89aa9618c0613ac8f6db2dce46c46c403a1a76c1
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28
29 #include <trace/events/block.h>
30
31 #define DM_MSG_PREFIX "core"
32
33 #ifdef CONFIG_PRINTK
34 /*
35 * ratelimit state to be used in DMXXX_LIMIT().
36 */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 DEFAULT_RATELIMIT_INTERVAL,
39 DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42
43 /*
44 * Cookies are numeric values sent with CHANGE and REMOVE
45 * uevents while resuming, removing or renaming the device.
46 */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per bio.
68 */
69 struct dm_io {
70 struct mapped_device *md;
71 int error;
72 atomic_t io_count;
73 struct bio *bio;
74 unsigned long start_time;
75 spinlock_t endio_lock;
76 struct dm_stats_aux stats_aux;
77 };
78
79 /*
80 * For request-based dm.
81 * One of these is allocated per request.
82 */
83 struct dm_rq_target_io {
84 struct mapped_device *md;
85 struct dm_target *ti;
86 struct request *orig, *clone;
87 struct kthread_work work;
88 int error;
89 union map_info info;
90 struct dm_stats_aux stats_aux;
91 unsigned long duration_jiffies;
92 unsigned n_sectors;
93 };
94
95 /*
96 * For request-based dm - the bio clones we allocate are embedded in these
97 * structs.
98 *
99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100 * the bioset is created - this means the bio has to come at the end of the
101 * struct.
102 */
103 struct dm_rq_clone_bio_info {
104 struct bio *orig;
105 struct dm_rq_target_io *tio;
106 struct bio clone;
107 };
108
109 #define MINOR_ALLOCED ((void *)-1)
110
111 /*
112 * Bits for the md->flags field.
113 */
114 #define DMF_BLOCK_IO_FOR_SUSPEND 0
115 #define DMF_SUSPENDED 1
116 #define DMF_FROZEN 2
117 #define DMF_FREEING 3
118 #define DMF_DELETING 4
119 #define DMF_NOFLUSH_SUSPENDING 5
120 #define DMF_DEFERRED_REMOVE 6
121 #define DMF_SUSPENDED_INTERNALLY 7
122
123 /*
124 * A dummy definition to make RCU happy.
125 * struct dm_table should never be dereferenced in this file.
126 */
127 struct dm_table {
128 int undefined__;
129 };
130
131 /*
132 * Work processed by per-device workqueue.
133 */
134 struct mapped_device {
135 struct srcu_struct io_barrier;
136 struct mutex suspend_lock;
137 atomic_t holders;
138 atomic_t open_count;
139
140 /*
141 * The current mapping.
142 * Use dm_get_live_table{_fast} or take suspend_lock for
143 * dereference.
144 */
145 struct dm_table __rcu *map;
146
147 struct list_head table_devices;
148 struct mutex table_devices_lock;
149
150 unsigned long flags;
151
152 struct request_queue *queue;
153 unsigned type;
154 /* Protect queue and type against concurrent access. */
155 struct mutex type_lock;
156
157 struct dm_target *immutable_target;
158 struct target_type *immutable_target_type;
159
160 struct gendisk *disk;
161 char name[16];
162
163 void *interface_ptr;
164
165 /*
166 * A list of ios that arrived while we were suspended.
167 */
168 atomic_t pending[2];
169 wait_queue_head_t wait;
170 struct work_struct work;
171 struct bio_list deferred;
172 spinlock_t deferred_lock;
173
174 /*
175 * Processing queue (flush)
176 */
177 struct workqueue_struct *wq;
178
179 /*
180 * io objects are allocated from here.
181 */
182 mempool_t *io_pool;
183 mempool_t *rq_pool;
184
185 struct bio_set *bs;
186
187 /*
188 * Event handling.
189 */
190 atomic_t event_nr;
191 wait_queue_head_t eventq;
192 atomic_t uevent_seq;
193 struct list_head uevent_list;
194 spinlock_t uevent_lock; /* Protect access to uevent_list */
195
196 /*
197 * freeze/thaw support require holding onto a super block
198 */
199 struct super_block *frozen_sb;
200 struct block_device *bdev;
201
202 /* forced geometry settings */
203 struct hd_geometry geometry;
204
205 /* kobject and completion */
206 struct dm_kobject_holder kobj_holder;
207
208 /* zero-length flush that will be cloned and submitted to targets */
209 struct bio flush_bio;
210
211 /* the number of internal suspends */
212 unsigned internal_suspend_count;
213
214 struct dm_stats stats;
215
216 struct kthread_worker kworker;
217 struct task_struct *kworker_task;
218
219 /* for request-based merge heuristic in dm_request_fn() */
220 unsigned seq_rq_merge_deadline_usecs;
221 int last_rq_rw;
222 sector_t last_rq_pos;
223 ktime_t last_rq_start_time;
224
225 /* for blk-mq request-based DM support */
226 struct blk_mq_tag_set *tag_set;
227 bool use_blk_mq;
228 };
229
230 #ifdef CONFIG_DM_MQ_DEFAULT
231 static bool use_blk_mq = true;
232 #else
233 static bool use_blk_mq = false;
234 #endif
235
236 #define DM_MQ_NR_HW_QUEUES 1
237 #define DM_MQ_QUEUE_DEPTH 2048
238
239 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
240 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
241
242 bool dm_use_blk_mq(struct mapped_device *md)
243 {
244 return md->use_blk_mq;
245 }
246
247 /*
248 * For mempools pre-allocation at the table loading time.
249 */
250 struct dm_md_mempools {
251 mempool_t *io_pool;
252 mempool_t *rq_pool;
253 struct bio_set *bs;
254 };
255
256 struct table_device {
257 struct list_head list;
258 atomic_t count;
259 struct dm_dev dm_dev;
260 };
261
262 #define RESERVED_BIO_BASED_IOS 16
263 #define RESERVED_REQUEST_BASED_IOS 256
264 #define RESERVED_MAX_IOS 1024
265 static struct kmem_cache *_io_cache;
266 static struct kmem_cache *_rq_tio_cache;
267 static struct kmem_cache *_rq_cache;
268
269 /*
270 * Bio-based DM's mempools' reserved IOs set by the user.
271 */
272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273
274 /*
275 * Request-based DM's mempools' reserved IOs set by the user.
276 */
277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278
279 static unsigned __dm_get_module_param(unsigned *module_param,
280 unsigned def, unsigned max)
281 {
282 unsigned param = ACCESS_ONCE(*module_param);
283 unsigned modified_param = 0;
284
285 if (!param)
286 modified_param = def;
287 else if (param > max)
288 modified_param = max;
289
290 if (modified_param) {
291 (void)cmpxchg(module_param, param, modified_param);
292 param = modified_param;
293 }
294
295 return param;
296 }
297
298 unsigned dm_get_reserved_bio_based_ios(void)
299 {
300 return __dm_get_module_param(&reserved_bio_based_ios,
301 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
302 }
303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
304
305 unsigned dm_get_reserved_rq_based_ios(void)
306 {
307 return __dm_get_module_param(&reserved_rq_based_ios,
308 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
309 }
310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
311
312 static unsigned dm_get_blk_mq_nr_hw_queues(void)
313 {
314 return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
315 }
316
317 static unsigned dm_get_blk_mq_queue_depth(void)
318 {
319 return __dm_get_module_param(&dm_mq_queue_depth,
320 DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
321 }
322
323 static int __init local_init(void)
324 {
325 int r = -ENOMEM;
326
327 /* allocate a slab for the dm_ios */
328 _io_cache = KMEM_CACHE(dm_io, 0);
329 if (!_io_cache)
330 return r;
331
332 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
333 if (!_rq_tio_cache)
334 goto out_free_io_cache;
335
336 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
337 __alignof__(struct request), 0, NULL);
338 if (!_rq_cache)
339 goto out_free_rq_tio_cache;
340
341 r = dm_uevent_init();
342 if (r)
343 goto out_free_rq_cache;
344
345 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
346 if (!deferred_remove_workqueue) {
347 r = -ENOMEM;
348 goto out_uevent_exit;
349 }
350
351 _major = major;
352 r = register_blkdev(_major, _name);
353 if (r < 0)
354 goto out_free_workqueue;
355
356 if (!_major)
357 _major = r;
358
359 return 0;
360
361 out_free_workqueue:
362 destroy_workqueue(deferred_remove_workqueue);
363 out_uevent_exit:
364 dm_uevent_exit();
365 out_free_rq_cache:
366 kmem_cache_destroy(_rq_cache);
367 out_free_rq_tio_cache:
368 kmem_cache_destroy(_rq_tio_cache);
369 out_free_io_cache:
370 kmem_cache_destroy(_io_cache);
371
372 return r;
373 }
374
375 static void local_exit(void)
376 {
377 flush_scheduled_work();
378 destroy_workqueue(deferred_remove_workqueue);
379
380 kmem_cache_destroy(_rq_cache);
381 kmem_cache_destroy(_rq_tio_cache);
382 kmem_cache_destroy(_io_cache);
383 unregister_blkdev(_major, _name);
384 dm_uevent_exit();
385
386 _major = 0;
387
388 DMINFO("cleaned up");
389 }
390
391 static int (*_inits[])(void) __initdata = {
392 local_init,
393 dm_target_init,
394 dm_linear_init,
395 dm_stripe_init,
396 dm_io_init,
397 dm_kcopyd_init,
398 dm_interface_init,
399 dm_statistics_init,
400 };
401
402 static void (*_exits[])(void) = {
403 local_exit,
404 dm_target_exit,
405 dm_linear_exit,
406 dm_stripe_exit,
407 dm_io_exit,
408 dm_kcopyd_exit,
409 dm_interface_exit,
410 dm_statistics_exit,
411 };
412
413 static int __init dm_init(void)
414 {
415 const int count = ARRAY_SIZE(_inits);
416
417 int r, i;
418
419 for (i = 0; i < count; i++) {
420 r = _inits[i]();
421 if (r)
422 goto bad;
423 }
424
425 return 0;
426
427 bad:
428 while (i--)
429 _exits[i]();
430
431 return r;
432 }
433
434 static void __exit dm_exit(void)
435 {
436 int i = ARRAY_SIZE(_exits);
437
438 while (i--)
439 _exits[i]();
440
441 /*
442 * Should be empty by this point.
443 */
444 idr_destroy(&_minor_idr);
445 }
446
447 /*
448 * Block device functions
449 */
450 int dm_deleting_md(struct mapped_device *md)
451 {
452 return test_bit(DMF_DELETING, &md->flags);
453 }
454
455 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
456 {
457 struct mapped_device *md;
458
459 spin_lock(&_minor_lock);
460
461 md = bdev->bd_disk->private_data;
462 if (!md)
463 goto out;
464
465 if (test_bit(DMF_FREEING, &md->flags) ||
466 dm_deleting_md(md)) {
467 md = NULL;
468 goto out;
469 }
470
471 dm_get(md);
472 atomic_inc(&md->open_count);
473 out:
474 spin_unlock(&_minor_lock);
475
476 return md ? 0 : -ENXIO;
477 }
478
479 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
480 {
481 struct mapped_device *md;
482
483 spin_lock(&_minor_lock);
484
485 md = disk->private_data;
486 if (WARN_ON(!md))
487 goto out;
488
489 if (atomic_dec_and_test(&md->open_count) &&
490 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
491 queue_work(deferred_remove_workqueue, &deferred_remove_work);
492
493 dm_put(md);
494 out:
495 spin_unlock(&_minor_lock);
496 }
497
498 int dm_open_count(struct mapped_device *md)
499 {
500 return atomic_read(&md->open_count);
501 }
502
503 /*
504 * Guarantees nothing is using the device before it's deleted.
505 */
506 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
507 {
508 int r = 0;
509
510 spin_lock(&_minor_lock);
511
512 if (dm_open_count(md)) {
513 r = -EBUSY;
514 if (mark_deferred)
515 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
516 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
517 r = -EEXIST;
518 else
519 set_bit(DMF_DELETING, &md->flags);
520
521 spin_unlock(&_minor_lock);
522
523 return r;
524 }
525
526 int dm_cancel_deferred_remove(struct mapped_device *md)
527 {
528 int r = 0;
529
530 spin_lock(&_minor_lock);
531
532 if (test_bit(DMF_DELETING, &md->flags))
533 r = -EBUSY;
534 else
535 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
536
537 spin_unlock(&_minor_lock);
538
539 return r;
540 }
541
542 static void do_deferred_remove(struct work_struct *w)
543 {
544 dm_deferred_remove();
545 }
546
547 sector_t dm_get_size(struct mapped_device *md)
548 {
549 return get_capacity(md->disk);
550 }
551
552 struct request_queue *dm_get_md_queue(struct mapped_device *md)
553 {
554 return md->queue;
555 }
556
557 struct dm_stats *dm_get_stats(struct mapped_device *md)
558 {
559 return &md->stats;
560 }
561
562 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
563 {
564 struct mapped_device *md = bdev->bd_disk->private_data;
565
566 return dm_get_geometry(md, geo);
567 }
568
569 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
570 struct block_device **bdev,
571 fmode_t *mode)
572 {
573 struct dm_target *tgt;
574 struct dm_table *map;
575 int srcu_idx, r;
576
577 retry:
578 r = -ENOTTY;
579 map = dm_get_live_table(md, &srcu_idx);
580 if (!map || !dm_table_get_size(map))
581 goto out;
582
583 /* We only support devices that have a single target */
584 if (dm_table_get_num_targets(map) != 1)
585 goto out;
586
587 tgt = dm_table_get_target(map, 0);
588 if (!tgt->type->prepare_ioctl)
589 goto out;
590
591 if (dm_suspended_md(md)) {
592 r = -EAGAIN;
593 goto out;
594 }
595
596 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
597 if (r < 0)
598 goto out;
599
600 bdgrab(*bdev);
601 dm_put_live_table(md, srcu_idx);
602 return r;
603
604 out:
605 dm_put_live_table(md, srcu_idx);
606 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
607 msleep(10);
608 goto retry;
609 }
610 return r;
611 }
612
613 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
614 unsigned int cmd, unsigned long arg)
615 {
616 struct mapped_device *md = bdev->bd_disk->private_data;
617 int r;
618
619 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
620 if (r < 0)
621 return r;
622
623 if (r > 0) {
624 /*
625 * Target determined this ioctl is being issued against
626 * a logical partition of the parent bdev; so extra
627 * validation is needed.
628 */
629 r = scsi_verify_blk_ioctl(NULL, cmd);
630 if (r)
631 goto out;
632 }
633
634 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
635 out:
636 bdput(bdev);
637 return r;
638 }
639
640 static struct dm_io *alloc_io(struct mapped_device *md)
641 {
642 return mempool_alloc(md->io_pool, GFP_NOIO);
643 }
644
645 static void free_io(struct mapped_device *md, struct dm_io *io)
646 {
647 mempool_free(io, md->io_pool);
648 }
649
650 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
651 {
652 bio_put(&tio->clone);
653 }
654
655 static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
656 gfp_t gfp_mask)
657 {
658 return mempool_alloc(md->io_pool, gfp_mask);
659 }
660
661 static void free_old_rq_tio(struct dm_rq_target_io *tio)
662 {
663 mempool_free(tio, tio->md->io_pool);
664 }
665
666 static struct request *alloc_old_clone_request(struct mapped_device *md,
667 gfp_t gfp_mask)
668 {
669 return mempool_alloc(md->rq_pool, gfp_mask);
670 }
671
672 static void free_old_clone_request(struct mapped_device *md, struct request *rq)
673 {
674 mempool_free(rq, md->rq_pool);
675 }
676
677 static int md_in_flight(struct mapped_device *md)
678 {
679 return atomic_read(&md->pending[READ]) +
680 atomic_read(&md->pending[WRITE]);
681 }
682
683 static void start_io_acct(struct dm_io *io)
684 {
685 struct mapped_device *md = io->md;
686 struct bio *bio = io->bio;
687 int cpu;
688 int rw = bio_data_dir(bio);
689
690 io->start_time = jiffies;
691
692 cpu = part_stat_lock();
693 part_round_stats(cpu, &dm_disk(md)->part0);
694 part_stat_unlock();
695 atomic_set(&dm_disk(md)->part0.in_flight[rw],
696 atomic_inc_return(&md->pending[rw]));
697
698 if (unlikely(dm_stats_used(&md->stats)))
699 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
700 bio_sectors(bio), false, 0, &io->stats_aux);
701 }
702
703 static void end_io_acct(struct dm_io *io)
704 {
705 struct mapped_device *md = io->md;
706 struct bio *bio = io->bio;
707 unsigned long duration = jiffies - io->start_time;
708 int pending;
709 int rw = bio_data_dir(bio);
710
711 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
712
713 if (unlikely(dm_stats_used(&md->stats)))
714 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
715 bio_sectors(bio), true, duration, &io->stats_aux);
716
717 /*
718 * After this is decremented the bio must not be touched if it is
719 * a flush.
720 */
721 pending = atomic_dec_return(&md->pending[rw]);
722 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
723 pending += atomic_read(&md->pending[rw^0x1]);
724
725 /* nudge anyone waiting on suspend queue */
726 if (!pending)
727 wake_up(&md->wait);
728 }
729
730 /*
731 * Add the bio to the list of deferred io.
732 */
733 static void queue_io(struct mapped_device *md, struct bio *bio)
734 {
735 unsigned long flags;
736
737 spin_lock_irqsave(&md->deferred_lock, flags);
738 bio_list_add(&md->deferred, bio);
739 spin_unlock_irqrestore(&md->deferred_lock, flags);
740 queue_work(md->wq, &md->work);
741 }
742
743 /*
744 * Everyone (including functions in this file), should use this
745 * function to access the md->map field, and make sure they call
746 * dm_put_live_table() when finished.
747 */
748 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
749 {
750 *srcu_idx = srcu_read_lock(&md->io_barrier);
751
752 return srcu_dereference(md->map, &md->io_barrier);
753 }
754
755 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
756 {
757 srcu_read_unlock(&md->io_barrier, srcu_idx);
758 }
759
760 void dm_sync_table(struct mapped_device *md)
761 {
762 synchronize_srcu(&md->io_barrier);
763 synchronize_rcu_expedited();
764 }
765
766 /*
767 * A fast alternative to dm_get_live_table/dm_put_live_table.
768 * The caller must not block between these two functions.
769 */
770 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
771 {
772 rcu_read_lock();
773 return rcu_dereference(md->map);
774 }
775
776 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
777 {
778 rcu_read_unlock();
779 }
780
781 /*
782 * Open a table device so we can use it as a map destination.
783 */
784 static int open_table_device(struct table_device *td, dev_t dev,
785 struct mapped_device *md)
786 {
787 static char *_claim_ptr = "I belong to device-mapper";
788 struct block_device *bdev;
789
790 int r;
791
792 BUG_ON(td->dm_dev.bdev);
793
794 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
795 if (IS_ERR(bdev))
796 return PTR_ERR(bdev);
797
798 r = bd_link_disk_holder(bdev, dm_disk(md));
799 if (r) {
800 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
801 return r;
802 }
803
804 td->dm_dev.bdev = bdev;
805 return 0;
806 }
807
808 /*
809 * Close a table device that we've been using.
810 */
811 static void close_table_device(struct table_device *td, struct mapped_device *md)
812 {
813 if (!td->dm_dev.bdev)
814 return;
815
816 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
817 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
818 td->dm_dev.bdev = NULL;
819 }
820
821 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
822 fmode_t mode) {
823 struct table_device *td;
824
825 list_for_each_entry(td, l, list)
826 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
827 return td;
828
829 return NULL;
830 }
831
832 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
833 struct dm_dev **result) {
834 int r;
835 struct table_device *td;
836
837 mutex_lock(&md->table_devices_lock);
838 td = find_table_device(&md->table_devices, dev, mode);
839 if (!td) {
840 td = kmalloc(sizeof(*td), GFP_KERNEL);
841 if (!td) {
842 mutex_unlock(&md->table_devices_lock);
843 return -ENOMEM;
844 }
845
846 td->dm_dev.mode = mode;
847 td->dm_dev.bdev = NULL;
848
849 if ((r = open_table_device(td, dev, md))) {
850 mutex_unlock(&md->table_devices_lock);
851 kfree(td);
852 return r;
853 }
854
855 format_dev_t(td->dm_dev.name, dev);
856
857 atomic_set(&td->count, 0);
858 list_add(&td->list, &md->table_devices);
859 }
860 atomic_inc(&td->count);
861 mutex_unlock(&md->table_devices_lock);
862
863 *result = &td->dm_dev;
864 return 0;
865 }
866 EXPORT_SYMBOL_GPL(dm_get_table_device);
867
868 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
869 {
870 struct table_device *td = container_of(d, struct table_device, dm_dev);
871
872 mutex_lock(&md->table_devices_lock);
873 if (atomic_dec_and_test(&td->count)) {
874 close_table_device(td, md);
875 list_del(&td->list);
876 kfree(td);
877 }
878 mutex_unlock(&md->table_devices_lock);
879 }
880 EXPORT_SYMBOL(dm_put_table_device);
881
882 static void free_table_devices(struct list_head *devices)
883 {
884 struct list_head *tmp, *next;
885
886 list_for_each_safe(tmp, next, devices) {
887 struct table_device *td = list_entry(tmp, struct table_device, list);
888
889 DMWARN("dm_destroy: %s still exists with %d references",
890 td->dm_dev.name, atomic_read(&td->count));
891 kfree(td);
892 }
893 }
894
895 /*
896 * Get the geometry associated with a dm device
897 */
898 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 *geo = md->geometry;
901
902 return 0;
903 }
904
905 /*
906 * Set the geometry of a device.
907 */
908 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
909 {
910 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
911
912 if (geo->start > sz) {
913 DMWARN("Start sector is beyond the geometry limits.");
914 return -EINVAL;
915 }
916
917 md->geometry = *geo;
918
919 return 0;
920 }
921
922 /*-----------------------------------------------------------------
923 * CRUD START:
924 * A more elegant soln is in the works that uses the queue
925 * merge fn, unfortunately there are a couple of changes to
926 * the block layer that I want to make for this. So in the
927 * interests of getting something for people to use I give
928 * you this clearly demarcated crap.
929 *---------------------------------------------------------------*/
930
931 static int __noflush_suspending(struct mapped_device *md)
932 {
933 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
934 }
935
936 /*
937 * Decrements the number of outstanding ios that a bio has been
938 * cloned into, completing the original io if necc.
939 */
940 static void dec_pending(struct dm_io *io, int error)
941 {
942 unsigned long flags;
943 int io_error;
944 struct bio *bio;
945 struct mapped_device *md = io->md;
946
947 /* Push-back supersedes any I/O errors */
948 if (unlikely(error)) {
949 spin_lock_irqsave(&io->endio_lock, flags);
950 if (!(io->error > 0 && __noflush_suspending(md)))
951 io->error = error;
952 spin_unlock_irqrestore(&io->endio_lock, flags);
953 }
954
955 if (atomic_dec_and_test(&io->io_count)) {
956 if (io->error == DM_ENDIO_REQUEUE) {
957 /*
958 * Target requested pushing back the I/O.
959 */
960 spin_lock_irqsave(&md->deferred_lock, flags);
961 if (__noflush_suspending(md))
962 bio_list_add_head(&md->deferred, io->bio);
963 else
964 /* noflush suspend was interrupted. */
965 io->error = -EIO;
966 spin_unlock_irqrestore(&md->deferred_lock, flags);
967 }
968
969 io_error = io->error;
970 bio = io->bio;
971 end_io_acct(io);
972 free_io(md, io);
973
974 if (io_error == DM_ENDIO_REQUEUE)
975 return;
976
977 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
978 /*
979 * Preflush done for flush with data, reissue
980 * without REQ_FLUSH.
981 */
982 bio->bi_rw &= ~REQ_FLUSH;
983 queue_io(md, bio);
984 } else {
985 /* done with normal IO or empty flush */
986 trace_block_bio_complete(md->queue, bio, io_error);
987 bio->bi_error = io_error;
988 bio_endio(bio);
989 }
990 }
991 }
992
993 static void disable_write_same(struct mapped_device *md)
994 {
995 struct queue_limits *limits = dm_get_queue_limits(md);
996
997 /* device doesn't really support WRITE SAME, disable it */
998 limits->max_write_same_sectors = 0;
999 }
1000
1001 static void clone_endio(struct bio *bio)
1002 {
1003 int error = bio->bi_error;
1004 int r = error;
1005 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1006 struct dm_io *io = tio->io;
1007 struct mapped_device *md = tio->io->md;
1008 dm_endio_fn endio = tio->ti->type->end_io;
1009
1010 if (endio) {
1011 r = endio(tio->ti, bio, error);
1012 if (r < 0 || r == DM_ENDIO_REQUEUE)
1013 /*
1014 * error and requeue request are handled
1015 * in dec_pending().
1016 */
1017 error = r;
1018 else if (r == DM_ENDIO_INCOMPLETE)
1019 /* The target will handle the io */
1020 return;
1021 else if (r) {
1022 DMWARN("unimplemented target endio return value: %d", r);
1023 BUG();
1024 }
1025 }
1026
1027 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1028 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1029 disable_write_same(md);
1030
1031 free_tio(md, tio);
1032 dec_pending(io, error);
1033 }
1034
1035 /*
1036 * Partial completion handling for request-based dm
1037 */
1038 static void end_clone_bio(struct bio *clone)
1039 {
1040 struct dm_rq_clone_bio_info *info =
1041 container_of(clone, struct dm_rq_clone_bio_info, clone);
1042 struct dm_rq_target_io *tio = info->tio;
1043 struct bio *bio = info->orig;
1044 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1045 int error = clone->bi_error;
1046
1047 bio_put(clone);
1048
1049 if (tio->error)
1050 /*
1051 * An error has already been detected on the request.
1052 * Once error occurred, just let clone->end_io() handle
1053 * the remainder.
1054 */
1055 return;
1056 else if (error) {
1057 /*
1058 * Don't notice the error to the upper layer yet.
1059 * The error handling decision is made by the target driver,
1060 * when the request is completed.
1061 */
1062 tio->error = error;
1063 return;
1064 }
1065
1066 /*
1067 * I/O for the bio successfully completed.
1068 * Notice the data completion to the upper layer.
1069 */
1070
1071 /*
1072 * bios are processed from the head of the list.
1073 * So the completing bio should always be rq->bio.
1074 * If it's not, something wrong is happening.
1075 */
1076 if (tio->orig->bio != bio)
1077 DMERR("bio completion is going in the middle of the request");
1078
1079 /*
1080 * Update the original request.
1081 * Do not use blk_end_request() here, because it may complete
1082 * the original request before the clone, and break the ordering.
1083 */
1084 blk_update_request(tio->orig, 0, nr_bytes);
1085 }
1086
1087 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1088 {
1089 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1090 }
1091
1092 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1093 {
1094 if (unlikely(dm_stats_used(&md->stats))) {
1095 struct dm_rq_target_io *tio = tio_from_request(orig);
1096 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1097 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1098 tio->n_sectors, true, tio->duration_jiffies,
1099 &tio->stats_aux);
1100 }
1101 }
1102
1103 /*
1104 * Don't touch any member of the md after calling this function because
1105 * the md may be freed in dm_put() at the end of this function.
1106 * Or do dm_get() before calling this function and dm_put() later.
1107 */
1108 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1109 {
1110 atomic_dec(&md->pending[rw]);
1111
1112 /* nudge anyone waiting on suspend queue */
1113 if (!md_in_flight(md))
1114 wake_up(&md->wait);
1115
1116 /*
1117 * Run this off this callpath, as drivers could invoke end_io while
1118 * inside their request_fn (and holding the queue lock). Calling
1119 * back into ->request_fn() could deadlock attempting to grab the
1120 * queue lock again.
1121 */
1122 if (!md->queue->mq_ops && run_queue)
1123 blk_run_queue_async(md->queue);
1124
1125 /*
1126 * dm_put() must be at the end of this function. See the comment above
1127 */
1128 dm_put(md);
1129 }
1130
1131 static void free_rq_clone(struct request *clone)
1132 {
1133 struct dm_rq_target_io *tio = clone->end_io_data;
1134 struct mapped_device *md = tio->md;
1135
1136 blk_rq_unprep_clone(clone);
1137
1138 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1139 /* stacked on blk-mq queue(s) */
1140 tio->ti->type->release_clone_rq(clone);
1141 else if (!md->queue->mq_ops)
1142 /* request_fn queue stacked on request_fn queue(s) */
1143 free_old_clone_request(md, clone);
1144
1145 if (!md->queue->mq_ops)
1146 free_old_rq_tio(tio);
1147 }
1148
1149 /*
1150 * Complete the clone and the original request.
1151 * Must be called without clone's queue lock held,
1152 * see end_clone_request() for more details.
1153 */
1154 static void dm_end_request(struct request *clone, int error)
1155 {
1156 int rw = rq_data_dir(clone);
1157 struct dm_rq_target_io *tio = clone->end_io_data;
1158 struct mapped_device *md = tio->md;
1159 struct request *rq = tio->orig;
1160
1161 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1162 rq->errors = clone->errors;
1163 rq->resid_len = clone->resid_len;
1164
1165 if (rq->sense)
1166 /*
1167 * We are using the sense buffer of the original
1168 * request.
1169 * So setting the length of the sense data is enough.
1170 */
1171 rq->sense_len = clone->sense_len;
1172 }
1173
1174 free_rq_clone(clone);
1175 rq_end_stats(md, rq);
1176 if (!rq->q->mq_ops)
1177 blk_end_request_all(rq, error);
1178 else
1179 blk_mq_end_request(rq, error);
1180 rq_completed(md, rw, true);
1181 }
1182
1183 static void dm_unprep_request(struct request *rq)
1184 {
1185 struct dm_rq_target_io *tio = tio_from_request(rq);
1186 struct request *clone = tio->clone;
1187
1188 if (!rq->q->mq_ops) {
1189 rq->special = NULL;
1190 rq->cmd_flags &= ~REQ_DONTPREP;
1191 }
1192
1193 if (clone)
1194 free_rq_clone(clone);
1195 else if (!tio->md->queue->mq_ops)
1196 free_old_rq_tio(tio);
1197 }
1198
1199 /*
1200 * Requeue the original request of a clone.
1201 */
1202 static void dm_old_requeue_request(struct request *rq)
1203 {
1204 struct request_queue *q = rq->q;
1205 unsigned long flags;
1206
1207 spin_lock_irqsave(q->queue_lock, flags);
1208 blk_requeue_request(q, rq);
1209 blk_run_queue_async(q);
1210 spin_unlock_irqrestore(q->queue_lock, flags);
1211 }
1212
1213 static void dm_mq_requeue_request(struct request *rq)
1214 {
1215 struct request_queue *q = rq->q;
1216 unsigned long flags;
1217
1218 blk_mq_requeue_request(rq);
1219 spin_lock_irqsave(q->queue_lock, flags);
1220 if (!blk_queue_stopped(q))
1221 blk_mq_kick_requeue_list(q);
1222 spin_unlock_irqrestore(q->queue_lock, flags);
1223 }
1224
1225 static void dm_requeue_original_request(struct mapped_device *md,
1226 struct request *rq)
1227 {
1228 int rw = rq_data_dir(rq);
1229
1230 dm_unprep_request(rq);
1231
1232 rq_end_stats(md, rq);
1233 if (!rq->q->mq_ops)
1234 dm_old_requeue_request(rq);
1235 else
1236 dm_mq_requeue_request(rq);
1237
1238 rq_completed(md, rw, false);
1239 }
1240
1241 static void dm_old_stop_queue(struct request_queue *q)
1242 {
1243 unsigned long flags;
1244
1245 spin_lock_irqsave(q->queue_lock, flags);
1246 if (blk_queue_stopped(q)) {
1247 spin_unlock_irqrestore(q->queue_lock, flags);
1248 return;
1249 }
1250
1251 blk_stop_queue(q);
1252 spin_unlock_irqrestore(q->queue_lock, flags);
1253 }
1254
1255 static void dm_stop_queue(struct request_queue *q)
1256 {
1257 if (!q->mq_ops)
1258 dm_old_stop_queue(q);
1259 else
1260 blk_mq_stop_hw_queues(q);
1261 }
1262
1263 static void dm_old_start_queue(struct request_queue *q)
1264 {
1265 unsigned long flags;
1266
1267 spin_lock_irqsave(q->queue_lock, flags);
1268 if (blk_queue_stopped(q))
1269 blk_start_queue(q);
1270 spin_unlock_irqrestore(q->queue_lock, flags);
1271 }
1272
1273 static void dm_start_queue(struct request_queue *q)
1274 {
1275 if (!q->mq_ops)
1276 dm_old_start_queue(q);
1277 else {
1278 blk_mq_start_stopped_hw_queues(q, true);
1279 blk_mq_kick_requeue_list(q);
1280 }
1281 }
1282
1283 static void dm_done(struct request *clone, int error, bool mapped)
1284 {
1285 int r = error;
1286 struct dm_rq_target_io *tio = clone->end_io_data;
1287 dm_request_endio_fn rq_end_io = NULL;
1288
1289 if (tio->ti) {
1290 rq_end_io = tio->ti->type->rq_end_io;
1291
1292 if (mapped && rq_end_io)
1293 r = rq_end_io(tio->ti, clone, error, &tio->info);
1294 }
1295
1296 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1297 !clone->q->limits.max_write_same_sectors))
1298 disable_write_same(tio->md);
1299
1300 if (r <= 0)
1301 /* The target wants to complete the I/O */
1302 dm_end_request(clone, r);
1303 else if (r == DM_ENDIO_INCOMPLETE)
1304 /* The target will handle the I/O */
1305 return;
1306 else if (r == DM_ENDIO_REQUEUE)
1307 /* The target wants to requeue the I/O */
1308 dm_requeue_original_request(tio->md, tio->orig);
1309 else {
1310 DMWARN("unimplemented target endio return value: %d", r);
1311 BUG();
1312 }
1313 }
1314
1315 /*
1316 * Request completion handler for request-based dm
1317 */
1318 static void dm_softirq_done(struct request *rq)
1319 {
1320 bool mapped = true;
1321 struct dm_rq_target_io *tio = tio_from_request(rq);
1322 struct request *clone = tio->clone;
1323 int rw;
1324
1325 if (!clone) {
1326 rq_end_stats(tio->md, rq);
1327 rw = rq_data_dir(rq);
1328 if (!rq->q->mq_ops) {
1329 blk_end_request_all(rq, tio->error);
1330 rq_completed(tio->md, rw, false);
1331 free_old_rq_tio(tio);
1332 } else {
1333 blk_mq_end_request(rq, tio->error);
1334 rq_completed(tio->md, rw, false);
1335 }
1336 return;
1337 }
1338
1339 if (rq->cmd_flags & REQ_FAILED)
1340 mapped = false;
1341
1342 dm_done(clone, tio->error, mapped);
1343 }
1344
1345 /*
1346 * Complete the clone and the original request with the error status
1347 * through softirq context.
1348 */
1349 static void dm_complete_request(struct request *rq, int error)
1350 {
1351 struct dm_rq_target_io *tio = tio_from_request(rq);
1352
1353 tio->error = error;
1354 if (!rq->q->mq_ops)
1355 blk_complete_request(rq);
1356 else
1357 blk_mq_complete_request(rq, error);
1358 }
1359
1360 /*
1361 * Complete the not-mapped clone and the original request with the error status
1362 * through softirq context.
1363 * Target's rq_end_io() function isn't called.
1364 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1365 */
1366 static void dm_kill_unmapped_request(struct request *rq, int error)
1367 {
1368 rq->cmd_flags |= REQ_FAILED;
1369 dm_complete_request(rq, error);
1370 }
1371
1372 /*
1373 * Called with the clone's queue lock held (in the case of .request_fn)
1374 */
1375 static void end_clone_request(struct request *clone, int error)
1376 {
1377 struct dm_rq_target_io *tio = clone->end_io_data;
1378
1379 if (!clone->q->mq_ops) {
1380 /*
1381 * For just cleaning up the information of the queue in which
1382 * the clone was dispatched.
1383 * The clone is *NOT* freed actually here because it is alloced
1384 * from dm own mempool (REQ_ALLOCED isn't set).
1385 */
1386 __blk_put_request(clone->q, clone);
1387 }
1388
1389 /*
1390 * Actual request completion is done in a softirq context which doesn't
1391 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1392 * - another request may be submitted by the upper level driver
1393 * of the stacking during the completion
1394 * - the submission which requires queue lock may be done
1395 * against this clone's queue
1396 */
1397 dm_complete_request(tio->orig, error);
1398 }
1399
1400 /*
1401 * Return maximum size of I/O possible at the supplied sector up to the current
1402 * target boundary.
1403 */
1404 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1405 {
1406 sector_t target_offset = dm_target_offset(ti, sector);
1407
1408 return ti->len - target_offset;
1409 }
1410
1411 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1412 {
1413 sector_t len = max_io_len_target_boundary(sector, ti);
1414 sector_t offset, max_len;
1415
1416 /*
1417 * Does the target need to split even further?
1418 */
1419 if (ti->max_io_len) {
1420 offset = dm_target_offset(ti, sector);
1421 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1422 max_len = sector_div(offset, ti->max_io_len);
1423 else
1424 max_len = offset & (ti->max_io_len - 1);
1425 max_len = ti->max_io_len - max_len;
1426
1427 if (len > max_len)
1428 len = max_len;
1429 }
1430
1431 return len;
1432 }
1433
1434 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1435 {
1436 if (len > UINT_MAX) {
1437 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1438 (unsigned long long)len, UINT_MAX);
1439 ti->error = "Maximum size of target IO is too large";
1440 return -EINVAL;
1441 }
1442
1443 ti->max_io_len = (uint32_t) len;
1444
1445 return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1448
1449 /*
1450 * A target may call dm_accept_partial_bio only from the map routine. It is
1451 * allowed for all bio types except REQ_FLUSH.
1452 *
1453 * dm_accept_partial_bio informs the dm that the target only wants to process
1454 * additional n_sectors sectors of the bio and the rest of the data should be
1455 * sent in a next bio.
1456 *
1457 * A diagram that explains the arithmetics:
1458 * +--------------------+---------------+-------+
1459 * | 1 | 2 | 3 |
1460 * +--------------------+---------------+-------+
1461 *
1462 * <-------------- *tio->len_ptr --------------->
1463 * <------- bi_size ------->
1464 * <-- n_sectors -->
1465 *
1466 * Region 1 was already iterated over with bio_advance or similar function.
1467 * (it may be empty if the target doesn't use bio_advance)
1468 * Region 2 is the remaining bio size that the target wants to process.
1469 * (it may be empty if region 1 is non-empty, although there is no reason
1470 * to make it empty)
1471 * The target requires that region 3 is to be sent in the next bio.
1472 *
1473 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1474 * the partially processed part (the sum of regions 1+2) must be the same for all
1475 * copies of the bio.
1476 */
1477 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1478 {
1479 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1480 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1481 BUG_ON(bio->bi_rw & REQ_FLUSH);
1482 BUG_ON(bi_size > *tio->len_ptr);
1483 BUG_ON(n_sectors > bi_size);
1484 *tio->len_ptr -= bi_size - n_sectors;
1485 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1486 }
1487 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1488
1489 static void __map_bio(struct dm_target_io *tio)
1490 {
1491 int r;
1492 sector_t sector;
1493 struct mapped_device *md;
1494 struct bio *clone = &tio->clone;
1495 struct dm_target *ti = tio->ti;
1496
1497 clone->bi_end_io = clone_endio;
1498
1499 /*
1500 * Map the clone. If r == 0 we don't need to do
1501 * anything, the target has assumed ownership of
1502 * this io.
1503 */
1504 atomic_inc(&tio->io->io_count);
1505 sector = clone->bi_iter.bi_sector;
1506 r = ti->type->map(ti, clone);
1507 if (r == DM_MAPIO_REMAPPED) {
1508 /* the bio has been remapped so dispatch it */
1509
1510 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1511 tio->io->bio->bi_bdev->bd_dev, sector);
1512
1513 generic_make_request(clone);
1514 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1515 /* error the io and bail out, or requeue it if needed */
1516 md = tio->io->md;
1517 dec_pending(tio->io, r);
1518 free_tio(md, tio);
1519 } else if (r != DM_MAPIO_SUBMITTED) {
1520 DMWARN("unimplemented target map return value: %d", r);
1521 BUG();
1522 }
1523 }
1524
1525 struct clone_info {
1526 struct mapped_device *md;
1527 struct dm_table *map;
1528 struct bio *bio;
1529 struct dm_io *io;
1530 sector_t sector;
1531 unsigned sector_count;
1532 };
1533
1534 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1535 {
1536 bio->bi_iter.bi_sector = sector;
1537 bio->bi_iter.bi_size = to_bytes(len);
1538 }
1539
1540 /*
1541 * Creates a bio that consists of range of complete bvecs.
1542 */
1543 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1544 sector_t sector, unsigned len)
1545 {
1546 struct bio *clone = &tio->clone;
1547
1548 __bio_clone_fast(clone, bio);
1549
1550 if (bio_integrity(bio))
1551 bio_integrity_clone(clone, bio, GFP_NOIO);
1552
1553 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1554 clone->bi_iter.bi_size = to_bytes(len);
1555
1556 if (bio_integrity(bio))
1557 bio_integrity_trim(clone, 0, len);
1558 }
1559
1560 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1561 struct dm_target *ti,
1562 unsigned target_bio_nr)
1563 {
1564 struct dm_target_io *tio;
1565 struct bio *clone;
1566
1567 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1568 tio = container_of(clone, struct dm_target_io, clone);
1569
1570 tio->io = ci->io;
1571 tio->ti = ti;
1572 tio->target_bio_nr = target_bio_nr;
1573
1574 return tio;
1575 }
1576
1577 static void __clone_and_map_simple_bio(struct clone_info *ci,
1578 struct dm_target *ti,
1579 unsigned target_bio_nr, unsigned *len)
1580 {
1581 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1582 struct bio *clone = &tio->clone;
1583
1584 tio->len_ptr = len;
1585
1586 __bio_clone_fast(clone, ci->bio);
1587 if (len)
1588 bio_setup_sector(clone, ci->sector, *len);
1589
1590 __map_bio(tio);
1591 }
1592
1593 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1594 unsigned num_bios, unsigned *len)
1595 {
1596 unsigned target_bio_nr;
1597
1598 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1599 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1600 }
1601
1602 static int __send_empty_flush(struct clone_info *ci)
1603 {
1604 unsigned target_nr = 0;
1605 struct dm_target *ti;
1606
1607 BUG_ON(bio_has_data(ci->bio));
1608 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1609 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1610
1611 return 0;
1612 }
1613
1614 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1615 sector_t sector, unsigned *len)
1616 {
1617 struct bio *bio = ci->bio;
1618 struct dm_target_io *tio;
1619 unsigned target_bio_nr;
1620 unsigned num_target_bios = 1;
1621
1622 /*
1623 * Does the target want to receive duplicate copies of the bio?
1624 */
1625 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1626 num_target_bios = ti->num_write_bios(ti, bio);
1627
1628 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1629 tio = alloc_tio(ci, ti, target_bio_nr);
1630 tio->len_ptr = len;
1631 clone_bio(tio, bio, sector, *len);
1632 __map_bio(tio);
1633 }
1634 }
1635
1636 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1637
1638 static unsigned get_num_discard_bios(struct dm_target *ti)
1639 {
1640 return ti->num_discard_bios;
1641 }
1642
1643 static unsigned get_num_write_same_bios(struct dm_target *ti)
1644 {
1645 return ti->num_write_same_bios;
1646 }
1647
1648 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1649
1650 static bool is_split_required_for_discard(struct dm_target *ti)
1651 {
1652 return ti->split_discard_bios;
1653 }
1654
1655 static int __send_changing_extent_only(struct clone_info *ci,
1656 get_num_bios_fn get_num_bios,
1657 is_split_required_fn is_split_required)
1658 {
1659 struct dm_target *ti;
1660 unsigned len;
1661 unsigned num_bios;
1662
1663 do {
1664 ti = dm_table_find_target(ci->map, ci->sector);
1665 if (!dm_target_is_valid(ti))
1666 return -EIO;
1667
1668 /*
1669 * Even though the device advertised support for this type of
1670 * request, that does not mean every target supports it, and
1671 * reconfiguration might also have changed that since the
1672 * check was performed.
1673 */
1674 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1675 if (!num_bios)
1676 return -EOPNOTSUPP;
1677
1678 if (is_split_required && !is_split_required(ti))
1679 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1680 else
1681 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1682
1683 __send_duplicate_bios(ci, ti, num_bios, &len);
1684
1685 ci->sector += len;
1686 } while (ci->sector_count -= len);
1687
1688 return 0;
1689 }
1690
1691 static int __send_discard(struct clone_info *ci)
1692 {
1693 return __send_changing_extent_only(ci, get_num_discard_bios,
1694 is_split_required_for_discard);
1695 }
1696
1697 static int __send_write_same(struct clone_info *ci)
1698 {
1699 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1700 }
1701
1702 /*
1703 * Select the correct strategy for processing a non-flush bio.
1704 */
1705 static int __split_and_process_non_flush(struct clone_info *ci)
1706 {
1707 struct bio *bio = ci->bio;
1708 struct dm_target *ti;
1709 unsigned len;
1710
1711 if (unlikely(bio->bi_rw & REQ_DISCARD))
1712 return __send_discard(ci);
1713 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1714 return __send_write_same(ci);
1715
1716 ti = dm_table_find_target(ci->map, ci->sector);
1717 if (!dm_target_is_valid(ti))
1718 return -EIO;
1719
1720 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1721
1722 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1723
1724 ci->sector += len;
1725 ci->sector_count -= len;
1726
1727 return 0;
1728 }
1729
1730 /*
1731 * Entry point to split a bio into clones and submit them to the targets.
1732 */
1733 static void __split_and_process_bio(struct mapped_device *md,
1734 struct dm_table *map, struct bio *bio)
1735 {
1736 struct clone_info ci;
1737 int error = 0;
1738
1739 if (unlikely(!map)) {
1740 bio_io_error(bio);
1741 return;
1742 }
1743
1744 ci.map = map;
1745 ci.md = md;
1746 ci.io = alloc_io(md);
1747 ci.io->error = 0;
1748 atomic_set(&ci.io->io_count, 1);
1749 ci.io->bio = bio;
1750 ci.io->md = md;
1751 spin_lock_init(&ci.io->endio_lock);
1752 ci.sector = bio->bi_iter.bi_sector;
1753
1754 start_io_acct(ci.io);
1755
1756 if (bio->bi_rw & REQ_FLUSH) {
1757 ci.bio = &ci.md->flush_bio;
1758 ci.sector_count = 0;
1759 error = __send_empty_flush(&ci);
1760 /* dec_pending submits any data associated with flush */
1761 } else {
1762 ci.bio = bio;
1763 ci.sector_count = bio_sectors(bio);
1764 while (ci.sector_count && !error)
1765 error = __split_and_process_non_flush(&ci);
1766 }
1767
1768 /* drop the extra reference count */
1769 dec_pending(ci.io, error);
1770 }
1771 /*-----------------------------------------------------------------
1772 * CRUD END
1773 *---------------------------------------------------------------*/
1774
1775 /*
1776 * The request function that just remaps the bio built up by
1777 * dm_merge_bvec.
1778 */
1779 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1780 {
1781 int rw = bio_data_dir(bio);
1782 struct mapped_device *md = q->queuedata;
1783 int srcu_idx;
1784 struct dm_table *map;
1785
1786 map = dm_get_live_table(md, &srcu_idx);
1787
1788 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1789
1790 /* if we're suspended, we have to queue this io for later */
1791 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1792 dm_put_live_table(md, srcu_idx);
1793
1794 if (bio_rw(bio) != READA)
1795 queue_io(md, bio);
1796 else
1797 bio_io_error(bio);
1798 return BLK_QC_T_NONE;
1799 }
1800
1801 __split_and_process_bio(md, map, bio);
1802 dm_put_live_table(md, srcu_idx);
1803 return BLK_QC_T_NONE;
1804 }
1805
1806 int dm_request_based(struct mapped_device *md)
1807 {
1808 return blk_queue_stackable(md->queue);
1809 }
1810
1811 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1812 {
1813 int r;
1814
1815 if (blk_queue_io_stat(clone->q))
1816 clone->cmd_flags |= REQ_IO_STAT;
1817
1818 clone->start_time = jiffies;
1819 r = blk_insert_cloned_request(clone->q, clone);
1820 if (r)
1821 /* must complete clone in terms of original request */
1822 dm_complete_request(rq, r);
1823 }
1824
1825 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1826 void *data)
1827 {
1828 struct dm_rq_target_io *tio = data;
1829 struct dm_rq_clone_bio_info *info =
1830 container_of(bio, struct dm_rq_clone_bio_info, clone);
1831
1832 info->orig = bio_orig;
1833 info->tio = tio;
1834 bio->bi_end_io = end_clone_bio;
1835
1836 return 0;
1837 }
1838
1839 static int setup_clone(struct request *clone, struct request *rq,
1840 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1841 {
1842 int r;
1843
1844 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1845 dm_rq_bio_constructor, tio);
1846 if (r)
1847 return r;
1848
1849 clone->cmd = rq->cmd;
1850 clone->cmd_len = rq->cmd_len;
1851 clone->sense = rq->sense;
1852 clone->end_io = end_clone_request;
1853 clone->end_io_data = tio;
1854
1855 tio->clone = clone;
1856
1857 return 0;
1858 }
1859
1860 static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1861 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1862 {
1863 /*
1864 * Create clone for use with .request_fn request_queue
1865 */
1866 struct request *clone;
1867
1868 clone = alloc_old_clone_request(md, gfp_mask);
1869 if (!clone)
1870 return NULL;
1871
1872 blk_rq_init(NULL, clone);
1873 if (setup_clone(clone, rq, tio, gfp_mask)) {
1874 /* -ENOMEM */
1875 free_old_clone_request(md, clone);
1876 return NULL;
1877 }
1878
1879 return clone;
1880 }
1881
1882 static void map_tio_request(struct kthread_work *work);
1883
1884 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1885 struct mapped_device *md)
1886 {
1887 tio->md = md;
1888 tio->ti = NULL;
1889 tio->clone = NULL;
1890 tio->orig = rq;
1891 tio->error = 0;
1892 memset(&tio->info, 0, sizeof(tio->info));
1893 if (md->kworker_task)
1894 init_kthread_work(&tio->work, map_tio_request);
1895 }
1896
1897 static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1898 struct mapped_device *md,
1899 gfp_t gfp_mask)
1900 {
1901 struct dm_rq_target_io *tio;
1902 int srcu_idx;
1903 struct dm_table *table;
1904
1905 tio = alloc_old_rq_tio(md, gfp_mask);
1906 if (!tio)
1907 return NULL;
1908
1909 init_tio(tio, rq, md);
1910
1911 table = dm_get_live_table(md, &srcu_idx);
1912 /*
1913 * Must clone a request if this .request_fn DM device
1914 * is stacked on .request_fn device(s).
1915 */
1916 if (!dm_table_mq_request_based(table)) {
1917 if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1918 dm_put_live_table(md, srcu_idx);
1919 free_old_rq_tio(tio);
1920 return NULL;
1921 }
1922 }
1923 dm_put_live_table(md, srcu_idx);
1924
1925 return tio;
1926 }
1927
1928 /*
1929 * Called with the queue lock held.
1930 */
1931 static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1932 {
1933 struct mapped_device *md = q->queuedata;
1934 struct dm_rq_target_io *tio;
1935
1936 if (unlikely(rq->special)) {
1937 DMWARN("Already has something in rq->special.");
1938 return BLKPREP_KILL;
1939 }
1940
1941 tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1942 if (!tio)
1943 return BLKPREP_DEFER;
1944
1945 rq->special = tio;
1946 rq->cmd_flags |= REQ_DONTPREP;
1947
1948 return BLKPREP_OK;
1949 }
1950
1951 /*
1952 * Returns:
1953 * 0 : the request has been processed
1954 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1955 * < 0 : the request was completed due to failure
1956 */
1957 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1958 struct mapped_device *md)
1959 {
1960 int r;
1961 struct dm_target *ti = tio->ti;
1962 struct request *clone = NULL;
1963
1964 if (tio->clone) {
1965 clone = tio->clone;
1966 r = ti->type->map_rq(ti, clone, &tio->info);
1967 } else {
1968 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1969 if (r < 0) {
1970 /* The target wants to complete the I/O */
1971 dm_kill_unmapped_request(rq, r);
1972 return r;
1973 }
1974 if (r != DM_MAPIO_REMAPPED)
1975 return r;
1976 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1977 /* -ENOMEM */
1978 ti->type->release_clone_rq(clone);
1979 return DM_MAPIO_REQUEUE;
1980 }
1981 }
1982
1983 switch (r) {
1984 case DM_MAPIO_SUBMITTED:
1985 /* The target has taken the I/O to submit by itself later */
1986 break;
1987 case DM_MAPIO_REMAPPED:
1988 /* The target has remapped the I/O so dispatch it */
1989 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1990 blk_rq_pos(rq));
1991 dm_dispatch_clone_request(clone, rq);
1992 break;
1993 case DM_MAPIO_REQUEUE:
1994 /* The target wants to requeue the I/O */
1995 dm_requeue_original_request(md, tio->orig);
1996 break;
1997 default:
1998 if (r > 0) {
1999 DMWARN("unimplemented target map return value: %d", r);
2000 BUG();
2001 }
2002
2003 /* The target wants to complete the I/O */
2004 dm_kill_unmapped_request(rq, r);
2005 return r;
2006 }
2007
2008 return 0;
2009 }
2010
2011 static void map_tio_request(struct kthread_work *work)
2012 {
2013 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2014 struct request *rq = tio->orig;
2015 struct mapped_device *md = tio->md;
2016
2017 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2018 dm_requeue_original_request(md, rq);
2019 }
2020
2021 static void dm_start_request(struct mapped_device *md, struct request *orig)
2022 {
2023 if (!orig->q->mq_ops)
2024 blk_start_request(orig);
2025 else
2026 blk_mq_start_request(orig);
2027 atomic_inc(&md->pending[rq_data_dir(orig)]);
2028
2029 if (md->seq_rq_merge_deadline_usecs) {
2030 md->last_rq_pos = rq_end_sector(orig);
2031 md->last_rq_rw = rq_data_dir(orig);
2032 md->last_rq_start_time = ktime_get();
2033 }
2034
2035 if (unlikely(dm_stats_used(&md->stats))) {
2036 struct dm_rq_target_io *tio = tio_from_request(orig);
2037 tio->duration_jiffies = jiffies;
2038 tio->n_sectors = blk_rq_sectors(orig);
2039 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2040 tio->n_sectors, false, 0, &tio->stats_aux);
2041 }
2042
2043 /*
2044 * Hold the md reference here for the in-flight I/O.
2045 * We can't rely on the reference count by device opener,
2046 * because the device may be closed during the request completion
2047 * when all bios are completed.
2048 * See the comment in rq_completed() too.
2049 */
2050 dm_get(md);
2051 }
2052
2053 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2054
2055 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2056 {
2057 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2058 }
2059
2060 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2061 const char *buf, size_t count)
2062 {
2063 unsigned deadline;
2064
2065 if (!dm_request_based(md) || md->use_blk_mq)
2066 return count;
2067
2068 if (kstrtouint(buf, 10, &deadline))
2069 return -EINVAL;
2070
2071 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2072 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2073
2074 md->seq_rq_merge_deadline_usecs = deadline;
2075
2076 return count;
2077 }
2078
2079 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2080 {
2081 ktime_t kt_deadline;
2082
2083 if (!md->seq_rq_merge_deadline_usecs)
2084 return false;
2085
2086 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2087 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2088
2089 return !ktime_after(ktime_get(), kt_deadline);
2090 }
2091
2092 /*
2093 * q->request_fn for request-based dm.
2094 * Called with the queue lock held.
2095 */
2096 static void dm_request_fn(struct request_queue *q)
2097 {
2098 struct mapped_device *md = q->queuedata;
2099 struct dm_target *ti = md->immutable_target;
2100 struct request *rq;
2101 struct dm_rq_target_io *tio;
2102 sector_t pos = 0;
2103
2104 if (unlikely(!ti)) {
2105 int srcu_idx;
2106 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2107
2108 ti = dm_table_find_target(map, pos);
2109 dm_put_live_table(md, srcu_idx);
2110 }
2111
2112 /*
2113 * For suspend, check blk_queue_stopped() and increment
2114 * ->pending within a single queue_lock not to increment the
2115 * number of in-flight I/Os after the queue is stopped in
2116 * dm_suspend().
2117 */
2118 while (!blk_queue_stopped(q)) {
2119 rq = blk_peek_request(q);
2120 if (!rq)
2121 return;
2122
2123 /* always use block 0 to find the target for flushes for now */
2124 pos = 0;
2125 if (!(rq->cmd_flags & REQ_FLUSH))
2126 pos = blk_rq_pos(rq);
2127
2128 if ((dm_request_peeked_before_merge_deadline(md) &&
2129 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2130 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2131 (ti->type->busy && ti->type->busy(ti))) {
2132 blk_delay_queue(q, HZ / 100);
2133 return;
2134 }
2135
2136 dm_start_request(md, rq);
2137
2138 tio = tio_from_request(rq);
2139 /* Establish tio->ti before queuing work (map_tio_request) */
2140 tio->ti = ti;
2141 queue_kthread_work(&md->kworker, &tio->work);
2142 BUG_ON(!irqs_disabled());
2143 }
2144 }
2145
2146 static int dm_any_congested(void *congested_data, int bdi_bits)
2147 {
2148 int r = bdi_bits;
2149 struct mapped_device *md = congested_data;
2150 struct dm_table *map;
2151
2152 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2153 if (dm_request_based(md)) {
2154 /*
2155 * With request-based DM we only need to check the
2156 * top-level queue for congestion.
2157 */
2158 r = md->queue->backing_dev_info.wb.state & bdi_bits;
2159 } else {
2160 map = dm_get_live_table_fast(md);
2161 if (map)
2162 r = dm_table_any_congested(map, bdi_bits);
2163 dm_put_live_table_fast(md);
2164 }
2165 }
2166
2167 return r;
2168 }
2169
2170 /*-----------------------------------------------------------------
2171 * An IDR is used to keep track of allocated minor numbers.
2172 *---------------------------------------------------------------*/
2173 static void free_minor(int minor)
2174 {
2175 spin_lock(&_minor_lock);
2176 idr_remove(&_minor_idr, minor);
2177 spin_unlock(&_minor_lock);
2178 }
2179
2180 /*
2181 * See if the device with a specific minor # is free.
2182 */
2183 static int specific_minor(int minor)
2184 {
2185 int r;
2186
2187 if (minor >= (1 << MINORBITS))
2188 return -EINVAL;
2189
2190 idr_preload(GFP_KERNEL);
2191 spin_lock(&_minor_lock);
2192
2193 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2194
2195 spin_unlock(&_minor_lock);
2196 idr_preload_end();
2197 if (r < 0)
2198 return r == -ENOSPC ? -EBUSY : r;
2199 return 0;
2200 }
2201
2202 static int next_free_minor(int *minor)
2203 {
2204 int r;
2205
2206 idr_preload(GFP_KERNEL);
2207 spin_lock(&_minor_lock);
2208
2209 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2210
2211 spin_unlock(&_minor_lock);
2212 idr_preload_end();
2213 if (r < 0)
2214 return r;
2215 *minor = r;
2216 return 0;
2217 }
2218
2219 static const struct block_device_operations dm_blk_dops;
2220
2221 static void dm_wq_work(struct work_struct *work);
2222
2223 static void dm_init_md_queue(struct mapped_device *md)
2224 {
2225 /*
2226 * Request-based dm devices cannot be stacked on top of bio-based dm
2227 * devices. The type of this dm device may not have been decided yet.
2228 * The type is decided at the first table loading time.
2229 * To prevent problematic device stacking, clear the queue flag
2230 * for request stacking support until then.
2231 *
2232 * This queue is new, so no concurrency on the queue_flags.
2233 */
2234 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2235
2236 /*
2237 * Initialize data that will only be used by a non-blk-mq DM queue
2238 * - must do so here (in alloc_dev callchain) before queue is used
2239 */
2240 md->queue->queuedata = md;
2241 md->queue->backing_dev_info.congested_data = md;
2242 }
2243
2244 static void dm_init_normal_md_queue(struct mapped_device *md)
2245 {
2246 md->use_blk_mq = false;
2247 dm_init_md_queue(md);
2248
2249 /*
2250 * Initialize aspects of queue that aren't relevant for blk-mq
2251 */
2252 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2253 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2254 }
2255
2256 static void cleanup_mapped_device(struct mapped_device *md)
2257 {
2258 if (md->wq)
2259 destroy_workqueue(md->wq);
2260 if (md->kworker_task)
2261 kthread_stop(md->kworker_task);
2262 mempool_destroy(md->io_pool);
2263 mempool_destroy(md->rq_pool);
2264 if (md->bs)
2265 bioset_free(md->bs);
2266
2267 cleanup_srcu_struct(&md->io_barrier);
2268
2269 if (md->disk) {
2270 spin_lock(&_minor_lock);
2271 md->disk->private_data = NULL;
2272 spin_unlock(&_minor_lock);
2273 del_gendisk(md->disk);
2274 put_disk(md->disk);
2275 }
2276
2277 if (md->queue)
2278 blk_cleanup_queue(md->queue);
2279
2280 if (md->bdev) {
2281 bdput(md->bdev);
2282 md->bdev = NULL;
2283 }
2284 }
2285
2286 /*
2287 * Allocate and initialise a blank device with a given minor.
2288 */
2289 static struct mapped_device *alloc_dev(int minor)
2290 {
2291 int r;
2292 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2293 void *old_md;
2294
2295 if (!md) {
2296 DMWARN("unable to allocate device, out of memory.");
2297 return NULL;
2298 }
2299
2300 if (!try_module_get(THIS_MODULE))
2301 goto bad_module_get;
2302
2303 /* get a minor number for the dev */
2304 if (minor == DM_ANY_MINOR)
2305 r = next_free_minor(&minor);
2306 else
2307 r = specific_minor(minor);
2308 if (r < 0)
2309 goto bad_minor;
2310
2311 r = init_srcu_struct(&md->io_barrier);
2312 if (r < 0)
2313 goto bad_io_barrier;
2314
2315 md->use_blk_mq = use_blk_mq;
2316 md->type = DM_TYPE_NONE;
2317 mutex_init(&md->suspend_lock);
2318 mutex_init(&md->type_lock);
2319 mutex_init(&md->table_devices_lock);
2320 spin_lock_init(&md->deferred_lock);
2321 atomic_set(&md->holders, 1);
2322 atomic_set(&md->open_count, 0);
2323 atomic_set(&md->event_nr, 0);
2324 atomic_set(&md->uevent_seq, 0);
2325 INIT_LIST_HEAD(&md->uevent_list);
2326 INIT_LIST_HEAD(&md->table_devices);
2327 spin_lock_init(&md->uevent_lock);
2328
2329 md->queue = blk_alloc_queue(GFP_KERNEL);
2330 if (!md->queue)
2331 goto bad;
2332
2333 dm_init_md_queue(md);
2334
2335 md->disk = alloc_disk(1);
2336 if (!md->disk)
2337 goto bad;
2338
2339 atomic_set(&md->pending[0], 0);
2340 atomic_set(&md->pending[1], 0);
2341 init_waitqueue_head(&md->wait);
2342 INIT_WORK(&md->work, dm_wq_work);
2343 init_waitqueue_head(&md->eventq);
2344 init_completion(&md->kobj_holder.completion);
2345 md->kworker_task = NULL;
2346
2347 md->disk->major = _major;
2348 md->disk->first_minor = minor;
2349 md->disk->fops = &dm_blk_dops;
2350 md->disk->queue = md->queue;
2351 md->disk->private_data = md;
2352 sprintf(md->disk->disk_name, "dm-%d", minor);
2353 add_disk(md->disk);
2354 format_dev_t(md->name, MKDEV(_major, minor));
2355
2356 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2357 if (!md->wq)
2358 goto bad;
2359
2360 md->bdev = bdget_disk(md->disk, 0);
2361 if (!md->bdev)
2362 goto bad;
2363
2364 bio_init(&md->flush_bio);
2365 md->flush_bio.bi_bdev = md->bdev;
2366 md->flush_bio.bi_rw = WRITE_FLUSH;
2367
2368 dm_stats_init(&md->stats);
2369
2370 /* Populate the mapping, nobody knows we exist yet */
2371 spin_lock(&_minor_lock);
2372 old_md = idr_replace(&_minor_idr, md, minor);
2373 spin_unlock(&_minor_lock);
2374
2375 BUG_ON(old_md != MINOR_ALLOCED);
2376
2377 return md;
2378
2379 bad:
2380 cleanup_mapped_device(md);
2381 bad_io_barrier:
2382 free_minor(minor);
2383 bad_minor:
2384 module_put(THIS_MODULE);
2385 bad_module_get:
2386 kfree(md);
2387 return NULL;
2388 }
2389
2390 static void unlock_fs(struct mapped_device *md);
2391
2392 static void free_dev(struct mapped_device *md)
2393 {
2394 int minor = MINOR(disk_devt(md->disk));
2395
2396 unlock_fs(md);
2397
2398 cleanup_mapped_device(md);
2399 if (md->tag_set) {
2400 blk_mq_free_tag_set(md->tag_set);
2401 kfree(md->tag_set);
2402 }
2403
2404 free_table_devices(&md->table_devices);
2405 dm_stats_cleanup(&md->stats);
2406 free_minor(minor);
2407
2408 module_put(THIS_MODULE);
2409 kfree(md);
2410 }
2411
2412 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2413 {
2414 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2415
2416 if (md->bs) {
2417 /* The md already has necessary mempools. */
2418 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2419 /*
2420 * Reload bioset because front_pad may have changed
2421 * because a different table was loaded.
2422 */
2423 bioset_free(md->bs);
2424 md->bs = p->bs;
2425 p->bs = NULL;
2426 }
2427 /*
2428 * There's no need to reload with request-based dm
2429 * because the size of front_pad doesn't change.
2430 * Note for future: If you are to reload bioset,
2431 * prep-ed requests in the queue may refer
2432 * to bio from the old bioset, so you must walk
2433 * through the queue to unprep.
2434 */
2435 goto out;
2436 }
2437
2438 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2439
2440 md->io_pool = p->io_pool;
2441 p->io_pool = NULL;
2442 md->rq_pool = p->rq_pool;
2443 p->rq_pool = NULL;
2444 md->bs = p->bs;
2445 p->bs = NULL;
2446
2447 out:
2448 /* mempool bind completed, no longer need any mempools in the table */
2449 dm_table_free_md_mempools(t);
2450 }
2451
2452 /*
2453 * Bind a table to the device.
2454 */
2455 static void event_callback(void *context)
2456 {
2457 unsigned long flags;
2458 LIST_HEAD(uevents);
2459 struct mapped_device *md = (struct mapped_device *) context;
2460
2461 spin_lock_irqsave(&md->uevent_lock, flags);
2462 list_splice_init(&md->uevent_list, &uevents);
2463 spin_unlock_irqrestore(&md->uevent_lock, flags);
2464
2465 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2466
2467 atomic_inc(&md->event_nr);
2468 wake_up(&md->eventq);
2469 }
2470
2471 /*
2472 * Protected by md->suspend_lock obtained by dm_swap_table().
2473 */
2474 static void __set_size(struct mapped_device *md, sector_t size)
2475 {
2476 set_capacity(md->disk, size);
2477
2478 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2479 }
2480
2481 /*
2482 * Returns old map, which caller must destroy.
2483 */
2484 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2485 struct queue_limits *limits)
2486 {
2487 struct dm_table *old_map;
2488 struct request_queue *q = md->queue;
2489 sector_t size;
2490
2491 size = dm_table_get_size(t);
2492
2493 /*
2494 * Wipe any geometry if the size of the table changed.
2495 */
2496 if (size != dm_get_size(md))
2497 memset(&md->geometry, 0, sizeof(md->geometry));
2498
2499 __set_size(md, size);
2500
2501 dm_table_event_callback(t, event_callback, md);
2502
2503 /*
2504 * The queue hasn't been stopped yet, if the old table type wasn't
2505 * for request-based during suspension. So stop it to prevent
2506 * I/O mapping before resume.
2507 * This must be done before setting the queue restrictions,
2508 * because request-based dm may be run just after the setting.
2509 */
2510 if (dm_table_request_based(t)) {
2511 dm_stop_queue(q);
2512 /*
2513 * Leverage the fact that request-based DM targets are
2514 * immutable singletons and establish md->immutable_target
2515 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2516 */
2517 md->immutable_target = dm_table_get_immutable_target(t);
2518 }
2519
2520 __bind_mempools(md, t);
2521
2522 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2523 rcu_assign_pointer(md->map, t);
2524 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2525
2526 dm_table_set_restrictions(t, q, limits);
2527 if (old_map)
2528 dm_sync_table(md);
2529
2530 return old_map;
2531 }
2532
2533 /*
2534 * Returns unbound table for the caller to free.
2535 */
2536 static struct dm_table *__unbind(struct mapped_device *md)
2537 {
2538 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2539
2540 if (!map)
2541 return NULL;
2542
2543 dm_table_event_callback(map, NULL, NULL);
2544 RCU_INIT_POINTER(md->map, NULL);
2545 dm_sync_table(md);
2546
2547 return map;
2548 }
2549
2550 /*
2551 * Constructor for a new device.
2552 */
2553 int dm_create(int minor, struct mapped_device **result)
2554 {
2555 struct mapped_device *md;
2556
2557 md = alloc_dev(minor);
2558 if (!md)
2559 return -ENXIO;
2560
2561 dm_sysfs_init(md);
2562
2563 *result = md;
2564 return 0;
2565 }
2566
2567 /*
2568 * Functions to manage md->type.
2569 * All are required to hold md->type_lock.
2570 */
2571 void dm_lock_md_type(struct mapped_device *md)
2572 {
2573 mutex_lock(&md->type_lock);
2574 }
2575
2576 void dm_unlock_md_type(struct mapped_device *md)
2577 {
2578 mutex_unlock(&md->type_lock);
2579 }
2580
2581 void dm_set_md_type(struct mapped_device *md, unsigned type)
2582 {
2583 BUG_ON(!mutex_is_locked(&md->type_lock));
2584 md->type = type;
2585 }
2586
2587 unsigned dm_get_md_type(struct mapped_device *md)
2588 {
2589 return md->type;
2590 }
2591
2592 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2593 {
2594 return md->immutable_target_type;
2595 }
2596
2597 /*
2598 * The queue_limits are only valid as long as you have a reference
2599 * count on 'md'.
2600 */
2601 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2602 {
2603 BUG_ON(!atomic_read(&md->holders));
2604 return &md->queue->limits;
2605 }
2606 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2607
2608 static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2609 {
2610 /* Initialize the request-based DM worker thread */
2611 init_kthread_worker(&md->kworker);
2612 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2613 "kdmwork-%s", dm_device_name(md));
2614 }
2615
2616 /*
2617 * Fully initialize a .request_fn request-based queue.
2618 */
2619 static int dm_old_init_request_queue(struct mapped_device *md)
2620 {
2621 struct request_queue *q = NULL;
2622
2623 /* Fully initialize the queue */
2624 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2625 if (!q)
2626 return -EINVAL;
2627
2628 /* disable dm_request_fn's merge heuristic by default */
2629 md->seq_rq_merge_deadline_usecs = 0;
2630
2631 md->queue = q;
2632 dm_init_normal_md_queue(md);
2633 blk_queue_softirq_done(md->queue, dm_softirq_done);
2634 blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2635
2636 dm_old_init_rq_based_worker_thread(md);
2637
2638 elv_register_queue(md->queue);
2639
2640 return 0;
2641 }
2642
2643 static int dm_mq_init_request(void *data, struct request *rq,
2644 unsigned int hctx_idx, unsigned int request_idx,
2645 unsigned int numa_node)
2646 {
2647 struct mapped_device *md = data;
2648 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2649
2650 /*
2651 * Must initialize md member of tio, otherwise it won't
2652 * be available in dm_mq_queue_rq.
2653 */
2654 tio->md = md;
2655
2656 return 0;
2657 }
2658
2659 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2660 const struct blk_mq_queue_data *bd)
2661 {
2662 struct request *rq = bd->rq;
2663 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2664 struct mapped_device *md = tio->md;
2665 struct dm_target *ti = md->immutable_target;
2666
2667 if (unlikely(!ti)) {
2668 int srcu_idx;
2669 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2670
2671 ti = dm_table_find_target(map, 0);
2672 dm_put_live_table(md, srcu_idx);
2673 }
2674
2675 if (ti->type->busy && ti->type->busy(ti))
2676 return BLK_MQ_RQ_QUEUE_BUSY;
2677
2678 dm_start_request(md, rq);
2679
2680 /* Init tio using md established in .init_request */
2681 init_tio(tio, rq, md);
2682
2683 /*
2684 * Establish tio->ti before queuing work (map_tio_request)
2685 * or making direct call to map_request().
2686 */
2687 tio->ti = ti;
2688
2689 /* Direct call is fine since .queue_rq allows allocations */
2690 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2691 /* Undo dm_start_request() before requeuing */
2692 rq_end_stats(md, rq);
2693 rq_completed(md, rq_data_dir(rq), false);
2694 return BLK_MQ_RQ_QUEUE_BUSY;
2695 }
2696
2697 return BLK_MQ_RQ_QUEUE_OK;
2698 }
2699
2700 static struct blk_mq_ops dm_mq_ops = {
2701 .queue_rq = dm_mq_queue_rq,
2702 .map_queue = blk_mq_map_queue,
2703 .complete = dm_softirq_done,
2704 .init_request = dm_mq_init_request,
2705 };
2706
2707 static int dm_mq_init_request_queue(struct mapped_device *md)
2708 {
2709 struct request_queue *q;
2710 int err;
2711
2712 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2713 DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2714 return -EINVAL;
2715 }
2716
2717 md->tag_set = kzalloc(sizeof(struct blk_mq_tag_set), GFP_KERNEL);
2718 if (!md->tag_set)
2719 return -ENOMEM;
2720
2721 md->tag_set->ops = &dm_mq_ops;
2722 md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2723 md->tag_set->numa_node = NUMA_NO_NODE;
2724 md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2725 md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2726 md->tag_set->driver_data = md;
2727
2728 md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2729
2730 err = blk_mq_alloc_tag_set(md->tag_set);
2731 if (err)
2732 goto out_kfree_tag_set;
2733
2734 q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2735 if (IS_ERR(q)) {
2736 err = PTR_ERR(q);
2737 goto out_tag_set;
2738 }
2739 md->queue = q;
2740 dm_init_md_queue(md);
2741
2742 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2743 blk_mq_register_disk(md->disk);
2744
2745 return 0;
2746
2747 out_tag_set:
2748 blk_mq_free_tag_set(md->tag_set);
2749 out_kfree_tag_set:
2750 kfree(md->tag_set);
2751
2752 return err;
2753 }
2754
2755 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2756 {
2757 if (type == DM_TYPE_BIO_BASED)
2758 return type;
2759
2760 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2761 }
2762
2763 /*
2764 * Setup the DM device's queue based on md's type
2765 */
2766 int dm_setup_md_queue(struct mapped_device *md)
2767 {
2768 int r;
2769 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2770
2771 switch (md_type) {
2772 case DM_TYPE_REQUEST_BASED:
2773 r = dm_old_init_request_queue(md);
2774 if (r) {
2775 DMERR("Cannot initialize queue for request-based mapped device");
2776 return r;
2777 }
2778 break;
2779 case DM_TYPE_MQ_REQUEST_BASED:
2780 r = dm_mq_init_request_queue(md);
2781 if (r) {
2782 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2783 return r;
2784 }
2785 break;
2786 case DM_TYPE_BIO_BASED:
2787 dm_init_normal_md_queue(md);
2788 blk_queue_make_request(md->queue, dm_make_request);
2789 /*
2790 * DM handles splitting bios as needed. Free the bio_split bioset
2791 * since it won't be used (saves 1 process per bio-based DM device).
2792 */
2793 bioset_free(md->queue->bio_split);
2794 md->queue->bio_split = NULL;
2795 break;
2796 }
2797
2798 return 0;
2799 }
2800
2801 struct mapped_device *dm_get_md(dev_t dev)
2802 {
2803 struct mapped_device *md;
2804 unsigned minor = MINOR(dev);
2805
2806 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2807 return NULL;
2808
2809 spin_lock(&_minor_lock);
2810
2811 md = idr_find(&_minor_idr, minor);
2812 if (md) {
2813 if ((md == MINOR_ALLOCED ||
2814 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2815 dm_deleting_md(md) ||
2816 test_bit(DMF_FREEING, &md->flags))) {
2817 md = NULL;
2818 goto out;
2819 }
2820 dm_get(md);
2821 }
2822
2823 out:
2824 spin_unlock(&_minor_lock);
2825
2826 return md;
2827 }
2828 EXPORT_SYMBOL_GPL(dm_get_md);
2829
2830 void *dm_get_mdptr(struct mapped_device *md)
2831 {
2832 return md->interface_ptr;
2833 }
2834
2835 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2836 {
2837 md->interface_ptr = ptr;
2838 }
2839
2840 void dm_get(struct mapped_device *md)
2841 {
2842 atomic_inc(&md->holders);
2843 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2844 }
2845
2846 int dm_hold(struct mapped_device *md)
2847 {
2848 spin_lock(&_minor_lock);
2849 if (test_bit(DMF_FREEING, &md->flags)) {
2850 spin_unlock(&_minor_lock);
2851 return -EBUSY;
2852 }
2853 dm_get(md);
2854 spin_unlock(&_minor_lock);
2855 return 0;
2856 }
2857 EXPORT_SYMBOL_GPL(dm_hold);
2858
2859 const char *dm_device_name(struct mapped_device *md)
2860 {
2861 return md->name;
2862 }
2863 EXPORT_SYMBOL_GPL(dm_device_name);
2864
2865 static void __dm_destroy(struct mapped_device *md, bool wait)
2866 {
2867 struct dm_table *map;
2868 int srcu_idx;
2869
2870 might_sleep();
2871
2872 spin_lock(&_minor_lock);
2873 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2874 set_bit(DMF_FREEING, &md->flags);
2875 spin_unlock(&_minor_lock);
2876
2877 if (dm_request_based(md) && md->kworker_task)
2878 flush_kthread_worker(&md->kworker);
2879
2880 /*
2881 * Take suspend_lock so that presuspend and postsuspend methods
2882 * do not race with internal suspend.
2883 */
2884 mutex_lock(&md->suspend_lock);
2885 map = dm_get_live_table(md, &srcu_idx);
2886 if (!dm_suspended_md(md)) {
2887 dm_table_presuspend_targets(map);
2888 dm_table_postsuspend_targets(map);
2889 }
2890 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2891 dm_put_live_table(md, srcu_idx);
2892 mutex_unlock(&md->suspend_lock);
2893
2894 /*
2895 * Rare, but there may be I/O requests still going to complete,
2896 * for example. Wait for all references to disappear.
2897 * No one should increment the reference count of the mapped_device,
2898 * after the mapped_device state becomes DMF_FREEING.
2899 */
2900 if (wait)
2901 while (atomic_read(&md->holders))
2902 msleep(1);
2903 else if (atomic_read(&md->holders))
2904 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2905 dm_device_name(md), atomic_read(&md->holders));
2906
2907 dm_sysfs_exit(md);
2908 dm_table_destroy(__unbind(md));
2909 free_dev(md);
2910 }
2911
2912 void dm_destroy(struct mapped_device *md)
2913 {
2914 __dm_destroy(md, true);
2915 }
2916
2917 void dm_destroy_immediate(struct mapped_device *md)
2918 {
2919 __dm_destroy(md, false);
2920 }
2921
2922 void dm_put(struct mapped_device *md)
2923 {
2924 atomic_dec(&md->holders);
2925 }
2926 EXPORT_SYMBOL_GPL(dm_put);
2927
2928 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2929 {
2930 int r = 0;
2931 DECLARE_WAITQUEUE(wait, current);
2932
2933 add_wait_queue(&md->wait, &wait);
2934
2935 while (1) {
2936 set_current_state(interruptible);
2937
2938 if (!md_in_flight(md))
2939 break;
2940
2941 if (interruptible == TASK_INTERRUPTIBLE &&
2942 signal_pending(current)) {
2943 r = -EINTR;
2944 break;
2945 }
2946
2947 io_schedule();
2948 }
2949 set_current_state(TASK_RUNNING);
2950
2951 remove_wait_queue(&md->wait, &wait);
2952
2953 return r;
2954 }
2955
2956 /*
2957 * Process the deferred bios
2958 */
2959 static void dm_wq_work(struct work_struct *work)
2960 {
2961 struct mapped_device *md = container_of(work, struct mapped_device,
2962 work);
2963 struct bio *c;
2964 int srcu_idx;
2965 struct dm_table *map;
2966
2967 map = dm_get_live_table(md, &srcu_idx);
2968
2969 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2970 spin_lock_irq(&md->deferred_lock);
2971 c = bio_list_pop(&md->deferred);
2972 spin_unlock_irq(&md->deferred_lock);
2973
2974 if (!c)
2975 break;
2976
2977 if (dm_request_based(md))
2978 generic_make_request(c);
2979 else
2980 __split_and_process_bio(md, map, c);
2981 }
2982
2983 dm_put_live_table(md, srcu_idx);
2984 }
2985
2986 static void dm_queue_flush(struct mapped_device *md)
2987 {
2988 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2989 smp_mb__after_atomic();
2990 queue_work(md->wq, &md->work);
2991 }
2992
2993 /*
2994 * Swap in a new table, returning the old one for the caller to destroy.
2995 */
2996 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2997 {
2998 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2999 struct queue_limits limits;
3000 int r;
3001
3002 mutex_lock(&md->suspend_lock);
3003
3004 /* device must be suspended */
3005 if (!dm_suspended_md(md))
3006 goto out;
3007
3008 /*
3009 * If the new table has no data devices, retain the existing limits.
3010 * This helps multipath with queue_if_no_path if all paths disappear,
3011 * then new I/O is queued based on these limits, and then some paths
3012 * reappear.
3013 */
3014 if (dm_table_has_no_data_devices(table)) {
3015 live_map = dm_get_live_table_fast(md);
3016 if (live_map)
3017 limits = md->queue->limits;
3018 dm_put_live_table_fast(md);
3019 }
3020
3021 if (!live_map) {
3022 r = dm_calculate_queue_limits(table, &limits);
3023 if (r) {
3024 map = ERR_PTR(r);
3025 goto out;
3026 }
3027 }
3028
3029 map = __bind(md, table, &limits);
3030
3031 out:
3032 mutex_unlock(&md->suspend_lock);
3033 return map;
3034 }
3035
3036 /*
3037 * Functions to lock and unlock any filesystem running on the
3038 * device.
3039 */
3040 static int lock_fs(struct mapped_device *md)
3041 {
3042 int r;
3043
3044 WARN_ON(md->frozen_sb);
3045
3046 md->frozen_sb = freeze_bdev(md->bdev);
3047 if (IS_ERR(md->frozen_sb)) {
3048 r = PTR_ERR(md->frozen_sb);
3049 md->frozen_sb = NULL;
3050 return r;
3051 }
3052
3053 set_bit(DMF_FROZEN, &md->flags);
3054
3055 return 0;
3056 }
3057
3058 static void unlock_fs(struct mapped_device *md)
3059 {
3060 if (!test_bit(DMF_FROZEN, &md->flags))
3061 return;
3062
3063 thaw_bdev(md->bdev, md->frozen_sb);
3064 md->frozen_sb = NULL;
3065 clear_bit(DMF_FROZEN, &md->flags);
3066 }
3067
3068 /*
3069 * If __dm_suspend returns 0, the device is completely quiescent
3070 * now. There is no request-processing activity. All new requests
3071 * are being added to md->deferred list.
3072 *
3073 * Caller must hold md->suspend_lock
3074 */
3075 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3076 unsigned suspend_flags, int interruptible)
3077 {
3078 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3079 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3080 int r;
3081
3082 /*
3083 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3084 * This flag is cleared before dm_suspend returns.
3085 */
3086 if (noflush)
3087 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3088
3089 /*
3090 * This gets reverted if there's an error later and the targets
3091 * provide the .presuspend_undo hook.
3092 */
3093 dm_table_presuspend_targets(map);
3094
3095 /*
3096 * Flush I/O to the device.
3097 * Any I/O submitted after lock_fs() may not be flushed.
3098 * noflush takes precedence over do_lockfs.
3099 * (lock_fs() flushes I/Os and waits for them to complete.)
3100 */
3101 if (!noflush && do_lockfs) {
3102 r = lock_fs(md);
3103 if (r) {
3104 dm_table_presuspend_undo_targets(map);
3105 return r;
3106 }
3107 }
3108
3109 /*
3110 * Here we must make sure that no processes are submitting requests
3111 * to target drivers i.e. no one may be executing
3112 * __split_and_process_bio. This is called from dm_request and
3113 * dm_wq_work.
3114 *
3115 * To get all processes out of __split_and_process_bio in dm_request,
3116 * we take the write lock. To prevent any process from reentering
3117 * __split_and_process_bio from dm_request and quiesce the thread
3118 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3119 * flush_workqueue(md->wq).
3120 */
3121 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3122 if (map)
3123 synchronize_srcu(&md->io_barrier);
3124
3125 /*
3126 * Stop md->queue before flushing md->wq in case request-based
3127 * dm defers requests to md->wq from md->queue.
3128 */
3129 if (dm_request_based(md)) {
3130 dm_stop_queue(md->queue);
3131 if (md->kworker_task)
3132 flush_kthread_worker(&md->kworker);
3133 }
3134
3135 flush_workqueue(md->wq);
3136
3137 /*
3138 * At this point no more requests are entering target request routines.
3139 * We call dm_wait_for_completion to wait for all existing requests
3140 * to finish.
3141 */
3142 r = dm_wait_for_completion(md, interruptible);
3143
3144 if (noflush)
3145 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3146 if (map)
3147 synchronize_srcu(&md->io_barrier);
3148
3149 /* were we interrupted ? */
3150 if (r < 0) {
3151 dm_queue_flush(md);
3152
3153 if (dm_request_based(md))
3154 dm_start_queue(md->queue);
3155
3156 unlock_fs(md);
3157 dm_table_presuspend_undo_targets(map);
3158 /* pushback list is already flushed, so skip flush */
3159 }
3160
3161 return r;
3162 }
3163
3164 /*
3165 * We need to be able to change a mapping table under a mounted
3166 * filesystem. For example we might want to move some data in
3167 * the background. Before the table can be swapped with
3168 * dm_bind_table, dm_suspend must be called to flush any in
3169 * flight bios and ensure that any further io gets deferred.
3170 */
3171 /*
3172 * Suspend mechanism in request-based dm.
3173 *
3174 * 1. Flush all I/Os by lock_fs() if needed.
3175 * 2. Stop dispatching any I/O by stopping the request_queue.
3176 * 3. Wait for all in-flight I/Os to be completed or requeued.
3177 *
3178 * To abort suspend, start the request_queue.
3179 */
3180 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3181 {
3182 struct dm_table *map = NULL;
3183 int r = 0;
3184
3185 retry:
3186 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3187
3188 if (dm_suspended_md(md)) {
3189 r = -EINVAL;
3190 goto out_unlock;
3191 }
3192
3193 if (dm_suspended_internally_md(md)) {
3194 /* already internally suspended, wait for internal resume */
3195 mutex_unlock(&md->suspend_lock);
3196 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3197 if (r)
3198 return r;
3199 goto retry;
3200 }
3201
3202 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3203
3204 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3205 if (r)
3206 goto out_unlock;
3207
3208 set_bit(DMF_SUSPENDED, &md->flags);
3209
3210 dm_table_postsuspend_targets(map);
3211
3212 out_unlock:
3213 mutex_unlock(&md->suspend_lock);
3214 return r;
3215 }
3216
3217 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3218 {
3219 if (map) {
3220 int r = dm_table_resume_targets(map);
3221 if (r)
3222 return r;
3223 }
3224
3225 dm_queue_flush(md);
3226
3227 /*
3228 * Flushing deferred I/Os must be done after targets are resumed
3229 * so that mapping of targets can work correctly.
3230 * Request-based dm is queueing the deferred I/Os in its request_queue.
3231 */
3232 if (dm_request_based(md))
3233 dm_start_queue(md->queue);
3234
3235 unlock_fs(md);
3236
3237 return 0;
3238 }
3239
3240 int dm_resume(struct mapped_device *md)
3241 {
3242 int r = -EINVAL;
3243 struct dm_table *map = NULL;
3244
3245 retry:
3246 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3247
3248 if (!dm_suspended_md(md))
3249 goto out;
3250
3251 if (dm_suspended_internally_md(md)) {
3252 /* already internally suspended, wait for internal resume */
3253 mutex_unlock(&md->suspend_lock);
3254 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3255 if (r)
3256 return r;
3257 goto retry;
3258 }
3259
3260 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3261 if (!map || !dm_table_get_size(map))
3262 goto out;
3263
3264 r = __dm_resume(md, map);
3265 if (r)
3266 goto out;
3267
3268 clear_bit(DMF_SUSPENDED, &md->flags);
3269
3270 r = 0;
3271 out:
3272 mutex_unlock(&md->suspend_lock);
3273
3274 return r;
3275 }
3276
3277 /*
3278 * Internal suspend/resume works like userspace-driven suspend. It waits
3279 * until all bios finish and prevents issuing new bios to the target drivers.
3280 * It may be used only from the kernel.
3281 */
3282
3283 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3284 {
3285 struct dm_table *map = NULL;
3286
3287 if (md->internal_suspend_count++)
3288 return; /* nested internal suspend */
3289
3290 if (dm_suspended_md(md)) {
3291 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3292 return; /* nest suspend */
3293 }
3294
3295 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3296
3297 /*
3298 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3299 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3300 * would require changing .presuspend to return an error -- avoid this
3301 * until there is a need for more elaborate variants of internal suspend.
3302 */
3303 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3304
3305 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3306
3307 dm_table_postsuspend_targets(map);
3308 }
3309
3310 static void __dm_internal_resume(struct mapped_device *md)
3311 {
3312 BUG_ON(!md->internal_suspend_count);
3313
3314 if (--md->internal_suspend_count)
3315 return; /* resume from nested internal suspend */
3316
3317 if (dm_suspended_md(md))
3318 goto done; /* resume from nested suspend */
3319
3320 /*
3321 * NOTE: existing callers don't need to call dm_table_resume_targets
3322 * (which may fail -- so best to avoid it for now by passing NULL map)
3323 */
3324 (void) __dm_resume(md, NULL);
3325
3326 done:
3327 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3328 smp_mb__after_atomic();
3329 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3330 }
3331
3332 void dm_internal_suspend_noflush(struct mapped_device *md)
3333 {
3334 mutex_lock(&md->suspend_lock);
3335 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3336 mutex_unlock(&md->suspend_lock);
3337 }
3338 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3339
3340 void dm_internal_resume(struct mapped_device *md)
3341 {
3342 mutex_lock(&md->suspend_lock);
3343 __dm_internal_resume(md);
3344 mutex_unlock(&md->suspend_lock);
3345 }
3346 EXPORT_SYMBOL_GPL(dm_internal_resume);
3347
3348 /*
3349 * Fast variants of internal suspend/resume hold md->suspend_lock,
3350 * which prevents interaction with userspace-driven suspend.
3351 */
3352
3353 void dm_internal_suspend_fast(struct mapped_device *md)
3354 {
3355 mutex_lock(&md->suspend_lock);
3356 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3357 return;
3358
3359 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3360 synchronize_srcu(&md->io_barrier);
3361 flush_workqueue(md->wq);
3362 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3363 }
3364 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3365
3366 void dm_internal_resume_fast(struct mapped_device *md)
3367 {
3368 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3369 goto done;
3370
3371 dm_queue_flush(md);
3372
3373 done:
3374 mutex_unlock(&md->suspend_lock);
3375 }
3376 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3377
3378 /*-----------------------------------------------------------------
3379 * Event notification.
3380 *---------------------------------------------------------------*/
3381 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3382 unsigned cookie)
3383 {
3384 char udev_cookie[DM_COOKIE_LENGTH];
3385 char *envp[] = { udev_cookie, NULL };
3386
3387 if (!cookie)
3388 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3389 else {
3390 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3391 DM_COOKIE_ENV_VAR_NAME, cookie);
3392 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3393 action, envp);
3394 }
3395 }
3396
3397 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3398 {
3399 return atomic_add_return(1, &md->uevent_seq);
3400 }
3401
3402 uint32_t dm_get_event_nr(struct mapped_device *md)
3403 {
3404 return atomic_read(&md->event_nr);
3405 }
3406
3407 int dm_wait_event(struct mapped_device *md, int event_nr)
3408 {
3409 return wait_event_interruptible(md->eventq,
3410 (event_nr != atomic_read(&md->event_nr)));
3411 }
3412
3413 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3414 {
3415 unsigned long flags;
3416
3417 spin_lock_irqsave(&md->uevent_lock, flags);
3418 list_add(elist, &md->uevent_list);
3419 spin_unlock_irqrestore(&md->uevent_lock, flags);
3420 }
3421
3422 /*
3423 * The gendisk is only valid as long as you have a reference
3424 * count on 'md'.
3425 */
3426 struct gendisk *dm_disk(struct mapped_device *md)
3427 {
3428 return md->disk;
3429 }
3430 EXPORT_SYMBOL_GPL(dm_disk);
3431
3432 struct kobject *dm_kobject(struct mapped_device *md)
3433 {
3434 return &md->kobj_holder.kobj;
3435 }
3436
3437 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3438 {
3439 struct mapped_device *md;
3440
3441 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3442
3443 if (test_bit(DMF_FREEING, &md->flags) ||
3444 dm_deleting_md(md))
3445 return NULL;
3446
3447 dm_get(md);
3448 return md;
3449 }
3450
3451 int dm_suspended_md(struct mapped_device *md)
3452 {
3453 return test_bit(DMF_SUSPENDED, &md->flags);
3454 }
3455
3456 int dm_suspended_internally_md(struct mapped_device *md)
3457 {
3458 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3459 }
3460
3461 int dm_test_deferred_remove_flag(struct mapped_device *md)
3462 {
3463 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3464 }
3465
3466 int dm_suspended(struct dm_target *ti)
3467 {
3468 return dm_suspended_md(dm_table_get_md(ti->table));
3469 }
3470 EXPORT_SYMBOL_GPL(dm_suspended);
3471
3472 int dm_noflush_suspending(struct dm_target *ti)
3473 {
3474 return __noflush_suspending(dm_table_get_md(ti->table));
3475 }
3476 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3477
3478 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3479 unsigned integrity, unsigned per_io_data_size)
3480 {
3481 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3482 struct kmem_cache *cachep = NULL;
3483 unsigned int pool_size = 0;
3484 unsigned int front_pad;
3485
3486 if (!pools)
3487 return NULL;
3488
3489 type = filter_md_type(type, md);
3490
3491 switch (type) {
3492 case DM_TYPE_BIO_BASED:
3493 cachep = _io_cache;
3494 pool_size = dm_get_reserved_bio_based_ios();
3495 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3496 break;
3497 case DM_TYPE_REQUEST_BASED:
3498 cachep = _rq_tio_cache;
3499 pool_size = dm_get_reserved_rq_based_ios();
3500 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3501 if (!pools->rq_pool)
3502 goto out;
3503 /* fall through to setup remaining rq-based pools */
3504 case DM_TYPE_MQ_REQUEST_BASED:
3505 if (!pool_size)
3506 pool_size = dm_get_reserved_rq_based_ios();
3507 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3508 /* per_io_data_size is not used. */
3509 WARN_ON(per_io_data_size != 0);
3510 break;
3511 default:
3512 BUG();
3513 }
3514
3515 if (cachep) {
3516 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3517 if (!pools->io_pool)
3518 goto out;
3519 }
3520
3521 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3522 if (!pools->bs)
3523 goto out;
3524
3525 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3526 goto out;
3527
3528 return pools;
3529
3530 out:
3531 dm_free_md_mempools(pools);
3532
3533 return NULL;
3534 }
3535
3536 void dm_free_md_mempools(struct dm_md_mempools *pools)
3537 {
3538 if (!pools)
3539 return;
3540
3541 mempool_destroy(pools->io_pool);
3542 mempool_destroy(pools->rq_pool);
3543
3544 if (pools->bs)
3545 bioset_free(pools->bs);
3546
3547 kfree(pools);
3548 }
3549
3550 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3551 u32 flags)
3552 {
3553 struct mapped_device *md = bdev->bd_disk->private_data;
3554 const struct pr_ops *ops;
3555 fmode_t mode;
3556 int r;
3557
3558 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3559 if (r < 0)
3560 return r;
3561
3562 ops = bdev->bd_disk->fops->pr_ops;
3563 if (ops && ops->pr_register)
3564 r = ops->pr_register(bdev, old_key, new_key, flags);
3565 else
3566 r = -EOPNOTSUPP;
3567
3568 bdput(bdev);
3569 return r;
3570 }
3571
3572 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3573 u32 flags)
3574 {
3575 struct mapped_device *md = bdev->bd_disk->private_data;
3576 const struct pr_ops *ops;
3577 fmode_t mode;
3578 int r;
3579
3580 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3581 if (r < 0)
3582 return r;
3583
3584 ops = bdev->bd_disk->fops->pr_ops;
3585 if (ops && ops->pr_reserve)
3586 r = ops->pr_reserve(bdev, key, type, flags);
3587 else
3588 r = -EOPNOTSUPP;
3589
3590 bdput(bdev);
3591 return r;
3592 }
3593
3594 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3595 {
3596 struct mapped_device *md = bdev->bd_disk->private_data;
3597 const struct pr_ops *ops;
3598 fmode_t mode;
3599 int r;
3600
3601 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3602 if (r < 0)
3603 return r;
3604
3605 ops = bdev->bd_disk->fops->pr_ops;
3606 if (ops && ops->pr_release)
3607 r = ops->pr_release(bdev, key, type);
3608 else
3609 r = -EOPNOTSUPP;
3610
3611 bdput(bdev);
3612 return r;
3613 }
3614
3615 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3616 enum pr_type type, bool abort)
3617 {
3618 struct mapped_device *md = bdev->bd_disk->private_data;
3619 const struct pr_ops *ops;
3620 fmode_t mode;
3621 int r;
3622
3623 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3624 if (r < 0)
3625 return r;
3626
3627 ops = bdev->bd_disk->fops->pr_ops;
3628 if (ops && ops->pr_preempt)
3629 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3630 else
3631 r = -EOPNOTSUPP;
3632
3633 bdput(bdev);
3634 return r;
3635 }
3636
3637 static int dm_pr_clear(struct block_device *bdev, u64 key)
3638 {
3639 struct mapped_device *md = bdev->bd_disk->private_data;
3640 const struct pr_ops *ops;
3641 fmode_t mode;
3642 int r;
3643
3644 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3645 if (r < 0)
3646 return r;
3647
3648 ops = bdev->bd_disk->fops->pr_ops;
3649 if (ops && ops->pr_clear)
3650 r = ops->pr_clear(bdev, key);
3651 else
3652 r = -EOPNOTSUPP;
3653
3654 bdput(bdev);
3655 return r;
3656 }
3657
3658 static const struct pr_ops dm_pr_ops = {
3659 .pr_register = dm_pr_register,
3660 .pr_reserve = dm_pr_reserve,
3661 .pr_release = dm_pr_release,
3662 .pr_preempt = dm_pr_preempt,
3663 .pr_clear = dm_pr_clear,
3664 };
3665
3666 static const struct block_device_operations dm_blk_dops = {
3667 .open = dm_blk_open,
3668 .release = dm_blk_close,
3669 .ioctl = dm_blk_ioctl,
3670 .getgeo = dm_blk_getgeo,
3671 .pr_ops = &dm_pr_ops,
3672 .owner = THIS_MODULE
3673 };
3674
3675 /*
3676 * module hooks
3677 */
3678 module_init(dm_init);
3679 module_exit(dm_exit);
3680
3681 module_param(major, uint, 0);
3682 MODULE_PARM_DESC(major, "The major number of the device mapper");
3683
3684 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3685 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3686
3687 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3688 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3689
3690 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3691 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3692
3693 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3694 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3695
3696 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3697 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3698
3699 MODULE_DESCRIPTION(DM_NAME " driver");
3700 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3701 MODULE_LICENSE("GPL");
This page took 0.140133 seconds and 4 git commands to generate.