MD RAID10: Prep for DM RAID10 device replacement capability
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
69 */
70 struct dm_target_io {
71 struct dm_io *io;
72 struct dm_target *ti;
73 union map_info info;
74 };
75
76 /*
77 * For request-based dm.
78 * One of these is allocated per request.
79 */
80 struct dm_rq_target_io {
81 struct mapped_device *md;
82 struct dm_target *ti;
83 struct request *orig, clone;
84 int error;
85 union map_info info;
86 };
87
88 /*
89 * For request-based dm - the bio clones we allocate are embedded in these
90 * structs.
91 *
92 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
93 * the bioset is created - this means the bio has to come at the end of the
94 * struct.
95 */
96 struct dm_rq_clone_bio_info {
97 struct bio *orig;
98 struct dm_rq_target_io *tio;
99 struct bio clone;
100 };
101
102 union map_info *dm_get_mapinfo(struct bio *bio)
103 {
104 if (bio && bio->bi_private)
105 return &((struct dm_target_io *)bio->bi_private)->info;
106 return NULL;
107 }
108
109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 if (rq && rq->end_io_data)
112 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116
117 #define MINOR_ALLOCED ((void *)-1)
118
119 /*
120 * Bits for the md->flags field.
121 */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_MERGE_IS_OPTIONAL 6
129
130 /*
131 * Work processed by per-device workqueue.
132 */
133 struct mapped_device {
134 struct rw_semaphore io_lock;
135 struct mutex suspend_lock;
136 rwlock_t map_lock;
137 atomic_t holders;
138 atomic_t open_count;
139
140 unsigned long flags;
141
142 struct request_queue *queue;
143 unsigned type;
144 /* Protect queue and type against concurrent access. */
145 struct mutex type_lock;
146
147 struct target_type *immutable_target_type;
148
149 struct gendisk *disk;
150 char name[16];
151
152 void *interface_ptr;
153
154 /*
155 * A list of ios that arrived while we were suspended.
156 */
157 atomic_t pending[2];
158 wait_queue_head_t wait;
159 struct work_struct work;
160 struct bio_list deferred;
161 spinlock_t deferred_lock;
162
163 /*
164 * Processing queue (flush)
165 */
166 struct workqueue_struct *wq;
167
168 /*
169 * The current mapping.
170 */
171 struct dm_table *map;
172
173 /*
174 * io objects are allocated from here.
175 */
176 mempool_t *io_pool;
177 mempool_t *tio_pool;
178
179 struct bio_set *bs;
180
181 /*
182 * Event handling.
183 */
184 atomic_t event_nr;
185 wait_queue_head_t eventq;
186 atomic_t uevent_seq;
187 struct list_head uevent_list;
188 spinlock_t uevent_lock; /* Protect access to uevent_list */
189
190 /*
191 * freeze/thaw support require holding onto a super block
192 */
193 struct super_block *frozen_sb;
194 struct block_device *bdev;
195
196 /* forced geometry settings */
197 struct hd_geometry geometry;
198
199 /* sysfs handle */
200 struct kobject kobj;
201
202 /* zero-length flush that will be cloned and submitted to targets */
203 struct bio flush_bio;
204 };
205
206 /*
207 * For mempools pre-allocation at the table loading time.
208 */
209 struct dm_md_mempools {
210 mempool_t *io_pool;
211 mempool_t *tio_pool;
212 struct bio_set *bs;
213 };
214
215 #define MIN_IOS 256
216 static struct kmem_cache *_io_cache;
217 static struct kmem_cache *_tio_cache;
218 static struct kmem_cache *_rq_tio_cache;
219
220 /*
221 * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
222 * still used for _io_cache, I'm leaving this for a later cleanup
223 */
224 static struct kmem_cache *_rq_bio_info_cache;
225
226 static int __init local_init(void)
227 {
228 int r = -ENOMEM;
229
230 /* allocate a slab for the dm_ios */
231 _io_cache = KMEM_CACHE(dm_io, 0);
232 if (!_io_cache)
233 return r;
234
235 /* allocate a slab for the target ios */
236 _tio_cache = KMEM_CACHE(dm_target_io, 0);
237 if (!_tio_cache)
238 goto out_free_io_cache;
239
240 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
241 if (!_rq_tio_cache)
242 goto out_free_tio_cache;
243
244 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
245 if (!_rq_bio_info_cache)
246 goto out_free_rq_tio_cache;
247
248 r = dm_uevent_init();
249 if (r)
250 goto out_free_rq_bio_info_cache;
251
252 _major = major;
253 r = register_blkdev(_major, _name);
254 if (r < 0)
255 goto out_uevent_exit;
256
257 if (!_major)
258 _major = r;
259
260 return 0;
261
262 out_uevent_exit:
263 dm_uevent_exit();
264 out_free_rq_bio_info_cache:
265 kmem_cache_destroy(_rq_bio_info_cache);
266 out_free_rq_tio_cache:
267 kmem_cache_destroy(_rq_tio_cache);
268 out_free_tio_cache:
269 kmem_cache_destroy(_tio_cache);
270 out_free_io_cache:
271 kmem_cache_destroy(_io_cache);
272
273 return r;
274 }
275
276 static void local_exit(void)
277 {
278 kmem_cache_destroy(_rq_bio_info_cache);
279 kmem_cache_destroy(_rq_tio_cache);
280 kmem_cache_destroy(_tio_cache);
281 kmem_cache_destroy(_io_cache);
282 unregister_blkdev(_major, _name);
283 dm_uevent_exit();
284
285 _major = 0;
286
287 DMINFO("cleaned up");
288 }
289
290 static int (*_inits[])(void) __initdata = {
291 local_init,
292 dm_target_init,
293 dm_linear_init,
294 dm_stripe_init,
295 dm_io_init,
296 dm_kcopyd_init,
297 dm_interface_init,
298 };
299
300 static void (*_exits[])(void) = {
301 local_exit,
302 dm_target_exit,
303 dm_linear_exit,
304 dm_stripe_exit,
305 dm_io_exit,
306 dm_kcopyd_exit,
307 dm_interface_exit,
308 };
309
310 static int __init dm_init(void)
311 {
312 const int count = ARRAY_SIZE(_inits);
313
314 int r, i;
315
316 for (i = 0; i < count; i++) {
317 r = _inits[i]();
318 if (r)
319 goto bad;
320 }
321
322 return 0;
323
324 bad:
325 while (i--)
326 _exits[i]();
327
328 return r;
329 }
330
331 static void __exit dm_exit(void)
332 {
333 int i = ARRAY_SIZE(_exits);
334
335 while (i--)
336 _exits[i]();
337
338 /*
339 * Should be empty by this point.
340 */
341 idr_remove_all(&_minor_idr);
342 idr_destroy(&_minor_idr);
343 }
344
345 /*
346 * Block device functions
347 */
348 int dm_deleting_md(struct mapped_device *md)
349 {
350 return test_bit(DMF_DELETING, &md->flags);
351 }
352
353 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
354 {
355 struct mapped_device *md;
356
357 spin_lock(&_minor_lock);
358
359 md = bdev->bd_disk->private_data;
360 if (!md)
361 goto out;
362
363 if (test_bit(DMF_FREEING, &md->flags) ||
364 dm_deleting_md(md)) {
365 md = NULL;
366 goto out;
367 }
368
369 dm_get(md);
370 atomic_inc(&md->open_count);
371
372 out:
373 spin_unlock(&_minor_lock);
374
375 return md ? 0 : -ENXIO;
376 }
377
378 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
379 {
380 struct mapped_device *md = disk->private_data;
381
382 spin_lock(&_minor_lock);
383
384 atomic_dec(&md->open_count);
385 dm_put(md);
386
387 spin_unlock(&_minor_lock);
388
389 return 0;
390 }
391
392 int dm_open_count(struct mapped_device *md)
393 {
394 return atomic_read(&md->open_count);
395 }
396
397 /*
398 * Guarantees nothing is using the device before it's deleted.
399 */
400 int dm_lock_for_deletion(struct mapped_device *md)
401 {
402 int r = 0;
403
404 spin_lock(&_minor_lock);
405
406 if (dm_open_count(md))
407 r = -EBUSY;
408 else
409 set_bit(DMF_DELETING, &md->flags);
410
411 spin_unlock(&_minor_lock);
412
413 return r;
414 }
415
416 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
417 {
418 struct mapped_device *md = bdev->bd_disk->private_data;
419
420 return dm_get_geometry(md, geo);
421 }
422
423 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
424 unsigned int cmd, unsigned long arg)
425 {
426 struct mapped_device *md = bdev->bd_disk->private_data;
427 struct dm_table *map = dm_get_live_table(md);
428 struct dm_target *tgt;
429 int r = -ENOTTY;
430
431 if (!map || !dm_table_get_size(map))
432 goto out;
433
434 /* We only support devices that have a single target */
435 if (dm_table_get_num_targets(map) != 1)
436 goto out;
437
438 tgt = dm_table_get_target(map, 0);
439
440 if (dm_suspended_md(md)) {
441 r = -EAGAIN;
442 goto out;
443 }
444
445 if (tgt->type->ioctl)
446 r = tgt->type->ioctl(tgt, cmd, arg);
447
448 out:
449 dm_table_put(map);
450
451 return r;
452 }
453
454 static struct dm_io *alloc_io(struct mapped_device *md)
455 {
456 return mempool_alloc(md->io_pool, GFP_NOIO);
457 }
458
459 static void free_io(struct mapped_device *md, struct dm_io *io)
460 {
461 mempool_free(io, md->io_pool);
462 }
463
464 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
465 {
466 mempool_free(tio, md->tio_pool);
467 }
468
469 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
470 gfp_t gfp_mask)
471 {
472 return mempool_alloc(md->tio_pool, gfp_mask);
473 }
474
475 static void free_rq_tio(struct dm_rq_target_io *tio)
476 {
477 mempool_free(tio, tio->md->tio_pool);
478 }
479
480 static int md_in_flight(struct mapped_device *md)
481 {
482 return atomic_read(&md->pending[READ]) +
483 atomic_read(&md->pending[WRITE]);
484 }
485
486 static void start_io_acct(struct dm_io *io)
487 {
488 struct mapped_device *md = io->md;
489 int cpu;
490 int rw = bio_data_dir(io->bio);
491
492 io->start_time = jiffies;
493
494 cpu = part_stat_lock();
495 part_round_stats(cpu, &dm_disk(md)->part0);
496 part_stat_unlock();
497 atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 atomic_inc_return(&md->pending[rw]));
499 }
500
501 static void end_io_acct(struct dm_io *io)
502 {
503 struct mapped_device *md = io->md;
504 struct bio *bio = io->bio;
505 unsigned long duration = jiffies - io->start_time;
506 int pending, cpu;
507 int rw = bio_data_dir(bio);
508
509 cpu = part_stat_lock();
510 part_round_stats(cpu, &dm_disk(md)->part0);
511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 part_stat_unlock();
513
514 /*
515 * After this is decremented the bio must not be touched if it is
516 * a flush.
517 */
518 pending = atomic_dec_return(&md->pending[rw]);
519 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 pending += atomic_read(&md->pending[rw^0x1]);
521
522 /* nudge anyone waiting on suspend queue */
523 if (!pending)
524 wake_up(&md->wait);
525 }
526
527 /*
528 * Add the bio to the list of deferred io.
529 */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 unsigned long flags;
533
534 spin_lock_irqsave(&md->deferred_lock, flags);
535 bio_list_add(&md->deferred, bio);
536 spin_unlock_irqrestore(&md->deferred_lock, flags);
537 queue_work(md->wq, &md->work);
538 }
539
540 /*
541 * Everyone (including functions in this file), should use this
542 * function to access the md->map field, and make sure they call
543 * dm_table_put() when finished.
544 */
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 struct dm_table *t;
548 unsigned long flags;
549
550 read_lock_irqsave(&md->map_lock, flags);
551 t = md->map;
552 if (t)
553 dm_table_get(t);
554 read_unlock_irqrestore(&md->map_lock, flags);
555
556 return t;
557 }
558
559 /*
560 * Get the geometry associated with a dm device
561 */
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 *geo = md->geometry;
565
566 return 0;
567 }
568
569 /*
570 * Set the geometry of a device.
571 */
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575
576 if (geo->start > sz) {
577 DMWARN("Start sector is beyond the geometry limits.");
578 return -EINVAL;
579 }
580
581 md->geometry = *geo;
582
583 return 0;
584 }
585
586 /*-----------------------------------------------------------------
587 * CRUD START:
588 * A more elegant soln is in the works that uses the queue
589 * merge fn, unfortunately there are a couple of changes to
590 * the block layer that I want to make for this. So in the
591 * interests of getting something for people to use I give
592 * you this clearly demarcated crap.
593 *---------------------------------------------------------------*/
594
595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599
600 /*
601 * Decrements the number of outstanding ios that a bio has been
602 * cloned into, completing the original io if necc.
603 */
604 static void dec_pending(struct dm_io *io, int error)
605 {
606 unsigned long flags;
607 int io_error;
608 struct bio *bio;
609 struct mapped_device *md = io->md;
610
611 /* Push-back supersedes any I/O errors */
612 if (unlikely(error)) {
613 spin_lock_irqsave(&io->endio_lock, flags);
614 if (!(io->error > 0 && __noflush_suspending(md)))
615 io->error = error;
616 spin_unlock_irqrestore(&io->endio_lock, flags);
617 }
618
619 if (atomic_dec_and_test(&io->io_count)) {
620 if (io->error == DM_ENDIO_REQUEUE) {
621 /*
622 * Target requested pushing back the I/O.
623 */
624 spin_lock_irqsave(&md->deferred_lock, flags);
625 if (__noflush_suspending(md))
626 bio_list_add_head(&md->deferred, io->bio);
627 else
628 /* noflush suspend was interrupted. */
629 io->error = -EIO;
630 spin_unlock_irqrestore(&md->deferred_lock, flags);
631 }
632
633 io_error = io->error;
634 bio = io->bio;
635 end_io_acct(io);
636 free_io(md, io);
637
638 if (io_error == DM_ENDIO_REQUEUE)
639 return;
640
641 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 /*
643 * Preflush done for flush with data, reissue
644 * without REQ_FLUSH.
645 */
646 bio->bi_rw &= ~REQ_FLUSH;
647 queue_io(md, bio);
648 } else {
649 /* done with normal IO or empty flush */
650 trace_block_bio_complete(md->queue, bio, io_error);
651 bio_endio(bio, io_error);
652 }
653 }
654 }
655
656 static void clone_endio(struct bio *bio, int error)
657 {
658 int r = 0;
659 struct dm_target_io *tio = bio->bi_private;
660 struct dm_io *io = tio->io;
661 struct mapped_device *md = tio->io->md;
662 dm_endio_fn endio = tio->ti->type->end_io;
663
664 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 error = -EIO;
666
667 if (endio) {
668 r = endio(tio->ti, bio, error, &tio->info);
669 if (r < 0 || r == DM_ENDIO_REQUEUE)
670 /*
671 * error and requeue request are handled
672 * in dec_pending().
673 */
674 error = r;
675 else if (r == DM_ENDIO_INCOMPLETE)
676 /* The target will handle the io */
677 return;
678 else if (r) {
679 DMWARN("unimplemented target endio return value: %d", r);
680 BUG();
681 }
682 }
683
684 free_tio(md, tio);
685 bio_put(bio);
686 dec_pending(io, error);
687 }
688
689 /*
690 * Partial completion handling for request-based dm
691 */
692 static void end_clone_bio(struct bio *clone, int error)
693 {
694 struct dm_rq_clone_bio_info *info = clone->bi_private;
695 struct dm_rq_target_io *tio = info->tio;
696 struct bio *bio = info->orig;
697 unsigned int nr_bytes = info->orig->bi_size;
698
699 bio_put(clone);
700
701 if (tio->error)
702 /*
703 * An error has already been detected on the request.
704 * Once error occurred, just let clone->end_io() handle
705 * the remainder.
706 */
707 return;
708 else if (error) {
709 /*
710 * Don't notice the error to the upper layer yet.
711 * The error handling decision is made by the target driver,
712 * when the request is completed.
713 */
714 tio->error = error;
715 return;
716 }
717
718 /*
719 * I/O for the bio successfully completed.
720 * Notice the data completion to the upper layer.
721 */
722
723 /*
724 * bios are processed from the head of the list.
725 * So the completing bio should always be rq->bio.
726 * If it's not, something wrong is happening.
727 */
728 if (tio->orig->bio != bio)
729 DMERR("bio completion is going in the middle of the request");
730
731 /*
732 * Update the original request.
733 * Do not use blk_end_request() here, because it may complete
734 * the original request before the clone, and break the ordering.
735 */
736 blk_update_request(tio->orig, 0, nr_bytes);
737 }
738
739 /*
740 * Don't touch any member of the md after calling this function because
741 * the md may be freed in dm_put() at the end of this function.
742 * Or do dm_get() before calling this function and dm_put() later.
743 */
744 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
745 {
746 atomic_dec(&md->pending[rw]);
747
748 /* nudge anyone waiting on suspend queue */
749 if (!md_in_flight(md))
750 wake_up(&md->wait);
751
752 if (run_queue)
753 blk_run_queue(md->queue);
754
755 /*
756 * dm_put() must be at the end of this function. See the comment above
757 */
758 dm_put(md);
759 }
760
761 static void free_rq_clone(struct request *clone)
762 {
763 struct dm_rq_target_io *tio = clone->end_io_data;
764
765 blk_rq_unprep_clone(clone);
766 free_rq_tio(tio);
767 }
768
769 /*
770 * Complete the clone and the original request.
771 * Must be called without queue lock.
772 */
773 static void dm_end_request(struct request *clone, int error)
774 {
775 int rw = rq_data_dir(clone);
776 struct dm_rq_target_io *tio = clone->end_io_data;
777 struct mapped_device *md = tio->md;
778 struct request *rq = tio->orig;
779
780 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
781 rq->errors = clone->errors;
782 rq->resid_len = clone->resid_len;
783
784 if (rq->sense)
785 /*
786 * We are using the sense buffer of the original
787 * request.
788 * So setting the length of the sense data is enough.
789 */
790 rq->sense_len = clone->sense_len;
791 }
792
793 free_rq_clone(clone);
794 blk_end_request_all(rq, error);
795 rq_completed(md, rw, true);
796 }
797
798 static void dm_unprep_request(struct request *rq)
799 {
800 struct request *clone = rq->special;
801
802 rq->special = NULL;
803 rq->cmd_flags &= ~REQ_DONTPREP;
804
805 free_rq_clone(clone);
806 }
807
808 /*
809 * Requeue the original request of a clone.
810 */
811 void dm_requeue_unmapped_request(struct request *clone)
812 {
813 int rw = rq_data_dir(clone);
814 struct dm_rq_target_io *tio = clone->end_io_data;
815 struct mapped_device *md = tio->md;
816 struct request *rq = tio->orig;
817 struct request_queue *q = rq->q;
818 unsigned long flags;
819
820 dm_unprep_request(rq);
821
822 spin_lock_irqsave(q->queue_lock, flags);
823 blk_requeue_request(q, rq);
824 spin_unlock_irqrestore(q->queue_lock, flags);
825
826 rq_completed(md, rw, 0);
827 }
828 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
829
830 static void __stop_queue(struct request_queue *q)
831 {
832 blk_stop_queue(q);
833 }
834
835 static void stop_queue(struct request_queue *q)
836 {
837 unsigned long flags;
838
839 spin_lock_irqsave(q->queue_lock, flags);
840 __stop_queue(q);
841 spin_unlock_irqrestore(q->queue_lock, flags);
842 }
843
844 static void __start_queue(struct request_queue *q)
845 {
846 if (blk_queue_stopped(q))
847 blk_start_queue(q);
848 }
849
850 static void start_queue(struct request_queue *q)
851 {
852 unsigned long flags;
853
854 spin_lock_irqsave(q->queue_lock, flags);
855 __start_queue(q);
856 spin_unlock_irqrestore(q->queue_lock, flags);
857 }
858
859 static void dm_done(struct request *clone, int error, bool mapped)
860 {
861 int r = error;
862 struct dm_rq_target_io *tio = clone->end_io_data;
863 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
864
865 if (mapped && rq_end_io)
866 r = rq_end_io(tio->ti, clone, error, &tio->info);
867
868 if (r <= 0)
869 /* The target wants to complete the I/O */
870 dm_end_request(clone, r);
871 else if (r == DM_ENDIO_INCOMPLETE)
872 /* The target will handle the I/O */
873 return;
874 else if (r == DM_ENDIO_REQUEUE)
875 /* The target wants to requeue the I/O */
876 dm_requeue_unmapped_request(clone);
877 else {
878 DMWARN("unimplemented target endio return value: %d", r);
879 BUG();
880 }
881 }
882
883 /*
884 * Request completion handler for request-based dm
885 */
886 static void dm_softirq_done(struct request *rq)
887 {
888 bool mapped = true;
889 struct request *clone = rq->completion_data;
890 struct dm_rq_target_io *tio = clone->end_io_data;
891
892 if (rq->cmd_flags & REQ_FAILED)
893 mapped = false;
894
895 dm_done(clone, tio->error, mapped);
896 }
897
898 /*
899 * Complete the clone and the original request with the error status
900 * through softirq context.
901 */
902 static void dm_complete_request(struct request *clone, int error)
903 {
904 struct dm_rq_target_io *tio = clone->end_io_data;
905 struct request *rq = tio->orig;
906
907 tio->error = error;
908 rq->completion_data = clone;
909 blk_complete_request(rq);
910 }
911
912 /*
913 * Complete the not-mapped clone and the original request with the error status
914 * through softirq context.
915 * Target's rq_end_io() function isn't called.
916 * This may be used when the target's map_rq() function fails.
917 */
918 void dm_kill_unmapped_request(struct request *clone, int error)
919 {
920 struct dm_rq_target_io *tio = clone->end_io_data;
921 struct request *rq = tio->orig;
922
923 rq->cmd_flags |= REQ_FAILED;
924 dm_complete_request(clone, error);
925 }
926 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
927
928 /*
929 * Called with the queue lock held
930 */
931 static void end_clone_request(struct request *clone, int error)
932 {
933 /*
934 * For just cleaning up the information of the queue in which
935 * the clone was dispatched.
936 * The clone is *NOT* freed actually here because it is alloced from
937 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
938 */
939 __blk_put_request(clone->q, clone);
940
941 /*
942 * Actual request completion is done in a softirq context which doesn't
943 * hold the queue lock. Otherwise, deadlock could occur because:
944 * - another request may be submitted by the upper level driver
945 * of the stacking during the completion
946 * - the submission which requires queue lock may be done
947 * against this queue
948 */
949 dm_complete_request(clone, error);
950 }
951
952 /*
953 * Return maximum size of I/O possible at the supplied sector up to the current
954 * target boundary.
955 */
956 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
957 {
958 sector_t target_offset = dm_target_offset(ti, sector);
959
960 return ti->len - target_offset;
961 }
962
963 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
964 {
965 sector_t len = max_io_len_target_boundary(sector, ti);
966 sector_t offset, max_len;
967
968 /*
969 * Does the target need to split even further?
970 */
971 if (ti->max_io_len) {
972 offset = dm_target_offset(ti, sector);
973 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
974 max_len = sector_div(offset, ti->max_io_len);
975 else
976 max_len = offset & (ti->max_io_len - 1);
977 max_len = ti->max_io_len - max_len;
978
979 if (len > max_len)
980 len = max_len;
981 }
982
983 return len;
984 }
985
986 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
987 {
988 if (len > UINT_MAX) {
989 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
990 (unsigned long long)len, UINT_MAX);
991 ti->error = "Maximum size of target IO is too large";
992 return -EINVAL;
993 }
994
995 ti->max_io_len = (uint32_t) len;
996
997 return 0;
998 }
999 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1000
1001 static void __map_bio(struct dm_target *ti, struct bio *clone,
1002 struct dm_target_io *tio)
1003 {
1004 int r;
1005 sector_t sector;
1006 struct mapped_device *md;
1007
1008 clone->bi_end_io = clone_endio;
1009 clone->bi_private = tio;
1010
1011 /*
1012 * Map the clone. If r == 0 we don't need to do
1013 * anything, the target has assumed ownership of
1014 * this io.
1015 */
1016 atomic_inc(&tio->io->io_count);
1017 sector = clone->bi_sector;
1018 r = ti->type->map(ti, clone, &tio->info);
1019 if (r == DM_MAPIO_REMAPPED) {
1020 /* the bio has been remapped so dispatch it */
1021
1022 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1023 tio->io->bio->bi_bdev->bd_dev, sector);
1024
1025 generic_make_request(clone);
1026 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1027 /* error the io and bail out, or requeue it if needed */
1028 md = tio->io->md;
1029 dec_pending(tio->io, r);
1030 bio_put(clone);
1031 free_tio(md, tio);
1032 } else if (r) {
1033 DMWARN("unimplemented target map return value: %d", r);
1034 BUG();
1035 }
1036 }
1037
1038 struct clone_info {
1039 struct mapped_device *md;
1040 struct dm_table *map;
1041 struct bio *bio;
1042 struct dm_io *io;
1043 sector_t sector;
1044 sector_t sector_count;
1045 unsigned short idx;
1046 };
1047
1048 /*
1049 * Creates a little bio that just does part of a bvec.
1050 */
1051 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1052 unsigned short idx, unsigned int offset,
1053 unsigned int len, struct bio_set *bs)
1054 {
1055 struct bio *clone;
1056 struct bio_vec *bv = bio->bi_io_vec + idx;
1057
1058 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1059 *clone->bi_io_vec = *bv;
1060
1061 clone->bi_sector = sector;
1062 clone->bi_bdev = bio->bi_bdev;
1063 clone->bi_rw = bio->bi_rw;
1064 clone->bi_vcnt = 1;
1065 clone->bi_size = to_bytes(len);
1066 clone->bi_io_vec->bv_offset = offset;
1067 clone->bi_io_vec->bv_len = clone->bi_size;
1068 clone->bi_flags |= 1 << BIO_CLONED;
1069
1070 if (bio_integrity(bio)) {
1071 bio_integrity_clone(clone, bio, GFP_NOIO);
1072 bio_integrity_trim(clone,
1073 bio_sector_offset(bio, idx, offset), len);
1074 }
1075
1076 return clone;
1077 }
1078
1079 /*
1080 * Creates a bio that consists of range of complete bvecs.
1081 */
1082 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1083 unsigned short idx, unsigned short bv_count,
1084 unsigned int len, struct bio_set *bs)
1085 {
1086 struct bio *clone;
1087
1088 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1089 __bio_clone(clone, bio);
1090 clone->bi_sector = sector;
1091 clone->bi_idx = idx;
1092 clone->bi_vcnt = idx + bv_count;
1093 clone->bi_size = to_bytes(len);
1094 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1095
1096 if (bio_integrity(bio)) {
1097 bio_integrity_clone(clone, bio, GFP_NOIO);
1098
1099 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1100 bio_integrity_trim(clone,
1101 bio_sector_offset(bio, idx, 0), len);
1102 }
1103
1104 return clone;
1105 }
1106
1107 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108 struct dm_target *ti)
1109 {
1110 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1111
1112 tio->io = ci->io;
1113 tio->ti = ti;
1114 memset(&tio->info, 0, sizeof(tio->info));
1115
1116 return tio;
1117 }
1118
1119 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1120 unsigned request_nr, sector_t len)
1121 {
1122 struct dm_target_io *tio = alloc_tio(ci, ti);
1123 struct bio *clone;
1124
1125 tio->info.target_request_nr = request_nr;
1126
1127 /*
1128 * Discard requests require the bio's inline iovecs be initialized.
1129 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1130 * and discard, so no need for concern about wasted bvec allocations.
1131 */
1132 clone = bio_clone_bioset(ci->bio, GFP_NOIO, ci->md->bs);
1133
1134 if (len) {
1135 clone->bi_sector = ci->sector;
1136 clone->bi_size = to_bytes(len);
1137 }
1138
1139 __map_bio(ti, clone, tio);
1140 }
1141
1142 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1143 unsigned num_requests, sector_t len)
1144 {
1145 unsigned request_nr;
1146
1147 for (request_nr = 0; request_nr < num_requests; request_nr++)
1148 __issue_target_request(ci, ti, request_nr, len);
1149 }
1150
1151 static int __clone_and_map_empty_flush(struct clone_info *ci)
1152 {
1153 unsigned target_nr = 0;
1154 struct dm_target *ti;
1155
1156 BUG_ON(bio_has_data(ci->bio));
1157 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1158 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1159
1160 return 0;
1161 }
1162
1163 /*
1164 * Perform all io with a single clone.
1165 */
1166 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1167 {
1168 struct bio *clone, *bio = ci->bio;
1169 struct dm_target_io *tio;
1170
1171 tio = alloc_tio(ci, ti);
1172 clone = clone_bio(bio, ci->sector, ci->idx,
1173 bio->bi_vcnt - ci->idx, ci->sector_count,
1174 ci->md->bs);
1175 __map_bio(ti, clone, tio);
1176 ci->sector_count = 0;
1177 }
1178
1179 static int __clone_and_map_discard(struct clone_info *ci)
1180 {
1181 struct dm_target *ti;
1182 sector_t len;
1183
1184 do {
1185 ti = dm_table_find_target(ci->map, ci->sector);
1186 if (!dm_target_is_valid(ti))
1187 return -EIO;
1188
1189 /*
1190 * Even though the device advertised discard support,
1191 * that does not mean every target supports it, and
1192 * reconfiguration might also have changed that since the
1193 * check was performed.
1194 */
1195 if (!ti->num_discard_requests)
1196 return -EOPNOTSUPP;
1197
1198 if (!ti->split_discard_requests)
1199 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1200 else
1201 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1202
1203 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1204
1205 ci->sector += len;
1206 } while (ci->sector_count -= len);
1207
1208 return 0;
1209 }
1210
1211 static int __clone_and_map(struct clone_info *ci)
1212 {
1213 struct bio *clone, *bio = ci->bio;
1214 struct dm_target *ti;
1215 sector_t len = 0, max;
1216 struct dm_target_io *tio;
1217
1218 if (unlikely(bio->bi_rw & REQ_DISCARD))
1219 return __clone_and_map_discard(ci);
1220
1221 ti = dm_table_find_target(ci->map, ci->sector);
1222 if (!dm_target_is_valid(ti))
1223 return -EIO;
1224
1225 max = max_io_len(ci->sector, ti);
1226
1227 if (ci->sector_count <= max) {
1228 /*
1229 * Optimise for the simple case where we can do all of
1230 * the remaining io with a single clone.
1231 */
1232 __clone_and_map_simple(ci, ti);
1233
1234 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1235 /*
1236 * There are some bvecs that don't span targets.
1237 * Do as many of these as possible.
1238 */
1239 int i;
1240 sector_t remaining = max;
1241 sector_t bv_len;
1242
1243 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1244 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1245
1246 if (bv_len > remaining)
1247 break;
1248
1249 remaining -= bv_len;
1250 len += bv_len;
1251 }
1252
1253 tio = alloc_tio(ci, ti);
1254 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1255 ci->md->bs);
1256 __map_bio(ti, clone, tio);
1257
1258 ci->sector += len;
1259 ci->sector_count -= len;
1260 ci->idx = i;
1261
1262 } else {
1263 /*
1264 * Handle a bvec that must be split between two or more targets.
1265 */
1266 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1267 sector_t remaining = to_sector(bv->bv_len);
1268 unsigned int offset = 0;
1269
1270 do {
1271 if (offset) {
1272 ti = dm_table_find_target(ci->map, ci->sector);
1273 if (!dm_target_is_valid(ti))
1274 return -EIO;
1275
1276 max = max_io_len(ci->sector, ti);
1277 }
1278
1279 len = min(remaining, max);
1280
1281 tio = alloc_tio(ci, ti);
1282 clone = split_bvec(bio, ci->sector, ci->idx,
1283 bv->bv_offset + offset, len,
1284 ci->md->bs);
1285
1286 __map_bio(ti, clone, tio);
1287
1288 ci->sector += len;
1289 ci->sector_count -= len;
1290 offset += to_bytes(len);
1291 } while (remaining -= len);
1292
1293 ci->idx++;
1294 }
1295
1296 return 0;
1297 }
1298
1299 /*
1300 * Split the bio into several clones and submit it to targets.
1301 */
1302 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1303 {
1304 struct clone_info ci;
1305 int error = 0;
1306
1307 ci.map = dm_get_live_table(md);
1308 if (unlikely(!ci.map)) {
1309 bio_io_error(bio);
1310 return;
1311 }
1312
1313 ci.md = md;
1314 ci.io = alloc_io(md);
1315 ci.io->error = 0;
1316 atomic_set(&ci.io->io_count, 1);
1317 ci.io->bio = bio;
1318 ci.io->md = md;
1319 spin_lock_init(&ci.io->endio_lock);
1320 ci.sector = bio->bi_sector;
1321 ci.idx = bio->bi_idx;
1322
1323 start_io_acct(ci.io);
1324 if (bio->bi_rw & REQ_FLUSH) {
1325 ci.bio = &ci.md->flush_bio;
1326 ci.sector_count = 0;
1327 error = __clone_and_map_empty_flush(&ci);
1328 /* dec_pending submits any data associated with flush */
1329 } else {
1330 ci.bio = bio;
1331 ci.sector_count = bio_sectors(bio);
1332 while (ci.sector_count && !error)
1333 error = __clone_and_map(&ci);
1334 }
1335
1336 /* drop the extra reference count */
1337 dec_pending(ci.io, error);
1338 dm_table_put(ci.map);
1339 }
1340 /*-----------------------------------------------------------------
1341 * CRUD END
1342 *---------------------------------------------------------------*/
1343
1344 static int dm_merge_bvec(struct request_queue *q,
1345 struct bvec_merge_data *bvm,
1346 struct bio_vec *biovec)
1347 {
1348 struct mapped_device *md = q->queuedata;
1349 struct dm_table *map = dm_get_live_table(md);
1350 struct dm_target *ti;
1351 sector_t max_sectors;
1352 int max_size = 0;
1353
1354 if (unlikely(!map))
1355 goto out;
1356
1357 ti = dm_table_find_target(map, bvm->bi_sector);
1358 if (!dm_target_is_valid(ti))
1359 goto out_table;
1360
1361 /*
1362 * Find maximum amount of I/O that won't need splitting
1363 */
1364 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1365 (sector_t) BIO_MAX_SECTORS);
1366 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1367 if (max_size < 0)
1368 max_size = 0;
1369
1370 /*
1371 * merge_bvec_fn() returns number of bytes
1372 * it can accept at this offset
1373 * max is precomputed maximal io size
1374 */
1375 if (max_size && ti->type->merge)
1376 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1377 /*
1378 * If the target doesn't support merge method and some of the devices
1379 * provided their merge_bvec method (we know this by looking at
1380 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1381 * entries. So always set max_size to 0, and the code below allows
1382 * just one page.
1383 */
1384 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1385
1386 max_size = 0;
1387
1388 out_table:
1389 dm_table_put(map);
1390
1391 out:
1392 /*
1393 * Always allow an entire first page
1394 */
1395 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1396 max_size = biovec->bv_len;
1397
1398 return max_size;
1399 }
1400
1401 /*
1402 * The request function that just remaps the bio built up by
1403 * dm_merge_bvec.
1404 */
1405 static void _dm_request(struct request_queue *q, struct bio *bio)
1406 {
1407 int rw = bio_data_dir(bio);
1408 struct mapped_device *md = q->queuedata;
1409 int cpu;
1410
1411 down_read(&md->io_lock);
1412
1413 cpu = part_stat_lock();
1414 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1415 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1416 part_stat_unlock();
1417
1418 /* if we're suspended, we have to queue this io for later */
1419 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1420 up_read(&md->io_lock);
1421
1422 if (bio_rw(bio) != READA)
1423 queue_io(md, bio);
1424 else
1425 bio_io_error(bio);
1426 return;
1427 }
1428
1429 __split_and_process_bio(md, bio);
1430 up_read(&md->io_lock);
1431 return;
1432 }
1433
1434 static int dm_request_based(struct mapped_device *md)
1435 {
1436 return blk_queue_stackable(md->queue);
1437 }
1438
1439 static void dm_request(struct request_queue *q, struct bio *bio)
1440 {
1441 struct mapped_device *md = q->queuedata;
1442
1443 if (dm_request_based(md))
1444 blk_queue_bio(q, bio);
1445 else
1446 _dm_request(q, bio);
1447 }
1448
1449 void dm_dispatch_request(struct request *rq)
1450 {
1451 int r;
1452
1453 if (blk_queue_io_stat(rq->q))
1454 rq->cmd_flags |= REQ_IO_STAT;
1455
1456 rq->start_time = jiffies;
1457 r = blk_insert_cloned_request(rq->q, rq);
1458 if (r)
1459 dm_complete_request(rq, r);
1460 }
1461 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1462
1463 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1464 void *data)
1465 {
1466 struct dm_rq_target_io *tio = data;
1467 struct dm_rq_clone_bio_info *info =
1468 container_of(bio, struct dm_rq_clone_bio_info, clone);
1469
1470 info->orig = bio_orig;
1471 info->tio = tio;
1472 bio->bi_end_io = end_clone_bio;
1473 bio->bi_private = info;
1474
1475 return 0;
1476 }
1477
1478 static int setup_clone(struct request *clone, struct request *rq,
1479 struct dm_rq_target_io *tio)
1480 {
1481 int r;
1482
1483 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1484 dm_rq_bio_constructor, tio);
1485 if (r)
1486 return r;
1487
1488 clone->cmd = rq->cmd;
1489 clone->cmd_len = rq->cmd_len;
1490 clone->sense = rq->sense;
1491 clone->buffer = rq->buffer;
1492 clone->end_io = end_clone_request;
1493 clone->end_io_data = tio;
1494
1495 return 0;
1496 }
1497
1498 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1499 gfp_t gfp_mask)
1500 {
1501 struct request *clone;
1502 struct dm_rq_target_io *tio;
1503
1504 tio = alloc_rq_tio(md, gfp_mask);
1505 if (!tio)
1506 return NULL;
1507
1508 tio->md = md;
1509 tio->ti = NULL;
1510 tio->orig = rq;
1511 tio->error = 0;
1512 memset(&tio->info, 0, sizeof(tio->info));
1513
1514 clone = &tio->clone;
1515 if (setup_clone(clone, rq, tio)) {
1516 /* -ENOMEM */
1517 free_rq_tio(tio);
1518 return NULL;
1519 }
1520
1521 return clone;
1522 }
1523
1524 /*
1525 * Called with the queue lock held.
1526 */
1527 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1528 {
1529 struct mapped_device *md = q->queuedata;
1530 struct request *clone;
1531
1532 if (unlikely(rq->special)) {
1533 DMWARN("Already has something in rq->special.");
1534 return BLKPREP_KILL;
1535 }
1536
1537 clone = clone_rq(rq, md, GFP_ATOMIC);
1538 if (!clone)
1539 return BLKPREP_DEFER;
1540
1541 rq->special = clone;
1542 rq->cmd_flags |= REQ_DONTPREP;
1543
1544 return BLKPREP_OK;
1545 }
1546
1547 /*
1548 * Returns:
1549 * 0 : the request has been processed (not requeued)
1550 * !0 : the request has been requeued
1551 */
1552 static int map_request(struct dm_target *ti, struct request *clone,
1553 struct mapped_device *md)
1554 {
1555 int r, requeued = 0;
1556 struct dm_rq_target_io *tio = clone->end_io_data;
1557
1558 /*
1559 * Hold the md reference here for the in-flight I/O.
1560 * We can't rely on the reference count by device opener,
1561 * because the device may be closed during the request completion
1562 * when all bios are completed.
1563 * See the comment in rq_completed() too.
1564 */
1565 dm_get(md);
1566
1567 tio->ti = ti;
1568 r = ti->type->map_rq(ti, clone, &tio->info);
1569 switch (r) {
1570 case DM_MAPIO_SUBMITTED:
1571 /* The target has taken the I/O to submit by itself later */
1572 break;
1573 case DM_MAPIO_REMAPPED:
1574 /* The target has remapped the I/O so dispatch it */
1575 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1576 blk_rq_pos(tio->orig));
1577 dm_dispatch_request(clone);
1578 break;
1579 case DM_MAPIO_REQUEUE:
1580 /* The target wants to requeue the I/O */
1581 dm_requeue_unmapped_request(clone);
1582 requeued = 1;
1583 break;
1584 default:
1585 if (r > 0) {
1586 DMWARN("unimplemented target map return value: %d", r);
1587 BUG();
1588 }
1589
1590 /* The target wants to complete the I/O */
1591 dm_kill_unmapped_request(clone, r);
1592 break;
1593 }
1594
1595 return requeued;
1596 }
1597
1598 /*
1599 * q->request_fn for request-based dm.
1600 * Called with the queue lock held.
1601 */
1602 static void dm_request_fn(struct request_queue *q)
1603 {
1604 struct mapped_device *md = q->queuedata;
1605 struct dm_table *map = dm_get_live_table(md);
1606 struct dm_target *ti;
1607 struct request *rq, *clone;
1608 sector_t pos;
1609
1610 /*
1611 * For suspend, check blk_queue_stopped() and increment
1612 * ->pending within a single queue_lock not to increment the
1613 * number of in-flight I/Os after the queue is stopped in
1614 * dm_suspend().
1615 */
1616 while (!blk_queue_stopped(q)) {
1617 rq = blk_peek_request(q);
1618 if (!rq)
1619 goto delay_and_out;
1620
1621 /* always use block 0 to find the target for flushes for now */
1622 pos = 0;
1623 if (!(rq->cmd_flags & REQ_FLUSH))
1624 pos = blk_rq_pos(rq);
1625
1626 ti = dm_table_find_target(map, pos);
1627 BUG_ON(!dm_target_is_valid(ti));
1628
1629 if (ti->type->busy && ti->type->busy(ti))
1630 goto delay_and_out;
1631
1632 blk_start_request(rq);
1633 clone = rq->special;
1634 atomic_inc(&md->pending[rq_data_dir(clone)]);
1635
1636 spin_unlock(q->queue_lock);
1637 if (map_request(ti, clone, md))
1638 goto requeued;
1639
1640 BUG_ON(!irqs_disabled());
1641 spin_lock(q->queue_lock);
1642 }
1643
1644 goto out;
1645
1646 requeued:
1647 BUG_ON(!irqs_disabled());
1648 spin_lock(q->queue_lock);
1649
1650 delay_and_out:
1651 blk_delay_queue(q, HZ / 10);
1652 out:
1653 dm_table_put(map);
1654
1655 return;
1656 }
1657
1658 int dm_underlying_device_busy(struct request_queue *q)
1659 {
1660 return blk_lld_busy(q);
1661 }
1662 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1663
1664 static int dm_lld_busy(struct request_queue *q)
1665 {
1666 int r;
1667 struct mapped_device *md = q->queuedata;
1668 struct dm_table *map = dm_get_live_table(md);
1669
1670 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1671 r = 1;
1672 else
1673 r = dm_table_any_busy_target(map);
1674
1675 dm_table_put(map);
1676
1677 return r;
1678 }
1679
1680 static int dm_any_congested(void *congested_data, int bdi_bits)
1681 {
1682 int r = bdi_bits;
1683 struct mapped_device *md = congested_data;
1684 struct dm_table *map;
1685
1686 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1687 map = dm_get_live_table(md);
1688 if (map) {
1689 /*
1690 * Request-based dm cares about only own queue for
1691 * the query about congestion status of request_queue
1692 */
1693 if (dm_request_based(md))
1694 r = md->queue->backing_dev_info.state &
1695 bdi_bits;
1696 else
1697 r = dm_table_any_congested(map, bdi_bits);
1698
1699 dm_table_put(map);
1700 }
1701 }
1702
1703 return r;
1704 }
1705
1706 /*-----------------------------------------------------------------
1707 * An IDR is used to keep track of allocated minor numbers.
1708 *---------------------------------------------------------------*/
1709 static void free_minor(int minor)
1710 {
1711 spin_lock(&_minor_lock);
1712 idr_remove(&_minor_idr, minor);
1713 spin_unlock(&_minor_lock);
1714 }
1715
1716 /*
1717 * See if the device with a specific minor # is free.
1718 */
1719 static int specific_minor(int minor)
1720 {
1721 int r, m;
1722
1723 if (minor >= (1 << MINORBITS))
1724 return -EINVAL;
1725
1726 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1727 if (!r)
1728 return -ENOMEM;
1729
1730 spin_lock(&_minor_lock);
1731
1732 if (idr_find(&_minor_idr, minor)) {
1733 r = -EBUSY;
1734 goto out;
1735 }
1736
1737 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1738 if (r)
1739 goto out;
1740
1741 if (m != minor) {
1742 idr_remove(&_minor_idr, m);
1743 r = -EBUSY;
1744 goto out;
1745 }
1746
1747 out:
1748 spin_unlock(&_minor_lock);
1749 return r;
1750 }
1751
1752 static int next_free_minor(int *minor)
1753 {
1754 int r, m;
1755
1756 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1757 if (!r)
1758 return -ENOMEM;
1759
1760 spin_lock(&_minor_lock);
1761
1762 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1763 if (r)
1764 goto out;
1765
1766 if (m >= (1 << MINORBITS)) {
1767 idr_remove(&_minor_idr, m);
1768 r = -ENOSPC;
1769 goto out;
1770 }
1771
1772 *minor = m;
1773
1774 out:
1775 spin_unlock(&_minor_lock);
1776 return r;
1777 }
1778
1779 static const struct block_device_operations dm_blk_dops;
1780
1781 static void dm_wq_work(struct work_struct *work);
1782
1783 static void dm_init_md_queue(struct mapped_device *md)
1784 {
1785 /*
1786 * Request-based dm devices cannot be stacked on top of bio-based dm
1787 * devices. The type of this dm device has not been decided yet.
1788 * The type is decided at the first table loading time.
1789 * To prevent problematic device stacking, clear the queue flag
1790 * for request stacking support until then.
1791 *
1792 * This queue is new, so no concurrency on the queue_flags.
1793 */
1794 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1795
1796 md->queue->queuedata = md;
1797 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1798 md->queue->backing_dev_info.congested_data = md;
1799 blk_queue_make_request(md->queue, dm_request);
1800 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1801 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1802 }
1803
1804 /*
1805 * Allocate and initialise a blank device with a given minor.
1806 */
1807 static struct mapped_device *alloc_dev(int minor)
1808 {
1809 int r;
1810 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1811 void *old_md;
1812
1813 if (!md) {
1814 DMWARN("unable to allocate device, out of memory.");
1815 return NULL;
1816 }
1817
1818 if (!try_module_get(THIS_MODULE))
1819 goto bad_module_get;
1820
1821 /* get a minor number for the dev */
1822 if (minor == DM_ANY_MINOR)
1823 r = next_free_minor(&minor);
1824 else
1825 r = specific_minor(minor);
1826 if (r < 0)
1827 goto bad_minor;
1828
1829 md->type = DM_TYPE_NONE;
1830 init_rwsem(&md->io_lock);
1831 mutex_init(&md->suspend_lock);
1832 mutex_init(&md->type_lock);
1833 spin_lock_init(&md->deferred_lock);
1834 rwlock_init(&md->map_lock);
1835 atomic_set(&md->holders, 1);
1836 atomic_set(&md->open_count, 0);
1837 atomic_set(&md->event_nr, 0);
1838 atomic_set(&md->uevent_seq, 0);
1839 INIT_LIST_HEAD(&md->uevent_list);
1840 spin_lock_init(&md->uevent_lock);
1841
1842 md->queue = blk_alloc_queue(GFP_KERNEL);
1843 if (!md->queue)
1844 goto bad_queue;
1845
1846 dm_init_md_queue(md);
1847
1848 md->disk = alloc_disk(1);
1849 if (!md->disk)
1850 goto bad_disk;
1851
1852 atomic_set(&md->pending[0], 0);
1853 atomic_set(&md->pending[1], 0);
1854 init_waitqueue_head(&md->wait);
1855 INIT_WORK(&md->work, dm_wq_work);
1856 init_waitqueue_head(&md->eventq);
1857
1858 md->disk->major = _major;
1859 md->disk->first_minor = minor;
1860 md->disk->fops = &dm_blk_dops;
1861 md->disk->queue = md->queue;
1862 md->disk->private_data = md;
1863 sprintf(md->disk->disk_name, "dm-%d", minor);
1864 add_disk(md->disk);
1865 format_dev_t(md->name, MKDEV(_major, minor));
1866
1867 md->wq = alloc_workqueue("kdmflush",
1868 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1869 if (!md->wq)
1870 goto bad_thread;
1871
1872 md->bdev = bdget_disk(md->disk, 0);
1873 if (!md->bdev)
1874 goto bad_bdev;
1875
1876 bio_init(&md->flush_bio);
1877 md->flush_bio.bi_bdev = md->bdev;
1878 md->flush_bio.bi_rw = WRITE_FLUSH;
1879
1880 /* Populate the mapping, nobody knows we exist yet */
1881 spin_lock(&_minor_lock);
1882 old_md = idr_replace(&_minor_idr, md, minor);
1883 spin_unlock(&_minor_lock);
1884
1885 BUG_ON(old_md != MINOR_ALLOCED);
1886
1887 return md;
1888
1889 bad_bdev:
1890 destroy_workqueue(md->wq);
1891 bad_thread:
1892 del_gendisk(md->disk);
1893 put_disk(md->disk);
1894 bad_disk:
1895 blk_cleanup_queue(md->queue);
1896 bad_queue:
1897 free_minor(minor);
1898 bad_minor:
1899 module_put(THIS_MODULE);
1900 bad_module_get:
1901 kfree(md);
1902 return NULL;
1903 }
1904
1905 static void unlock_fs(struct mapped_device *md);
1906
1907 static void free_dev(struct mapped_device *md)
1908 {
1909 int minor = MINOR(disk_devt(md->disk));
1910
1911 unlock_fs(md);
1912 bdput(md->bdev);
1913 destroy_workqueue(md->wq);
1914 if (md->tio_pool)
1915 mempool_destroy(md->tio_pool);
1916 if (md->io_pool)
1917 mempool_destroy(md->io_pool);
1918 if (md->bs)
1919 bioset_free(md->bs);
1920 blk_integrity_unregister(md->disk);
1921 del_gendisk(md->disk);
1922 free_minor(minor);
1923
1924 spin_lock(&_minor_lock);
1925 md->disk->private_data = NULL;
1926 spin_unlock(&_minor_lock);
1927
1928 put_disk(md->disk);
1929 blk_cleanup_queue(md->queue);
1930 module_put(THIS_MODULE);
1931 kfree(md);
1932 }
1933
1934 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1935 {
1936 struct dm_md_mempools *p;
1937
1938 if (md->io_pool && md->tio_pool && md->bs)
1939 /* the md already has necessary mempools */
1940 goto out;
1941
1942 p = dm_table_get_md_mempools(t);
1943 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1944
1945 md->io_pool = p->io_pool;
1946 p->io_pool = NULL;
1947 md->tio_pool = p->tio_pool;
1948 p->tio_pool = NULL;
1949 md->bs = p->bs;
1950 p->bs = NULL;
1951
1952 out:
1953 /* mempool bind completed, now no need any mempools in the table */
1954 dm_table_free_md_mempools(t);
1955 }
1956
1957 /*
1958 * Bind a table to the device.
1959 */
1960 static void event_callback(void *context)
1961 {
1962 unsigned long flags;
1963 LIST_HEAD(uevents);
1964 struct mapped_device *md = (struct mapped_device *) context;
1965
1966 spin_lock_irqsave(&md->uevent_lock, flags);
1967 list_splice_init(&md->uevent_list, &uevents);
1968 spin_unlock_irqrestore(&md->uevent_lock, flags);
1969
1970 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1971
1972 atomic_inc(&md->event_nr);
1973 wake_up(&md->eventq);
1974 }
1975
1976 /*
1977 * Protected by md->suspend_lock obtained by dm_swap_table().
1978 */
1979 static void __set_size(struct mapped_device *md, sector_t size)
1980 {
1981 set_capacity(md->disk, size);
1982
1983 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1984 }
1985
1986 /*
1987 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1988 *
1989 * If this function returns 0, then the device is either a non-dm
1990 * device without a merge_bvec_fn, or it is a dm device that is
1991 * able to split any bios it receives that are too big.
1992 */
1993 int dm_queue_merge_is_compulsory(struct request_queue *q)
1994 {
1995 struct mapped_device *dev_md;
1996
1997 if (!q->merge_bvec_fn)
1998 return 0;
1999
2000 if (q->make_request_fn == dm_request) {
2001 dev_md = q->queuedata;
2002 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2003 return 0;
2004 }
2005
2006 return 1;
2007 }
2008
2009 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2010 struct dm_dev *dev, sector_t start,
2011 sector_t len, void *data)
2012 {
2013 struct block_device *bdev = dev->bdev;
2014 struct request_queue *q = bdev_get_queue(bdev);
2015
2016 return dm_queue_merge_is_compulsory(q);
2017 }
2018
2019 /*
2020 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2021 * on the properties of the underlying devices.
2022 */
2023 static int dm_table_merge_is_optional(struct dm_table *table)
2024 {
2025 unsigned i = 0;
2026 struct dm_target *ti;
2027
2028 while (i < dm_table_get_num_targets(table)) {
2029 ti = dm_table_get_target(table, i++);
2030
2031 if (ti->type->iterate_devices &&
2032 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2033 return 0;
2034 }
2035
2036 return 1;
2037 }
2038
2039 /*
2040 * Returns old map, which caller must destroy.
2041 */
2042 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2043 struct queue_limits *limits)
2044 {
2045 struct dm_table *old_map;
2046 struct request_queue *q = md->queue;
2047 sector_t size;
2048 unsigned long flags;
2049 int merge_is_optional;
2050
2051 size = dm_table_get_size(t);
2052
2053 /*
2054 * Wipe any geometry if the size of the table changed.
2055 */
2056 if (size != get_capacity(md->disk))
2057 memset(&md->geometry, 0, sizeof(md->geometry));
2058
2059 __set_size(md, size);
2060
2061 dm_table_event_callback(t, event_callback, md);
2062
2063 /*
2064 * The queue hasn't been stopped yet, if the old table type wasn't
2065 * for request-based during suspension. So stop it to prevent
2066 * I/O mapping before resume.
2067 * This must be done before setting the queue restrictions,
2068 * because request-based dm may be run just after the setting.
2069 */
2070 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2071 stop_queue(q);
2072
2073 __bind_mempools(md, t);
2074
2075 merge_is_optional = dm_table_merge_is_optional(t);
2076
2077 write_lock_irqsave(&md->map_lock, flags);
2078 old_map = md->map;
2079 md->map = t;
2080 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2081
2082 dm_table_set_restrictions(t, q, limits);
2083 if (merge_is_optional)
2084 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2085 else
2086 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2087 write_unlock_irqrestore(&md->map_lock, flags);
2088
2089 return old_map;
2090 }
2091
2092 /*
2093 * Returns unbound table for the caller to free.
2094 */
2095 static struct dm_table *__unbind(struct mapped_device *md)
2096 {
2097 struct dm_table *map = md->map;
2098 unsigned long flags;
2099
2100 if (!map)
2101 return NULL;
2102
2103 dm_table_event_callback(map, NULL, NULL);
2104 write_lock_irqsave(&md->map_lock, flags);
2105 md->map = NULL;
2106 write_unlock_irqrestore(&md->map_lock, flags);
2107
2108 return map;
2109 }
2110
2111 /*
2112 * Constructor for a new device.
2113 */
2114 int dm_create(int minor, struct mapped_device **result)
2115 {
2116 struct mapped_device *md;
2117
2118 md = alloc_dev(minor);
2119 if (!md)
2120 return -ENXIO;
2121
2122 dm_sysfs_init(md);
2123
2124 *result = md;
2125 return 0;
2126 }
2127
2128 /*
2129 * Functions to manage md->type.
2130 * All are required to hold md->type_lock.
2131 */
2132 void dm_lock_md_type(struct mapped_device *md)
2133 {
2134 mutex_lock(&md->type_lock);
2135 }
2136
2137 void dm_unlock_md_type(struct mapped_device *md)
2138 {
2139 mutex_unlock(&md->type_lock);
2140 }
2141
2142 void dm_set_md_type(struct mapped_device *md, unsigned type)
2143 {
2144 md->type = type;
2145 }
2146
2147 unsigned dm_get_md_type(struct mapped_device *md)
2148 {
2149 return md->type;
2150 }
2151
2152 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2153 {
2154 return md->immutable_target_type;
2155 }
2156
2157 /*
2158 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2159 */
2160 static int dm_init_request_based_queue(struct mapped_device *md)
2161 {
2162 struct request_queue *q = NULL;
2163
2164 if (md->queue->elevator)
2165 return 1;
2166
2167 /* Fully initialize the queue */
2168 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2169 if (!q)
2170 return 0;
2171
2172 md->queue = q;
2173 dm_init_md_queue(md);
2174 blk_queue_softirq_done(md->queue, dm_softirq_done);
2175 blk_queue_prep_rq(md->queue, dm_prep_fn);
2176 blk_queue_lld_busy(md->queue, dm_lld_busy);
2177
2178 elv_register_queue(md->queue);
2179
2180 return 1;
2181 }
2182
2183 /*
2184 * Setup the DM device's queue based on md's type
2185 */
2186 int dm_setup_md_queue(struct mapped_device *md)
2187 {
2188 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2189 !dm_init_request_based_queue(md)) {
2190 DMWARN("Cannot initialize queue for request-based mapped device");
2191 return -EINVAL;
2192 }
2193
2194 return 0;
2195 }
2196
2197 static struct mapped_device *dm_find_md(dev_t dev)
2198 {
2199 struct mapped_device *md;
2200 unsigned minor = MINOR(dev);
2201
2202 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2203 return NULL;
2204
2205 spin_lock(&_minor_lock);
2206
2207 md = idr_find(&_minor_idr, minor);
2208 if (md && (md == MINOR_ALLOCED ||
2209 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2210 dm_deleting_md(md) ||
2211 test_bit(DMF_FREEING, &md->flags))) {
2212 md = NULL;
2213 goto out;
2214 }
2215
2216 out:
2217 spin_unlock(&_minor_lock);
2218
2219 return md;
2220 }
2221
2222 struct mapped_device *dm_get_md(dev_t dev)
2223 {
2224 struct mapped_device *md = dm_find_md(dev);
2225
2226 if (md)
2227 dm_get(md);
2228
2229 return md;
2230 }
2231 EXPORT_SYMBOL_GPL(dm_get_md);
2232
2233 void *dm_get_mdptr(struct mapped_device *md)
2234 {
2235 return md->interface_ptr;
2236 }
2237
2238 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2239 {
2240 md->interface_ptr = ptr;
2241 }
2242
2243 void dm_get(struct mapped_device *md)
2244 {
2245 atomic_inc(&md->holders);
2246 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2247 }
2248
2249 const char *dm_device_name(struct mapped_device *md)
2250 {
2251 return md->name;
2252 }
2253 EXPORT_SYMBOL_GPL(dm_device_name);
2254
2255 static void __dm_destroy(struct mapped_device *md, bool wait)
2256 {
2257 struct dm_table *map;
2258
2259 might_sleep();
2260
2261 spin_lock(&_minor_lock);
2262 map = dm_get_live_table(md);
2263 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2264 set_bit(DMF_FREEING, &md->flags);
2265 spin_unlock(&_minor_lock);
2266
2267 if (!dm_suspended_md(md)) {
2268 dm_table_presuspend_targets(map);
2269 dm_table_postsuspend_targets(map);
2270 }
2271
2272 /*
2273 * Rare, but there may be I/O requests still going to complete,
2274 * for example. Wait for all references to disappear.
2275 * No one should increment the reference count of the mapped_device,
2276 * after the mapped_device state becomes DMF_FREEING.
2277 */
2278 if (wait)
2279 while (atomic_read(&md->holders))
2280 msleep(1);
2281 else if (atomic_read(&md->holders))
2282 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2283 dm_device_name(md), atomic_read(&md->holders));
2284
2285 dm_sysfs_exit(md);
2286 dm_table_put(map);
2287 dm_table_destroy(__unbind(md));
2288 free_dev(md);
2289 }
2290
2291 void dm_destroy(struct mapped_device *md)
2292 {
2293 __dm_destroy(md, true);
2294 }
2295
2296 void dm_destroy_immediate(struct mapped_device *md)
2297 {
2298 __dm_destroy(md, false);
2299 }
2300
2301 void dm_put(struct mapped_device *md)
2302 {
2303 atomic_dec(&md->holders);
2304 }
2305 EXPORT_SYMBOL_GPL(dm_put);
2306
2307 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2308 {
2309 int r = 0;
2310 DECLARE_WAITQUEUE(wait, current);
2311
2312 add_wait_queue(&md->wait, &wait);
2313
2314 while (1) {
2315 set_current_state(interruptible);
2316
2317 if (!md_in_flight(md))
2318 break;
2319
2320 if (interruptible == TASK_INTERRUPTIBLE &&
2321 signal_pending(current)) {
2322 r = -EINTR;
2323 break;
2324 }
2325
2326 io_schedule();
2327 }
2328 set_current_state(TASK_RUNNING);
2329
2330 remove_wait_queue(&md->wait, &wait);
2331
2332 return r;
2333 }
2334
2335 /*
2336 * Process the deferred bios
2337 */
2338 static void dm_wq_work(struct work_struct *work)
2339 {
2340 struct mapped_device *md = container_of(work, struct mapped_device,
2341 work);
2342 struct bio *c;
2343
2344 down_read(&md->io_lock);
2345
2346 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2347 spin_lock_irq(&md->deferred_lock);
2348 c = bio_list_pop(&md->deferred);
2349 spin_unlock_irq(&md->deferred_lock);
2350
2351 if (!c)
2352 break;
2353
2354 up_read(&md->io_lock);
2355
2356 if (dm_request_based(md))
2357 generic_make_request(c);
2358 else
2359 __split_and_process_bio(md, c);
2360
2361 down_read(&md->io_lock);
2362 }
2363
2364 up_read(&md->io_lock);
2365 }
2366
2367 static void dm_queue_flush(struct mapped_device *md)
2368 {
2369 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2370 smp_mb__after_clear_bit();
2371 queue_work(md->wq, &md->work);
2372 }
2373
2374 /*
2375 * Swap in a new table, returning the old one for the caller to destroy.
2376 */
2377 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2378 {
2379 struct dm_table *map = ERR_PTR(-EINVAL);
2380 struct queue_limits limits;
2381 int r;
2382
2383 mutex_lock(&md->suspend_lock);
2384
2385 /* device must be suspended */
2386 if (!dm_suspended_md(md))
2387 goto out;
2388
2389 r = dm_calculate_queue_limits(table, &limits);
2390 if (r) {
2391 map = ERR_PTR(r);
2392 goto out;
2393 }
2394
2395 map = __bind(md, table, &limits);
2396
2397 out:
2398 mutex_unlock(&md->suspend_lock);
2399 return map;
2400 }
2401
2402 /*
2403 * Functions to lock and unlock any filesystem running on the
2404 * device.
2405 */
2406 static int lock_fs(struct mapped_device *md)
2407 {
2408 int r;
2409
2410 WARN_ON(md->frozen_sb);
2411
2412 md->frozen_sb = freeze_bdev(md->bdev);
2413 if (IS_ERR(md->frozen_sb)) {
2414 r = PTR_ERR(md->frozen_sb);
2415 md->frozen_sb = NULL;
2416 return r;
2417 }
2418
2419 set_bit(DMF_FROZEN, &md->flags);
2420
2421 return 0;
2422 }
2423
2424 static void unlock_fs(struct mapped_device *md)
2425 {
2426 if (!test_bit(DMF_FROZEN, &md->flags))
2427 return;
2428
2429 thaw_bdev(md->bdev, md->frozen_sb);
2430 md->frozen_sb = NULL;
2431 clear_bit(DMF_FROZEN, &md->flags);
2432 }
2433
2434 /*
2435 * We need to be able to change a mapping table under a mounted
2436 * filesystem. For example we might want to move some data in
2437 * the background. Before the table can be swapped with
2438 * dm_bind_table, dm_suspend must be called to flush any in
2439 * flight bios and ensure that any further io gets deferred.
2440 */
2441 /*
2442 * Suspend mechanism in request-based dm.
2443 *
2444 * 1. Flush all I/Os by lock_fs() if needed.
2445 * 2. Stop dispatching any I/O by stopping the request_queue.
2446 * 3. Wait for all in-flight I/Os to be completed or requeued.
2447 *
2448 * To abort suspend, start the request_queue.
2449 */
2450 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2451 {
2452 struct dm_table *map = NULL;
2453 int r = 0;
2454 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2455 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2456
2457 mutex_lock(&md->suspend_lock);
2458
2459 if (dm_suspended_md(md)) {
2460 r = -EINVAL;
2461 goto out_unlock;
2462 }
2463
2464 map = dm_get_live_table(md);
2465
2466 /*
2467 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2468 * This flag is cleared before dm_suspend returns.
2469 */
2470 if (noflush)
2471 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2472
2473 /* This does not get reverted if there's an error later. */
2474 dm_table_presuspend_targets(map);
2475
2476 /*
2477 * Flush I/O to the device.
2478 * Any I/O submitted after lock_fs() may not be flushed.
2479 * noflush takes precedence over do_lockfs.
2480 * (lock_fs() flushes I/Os and waits for them to complete.)
2481 */
2482 if (!noflush && do_lockfs) {
2483 r = lock_fs(md);
2484 if (r)
2485 goto out;
2486 }
2487
2488 /*
2489 * Here we must make sure that no processes are submitting requests
2490 * to target drivers i.e. no one may be executing
2491 * __split_and_process_bio. This is called from dm_request and
2492 * dm_wq_work.
2493 *
2494 * To get all processes out of __split_and_process_bio in dm_request,
2495 * we take the write lock. To prevent any process from reentering
2496 * __split_and_process_bio from dm_request and quiesce the thread
2497 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2498 * flush_workqueue(md->wq).
2499 */
2500 down_write(&md->io_lock);
2501 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2502 up_write(&md->io_lock);
2503
2504 /*
2505 * Stop md->queue before flushing md->wq in case request-based
2506 * dm defers requests to md->wq from md->queue.
2507 */
2508 if (dm_request_based(md))
2509 stop_queue(md->queue);
2510
2511 flush_workqueue(md->wq);
2512
2513 /*
2514 * At this point no more requests are entering target request routines.
2515 * We call dm_wait_for_completion to wait for all existing requests
2516 * to finish.
2517 */
2518 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2519
2520 down_write(&md->io_lock);
2521 if (noflush)
2522 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2523 up_write(&md->io_lock);
2524
2525 /* were we interrupted ? */
2526 if (r < 0) {
2527 dm_queue_flush(md);
2528
2529 if (dm_request_based(md))
2530 start_queue(md->queue);
2531
2532 unlock_fs(md);
2533 goto out; /* pushback list is already flushed, so skip flush */
2534 }
2535
2536 /*
2537 * If dm_wait_for_completion returned 0, the device is completely
2538 * quiescent now. There is no request-processing activity. All new
2539 * requests are being added to md->deferred list.
2540 */
2541
2542 set_bit(DMF_SUSPENDED, &md->flags);
2543
2544 dm_table_postsuspend_targets(map);
2545
2546 out:
2547 dm_table_put(map);
2548
2549 out_unlock:
2550 mutex_unlock(&md->suspend_lock);
2551 return r;
2552 }
2553
2554 int dm_resume(struct mapped_device *md)
2555 {
2556 int r = -EINVAL;
2557 struct dm_table *map = NULL;
2558
2559 mutex_lock(&md->suspend_lock);
2560 if (!dm_suspended_md(md))
2561 goto out;
2562
2563 map = dm_get_live_table(md);
2564 if (!map || !dm_table_get_size(map))
2565 goto out;
2566
2567 r = dm_table_resume_targets(map);
2568 if (r)
2569 goto out;
2570
2571 dm_queue_flush(md);
2572
2573 /*
2574 * Flushing deferred I/Os must be done after targets are resumed
2575 * so that mapping of targets can work correctly.
2576 * Request-based dm is queueing the deferred I/Os in its request_queue.
2577 */
2578 if (dm_request_based(md))
2579 start_queue(md->queue);
2580
2581 unlock_fs(md);
2582
2583 clear_bit(DMF_SUSPENDED, &md->flags);
2584
2585 r = 0;
2586 out:
2587 dm_table_put(map);
2588 mutex_unlock(&md->suspend_lock);
2589
2590 return r;
2591 }
2592
2593 /*-----------------------------------------------------------------
2594 * Event notification.
2595 *---------------------------------------------------------------*/
2596 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2597 unsigned cookie)
2598 {
2599 char udev_cookie[DM_COOKIE_LENGTH];
2600 char *envp[] = { udev_cookie, NULL };
2601
2602 if (!cookie)
2603 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2604 else {
2605 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2606 DM_COOKIE_ENV_VAR_NAME, cookie);
2607 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2608 action, envp);
2609 }
2610 }
2611
2612 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2613 {
2614 return atomic_add_return(1, &md->uevent_seq);
2615 }
2616
2617 uint32_t dm_get_event_nr(struct mapped_device *md)
2618 {
2619 return atomic_read(&md->event_nr);
2620 }
2621
2622 int dm_wait_event(struct mapped_device *md, int event_nr)
2623 {
2624 return wait_event_interruptible(md->eventq,
2625 (event_nr != atomic_read(&md->event_nr)));
2626 }
2627
2628 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2629 {
2630 unsigned long flags;
2631
2632 spin_lock_irqsave(&md->uevent_lock, flags);
2633 list_add(elist, &md->uevent_list);
2634 spin_unlock_irqrestore(&md->uevent_lock, flags);
2635 }
2636
2637 /*
2638 * The gendisk is only valid as long as you have a reference
2639 * count on 'md'.
2640 */
2641 struct gendisk *dm_disk(struct mapped_device *md)
2642 {
2643 return md->disk;
2644 }
2645
2646 struct kobject *dm_kobject(struct mapped_device *md)
2647 {
2648 return &md->kobj;
2649 }
2650
2651 /*
2652 * struct mapped_device should not be exported outside of dm.c
2653 * so use this check to verify that kobj is part of md structure
2654 */
2655 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2656 {
2657 struct mapped_device *md;
2658
2659 md = container_of(kobj, struct mapped_device, kobj);
2660 if (&md->kobj != kobj)
2661 return NULL;
2662
2663 if (test_bit(DMF_FREEING, &md->flags) ||
2664 dm_deleting_md(md))
2665 return NULL;
2666
2667 dm_get(md);
2668 return md;
2669 }
2670
2671 int dm_suspended_md(struct mapped_device *md)
2672 {
2673 return test_bit(DMF_SUSPENDED, &md->flags);
2674 }
2675
2676 int dm_suspended(struct dm_target *ti)
2677 {
2678 return dm_suspended_md(dm_table_get_md(ti->table));
2679 }
2680 EXPORT_SYMBOL_GPL(dm_suspended);
2681
2682 int dm_noflush_suspending(struct dm_target *ti)
2683 {
2684 return __noflush_suspending(dm_table_get_md(ti->table));
2685 }
2686 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2687
2688 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2689 {
2690 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2691 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2692
2693 if (!pools)
2694 return NULL;
2695
2696 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2697 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2698 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2699 if (!pools->io_pool)
2700 goto free_pools_and_out;
2701
2702 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2703 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2704 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2705 if (!pools->tio_pool)
2706 goto free_io_pool_and_out;
2707
2708 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2709 bioset_create(pool_size, 0) :
2710 bioset_create(pool_size,
2711 offsetof(struct dm_rq_clone_bio_info, clone));
2712 if (!pools->bs)
2713 goto free_tio_pool_and_out;
2714
2715 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716 goto free_bioset_and_out;
2717
2718 return pools;
2719
2720 free_bioset_and_out:
2721 bioset_free(pools->bs);
2722
2723 free_tio_pool_and_out:
2724 mempool_destroy(pools->tio_pool);
2725
2726 free_io_pool_and_out:
2727 mempool_destroy(pools->io_pool);
2728
2729 free_pools_and_out:
2730 kfree(pools);
2731
2732 return NULL;
2733 }
2734
2735 void dm_free_md_mempools(struct dm_md_mempools *pools)
2736 {
2737 if (!pools)
2738 return;
2739
2740 if (pools->io_pool)
2741 mempool_destroy(pools->io_pool);
2742
2743 if (pools->tio_pool)
2744 mempool_destroy(pools->tio_pool);
2745
2746 if (pools->bs)
2747 bioset_free(pools->bs);
2748
2749 kfree(pools);
2750 }
2751
2752 static const struct block_device_operations dm_blk_dops = {
2753 .open = dm_blk_open,
2754 .release = dm_blk_close,
2755 .ioctl = dm_blk_ioctl,
2756 .getgeo = dm_blk_getgeo,
2757 .owner = THIS_MODULE
2758 };
2759
2760 EXPORT_SYMBOL(dm_get_mapinfo);
2761
2762 /*
2763 * module hooks
2764 */
2765 module_init(dm_init);
2766 module_exit(dm_exit);
2767
2768 module_param(major, uint, 0);
2769 MODULE_PARM_DESC(major, "The major number of the device mapper");
2770 MODULE_DESCRIPTION(DM_NAME " driver");
2771 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772 MODULE_LICENSE("GPL");
This page took 0.091367 seconds and 5 git commands to generate.