misc: mic: depend on X86 for both host and card drivers.
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 struct dm_stats_aux stats_aux;
64 };
65
66 /*
67 * For request-based dm.
68 * One of these is allocated per request.
69 */
70 struct dm_rq_target_io {
71 struct mapped_device *md;
72 struct dm_target *ti;
73 struct request *orig, clone;
74 int error;
75 union map_info info;
76 };
77
78 /*
79 * For request-based dm - the bio clones we allocate are embedded in these
80 * structs.
81 *
82 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
83 * the bioset is created - this means the bio has to come at the end of the
84 * struct.
85 */
86 struct dm_rq_clone_bio_info {
87 struct bio *orig;
88 struct dm_rq_target_io *tio;
89 struct bio clone;
90 };
91
92 union map_info *dm_get_mapinfo(struct bio *bio)
93 {
94 if (bio && bio->bi_private)
95 return &((struct dm_target_io *)bio->bi_private)->info;
96 return NULL;
97 }
98
99 union map_info *dm_get_rq_mapinfo(struct request *rq)
100 {
101 if (rq && rq->end_io_data)
102 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
103 return NULL;
104 }
105 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
106
107 #define MINOR_ALLOCED ((void *)-1)
108
109 /*
110 * Bits for the md->flags field.
111 */
112 #define DMF_BLOCK_IO_FOR_SUSPEND 0
113 #define DMF_SUSPENDED 1
114 #define DMF_FROZEN 2
115 #define DMF_FREEING 3
116 #define DMF_DELETING 4
117 #define DMF_NOFLUSH_SUSPENDING 5
118 #define DMF_MERGE_IS_OPTIONAL 6
119
120 /*
121 * A dummy definition to make RCU happy.
122 * struct dm_table should never be dereferenced in this file.
123 */
124 struct dm_table {
125 int undefined__;
126 };
127
128 /*
129 * Work processed by per-device workqueue.
130 */
131 struct mapped_device {
132 struct srcu_struct io_barrier;
133 struct mutex suspend_lock;
134 atomic_t holders;
135 atomic_t open_count;
136
137 /*
138 * The current mapping.
139 * Use dm_get_live_table{_fast} or take suspend_lock for
140 * dereference.
141 */
142 struct dm_table *map;
143
144 unsigned long flags;
145
146 struct request_queue *queue;
147 unsigned type;
148 /* Protect queue and type against concurrent access. */
149 struct mutex type_lock;
150
151 struct target_type *immutable_target_type;
152
153 struct gendisk *disk;
154 char name[16];
155
156 void *interface_ptr;
157
158 /*
159 * A list of ios that arrived while we were suspended.
160 */
161 atomic_t pending[2];
162 wait_queue_head_t wait;
163 struct work_struct work;
164 struct bio_list deferred;
165 spinlock_t deferred_lock;
166
167 /*
168 * Processing queue (flush)
169 */
170 struct workqueue_struct *wq;
171
172 /*
173 * io objects are allocated from here.
174 */
175 mempool_t *io_pool;
176
177 struct bio_set *bs;
178
179 /*
180 * Event handling.
181 */
182 atomic_t event_nr;
183 wait_queue_head_t eventq;
184 atomic_t uevent_seq;
185 struct list_head uevent_list;
186 spinlock_t uevent_lock; /* Protect access to uevent_list */
187
188 /*
189 * freeze/thaw support require holding onto a super block
190 */
191 struct super_block *frozen_sb;
192 struct block_device *bdev;
193
194 /* forced geometry settings */
195 struct hd_geometry geometry;
196
197 /* sysfs handle */
198 struct kobject kobj;
199
200 /* zero-length flush that will be cloned and submitted to targets */
201 struct bio flush_bio;
202
203 struct dm_stats stats;
204 };
205
206 /*
207 * For mempools pre-allocation at the table loading time.
208 */
209 struct dm_md_mempools {
210 mempool_t *io_pool;
211 struct bio_set *bs;
212 };
213
214 #define MIN_IOS 256
215 static struct kmem_cache *_io_cache;
216 static struct kmem_cache *_rq_tio_cache;
217
218 static int __init local_init(void)
219 {
220 int r = -ENOMEM;
221
222 /* allocate a slab for the dm_ios */
223 _io_cache = KMEM_CACHE(dm_io, 0);
224 if (!_io_cache)
225 return r;
226
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 if (!_rq_tio_cache)
229 goto out_free_io_cache;
230
231 r = dm_uevent_init();
232 if (r)
233 goto out_free_rq_tio_cache;
234
235 _major = major;
236 r = register_blkdev(_major, _name);
237 if (r < 0)
238 goto out_uevent_exit;
239
240 if (!_major)
241 _major = r;
242
243 return 0;
244
245 out_uevent_exit:
246 dm_uevent_exit();
247 out_free_rq_tio_cache:
248 kmem_cache_destroy(_rq_tio_cache);
249 out_free_io_cache:
250 kmem_cache_destroy(_io_cache);
251
252 return r;
253 }
254
255 static void local_exit(void)
256 {
257 kmem_cache_destroy(_rq_tio_cache);
258 kmem_cache_destroy(_io_cache);
259 unregister_blkdev(_major, _name);
260 dm_uevent_exit();
261
262 _major = 0;
263
264 DMINFO("cleaned up");
265 }
266
267 static int (*_inits[])(void) __initdata = {
268 local_init,
269 dm_target_init,
270 dm_linear_init,
271 dm_stripe_init,
272 dm_io_init,
273 dm_kcopyd_init,
274 dm_interface_init,
275 dm_statistics_init,
276 };
277
278 static void (*_exits[])(void) = {
279 local_exit,
280 dm_target_exit,
281 dm_linear_exit,
282 dm_stripe_exit,
283 dm_io_exit,
284 dm_kcopyd_exit,
285 dm_interface_exit,
286 dm_statistics_exit,
287 };
288
289 static int __init dm_init(void)
290 {
291 const int count = ARRAY_SIZE(_inits);
292
293 int r, i;
294
295 for (i = 0; i < count; i++) {
296 r = _inits[i]();
297 if (r)
298 goto bad;
299 }
300
301 return 0;
302
303 bad:
304 while (i--)
305 _exits[i]();
306
307 return r;
308 }
309
310 static void __exit dm_exit(void)
311 {
312 int i = ARRAY_SIZE(_exits);
313
314 while (i--)
315 _exits[i]();
316
317 /*
318 * Should be empty by this point.
319 */
320 idr_destroy(&_minor_idr);
321 }
322
323 /*
324 * Block device functions
325 */
326 int dm_deleting_md(struct mapped_device *md)
327 {
328 return test_bit(DMF_DELETING, &md->flags);
329 }
330
331 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
332 {
333 struct mapped_device *md;
334
335 spin_lock(&_minor_lock);
336
337 md = bdev->bd_disk->private_data;
338 if (!md)
339 goto out;
340
341 if (test_bit(DMF_FREEING, &md->flags) ||
342 dm_deleting_md(md)) {
343 md = NULL;
344 goto out;
345 }
346
347 dm_get(md);
348 atomic_inc(&md->open_count);
349
350 out:
351 spin_unlock(&_minor_lock);
352
353 return md ? 0 : -ENXIO;
354 }
355
356 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
357 {
358 struct mapped_device *md = disk->private_data;
359
360 spin_lock(&_minor_lock);
361
362 atomic_dec(&md->open_count);
363 dm_put(md);
364
365 spin_unlock(&_minor_lock);
366 }
367
368 int dm_open_count(struct mapped_device *md)
369 {
370 return atomic_read(&md->open_count);
371 }
372
373 /*
374 * Guarantees nothing is using the device before it's deleted.
375 */
376 int dm_lock_for_deletion(struct mapped_device *md)
377 {
378 int r = 0;
379
380 spin_lock(&_minor_lock);
381
382 if (dm_open_count(md))
383 r = -EBUSY;
384 else
385 set_bit(DMF_DELETING, &md->flags);
386
387 spin_unlock(&_minor_lock);
388
389 return r;
390 }
391
392 sector_t dm_get_size(struct mapped_device *md)
393 {
394 return get_capacity(md->disk);
395 }
396
397 struct dm_stats *dm_get_stats(struct mapped_device *md)
398 {
399 return &md->stats;
400 }
401
402 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
403 {
404 struct mapped_device *md = bdev->bd_disk->private_data;
405
406 return dm_get_geometry(md, geo);
407 }
408
409 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
410 unsigned int cmd, unsigned long arg)
411 {
412 struct mapped_device *md = bdev->bd_disk->private_data;
413 int srcu_idx;
414 struct dm_table *map;
415 struct dm_target *tgt;
416 int r = -ENOTTY;
417
418 retry:
419 map = dm_get_live_table(md, &srcu_idx);
420
421 if (!map || !dm_table_get_size(map))
422 goto out;
423
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map) != 1)
426 goto out;
427
428 tgt = dm_table_get_target(map, 0);
429
430 if (dm_suspended_md(md)) {
431 r = -EAGAIN;
432 goto out;
433 }
434
435 if (tgt->type->ioctl)
436 r = tgt->type->ioctl(tgt, cmd, arg);
437
438 out:
439 dm_put_live_table(md, srcu_idx);
440
441 if (r == -ENOTCONN) {
442 msleep(10);
443 goto retry;
444 }
445
446 return r;
447 }
448
449 static struct dm_io *alloc_io(struct mapped_device *md)
450 {
451 return mempool_alloc(md->io_pool, GFP_NOIO);
452 }
453
454 static void free_io(struct mapped_device *md, struct dm_io *io)
455 {
456 mempool_free(io, md->io_pool);
457 }
458
459 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
460 {
461 bio_put(&tio->clone);
462 }
463
464 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
465 gfp_t gfp_mask)
466 {
467 return mempool_alloc(md->io_pool, gfp_mask);
468 }
469
470 static void free_rq_tio(struct dm_rq_target_io *tio)
471 {
472 mempool_free(tio, tio->md->io_pool);
473 }
474
475 static int md_in_flight(struct mapped_device *md)
476 {
477 return atomic_read(&md->pending[READ]) +
478 atomic_read(&md->pending[WRITE]);
479 }
480
481 static void start_io_acct(struct dm_io *io)
482 {
483 struct mapped_device *md = io->md;
484 struct bio *bio = io->bio;
485 int cpu;
486 int rw = bio_data_dir(bio);
487
488 io->start_time = jiffies;
489
490 cpu = part_stat_lock();
491 part_round_stats(cpu, &dm_disk(md)->part0);
492 part_stat_unlock();
493 atomic_set(&dm_disk(md)->part0.in_flight[rw],
494 atomic_inc_return(&md->pending[rw]));
495
496 if (unlikely(dm_stats_used(&md->stats)))
497 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
498 bio_sectors(bio), false, 0, &io->stats_aux);
499 }
500
501 static void end_io_acct(struct dm_io *io)
502 {
503 struct mapped_device *md = io->md;
504 struct bio *bio = io->bio;
505 unsigned long duration = jiffies - io->start_time;
506 int pending, cpu;
507 int rw = bio_data_dir(bio);
508
509 cpu = part_stat_lock();
510 part_round_stats(cpu, &dm_disk(md)->part0);
511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 part_stat_unlock();
513
514 if (unlikely(dm_stats_used(&md->stats)))
515 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
516 bio_sectors(bio), true, duration, &io->stats_aux);
517
518 /*
519 * After this is decremented the bio must not be touched if it is
520 * a flush.
521 */
522 pending = atomic_dec_return(&md->pending[rw]);
523 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
524 pending += atomic_read(&md->pending[rw^0x1]);
525
526 /* nudge anyone waiting on suspend queue */
527 if (!pending)
528 wake_up(&md->wait);
529 }
530
531 /*
532 * Add the bio to the list of deferred io.
533 */
534 static void queue_io(struct mapped_device *md, struct bio *bio)
535 {
536 unsigned long flags;
537
538 spin_lock_irqsave(&md->deferred_lock, flags);
539 bio_list_add(&md->deferred, bio);
540 spin_unlock_irqrestore(&md->deferred_lock, flags);
541 queue_work(md->wq, &md->work);
542 }
543
544 /*
545 * Everyone (including functions in this file), should use this
546 * function to access the md->map field, and make sure they call
547 * dm_put_live_table() when finished.
548 */
549 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
550 {
551 *srcu_idx = srcu_read_lock(&md->io_barrier);
552
553 return srcu_dereference(md->map, &md->io_barrier);
554 }
555
556 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
557 {
558 srcu_read_unlock(&md->io_barrier, srcu_idx);
559 }
560
561 void dm_sync_table(struct mapped_device *md)
562 {
563 synchronize_srcu(&md->io_barrier);
564 synchronize_rcu_expedited();
565 }
566
567 /*
568 * A fast alternative to dm_get_live_table/dm_put_live_table.
569 * The caller must not block between these two functions.
570 */
571 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
572 {
573 rcu_read_lock();
574 return rcu_dereference(md->map);
575 }
576
577 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
578 {
579 rcu_read_unlock();
580 }
581
582 /*
583 * Get the geometry associated with a dm device
584 */
585 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
586 {
587 *geo = md->geometry;
588
589 return 0;
590 }
591
592 /*
593 * Set the geometry of a device.
594 */
595 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
596 {
597 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
598
599 if (geo->start > sz) {
600 DMWARN("Start sector is beyond the geometry limits.");
601 return -EINVAL;
602 }
603
604 md->geometry = *geo;
605
606 return 0;
607 }
608
609 /*-----------------------------------------------------------------
610 * CRUD START:
611 * A more elegant soln is in the works that uses the queue
612 * merge fn, unfortunately there are a couple of changes to
613 * the block layer that I want to make for this. So in the
614 * interests of getting something for people to use I give
615 * you this clearly demarcated crap.
616 *---------------------------------------------------------------*/
617
618 static int __noflush_suspending(struct mapped_device *md)
619 {
620 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
621 }
622
623 /*
624 * Decrements the number of outstanding ios that a bio has been
625 * cloned into, completing the original io if necc.
626 */
627 static void dec_pending(struct dm_io *io, int error)
628 {
629 unsigned long flags;
630 int io_error;
631 struct bio *bio;
632 struct mapped_device *md = io->md;
633
634 /* Push-back supersedes any I/O errors */
635 if (unlikely(error)) {
636 spin_lock_irqsave(&io->endio_lock, flags);
637 if (!(io->error > 0 && __noflush_suspending(md)))
638 io->error = error;
639 spin_unlock_irqrestore(&io->endio_lock, flags);
640 }
641
642 if (atomic_dec_and_test(&io->io_count)) {
643 if (io->error == DM_ENDIO_REQUEUE) {
644 /*
645 * Target requested pushing back the I/O.
646 */
647 spin_lock_irqsave(&md->deferred_lock, flags);
648 if (__noflush_suspending(md))
649 bio_list_add_head(&md->deferred, io->bio);
650 else
651 /* noflush suspend was interrupted. */
652 io->error = -EIO;
653 spin_unlock_irqrestore(&md->deferred_lock, flags);
654 }
655
656 io_error = io->error;
657 bio = io->bio;
658 end_io_acct(io);
659 free_io(md, io);
660
661 if (io_error == DM_ENDIO_REQUEUE)
662 return;
663
664 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
665 /*
666 * Preflush done for flush with data, reissue
667 * without REQ_FLUSH.
668 */
669 bio->bi_rw &= ~REQ_FLUSH;
670 queue_io(md, bio);
671 } else {
672 /* done with normal IO or empty flush */
673 trace_block_bio_complete(md->queue, bio, io_error);
674 bio_endio(bio, io_error);
675 }
676 }
677 }
678
679 static void clone_endio(struct bio *bio, int error)
680 {
681 int r = 0;
682 struct dm_target_io *tio = bio->bi_private;
683 struct dm_io *io = tio->io;
684 struct mapped_device *md = tio->io->md;
685 dm_endio_fn endio = tio->ti->type->end_io;
686
687 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
688 error = -EIO;
689
690 if (endio) {
691 r = endio(tio->ti, bio, error);
692 if (r < 0 || r == DM_ENDIO_REQUEUE)
693 /*
694 * error and requeue request are handled
695 * in dec_pending().
696 */
697 error = r;
698 else if (r == DM_ENDIO_INCOMPLETE)
699 /* The target will handle the io */
700 return;
701 else if (r) {
702 DMWARN("unimplemented target endio return value: %d", r);
703 BUG();
704 }
705 }
706
707 free_tio(md, tio);
708 dec_pending(io, error);
709 }
710
711 /*
712 * Partial completion handling for request-based dm
713 */
714 static void end_clone_bio(struct bio *clone, int error)
715 {
716 struct dm_rq_clone_bio_info *info = clone->bi_private;
717 struct dm_rq_target_io *tio = info->tio;
718 struct bio *bio = info->orig;
719 unsigned int nr_bytes = info->orig->bi_size;
720
721 bio_put(clone);
722
723 if (tio->error)
724 /*
725 * An error has already been detected on the request.
726 * Once error occurred, just let clone->end_io() handle
727 * the remainder.
728 */
729 return;
730 else if (error) {
731 /*
732 * Don't notice the error to the upper layer yet.
733 * The error handling decision is made by the target driver,
734 * when the request is completed.
735 */
736 tio->error = error;
737 return;
738 }
739
740 /*
741 * I/O for the bio successfully completed.
742 * Notice the data completion to the upper layer.
743 */
744
745 /*
746 * bios are processed from the head of the list.
747 * So the completing bio should always be rq->bio.
748 * If it's not, something wrong is happening.
749 */
750 if (tio->orig->bio != bio)
751 DMERR("bio completion is going in the middle of the request");
752
753 /*
754 * Update the original request.
755 * Do not use blk_end_request() here, because it may complete
756 * the original request before the clone, and break the ordering.
757 */
758 blk_update_request(tio->orig, 0, nr_bytes);
759 }
760
761 /*
762 * Don't touch any member of the md after calling this function because
763 * the md may be freed in dm_put() at the end of this function.
764 * Or do dm_get() before calling this function and dm_put() later.
765 */
766 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
767 {
768 atomic_dec(&md->pending[rw]);
769
770 /* nudge anyone waiting on suspend queue */
771 if (!md_in_flight(md))
772 wake_up(&md->wait);
773
774 /*
775 * Run this off this callpath, as drivers could invoke end_io while
776 * inside their request_fn (and holding the queue lock). Calling
777 * back into ->request_fn() could deadlock attempting to grab the
778 * queue lock again.
779 */
780 if (run_queue)
781 blk_run_queue_async(md->queue);
782
783 /*
784 * dm_put() must be at the end of this function. See the comment above
785 */
786 dm_put(md);
787 }
788
789 static void free_rq_clone(struct request *clone)
790 {
791 struct dm_rq_target_io *tio = clone->end_io_data;
792
793 blk_rq_unprep_clone(clone);
794 free_rq_tio(tio);
795 }
796
797 /*
798 * Complete the clone and the original request.
799 * Must be called without queue lock.
800 */
801 static void dm_end_request(struct request *clone, int error)
802 {
803 int rw = rq_data_dir(clone);
804 struct dm_rq_target_io *tio = clone->end_io_data;
805 struct mapped_device *md = tio->md;
806 struct request *rq = tio->orig;
807
808 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
809 rq->errors = clone->errors;
810 rq->resid_len = clone->resid_len;
811
812 if (rq->sense)
813 /*
814 * We are using the sense buffer of the original
815 * request.
816 * So setting the length of the sense data is enough.
817 */
818 rq->sense_len = clone->sense_len;
819 }
820
821 free_rq_clone(clone);
822 blk_end_request_all(rq, error);
823 rq_completed(md, rw, true);
824 }
825
826 static void dm_unprep_request(struct request *rq)
827 {
828 struct request *clone = rq->special;
829
830 rq->special = NULL;
831 rq->cmd_flags &= ~REQ_DONTPREP;
832
833 free_rq_clone(clone);
834 }
835
836 /*
837 * Requeue the original request of a clone.
838 */
839 void dm_requeue_unmapped_request(struct request *clone)
840 {
841 int rw = rq_data_dir(clone);
842 struct dm_rq_target_io *tio = clone->end_io_data;
843 struct mapped_device *md = tio->md;
844 struct request *rq = tio->orig;
845 struct request_queue *q = rq->q;
846 unsigned long flags;
847
848 dm_unprep_request(rq);
849
850 spin_lock_irqsave(q->queue_lock, flags);
851 blk_requeue_request(q, rq);
852 spin_unlock_irqrestore(q->queue_lock, flags);
853
854 rq_completed(md, rw, 0);
855 }
856 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
857
858 static void __stop_queue(struct request_queue *q)
859 {
860 blk_stop_queue(q);
861 }
862
863 static void stop_queue(struct request_queue *q)
864 {
865 unsigned long flags;
866
867 spin_lock_irqsave(q->queue_lock, flags);
868 __stop_queue(q);
869 spin_unlock_irqrestore(q->queue_lock, flags);
870 }
871
872 static void __start_queue(struct request_queue *q)
873 {
874 if (blk_queue_stopped(q))
875 blk_start_queue(q);
876 }
877
878 static void start_queue(struct request_queue *q)
879 {
880 unsigned long flags;
881
882 spin_lock_irqsave(q->queue_lock, flags);
883 __start_queue(q);
884 spin_unlock_irqrestore(q->queue_lock, flags);
885 }
886
887 static void dm_done(struct request *clone, int error, bool mapped)
888 {
889 int r = error;
890 struct dm_rq_target_io *tio = clone->end_io_data;
891 dm_request_endio_fn rq_end_io = NULL;
892
893 if (tio->ti) {
894 rq_end_io = tio->ti->type->rq_end_io;
895
896 if (mapped && rq_end_io)
897 r = rq_end_io(tio->ti, clone, error, &tio->info);
898 }
899
900 if (r <= 0)
901 /* The target wants to complete the I/O */
902 dm_end_request(clone, r);
903 else if (r == DM_ENDIO_INCOMPLETE)
904 /* The target will handle the I/O */
905 return;
906 else if (r == DM_ENDIO_REQUEUE)
907 /* The target wants to requeue the I/O */
908 dm_requeue_unmapped_request(clone);
909 else {
910 DMWARN("unimplemented target endio return value: %d", r);
911 BUG();
912 }
913 }
914
915 /*
916 * Request completion handler for request-based dm
917 */
918 static void dm_softirq_done(struct request *rq)
919 {
920 bool mapped = true;
921 struct request *clone = rq->completion_data;
922 struct dm_rq_target_io *tio = clone->end_io_data;
923
924 if (rq->cmd_flags & REQ_FAILED)
925 mapped = false;
926
927 dm_done(clone, tio->error, mapped);
928 }
929
930 /*
931 * Complete the clone and the original request with the error status
932 * through softirq context.
933 */
934 static void dm_complete_request(struct request *clone, int error)
935 {
936 struct dm_rq_target_io *tio = clone->end_io_data;
937 struct request *rq = tio->orig;
938
939 tio->error = error;
940 rq->completion_data = clone;
941 blk_complete_request(rq);
942 }
943
944 /*
945 * Complete the not-mapped clone and the original request with the error status
946 * through softirq context.
947 * Target's rq_end_io() function isn't called.
948 * This may be used when the target's map_rq() function fails.
949 */
950 void dm_kill_unmapped_request(struct request *clone, int error)
951 {
952 struct dm_rq_target_io *tio = clone->end_io_data;
953 struct request *rq = tio->orig;
954
955 rq->cmd_flags |= REQ_FAILED;
956 dm_complete_request(clone, error);
957 }
958 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
959
960 /*
961 * Called with the queue lock held
962 */
963 static void end_clone_request(struct request *clone, int error)
964 {
965 /*
966 * For just cleaning up the information of the queue in which
967 * the clone was dispatched.
968 * The clone is *NOT* freed actually here because it is alloced from
969 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
970 */
971 __blk_put_request(clone->q, clone);
972
973 /*
974 * Actual request completion is done in a softirq context which doesn't
975 * hold the queue lock. Otherwise, deadlock could occur because:
976 * - another request may be submitted by the upper level driver
977 * of the stacking during the completion
978 * - the submission which requires queue lock may be done
979 * against this queue
980 */
981 dm_complete_request(clone, error);
982 }
983
984 /*
985 * Return maximum size of I/O possible at the supplied sector up to the current
986 * target boundary.
987 */
988 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
989 {
990 sector_t target_offset = dm_target_offset(ti, sector);
991
992 return ti->len - target_offset;
993 }
994
995 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
996 {
997 sector_t len = max_io_len_target_boundary(sector, ti);
998 sector_t offset, max_len;
999
1000 /*
1001 * Does the target need to split even further?
1002 */
1003 if (ti->max_io_len) {
1004 offset = dm_target_offset(ti, sector);
1005 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1006 max_len = sector_div(offset, ti->max_io_len);
1007 else
1008 max_len = offset & (ti->max_io_len - 1);
1009 max_len = ti->max_io_len - max_len;
1010
1011 if (len > max_len)
1012 len = max_len;
1013 }
1014
1015 return len;
1016 }
1017
1018 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1019 {
1020 if (len > UINT_MAX) {
1021 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1022 (unsigned long long)len, UINT_MAX);
1023 ti->error = "Maximum size of target IO is too large";
1024 return -EINVAL;
1025 }
1026
1027 ti->max_io_len = (uint32_t) len;
1028
1029 return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1032
1033 static void __map_bio(struct dm_target_io *tio)
1034 {
1035 int r;
1036 sector_t sector;
1037 struct mapped_device *md;
1038 struct bio *clone = &tio->clone;
1039 struct dm_target *ti = tio->ti;
1040
1041 clone->bi_end_io = clone_endio;
1042 clone->bi_private = tio;
1043
1044 /*
1045 * Map the clone. If r == 0 we don't need to do
1046 * anything, the target has assumed ownership of
1047 * this io.
1048 */
1049 atomic_inc(&tio->io->io_count);
1050 sector = clone->bi_sector;
1051 r = ti->type->map(ti, clone);
1052 if (r == DM_MAPIO_REMAPPED) {
1053 /* the bio has been remapped so dispatch it */
1054
1055 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1056 tio->io->bio->bi_bdev->bd_dev, sector);
1057
1058 generic_make_request(clone);
1059 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1060 /* error the io and bail out, or requeue it if needed */
1061 md = tio->io->md;
1062 dec_pending(tio->io, r);
1063 free_tio(md, tio);
1064 } else if (r) {
1065 DMWARN("unimplemented target map return value: %d", r);
1066 BUG();
1067 }
1068 }
1069
1070 struct clone_info {
1071 struct mapped_device *md;
1072 struct dm_table *map;
1073 struct bio *bio;
1074 struct dm_io *io;
1075 sector_t sector;
1076 sector_t sector_count;
1077 unsigned short idx;
1078 };
1079
1080 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1081 {
1082 bio->bi_sector = sector;
1083 bio->bi_size = to_bytes(len);
1084 }
1085
1086 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1087 {
1088 bio->bi_idx = idx;
1089 bio->bi_vcnt = idx + bv_count;
1090 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1091 }
1092
1093 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1094 unsigned short idx, unsigned len, unsigned offset,
1095 unsigned trim)
1096 {
1097 if (!bio_integrity(bio))
1098 return;
1099
1100 bio_integrity_clone(clone, bio, GFP_NOIO);
1101
1102 if (trim)
1103 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1104 }
1105
1106 /*
1107 * Creates a little bio that just does part of a bvec.
1108 */
1109 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1110 sector_t sector, unsigned short idx,
1111 unsigned offset, unsigned len)
1112 {
1113 struct bio *clone = &tio->clone;
1114 struct bio_vec *bv = bio->bi_io_vec + idx;
1115
1116 *clone->bi_io_vec = *bv;
1117
1118 bio_setup_sector(clone, sector, len);
1119
1120 clone->bi_bdev = bio->bi_bdev;
1121 clone->bi_rw = bio->bi_rw;
1122 clone->bi_vcnt = 1;
1123 clone->bi_io_vec->bv_offset = offset;
1124 clone->bi_io_vec->bv_len = clone->bi_size;
1125 clone->bi_flags |= 1 << BIO_CLONED;
1126
1127 clone_bio_integrity(bio, clone, idx, len, offset, 1);
1128 }
1129
1130 /*
1131 * Creates a bio that consists of range of complete bvecs.
1132 */
1133 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1134 sector_t sector, unsigned short idx,
1135 unsigned short bv_count, unsigned len)
1136 {
1137 struct bio *clone = &tio->clone;
1138 unsigned trim = 0;
1139
1140 __bio_clone(clone, bio);
1141 bio_setup_sector(clone, sector, len);
1142 bio_setup_bv(clone, idx, bv_count);
1143
1144 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1145 trim = 1;
1146 clone_bio_integrity(bio, clone, idx, len, 0, trim);
1147 }
1148
1149 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1150 struct dm_target *ti, int nr_iovecs,
1151 unsigned target_bio_nr)
1152 {
1153 struct dm_target_io *tio;
1154 struct bio *clone;
1155
1156 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1157 tio = container_of(clone, struct dm_target_io, clone);
1158
1159 tio->io = ci->io;
1160 tio->ti = ti;
1161 memset(&tio->info, 0, sizeof(tio->info));
1162 tio->target_bio_nr = target_bio_nr;
1163
1164 return tio;
1165 }
1166
1167 static void __clone_and_map_simple_bio(struct clone_info *ci,
1168 struct dm_target *ti,
1169 unsigned target_bio_nr, sector_t len)
1170 {
1171 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1172 struct bio *clone = &tio->clone;
1173
1174 /*
1175 * Discard requests require the bio's inline iovecs be initialized.
1176 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1177 * and discard, so no need for concern about wasted bvec allocations.
1178 */
1179 __bio_clone(clone, ci->bio);
1180 if (len)
1181 bio_setup_sector(clone, ci->sector, len);
1182
1183 __map_bio(tio);
1184 }
1185
1186 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1187 unsigned num_bios, sector_t len)
1188 {
1189 unsigned target_bio_nr;
1190
1191 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1192 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1193 }
1194
1195 static int __send_empty_flush(struct clone_info *ci)
1196 {
1197 unsigned target_nr = 0;
1198 struct dm_target *ti;
1199
1200 BUG_ON(bio_has_data(ci->bio));
1201 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1202 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1203
1204 return 0;
1205 }
1206
1207 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1208 sector_t sector, int nr_iovecs,
1209 unsigned short idx, unsigned short bv_count,
1210 unsigned offset, unsigned len,
1211 unsigned split_bvec)
1212 {
1213 struct bio *bio = ci->bio;
1214 struct dm_target_io *tio;
1215 unsigned target_bio_nr;
1216 unsigned num_target_bios = 1;
1217
1218 /*
1219 * Does the target want to receive duplicate copies of the bio?
1220 */
1221 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1222 num_target_bios = ti->num_write_bios(ti, bio);
1223
1224 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1225 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1226 if (split_bvec)
1227 clone_split_bio(tio, bio, sector, idx, offset, len);
1228 else
1229 clone_bio(tio, bio, sector, idx, bv_count, len);
1230 __map_bio(tio);
1231 }
1232 }
1233
1234 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1235
1236 static unsigned get_num_discard_bios(struct dm_target *ti)
1237 {
1238 return ti->num_discard_bios;
1239 }
1240
1241 static unsigned get_num_write_same_bios(struct dm_target *ti)
1242 {
1243 return ti->num_write_same_bios;
1244 }
1245
1246 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1247
1248 static bool is_split_required_for_discard(struct dm_target *ti)
1249 {
1250 return ti->split_discard_bios;
1251 }
1252
1253 static int __send_changing_extent_only(struct clone_info *ci,
1254 get_num_bios_fn get_num_bios,
1255 is_split_required_fn is_split_required)
1256 {
1257 struct dm_target *ti;
1258 sector_t len;
1259 unsigned num_bios;
1260
1261 do {
1262 ti = dm_table_find_target(ci->map, ci->sector);
1263 if (!dm_target_is_valid(ti))
1264 return -EIO;
1265
1266 /*
1267 * Even though the device advertised support for this type of
1268 * request, that does not mean every target supports it, and
1269 * reconfiguration might also have changed that since the
1270 * check was performed.
1271 */
1272 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1273 if (!num_bios)
1274 return -EOPNOTSUPP;
1275
1276 if (is_split_required && !is_split_required(ti))
1277 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1278 else
1279 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1280
1281 __send_duplicate_bios(ci, ti, num_bios, len);
1282
1283 ci->sector += len;
1284 } while (ci->sector_count -= len);
1285
1286 return 0;
1287 }
1288
1289 static int __send_discard(struct clone_info *ci)
1290 {
1291 return __send_changing_extent_only(ci, get_num_discard_bios,
1292 is_split_required_for_discard);
1293 }
1294
1295 static int __send_write_same(struct clone_info *ci)
1296 {
1297 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1298 }
1299
1300 /*
1301 * Find maximum number of sectors / bvecs we can process with a single bio.
1302 */
1303 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1304 {
1305 struct bio *bio = ci->bio;
1306 sector_t bv_len, total_len = 0;
1307
1308 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1309 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1310
1311 if (bv_len > max)
1312 break;
1313
1314 max -= bv_len;
1315 total_len += bv_len;
1316 }
1317
1318 return total_len;
1319 }
1320
1321 static int __split_bvec_across_targets(struct clone_info *ci,
1322 struct dm_target *ti, sector_t max)
1323 {
1324 struct bio *bio = ci->bio;
1325 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1326 sector_t remaining = to_sector(bv->bv_len);
1327 unsigned offset = 0;
1328 sector_t len;
1329
1330 do {
1331 if (offset) {
1332 ti = dm_table_find_target(ci->map, ci->sector);
1333 if (!dm_target_is_valid(ti))
1334 return -EIO;
1335
1336 max = max_io_len(ci->sector, ti);
1337 }
1338
1339 len = min(remaining, max);
1340
1341 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1342 bv->bv_offset + offset, len, 1);
1343
1344 ci->sector += len;
1345 ci->sector_count -= len;
1346 offset += to_bytes(len);
1347 } while (remaining -= len);
1348
1349 ci->idx++;
1350
1351 return 0;
1352 }
1353
1354 /*
1355 * Select the correct strategy for processing a non-flush bio.
1356 */
1357 static int __split_and_process_non_flush(struct clone_info *ci)
1358 {
1359 struct bio *bio = ci->bio;
1360 struct dm_target *ti;
1361 sector_t len, max;
1362 int idx;
1363
1364 if (unlikely(bio->bi_rw & REQ_DISCARD))
1365 return __send_discard(ci);
1366 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1367 return __send_write_same(ci);
1368
1369 ti = dm_table_find_target(ci->map, ci->sector);
1370 if (!dm_target_is_valid(ti))
1371 return -EIO;
1372
1373 max = max_io_len(ci->sector, ti);
1374
1375 /*
1376 * Optimise for the simple case where we can do all of
1377 * the remaining io with a single clone.
1378 */
1379 if (ci->sector_count <= max) {
1380 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1381 ci->idx, bio->bi_vcnt - ci->idx, 0,
1382 ci->sector_count, 0);
1383 ci->sector_count = 0;
1384 return 0;
1385 }
1386
1387 /*
1388 * There are some bvecs that don't span targets.
1389 * Do as many of these as possible.
1390 */
1391 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1392 len = __len_within_target(ci, max, &idx);
1393
1394 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1395 ci->idx, idx - ci->idx, 0, len, 0);
1396
1397 ci->sector += len;
1398 ci->sector_count -= len;
1399 ci->idx = idx;
1400
1401 return 0;
1402 }
1403
1404 /*
1405 * Handle a bvec that must be split between two or more targets.
1406 */
1407 return __split_bvec_across_targets(ci, ti, max);
1408 }
1409
1410 /*
1411 * Entry point to split a bio into clones and submit them to the targets.
1412 */
1413 static void __split_and_process_bio(struct mapped_device *md,
1414 struct dm_table *map, struct bio *bio)
1415 {
1416 struct clone_info ci;
1417 int error = 0;
1418
1419 if (unlikely(!map)) {
1420 bio_io_error(bio);
1421 return;
1422 }
1423
1424 ci.map = map;
1425 ci.md = md;
1426 ci.io = alloc_io(md);
1427 ci.io->error = 0;
1428 atomic_set(&ci.io->io_count, 1);
1429 ci.io->bio = bio;
1430 ci.io->md = md;
1431 spin_lock_init(&ci.io->endio_lock);
1432 ci.sector = bio->bi_sector;
1433 ci.idx = bio->bi_idx;
1434
1435 start_io_acct(ci.io);
1436
1437 if (bio->bi_rw & REQ_FLUSH) {
1438 ci.bio = &ci.md->flush_bio;
1439 ci.sector_count = 0;
1440 error = __send_empty_flush(&ci);
1441 /* dec_pending submits any data associated with flush */
1442 } else {
1443 ci.bio = bio;
1444 ci.sector_count = bio_sectors(bio);
1445 while (ci.sector_count && !error)
1446 error = __split_and_process_non_flush(&ci);
1447 }
1448
1449 /* drop the extra reference count */
1450 dec_pending(ci.io, error);
1451 }
1452 /*-----------------------------------------------------------------
1453 * CRUD END
1454 *---------------------------------------------------------------*/
1455
1456 static int dm_merge_bvec(struct request_queue *q,
1457 struct bvec_merge_data *bvm,
1458 struct bio_vec *biovec)
1459 {
1460 struct mapped_device *md = q->queuedata;
1461 struct dm_table *map = dm_get_live_table_fast(md);
1462 struct dm_target *ti;
1463 sector_t max_sectors;
1464 int max_size = 0;
1465
1466 if (unlikely(!map))
1467 goto out;
1468
1469 ti = dm_table_find_target(map, bvm->bi_sector);
1470 if (!dm_target_is_valid(ti))
1471 goto out;
1472
1473 /*
1474 * Find maximum amount of I/O that won't need splitting
1475 */
1476 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1477 (sector_t) BIO_MAX_SECTORS);
1478 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1479 if (max_size < 0)
1480 max_size = 0;
1481
1482 /*
1483 * merge_bvec_fn() returns number of bytes
1484 * it can accept at this offset
1485 * max is precomputed maximal io size
1486 */
1487 if (max_size && ti->type->merge)
1488 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1489 /*
1490 * If the target doesn't support merge method and some of the devices
1491 * provided their merge_bvec method (we know this by looking at
1492 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1493 * entries. So always set max_size to 0, and the code below allows
1494 * just one page.
1495 */
1496 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1497
1498 max_size = 0;
1499
1500 out:
1501 dm_put_live_table_fast(md);
1502 /*
1503 * Always allow an entire first page
1504 */
1505 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1506 max_size = biovec->bv_len;
1507
1508 return max_size;
1509 }
1510
1511 /*
1512 * The request function that just remaps the bio built up by
1513 * dm_merge_bvec.
1514 */
1515 static void _dm_request(struct request_queue *q, struct bio *bio)
1516 {
1517 int rw = bio_data_dir(bio);
1518 struct mapped_device *md = q->queuedata;
1519 int cpu;
1520 int srcu_idx;
1521 struct dm_table *map;
1522
1523 map = dm_get_live_table(md, &srcu_idx);
1524
1525 cpu = part_stat_lock();
1526 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1527 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1528 part_stat_unlock();
1529
1530 /* if we're suspended, we have to queue this io for later */
1531 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1532 dm_put_live_table(md, srcu_idx);
1533
1534 if (bio_rw(bio) != READA)
1535 queue_io(md, bio);
1536 else
1537 bio_io_error(bio);
1538 return;
1539 }
1540
1541 __split_and_process_bio(md, map, bio);
1542 dm_put_live_table(md, srcu_idx);
1543 return;
1544 }
1545
1546 int dm_request_based(struct mapped_device *md)
1547 {
1548 return blk_queue_stackable(md->queue);
1549 }
1550
1551 static void dm_request(struct request_queue *q, struct bio *bio)
1552 {
1553 struct mapped_device *md = q->queuedata;
1554
1555 if (dm_request_based(md))
1556 blk_queue_bio(q, bio);
1557 else
1558 _dm_request(q, bio);
1559 }
1560
1561 void dm_dispatch_request(struct request *rq)
1562 {
1563 int r;
1564
1565 if (blk_queue_io_stat(rq->q))
1566 rq->cmd_flags |= REQ_IO_STAT;
1567
1568 rq->start_time = jiffies;
1569 r = blk_insert_cloned_request(rq->q, rq);
1570 if (r)
1571 dm_complete_request(rq, r);
1572 }
1573 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1574
1575 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1576 void *data)
1577 {
1578 struct dm_rq_target_io *tio = data;
1579 struct dm_rq_clone_bio_info *info =
1580 container_of(bio, struct dm_rq_clone_bio_info, clone);
1581
1582 info->orig = bio_orig;
1583 info->tio = tio;
1584 bio->bi_end_io = end_clone_bio;
1585 bio->bi_private = info;
1586
1587 return 0;
1588 }
1589
1590 static int setup_clone(struct request *clone, struct request *rq,
1591 struct dm_rq_target_io *tio)
1592 {
1593 int r;
1594
1595 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1596 dm_rq_bio_constructor, tio);
1597 if (r)
1598 return r;
1599
1600 clone->cmd = rq->cmd;
1601 clone->cmd_len = rq->cmd_len;
1602 clone->sense = rq->sense;
1603 clone->buffer = rq->buffer;
1604 clone->end_io = end_clone_request;
1605 clone->end_io_data = tio;
1606
1607 return 0;
1608 }
1609
1610 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1611 gfp_t gfp_mask)
1612 {
1613 struct request *clone;
1614 struct dm_rq_target_io *tio;
1615
1616 tio = alloc_rq_tio(md, gfp_mask);
1617 if (!tio)
1618 return NULL;
1619
1620 tio->md = md;
1621 tio->ti = NULL;
1622 tio->orig = rq;
1623 tio->error = 0;
1624 memset(&tio->info, 0, sizeof(tio->info));
1625
1626 clone = &tio->clone;
1627 if (setup_clone(clone, rq, tio)) {
1628 /* -ENOMEM */
1629 free_rq_tio(tio);
1630 return NULL;
1631 }
1632
1633 return clone;
1634 }
1635
1636 /*
1637 * Called with the queue lock held.
1638 */
1639 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1640 {
1641 struct mapped_device *md = q->queuedata;
1642 struct request *clone;
1643
1644 if (unlikely(rq->special)) {
1645 DMWARN("Already has something in rq->special.");
1646 return BLKPREP_KILL;
1647 }
1648
1649 clone = clone_rq(rq, md, GFP_ATOMIC);
1650 if (!clone)
1651 return BLKPREP_DEFER;
1652
1653 rq->special = clone;
1654 rq->cmd_flags |= REQ_DONTPREP;
1655
1656 return BLKPREP_OK;
1657 }
1658
1659 /*
1660 * Returns:
1661 * 0 : the request has been processed (not requeued)
1662 * !0 : the request has been requeued
1663 */
1664 static int map_request(struct dm_target *ti, struct request *clone,
1665 struct mapped_device *md)
1666 {
1667 int r, requeued = 0;
1668 struct dm_rq_target_io *tio = clone->end_io_data;
1669
1670 tio->ti = ti;
1671 r = ti->type->map_rq(ti, clone, &tio->info);
1672 switch (r) {
1673 case DM_MAPIO_SUBMITTED:
1674 /* The target has taken the I/O to submit by itself later */
1675 break;
1676 case DM_MAPIO_REMAPPED:
1677 /* The target has remapped the I/O so dispatch it */
1678 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1679 blk_rq_pos(tio->orig));
1680 dm_dispatch_request(clone);
1681 break;
1682 case DM_MAPIO_REQUEUE:
1683 /* The target wants to requeue the I/O */
1684 dm_requeue_unmapped_request(clone);
1685 requeued = 1;
1686 break;
1687 default:
1688 if (r > 0) {
1689 DMWARN("unimplemented target map return value: %d", r);
1690 BUG();
1691 }
1692
1693 /* The target wants to complete the I/O */
1694 dm_kill_unmapped_request(clone, r);
1695 break;
1696 }
1697
1698 return requeued;
1699 }
1700
1701 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1702 {
1703 struct request *clone;
1704
1705 blk_start_request(orig);
1706 clone = orig->special;
1707 atomic_inc(&md->pending[rq_data_dir(clone)]);
1708
1709 /*
1710 * Hold the md reference here for the in-flight I/O.
1711 * We can't rely on the reference count by device opener,
1712 * because the device may be closed during the request completion
1713 * when all bios are completed.
1714 * See the comment in rq_completed() too.
1715 */
1716 dm_get(md);
1717
1718 return clone;
1719 }
1720
1721 /*
1722 * q->request_fn for request-based dm.
1723 * Called with the queue lock held.
1724 */
1725 static void dm_request_fn(struct request_queue *q)
1726 {
1727 struct mapped_device *md = q->queuedata;
1728 int srcu_idx;
1729 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1730 struct dm_target *ti;
1731 struct request *rq, *clone;
1732 sector_t pos;
1733
1734 /*
1735 * For suspend, check blk_queue_stopped() and increment
1736 * ->pending within a single queue_lock not to increment the
1737 * number of in-flight I/Os after the queue is stopped in
1738 * dm_suspend().
1739 */
1740 while (!blk_queue_stopped(q)) {
1741 rq = blk_peek_request(q);
1742 if (!rq)
1743 goto delay_and_out;
1744
1745 /* always use block 0 to find the target for flushes for now */
1746 pos = 0;
1747 if (!(rq->cmd_flags & REQ_FLUSH))
1748 pos = blk_rq_pos(rq);
1749
1750 ti = dm_table_find_target(map, pos);
1751 if (!dm_target_is_valid(ti)) {
1752 /*
1753 * Must perform setup, that dm_done() requires,
1754 * before calling dm_kill_unmapped_request
1755 */
1756 DMERR_LIMIT("request attempted access beyond the end of device");
1757 clone = dm_start_request(md, rq);
1758 dm_kill_unmapped_request(clone, -EIO);
1759 continue;
1760 }
1761
1762 if (ti->type->busy && ti->type->busy(ti))
1763 goto delay_and_out;
1764
1765 clone = dm_start_request(md, rq);
1766
1767 spin_unlock(q->queue_lock);
1768 if (map_request(ti, clone, md))
1769 goto requeued;
1770
1771 BUG_ON(!irqs_disabled());
1772 spin_lock(q->queue_lock);
1773 }
1774
1775 goto out;
1776
1777 requeued:
1778 BUG_ON(!irqs_disabled());
1779 spin_lock(q->queue_lock);
1780
1781 delay_and_out:
1782 blk_delay_queue(q, HZ / 10);
1783 out:
1784 dm_put_live_table(md, srcu_idx);
1785 }
1786
1787 int dm_underlying_device_busy(struct request_queue *q)
1788 {
1789 return blk_lld_busy(q);
1790 }
1791 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1792
1793 static int dm_lld_busy(struct request_queue *q)
1794 {
1795 int r;
1796 struct mapped_device *md = q->queuedata;
1797 struct dm_table *map = dm_get_live_table_fast(md);
1798
1799 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1800 r = 1;
1801 else
1802 r = dm_table_any_busy_target(map);
1803
1804 dm_put_live_table_fast(md);
1805
1806 return r;
1807 }
1808
1809 static int dm_any_congested(void *congested_data, int bdi_bits)
1810 {
1811 int r = bdi_bits;
1812 struct mapped_device *md = congested_data;
1813 struct dm_table *map;
1814
1815 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1816 map = dm_get_live_table_fast(md);
1817 if (map) {
1818 /*
1819 * Request-based dm cares about only own queue for
1820 * the query about congestion status of request_queue
1821 */
1822 if (dm_request_based(md))
1823 r = md->queue->backing_dev_info.state &
1824 bdi_bits;
1825 else
1826 r = dm_table_any_congested(map, bdi_bits);
1827 }
1828 dm_put_live_table_fast(md);
1829 }
1830
1831 return r;
1832 }
1833
1834 /*-----------------------------------------------------------------
1835 * An IDR is used to keep track of allocated minor numbers.
1836 *---------------------------------------------------------------*/
1837 static void free_minor(int minor)
1838 {
1839 spin_lock(&_minor_lock);
1840 idr_remove(&_minor_idr, minor);
1841 spin_unlock(&_minor_lock);
1842 }
1843
1844 /*
1845 * See if the device with a specific minor # is free.
1846 */
1847 static int specific_minor(int minor)
1848 {
1849 int r;
1850
1851 if (minor >= (1 << MINORBITS))
1852 return -EINVAL;
1853
1854 idr_preload(GFP_KERNEL);
1855 spin_lock(&_minor_lock);
1856
1857 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1858
1859 spin_unlock(&_minor_lock);
1860 idr_preload_end();
1861 if (r < 0)
1862 return r == -ENOSPC ? -EBUSY : r;
1863 return 0;
1864 }
1865
1866 static int next_free_minor(int *minor)
1867 {
1868 int r;
1869
1870 idr_preload(GFP_KERNEL);
1871 spin_lock(&_minor_lock);
1872
1873 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1874
1875 spin_unlock(&_minor_lock);
1876 idr_preload_end();
1877 if (r < 0)
1878 return r;
1879 *minor = r;
1880 return 0;
1881 }
1882
1883 static const struct block_device_operations dm_blk_dops;
1884
1885 static void dm_wq_work(struct work_struct *work);
1886
1887 static void dm_init_md_queue(struct mapped_device *md)
1888 {
1889 /*
1890 * Request-based dm devices cannot be stacked on top of bio-based dm
1891 * devices. The type of this dm device has not been decided yet.
1892 * The type is decided at the first table loading time.
1893 * To prevent problematic device stacking, clear the queue flag
1894 * for request stacking support until then.
1895 *
1896 * This queue is new, so no concurrency on the queue_flags.
1897 */
1898 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1899
1900 md->queue->queuedata = md;
1901 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1902 md->queue->backing_dev_info.congested_data = md;
1903 blk_queue_make_request(md->queue, dm_request);
1904 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1905 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1906 }
1907
1908 /*
1909 * Allocate and initialise a blank device with a given minor.
1910 */
1911 static struct mapped_device *alloc_dev(int minor)
1912 {
1913 int r;
1914 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1915 void *old_md;
1916
1917 if (!md) {
1918 DMWARN("unable to allocate device, out of memory.");
1919 return NULL;
1920 }
1921
1922 if (!try_module_get(THIS_MODULE))
1923 goto bad_module_get;
1924
1925 /* get a minor number for the dev */
1926 if (minor == DM_ANY_MINOR)
1927 r = next_free_minor(&minor);
1928 else
1929 r = specific_minor(minor);
1930 if (r < 0)
1931 goto bad_minor;
1932
1933 r = init_srcu_struct(&md->io_barrier);
1934 if (r < 0)
1935 goto bad_io_barrier;
1936
1937 md->type = DM_TYPE_NONE;
1938 mutex_init(&md->suspend_lock);
1939 mutex_init(&md->type_lock);
1940 spin_lock_init(&md->deferred_lock);
1941 atomic_set(&md->holders, 1);
1942 atomic_set(&md->open_count, 0);
1943 atomic_set(&md->event_nr, 0);
1944 atomic_set(&md->uevent_seq, 0);
1945 INIT_LIST_HEAD(&md->uevent_list);
1946 spin_lock_init(&md->uevent_lock);
1947
1948 md->queue = blk_alloc_queue(GFP_KERNEL);
1949 if (!md->queue)
1950 goto bad_queue;
1951
1952 dm_init_md_queue(md);
1953
1954 md->disk = alloc_disk(1);
1955 if (!md->disk)
1956 goto bad_disk;
1957
1958 atomic_set(&md->pending[0], 0);
1959 atomic_set(&md->pending[1], 0);
1960 init_waitqueue_head(&md->wait);
1961 INIT_WORK(&md->work, dm_wq_work);
1962 init_waitqueue_head(&md->eventq);
1963
1964 md->disk->major = _major;
1965 md->disk->first_minor = minor;
1966 md->disk->fops = &dm_blk_dops;
1967 md->disk->queue = md->queue;
1968 md->disk->private_data = md;
1969 sprintf(md->disk->disk_name, "dm-%d", minor);
1970 add_disk(md->disk);
1971 format_dev_t(md->name, MKDEV(_major, minor));
1972
1973 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1974 if (!md->wq)
1975 goto bad_thread;
1976
1977 md->bdev = bdget_disk(md->disk, 0);
1978 if (!md->bdev)
1979 goto bad_bdev;
1980
1981 bio_init(&md->flush_bio);
1982 md->flush_bio.bi_bdev = md->bdev;
1983 md->flush_bio.bi_rw = WRITE_FLUSH;
1984
1985 dm_stats_init(&md->stats);
1986
1987 /* Populate the mapping, nobody knows we exist yet */
1988 spin_lock(&_minor_lock);
1989 old_md = idr_replace(&_minor_idr, md, minor);
1990 spin_unlock(&_minor_lock);
1991
1992 BUG_ON(old_md != MINOR_ALLOCED);
1993
1994 return md;
1995
1996 bad_bdev:
1997 destroy_workqueue(md->wq);
1998 bad_thread:
1999 del_gendisk(md->disk);
2000 put_disk(md->disk);
2001 bad_disk:
2002 blk_cleanup_queue(md->queue);
2003 bad_queue:
2004 cleanup_srcu_struct(&md->io_barrier);
2005 bad_io_barrier:
2006 free_minor(minor);
2007 bad_minor:
2008 module_put(THIS_MODULE);
2009 bad_module_get:
2010 kfree(md);
2011 return NULL;
2012 }
2013
2014 static void unlock_fs(struct mapped_device *md);
2015
2016 static void free_dev(struct mapped_device *md)
2017 {
2018 int minor = MINOR(disk_devt(md->disk));
2019
2020 unlock_fs(md);
2021 bdput(md->bdev);
2022 destroy_workqueue(md->wq);
2023 if (md->io_pool)
2024 mempool_destroy(md->io_pool);
2025 if (md->bs)
2026 bioset_free(md->bs);
2027 blk_integrity_unregister(md->disk);
2028 del_gendisk(md->disk);
2029 cleanup_srcu_struct(&md->io_barrier);
2030 free_minor(minor);
2031
2032 spin_lock(&_minor_lock);
2033 md->disk->private_data = NULL;
2034 spin_unlock(&_minor_lock);
2035
2036 put_disk(md->disk);
2037 blk_cleanup_queue(md->queue);
2038 dm_stats_cleanup(&md->stats);
2039 module_put(THIS_MODULE);
2040 kfree(md);
2041 }
2042
2043 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2044 {
2045 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2046
2047 if (md->io_pool && md->bs) {
2048 /* The md already has necessary mempools. */
2049 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2050 /*
2051 * Reload bioset because front_pad may have changed
2052 * because a different table was loaded.
2053 */
2054 bioset_free(md->bs);
2055 md->bs = p->bs;
2056 p->bs = NULL;
2057 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2058 /*
2059 * There's no need to reload with request-based dm
2060 * because the size of front_pad doesn't change.
2061 * Note for future: If you are to reload bioset,
2062 * prep-ed requests in the queue may refer
2063 * to bio from the old bioset, so you must walk
2064 * through the queue to unprep.
2065 */
2066 }
2067 goto out;
2068 }
2069
2070 BUG_ON(!p || md->io_pool || md->bs);
2071
2072 md->io_pool = p->io_pool;
2073 p->io_pool = NULL;
2074 md->bs = p->bs;
2075 p->bs = NULL;
2076
2077 out:
2078 /* mempool bind completed, now no need any mempools in the table */
2079 dm_table_free_md_mempools(t);
2080 }
2081
2082 /*
2083 * Bind a table to the device.
2084 */
2085 static void event_callback(void *context)
2086 {
2087 unsigned long flags;
2088 LIST_HEAD(uevents);
2089 struct mapped_device *md = (struct mapped_device *) context;
2090
2091 spin_lock_irqsave(&md->uevent_lock, flags);
2092 list_splice_init(&md->uevent_list, &uevents);
2093 spin_unlock_irqrestore(&md->uevent_lock, flags);
2094
2095 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2096
2097 atomic_inc(&md->event_nr);
2098 wake_up(&md->eventq);
2099 }
2100
2101 /*
2102 * Protected by md->suspend_lock obtained by dm_swap_table().
2103 */
2104 static void __set_size(struct mapped_device *md, sector_t size)
2105 {
2106 set_capacity(md->disk, size);
2107
2108 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2109 }
2110
2111 /*
2112 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2113 *
2114 * If this function returns 0, then the device is either a non-dm
2115 * device without a merge_bvec_fn, or it is a dm device that is
2116 * able to split any bios it receives that are too big.
2117 */
2118 int dm_queue_merge_is_compulsory(struct request_queue *q)
2119 {
2120 struct mapped_device *dev_md;
2121
2122 if (!q->merge_bvec_fn)
2123 return 0;
2124
2125 if (q->make_request_fn == dm_request) {
2126 dev_md = q->queuedata;
2127 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2128 return 0;
2129 }
2130
2131 return 1;
2132 }
2133
2134 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2135 struct dm_dev *dev, sector_t start,
2136 sector_t len, void *data)
2137 {
2138 struct block_device *bdev = dev->bdev;
2139 struct request_queue *q = bdev_get_queue(bdev);
2140
2141 return dm_queue_merge_is_compulsory(q);
2142 }
2143
2144 /*
2145 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2146 * on the properties of the underlying devices.
2147 */
2148 static int dm_table_merge_is_optional(struct dm_table *table)
2149 {
2150 unsigned i = 0;
2151 struct dm_target *ti;
2152
2153 while (i < dm_table_get_num_targets(table)) {
2154 ti = dm_table_get_target(table, i++);
2155
2156 if (ti->type->iterate_devices &&
2157 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2158 return 0;
2159 }
2160
2161 return 1;
2162 }
2163
2164 /*
2165 * Returns old map, which caller must destroy.
2166 */
2167 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2168 struct queue_limits *limits)
2169 {
2170 struct dm_table *old_map;
2171 struct request_queue *q = md->queue;
2172 sector_t size;
2173 int merge_is_optional;
2174
2175 size = dm_table_get_size(t);
2176
2177 /*
2178 * Wipe any geometry if the size of the table changed.
2179 */
2180 if (size != dm_get_size(md))
2181 memset(&md->geometry, 0, sizeof(md->geometry));
2182
2183 __set_size(md, size);
2184
2185 dm_table_event_callback(t, event_callback, md);
2186
2187 /*
2188 * The queue hasn't been stopped yet, if the old table type wasn't
2189 * for request-based during suspension. So stop it to prevent
2190 * I/O mapping before resume.
2191 * This must be done before setting the queue restrictions,
2192 * because request-based dm may be run just after the setting.
2193 */
2194 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2195 stop_queue(q);
2196
2197 __bind_mempools(md, t);
2198
2199 merge_is_optional = dm_table_merge_is_optional(t);
2200
2201 old_map = md->map;
2202 rcu_assign_pointer(md->map, t);
2203 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2204
2205 dm_table_set_restrictions(t, q, limits);
2206 if (merge_is_optional)
2207 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2208 else
2209 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2210 dm_sync_table(md);
2211
2212 return old_map;
2213 }
2214
2215 /*
2216 * Returns unbound table for the caller to free.
2217 */
2218 static struct dm_table *__unbind(struct mapped_device *md)
2219 {
2220 struct dm_table *map = md->map;
2221
2222 if (!map)
2223 return NULL;
2224
2225 dm_table_event_callback(map, NULL, NULL);
2226 rcu_assign_pointer(md->map, NULL);
2227 dm_sync_table(md);
2228
2229 return map;
2230 }
2231
2232 /*
2233 * Constructor for a new device.
2234 */
2235 int dm_create(int minor, struct mapped_device **result)
2236 {
2237 struct mapped_device *md;
2238
2239 md = alloc_dev(minor);
2240 if (!md)
2241 return -ENXIO;
2242
2243 dm_sysfs_init(md);
2244
2245 *result = md;
2246 return 0;
2247 }
2248
2249 /*
2250 * Functions to manage md->type.
2251 * All are required to hold md->type_lock.
2252 */
2253 void dm_lock_md_type(struct mapped_device *md)
2254 {
2255 mutex_lock(&md->type_lock);
2256 }
2257
2258 void dm_unlock_md_type(struct mapped_device *md)
2259 {
2260 mutex_unlock(&md->type_lock);
2261 }
2262
2263 void dm_set_md_type(struct mapped_device *md, unsigned type)
2264 {
2265 BUG_ON(!mutex_is_locked(&md->type_lock));
2266 md->type = type;
2267 }
2268
2269 unsigned dm_get_md_type(struct mapped_device *md)
2270 {
2271 BUG_ON(!mutex_is_locked(&md->type_lock));
2272 return md->type;
2273 }
2274
2275 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2276 {
2277 return md->immutable_target_type;
2278 }
2279
2280 /*
2281 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2282 */
2283 static int dm_init_request_based_queue(struct mapped_device *md)
2284 {
2285 struct request_queue *q = NULL;
2286
2287 if (md->queue->elevator)
2288 return 1;
2289
2290 /* Fully initialize the queue */
2291 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2292 if (!q)
2293 return 0;
2294
2295 md->queue = q;
2296 dm_init_md_queue(md);
2297 blk_queue_softirq_done(md->queue, dm_softirq_done);
2298 blk_queue_prep_rq(md->queue, dm_prep_fn);
2299 blk_queue_lld_busy(md->queue, dm_lld_busy);
2300
2301 elv_register_queue(md->queue);
2302
2303 return 1;
2304 }
2305
2306 /*
2307 * Setup the DM device's queue based on md's type
2308 */
2309 int dm_setup_md_queue(struct mapped_device *md)
2310 {
2311 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2312 !dm_init_request_based_queue(md)) {
2313 DMWARN("Cannot initialize queue for request-based mapped device");
2314 return -EINVAL;
2315 }
2316
2317 return 0;
2318 }
2319
2320 static struct mapped_device *dm_find_md(dev_t dev)
2321 {
2322 struct mapped_device *md;
2323 unsigned minor = MINOR(dev);
2324
2325 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2326 return NULL;
2327
2328 spin_lock(&_minor_lock);
2329
2330 md = idr_find(&_minor_idr, minor);
2331 if (md && (md == MINOR_ALLOCED ||
2332 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2333 dm_deleting_md(md) ||
2334 test_bit(DMF_FREEING, &md->flags))) {
2335 md = NULL;
2336 goto out;
2337 }
2338
2339 out:
2340 spin_unlock(&_minor_lock);
2341
2342 return md;
2343 }
2344
2345 struct mapped_device *dm_get_md(dev_t dev)
2346 {
2347 struct mapped_device *md = dm_find_md(dev);
2348
2349 if (md)
2350 dm_get(md);
2351
2352 return md;
2353 }
2354 EXPORT_SYMBOL_GPL(dm_get_md);
2355
2356 void *dm_get_mdptr(struct mapped_device *md)
2357 {
2358 return md->interface_ptr;
2359 }
2360
2361 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2362 {
2363 md->interface_ptr = ptr;
2364 }
2365
2366 void dm_get(struct mapped_device *md)
2367 {
2368 atomic_inc(&md->holders);
2369 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2370 }
2371
2372 const char *dm_device_name(struct mapped_device *md)
2373 {
2374 return md->name;
2375 }
2376 EXPORT_SYMBOL_GPL(dm_device_name);
2377
2378 static void __dm_destroy(struct mapped_device *md, bool wait)
2379 {
2380 struct dm_table *map;
2381 int srcu_idx;
2382
2383 might_sleep();
2384
2385 spin_lock(&_minor_lock);
2386 map = dm_get_live_table(md, &srcu_idx);
2387 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2388 set_bit(DMF_FREEING, &md->flags);
2389 spin_unlock(&_minor_lock);
2390
2391 if (!dm_suspended_md(md)) {
2392 dm_table_presuspend_targets(map);
2393 dm_table_postsuspend_targets(map);
2394 }
2395
2396 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2397 dm_put_live_table(md, srcu_idx);
2398
2399 /*
2400 * Rare, but there may be I/O requests still going to complete,
2401 * for example. Wait for all references to disappear.
2402 * No one should increment the reference count of the mapped_device,
2403 * after the mapped_device state becomes DMF_FREEING.
2404 */
2405 if (wait)
2406 while (atomic_read(&md->holders))
2407 msleep(1);
2408 else if (atomic_read(&md->holders))
2409 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2410 dm_device_name(md), atomic_read(&md->holders));
2411
2412 dm_sysfs_exit(md);
2413 dm_table_destroy(__unbind(md));
2414 free_dev(md);
2415 }
2416
2417 void dm_destroy(struct mapped_device *md)
2418 {
2419 __dm_destroy(md, true);
2420 }
2421
2422 void dm_destroy_immediate(struct mapped_device *md)
2423 {
2424 __dm_destroy(md, false);
2425 }
2426
2427 void dm_put(struct mapped_device *md)
2428 {
2429 atomic_dec(&md->holders);
2430 }
2431 EXPORT_SYMBOL_GPL(dm_put);
2432
2433 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2434 {
2435 int r = 0;
2436 DECLARE_WAITQUEUE(wait, current);
2437
2438 add_wait_queue(&md->wait, &wait);
2439
2440 while (1) {
2441 set_current_state(interruptible);
2442
2443 if (!md_in_flight(md))
2444 break;
2445
2446 if (interruptible == TASK_INTERRUPTIBLE &&
2447 signal_pending(current)) {
2448 r = -EINTR;
2449 break;
2450 }
2451
2452 io_schedule();
2453 }
2454 set_current_state(TASK_RUNNING);
2455
2456 remove_wait_queue(&md->wait, &wait);
2457
2458 return r;
2459 }
2460
2461 /*
2462 * Process the deferred bios
2463 */
2464 static void dm_wq_work(struct work_struct *work)
2465 {
2466 struct mapped_device *md = container_of(work, struct mapped_device,
2467 work);
2468 struct bio *c;
2469 int srcu_idx;
2470 struct dm_table *map;
2471
2472 map = dm_get_live_table(md, &srcu_idx);
2473
2474 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2475 spin_lock_irq(&md->deferred_lock);
2476 c = bio_list_pop(&md->deferred);
2477 spin_unlock_irq(&md->deferred_lock);
2478
2479 if (!c)
2480 break;
2481
2482 if (dm_request_based(md))
2483 generic_make_request(c);
2484 else
2485 __split_and_process_bio(md, map, c);
2486 }
2487
2488 dm_put_live_table(md, srcu_idx);
2489 }
2490
2491 static void dm_queue_flush(struct mapped_device *md)
2492 {
2493 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2494 smp_mb__after_clear_bit();
2495 queue_work(md->wq, &md->work);
2496 }
2497
2498 /*
2499 * Swap in a new table, returning the old one for the caller to destroy.
2500 */
2501 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2502 {
2503 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2504 struct queue_limits limits;
2505 int r;
2506
2507 mutex_lock(&md->suspend_lock);
2508
2509 /* device must be suspended */
2510 if (!dm_suspended_md(md))
2511 goto out;
2512
2513 /*
2514 * If the new table has no data devices, retain the existing limits.
2515 * This helps multipath with queue_if_no_path if all paths disappear,
2516 * then new I/O is queued based on these limits, and then some paths
2517 * reappear.
2518 */
2519 if (dm_table_has_no_data_devices(table)) {
2520 live_map = dm_get_live_table_fast(md);
2521 if (live_map)
2522 limits = md->queue->limits;
2523 dm_put_live_table_fast(md);
2524 }
2525
2526 if (!live_map) {
2527 r = dm_calculate_queue_limits(table, &limits);
2528 if (r) {
2529 map = ERR_PTR(r);
2530 goto out;
2531 }
2532 }
2533
2534 map = __bind(md, table, &limits);
2535
2536 out:
2537 mutex_unlock(&md->suspend_lock);
2538 return map;
2539 }
2540
2541 /*
2542 * Functions to lock and unlock any filesystem running on the
2543 * device.
2544 */
2545 static int lock_fs(struct mapped_device *md)
2546 {
2547 int r;
2548
2549 WARN_ON(md->frozen_sb);
2550
2551 md->frozen_sb = freeze_bdev(md->bdev);
2552 if (IS_ERR(md->frozen_sb)) {
2553 r = PTR_ERR(md->frozen_sb);
2554 md->frozen_sb = NULL;
2555 return r;
2556 }
2557
2558 set_bit(DMF_FROZEN, &md->flags);
2559
2560 return 0;
2561 }
2562
2563 static void unlock_fs(struct mapped_device *md)
2564 {
2565 if (!test_bit(DMF_FROZEN, &md->flags))
2566 return;
2567
2568 thaw_bdev(md->bdev, md->frozen_sb);
2569 md->frozen_sb = NULL;
2570 clear_bit(DMF_FROZEN, &md->flags);
2571 }
2572
2573 /*
2574 * We need to be able to change a mapping table under a mounted
2575 * filesystem. For example we might want to move some data in
2576 * the background. Before the table can be swapped with
2577 * dm_bind_table, dm_suspend must be called to flush any in
2578 * flight bios and ensure that any further io gets deferred.
2579 */
2580 /*
2581 * Suspend mechanism in request-based dm.
2582 *
2583 * 1. Flush all I/Os by lock_fs() if needed.
2584 * 2. Stop dispatching any I/O by stopping the request_queue.
2585 * 3. Wait for all in-flight I/Os to be completed or requeued.
2586 *
2587 * To abort suspend, start the request_queue.
2588 */
2589 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2590 {
2591 struct dm_table *map = NULL;
2592 int r = 0;
2593 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2594 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2595
2596 mutex_lock(&md->suspend_lock);
2597
2598 if (dm_suspended_md(md)) {
2599 r = -EINVAL;
2600 goto out_unlock;
2601 }
2602
2603 map = md->map;
2604
2605 /*
2606 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2607 * This flag is cleared before dm_suspend returns.
2608 */
2609 if (noflush)
2610 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2611
2612 /* This does not get reverted if there's an error later. */
2613 dm_table_presuspend_targets(map);
2614
2615 /*
2616 * Flush I/O to the device.
2617 * Any I/O submitted after lock_fs() may not be flushed.
2618 * noflush takes precedence over do_lockfs.
2619 * (lock_fs() flushes I/Os and waits for them to complete.)
2620 */
2621 if (!noflush && do_lockfs) {
2622 r = lock_fs(md);
2623 if (r)
2624 goto out_unlock;
2625 }
2626
2627 /*
2628 * Here we must make sure that no processes are submitting requests
2629 * to target drivers i.e. no one may be executing
2630 * __split_and_process_bio. This is called from dm_request and
2631 * dm_wq_work.
2632 *
2633 * To get all processes out of __split_and_process_bio in dm_request,
2634 * we take the write lock. To prevent any process from reentering
2635 * __split_and_process_bio from dm_request and quiesce the thread
2636 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2637 * flush_workqueue(md->wq).
2638 */
2639 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2640 synchronize_srcu(&md->io_barrier);
2641
2642 /*
2643 * Stop md->queue before flushing md->wq in case request-based
2644 * dm defers requests to md->wq from md->queue.
2645 */
2646 if (dm_request_based(md))
2647 stop_queue(md->queue);
2648
2649 flush_workqueue(md->wq);
2650
2651 /*
2652 * At this point no more requests are entering target request routines.
2653 * We call dm_wait_for_completion to wait for all existing requests
2654 * to finish.
2655 */
2656 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2657
2658 if (noflush)
2659 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2660 synchronize_srcu(&md->io_barrier);
2661
2662 /* were we interrupted ? */
2663 if (r < 0) {
2664 dm_queue_flush(md);
2665
2666 if (dm_request_based(md))
2667 start_queue(md->queue);
2668
2669 unlock_fs(md);
2670 goto out_unlock; /* pushback list is already flushed, so skip flush */
2671 }
2672
2673 /*
2674 * If dm_wait_for_completion returned 0, the device is completely
2675 * quiescent now. There is no request-processing activity. All new
2676 * requests are being added to md->deferred list.
2677 */
2678
2679 set_bit(DMF_SUSPENDED, &md->flags);
2680
2681 dm_table_postsuspend_targets(map);
2682
2683 out_unlock:
2684 mutex_unlock(&md->suspend_lock);
2685 return r;
2686 }
2687
2688 int dm_resume(struct mapped_device *md)
2689 {
2690 int r = -EINVAL;
2691 struct dm_table *map = NULL;
2692
2693 mutex_lock(&md->suspend_lock);
2694 if (!dm_suspended_md(md))
2695 goto out;
2696
2697 map = md->map;
2698 if (!map || !dm_table_get_size(map))
2699 goto out;
2700
2701 r = dm_table_resume_targets(map);
2702 if (r)
2703 goto out;
2704
2705 dm_queue_flush(md);
2706
2707 /*
2708 * Flushing deferred I/Os must be done after targets are resumed
2709 * so that mapping of targets can work correctly.
2710 * Request-based dm is queueing the deferred I/Os in its request_queue.
2711 */
2712 if (dm_request_based(md))
2713 start_queue(md->queue);
2714
2715 unlock_fs(md);
2716
2717 clear_bit(DMF_SUSPENDED, &md->flags);
2718
2719 r = 0;
2720 out:
2721 mutex_unlock(&md->suspend_lock);
2722
2723 return r;
2724 }
2725
2726 /*
2727 * Internal suspend/resume works like userspace-driven suspend. It waits
2728 * until all bios finish and prevents issuing new bios to the target drivers.
2729 * It may be used only from the kernel.
2730 *
2731 * Internal suspend holds md->suspend_lock, which prevents interaction with
2732 * userspace-driven suspend.
2733 */
2734
2735 void dm_internal_suspend(struct mapped_device *md)
2736 {
2737 mutex_lock(&md->suspend_lock);
2738 if (dm_suspended_md(md))
2739 return;
2740
2741 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2742 synchronize_srcu(&md->io_barrier);
2743 flush_workqueue(md->wq);
2744 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2745 }
2746
2747 void dm_internal_resume(struct mapped_device *md)
2748 {
2749 if (dm_suspended_md(md))
2750 goto done;
2751
2752 dm_queue_flush(md);
2753
2754 done:
2755 mutex_unlock(&md->suspend_lock);
2756 }
2757
2758 /*-----------------------------------------------------------------
2759 * Event notification.
2760 *---------------------------------------------------------------*/
2761 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2762 unsigned cookie)
2763 {
2764 char udev_cookie[DM_COOKIE_LENGTH];
2765 char *envp[] = { udev_cookie, NULL };
2766
2767 if (!cookie)
2768 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2769 else {
2770 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2771 DM_COOKIE_ENV_VAR_NAME, cookie);
2772 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2773 action, envp);
2774 }
2775 }
2776
2777 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2778 {
2779 return atomic_add_return(1, &md->uevent_seq);
2780 }
2781
2782 uint32_t dm_get_event_nr(struct mapped_device *md)
2783 {
2784 return atomic_read(&md->event_nr);
2785 }
2786
2787 int dm_wait_event(struct mapped_device *md, int event_nr)
2788 {
2789 return wait_event_interruptible(md->eventq,
2790 (event_nr != atomic_read(&md->event_nr)));
2791 }
2792
2793 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2794 {
2795 unsigned long flags;
2796
2797 spin_lock_irqsave(&md->uevent_lock, flags);
2798 list_add(elist, &md->uevent_list);
2799 spin_unlock_irqrestore(&md->uevent_lock, flags);
2800 }
2801
2802 /*
2803 * The gendisk is only valid as long as you have a reference
2804 * count on 'md'.
2805 */
2806 struct gendisk *dm_disk(struct mapped_device *md)
2807 {
2808 return md->disk;
2809 }
2810
2811 struct kobject *dm_kobject(struct mapped_device *md)
2812 {
2813 return &md->kobj;
2814 }
2815
2816 /*
2817 * struct mapped_device should not be exported outside of dm.c
2818 * so use this check to verify that kobj is part of md structure
2819 */
2820 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2821 {
2822 struct mapped_device *md;
2823
2824 md = container_of(kobj, struct mapped_device, kobj);
2825 if (&md->kobj != kobj)
2826 return NULL;
2827
2828 if (test_bit(DMF_FREEING, &md->flags) ||
2829 dm_deleting_md(md))
2830 return NULL;
2831
2832 dm_get(md);
2833 return md;
2834 }
2835
2836 int dm_suspended_md(struct mapped_device *md)
2837 {
2838 return test_bit(DMF_SUSPENDED, &md->flags);
2839 }
2840
2841 int dm_suspended(struct dm_target *ti)
2842 {
2843 return dm_suspended_md(dm_table_get_md(ti->table));
2844 }
2845 EXPORT_SYMBOL_GPL(dm_suspended);
2846
2847 int dm_noflush_suspending(struct dm_target *ti)
2848 {
2849 return __noflush_suspending(dm_table_get_md(ti->table));
2850 }
2851 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2852
2853 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2854 {
2855 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2856 struct kmem_cache *cachep;
2857 unsigned int pool_size;
2858 unsigned int front_pad;
2859
2860 if (!pools)
2861 return NULL;
2862
2863 if (type == DM_TYPE_BIO_BASED) {
2864 cachep = _io_cache;
2865 pool_size = 16;
2866 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2867 } else if (type == DM_TYPE_REQUEST_BASED) {
2868 cachep = _rq_tio_cache;
2869 pool_size = MIN_IOS;
2870 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2871 /* per_bio_data_size is not used. See __bind_mempools(). */
2872 WARN_ON(per_bio_data_size != 0);
2873 } else
2874 goto out;
2875
2876 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep);
2877 if (!pools->io_pool)
2878 goto out;
2879
2880 pools->bs = bioset_create(pool_size, front_pad);
2881 if (!pools->bs)
2882 goto out;
2883
2884 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2885 goto out;
2886
2887 return pools;
2888
2889 out:
2890 dm_free_md_mempools(pools);
2891
2892 return NULL;
2893 }
2894
2895 void dm_free_md_mempools(struct dm_md_mempools *pools)
2896 {
2897 if (!pools)
2898 return;
2899
2900 if (pools->io_pool)
2901 mempool_destroy(pools->io_pool);
2902
2903 if (pools->bs)
2904 bioset_free(pools->bs);
2905
2906 kfree(pools);
2907 }
2908
2909 static const struct block_device_operations dm_blk_dops = {
2910 .open = dm_blk_open,
2911 .release = dm_blk_close,
2912 .ioctl = dm_blk_ioctl,
2913 .getgeo = dm_blk_getgeo,
2914 .owner = THIS_MODULE
2915 };
2916
2917 EXPORT_SYMBOL(dm_get_mapinfo);
2918
2919 /*
2920 * module hooks
2921 */
2922 module_init(dm_init);
2923 module_exit(dm_exit);
2924
2925 module_param(major, uint, 0);
2926 MODULE_PARM_DESC(major, "The major number of the device mapper");
2927 MODULE_DESCRIPTION(DM_NAME " driver");
2928 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2929 MODULE_LICENSE("GPL");
This page took 0.101682 seconds and 5 git commands to generate.