9a0bdad9ad8fad49eaf8ee0d0ad916df247f0f3c
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For request-based dm.
67 * One of these is allocated per request.
68 */
69 struct dm_rq_target_io {
70 struct mapped_device *md;
71 struct dm_target *ti;
72 struct request *orig, clone;
73 int error;
74 union map_info info;
75 };
76
77 /*
78 * For request-based dm - the bio clones we allocate are embedded in these
79 * structs.
80 *
81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82 * the bioset is created - this means the bio has to come at the end of the
83 * struct.
84 */
85 struct dm_rq_clone_bio_info {
86 struct bio *orig;
87 struct dm_rq_target_io *tio;
88 struct bio clone;
89 };
90
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 if (bio && bio->bi_private)
94 return &((struct dm_target_io *)bio->bi_private)->info;
95 return NULL;
96 }
97
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 if (rq && rq->end_io_data)
101 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105
106 #define MINOR_ALLOCED ((void *)-1)
107
108 /*
109 * Bits for the md->flags field.
110 */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118
119 /*
120 * Work processed by per-device workqueue.
121 */
122 struct mapped_device {
123 struct rw_semaphore io_lock;
124 struct mutex suspend_lock;
125 rwlock_t map_lock;
126 atomic_t holders;
127 atomic_t open_count;
128
129 unsigned long flags;
130
131 struct request_queue *queue;
132 unsigned type;
133 /* Protect queue and type against concurrent access. */
134 struct mutex type_lock;
135
136 struct target_type *immutable_target_type;
137
138 struct gendisk *disk;
139 char name[16];
140
141 void *interface_ptr;
142
143 /*
144 * A list of ios that arrived while we were suspended.
145 */
146 atomic_t pending[2];
147 wait_queue_head_t wait;
148 struct work_struct work;
149 struct bio_list deferred;
150 spinlock_t deferred_lock;
151
152 /*
153 * Processing queue (flush)
154 */
155 struct workqueue_struct *wq;
156
157 /*
158 * The current mapping.
159 */
160 struct dm_table *map;
161
162 /*
163 * io objects are allocated from here.
164 */
165 mempool_t *io_pool;
166
167 struct bio_set *bs;
168
169 /*
170 * Event handling.
171 */
172 atomic_t event_nr;
173 wait_queue_head_t eventq;
174 atomic_t uevent_seq;
175 struct list_head uevent_list;
176 spinlock_t uevent_lock; /* Protect access to uevent_list */
177
178 /*
179 * freeze/thaw support require holding onto a super block
180 */
181 struct super_block *frozen_sb;
182 struct block_device *bdev;
183
184 /* forced geometry settings */
185 struct hd_geometry geometry;
186
187 /* sysfs handle */
188 struct kobject kobj;
189
190 /* zero-length flush that will be cloned and submitted to targets */
191 struct bio flush_bio;
192 };
193
194 /*
195 * For mempools pre-allocation at the table loading time.
196 */
197 struct dm_md_mempools {
198 mempool_t *io_pool;
199 struct bio_set *bs;
200 };
201
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_rq_tio_cache;
205
206 static int __init local_init(void)
207 {
208 int r = -ENOMEM;
209
210 /* allocate a slab for the dm_ios */
211 _io_cache = KMEM_CACHE(dm_io, 0);
212 if (!_io_cache)
213 return r;
214
215 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
216 if (!_rq_tio_cache)
217 goto out_free_io_cache;
218
219 r = dm_uevent_init();
220 if (r)
221 goto out_free_rq_tio_cache;
222
223 _major = major;
224 r = register_blkdev(_major, _name);
225 if (r < 0)
226 goto out_uevent_exit;
227
228 if (!_major)
229 _major = r;
230
231 return 0;
232
233 out_uevent_exit:
234 dm_uevent_exit();
235 out_free_rq_tio_cache:
236 kmem_cache_destroy(_rq_tio_cache);
237 out_free_io_cache:
238 kmem_cache_destroy(_io_cache);
239
240 return r;
241 }
242
243 static void local_exit(void)
244 {
245 kmem_cache_destroy(_rq_tio_cache);
246 kmem_cache_destroy(_io_cache);
247 unregister_blkdev(_major, _name);
248 dm_uevent_exit();
249
250 _major = 0;
251
252 DMINFO("cleaned up");
253 }
254
255 static int (*_inits[])(void) __initdata = {
256 local_init,
257 dm_target_init,
258 dm_linear_init,
259 dm_stripe_init,
260 dm_io_init,
261 dm_kcopyd_init,
262 dm_interface_init,
263 };
264
265 static void (*_exits[])(void) = {
266 local_exit,
267 dm_target_exit,
268 dm_linear_exit,
269 dm_stripe_exit,
270 dm_io_exit,
271 dm_kcopyd_exit,
272 dm_interface_exit,
273 };
274
275 static int __init dm_init(void)
276 {
277 const int count = ARRAY_SIZE(_inits);
278
279 int r, i;
280
281 for (i = 0; i < count; i++) {
282 r = _inits[i]();
283 if (r)
284 goto bad;
285 }
286
287 return 0;
288
289 bad:
290 while (i--)
291 _exits[i]();
292
293 return r;
294 }
295
296 static void __exit dm_exit(void)
297 {
298 int i = ARRAY_SIZE(_exits);
299
300 while (i--)
301 _exits[i]();
302
303 /*
304 * Should be empty by this point.
305 */
306 idr_destroy(&_minor_idr);
307 }
308
309 /*
310 * Block device functions
311 */
312 int dm_deleting_md(struct mapped_device *md)
313 {
314 return test_bit(DMF_DELETING, &md->flags);
315 }
316
317 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
318 {
319 struct mapped_device *md;
320
321 spin_lock(&_minor_lock);
322
323 md = bdev->bd_disk->private_data;
324 if (!md)
325 goto out;
326
327 if (test_bit(DMF_FREEING, &md->flags) ||
328 dm_deleting_md(md)) {
329 md = NULL;
330 goto out;
331 }
332
333 dm_get(md);
334 atomic_inc(&md->open_count);
335
336 out:
337 spin_unlock(&_minor_lock);
338
339 return md ? 0 : -ENXIO;
340 }
341
342 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
343 {
344 struct mapped_device *md = disk->private_data;
345
346 spin_lock(&_minor_lock);
347
348 atomic_dec(&md->open_count);
349 dm_put(md);
350
351 spin_unlock(&_minor_lock);
352
353 return 0;
354 }
355
356 int dm_open_count(struct mapped_device *md)
357 {
358 return atomic_read(&md->open_count);
359 }
360
361 /*
362 * Guarantees nothing is using the device before it's deleted.
363 */
364 int dm_lock_for_deletion(struct mapped_device *md)
365 {
366 int r = 0;
367
368 spin_lock(&_minor_lock);
369
370 if (dm_open_count(md))
371 r = -EBUSY;
372 else
373 set_bit(DMF_DELETING, &md->flags);
374
375 spin_unlock(&_minor_lock);
376
377 return r;
378 }
379
380 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
381 {
382 struct mapped_device *md = bdev->bd_disk->private_data;
383
384 return dm_get_geometry(md, geo);
385 }
386
387 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
388 unsigned int cmd, unsigned long arg)
389 {
390 struct mapped_device *md = bdev->bd_disk->private_data;
391 struct dm_table *map = dm_get_live_table(md);
392 struct dm_target *tgt;
393 int r = -ENOTTY;
394
395 if (!map || !dm_table_get_size(map))
396 goto out;
397
398 /* We only support devices that have a single target */
399 if (dm_table_get_num_targets(map) != 1)
400 goto out;
401
402 tgt = dm_table_get_target(map, 0);
403
404 if (dm_suspended_md(md)) {
405 r = -EAGAIN;
406 goto out;
407 }
408
409 if (tgt->type->ioctl)
410 r = tgt->type->ioctl(tgt, cmd, arg);
411
412 out:
413 dm_table_put(map);
414
415 return r;
416 }
417
418 static struct dm_io *alloc_io(struct mapped_device *md)
419 {
420 return mempool_alloc(md->io_pool, GFP_NOIO);
421 }
422
423 static void free_io(struct mapped_device *md, struct dm_io *io)
424 {
425 mempool_free(io, md->io_pool);
426 }
427
428 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
429 {
430 bio_put(&tio->clone);
431 }
432
433 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
434 gfp_t gfp_mask)
435 {
436 return mempool_alloc(md->io_pool, gfp_mask);
437 }
438
439 static void free_rq_tio(struct dm_rq_target_io *tio)
440 {
441 mempool_free(tio, tio->md->io_pool);
442 }
443
444 static int md_in_flight(struct mapped_device *md)
445 {
446 return atomic_read(&md->pending[READ]) +
447 atomic_read(&md->pending[WRITE]);
448 }
449
450 static void start_io_acct(struct dm_io *io)
451 {
452 struct mapped_device *md = io->md;
453 int cpu;
454 int rw = bio_data_dir(io->bio);
455
456 io->start_time = jiffies;
457
458 cpu = part_stat_lock();
459 part_round_stats(cpu, &dm_disk(md)->part0);
460 part_stat_unlock();
461 atomic_set(&dm_disk(md)->part0.in_flight[rw],
462 atomic_inc_return(&md->pending[rw]));
463 }
464
465 static void end_io_acct(struct dm_io *io)
466 {
467 struct mapped_device *md = io->md;
468 struct bio *bio = io->bio;
469 unsigned long duration = jiffies - io->start_time;
470 int pending, cpu;
471 int rw = bio_data_dir(bio);
472
473 cpu = part_stat_lock();
474 part_round_stats(cpu, &dm_disk(md)->part0);
475 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
476 part_stat_unlock();
477
478 /*
479 * After this is decremented the bio must not be touched if it is
480 * a flush.
481 */
482 pending = atomic_dec_return(&md->pending[rw]);
483 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
484 pending += atomic_read(&md->pending[rw^0x1]);
485
486 /* nudge anyone waiting on suspend queue */
487 if (!pending)
488 wake_up(&md->wait);
489 }
490
491 /*
492 * Add the bio to the list of deferred io.
493 */
494 static void queue_io(struct mapped_device *md, struct bio *bio)
495 {
496 unsigned long flags;
497
498 spin_lock_irqsave(&md->deferred_lock, flags);
499 bio_list_add(&md->deferred, bio);
500 spin_unlock_irqrestore(&md->deferred_lock, flags);
501 queue_work(md->wq, &md->work);
502 }
503
504 /*
505 * Everyone (including functions in this file), should use this
506 * function to access the md->map field, and make sure they call
507 * dm_table_put() when finished.
508 */
509 struct dm_table *dm_get_live_table(struct mapped_device *md)
510 {
511 struct dm_table *t;
512 unsigned long flags;
513
514 read_lock_irqsave(&md->map_lock, flags);
515 t = md->map;
516 if (t)
517 dm_table_get(t);
518 read_unlock_irqrestore(&md->map_lock, flags);
519
520 return t;
521 }
522
523 /*
524 * Get the geometry associated with a dm device
525 */
526 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
527 {
528 *geo = md->geometry;
529
530 return 0;
531 }
532
533 /*
534 * Set the geometry of a device.
535 */
536 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
537 {
538 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
539
540 if (geo->start > sz) {
541 DMWARN("Start sector is beyond the geometry limits.");
542 return -EINVAL;
543 }
544
545 md->geometry = *geo;
546
547 return 0;
548 }
549
550 /*-----------------------------------------------------------------
551 * CRUD START:
552 * A more elegant soln is in the works that uses the queue
553 * merge fn, unfortunately there are a couple of changes to
554 * the block layer that I want to make for this. So in the
555 * interests of getting something for people to use I give
556 * you this clearly demarcated crap.
557 *---------------------------------------------------------------*/
558
559 static int __noflush_suspending(struct mapped_device *md)
560 {
561 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
562 }
563
564 /*
565 * Decrements the number of outstanding ios that a bio has been
566 * cloned into, completing the original io if necc.
567 */
568 static void dec_pending(struct dm_io *io, int error)
569 {
570 unsigned long flags;
571 int io_error;
572 struct bio *bio;
573 struct mapped_device *md = io->md;
574
575 /* Push-back supersedes any I/O errors */
576 if (unlikely(error)) {
577 spin_lock_irqsave(&io->endio_lock, flags);
578 if (!(io->error > 0 && __noflush_suspending(md)))
579 io->error = error;
580 spin_unlock_irqrestore(&io->endio_lock, flags);
581 }
582
583 if (atomic_dec_and_test(&io->io_count)) {
584 if (io->error == DM_ENDIO_REQUEUE) {
585 /*
586 * Target requested pushing back the I/O.
587 */
588 spin_lock_irqsave(&md->deferred_lock, flags);
589 if (__noflush_suspending(md))
590 bio_list_add_head(&md->deferred, io->bio);
591 else
592 /* noflush suspend was interrupted. */
593 io->error = -EIO;
594 spin_unlock_irqrestore(&md->deferred_lock, flags);
595 }
596
597 io_error = io->error;
598 bio = io->bio;
599 end_io_acct(io);
600 free_io(md, io);
601
602 if (io_error == DM_ENDIO_REQUEUE)
603 return;
604
605 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
606 /*
607 * Preflush done for flush with data, reissue
608 * without REQ_FLUSH.
609 */
610 bio->bi_rw &= ~REQ_FLUSH;
611 queue_io(md, bio);
612 } else {
613 /* done with normal IO or empty flush */
614 trace_block_bio_complete(md->queue, bio, io_error);
615 bio_endio(bio, io_error);
616 }
617 }
618 }
619
620 static void clone_endio(struct bio *bio, int error)
621 {
622 int r = 0;
623 struct dm_target_io *tio = bio->bi_private;
624 struct dm_io *io = tio->io;
625 struct mapped_device *md = tio->io->md;
626 dm_endio_fn endio = tio->ti->type->end_io;
627
628 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
629 error = -EIO;
630
631 if (endio) {
632 r = endio(tio->ti, bio, error);
633 if (r < 0 || r == DM_ENDIO_REQUEUE)
634 /*
635 * error and requeue request are handled
636 * in dec_pending().
637 */
638 error = r;
639 else if (r == DM_ENDIO_INCOMPLETE)
640 /* The target will handle the io */
641 return;
642 else if (r) {
643 DMWARN("unimplemented target endio return value: %d", r);
644 BUG();
645 }
646 }
647
648 free_tio(md, tio);
649 dec_pending(io, error);
650 }
651
652 /*
653 * Partial completion handling for request-based dm
654 */
655 static void end_clone_bio(struct bio *clone, int error)
656 {
657 struct dm_rq_clone_bio_info *info = clone->bi_private;
658 struct dm_rq_target_io *tio = info->tio;
659 struct bio *bio = info->orig;
660 unsigned int nr_bytes = info->orig->bi_size;
661
662 bio_put(clone);
663
664 if (tio->error)
665 /*
666 * An error has already been detected on the request.
667 * Once error occurred, just let clone->end_io() handle
668 * the remainder.
669 */
670 return;
671 else if (error) {
672 /*
673 * Don't notice the error to the upper layer yet.
674 * The error handling decision is made by the target driver,
675 * when the request is completed.
676 */
677 tio->error = error;
678 return;
679 }
680
681 /*
682 * I/O for the bio successfully completed.
683 * Notice the data completion to the upper layer.
684 */
685
686 /*
687 * bios are processed from the head of the list.
688 * So the completing bio should always be rq->bio.
689 * If it's not, something wrong is happening.
690 */
691 if (tio->orig->bio != bio)
692 DMERR("bio completion is going in the middle of the request");
693
694 /*
695 * Update the original request.
696 * Do not use blk_end_request() here, because it may complete
697 * the original request before the clone, and break the ordering.
698 */
699 blk_update_request(tio->orig, 0, nr_bytes);
700 }
701
702 /*
703 * Don't touch any member of the md after calling this function because
704 * the md may be freed in dm_put() at the end of this function.
705 * Or do dm_get() before calling this function and dm_put() later.
706 */
707 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
708 {
709 atomic_dec(&md->pending[rw]);
710
711 /* nudge anyone waiting on suspend queue */
712 if (!md_in_flight(md))
713 wake_up(&md->wait);
714
715 /*
716 * Run this off this callpath, as drivers could invoke end_io while
717 * inside their request_fn (and holding the queue lock). Calling
718 * back into ->request_fn() could deadlock attempting to grab the
719 * queue lock again.
720 */
721 if (run_queue)
722 blk_run_queue_async(md->queue);
723
724 /*
725 * dm_put() must be at the end of this function. See the comment above
726 */
727 dm_put(md);
728 }
729
730 static void free_rq_clone(struct request *clone)
731 {
732 struct dm_rq_target_io *tio = clone->end_io_data;
733
734 blk_rq_unprep_clone(clone);
735 free_rq_tio(tio);
736 }
737
738 /*
739 * Complete the clone and the original request.
740 * Must be called without queue lock.
741 */
742 static void dm_end_request(struct request *clone, int error)
743 {
744 int rw = rq_data_dir(clone);
745 struct dm_rq_target_io *tio = clone->end_io_data;
746 struct mapped_device *md = tio->md;
747 struct request *rq = tio->orig;
748
749 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
750 rq->errors = clone->errors;
751 rq->resid_len = clone->resid_len;
752
753 if (rq->sense)
754 /*
755 * We are using the sense buffer of the original
756 * request.
757 * So setting the length of the sense data is enough.
758 */
759 rq->sense_len = clone->sense_len;
760 }
761
762 free_rq_clone(clone);
763 blk_end_request_all(rq, error);
764 rq_completed(md, rw, true);
765 }
766
767 static void dm_unprep_request(struct request *rq)
768 {
769 struct request *clone = rq->special;
770
771 rq->special = NULL;
772 rq->cmd_flags &= ~REQ_DONTPREP;
773
774 free_rq_clone(clone);
775 }
776
777 /*
778 * Requeue the original request of a clone.
779 */
780 void dm_requeue_unmapped_request(struct request *clone)
781 {
782 int rw = rq_data_dir(clone);
783 struct dm_rq_target_io *tio = clone->end_io_data;
784 struct mapped_device *md = tio->md;
785 struct request *rq = tio->orig;
786 struct request_queue *q = rq->q;
787 unsigned long flags;
788
789 dm_unprep_request(rq);
790
791 spin_lock_irqsave(q->queue_lock, flags);
792 blk_requeue_request(q, rq);
793 spin_unlock_irqrestore(q->queue_lock, flags);
794
795 rq_completed(md, rw, 0);
796 }
797 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
798
799 static void __stop_queue(struct request_queue *q)
800 {
801 blk_stop_queue(q);
802 }
803
804 static void stop_queue(struct request_queue *q)
805 {
806 unsigned long flags;
807
808 spin_lock_irqsave(q->queue_lock, flags);
809 __stop_queue(q);
810 spin_unlock_irqrestore(q->queue_lock, flags);
811 }
812
813 static void __start_queue(struct request_queue *q)
814 {
815 if (blk_queue_stopped(q))
816 blk_start_queue(q);
817 }
818
819 static void start_queue(struct request_queue *q)
820 {
821 unsigned long flags;
822
823 spin_lock_irqsave(q->queue_lock, flags);
824 __start_queue(q);
825 spin_unlock_irqrestore(q->queue_lock, flags);
826 }
827
828 static void dm_done(struct request *clone, int error, bool mapped)
829 {
830 int r = error;
831 struct dm_rq_target_io *tio = clone->end_io_data;
832 dm_request_endio_fn rq_end_io = NULL;
833
834 if (tio->ti) {
835 rq_end_io = tio->ti->type->rq_end_io;
836
837 if (mapped && rq_end_io)
838 r = rq_end_io(tio->ti, clone, error, &tio->info);
839 }
840
841 if (r <= 0)
842 /* The target wants to complete the I/O */
843 dm_end_request(clone, r);
844 else if (r == DM_ENDIO_INCOMPLETE)
845 /* The target will handle the I/O */
846 return;
847 else if (r == DM_ENDIO_REQUEUE)
848 /* The target wants to requeue the I/O */
849 dm_requeue_unmapped_request(clone);
850 else {
851 DMWARN("unimplemented target endio return value: %d", r);
852 BUG();
853 }
854 }
855
856 /*
857 * Request completion handler for request-based dm
858 */
859 static void dm_softirq_done(struct request *rq)
860 {
861 bool mapped = true;
862 struct request *clone = rq->completion_data;
863 struct dm_rq_target_io *tio = clone->end_io_data;
864
865 if (rq->cmd_flags & REQ_FAILED)
866 mapped = false;
867
868 dm_done(clone, tio->error, mapped);
869 }
870
871 /*
872 * Complete the clone and the original request with the error status
873 * through softirq context.
874 */
875 static void dm_complete_request(struct request *clone, int error)
876 {
877 struct dm_rq_target_io *tio = clone->end_io_data;
878 struct request *rq = tio->orig;
879
880 tio->error = error;
881 rq->completion_data = clone;
882 blk_complete_request(rq);
883 }
884
885 /*
886 * Complete the not-mapped clone and the original request with the error status
887 * through softirq context.
888 * Target's rq_end_io() function isn't called.
889 * This may be used when the target's map_rq() function fails.
890 */
891 void dm_kill_unmapped_request(struct request *clone, int error)
892 {
893 struct dm_rq_target_io *tio = clone->end_io_data;
894 struct request *rq = tio->orig;
895
896 rq->cmd_flags |= REQ_FAILED;
897 dm_complete_request(clone, error);
898 }
899 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
900
901 /*
902 * Called with the queue lock held
903 */
904 static void end_clone_request(struct request *clone, int error)
905 {
906 /*
907 * For just cleaning up the information of the queue in which
908 * the clone was dispatched.
909 * The clone is *NOT* freed actually here because it is alloced from
910 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
911 */
912 __blk_put_request(clone->q, clone);
913
914 /*
915 * Actual request completion is done in a softirq context which doesn't
916 * hold the queue lock. Otherwise, deadlock could occur because:
917 * - another request may be submitted by the upper level driver
918 * of the stacking during the completion
919 * - the submission which requires queue lock may be done
920 * against this queue
921 */
922 dm_complete_request(clone, error);
923 }
924
925 /*
926 * Return maximum size of I/O possible at the supplied sector up to the current
927 * target boundary.
928 */
929 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
930 {
931 sector_t target_offset = dm_target_offset(ti, sector);
932
933 return ti->len - target_offset;
934 }
935
936 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
937 {
938 sector_t len = max_io_len_target_boundary(sector, ti);
939 sector_t offset, max_len;
940
941 /*
942 * Does the target need to split even further?
943 */
944 if (ti->max_io_len) {
945 offset = dm_target_offset(ti, sector);
946 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
947 max_len = sector_div(offset, ti->max_io_len);
948 else
949 max_len = offset & (ti->max_io_len - 1);
950 max_len = ti->max_io_len - max_len;
951
952 if (len > max_len)
953 len = max_len;
954 }
955
956 return len;
957 }
958
959 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
960 {
961 if (len > UINT_MAX) {
962 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
963 (unsigned long long)len, UINT_MAX);
964 ti->error = "Maximum size of target IO is too large";
965 return -EINVAL;
966 }
967
968 ti->max_io_len = (uint32_t) len;
969
970 return 0;
971 }
972 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
973
974 static void __map_bio(struct dm_target_io *tio)
975 {
976 int r;
977 sector_t sector;
978 struct mapped_device *md;
979 struct bio *clone = &tio->clone;
980 struct dm_target *ti = tio->ti;
981
982 clone->bi_end_io = clone_endio;
983 clone->bi_private = tio;
984
985 /*
986 * Map the clone. If r == 0 we don't need to do
987 * anything, the target has assumed ownership of
988 * this io.
989 */
990 atomic_inc(&tio->io->io_count);
991 sector = clone->bi_sector;
992 r = ti->type->map(ti, clone);
993 if (r == DM_MAPIO_REMAPPED) {
994 /* the bio has been remapped so dispatch it */
995
996 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
997 tio->io->bio->bi_bdev->bd_dev, sector);
998
999 generic_make_request(clone);
1000 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1001 /* error the io and bail out, or requeue it if needed */
1002 md = tio->io->md;
1003 dec_pending(tio->io, r);
1004 free_tio(md, tio);
1005 } else if (r) {
1006 DMWARN("unimplemented target map return value: %d", r);
1007 BUG();
1008 }
1009 }
1010
1011 struct clone_info {
1012 struct mapped_device *md;
1013 struct dm_table *map;
1014 struct bio *bio;
1015 struct dm_io *io;
1016 sector_t sector;
1017 sector_t sector_count;
1018 unsigned short idx;
1019 };
1020
1021 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1022 {
1023 bio->bi_sector = sector;
1024 bio->bi_size = to_bytes(len);
1025 }
1026
1027 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1028 {
1029 bio->bi_idx = idx;
1030 bio->bi_vcnt = idx + bv_count;
1031 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1032 }
1033
1034 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1035 unsigned short idx, unsigned len, unsigned offset,
1036 unsigned trim)
1037 {
1038 if (!bio_integrity(bio))
1039 return;
1040
1041 bio_integrity_clone(clone, bio, GFP_NOIO);
1042
1043 if (trim)
1044 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1045 }
1046
1047 /*
1048 * Creates a little bio that just does part of a bvec.
1049 */
1050 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1051 sector_t sector, unsigned short idx,
1052 unsigned offset, unsigned len)
1053 {
1054 struct bio *clone = &tio->clone;
1055 struct bio_vec *bv = bio->bi_io_vec + idx;
1056
1057 *clone->bi_io_vec = *bv;
1058
1059 bio_setup_sector(clone, sector, len);
1060
1061 clone->bi_bdev = bio->bi_bdev;
1062 clone->bi_rw = bio->bi_rw;
1063 clone->bi_vcnt = 1;
1064 clone->bi_io_vec->bv_offset = offset;
1065 clone->bi_io_vec->bv_len = clone->bi_size;
1066 clone->bi_flags |= 1 << BIO_CLONED;
1067
1068 clone_bio_integrity(bio, clone, idx, len, offset, 1);
1069 }
1070
1071 /*
1072 * Creates a bio that consists of range of complete bvecs.
1073 */
1074 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1075 sector_t sector, unsigned short idx,
1076 unsigned short bv_count, unsigned len)
1077 {
1078 struct bio *clone = &tio->clone;
1079 unsigned trim = 0;
1080
1081 __bio_clone(clone, bio);
1082 bio_setup_sector(clone, sector, len);
1083 bio_setup_bv(clone, idx, bv_count);
1084
1085 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1086 trim = 1;
1087 clone_bio_integrity(bio, clone, idx, len, 0, trim);
1088 }
1089
1090 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1091 struct dm_target *ti, int nr_iovecs,
1092 unsigned target_bio_nr)
1093 {
1094 struct dm_target_io *tio;
1095 struct bio *clone;
1096
1097 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1098 tio = container_of(clone, struct dm_target_io, clone);
1099
1100 tio->io = ci->io;
1101 tio->ti = ti;
1102 memset(&tio->info, 0, sizeof(tio->info));
1103 tio->target_bio_nr = target_bio_nr;
1104
1105 return tio;
1106 }
1107
1108 static void __clone_and_map_simple_bio(struct clone_info *ci,
1109 struct dm_target *ti,
1110 unsigned target_bio_nr, sector_t len)
1111 {
1112 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1113 struct bio *clone = &tio->clone;
1114
1115 /*
1116 * Discard requests require the bio's inline iovecs be initialized.
1117 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1118 * and discard, so no need for concern about wasted bvec allocations.
1119 */
1120 __bio_clone(clone, ci->bio);
1121 if (len)
1122 bio_setup_sector(clone, ci->sector, len);
1123
1124 __map_bio(tio);
1125 }
1126
1127 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1128 unsigned num_bios, sector_t len)
1129 {
1130 unsigned target_bio_nr;
1131
1132 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1133 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1134 }
1135
1136 static int __send_empty_flush(struct clone_info *ci)
1137 {
1138 unsigned target_nr = 0;
1139 struct dm_target *ti;
1140
1141 BUG_ON(bio_has_data(ci->bio));
1142 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1143 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1144
1145 return 0;
1146 }
1147
1148 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1149 sector_t sector, int nr_iovecs,
1150 unsigned short idx, unsigned short bv_count,
1151 unsigned offset, unsigned len,
1152 unsigned split_bvec)
1153 {
1154 struct bio *bio = ci->bio;
1155 struct dm_target_io *tio;
1156 unsigned target_bio_nr;
1157 unsigned num_target_bios = 1;
1158
1159 /*
1160 * Does the target want to receive duplicate copies of the bio?
1161 */
1162 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1163 num_target_bios = ti->num_write_bios(ti, bio);
1164
1165 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1166 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1167 if (split_bvec)
1168 clone_split_bio(tio, bio, sector, idx, offset, len);
1169 else
1170 clone_bio(tio, bio, sector, idx, bv_count, len);
1171 __map_bio(tio);
1172 }
1173 }
1174
1175 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1176
1177 static unsigned get_num_discard_bios(struct dm_target *ti)
1178 {
1179 return ti->num_discard_bios;
1180 }
1181
1182 static unsigned get_num_write_same_bios(struct dm_target *ti)
1183 {
1184 return ti->num_write_same_bios;
1185 }
1186
1187 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1188
1189 static bool is_split_required_for_discard(struct dm_target *ti)
1190 {
1191 return ti->split_discard_bios;
1192 }
1193
1194 static int __send_changing_extent_only(struct clone_info *ci,
1195 get_num_bios_fn get_num_bios,
1196 is_split_required_fn is_split_required)
1197 {
1198 struct dm_target *ti;
1199 sector_t len;
1200 unsigned num_bios;
1201
1202 do {
1203 ti = dm_table_find_target(ci->map, ci->sector);
1204 if (!dm_target_is_valid(ti))
1205 return -EIO;
1206
1207 /*
1208 * Even though the device advertised support for this type of
1209 * request, that does not mean every target supports it, and
1210 * reconfiguration might also have changed that since the
1211 * check was performed.
1212 */
1213 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1214 if (!num_bios)
1215 return -EOPNOTSUPP;
1216
1217 if (is_split_required && !is_split_required(ti))
1218 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1219 else
1220 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1221
1222 __send_duplicate_bios(ci, ti, num_bios, len);
1223
1224 ci->sector += len;
1225 } while (ci->sector_count -= len);
1226
1227 return 0;
1228 }
1229
1230 static int __send_discard(struct clone_info *ci)
1231 {
1232 return __send_changing_extent_only(ci, get_num_discard_bios,
1233 is_split_required_for_discard);
1234 }
1235
1236 static int __send_write_same(struct clone_info *ci)
1237 {
1238 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1239 }
1240
1241 /*
1242 * Find maximum number of sectors / bvecs we can process with a single bio.
1243 */
1244 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1245 {
1246 struct bio *bio = ci->bio;
1247 sector_t bv_len, total_len = 0;
1248
1249 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1250 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1251
1252 if (bv_len > max)
1253 break;
1254
1255 max -= bv_len;
1256 total_len += bv_len;
1257 }
1258
1259 return total_len;
1260 }
1261
1262 static int __split_bvec_across_targets(struct clone_info *ci,
1263 struct dm_target *ti, sector_t max)
1264 {
1265 struct bio *bio = ci->bio;
1266 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1267 sector_t remaining = to_sector(bv->bv_len);
1268 unsigned offset = 0;
1269 sector_t len;
1270
1271 do {
1272 if (offset) {
1273 ti = dm_table_find_target(ci->map, ci->sector);
1274 if (!dm_target_is_valid(ti))
1275 return -EIO;
1276
1277 max = max_io_len(ci->sector, ti);
1278 }
1279
1280 len = min(remaining, max);
1281
1282 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1283 bv->bv_offset + offset, len, 1);
1284
1285 ci->sector += len;
1286 ci->sector_count -= len;
1287 offset += to_bytes(len);
1288 } while (remaining -= len);
1289
1290 ci->idx++;
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * Select the correct strategy for processing a non-flush bio.
1297 */
1298 static int __split_and_process_non_flush(struct clone_info *ci)
1299 {
1300 struct bio *bio = ci->bio;
1301 struct dm_target *ti;
1302 sector_t len, max;
1303 int idx;
1304
1305 if (unlikely(bio->bi_rw & REQ_DISCARD))
1306 return __send_discard(ci);
1307 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1308 return __send_write_same(ci);
1309
1310 ti = dm_table_find_target(ci->map, ci->sector);
1311 if (!dm_target_is_valid(ti))
1312 return -EIO;
1313
1314 max = max_io_len(ci->sector, ti);
1315
1316 /*
1317 * Optimise for the simple case where we can do all of
1318 * the remaining io with a single clone.
1319 */
1320 if (ci->sector_count <= max) {
1321 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1322 ci->idx, bio->bi_vcnt - ci->idx, 0,
1323 ci->sector_count, 0);
1324 ci->sector_count = 0;
1325 return 0;
1326 }
1327
1328 /*
1329 * There are some bvecs that don't span targets.
1330 * Do as many of these as possible.
1331 */
1332 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1333 len = __len_within_target(ci, max, &idx);
1334
1335 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1336 ci->idx, idx - ci->idx, 0, len, 0);
1337
1338 ci->sector += len;
1339 ci->sector_count -= len;
1340 ci->idx = idx;
1341
1342 return 0;
1343 }
1344
1345 /*
1346 * Handle a bvec that must be split between two or more targets.
1347 */
1348 return __split_bvec_across_targets(ci, ti, max);
1349 }
1350
1351 /*
1352 * Entry point to split a bio into clones and submit them to the targets.
1353 */
1354 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1355 {
1356 struct clone_info ci;
1357 int error = 0;
1358
1359 ci.map = dm_get_live_table(md);
1360 if (unlikely(!ci.map)) {
1361 bio_io_error(bio);
1362 return;
1363 }
1364
1365 ci.md = md;
1366 ci.io = alloc_io(md);
1367 ci.io->error = 0;
1368 atomic_set(&ci.io->io_count, 1);
1369 ci.io->bio = bio;
1370 ci.io->md = md;
1371 spin_lock_init(&ci.io->endio_lock);
1372 ci.sector = bio->bi_sector;
1373 ci.idx = bio->bi_idx;
1374
1375 start_io_acct(ci.io);
1376
1377 if (bio->bi_rw & REQ_FLUSH) {
1378 ci.bio = &ci.md->flush_bio;
1379 ci.sector_count = 0;
1380 error = __send_empty_flush(&ci);
1381 /* dec_pending submits any data associated with flush */
1382 } else {
1383 ci.bio = bio;
1384 ci.sector_count = bio_sectors(bio);
1385 while (ci.sector_count && !error)
1386 error = __split_and_process_non_flush(&ci);
1387 }
1388
1389 /* drop the extra reference count */
1390 dec_pending(ci.io, error);
1391 dm_table_put(ci.map);
1392 }
1393 /*-----------------------------------------------------------------
1394 * CRUD END
1395 *---------------------------------------------------------------*/
1396
1397 static int dm_merge_bvec(struct request_queue *q,
1398 struct bvec_merge_data *bvm,
1399 struct bio_vec *biovec)
1400 {
1401 struct mapped_device *md = q->queuedata;
1402 struct dm_table *map = dm_get_live_table(md);
1403 struct dm_target *ti;
1404 sector_t max_sectors;
1405 int max_size = 0;
1406
1407 if (unlikely(!map))
1408 goto out;
1409
1410 ti = dm_table_find_target(map, bvm->bi_sector);
1411 if (!dm_target_is_valid(ti))
1412 goto out_table;
1413
1414 /*
1415 * Find maximum amount of I/O that won't need splitting
1416 */
1417 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1418 (sector_t) BIO_MAX_SECTORS);
1419 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1420 if (max_size < 0)
1421 max_size = 0;
1422
1423 /*
1424 * merge_bvec_fn() returns number of bytes
1425 * it can accept at this offset
1426 * max is precomputed maximal io size
1427 */
1428 if (max_size && ti->type->merge)
1429 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1430 /*
1431 * If the target doesn't support merge method and some of the devices
1432 * provided their merge_bvec method (we know this by looking at
1433 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1434 * entries. So always set max_size to 0, and the code below allows
1435 * just one page.
1436 */
1437 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1438
1439 max_size = 0;
1440
1441 out_table:
1442 dm_table_put(map);
1443
1444 out:
1445 /*
1446 * Always allow an entire first page
1447 */
1448 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1449 max_size = biovec->bv_len;
1450
1451 return max_size;
1452 }
1453
1454 /*
1455 * The request function that just remaps the bio built up by
1456 * dm_merge_bvec.
1457 */
1458 static void _dm_request(struct request_queue *q, struct bio *bio)
1459 {
1460 int rw = bio_data_dir(bio);
1461 struct mapped_device *md = q->queuedata;
1462 int cpu;
1463
1464 down_read(&md->io_lock);
1465
1466 cpu = part_stat_lock();
1467 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1468 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1469 part_stat_unlock();
1470
1471 /* if we're suspended, we have to queue this io for later */
1472 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1473 up_read(&md->io_lock);
1474
1475 if (bio_rw(bio) != READA)
1476 queue_io(md, bio);
1477 else
1478 bio_io_error(bio);
1479 return;
1480 }
1481
1482 __split_and_process_bio(md, bio);
1483 up_read(&md->io_lock);
1484 return;
1485 }
1486
1487 static int dm_request_based(struct mapped_device *md)
1488 {
1489 return blk_queue_stackable(md->queue);
1490 }
1491
1492 static void dm_request(struct request_queue *q, struct bio *bio)
1493 {
1494 struct mapped_device *md = q->queuedata;
1495
1496 if (dm_request_based(md))
1497 blk_queue_bio(q, bio);
1498 else
1499 _dm_request(q, bio);
1500 }
1501
1502 void dm_dispatch_request(struct request *rq)
1503 {
1504 int r;
1505
1506 if (blk_queue_io_stat(rq->q))
1507 rq->cmd_flags |= REQ_IO_STAT;
1508
1509 rq->start_time = jiffies;
1510 r = blk_insert_cloned_request(rq->q, rq);
1511 if (r)
1512 dm_complete_request(rq, r);
1513 }
1514 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1515
1516 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1517 void *data)
1518 {
1519 struct dm_rq_target_io *tio = data;
1520 struct dm_rq_clone_bio_info *info =
1521 container_of(bio, struct dm_rq_clone_bio_info, clone);
1522
1523 info->orig = bio_orig;
1524 info->tio = tio;
1525 bio->bi_end_io = end_clone_bio;
1526 bio->bi_private = info;
1527
1528 return 0;
1529 }
1530
1531 static int setup_clone(struct request *clone, struct request *rq,
1532 struct dm_rq_target_io *tio)
1533 {
1534 int r;
1535
1536 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1537 dm_rq_bio_constructor, tio);
1538 if (r)
1539 return r;
1540
1541 clone->cmd = rq->cmd;
1542 clone->cmd_len = rq->cmd_len;
1543 clone->sense = rq->sense;
1544 clone->buffer = rq->buffer;
1545 clone->end_io = end_clone_request;
1546 clone->end_io_data = tio;
1547
1548 return 0;
1549 }
1550
1551 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1552 gfp_t gfp_mask)
1553 {
1554 struct request *clone;
1555 struct dm_rq_target_io *tio;
1556
1557 tio = alloc_rq_tio(md, gfp_mask);
1558 if (!tio)
1559 return NULL;
1560
1561 tio->md = md;
1562 tio->ti = NULL;
1563 tio->orig = rq;
1564 tio->error = 0;
1565 memset(&tio->info, 0, sizeof(tio->info));
1566
1567 clone = &tio->clone;
1568 if (setup_clone(clone, rq, tio)) {
1569 /* -ENOMEM */
1570 free_rq_tio(tio);
1571 return NULL;
1572 }
1573
1574 return clone;
1575 }
1576
1577 /*
1578 * Called with the queue lock held.
1579 */
1580 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1581 {
1582 struct mapped_device *md = q->queuedata;
1583 struct request *clone;
1584
1585 if (unlikely(rq->special)) {
1586 DMWARN("Already has something in rq->special.");
1587 return BLKPREP_KILL;
1588 }
1589
1590 clone = clone_rq(rq, md, GFP_ATOMIC);
1591 if (!clone)
1592 return BLKPREP_DEFER;
1593
1594 rq->special = clone;
1595 rq->cmd_flags |= REQ_DONTPREP;
1596
1597 return BLKPREP_OK;
1598 }
1599
1600 /*
1601 * Returns:
1602 * 0 : the request has been processed (not requeued)
1603 * !0 : the request has been requeued
1604 */
1605 static int map_request(struct dm_target *ti, struct request *clone,
1606 struct mapped_device *md)
1607 {
1608 int r, requeued = 0;
1609 struct dm_rq_target_io *tio = clone->end_io_data;
1610
1611 tio->ti = ti;
1612 r = ti->type->map_rq(ti, clone, &tio->info);
1613 switch (r) {
1614 case DM_MAPIO_SUBMITTED:
1615 /* The target has taken the I/O to submit by itself later */
1616 break;
1617 case DM_MAPIO_REMAPPED:
1618 /* The target has remapped the I/O so dispatch it */
1619 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1620 blk_rq_pos(tio->orig));
1621 dm_dispatch_request(clone);
1622 break;
1623 case DM_MAPIO_REQUEUE:
1624 /* The target wants to requeue the I/O */
1625 dm_requeue_unmapped_request(clone);
1626 requeued = 1;
1627 break;
1628 default:
1629 if (r > 0) {
1630 DMWARN("unimplemented target map return value: %d", r);
1631 BUG();
1632 }
1633
1634 /* The target wants to complete the I/O */
1635 dm_kill_unmapped_request(clone, r);
1636 break;
1637 }
1638
1639 return requeued;
1640 }
1641
1642 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1643 {
1644 struct request *clone;
1645
1646 blk_start_request(orig);
1647 clone = orig->special;
1648 atomic_inc(&md->pending[rq_data_dir(clone)]);
1649
1650 /*
1651 * Hold the md reference here for the in-flight I/O.
1652 * We can't rely on the reference count by device opener,
1653 * because the device may be closed during the request completion
1654 * when all bios are completed.
1655 * See the comment in rq_completed() too.
1656 */
1657 dm_get(md);
1658
1659 return clone;
1660 }
1661
1662 /*
1663 * q->request_fn for request-based dm.
1664 * Called with the queue lock held.
1665 */
1666 static void dm_request_fn(struct request_queue *q)
1667 {
1668 struct mapped_device *md = q->queuedata;
1669 struct dm_table *map = dm_get_live_table(md);
1670 struct dm_target *ti;
1671 struct request *rq, *clone;
1672 sector_t pos;
1673
1674 /*
1675 * For suspend, check blk_queue_stopped() and increment
1676 * ->pending within a single queue_lock not to increment the
1677 * number of in-flight I/Os after the queue is stopped in
1678 * dm_suspend().
1679 */
1680 while (!blk_queue_stopped(q)) {
1681 rq = blk_peek_request(q);
1682 if (!rq)
1683 goto delay_and_out;
1684
1685 /* always use block 0 to find the target for flushes for now */
1686 pos = 0;
1687 if (!(rq->cmd_flags & REQ_FLUSH))
1688 pos = blk_rq_pos(rq);
1689
1690 ti = dm_table_find_target(map, pos);
1691 if (!dm_target_is_valid(ti)) {
1692 /*
1693 * Must perform setup, that dm_done() requires,
1694 * before calling dm_kill_unmapped_request
1695 */
1696 DMERR_LIMIT("request attempted access beyond the end of device");
1697 clone = dm_start_request(md, rq);
1698 dm_kill_unmapped_request(clone, -EIO);
1699 continue;
1700 }
1701
1702 if (ti->type->busy && ti->type->busy(ti))
1703 goto delay_and_out;
1704
1705 clone = dm_start_request(md, rq);
1706
1707 spin_unlock(q->queue_lock);
1708 if (map_request(ti, clone, md))
1709 goto requeued;
1710
1711 BUG_ON(!irqs_disabled());
1712 spin_lock(q->queue_lock);
1713 }
1714
1715 goto out;
1716
1717 requeued:
1718 BUG_ON(!irqs_disabled());
1719 spin_lock(q->queue_lock);
1720
1721 delay_and_out:
1722 blk_delay_queue(q, HZ / 10);
1723 out:
1724 dm_table_put(map);
1725 }
1726
1727 int dm_underlying_device_busy(struct request_queue *q)
1728 {
1729 return blk_lld_busy(q);
1730 }
1731 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1732
1733 static int dm_lld_busy(struct request_queue *q)
1734 {
1735 int r;
1736 struct mapped_device *md = q->queuedata;
1737 struct dm_table *map = dm_get_live_table(md);
1738
1739 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1740 r = 1;
1741 else
1742 r = dm_table_any_busy_target(map);
1743
1744 dm_table_put(map);
1745
1746 return r;
1747 }
1748
1749 static int dm_any_congested(void *congested_data, int bdi_bits)
1750 {
1751 int r = bdi_bits;
1752 struct mapped_device *md = congested_data;
1753 struct dm_table *map;
1754
1755 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1756 map = dm_get_live_table(md);
1757 if (map) {
1758 /*
1759 * Request-based dm cares about only own queue for
1760 * the query about congestion status of request_queue
1761 */
1762 if (dm_request_based(md))
1763 r = md->queue->backing_dev_info.state &
1764 bdi_bits;
1765 else
1766 r = dm_table_any_congested(map, bdi_bits);
1767
1768 dm_table_put(map);
1769 }
1770 }
1771
1772 return r;
1773 }
1774
1775 /*-----------------------------------------------------------------
1776 * An IDR is used to keep track of allocated minor numbers.
1777 *---------------------------------------------------------------*/
1778 static void free_minor(int minor)
1779 {
1780 spin_lock(&_minor_lock);
1781 idr_remove(&_minor_idr, minor);
1782 spin_unlock(&_minor_lock);
1783 }
1784
1785 /*
1786 * See if the device with a specific minor # is free.
1787 */
1788 static int specific_minor(int minor)
1789 {
1790 int r;
1791
1792 if (minor >= (1 << MINORBITS))
1793 return -EINVAL;
1794
1795 idr_preload(GFP_KERNEL);
1796 spin_lock(&_minor_lock);
1797
1798 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1799
1800 spin_unlock(&_minor_lock);
1801 idr_preload_end();
1802 if (r < 0)
1803 return r == -ENOSPC ? -EBUSY : r;
1804 return 0;
1805 }
1806
1807 static int next_free_minor(int *minor)
1808 {
1809 int r;
1810
1811 idr_preload(GFP_KERNEL);
1812 spin_lock(&_minor_lock);
1813
1814 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1815
1816 spin_unlock(&_minor_lock);
1817 idr_preload_end();
1818 if (r < 0)
1819 return r;
1820 *minor = r;
1821 return 0;
1822 }
1823
1824 static const struct block_device_operations dm_blk_dops;
1825
1826 static void dm_wq_work(struct work_struct *work);
1827
1828 static void dm_init_md_queue(struct mapped_device *md)
1829 {
1830 /*
1831 * Request-based dm devices cannot be stacked on top of bio-based dm
1832 * devices. The type of this dm device has not been decided yet.
1833 * The type is decided at the first table loading time.
1834 * To prevent problematic device stacking, clear the queue flag
1835 * for request stacking support until then.
1836 *
1837 * This queue is new, so no concurrency on the queue_flags.
1838 */
1839 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1840
1841 md->queue->queuedata = md;
1842 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1843 md->queue->backing_dev_info.congested_data = md;
1844 blk_queue_make_request(md->queue, dm_request);
1845 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1846 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1847 }
1848
1849 /*
1850 * Allocate and initialise a blank device with a given minor.
1851 */
1852 static struct mapped_device *alloc_dev(int minor)
1853 {
1854 int r;
1855 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1856 void *old_md;
1857
1858 if (!md) {
1859 DMWARN("unable to allocate device, out of memory.");
1860 return NULL;
1861 }
1862
1863 if (!try_module_get(THIS_MODULE))
1864 goto bad_module_get;
1865
1866 /* get a minor number for the dev */
1867 if (minor == DM_ANY_MINOR)
1868 r = next_free_minor(&minor);
1869 else
1870 r = specific_minor(minor);
1871 if (r < 0)
1872 goto bad_minor;
1873
1874 md->type = DM_TYPE_NONE;
1875 init_rwsem(&md->io_lock);
1876 mutex_init(&md->suspend_lock);
1877 mutex_init(&md->type_lock);
1878 spin_lock_init(&md->deferred_lock);
1879 rwlock_init(&md->map_lock);
1880 atomic_set(&md->holders, 1);
1881 atomic_set(&md->open_count, 0);
1882 atomic_set(&md->event_nr, 0);
1883 atomic_set(&md->uevent_seq, 0);
1884 INIT_LIST_HEAD(&md->uevent_list);
1885 spin_lock_init(&md->uevent_lock);
1886
1887 md->queue = blk_alloc_queue(GFP_KERNEL);
1888 if (!md->queue)
1889 goto bad_queue;
1890
1891 dm_init_md_queue(md);
1892
1893 md->disk = alloc_disk(1);
1894 if (!md->disk)
1895 goto bad_disk;
1896
1897 atomic_set(&md->pending[0], 0);
1898 atomic_set(&md->pending[1], 0);
1899 init_waitqueue_head(&md->wait);
1900 INIT_WORK(&md->work, dm_wq_work);
1901 init_waitqueue_head(&md->eventq);
1902
1903 md->disk->major = _major;
1904 md->disk->first_minor = minor;
1905 md->disk->fops = &dm_blk_dops;
1906 md->disk->queue = md->queue;
1907 md->disk->private_data = md;
1908 sprintf(md->disk->disk_name, "dm-%d", minor);
1909 add_disk(md->disk);
1910 format_dev_t(md->name, MKDEV(_major, minor));
1911
1912 md->wq = alloc_workqueue("kdmflush",
1913 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1914 if (!md->wq)
1915 goto bad_thread;
1916
1917 md->bdev = bdget_disk(md->disk, 0);
1918 if (!md->bdev)
1919 goto bad_bdev;
1920
1921 bio_init(&md->flush_bio);
1922 md->flush_bio.bi_bdev = md->bdev;
1923 md->flush_bio.bi_rw = WRITE_FLUSH;
1924
1925 /* Populate the mapping, nobody knows we exist yet */
1926 spin_lock(&_minor_lock);
1927 old_md = idr_replace(&_minor_idr, md, minor);
1928 spin_unlock(&_minor_lock);
1929
1930 BUG_ON(old_md != MINOR_ALLOCED);
1931
1932 return md;
1933
1934 bad_bdev:
1935 destroy_workqueue(md->wq);
1936 bad_thread:
1937 del_gendisk(md->disk);
1938 put_disk(md->disk);
1939 bad_disk:
1940 blk_cleanup_queue(md->queue);
1941 bad_queue:
1942 free_minor(minor);
1943 bad_minor:
1944 module_put(THIS_MODULE);
1945 bad_module_get:
1946 kfree(md);
1947 return NULL;
1948 }
1949
1950 static void unlock_fs(struct mapped_device *md);
1951
1952 static void free_dev(struct mapped_device *md)
1953 {
1954 int minor = MINOR(disk_devt(md->disk));
1955
1956 unlock_fs(md);
1957 bdput(md->bdev);
1958 destroy_workqueue(md->wq);
1959 if (md->io_pool)
1960 mempool_destroy(md->io_pool);
1961 if (md->bs)
1962 bioset_free(md->bs);
1963 blk_integrity_unregister(md->disk);
1964 del_gendisk(md->disk);
1965 free_minor(minor);
1966
1967 spin_lock(&_minor_lock);
1968 md->disk->private_data = NULL;
1969 spin_unlock(&_minor_lock);
1970
1971 put_disk(md->disk);
1972 blk_cleanup_queue(md->queue);
1973 module_put(THIS_MODULE);
1974 kfree(md);
1975 }
1976
1977 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1978 {
1979 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1980
1981 if (md->io_pool && md->bs) {
1982 /* The md already has necessary mempools. */
1983 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1984 /*
1985 * Reload bioset because front_pad may have changed
1986 * because a different table was loaded.
1987 */
1988 bioset_free(md->bs);
1989 md->bs = p->bs;
1990 p->bs = NULL;
1991 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
1992 /*
1993 * There's no need to reload with request-based dm
1994 * because the size of front_pad doesn't change.
1995 * Note for future: If you are to reload bioset,
1996 * prep-ed requests in the queue may refer
1997 * to bio from the old bioset, so you must walk
1998 * through the queue to unprep.
1999 */
2000 }
2001 goto out;
2002 }
2003
2004 BUG_ON(!p || md->io_pool || md->bs);
2005
2006 md->io_pool = p->io_pool;
2007 p->io_pool = NULL;
2008 md->bs = p->bs;
2009 p->bs = NULL;
2010
2011 out:
2012 /* mempool bind completed, now no need any mempools in the table */
2013 dm_table_free_md_mempools(t);
2014 }
2015
2016 /*
2017 * Bind a table to the device.
2018 */
2019 static void event_callback(void *context)
2020 {
2021 unsigned long flags;
2022 LIST_HEAD(uevents);
2023 struct mapped_device *md = (struct mapped_device *) context;
2024
2025 spin_lock_irqsave(&md->uevent_lock, flags);
2026 list_splice_init(&md->uevent_list, &uevents);
2027 spin_unlock_irqrestore(&md->uevent_lock, flags);
2028
2029 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2030
2031 atomic_inc(&md->event_nr);
2032 wake_up(&md->eventq);
2033 }
2034
2035 /*
2036 * Protected by md->suspend_lock obtained by dm_swap_table().
2037 */
2038 static void __set_size(struct mapped_device *md, sector_t size)
2039 {
2040 set_capacity(md->disk, size);
2041
2042 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2043 }
2044
2045 /*
2046 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2047 *
2048 * If this function returns 0, then the device is either a non-dm
2049 * device without a merge_bvec_fn, or it is a dm device that is
2050 * able to split any bios it receives that are too big.
2051 */
2052 int dm_queue_merge_is_compulsory(struct request_queue *q)
2053 {
2054 struct mapped_device *dev_md;
2055
2056 if (!q->merge_bvec_fn)
2057 return 0;
2058
2059 if (q->make_request_fn == dm_request) {
2060 dev_md = q->queuedata;
2061 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2062 return 0;
2063 }
2064
2065 return 1;
2066 }
2067
2068 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2069 struct dm_dev *dev, sector_t start,
2070 sector_t len, void *data)
2071 {
2072 struct block_device *bdev = dev->bdev;
2073 struct request_queue *q = bdev_get_queue(bdev);
2074
2075 return dm_queue_merge_is_compulsory(q);
2076 }
2077
2078 /*
2079 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2080 * on the properties of the underlying devices.
2081 */
2082 static int dm_table_merge_is_optional(struct dm_table *table)
2083 {
2084 unsigned i = 0;
2085 struct dm_target *ti;
2086
2087 while (i < dm_table_get_num_targets(table)) {
2088 ti = dm_table_get_target(table, i++);
2089
2090 if (ti->type->iterate_devices &&
2091 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2092 return 0;
2093 }
2094
2095 return 1;
2096 }
2097
2098 /*
2099 * Returns old map, which caller must destroy.
2100 */
2101 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2102 struct queue_limits *limits)
2103 {
2104 struct dm_table *old_map;
2105 struct request_queue *q = md->queue;
2106 sector_t size;
2107 unsigned long flags;
2108 int merge_is_optional;
2109
2110 size = dm_table_get_size(t);
2111
2112 /*
2113 * Wipe any geometry if the size of the table changed.
2114 */
2115 if (size != get_capacity(md->disk))
2116 memset(&md->geometry, 0, sizeof(md->geometry));
2117
2118 __set_size(md, size);
2119
2120 dm_table_event_callback(t, event_callback, md);
2121
2122 /*
2123 * The queue hasn't been stopped yet, if the old table type wasn't
2124 * for request-based during suspension. So stop it to prevent
2125 * I/O mapping before resume.
2126 * This must be done before setting the queue restrictions,
2127 * because request-based dm may be run just after the setting.
2128 */
2129 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2130 stop_queue(q);
2131
2132 __bind_mempools(md, t);
2133
2134 merge_is_optional = dm_table_merge_is_optional(t);
2135
2136 write_lock_irqsave(&md->map_lock, flags);
2137 old_map = md->map;
2138 md->map = t;
2139 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2140
2141 dm_table_set_restrictions(t, q, limits);
2142 if (merge_is_optional)
2143 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2144 else
2145 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2146 write_unlock_irqrestore(&md->map_lock, flags);
2147
2148 return old_map;
2149 }
2150
2151 /*
2152 * Returns unbound table for the caller to free.
2153 */
2154 static struct dm_table *__unbind(struct mapped_device *md)
2155 {
2156 struct dm_table *map = md->map;
2157 unsigned long flags;
2158
2159 if (!map)
2160 return NULL;
2161
2162 dm_table_event_callback(map, NULL, NULL);
2163 write_lock_irqsave(&md->map_lock, flags);
2164 md->map = NULL;
2165 write_unlock_irqrestore(&md->map_lock, flags);
2166
2167 return map;
2168 }
2169
2170 /*
2171 * Constructor for a new device.
2172 */
2173 int dm_create(int minor, struct mapped_device **result)
2174 {
2175 struct mapped_device *md;
2176
2177 md = alloc_dev(minor);
2178 if (!md)
2179 return -ENXIO;
2180
2181 dm_sysfs_init(md);
2182
2183 *result = md;
2184 return 0;
2185 }
2186
2187 /*
2188 * Functions to manage md->type.
2189 * All are required to hold md->type_lock.
2190 */
2191 void dm_lock_md_type(struct mapped_device *md)
2192 {
2193 mutex_lock(&md->type_lock);
2194 }
2195
2196 void dm_unlock_md_type(struct mapped_device *md)
2197 {
2198 mutex_unlock(&md->type_lock);
2199 }
2200
2201 void dm_set_md_type(struct mapped_device *md, unsigned type)
2202 {
2203 md->type = type;
2204 }
2205
2206 unsigned dm_get_md_type(struct mapped_device *md)
2207 {
2208 return md->type;
2209 }
2210
2211 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2212 {
2213 return md->immutable_target_type;
2214 }
2215
2216 /*
2217 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2218 */
2219 static int dm_init_request_based_queue(struct mapped_device *md)
2220 {
2221 struct request_queue *q = NULL;
2222
2223 if (md->queue->elevator)
2224 return 1;
2225
2226 /* Fully initialize the queue */
2227 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2228 if (!q)
2229 return 0;
2230
2231 md->queue = q;
2232 dm_init_md_queue(md);
2233 blk_queue_softirq_done(md->queue, dm_softirq_done);
2234 blk_queue_prep_rq(md->queue, dm_prep_fn);
2235 blk_queue_lld_busy(md->queue, dm_lld_busy);
2236
2237 elv_register_queue(md->queue);
2238
2239 return 1;
2240 }
2241
2242 /*
2243 * Setup the DM device's queue based on md's type
2244 */
2245 int dm_setup_md_queue(struct mapped_device *md)
2246 {
2247 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2248 !dm_init_request_based_queue(md)) {
2249 DMWARN("Cannot initialize queue for request-based mapped device");
2250 return -EINVAL;
2251 }
2252
2253 return 0;
2254 }
2255
2256 static struct mapped_device *dm_find_md(dev_t dev)
2257 {
2258 struct mapped_device *md;
2259 unsigned minor = MINOR(dev);
2260
2261 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2262 return NULL;
2263
2264 spin_lock(&_minor_lock);
2265
2266 md = idr_find(&_minor_idr, minor);
2267 if (md && (md == MINOR_ALLOCED ||
2268 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2269 dm_deleting_md(md) ||
2270 test_bit(DMF_FREEING, &md->flags))) {
2271 md = NULL;
2272 goto out;
2273 }
2274
2275 out:
2276 spin_unlock(&_minor_lock);
2277
2278 return md;
2279 }
2280
2281 struct mapped_device *dm_get_md(dev_t dev)
2282 {
2283 struct mapped_device *md = dm_find_md(dev);
2284
2285 if (md)
2286 dm_get(md);
2287
2288 return md;
2289 }
2290 EXPORT_SYMBOL_GPL(dm_get_md);
2291
2292 void *dm_get_mdptr(struct mapped_device *md)
2293 {
2294 return md->interface_ptr;
2295 }
2296
2297 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2298 {
2299 md->interface_ptr = ptr;
2300 }
2301
2302 void dm_get(struct mapped_device *md)
2303 {
2304 atomic_inc(&md->holders);
2305 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2306 }
2307
2308 const char *dm_device_name(struct mapped_device *md)
2309 {
2310 return md->name;
2311 }
2312 EXPORT_SYMBOL_GPL(dm_device_name);
2313
2314 static void __dm_destroy(struct mapped_device *md, bool wait)
2315 {
2316 struct dm_table *map;
2317
2318 might_sleep();
2319
2320 spin_lock(&_minor_lock);
2321 map = dm_get_live_table(md);
2322 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2323 set_bit(DMF_FREEING, &md->flags);
2324 spin_unlock(&_minor_lock);
2325
2326 if (!dm_suspended_md(md)) {
2327 dm_table_presuspend_targets(map);
2328 dm_table_postsuspend_targets(map);
2329 }
2330
2331 /*
2332 * Rare, but there may be I/O requests still going to complete,
2333 * for example. Wait for all references to disappear.
2334 * No one should increment the reference count of the mapped_device,
2335 * after the mapped_device state becomes DMF_FREEING.
2336 */
2337 if (wait)
2338 while (atomic_read(&md->holders))
2339 msleep(1);
2340 else if (atomic_read(&md->holders))
2341 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2342 dm_device_name(md), atomic_read(&md->holders));
2343
2344 dm_sysfs_exit(md);
2345 dm_table_put(map);
2346 dm_table_destroy(__unbind(md));
2347 free_dev(md);
2348 }
2349
2350 void dm_destroy(struct mapped_device *md)
2351 {
2352 __dm_destroy(md, true);
2353 }
2354
2355 void dm_destroy_immediate(struct mapped_device *md)
2356 {
2357 __dm_destroy(md, false);
2358 }
2359
2360 void dm_put(struct mapped_device *md)
2361 {
2362 atomic_dec(&md->holders);
2363 }
2364 EXPORT_SYMBOL_GPL(dm_put);
2365
2366 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2367 {
2368 int r = 0;
2369 DECLARE_WAITQUEUE(wait, current);
2370
2371 add_wait_queue(&md->wait, &wait);
2372
2373 while (1) {
2374 set_current_state(interruptible);
2375
2376 if (!md_in_flight(md))
2377 break;
2378
2379 if (interruptible == TASK_INTERRUPTIBLE &&
2380 signal_pending(current)) {
2381 r = -EINTR;
2382 break;
2383 }
2384
2385 io_schedule();
2386 }
2387 set_current_state(TASK_RUNNING);
2388
2389 remove_wait_queue(&md->wait, &wait);
2390
2391 return r;
2392 }
2393
2394 /*
2395 * Process the deferred bios
2396 */
2397 static void dm_wq_work(struct work_struct *work)
2398 {
2399 struct mapped_device *md = container_of(work, struct mapped_device,
2400 work);
2401 struct bio *c;
2402
2403 down_read(&md->io_lock);
2404
2405 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2406 spin_lock_irq(&md->deferred_lock);
2407 c = bio_list_pop(&md->deferred);
2408 spin_unlock_irq(&md->deferred_lock);
2409
2410 if (!c)
2411 break;
2412
2413 up_read(&md->io_lock);
2414
2415 if (dm_request_based(md))
2416 generic_make_request(c);
2417 else
2418 __split_and_process_bio(md, c);
2419
2420 down_read(&md->io_lock);
2421 }
2422
2423 up_read(&md->io_lock);
2424 }
2425
2426 static void dm_queue_flush(struct mapped_device *md)
2427 {
2428 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2429 smp_mb__after_clear_bit();
2430 queue_work(md->wq, &md->work);
2431 }
2432
2433 /*
2434 * Swap in a new table, returning the old one for the caller to destroy.
2435 */
2436 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2437 {
2438 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2439 struct queue_limits limits;
2440 int r;
2441
2442 mutex_lock(&md->suspend_lock);
2443
2444 /* device must be suspended */
2445 if (!dm_suspended_md(md))
2446 goto out;
2447
2448 /*
2449 * If the new table has no data devices, retain the existing limits.
2450 * This helps multipath with queue_if_no_path if all paths disappear,
2451 * then new I/O is queued based on these limits, and then some paths
2452 * reappear.
2453 */
2454 if (dm_table_has_no_data_devices(table)) {
2455 live_map = dm_get_live_table(md);
2456 if (live_map)
2457 limits = md->queue->limits;
2458 dm_table_put(live_map);
2459 }
2460
2461 if (!live_map) {
2462 r = dm_calculate_queue_limits(table, &limits);
2463 if (r) {
2464 map = ERR_PTR(r);
2465 goto out;
2466 }
2467 }
2468
2469 map = __bind(md, table, &limits);
2470
2471 out:
2472 mutex_unlock(&md->suspend_lock);
2473 return map;
2474 }
2475
2476 /*
2477 * Functions to lock and unlock any filesystem running on the
2478 * device.
2479 */
2480 static int lock_fs(struct mapped_device *md)
2481 {
2482 int r;
2483
2484 WARN_ON(md->frozen_sb);
2485
2486 md->frozen_sb = freeze_bdev(md->bdev);
2487 if (IS_ERR(md->frozen_sb)) {
2488 r = PTR_ERR(md->frozen_sb);
2489 md->frozen_sb = NULL;
2490 return r;
2491 }
2492
2493 set_bit(DMF_FROZEN, &md->flags);
2494
2495 return 0;
2496 }
2497
2498 static void unlock_fs(struct mapped_device *md)
2499 {
2500 if (!test_bit(DMF_FROZEN, &md->flags))
2501 return;
2502
2503 thaw_bdev(md->bdev, md->frozen_sb);
2504 md->frozen_sb = NULL;
2505 clear_bit(DMF_FROZEN, &md->flags);
2506 }
2507
2508 /*
2509 * We need to be able to change a mapping table under a mounted
2510 * filesystem. For example we might want to move some data in
2511 * the background. Before the table can be swapped with
2512 * dm_bind_table, dm_suspend must be called to flush any in
2513 * flight bios and ensure that any further io gets deferred.
2514 */
2515 /*
2516 * Suspend mechanism in request-based dm.
2517 *
2518 * 1. Flush all I/Os by lock_fs() if needed.
2519 * 2. Stop dispatching any I/O by stopping the request_queue.
2520 * 3. Wait for all in-flight I/Os to be completed or requeued.
2521 *
2522 * To abort suspend, start the request_queue.
2523 */
2524 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2525 {
2526 struct dm_table *map = NULL;
2527 int r = 0;
2528 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2529 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2530
2531 mutex_lock(&md->suspend_lock);
2532
2533 if (dm_suspended_md(md)) {
2534 r = -EINVAL;
2535 goto out_unlock;
2536 }
2537
2538 map = dm_get_live_table(md);
2539
2540 /*
2541 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2542 * This flag is cleared before dm_suspend returns.
2543 */
2544 if (noflush)
2545 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2546
2547 /* This does not get reverted if there's an error later. */
2548 dm_table_presuspend_targets(map);
2549
2550 /*
2551 * Flush I/O to the device.
2552 * Any I/O submitted after lock_fs() may not be flushed.
2553 * noflush takes precedence over do_lockfs.
2554 * (lock_fs() flushes I/Os and waits for them to complete.)
2555 */
2556 if (!noflush && do_lockfs) {
2557 r = lock_fs(md);
2558 if (r)
2559 goto out;
2560 }
2561
2562 /*
2563 * Here we must make sure that no processes are submitting requests
2564 * to target drivers i.e. no one may be executing
2565 * __split_and_process_bio. This is called from dm_request and
2566 * dm_wq_work.
2567 *
2568 * To get all processes out of __split_and_process_bio in dm_request,
2569 * we take the write lock. To prevent any process from reentering
2570 * __split_and_process_bio from dm_request and quiesce the thread
2571 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2572 * flush_workqueue(md->wq).
2573 */
2574 down_write(&md->io_lock);
2575 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2576 up_write(&md->io_lock);
2577
2578 /*
2579 * Stop md->queue before flushing md->wq in case request-based
2580 * dm defers requests to md->wq from md->queue.
2581 */
2582 if (dm_request_based(md))
2583 stop_queue(md->queue);
2584
2585 flush_workqueue(md->wq);
2586
2587 /*
2588 * At this point no more requests are entering target request routines.
2589 * We call dm_wait_for_completion to wait for all existing requests
2590 * to finish.
2591 */
2592 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2593
2594 down_write(&md->io_lock);
2595 if (noflush)
2596 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2597 up_write(&md->io_lock);
2598
2599 /* were we interrupted ? */
2600 if (r < 0) {
2601 dm_queue_flush(md);
2602
2603 if (dm_request_based(md))
2604 start_queue(md->queue);
2605
2606 unlock_fs(md);
2607 goto out; /* pushback list is already flushed, so skip flush */
2608 }
2609
2610 /*
2611 * If dm_wait_for_completion returned 0, the device is completely
2612 * quiescent now. There is no request-processing activity. All new
2613 * requests are being added to md->deferred list.
2614 */
2615
2616 set_bit(DMF_SUSPENDED, &md->flags);
2617
2618 dm_table_postsuspend_targets(map);
2619
2620 out:
2621 dm_table_put(map);
2622
2623 out_unlock:
2624 mutex_unlock(&md->suspend_lock);
2625 return r;
2626 }
2627
2628 int dm_resume(struct mapped_device *md)
2629 {
2630 int r = -EINVAL;
2631 struct dm_table *map = NULL;
2632
2633 mutex_lock(&md->suspend_lock);
2634 if (!dm_suspended_md(md))
2635 goto out;
2636
2637 map = dm_get_live_table(md);
2638 if (!map || !dm_table_get_size(map))
2639 goto out;
2640
2641 r = dm_table_resume_targets(map);
2642 if (r)
2643 goto out;
2644
2645 dm_queue_flush(md);
2646
2647 /*
2648 * Flushing deferred I/Os must be done after targets are resumed
2649 * so that mapping of targets can work correctly.
2650 * Request-based dm is queueing the deferred I/Os in its request_queue.
2651 */
2652 if (dm_request_based(md))
2653 start_queue(md->queue);
2654
2655 unlock_fs(md);
2656
2657 clear_bit(DMF_SUSPENDED, &md->flags);
2658
2659 r = 0;
2660 out:
2661 dm_table_put(map);
2662 mutex_unlock(&md->suspend_lock);
2663
2664 return r;
2665 }
2666
2667 /*-----------------------------------------------------------------
2668 * Event notification.
2669 *---------------------------------------------------------------*/
2670 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2671 unsigned cookie)
2672 {
2673 char udev_cookie[DM_COOKIE_LENGTH];
2674 char *envp[] = { udev_cookie, NULL };
2675
2676 if (!cookie)
2677 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2678 else {
2679 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2680 DM_COOKIE_ENV_VAR_NAME, cookie);
2681 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2682 action, envp);
2683 }
2684 }
2685
2686 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2687 {
2688 return atomic_add_return(1, &md->uevent_seq);
2689 }
2690
2691 uint32_t dm_get_event_nr(struct mapped_device *md)
2692 {
2693 return atomic_read(&md->event_nr);
2694 }
2695
2696 int dm_wait_event(struct mapped_device *md, int event_nr)
2697 {
2698 return wait_event_interruptible(md->eventq,
2699 (event_nr != atomic_read(&md->event_nr)));
2700 }
2701
2702 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2703 {
2704 unsigned long flags;
2705
2706 spin_lock_irqsave(&md->uevent_lock, flags);
2707 list_add(elist, &md->uevent_list);
2708 spin_unlock_irqrestore(&md->uevent_lock, flags);
2709 }
2710
2711 /*
2712 * The gendisk is only valid as long as you have a reference
2713 * count on 'md'.
2714 */
2715 struct gendisk *dm_disk(struct mapped_device *md)
2716 {
2717 return md->disk;
2718 }
2719
2720 struct kobject *dm_kobject(struct mapped_device *md)
2721 {
2722 return &md->kobj;
2723 }
2724
2725 /*
2726 * struct mapped_device should not be exported outside of dm.c
2727 * so use this check to verify that kobj is part of md structure
2728 */
2729 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2730 {
2731 struct mapped_device *md;
2732
2733 md = container_of(kobj, struct mapped_device, kobj);
2734 if (&md->kobj != kobj)
2735 return NULL;
2736
2737 if (test_bit(DMF_FREEING, &md->flags) ||
2738 dm_deleting_md(md))
2739 return NULL;
2740
2741 dm_get(md);
2742 return md;
2743 }
2744
2745 int dm_suspended_md(struct mapped_device *md)
2746 {
2747 return test_bit(DMF_SUSPENDED, &md->flags);
2748 }
2749
2750 int dm_suspended(struct dm_target *ti)
2751 {
2752 return dm_suspended_md(dm_table_get_md(ti->table));
2753 }
2754 EXPORT_SYMBOL_GPL(dm_suspended);
2755
2756 int dm_noflush_suspending(struct dm_target *ti)
2757 {
2758 return __noflush_suspending(dm_table_get_md(ti->table));
2759 }
2760 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2761
2762 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2763 {
2764 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2765 struct kmem_cache *cachep;
2766 unsigned int pool_size;
2767 unsigned int front_pad;
2768
2769 if (!pools)
2770 return NULL;
2771
2772 if (type == DM_TYPE_BIO_BASED) {
2773 cachep = _io_cache;
2774 pool_size = 16;
2775 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2776 } else if (type == DM_TYPE_REQUEST_BASED) {
2777 cachep = _rq_tio_cache;
2778 pool_size = MIN_IOS;
2779 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2780 /* per_bio_data_size is not used. See __bind_mempools(). */
2781 WARN_ON(per_bio_data_size != 0);
2782 } else
2783 goto out;
2784
2785 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep);
2786 if (!pools->io_pool)
2787 goto out;
2788
2789 pools->bs = bioset_create(pool_size, front_pad);
2790 if (!pools->bs)
2791 goto out;
2792
2793 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2794 goto out;
2795
2796 return pools;
2797
2798 out:
2799 dm_free_md_mempools(pools);
2800
2801 return NULL;
2802 }
2803
2804 void dm_free_md_mempools(struct dm_md_mempools *pools)
2805 {
2806 if (!pools)
2807 return;
2808
2809 if (pools->io_pool)
2810 mempool_destroy(pools->io_pool);
2811
2812 if (pools->bs)
2813 bioset_free(pools->bs);
2814
2815 kfree(pools);
2816 }
2817
2818 static const struct block_device_operations dm_blk_dops = {
2819 .open = dm_blk_open,
2820 .release = dm_blk_close,
2821 .ioctl = dm_blk_ioctl,
2822 .getgeo = dm_blk_getgeo,
2823 .owner = THIS_MODULE
2824 };
2825
2826 EXPORT_SYMBOL(dm_get_mapinfo);
2827
2828 /*
2829 * module hooks
2830 */
2831 module_init(dm_init);
2832 module_exit(dm_exit);
2833
2834 module_param(major, uint, 0);
2835 MODULE_PARM_DESC(major, "The major number of the device mapper");
2836 MODULE_DESCRIPTION(DM_NAME " driver");
2837 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2838 MODULE_LICENSE("GPL");
This page took 0.110875 seconds and 5 git commands to generate.