset(ti, sector);
1332
1333 return ti->len - target_offset;
1334 }
1335
1336 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1337 {
1338 sector_t len = max_io_len_target_boundary(sector, ti);
1339 sector_t offset, max_len;
1340
1341 /*
1342 * Does the target need to split even further?
1343 */
1344 if (ti->max_io_len) {
1345 offset = dm_target_offset(ti, sector);
1346 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1347 max_len = sector_div(offset, ti->max_io_len);
1348 else
1349 max_len = offset & (ti->max_io_len - 1);
1350 max_len = ti->max_io_len - max_len;
1351
1352 if (len > max_len)
1353 len = max_len;
1354 }
1355
1356 return len;
1357 }
1358
1359 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1360 {
1361 if (len > UINT_MAX) {
1362 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1363 (unsigned long long)len, UINT_MAX);
1364 ti->error = "Maximum size of target IO is too large";
1365 return -EINVAL;
1366 }
1367
1368 ti->max_io_len = (uint32_t) len;
1369
1370 return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1373
1374 /*
1375 * A target may call dm_accept_partial_bio only from the map routine. It is
1376 * allowed for all bio types except REQ_FLUSH.
1377 *
1378 * dm_accept_partial_bio informs the dm that the target only wants to process
1379 * additional n_sectors sectors of the bio and the rest of the data should be
1380 * sent in a next bio.
1381 *
1382 * A diagram that explains the arithmetics:
1383 * +--------------------+---------------+-------+
1384 * | 1 | 2 | 3 |
1385 * +--------------------+---------------+-------+
1386 *
1387 * <-------------- *tio->len_ptr --------------->
1388 * <------- bi_size ------->
1389 * <-- n_sectors -->
1390 *
1391 * Region 1 was already iterated over with bio_advance or similar function.
1392 * (it may be empty if the target doesn't use bio_advance)
1393 * Region 2 is the remaining bio size that the target wants to process.
1394 * (it may be empty if region 1 is non-empty, although there is no reason
1395 * to make it empty)
1396 * The target requires that region 3 is to be sent in the next bio.
1397 *
1398 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1399 * the partially processed part (the sum of regions 1+2) must be the same for all
1400 * copies of the bio.
1401 */
1402 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1403 {
1404 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1405 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1406 BUG_ON(bio->bi_rw & REQ_FLUSH);
1407 BUG_ON(bi_size > *tio->len_ptr);
1408 BUG_ON(n_sectors > bi_size);
1409 *tio->len_ptr -= bi_size - n_sectors;
1410 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1411 }
1412 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1413
1414 static void __map_bio(struct dm_target_io *tio)
1415 {
1416 int r;
1417 sector_t sector;
1418 struct mapped_device *md;
1419 struct bio *clone = &tio->clone;
1420 struct dm_target *ti = tio->ti;
1421
1422 clone->bi_end_io = clone_endio;
1423
1424 /*
1425 * Map the clone. If r == 0 we don't need to do
1426 * anything, the target has assumed ownership of
1427 * this io.
1428 */
1429 atomic_inc(&tio->io->io_count);
1430 sector = clone->bi_iter.bi_sector;
1431 r = ti->type->map(ti, clone);
1432 if (r == DM_MAPIO_REMAPPED) {
1433 /* the bio has been remapped so dispatch it */
1434
1435 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1436 tio->io->bio->bi_bdev->bd_dev, sector);
1437
1438 generic_make_request(clone);
1439 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1440 /* error the io and bail out, or requeue it if needed */
1441 md = tio->io->md;
1442 dec_pending(tio->io, r);
1443 free_tio(md, tio);
1444 } else if (r) {
1445 DMWARN("unimplemented target map return value: %d", r);
1446 BUG();
1447 }
1448 }
1449
1450 struct clone_info {
1451 struct mapped_device *md;
1452 struct dm_table *map;
1453 struct bio *bio;
1454 struct dm_io *io;
1455 sector_t sector;
1456 unsigned sector_count;
1457 };
1458
1459 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1460 {
1461 bio->bi_iter.bi_sector = sector;
1462 bio->bi_iter.bi_size = to_bytes(len);
1463 }
1464
1465 /*
1466 * Creates a bio that consists of range of complete bvecs.
1467 */
1468 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1469 sector_t sector, unsigned len)
1470 {
1471 struct bio *clone = &tio->clone;
1472
1473 __bio_clone_fast(clone, bio);
1474
1475 if (bio_integrity(bio))
1476 bio_integrity_clone(clone, bio, GFP_NOIO);
1477
1478 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1479 clone->bi_iter.bi_size = to_bytes(len);
1480
1481 if (bio_integrity(bio))
1482 bio_integrity_trim(clone, 0, len);
1483 }
1484
1485 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1486 struct dm_target *ti,
1487 unsigned target_bio_nr)
1488 {
1489 struct dm_target_io *tio;
1490 struct bio *clone;
1491
1492 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1493 tio = container_of(clone, struct dm_target_io, clone);
1494
1495 tio->io = ci->io;
1496 tio->ti = ti;
1497 tio->target_bio_nr = target_bio_nr;
1498
1499 return tio;
1500 }
1501
1502 static void __clone_and_map_simple_bio(struct clone_info *ci,
1503 struct dm_target *ti,
1504 unsigned target_bio_nr, unsigned *len)
1505 {
1506 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1507 struct bio *clone = &tio->clone;
1508
1509 tio->len_ptr = len;
1510
1511 __bio_clone_fast(clone, ci->bio);
1512 if (len)
1513 bio_setup_sector(clone, ci->sector, *len);
1514
1515 __map_bio(tio);
1516 }
1517
1518 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1519 unsigned num_bios, unsigned *len)
1520 {
1521 unsigned target_bio_nr;
1522
1523 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1524 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1525 }
1526
1527 static int __send_empty_flush(struct clone_info *ci)
1528 {
1529 unsigned target_nr = 0;
1530 struct dm_target *ti;
1531
1532 BUG_ON(bio_has_data(ci->bio));
1533 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1534 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1535
1536 return 0;
1537 }
1538
1539 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1540 sector_t sector, unsigned *len)
1541 {
1542 struct bio *bio = ci->bio;
1543 struct dm_target_io *tio;
1544 unsigned target_bio_nr;
1545 unsigned num_target_bios = 1;
1546
1547 /*
1548 * Does the target want to receive duplicate copies of the bio?
1549 */
1550 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1551 num_target_bios = ti->num_write_bios(ti, bio);
1552
1553 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1554 tio = alloc_tio(ci, ti, target_bio_nr);
1555 tio->len_ptr = len;
1556 clone_bio(tio, bio, sector, *len);
1557 __map_bio(tio);
1558 }
1559 }
1560
1561 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1562
1563 static unsigned get_num_discard_bios(struct dm_target *ti)
1564 {
1565 return ti->num_discard_bios;
1566 }
1567
1568 static unsigned get_num_write_same_bios(struct dm_target *ti)
1569 {
1570 return ti->num_write_same_bios;
1571 }
1572
1573 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1574
1575 static bool is_split_required_for_discard(struct dm_target *ti)
1576 {
1577 return ti->split_discard_bios;
1578 }
1579
1580 static int __send_changing_extent_only(struct clone_info *ci,
1581 get_num_bios_fn get_num_bios,
1582 is_split_required_fn is_split_required)
1583 {
1584 struct dm_target *ti;
1585 unsigned len;
1586 unsigned num_bios;
1587
1588 do {
1589 ti = dm_table_find_target(ci->map, ci->sector);
1590 if (!dm_target_is_valid(ti))
1591 return -EIO;
1592
1593 /*
1594 * Even though the device advertised support for this type of
1595 * request, that does not mean every target supports it, and
1596 * reconfiguration might also have changed that since the
1597 * check was performed.
1598 */
1599 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1600 if (!num_bios)
1601 return -EOPNOTSUPP;
1602
1603 if (is_split_required && !is_split_required(ti))
1604 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1605 else
1606 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1607
1608 __send_duplicate_bios(ci, ti, num_bios, &len);
1609
1610 ci->sector += len;
1611 } while (ci->sector_count -= len);
1612
1613 return 0;
1614 }
1615
1616 static int __send_discard(struct clone_info *ci)
1617 {
1618 return __send_changing_extent_only(ci, get_num_discard_bios,
1619 is_split_required_for_discard);
1620 }
1621
1622 static int __send_write_same(struct clone_info *ci)
1623 {
1624 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1625 }
1626
1627 /*
1628 * Select the correct strategy for processing a non-flush bio.
1629 */
1630 static int __split_and_process_non_flush(struct clone_info *ci)
1631 {
1632 struct bio *bio = ci->bio;
1633 struct dm_target *ti;
1634 unsigned len;
1635
1636 if (unlikely(bio->bi_rw & REQ_DISCARD))
1637 return __send_discard(ci);
1638 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1639 return __send_write_same(ci);
1640
1641 ti = dm_table_find_target(ci->map, ci->sector);
1642 if (!dm_target_is_valid(ti))
1643 return -EIO;
1644
1645 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1646
1647 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1648
1649 ci->sector += len;
1650 ci->sector_count -= len;
1651
1652 return 0;
1653 }
1654
1655 /*
1656 * Entry point to split a bio into clones and submit them to the targets.
1657 */
1658 static void __split_and_process_bio(struct mapped_device *md,
1659 struct dm_table *map, struct bio *bio)
1660 {
1661 struct clone_info ci;
1662 int error = 0;
1663
1664 if (unlikely(!map)) {
1665 bio_io_error(bio);
1666 return;
1667 }
1668
1669 ci.map = map;
1670 ci.md = md;
1671 ci.io = alloc_io(md);
1672 ci.io->error = 0;
1673 atomic_set(&ci.io->io_count, 1);
1674 ci.io->bio = bio;
1675 ci.io->md = md;
1676 spin_lock_init(&ci.io->endio_lock);
1677 ci.sector = bio->bi_iter.bi_sector;
1678
1679 start_io_acct(ci.io);
1680
1681 if (bio->bi_rw & REQ_FLUSH) {
1682 ci.bio = &ci.md->flush_bio;
1683 ci.sector_count = 0;
1684 error = __send_empty_flush(&ci);
1685 /* dec_pending submits any data associated with flush */
1686 } else {
1687 ci.bio = bio;
1688 ci.sector_count = bio_sectors(bio);
1689 while (ci.sector_count && !error)
1690 error = __split_and_process_non_flush(&ci);
1691 }
1692
1693 /* drop the extra reference count */
1694 dec_pending(ci.io, error);
1695 }
1696 /*-----------------------------------------------------------------
1697 * CRUD END
1698 *---------------------------------------------------------------*/
1699
1700 static int dm_merge_bvec(struct request_queue *q,
1701 struct bvec_merge_data *bvm,
1702 struct bio_vec *biovec)
1703 {
1704 struct mapped_device *md = q->queuedata;
1705 struct dm_table *map = dm_get_live_table_fast(md);
1706 struct dm_target *ti;
1707 sector_t max_sectors;
1708 int max_size = 0;
1709
1710 if (unlikely(!map))
1711 goto out;
1712
1713 ti = dm_table_find_target(map, bvm->bi_sector);
1714 if (!dm_target_is_valid(ti))
1715 goto out;
1716
1717 /*
1718 * Find maximum amount of I/O that won't need splitting
1719 */
1720 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1721 (sector_t) queue_max_sectors(q));
1722 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1723 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1724 max_size = 0;
1725
1726 /*
1727 * merge_bvec_fn() returns number of bytes
1728 * it can accept at this offset
1729 * max is precomputed maximal io size
1730 */
1731 if (max_size && ti->type->merge)
1732 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1733 /*
1734 * If the target doesn't support merge method and some of the devices
1735 * provided their merge_bvec method (we know this by looking for the
1736 * max_hw_sectors that dm_set_device_limits may set), then we can't
1737 * allow bios with multiple vector entries. So always set max_size
1738 * to 0, and the code below allows just one page.
1739 */
1740 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1741 max_size = 0;
1742
1743 out:
1744 dm_put_live_table_fast(md);
1745 /*
1746 * Always allow an entire first page
1747 */
1748 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1749 max_size = biovec->bv_len;
1750
1751 return max_size;
1752 }
1753
1754 /*
1755 * The request function that just remaps the bio built up by
1756 * dm_merge_bvec.
1757 */
1758 static void dm_make_request(struct request_queue *q, struct bio *bio)
1759 {
1760 int rw = bio_data_dir(bio);
1761 struct mapped_device *md = q->queuedata;
1762 int srcu_idx;
1763 struct dm_table *map;
1764
1765 map = dm_get_live_table(md, &srcu_idx);
1766
1767 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1768
1769 /* if we're suspended, we have to queue this io for later */
1770 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1771 dm_put_live_table(md, srcu_idx);
1772
1773 if (bio_rw(bio) != READA)
1774 queue_io(md, bio);
1775 else
1776 bio_io_error(bio);
1777 return;
1778 }
1779
1780 __split_and_process_bio(md, map, bio);
1781 dm_put_live_table(md, srcu_idx);
1782 return;
1783 }
1784
1785 int dm_request_based(struct mapped_device *md)
1786 {
1787 return blk_queue_stackable(md->queue);
1788 }
1789
1790 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1791 {
1792 int r;
1793
1794 if (blk_queue_io_stat(clone->q))
1795 clone->cmd_flags |= REQ_IO_STAT;
1796
1797 clone->start_time = jiffies;
1798 r = blk_insert_cloned_request(clone->q, clone);
1799 if (r)
1800 /* must complete clone in terms of original request */
1801 dm_complete_request(rq, r);
1802 }
1803
1804 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1805 void *data)
1806 {
1807 struct dm_rq_target_io *tio = data;
1808 struct dm_rq_clone_bio_info *info =
1809 container_of(bio, struct dm_rq_clone_bio_info, clone);
1810
1811 info->orig = bio_orig;
1812 info->tio = tio;
1813 bio->bi_end_io = end_clone_bio;
1814
1815 return 0;
1816 }
1817
1818 static int setup_clone(struct request *clone, struct request *rq,
1819 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1820 {
1821 int r;
1822
1823 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1824 dm_rq_bio_constructor, tio);
1825 if (r)
1826 return r;
1827
1828 clone->cmd = rq->cmd;
1829 clone->cmd_len = rq->cmd_len;
1830 clone->sense = rq->sense;
1831 clone->end_io = end_clone_request;
1832 clone->end_io_data = tio;
1833
1834 tio->clone = clone;
1835
1836 return 0;
1837 }
1838
1839 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1840 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1841 {
1842 /*
1843 * Do not allocate a clone if tio->clone was already set
1844 * (see: dm_mq_queue_rq).
1845 */
1846 bool alloc_clone = !tio->clone;
1847 struct request *clone;
1848
1849 if (alloc_clone) {
1850 clone = alloc_clone_request(md, gfp_mask);
1851 if (!clone)
1852 return NULL;
1853 } else
1854 clone = tio->clone;
1855
1856 blk_rq_init(NULL, clone);
1857 if (setup_clone(clone, rq, tio, gfp_mask)) {
1858 /* -ENOMEM */
1859 if (alloc_clone)
1860 free_clone_request(md, clone);
1861 return NULL;
1862 }
1863
1864 return clone;
1865 }
1866
1867 static void map_tio_request(struct kthread_work *work);
1868
1869 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1870 struct mapped_device *md)
1871 {
1872 tio->md = md;
1873 tio->ti = NULL;
1874 tio->clone = NULL;
1875 tio->orig = rq;
1876 tio->error = 0;
1877 memset(&tio->info, 0, sizeof(tio->info));
1878 if (md->kworker_task)
1879 init_kthread_work(&tio->work, map_tio_request);
1880 }
1881
1882 static struct dm_rq_target_io *prep_tio(struct request *rq,
1883 struct mapped_device *md, gfp_t gfp_mask)
1884 {
1885 struct dm_rq_target_io *tio;
1886 int srcu_idx;
1887 struct dm_table *table;
1888
1889 tio = alloc_rq_tio(md, gfp_mask);
1890 if (!tio)
1891 return NULL;
1892
1893 init_tio(tio, rq, md);
1894
1895 table = dm_get_live_table(md, &srcu_idx);
1896 if (!dm_table_mq_request_based(table)) {
1897 if (!clone_rq(rq, md, tio, gfp_mask)) {
1898 dm_put_live_table(md, srcu_idx);
1899 free_rq_tio(tio);
1900 return NULL;
1901 }
1902 }
1903 dm_put_live_table(md, srcu_idx);
1904
1905 return tio;
1906 }
1907
1908 /*
1909 * Called with the queue lock held.
1910 */
1911 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1912 {
1913 struct mapped_device *md = q->queuedata;
1914 struct dm_rq_target_io *tio;
1915
1916 if (unlikely(rq->special)) {
1917 DMWARN("Already has something in rq->special.");
1918 return BLKPREP_KILL;
1919 }
1920
1921 tio = prep_tio(rq, md, GFP_ATOMIC);
1922 if (!tio)
1923 return BLKPREP_DEFER;
1924
1925 rq->special = tio;
1926 rq->cmd_flags |= REQ_DONTPREP;
1927
1928 return BLKPREP_OK;
1929 }
1930
1931 /*
1932 * Returns:
1933 * 0 : the request has been processed
1934 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1935 * < 0 : the request was completed due to failure
1936 */
1937 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1938 struct mapped_device *md)
1939 {
1940 int r;
1941 struct dm_target *ti = tio->ti;
1942 struct request *clone = NULL;
1943
1944 if (tio->clone) {
1945 clone = tio->clone;
1946 r = ti->type->map_rq(ti, clone, &tio->info);
1947 } else {
1948 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1949 if (r < 0) {
1950 /* The target wants to complete the I/O */
1951 dm_kill_unmapped_request(rq, r);
1952 return r;
1953 }
1954 if (IS_ERR(clone))
1955 return DM_MAPIO_REQUEUE;
1956 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1957 /* -ENOMEM */
1958 ti->type->release_clone_rq(clone);
1959 return DM_MAPIO_REQUEUE;
1960 }
1961 }
1962
1963 switch (r) {
1964 case DM_MAPIO_SUBMITTED:
1965 /* The target has taken the I/O to submit by itself later */
1966 break;
1967 case DM_MAPIO_REMAPPED:
1968 /* The target has remapped the I/O so dispatch it */
1969 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1970 blk_rq_pos(rq));
1971 dm_dispatch_clone_request(clone, rq);
1972 break;
1973 case DM_MAPIO_REQUEUE:
1974 /* The target wants to requeue the I/O */
1975 dm_requeue_unmapped_request(clone);
1976 break;
1977 default:
1978 if (r > 0) {
1979 DMWARN("unimplemented target map return value: %d", r);
1980 BUG();
1981 }
1982
1983 /* The target wants to complete the I/O */
1984 dm_kill_unmapped_request(rq, r);
1985 return r;
1986 }
1987
1988 return 0;
1989 }
1990
1991 static void map_tio_request(struct kthread_work *work)
1992 {
1993 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1994 struct request *rq = tio->orig;
1995 struct mapped_device *md = tio->md;
1996
1997 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1998 dm_requeue_unmapped_original_request(md, rq);
1999 }
2000
2001 static void dm_start_request(struct mapped_device *md, struct request *orig)
2002 {
2003 if (!orig->q->mq_ops)
2004 blk_start_request(orig);
2005 else
2006 blk_mq_start_request(orig);
2007 atomic_inc(&md->pending[rq_data_dir(orig)]);
2008
2009 if (md->seq_rq_merge_deadline_usecs) {
2010 md->last_rq_pos = rq_end_sector(orig);
2011 md->last_rq_rw = rq_data_dir(orig);
2012 md->last_rq_start_time = ktime_get();
2013 }
2014
2015 /*
2016 * Hold the md reference here for the in-flight I/O.
2017 * We can't rely on the reference count by device opener,
2018 * because the device may be closed during the request completion
2019 * when all bios are completed.
2020 * See the comment in rq_completed() too.
2021 */
2022 dm_get(md);
2023 }
2024
2025 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2026
2027 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2028 {
2029 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2030 }
2031
2032 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2033 const char *buf, size_t count)
2034 {
2035 unsigned deadline;
2036
2037 if (!dm_request_based(md))
2038 return count;
2039
2040 if (kstrtouint(buf, 10, &deadline))
2041 return -EINVAL;
2042
2043 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2044 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2045
2046 md->seq_rq_merge_deadline_usecs = deadline;
2047
2048 return count;
2049 }
2050
2051 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2052 {
2053 ktime_t kt_deadline;
2054
2055 if (!md->seq_rq_merge_deadline_usecs)
2056 return false;
2057
2058 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2059 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2060
2061 return !ktime_after(ktime_get(), kt_deadline);
2062 }
2063
2064 /*
2065 * q->request_fn for request-based dm.
2066 * Called with the queue lock held.
2067 */
2068 static void dm_request_fn(struct request_queue *q)
2069 {
2070 struct mapped_device *md = q->queuedata;
2071 int srcu_idx;
2072 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2073 struct dm_target *ti;
2074 struct request *rq;
2075 struct dm_rq_target_io *tio;
2076 sector_t pos;
2077
2078 /*
2079 * For suspend, check blk_queue_stopped() and increment
2080 * ->pending within a single queue_lock not to increment the
2081 * number of in-flight I/Os after the queue is stopped in
2082 * dm_suspend().
2083 */
2084 while (!blk_queue_stopped(q)) {
2085 rq = blk_peek_request(q);
2086 if (!rq)
2087 goto out;
2088
2089 /* always use block 0 to find the target for flushes for now */
2090 pos = 0;
2091 if (!(rq->cmd_flags & REQ_FLUSH))
2092 pos = blk_rq_pos(rq);
2093
2094 ti = dm_table_find_target(map, pos);
2095 if (!dm_target_is_valid(ti)) {
2096 /*
2097 * Must perform setup, that rq_completed() requires,
2098 * before calling dm_kill_unmapped_request
2099 */
2100 DMERR_LIMIT("request attempted access beyond the end of device");
2101 dm_start_request(md, rq);
2102 dm_kill_unmapped_request(rq, -EIO);
2103 continue;
2104 }
2105
2106 if (dm_request_peeked_before_merge_deadline(md) &&
2107 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2108 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2109 goto delay_and_out;
2110
2111 if (ti->type->busy && ti->type->busy(ti))
2112 goto delay_and_out;
2113
2114 dm_start_request(md, rq);
2115
2116 tio = tio_from_request(rq);
2117 /* Establish tio->ti before queuing work (map_tio_request) */
2118 tio->ti = ti;
2119 queue_kthread_work(&md->kworker, &tio->work);
2120 BUG_ON(!irqs_disabled());
2121 }
2122
2123 goto out;
2124
2125 delay_and_out:
2126 blk_delay_queue(q, HZ / 100);
2127 out:
2128 dm_put_live_table(md, srcu_idx);
2129 }
2130
2131 static int dm_any_congested(void *congested_data, int bdi_bits)
2132 {
2133 int r = bdi_bits;
2134 struct mapped_device *md = congested_data;
2135 struct dm_table *map;
2136
2137 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2138 map = dm_get_live_table_fast(md);
2139 if (map) {
2140 /*
2141 * Request-based dm cares about only own queue for
2142 * the query about congestion status of request_queue
2143 */
2144 if (dm_request_based(md))
2145 r = md->queue->backing_dev_info.state &
2146 bdi_bits;
2147 else
2148 r = dm_table_any_congested(map, bdi_bits);
2149 }
2150 dm_put_live_table_fast(md);
2151 }
2152
2153 return r;
2154 }
2155
2156 /*-----------------------------------------------------------------
2157 * An IDR is used to keep track of allocated minor numbers.
2158 *---------------------------------------------------------------*/
2159 static void free_minor(int minor)
2160 {
2161 spin_lock(&_minor_lock);
2162 idr_remove(&_minor_idr, minor);
2163 spin_unlock(&_minor_lock);
2164 }
2165
2166 /*
2167 * See if the device with a specific minor # is free.
2168 */
2169 static int specific_minor(int minor)
2170 {
2171 int r;
2172
2173 if (minor >= (1 << MINORBITS))
2174 return -EINVAL;
2175
2176 idr_preload(GFP_KERNEL);
2177 spin_lock(&_minor_lock);
2178
2179 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2180
2181 spin_unlock(&_minor_lock);
2182 idr_preload_end();
2183 if (r < 0)
2184 return r == -ENOSPC ? -EBUSY : r;
2185 return 0;
2186 }
2187
2188 static int next_free_minor(int *minor)
2189 {
2190 int r;
2191
2192 idr_preload(GFP_KERNEL);
2193 spin_lock(&_minor_lock);
2194
2195 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2196
2197 spin_unlock(&_minor_lock);
2198 idr_preload_end();
2199 if (r < 0)
2200 return r;
2201 *minor = r;
2202 return 0;
2203 }
2204
2205 static const struct block_device_operations dm_blk_dops;
2206
2207 static void dm_wq_work(struct work_struct *work);
2208
2209 static void dm_init_md_queue(struct mapped_device *md)
2210 {
2211 /*
2212 * Request-based dm devices cannot be stacked on top of bio-based dm
2213 * devices. The type of this dm device may not have been decided yet.
2214 * The type is decided at the first table loading time.
2215 * To prevent problematic device stacking, clear the queue flag
2216 * for request stacking support until then.
2217 *
2218 * This queue is new, so no concurrency on the queue_flags.
2219 */
2220 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2221 }
2222
2223 static void dm_init_old_md_queue(struct mapped_device *md)
2224 {
2225 dm_init_md_queue(md);
2226
2227 /*
2228 * Initialize aspects of queue that aren't relevant for blk-mq
2229 */
2230 md->queue->queuedata = md;
2231 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2232 md->queue->backing_dev_info.congested_data = md;
2233
2234 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2235 }
2236
2237 /*
2238 * Allocate and initialise a blank device with a given minor.
2239 */
2240 static struct mapped_device *alloc_dev(int minor)
2241 {
2242 int r;
2243 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2244 void *old_md;
2245
2246 if (!md) {
2247 DMWARN("unable to allocate device, out of memory.");
2248 return NULL;
2249 }
2250
2251 if (!try_module_get(THIS_MODULE))
2252 goto bad_module_get;
2253
2254 /* get a minor number for the dev */
2255 if (minor == DM_ANY_MINOR)
2256 r = next_free_minor(&minor);
2257 else
2258 r = specific_minor(minor);
2259 if (r < 0)
2260 goto bad_minor;
2261
2262 r = init_srcu_struct(&md->io_barrier);
2263 if (r < 0)
2264 goto bad_io_barrier;
2265
2266 md->type = DM_TYPE_NONE;
2267 mutex_init(&md->suspend_lock);
2268 mutex_init(&md->type_lock);
2269 mutex_init(&md->table_devices_lock);
2270 spin_lock_init(&md->deferred_lock);
2271 atomic_set(&md->holders, 1);
2272 atomic_set(&md->open_count, 0);
2273 atomic_set(&md->event_nr, 0);
2274 atomic_set(&md->uevent_seq, 0);
2275 INIT_LIST_HEAD(&md->uevent_list);
2276 INIT_LIST_HEAD(&md->table_devices);
2277 spin_lock_init(&md->uevent_lock);
2278
2279 md->queue = blk_alloc_queue(GFP_KERNEL);
2280 if (!md->queue)
2281 goto bad_queue;
2282
2283 dm_init_md_queue(md);
2284
2285 md->disk = alloc_disk(1);
2286 if (!md->disk)
2287 goto bad_disk;
2288
2289 atomic_set(&md->pending[0], 0);
2290 atomic_set(&md->pending[1], 0);
2291 init_waitqueue_head(&md->wait);
2292 INIT_WORK(&md->work, dm_wq_work);
2293 init_waitqueue_head(&md->eventq);
2294 init_completion(&md->kobj_holder.completion);
2295 md->kworker_task = NULL;
2296
2297 md->disk->major = _major;
2298 md->disk->first_minor = minor;
2299 md->disk->fops = &dm_blk_dops;
2300 md->disk->queue = md->queue;
2301 md->disk->private_data = md;
2302 sprintf(md->disk->disk_name, "dm-%d", minor);
2303 add_disk(md->disk);
2304 format_dev_t(md->name, MKDEV(_major, minor));
2305
2306 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2307 if (!md->wq)
2308 goto bad_thread;
2309
2310 md->bdev = bdget_disk(md->disk, 0);
2311 if (!md->bdev)
2312 goto bad_bdev;
2313
2314 bio_init(&md->flush_bio);
2315 md->flush_bio.bi_bdev = md->bdev;
2316 md->flush_bio.bi_rw = WRITE_FLUSH;
2317
2318 dm_stats_init(&md->stats);
2319
2320 /* Populate the mapping, nobody knows we exist yet */
2321 spin_lock(&_minor_lock);
2322 old_md = idr_replace(&_minor_idr, md, minor);
2323 spin_unlock(&_minor_lock);
2324
2325 BUG_ON(old_md != MINOR_ALLOCED);
2326
2327 return md;
2328
2329 bad_bdev:
2330 destroy_workqueue(md->wq);
2331 bad_thread:
2332 del_gendisk(md->disk);
2333 put_disk(md->disk);
2334 bad_disk:
2335 blk_cleanup_queue(md->queue);
2336 bad_queue:
2337 cleanup_srcu_struct(&md->io_barrier);
2338 bad_io_barrier:
2339 free_minor(minor);
2340 bad_minor:
2341 module_put(THIS_MODULE);
2342 bad_module_get:
2343 kfree(md);
2344 return NULL;
2345 }
2346
2347 static void unlock_fs(struct mapped_device *md);
2348
2349 static void free_dev(struct mapped_device *md)
2350 {
2351 int minor = MINOR(disk_devt(md->disk));
2352 bool using_blk_mq = !!md->queue->mq_ops;
2353
2354 unlock_fs(md);
2355 destroy_workqueue(md->wq);
2356
2357 if (md->kworker_task)
2358 kthread_stop(md->kworker_task);
2359 if (md->io_pool)
2360 mempool_destroy(md->io_pool);
2361 if (md->rq_pool)
2362 mempool_destroy(md->rq_pool);
2363 if (md->bs)
2364 bioset_free(md->bs);
2365
2366 cleanup_srcu_struct(&md->io_barrier);
2367 free_table_devices(&md->table_devices);
2368 dm_stats_cleanup(&md->stats);
2369
2370 spin_lock(&_minor_lock);
2371 md->disk->private_data = NULL;
2372 spin_unlock(&_minor_lock);
2373 if (blk_get_integrity(md->disk))
2374 blk_integrity_unregister(md->disk);
2375 del_gendisk(md->disk);
2376 put_disk(md->disk);
2377 blk_cleanup_queue(md->queue);
2378 if (using_blk_mq)
2379 blk_mq_free_tag_set(&md->tag_set);
2380 bdput(md->bdev);
2381 free_minor(minor);
2382
2383 module_put(THIS_MODULE);
2384 kfree(md);
2385 }
2386
2387 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2388 {
2389 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2390
2391 if (md->io_pool && md->bs) {
2392 /* The md already has necessary mempools. */
2393 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2394 /*
2395 * Reload bioset because front_pad may have changed
2396 * because a different table was loaded.
2397 */
2398 bioset_free(md->bs);
2399 md->bs = p->bs;
2400 p->bs = NULL;
2401 }
2402 /*
2403 * There's no need to reload with request-based dm
2404 * because the size of front_pad doesn't change.
2405 * Note for future: If you are to reload bioset,
2406 * prep-ed requests in the queue may refer
2407 * to bio from the old bioset, so you must walk
2408 * through the queue to unprep.
2409 */
2410 goto out;
2411 }
2412
2413 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2414
2415 md->io_pool = p->io_pool;
2416 p->io_pool = NULL;
2417 md->rq_pool = p->rq_pool;
2418 p->rq_pool = NULL;
2419 md->bs = p->bs;
2420 p->bs = NULL;
2421
2422 out:
2423 /* mempool bind completed, no longer need any mempools in the table */
2424 dm_table_free_md_mempools(t);
2425 }
2426
2427 /*
2428 * Bind a table to the device.
2429 */
2430 static void event_callback(void *context)
2431 {
2432 unsigned long flags;
2433 LIST_HEAD(uevents);
2434 struct mapped_device *md = (struct mapped_device *) context;
2435
2436 spin_lock_irqsave(&md->uevent_lock, flags);
2437 list_splice_init(&md->uevent_list, &uevents);
2438 spin_unlock_irqrestore(&md->uevent_lock, flags);
2439
2440 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2441
2442 atomic_inc(&md->event_nr);
2443 wake_up(&md->eventq);
2444 }
2445
2446 /*
2447 * Protected by md->suspend_lock obtained by dm_swap_table().
2448 */
2449 static void __set_size(struct mapped_device *md, sector_t size)
2450 {
2451 set_capacity(md->disk, size);
2452
2453 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2454 }
2455
2456 /*
2457 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2458 *
2459 * If this function returns 0, then the device is either a non-dm
2460 * device without a merge_bvec_fn, or it is a dm device that is
2461 * able to split any bios it receives that are too big.
2462 */
2463 int dm_queue_merge_is_compulsory(struct request_queue *q)
2464 {
2465 struct mapped_device *dev_md;
2466
2467 if (!q->merge_bvec_fn)
2468 return 0;
2469
2470 if (q->make_request_fn == dm_make_request) {
2471 dev_md = q->queuedata;
2472 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2473 return 0;
2474 }
2475
2476 return 1;
2477 }
2478
2479 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2480 struct dm_dev *dev, sector_t start,
2481 sector_t len, void *data)
2482 {
2483 struct block_device *bdev = dev->bdev;
2484 struct request_queue *q = bdev_get_queue(bdev);
2485
2486 return dm_queue_merge_is_compulsory(q);
2487 }
2488
2489 /*
2490 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2491 * on the properties of the underlying devices.
2492 */
2493 static int dm_table_merge_is_optional(struct dm_table *table)
2494 {
2495 unsigned i = 0;
2496 struct dm_target *ti;
2497
2498 while (i < dm_table_get_num_targets(table)) {
2499 ti = dm_table_get_target(table, i++);
2500
2501 if (ti->type->iterate_devices &&
2502 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2503 return 0;
2504 }
2505
2506 return 1;
2507 }
2508
2509 /*
2510 * Returns old map, which caller must destroy.
2511 */
2512 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2513 struct queue_limits *limits)
2514 {
2515 struct dm_table *old_map;
2516 struct request_queue *q = md->queue;
2517 sector_t size;
2518 int merge_is_optional;
2519
2520 size = dm_table_get_size(t);
2521
2522 /*
2523 * Wipe any geometry if the size of the table changed.
2524 */
2525 if (size != dm_get_size(md))
2526 memset(&md->geometry, 0, sizeof(md->geometry));
2527
2528 __set_size(md, size);
2529
2530 dm_table_event_callback(t, event_callback, md);
2531
2532 /*
2533 * The queue hasn't been stopped yet, if the old table type wasn't
2534 * for request-based during suspension. So stop it to prevent
2535 * I/O mapping before resume.
2536 * This must be done before setting the queue restrictions,
2537 * because request-based dm may be run just after the setting.
2538 */
2539 if (dm_table_request_based(t))
2540 stop_queue(q);
2541
2542 __bind_mempools(md, t);
2543
2544 merge_is_optional = dm_table_merge_is_optional(t);
2545
2546 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2547 rcu_assign_pointer(md->map, t);
2548 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2549
2550 dm_table_set_restrictions(t, q, limits);
2551 if (merge_is_optional)
2552 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2553 else
2554 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2555 if (old_map)
2556 dm_sync_table(md);
2557
2558 return old_map;
2559 }
2560
2561 /*
2562 * Returns unbound table for the caller to free.
2563 */
2564 static struct dm_table *__unbind(struct mapped_device *md)
2565 {
2566 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2567
2568 if (!map)
2569 return NULL;
2570
2571 dm_table_event_callback(map, NULL, NULL);
2572 RCU_INIT_POINTER(md->map, NULL);
2573 dm_sync_table(md);
2574
2575 return map;
2576 }
2577
2578 /*
2579 * Constructor for a new device.
2580 */
2581 int dm_create(int minor, struct mapped_device **result)
2582 {
2583 struct mapped_device *md;
2584
2585 md = alloc_dev(minor);
2586 if (!md)
2587 return -ENXIO;
2588
2589 dm_sysfs_init(md);
2590
2591 *result = md;
2592 return 0;
2593 }
2594
2595 /*
2596 * Functions to manage md->type.
2597 * All are required to hold md->type_lock.
2598 */
2599 void dm_lock_md_type(struct mapped_device *md)
2600 {
2601 mutex_lock(&md->type_lock);
2602 }
2603
2604 void dm_unlock_md_type(struct mapped_device *md)
2605 {
2606 mutex_unlock(&md->type_lock);
2607 }
2608
2609 void dm_set_md_type(struct mapped_device *md, unsigned type)
2610 {
2611 BUG_ON(!mutex_is_locked(&md->type_lock));
2612 md->type = type;
2613 }
2614
2615 unsigned dm_get_md_type(struct mapped_device *md)
2616 {
2617 BUG_ON(!mutex_is_locked(&md->type_lock));
2618 return md->type;
2619 }
2620
2621 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2622 {
2623 return md->immutable_target_type;
2624 }
2625
2626 /*
2627 * The queue_limits are only valid as long as you have a reference
2628 * count on 'md'.
2629 */
2630 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2631 {
2632 BUG_ON(!atomic_read(&md->holders));
2633 return &md->queue->limits;
2634 }
2635 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2636
2637 static void init_rq_based_worker_thread(struct mapped_device *md)
2638 {
2639 /* Initialize the request-based DM worker thread */
2640 init_kthread_worker(&md->kworker);
2641 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2642 "kdmwork-%s", dm_device_name(md));
2643 }
2644
2645 /*
2646 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2647 */
2648 static int dm_init_request_based_queue(struct mapped_device *md)
2649 {
2650 struct request_queue *q = NULL;
2651
2652 if (md->queue->elevator)
2653 return 0;
2654
2655 /* Fully initialize the queue */
2656 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2657 if (!q)
2658 return -EINVAL;
2659
2660 /* disable dm_request_fn's merge heuristic by default */
2661 md->seq_rq_merge_deadline_usecs = 0;
2662
2663 md->queue = q;
2664 dm_init_old_md_queue(md);
2665 blk_queue_softirq_done(md->queue, dm_softirq_done);
2666 blk_queue_prep_rq(md->queue, dm_prep_fn);
2667
2668 init_rq_based_worker_thread(md);
2669
2670 elv_register_queue(md->queue);
2671
2672 return 0;
2673 }
2674
2675 static int dm_mq_init_request(void *data, struct request *rq,
2676 unsigned int hctx_idx, unsigned int request_idx,
2677 unsigned int numa_node)
2678 {
2679 struct mapped_device *md = data;
2680 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2681
2682 /*
2683 * Must initialize md member of tio, otherwise it won't
2684 * be available in dm_mq_queue_rq.
2685 */
2686 tio->md = md;
2687
2688 return 0;
2689 }
2690
2691 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2692 const struct blk_mq_queue_data *bd)
2693 {
2694 struct request *rq = bd->rq;
2695 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2696 struct mapped_device *md = tio->md;
2697 int srcu_idx;
2698 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2699 struct dm_target *ti;
2700 sector_t pos;
2701
2702 /* always use block 0 to find the target for flushes for now */
2703 pos = 0;
2704 if (!(rq->cmd_flags & REQ_FLUSH))
2705 pos = blk_rq_pos(rq);
2706
2707 ti = dm_table_find_target(map, pos);
2708 if (!dm_target_is_valid(ti)) {
2709 dm_put_live_table(md, srcu_idx);
2710 DMERR_LIMIT("request attempted access beyond the end of device");
2711 /*
2712 * Must perform setup, that rq_completed() requires,
2713 * before returning BLK_MQ_RQ_QUEUE_ERROR
2714 */
2715 dm_start_request(md, rq);
2716 return BLK_MQ_RQ_QUEUE_ERROR;
2717 }
2718 dm_put_live_table(md, srcu_idx);
2719
2720 if (ti->type->busy && ti->type->busy(ti))
2721 return BLK_MQ_RQ_QUEUE_BUSY;
2722
2723 dm_start_request(md, rq);
2724
2725 /* Init tio using md established in .init_request */
2726 init_tio(tio, rq, md);
2727
2728 /*
2729 * Establish tio->ti before queuing work (map_tio_request)
2730 * or making direct call to map_request().
2731 */
2732 tio->ti = ti;
2733
2734 /* Clone the request if underlying devices aren't blk-mq */
2735 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2736 /* clone request is allocated at the end of the pdu */
2737 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2738 if (!clone_rq(rq, md, tio, GFP_ATOMIC))
2739 return BLK_MQ_RQ_QUEUE_BUSY;
2740 queue_kthread_work(&md->kworker, &tio->work);
2741 } else {
2742 /* Direct call is fine since .queue_rq allows allocations */
2743 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2744 dm_requeue_unmapped_original_request(md, rq);
2745 }
2746
2747 return BLK_MQ_RQ_QUEUE_OK;
2748 }
2749
2750 static struct blk_mq_ops dm_mq_ops = {
2751 .queue_rq = dm_mq_queue_rq,
2752 .map_queue = blk_mq_map_queue,
2753 .complete = dm_softirq_done,
2754 .init_request = dm_mq_init_request,
2755 };
2756
2757 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2758 {
2759 unsigned md_type = dm_get_md_type(md);
2760 struct request_queue *q;
2761 int err;
2762
2763 memset(&md->tag_set, 0, sizeof(md->tag_set));
2764 md->tag_set.ops = &dm_mq_ops;
2765 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2766 md->tag_set.numa_node = NUMA_NO_NODE;
2767 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2768 md->tag_set.nr_hw_queues = 1;
2769 if (md_type == DM_TYPE_REQUEST_BASED) {
2770 /* make the memory for non-blk-mq clone part of the pdu */
2771 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2772 } else
2773 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2774 md->tag_set.driver_data = md;
2775
2776 err = blk_mq_alloc_tag_set(&md->tag_set);
2777 if (err)
2778 return err;
2779
2780 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2781 if (IS_ERR(q)) {
2782 err = PTR_ERR(q);
2783 goto out_tag_set;
2784 }
2785 md->queue = q;
2786 dm_init_md_queue(md);
2787
2788 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2789 blk_mq_register_disk(md->disk);
2790
2791 if (md_type == DM_TYPE_REQUEST_BASED)
2792 init_rq_based_worker_thread(md);
2793
2794 return 0;
2795
2796 out_tag_set:
2797 blk_mq_free_tag_set(&md->tag_set);
2798 return err;
2799 }
2800
2801 /*
2802 * Setup the DM device's queue based on md's type
2803 */
2804 int dm_setup_md_queue(struct mapped_device *md)
2805 {
2806 int r;
2807 unsigned md_type = dm_get_md_type(md);
2808
2809 switch (md_type) {
2810 case DM_TYPE_REQUEST_BASED:
2811 r = dm_init_request_based_queue(md);
2812 if (r) {
2813 DMWARN("Cannot initialize queue for request-based mapped device");
2814 return r;
2815 }
2816 break;
2817 case DM_TYPE_MQ_REQUEST_BASED:
2818 r = dm_init_request_based_blk_mq_queue(md);
2819 if (r) {
2820 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2821 return r;
2822 }
2823 break;
2824 case DM_TYPE_BIO_BASED:
2825 dm_init_old_md_queue(md);
2826 blk_queue_make_request(md->queue, dm_make_request);
2827 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2828 break;
2829 }
2830
2831 return 0;
2832 }
2833
2834 struct mapped_device *dm_get_md(dev_t dev)
2835 {
2836 struct mapped_device *md;
2837 unsigned minor = MINOR(dev);
2838
2839 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2840 return NULL;
2841
2842 spin_lock(&_minor_lock);
2843
2844 md = idr_find(&_minor_idr, minor);
2845 if (md) {
2846 if ((md == MINOR_ALLOCED ||
2847 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2848 dm_deleting_md(md) ||
2849 test_bit(DMF_FREEING, &md->flags))) {
2850 md = NULL;
2851 goto out;
2852 }
2853 dm_get(md);
2854 }
2855
2856 out:
2857 spin_unlock(&_minor_lock);
2858
2859 return md;
2860 }
2861 EXPORT_SYMBOL_GPL(dm_get_md);
2862
2863 void *dm_get_mdptr(struct mapped_device *md)
2864 {
2865 return md->interface_ptr;
2866 }
2867
2868 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2869 {
2870 md->interface_ptr = ptr;
2871 }
2872
2873 void dm_get(struct mapped_device *md)
2874 {
2875 atomic_inc(&md->holders);
2876 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2877 }
2878
2879 int dm_hold(struct mapped_device *md)
2880 {
2881 spin_lock(&_minor_lock);
2882 if (test_bit(DMF_FREEING, &md->flags)) {
2883 spin_unlock(&_minor_lock);
2884 return -EBUSY;
2885 }
2886 dm_get(md);
2887 spin_unlock(&_minor_lock);
2888 return 0;
2889 }
2890 EXPORT_SYMBOL_GPL(dm_hold);
2891
2892 const char *dm_device_name(struct mapped_device *md)
2893 {
2894 return md->name;
2895 }
2896 EXPORT_SYMBOL_GPL(dm_device_name);
2897
2898 static void __dm_destroy(struct mapped_device *md, bool wait)
2899 {
2900 struct dm_table *map;
2901 int srcu_idx;
2902
2903 might_sleep();
2904
2905 map = dm_get_live_table(md, &srcu_idx);
2906
2907 spin_lock(&_minor_lock);
2908 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2909 set_bit(DMF_FREEING, &md->flags);
2910 spin_unlock(&_minor_lock);
2911
2912 if (dm_request_based(md) && md->kworker_task)
2913 flush_kthread_worker(&md->kworker);
2914
2915 /*
2916 * Take suspend_lock so that presuspend and postsuspend methods
2917 * do not race with internal suspend.
2918 */
2919 mutex_lock(&md->suspend_lock);
2920 if (!dm_suspended_md(md)) {
2921 dm_table_presuspend_targets(map);
2922 dm_table_postsuspend_targets(map);
2923 }
2924 mutex_unlock(&md->suspend_lock);
2925
2926 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2927 dm_put_live_table(md, srcu_idx);
2928
2929 /*
2930 * Rare, but there may be I/O requests still going to complete,
2931 * for example. Wait for all references to disappear.
2932 * No one should increment the reference count of the mapped_device,
2933 * after the mapped_device state becomes DMF_FREEING.
2934 */
2935 if (wait)
2936 while (atomic_read(&md->holders))
2937 msleep(1);
2938 else if (atomic_read(&md->holders))
2939 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2940 dm_device_name(md), atomic_read(&md->holders));
2941
2942 dm_sysfs_exit(md);
2943 dm_table_destroy(__unbind(md));
2944 free_dev(md);
2945 }
2946
2947 void dm_destroy(struct mapped_device *md)
2948 {
2949 __dm_destroy(md, true);
2950 }
2951
2952 void dm_destroy_immediate(struct mapped_device *md)
2953 {
2954 __dm_destroy(md, false);
2955 }
2956
2957 void dm_put(struct mapped_device *md)
2958 {
2959 atomic_dec(&md->holders);
2960 }
2961 EXPORT_SYMBOL_GPL(dm_put);
2962
2963 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2964 {
2965 int r = 0;
2966 DECLARE_WAITQUEUE(wait, current);
2967
2968 add_wait_queue(&md->wait, &wait);
2969
2970 while (1) {
2971 set_current_state(interruptible);
2972
2973 if (!md_in_flight(md))
2974 break;
2975
2976 if (interruptible == TASK_INTERRUPTIBLE &&
2977 signal_pending(current)) {
2978 r = -EINTR;
2979 break;
2980 }
2981
2982 io_schedule();
2983 }
2984 set_current_state(TASK_RUNNING);
2985
2986 remove_wait_queue(&md->wait, &wait);
2987
2988 return r;
2989 }
2990
2991 /*
2992 * Process the deferred bios
2993 */
2994 static void dm_wq_work(struct work_struct *work)
2995 {
2996 struct mapped_device *md = container_of(work, struct mapped_device,
2997 work);
2998 struct bio *c;
2999 int srcu_idx;
3000 struct dm_table *map;
3001
3002 map = dm_get_live_table(md, &srcu_idx);
3003
3004 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3005 spin_lock_irq(&md->deferred_lock);
3006 c = bio_list_pop(&md->deferred);
3007 spin_unlock_irq(&md->deferred_lock);
3008
3009 if (!c)
3010 break;
3011
3012 if (dm_request_based(md))
3013 generic_make_request(c);
3014 else
3015 __split_and_process_bio(md, map, c);
3016 }
3017
3018 dm_put_live_table(md, srcu_idx);
3019 }
3020
3021 static void dm_queue_flush(struct mapped_device *md)
3022 {
3023 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3024 smp_mb__after_atomic();
3025 queue_work(md->wq, &md->work);
3026 }
3027
3028 /*
3029 * Swap in a new table, returning the old one for the caller to destroy.
3030 */
3031 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3032 {
3033 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3034 struct queue_limits limits;
3035 int r;
3036
3037 mutex_lock(&md->suspend_lock);
3038
3039 /* device must be suspended */
3040 if (!dm_suspended_md(md))
3041 goto out;
3042
3043 /*
3044 * If the new table has no data devices, retain the existing limits.
3045 * This helps multipath with queue_if_no_path if all paths disappear,
3046 * then new I/O is queued based on these limits, and then some paths
3047 * reappear.
3048 */
3049 if (dm_table_has_no_data_devices(table)) {
3050 live_map = dm_get_live_table_fast(md);
3051 if (live_map)
3052 limits = md->queue->limits;
3053 dm_put_live_table_fast(md);
3054 }
3055
3056 if (!live_map) {
3057 r = dm_calculate_queue_limits(table, &limits);
3058 if (r) {
3059 map = ERR_PTR(r);
3060 goto out;
3061 }
3062 }
3063
3064 map = __bind(md, table, &limits);
3065
3066 out:
3067 mutex_unlock(&md->suspend_lock);
3068 return map;
3069 }
3070
3071 /*
3072 * Functions to lock and unlock any filesystem running on the
3073 * device.
3074 */
3075 static int lock_fs(struct mapped_device *md)
3076 {
3077 int r;
3078
3079 WARN_ON(md->frozen_sb);
3080
3081 md->frozen_sb = freeze_bdev(md->bdev);
3082 if (IS_ERR(md->frozen_sb)) {
3083 r = PTR_ERR(md->frozen_sb);
3084 md->frozen_sb = NULL;
3085 return r;
3086 }
3087
3088 set_bit(DMF_FROZEN, &md->flags);
3089
3090 return 0;
3091 }
3092
3093 static void unlock_fs(struct mapped_device *md)
3094 {
3095 if (!test_bit(DMF_FROZEN, &md->flags))
3096 return;
3097
3098 thaw_bdev(md->bdev, md->frozen_sb);
3099 md->frozen_sb = NULL;
3100 clear_bit(DMF_FROZEN, &md->flags);
3101 }
3102
3103 /*
3104 * If __dm_suspend returns 0, the device is completely quiescent
3105 * now. There is no request-processing activity. All new requests
3106 * are being added to md->deferred list.
3107 *
3108 * Caller must hold md->suspend_lock
3109 */
3110 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3111 unsigned suspend_flags, int interruptible)
3112 {
3113 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3114 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3115 int r;
3116
3117 /*
3118 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3119 * This flag is cleared before dm_suspend returns.
3120 */
3121 if (noflush)
3122 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3123
3124 /*
3125 * This gets reverted if there's an error later and the targets
3126 * provide the .presuspend_undo hook.
3127 */
3128 dm_table_presuspend_targets(map);
3129
3130 /*
3131 * Flush I/O to the device.
3132 * Any I/O submitted after lock_fs() may not be flushed.
3133 * noflush takes precedence over do_lockfs.
3134 * (lock_fs() flushes I/Os and waits for them to complete.)
3135 */
3136 if (!noflush && do_lockfs) {
3137 r = lock_fs(md);
3138 if (r) {
3139 dm_table_presuspend_undo_targets(map);
3140 return r;
3141 }
3142 }
3143
3144 /*
3145 * Here we must make sure that no processes are submitting requests
3146 * to target drivers i.e. no one may be executing
3147 * __split_and_process_bio. This is called from dm_request and
3148 * dm_wq_work.
3149 *
3150 * To get all processes out of __split_and_process_bio in dm_request,
3151 * we take the write lock. To prevent any process from reentering
3152 * __split_and_process_bio from dm_request and quiesce the thread
3153 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3154 * flush_workqueue(md->wq).
3155 */
3156 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3157 if (map)
3158 synchronize_srcu(&md->io_barrier);
3159
3160 /*
3161 * Stop md->queue before flushing md->wq in case request-based
3162 * dm defers requests to md->wq from md->queue.
3163 */
3164 if (dm_request_based(md)) {
3165 stop_queue(md->queue);
3166 if (md->kworker_task)
3167 flush_kthread_worker(&md->kworker);
3168 }
3169
3170 flush_workqueue(md->wq);
3171
3172 /*
3173 * At this point no more requests are entering target request routines.
3174 * We call dm_wait_for_completion to wait for all existing requests
3175 * to finish.
3176 */
3177 r = dm_wait_for_completion(md, interruptible);
3178
3179 if (noflush)
3180 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3181 if (map)
3182 synchronize_srcu(&md->io_barrier);
3183
3184 /* were we interrupted ? */
3185 if (r < 0) {
3186 dm_queue_flush(md);
3187
3188 if (dm_request_based(md))
3189 start_queue(md->queue);
3190
3191 unlock_fs(md);
3192 dm_table_presuspend_undo_targets(map);
3193 /* pushback list is already flushed, so skip flush */
3194 }
3195
3196 return r;
3197 }
3198
3199 /*
3200 * We need to be able to change a mapping table under a mounted
3201 * filesystem. For example we might want to move some data in
3202 * the background. Before the table can be swapped with
3203 * dm_bind_table, dm_suspend must be called to flush any in
3204 * flight bios and ensure that any further io gets deferred.
3205 */
3206 /*
3207 * Suspend mechanism in request-based dm.
3208 *
3209 * 1. Flush all I/Os by lock_fs() if needed.
3210 * 2. Stop dispatching any I/O by stopping the request_queue.
3211 * 3. Wait for all in-flight I/Os to be completed or requeued.
3212 *
3213 * To abort suspend, start the request_queue.
3214 */
3215 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3216 {
3217 struct dm_table *map = NULL;
3218 int r = 0;
3219
3220 retry:
3221 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3222
3223 if (dm_suspended_md(md)) {
3224 r = -EINVAL;
3225 goto out_unlock;
3226 }
3227
3228 if (dm_suspended_internally_md(md)) {
3229 /* already internally suspended, wait for internal resume */
3230 mutex_unlock(&md->suspend_lock);
3231 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3232 if (r)
3233 return r;
3234 goto retry;
3235 }
3236
3237 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3238
3239 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3240 if (r)
3241 goto out_unlock;
3242
3243 set_bit(DMF_SUSPENDED, &md->flags);
3244
3245 dm_table_postsuspend_targets(map);
3246
3247 out_unlock:
3248 mutex_unlock(&md->suspend_lock);
3249 return r;
3250 }
3251
3252 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3253 {
3254 if (map) {
3255 int r = dm_table_resume_targets(map);
3256 if (r)
3257 return r;
3258 }
3259
3260 dm_queue_flush(md);
3261
3262 /*
3263 * Flushing deferred I/Os must be done after targets are resumed
3264 * so that mapping of targets can work correctly.
3265 * Request-based dm is queueing the deferred I/Os in its request_queue.
3266 */
3267 if (dm_request_based(md))
3268 start_queue(md->queue);
3269
3270 unlock_fs(md);
3271
3272 return 0;
3273 }
3274
3275 int dm_resume(struct mapped_device *md)
3276 {
3277 int r = -EINVAL;
3278 struct dm_table *map = NULL;
3279
3280 retry:
3281 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3282
3283 if (!dm_suspended_md(md))
3284 goto out;
3285
3286 if (dm_suspended_internally_md(md)) {
3287 /* already internally suspended, wait for internal resume */
3288 mutex_unlock(&md->suspend_lock);
3289 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3290 if (r)
3291 return r;
3292 goto retry;
3293 }
3294
3295 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3296 if (!map || !dm_table_get_size(map))
3297 goto out;
3298
3299 r = __dm_resume(md, map);
3300 if (r)
3301 goto out;
3302
3303 clear_bit(DMF_SUSPENDED, &md->flags);
3304
3305 r = 0;
3306 out:
3307 mutex_unlock(&md->suspend_lock);
3308
3309 return r;
3310 }
3311
3312 /*
3313 * Internal suspend/resume works like userspace-driven suspend. It waits
3314 * until all bios finish and prevents issuing new bios to the target drivers.
3315 * It may be used only from the kernel.
3316 */
3317
3318 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3319 {
3320 struct dm_table *map = NULL;
3321
3322 if (md->internal_suspend_count++)
3323 return; /* nested internal suspend */
3324
3325 if (dm_suspended_md(md)) {
3326 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3327 return; /* nest suspend */
3328 }
3329
3330 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3331
3332 /*
3333 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3334 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3335 * would require changing .presuspend to return an error -- avoid this
3336 * until there is a need for more elaborate variants of internal suspend.
3337 */
3338 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3339
3340 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3341
3342 dm_table_postsuspend_targets(map);
3343 }
3344
3345 static void __dm_internal_resume(struct mapped_device *md)
3346 {
3347 BUG_ON(!md->internal_suspend_count);
3348
3349 if (--md->internal_suspend_count)
3350 return; /* resume from nested internal suspend */
3351
3352 if (dm_suspended_md(md))
3353 goto done; /* resume from nested suspend */
3354
3355 /*
3356 * NOTE: existing callers don't need to call dm_table_resume_targets
3357 * (which may fail -- so best to avoid it for now by passing NULL map)
3358 */
3359 (void) __dm_resume(md, NULL);
3360
3361 done:
3362 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3363 smp_mb__after_atomic();
3364 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3365 }
3366
3367 void dm_internal_suspend_noflush(struct mapped_device *md)
3368 {
3369 mutex_lock(&md->suspend_lock);
3370 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3371 mutex_unlock(&md->suspend_lock);
3372 }
3373 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3374
3375 void dm_internal_resume(struct mapped_device *md)
3376 {
3377 mutex_lock(&md->suspend_lock);
3378 __dm_internal_resume(md);
3379 mutex_unlock(&md->suspend_lock);
3380 }
3381 EXPORT_SYMBOL_GPL(dm_internal_resume);
3382
3383 /*
3384 * Fast variants of internal suspend/resume hold md->suspend_lock,
3385 * which prevents interaction with userspace-driven suspend.
3386 */
3387
3388 void dm_internal_suspend_fast(struct mapped_device *md)
3389 {
3390 mutex_lock(&md->suspend_lock);
3391 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3392 return;
3393
3394 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3395 synchronize_srcu(&md->io_barrier);
3396 flush_workqueue(md->wq);
3397 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3398 }
3399 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3400
3401 void dm_internal_resume_fast(struct mapped_device *md)
3402 {
3403 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3404 goto done;
3405
3406 dm_queue_flush(md);
3407
3408 done:
3409 mutex_unlock(&md->suspend_lock);
3410 }
3411 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3412
3413 /*-----------------------------------------------------------------
3414 * Event notification.
3415 *---------------------------------------------------------------*/
3416 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3417 unsigned cookie)
3418 {
3419 char udev_cookie[DM_COOKIE_LENGTH];
3420 char *envp[] = { udev_cookie, NULL };
3421
3422 if (!cookie)
3423 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3424 else {
3425 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3426 DM_COOKIE_ENV_VAR_NAME, cookie);
3427 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3428 action, envp);
3429 }
3430 }
3431
3432 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3433 {
3434 return atomic_add_return(1, &md->uevent_seq);
3435 }
3436
3437 uint32_t dm_get_event_nr(struct mapped_device *md)
3438 {
3439 return atomic_read(&md->event_nr);
3440 }
3441
3442 int dm_wait_event(struct mapped_device *md, int event_nr)
3443 {
3444 return wait_event_interruptible(md->eventq,
3445 (event_nr != atomic_read(&md->event_nr)));
3446 }
3447
3448 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3449 {
3450 unsigned long flags;
3451
3452 spin_lock_irqsave(&md->uevent_lock, flags);
3453 list_add(elist, &md->uevent_list);
3454 spin_unlock_irqrestore(&md->uevent_lock, flags);
3455 }
3456
3457 /*
3458 * The gendisk is only valid as long as you have a reference
3459 * count on 'md'.
3460 */
3461 struct gendisk *dm_disk(struct mapped_device *md)
3462 {
3463 return md->disk;
3464 }
3465
3466 struct kobject *dm_kobject(struct mapped_device *md)
3467 {
3468 return &md->kobj_holder.kobj;
3469 }
3470
3471 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3472 {
3473 struct mapped_device *md;
3474
3475 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3476
3477 if (test_bit(DMF_FREEING, &md->flags) ||
3478 dm_deleting_md(md))
3479 return NULL;
3480
3481 dm_get(md);
3482 return md;
3483 }
3484
3485 int dm_suspended_md(struct mapped_device *md)
3486 {
3487 return test_bit(DMF_SUSPENDED, &md->flags);
3488 }
3489
3490 int dm_suspended_internally_md(struct mapped_device *md)
3491 {
3492 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3493 }
3494
3495 int dm_test_deferred_remove_flag(struct mapped_device *md)
3496 {
3497 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3498 }
3499
3500 int dm_suspended(struct dm_target *ti)
3501 {
3502 return dm_suspended_md(dm_table_get_md(ti->table));
3503 }
3504 EXPORT_SYMBOL_GPL(dm_suspended);
3505
3506 int dm_noflush_suspending(struct dm_target *ti)
3507 {
3508 return __noflush_suspending(dm_table_get_md(ti->table));
3509 }
3510 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3511
3512 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3513 {
3514 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3515 struct kmem_cache *cachep;
3516 unsigned int pool_size = 0;
3517 unsigned int front_pad;
3518
3519 if (!pools)
3520 return NULL;
3521
3522 switch (type) {
3523 case DM_TYPE_BIO_BASED:
3524 cachep = _io_cache;
3525 pool_size = dm_get_reserved_bio_based_ios();
3526 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3527 break;
3528 case DM_TYPE_REQUEST_BASED:
3529 pool_size = dm_get_reserved_rq_based_ios();
3530 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3531 if (!pools->rq_pool)
3532 goto out;
3533 /* fall through to setup remaining rq-based pools */
3534 case DM_TYPE_MQ_REQUEST_BASED:
3535 cachep = _rq_tio_cache;
3536 if (!pool_size)
3537 pool_size = dm_get_reserved_rq_based_ios();
3538 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3539 /* per_bio_data_size is not used. See __bind_mempools(). */
3540 WARN_ON(per_bio_data_size != 0);
3541 break;
3542 default:
3543 goto out;
3544 }
3545
3546 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3547 if (!pools->io_pool)
3548 goto out;
3549
3550 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3551 if (!pools->bs)
3552 goto out;
3553
3554 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3555 goto out;
3556
3557 return pools;
3558
3559 out:
3560 dm_free_md_mempools(pools);
3561
3562 return NULL;
3563 }
3564
3565 void dm_free_md_mempools(struct dm_md_mempools *pools)
3566 {
3567 if (!pools)
3568 return;
3569
3570 if (pools->io_pool)
3571 mempool_destroy(pools->io_pool);
3572
3573 if (pools->rq_pool)
3574 mempool_destroy(pools->rq_pool);
3575
3576 if (pools->bs)
3577 bioset_free(pools->bs);
3578
3579 kfree(pools);
3580 }
3581
3582 static const struct block_device_operations dm_blk_dops = {
3583 .open = dm_blk_open,
3584 .release = dm_blk_close,
3585 .ioctl = dm_blk_ioctl,
3586 .getgeo = dm_blk_getgeo,
3587 .owner = THIS_MODULE
3588 };
3589
3590 /*
3591 * module hooks
3592 */
3593 module_init(dm_init);
3594 module_exit(dm_exit);
3595
3596 module_param(major, uint, 0);
3597 MODULE_PARM_DESC(major, "The major number of the device mapper");
3598
3599 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3600 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3601
3602 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3603 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3604
3605 MODULE_DESCRIPTION(DM_NAME " driver");
3606 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3607 MODULE_LICENSE("GPL");
This page took 0.103408 seconds and 5 git commands to generate.