a930b72314ac985da702f8b47a8054a75b2e2ba8
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 };
90
91 /*
92 * For request-based dm - the bio clones we allocate are embedded in these
93 * structs.
94 *
95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96 * the bioset is created - this means the bio has to come at the end of the
97 * struct.
98 */
99 struct dm_rq_clone_bio_info {
100 struct bio *orig;
101 struct dm_rq_target_io *tio;
102 struct bio clone;
103 };
104
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 if (rq && rq->end_io_data)
108 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112
113 #define MINOR_ALLOCED ((void *)-1)
114
115 /*
116 * Bits for the md->flags field.
117 */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127
128 /*
129 * A dummy definition to make RCU happy.
130 * struct dm_table should never be dereferenced in this file.
131 */
132 struct dm_table {
133 int undefined__;
134 };
135
136 /*
137 * Work processed by per-device workqueue.
138 */
139 struct mapped_device {
140 struct srcu_struct io_barrier;
141 struct mutex suspend_lock;
142 atomic_t holders;
143 atomic_t open_count;
144
145 /*
146 * The current mapping.
147 * Use dm_get_live_table{_fast} or take suspend_lock for
148 * dereference.
149 */
150 struct dm_table __rcu *map;
151
152 struct list_head table_devices;
153 struct mutex table_devices_lock;
154
155 unsigned long flags;
156
157 struct request_queue *queue;
158 unsigned type;
159 /* Protect queue and type against concurrent access. */
160 struct mutex type_lock;
161
162 struct target_type *immutable_target_type;
163
164 struct gendisk *disk;
165 char name[16];
166
167 void *interface_ptr;
168
169 /*
170 * A list of ios that arrived while we were suspended.
171 */
172 atomic_t pending[2];
173 wait_queue_head_t wait;
174 struct work_struct work;
175 struct bio_list deferred;
176 spinlock_t deferred_lock;
177
178 /*
179 * Processing queue (flush)
180 */
181 struct workqueue_struct *wq;
182
183 /*
184 * io objects are allocated from here.
185 */
186 mempool_t *io_pool;
187 mempool_t *rq_pool;
188
189 struct bio_set *bs;
190
191 /*
192 * Event handling.
193 */
194 atomic_t event_nr;
195 wait_queue_head_t eventq;
196 atomic_t uevent_seq;
197 struct list_head uevent_list;
198 spinlock_t uevent_lock; /* Protect access to uevent_list */
199
200 /*
201 * freeze/thaw support require holding onto a super block
202 */
203 struct super_block *frozen_sb;
204 struct block_device *bdev;
205
206 /* forced geometry settings */
207 struct hd_geometry geometry;
208
209 /* kobject and completion */
210 struct dm_kobject_holder kobj_holder;
211
212 /* zero-length flush that will be cloned and submitted to targets */
213 struct bio flush_bio;
214
215 /* the number of internal suspends */
216 unsigned internal_suspend_count;
217
218 struct dm_stats stats;
219
220 struct kthread_worker kworker;
221 struct task_struct *kworker_task;
222
223 /* for request-based merge heuristic in dm_request_fn() */
224 unsigned seq_rq_merge_deadline_usecs;
225 int last_rq_rw;
226 sector_t last_rq_pos;
227 ktime_t last_rq_start_time;
228
229 /* for blk-mq request-based DM support */
230 struct blk_mq_tag_set tag_set;
231 bool use_blk_mq;
232 };
233
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
236 #else
237 static bool use_blk_mq = false;
238 #endif
239
240 bool dm_use_blk_mq(struct mapped_device *md)
241 {
242 return md->use_blk_mq;
243 }
244
245 /*
246 * For mempools pre-allocation at the table loading time.
247 */
248 struct dm_md_mempools {
249 mempool_t *io_pool;
250 mempool_t *rq_pool;
251 struct bio_set *bs;
252 };
253
254 struct table_device {
255 struct list_head list;
256 atomic_t count;
257 struct dm_dev dm_dev;
258 };
259
260 #define RESERVED_BIO_BASED_IOS 16
261 #define RESERVED_REQUEST_BASED_IOS 256
262 #define RESERVED_MAX_IOS 1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
266
267 /*
268 * Bio-based DM's mempools' reserved IOs set by the user.
269 */
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271
272 /*
273 * Request-based DM's mempools' reserved IOs set by the user.
274 */
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276
277 static unsigned __dm_get_module_param(unsigned *module_param,
278 unsigned def, unsigned max)
279 {
280 unsigned param = ACCESS_ONCE(*module_param);
281 unsigned modified_param = 0;
282
283 if (!param)
284 modified_param = def;
285 else if (param > max)
286 modified_param = max;
287
288 if (modified_param) {
289 (void)cmpxchg(module_param, param, modified_param);
290 param = modified_param;
291 }
292
293 return param;
294 }
295
296 unsigned dm_get_reserved_bio_based_ios(void)
297 {
298 return __dm_get_module_param(&reserved_bio_based_ios,
299 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300 }
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302
303 unsigned dm_get_reserved_rq_based_ios(void)
304 {
305 return __dm_get_module_param(&reserved_rq_based_ios,
306 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307 }
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309
310 static int __init local_init(void)
311 {
312 int r = -ENOMEM;
313
314 /* allocate a slab for the dm_ios */
315 _io_cache = KMEM_CACHE(dm_io, 0);
316 if (!_io_cache)
317 return r;
318
319 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320 if (!_rq_tio_cache)
321 goto out_free_io_cache;
322
323 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 __alignof__(struct request), 0, NULL);
325 if (!_rq_cache)
326 goto out_free_rq_tio_cache;
327
328 r = dm_uevent_init();
329 if (r)
330 goto out_free_rq_cache;
331
332 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 if (!deferred_remove_workqueue) {
334 r = -ENOMEM;
335 goto out_uevent_exit;
336 }
337
338 _major = major;
339 r = register_blkdev(_major, _name);
340 if (r < 0)
341 goto out_free_workqueue;
342
343 if (!_major)
344 _major = r;
345
346 return 0;
347
348 out_free_workqueue:
349 destroy_workqueue(deferred_remove_workqueue);
350 out_uevent_exit:
351 dm_uevent_exit();
352 out_free_rq_cache:
353 kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 kmem_cache_destroy(_rq_tio_cache);
356 out_free_io_cache:
357 kmem_cache_destroy(_io_cache);
358
359 return r;
360 }
361
362 static void local_exit(void)
363 {
364 flush_scheduled_work();
365 destroy_workqueue(deferred_remove_workqueue);
366
367 kmem_cache_destroy(_rq_cache);
368 kmem_cache_destroy(_rq_tio_cache);
369 kmem_cache_destroy(_io_cache);
370 unregister_blkdev(_major, _name);
371 dm_uevent_exit();
372
373 _major = 0;
374
375 DMINFO("cleaned up");
376 }
377
378 static int (*_inits[])(void) __initdata = {
379 local_init,
380 dm_target_init,
381 dm_linear_init,
382 dm_stripe_init,
383 dm_io_init,
384 dm_kcopyd_init,
385 dm_interface_init,
386 dm_statistics_init,
387 };
388
389 static void (*_exits[])(void) = {
390 local_exit,
391 dm_target_exit,
392 dm_linear_exit,
393 dm_stripe_exit,
394 dm_io_exit,
395 dm_kcopyd_exit,
396 dm_interface_exit,
397 dm_statistics_exit,
398 };
399
400 static int __init dm_init(void)
401 {
402 const int count = ARRAY_SIZE(_inits);
403
404 int r, i;
405
406 for (i = 0; i < count; i++) {
407 r = _inits[i]();
408 if (r)
409 goto bad;
410 }
411
412 return 0;
413
414 bad:
415 while (i--)
416 _exits[i]();
417
418 return r;
419 }
420
421 static void __exit dm_exit(void)
422 {
423 int i = ARRAY_SIZE(_exits);
424
425 while (i--)
426 _exits[i]();
427
428 /*
429 * Should be empty by this point.
430 */
431 idr_destroy(&_minor_idr);
432 }
433
434 /*
435 * Block device functions
436 */
437 int dm_deleting_md(struct mapped_device *md)
438 {
439 return test_bit(DMF_DELETING, &md->flags);
440 }
441
442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443 {
444 struct mapped_device *md;
445
446 spin_lock(&_minor_lock);
447
448 md = bdev->bd_disk->private_data;
449 if (!md)
450 goto out;
451
452 if (test_bit(DMF_FREEING, &md->flags) ||
453 dm_deleting_md(md)) {
454 md = NULL;
455 goto out;
456 }
457
458 dm_get(md);
459 atomic_inc(&md->open_count);
460 out:
461 spin_unlock(&_minor_lock);
462
463 return md ? 0 : -ENXIO;
464 }
465
466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467 {
468 struct mapped_device *md;
469
470 spin_lock(&_minor_lock);
471
472 md = disk->private_data;
473 if (WARN_ON(!md))
474 goto out;
475
476 if (atomic_dec_and_test(&md->open_count) &&
477 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 queue_work(deferred_remove_workqueue, &deferred_remove_work);
479
480 dm_put(md);
481 out:
482 spin_unlock(&_minor_lock);
483 }
484
485 int dm_open_count(struct mapped_device *md)
486 {
487 return atomic_read(&md->open_count);
488 }
489
490 /*
491 * Guarantees nothing is using the device before it's deleted.
492 */
493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494 {
495 int r = 0;
496
497 spin_lock(&_minor_lock);
498
499 if (dm_open_count(md)) {
500 r = -EBUSY;
501 if (mark_deferred)
502 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504 r = -EEXIST;
505 else
506 set_bit(DMF_DELETING, &md->flags);
507
508 spin_unlock(&_minor_lock);
509
510 return r;
511 }
512
513 int dm_cancel_deferred_remove(struct mapped_device *md)
514 {
515 int r = 0;
516
517 spin_lock(&_minor_lock);
518
519 if (test_bit(DMF_DELETING, &md->flags))
520 r = -EBUSY;
521 else
522 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523
524 spin_unlock(&_minor_lock);
525
526 return r;
527 }
528
529 static void do_deferred_remove(struct work_struct *w)
530 {
531 dm_deferred_remove();
532 }
533
534 sector_t dm_get_size(struct mapped_device *md)
535 {
536 return get_capacity(md->disk);
537 }
538
539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
540 {
541 return md->queue;
542 }
543
544 struct dm_stats *dm_get_stats(struct mapped_device *md)
545 {
546 return &md->stats;
547 }
548
549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550 {
551 struct mapped_device *md = bdev->bd_disk->private_data;
552
553 return dm_get_geometry(md, geo);
554 }
555
556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 unsigned int cmd, unsigned long arg)
558 {
559 struct mapped_device *md = bdev->bd_disk->private_data;
560 int srcu_idx;
561 struct dm_table *map;
562 struct dm_target *tgt;
563 int r = -ENOTTY;
564
565 retry:
566 map = dm_get_live_table(md, &srcu_idx);
567
568 if (!map || !dm_table_get_size(map))
569 goto out;
570
571 /* We only support devices that have a single target */
572 if (dm_table_get_num_targets(map) != 1)
573 goto out;
574
575 tgt = dm_table_get_target(map, 0);
576 if (!tgt->type->ioctl)
577 goto out;
578
579 if (dm_suspended_md(md)) {
580 r = -EAGAIN;
581 goto out;
582 }
583
584 r = tgt->type->ioctl(tgt, cmd, arg);
585
586 out:
587 dm_put_live_table(md, srcu_idx);
588
589 if (r == -ENOTCONN) {
590 msleep(10);
591 goto retry;
592 }
593
594 return r;
595 }
596
597 static struct dm_io *alloc_io(struct mapped_device *md)
598 {
599 return mempool_alloc(md->io_pool, GFP_NOIO);
600 }
601
602 static void free_io(struct mapped_device *md, struct dm_io *io)
603 {
604 mempool_free(io, md->io_pool);
605 }
606
607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608 {
609 bio_put(&tio->clone);
610 }
611
612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613 gfp_t gfp_mask)
614 {
615 return mempool_alloc(md->io_pool, gfp_mask);
616 }
617
618 static void free_rq_tio(struct dm_rq_target_io *tio)
619 {
620 mempool_free(tio, tio->md->io_pool);
621 }
622
623 static struct request *alloc_clone_request(struct mapped_device *md,
624 gfp_t gfp_mask)
625 {
626 return mempool_alloc(md->rq_pool, gfp_mask);
627 }
628
629 static void free_clone_request(struct mapped_device *md, struct request *rq)
630 {
631 mempool_free(rq, md->rq_pool);
632 }
633
634 static int md_in_flight(struct mapped_device *md)
635 {
636 return atomic_read(&md->pending[READ]) +
637 atomic_read(&md->pending[WRITE]);
638 }
639
640 static void start_io_acct(struct dm_io *io)
641 {
642 struct mapped_device *md = io->md;
643 struct bio *bio = io->bio;
644 int cpu;
645 int rw = bio_data_dir(bio);
646
647 io->start_time = jiffies;
648
649 cpu = part_stat_lock();
650 part_round_stats(cpu, &dm_disk(md)->part0);
651 part_stat_unlock();
652 atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 atomic_inc_return(&md->pending[rw]));
654
655 if (unlikely(dm_stats_used(&md->stats)))
656 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 bio_sectors(bio), false, 0, &io->stats_aux);
658 }
659
660 static void end_io_acct(struct dm_io *io)
661 {
662 struct mapped_device *md = io->md;
663 struct bio *bio = io->bio;
664 unsigned long duration = jiffies - io->start_time;
665 int pending;
666 int rw = bio_data_dir(bio);
667
668 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669
670 if (unlikely(dm_stats_used(&md->stats)))
671 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 bio_sectors(bio), true, duration, &io->stats_aux);
673
674 /*
675 * After this is decremented the bio must not be touched if it is
676 * a flush.
677 */
678 pending = atomic_dec_return(&md->pending[rw]);
679 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 pending += atomic_read(&md->pending[rw^0x1]);
681
682 /* nudge anyone waiting on suspend queue */
683 if (!pending)
684 wake_up(&md->wait);
685 }
686
687 /*
688 * Add the bio to the list of deferred io.
689 */
690 static void queue_io(struct mapped_device *md, struct bio *bio)
691 {
692 unsigned long flags;
693
694 spin_lock_irqsave(&md->deferred_lock, flags);
695 bio_list_add(&md->deferred, bio);
696 spin_unlock_irqrestore(&md->deferred_lock, flags);
697 queue_work(md->wq, &md->work);
698 }
699
700 /*
701 * Everyone (including functions in this file), should use this
702 * function to access the md->map field, and make sure they call
703 * dm_put_live_table() when finished.
704 */
705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706 {
707 *srcu_idx = srcu_read_lock(&md->io_barrier);
708
709 return srcu_dereference(md->map, &md->io_barrier);
710 }
711
712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713 {
714 srcu_read_unlock(&md->io_barrier, srcu_idx);
715 }
716
717 void dm_sync_table(struct mapped_device *md)
718 {
719 synchronize_srcu(&md->io_barrier);
720 synchronize_rcu_expedited();
721 }
722
723 /*
724 * A fast alternative to dm_get_live_table/dm_put_live_table.
725 * The caller must not block between these two functions.
726 */
727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728 {
729 rcu_read_lock();
730 return rcu_dereference(md->map);
731 }
732
733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734 {
735 rcu_read_unlock();
736 }
737
738 /*
739 * Open a table device so we can use it as a map destination.
740 */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 struct mapped_device *md)
743 {
744 static char *_claim_ptr = "I belong to device-mapper";
745 struct block_device *bdev;
746
747 int r;
748
749 BUG_ON(td->dm_dev.bdev);
750
751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752 if (IS_ERR(bdev))
753 return PTR_ERR(bdev);
754
755 r = bd_link_disk_holder(bdev, dm_disk(md));
756 if (r) {
757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 return r;
759 }
760
761 td->dm_dev.bdev = bdev;
762 return 0;
763 }
764
765 /*
766 * Close a table device that we've been using.
767 */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 if (!td->dm_dev.bdev)
771 return;
772
773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 td->dm_dev.bdev = NULL;
776 }
777
778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779 fmode_t mode) {
780 struct table_device *td;
781
782 list_for_each_entry(td, l, list)
783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 return td;
785
786 return NULL;
787 }
788
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 struct dm_dev **result) {
791 int r;
792 struct table_device *td;
793
794 mutex_lock(&md->table_devices_lock);
795 td = find_table_device(&md->table_devices, dev, mode);
796 if (!td) {
797 td = kmalloc(sizeof(*td), GFP_KERNEL);
798 if (!td) {
799 mutex_unlock(&md->table_devices_lock);
800 return -ENOMEM;
801 }
802
803 td->dm_dev.mode = mode;
804 td->dm_dev.bdev = NULL;
805
806 if ((r = open_table_device(td, dev, md))) {
807 mutex_unlock(&md->table_devices_lock);
808 kfree(td);
809 return r;
810 }
811
812 format_dev_t(td->dm_dev.name, dev);
813
814 atomic_set(&td->count, 0);
815 list_add(&td->list, &md->table_devices);
816 }
817 atomic_inc(&td->count);
818 mutex_unlock(&md->table_devices_lock);
819
820 *result = &td->dm_dev;
821 return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 struct table_device *td = container_of(d, struct table_device, dm_dev);
828
829 mutex_lock(&md->table_devices_lock);
830 if (atomic_dec_and_test(&td->count)) {
831 close_table_device(td, md);
832 list_del(&td->list);
833 kfree(td);
834 }
835 mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838
839 static void free_table_devices(struct list_head *devices)
840 {
841 struct list_head *tmp, *next;
842
843 list_for_each_safe(tmp, next, devices) {
844 struct table_device *td = list_entry(tmp, struct table_device, list);
845
846 DMWARN("dm_destroy: %s still exists with %d references",
847 td->dm_dev.name, atomic_read(&td->count));
848 kfree(td);
849 }
850 }
851
852 /*
853 * Get the geometry associated with a dm device
854 */
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 *geo = md->geometry;
858
859 return 0;
860 }
861
862 /*
863 * Set the geometry of a device.
864 */
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868
869 if (geo->start > sz) {
870 DMWARN("Start sector is beyond the geometry limits.");
871 return -EINVAL;
872 }
873
874 md->geometry = *geo;
875
876 return 0;
877 }
878
879 /*-----------------------------------------------------------------
880 * CRUD START:
881 * A more elegant soln is in the works that uses the queue
882 * merge fn, unfortunately there are a couple of changes to
883 * the block layer that I want to make for this. So in the
884 * interests of getting something for people to use I give
885 * you this clearly demarcated crap.
886 *---------------------------------------------------------------*/
887
888 static int __noflush_suspending(struct mapped_device *md)
889 {
890 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891 }
892
893 /*
894 * Decrements the number of outstanding ios that a bio has been
895 * cloned into, completing the original io if necc.
896 */
897 static void dec_pending(struct dm_io *io, int error)
898 {
899 unsigned long flags;
900 int io_error;
901 struct bio *bio;
902 struct mapped_device *md = io->md;
903
904 /* Push-back supersedes any I/O errors */
905 if (unlikely(error)) {
906 spin_lock_irqsave(&io->endio_lock, flags);
907 if (!(io->error > 0 && __noflush_suspending(md)))
908 io->error = error;
909 spin_unlock_irqrestore(&io->endio_lock, flags);
910 }
911
912 if (atomic_dec_and_test(&io->io_count)) {
913 if (io->error == DM_ENDIO_REQUEUE) {
914 /*
915 * Target requested pushing back the I/O.
916 */
917 spin_lock_irqsave(&md->deferred_lock, flags);
918 if (__noflush_suspending(md))
919 bio_list_add_head(&md->deferred, io->bio);
920 else
921 /* noflush suspend was interrupted. */
922 io->error = -EIO;
923 spin_unlock_irqrestore(&md->deferred_lock, flags);
924 }
925
926 io_error = io->error;
927 bio = io->bio;
928 end_io_acct(io);
929 free_io(md, io);
930
931 if (io_error == DM_ENDIO_REQUEUE)
932 return;
933
934 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935 /*
936 * Preflush done for flush with data, reissue
937 * without REQ_FLUSH.
938 */
939 bio->bi_rw &= ~REQ_FLUSH;
940 queue_io(md, bio);
941 } else {
942 /* done with normal IO or empty flush */
943 trace_block_bio_complete(md->queue, bio, io_error);
944 bio_endio(bio, io_error);
945 }
946 }
947 }
948
949 static void disable_write_same(struct mapped_device *md)
950 {
951 struct queue_limits *limits = dm_get_queue_limits(md);
952
953 /* device doesn't really support WRITE SAME, disable it */
954 limits->max_write_same_sectors = 0;
955 }
956
957 static void clone_endio(struct bio *bio, int error)
958 {
959 int r = error;
960 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 struct dm_io *io = tio->io;
962 struct mapped_device *md = tio->io->md;
963 dm_endio_fn endio = tio->ti->type->end_io;
964
965 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966 error = -EIO;
967
968 if (endio) {
969 r = endio(tio->ti, bio, error);
970 if (r < 0 || r == DM_ENDIO_REQUEUE)
971 /*
972 * error and requeue request are handled
973 * in dec_pending().
974 */
975 error = r;
976 else if (r == DM_ENDIO_INCOMPLETE)
977 /* The target will handle the io */
978 return;
979 else if (r) {
980 DMWARN("unimplemented target endio return value: %d", r);
981 BUG();
982 }
983 }
984
985 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 disable_write_same(md);
988
989 free_tio(md, tio);
990 dec_pending(io, error);
991 }
992
993 /*
994 * Partial completion handling for request-based dm
995 */
996 static void end_clone_bio(struct bio *clone, int error)
997 {
998 struct dm_rq_clone_bio_info *info =
999 container_of(clone, struct dm_rq_clone_bio_info, clone);
1000 struct dm_rq_target_io *tio = info->tio;
1001 struct bio *bio = info->orig;
1002 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003
1004 bio_put(clone);
1005
1006 if (tio->error)
1007 /*
1008 * An error has already been detected on the request.
1009 * Once error occurred, just let clone->end_io() handle
1010 * the remainder.
1011 */
1012 return;
1013 else if (error) {
1014 /*
1015 * Don't notice the error to the upper layer yet.
1016 * The error handling decision is made by the target driver,
1017 * when the request is completed.
1018 */
1019 tio->error = error;
1020 return;
1021 }
1022
1023 /*
1024 * I/O for the bio successfully completed.
1025 * Notice the data completion to the upper layer.
1026 */
1027
1028 /*
1029 * bios are processed from the head of the list.
1030 * So the completing bio should always be rq->bio.
1031 * If it's not, something wrong is happening.
1032 */
1033 if (tio->orig->bio != bio)
1034 DMERR("bio completion is going in the middle of the request");
1035
1036 /*
1037 * Update the original request.
1038 * Do not use blk_end_request() here, because it may complete
1039 * the original request before the clone, and break the ordering.
1040 */
1041 blk_update_request(tio->orig, 0, nr_bytes);
1042 }
1043
1044 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045 {
1046 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047 }
1048
1049 /*
1050 * Don't touch any member of the md after calling this function because
1051 * the md may be freed in dm_put() at the end of this function.
1052 * Or do dm_get() before calling this function and dm_put() later.
1053 */
1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055 {
1056 int nr_requests_pending;
1057
1058 atomic_dec(&md->pending[rw]);
1059
1060 /* nudge anyone waiting on suspend queue */
1061 nr_requests_pending = md_in_flight(md);
1062 if (!nr_requests_pending)
1063 wake_up(&md->wait);
1064
1065 /*
1066 * Run this off this callpath, as drivers could invoke end_io while
1067 * inside their request_fn (and holding the queue lock). Calling
1068 * back into ->request_fn() could deadlock attempting to grab the
1069 * queue lock again.
1070 */
1071 if (run_queue) {
1072 if (md->queue->mq_ops)
1073 blk_mq_run_hw_queues(md->queue, true);
1074 else if (!nr_requests_pending ||
1075 (nr_requests_pending >= md->queue->nr_congestion_on))
1076 blk_run_queue_async(md->queue);
1077 }
1078
1079 /*
1080 * dm_put() must be at the end of this function. See the comment above
1081 */
1082 dm_put(md);
1083 }
1084
1085 static void free_rq_clone(struct request *clone, bool must_be_mapped)
1086 {
1087 struct dm_rq_target_io *tio = clone->end_io_data;
1088 struct mapped_device *md = tio->md;
1089
1090 WARN_ON_ONCE(must_be_mapped && !clone->q);
1091
1092 blk_rq_unprep_clone(clone);
1093
1094 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1095 /* stacked on blk-mq queue(s) */
1096 tio->ti->type->release_clone_rq(clone);
1097 else if (!md->queue->mq_ops)
1098 /* request_fn queue stacked on request_fn queue(s) */
1099 free_clone_request(md, clone);
1100 /*
1101 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1102 * no need to call free_clone_request() because we leverage blk-mq by
1103 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1104 */
1105
1106 if (!md->queue->mq_ops)
1107 free_rq_tio(tio);
1108 }
1109
1110 /*
1111 * Complete the clone and the original request.
1112 * Must be called without clone's queue lock held,
1113 * see end_clone_request() for more details.
1114 */
1115 static void dm_end_request(struct request *clone, int error)
1116 {
1117 int rw = rq_data_dir(clone);
1118 struct dm_rq_target_io *tio = clone->end_io_data;
1119 struct mapped_device *md = tio->md;
1120 struct request *rq = tio->orig;
1121
1122 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1123 rq->errors = clone->errors;
1124 rq->resid_len = clone->resid_len;
1125
1126 if (rq->sense)
1127 /*
1128 * We are using the sense buffer of the original
1129 * request.
1130 * So setting the length of the sense data is enough.
1131 */
1132 rq->sense_len = clone->sense_len;
1133 }
1134
1135 free_rq_clone(clone, true);
1136 if (!rq->q->mq_ops)
1137 blk_end_request_all(rq, error);
1138 else
1139 blk_mq_end_request(rq, error);
1140 rq_completed(md, rw, true);
1141 }
1142
1143 static void dm_unprep_request(struct request *rq)
1144 {
1145 struct dm_rq_target_io *tio = tio_from_request(rq);
1146 struct request *clone = tio->clone;
1147
1148 if (!rq->q->mq_ops) {
1149 rq->special = NULL;
1150 rq->cmd_flags &= ~REQ_DONTPREP;
1151 }
1152
1153 if (clone)
1154 free_rq_clone(clone, false);
1155 }
1156
1157 /*
1158 * Requeue the original request of a clone.
1159 */
1160 static void old_requeue_request(struct request *rq)
1161 {
1162 struct request_queue *q = rq->q;
1163 unsigned long flags;
1164
1165 spin_lock_irqsave(q->queue_lock, flags);
1166 blk_requeue_request(q, rq);
1167 spin_unlock_irqrestore(q->queue_lock, flags);
1168 }
1169
1170 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1171 struct request *rq)
1172 {
1173 int rw = rq_data_dir(rq);
1174
1175 dm_unprep_request(rq);
1176
1177 if (!rq->q->mq_ops)
1178 old_requeue_request(rq);
1179 else {
1180 blk_mq_requeue_request(rq);
1181 blk_mq_kick_requeue_list(rq->q);
1182 }
1183
1184 rq_completed(md, rw, false);
1185 }
1186
1187 static void dm_requeue_unmapped_request(struct request *clone)
1188 {
1189 struct dm_rq_target_io *tio = clone->end_io_data;
1190
1191 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1192 }
1193
1194 static void old_stop_queue(struct request_queue *q)
1195 {
1196 unsigned long flags;
1197
1198 if (blk_queue_stopped(q))
1199 return;
1200
1201 spin_lock_irqsave(q->queue_lock, flags);
1202 blk_stop_queue(q);
1203 spin_unlock_irqrestore(q->queue_lock, flags);
1204 }
1205
1206 static void stop_queue(struct request_queue *q)
1207 {
1208 if (!q->mq_ops)
1209 old_stop_queue(q);
1210 else
1211 blk_mq_stop_hw_queues(q);
1212 }
1213
1214 static void old_start_queue(struct request_queue *q)
1215 {
1216 unsigned long flags;
1217
1218 spin_lock_irqsave(q->queue_lock, flags);
1219 if (blk_queue_stopped(q))
1220 blk_start_queue(q);
1221 spin_unlock_irqrestore(q->queue_lock, flags);
1222 }
1223
1224 static void start_queue(struct request_queue *q)
1225 {
1226 if (!q->mq_ops)
1227 old_start_queue(q);
1228 else
1229 blk_mq_start_stopped_hw_queues(q, true);
1230 }
1231
1232 static void dm_done(struct request *clone, int error, bool mapped)
1233 {
1234 int r = error;
1235 struct dm_rq_target_io *tio = clone->end_io_data;
1236 dm_request_endio_fn rq_end_io = NULL;
1237
1238 if (tio->ti) {
1239 rq_end_io = tio->ti->type->rq_end_io;
1240
1241 if (mapped && rq_end_io)
1242 r = rq_end_io(tio->ti, clone, error, &tio->info);
1243 }
1244
1245 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1246 !clone->q->limits.max_write_same_sectors))
1247 disable_write_same(tio->md);
1248
1249 if (r <= 0)
1250 /* The target wants to complete the I/O */
1251 dm_end_request(clone, r);
1252 else if (r == DM_ENDIO_INCOMPLETE)
1253 /* The target will handle the I/O */
1254 return;
1255 else if (r == DM_ENDIO_REQUEUE)
1256 /* The target wants to requeue the I/O */
1257 dm_requeue_unmapped_request(clone);
1258 else {
1259 DMWARN("unimplemented target endio return value: %d", r);
1260 BUG();
1261 }
1262 }
1263
1264 /*
1265 * Request completion handler for request-based dm
1266 */
1267 static void dm_softirq_done(struct request *rq)
1268 {
1269 bool mapped = true;
1270 struct dm_rq_target_io *tio = tio_from_request(rq);
1271 struct request *clone = tio->clone;
1272 int rw;
1273
1274 if (!clone) {
1275 rw = rq_data_dir(rq);
1276 if (!rq->q->mq_ops) {
1277 blk_end_request_all(rq, tio->error);
1278 rq_completed(tio->md, rw, false);
1279 free_rq_tio(tio);
1280 } else {
1281 blk_mq_end_request(rq, tio->error);
1282 rq_completed(tio->md, rw, false);
1283 }
1284 return;
1285 }
1286
1287 if (rq->cmd_flags & REQ_FAILED)
1288 mapped = false;
1289
1290 dm_done(clone, tio->error, mapped);
1291 }
1292
1293 /*
1294 * Complete the clone and the original request with the error status
1295 * through softirq context.
1296 */
1297 static void dm_complete_request(struct request *rq, int error)
1298 {
1299 struct dm_rq_target_io *tio = tio_from_request(rq);
1300
1301 tio->error = error;
1302 blk_complete_request(rq);
1303 }
1304
1305 /*
1306 * Complete the not-mapped clone and the original request with the error status
1307 * through softirq context.
1308 * Target's rq_end_io() function isn't called.
1309 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1310 */
1311 static void dm_kill_unmapped_request(struct request *rq, int error)
1312 {
1313 rq->cmd_flags |= REQ_FAILED;
1314 dm_complete_request(rq, error);
1315 }
1316
1317 /*
1318 * Called with the clone's queue lock held (for non-blk-mq)
1319 */
1320 static void end_clone_request(struct request *clone, int error)
1321 {
1322 struct dm_rq_target_io *tio = clone->end_io_data;
1323
1324 if (!clone->q->mq_ops) {
1325 /*
1326 * For just cleaning up the information of the queue in which
1327 * the clone was dispatched.
1328 * The clone is *NOT* freed actually here because it is alloced
1329 * from dm own mempool (REQ_ALLOCED isn't set).
1330 */
1331 __blk_put_request(clone->q, clone);
1332 }
1333
1334 /*
1335 * Actual request completion is done in a softirq context which doesn't
1336 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1337 * - another request may be submitted by the upper level driver
1338 * of the stacking during the completion
1339 * - the submission which requires queue lock may be done
1340 * against this clone's queue
1341 */
1342 dm_complete_request(tio->orig, error);
1343 }
1344
1345 /*
1346 * Return maximum size of I/O possible at the supplied sector up to the current
1347 * target boundary.
1348 */
1349 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1350 {
1351 sector_t target_offset = dm_target_offset(ti, sector);
1352
1353 return ti->len - target_offset;
1354 }
1355
1356 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1357 {
1358 sector_t len = max_io_len_target_boundary(sector, ti);
1359 sector_t offset, max_len;
1360
1361 /*
1362 * Does the target need to split even further?
1363 */
1364 if (ti->max_io_len) {
1365 offset = dm_target_offset(ti, sector);
1366 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1367 max_len = sector_div(offset, ti->max_io_len);
1368 else
1369 max_len = offset & (ti->max_io_len - 1);
1370 max_len = ti->max_io_len - max_len;
1371
1372 if (len > max_len)
1373 len = max_len;
1374 }
1375
1376 return len;
1377 }
1378
1379 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1380 {
1381 if (len > UINT_MAX) {
1382 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1383 (unsigned long long)len, UINT_MAX);
1384 ti->error = "Maximum size of target IO is too large";
1385 return -EINVAL;
1386 }
1387
1388 ti->max_io_len = (uint32_t) len;
1389
1390 return 0;
1391 }
1392 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1393
1394 /*
1395 * A target may call dm_accept_partial_bio only from the map routine. It is
1396 * allowed for all bio types except REQ_FLUSH.
1397 *
1398 * dm_accept_partial_bio informs the dm that the target only wants to process
1399 * additional n_sectors sectors of the bio and the rest of the data should be
1400 * sent in a next bio.
1401 *
1402 * A diagram that explains the arithmetics:
1403 * +--------------------+---------------+-------+
1404 * | 1 | 2 | 3 |
1405 * +--------------------+---------------+-------+
1406 *
1407 * <-------------- *tio->len_ptr --------------->
1408 * <------- bi_size ------->
1409 * <-- n_sectors -->
1410 *
1411 * Region 1 was already iterated over with bio_advance or similar function.
1412 * (it may be empty if the target doesn't use bio_advance)
1413 * Region 2 is the remaining bio size that the target wants to process.
1414 * (it may be empty if region 1 is non-empty, although there is no reason
1415 * to make it empty)
1416 * The target requires that region 3 is to be sent in the next bio.
1417 *
1418 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1419 * the partially processed part (the sum of regions 1+2) must be the same for all
1420 * copies of the bio.
1421 */
1422 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1423 {
1424 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1425 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1426 BUG_ON(bio->bi_rw & REQ_FLUSH);
1427 BUG_ON(bi_size > *tio->len_ptr);
1428 BUG_ON(n_sectors > bi_size);
1429 *tio->len_ptr -= bi_size - n_sectors;
1430 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1431 }
1432 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1433
1434 static void __map_bio(struct dm_target_io *tio)
1435 {
1436 int r;
1437 sector_t sector;
1438 struct mapped_device *md;
1439 struct bio *clone = &tio->clone;
1440 struct dm_target *ti = tio->ti;
1441
1442 clone->bi_end_io = clone_endio;
1443
1444 /*
1445 * Map the clone. If r == 0 we don't need to do
1446 * anything, the target has assumed ownership of
1447 * this io.
1448 */
1449 atomic_inc(&tio->io->io_count);
1450 sector = clone->bi_iter.bi_sector;
1451 r = ti->type->map(ti, clone);
1452 if (r == DM_MAPIO_REMAPPED) {
1453 /* the bio has been remapped so dispatch it */
1454
1455 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1456 tio->io->bio->bi_bdev->bd_dev, sector);
1457
1458 generic_make_request(clone);
1459 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1460 /* error the io and bail out, or requeue it if needed */
1461 md = tio->io->md;
1462 dec_pending(tio->io, r);
1463 free_tio(md, tio);
1464 } else if (r) {
1465 DMWARN("unimplemented target map return value: %d", r);
1466 BUG();
1467 }
1468 }
1469
1470 struct clone_info {
1471 struct mapped_device *md;
1472 struct dm_table *map;
1473 struct bio *bio;
1474 struct dm_io *io;
1475 sector_t sector;
1476 unsigned sector_count;
1477 };
1478
1479 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1480 {
1481 bio->bi_iter.bi_sector = sector;
1482 bio->bi_iter.bi_size = to_bytes(len);
1483 }
1484
1485 /*
1486 * Creates a bio that consists of range of complete bvecs.
1487 */
1488 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1489 sector_t sector, unsigned len)
1490 {
1491 struct bio *clone = &tio->clone;
1492
1493 __bio_clone_fast(clone, bio);
1494
1495 if (bio_integrity(bio))
1496 bio_integrity_clone(clone, bio, GFP_NOIO);
1497
1498 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1499 clone->bi_iter.bi_size = to_bytes(len);
1500
1501 if (bio_integrity(bio))
1502 bio_integrity_trim(clone, 0, len);
1503 }
1504
1505 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1506 struct dm_target *ti,
1507 unsigned target_bio_nr)
1508 {
1509 struct dm_target_io *tio;
1510 struct bio *clone;
1511
1512 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1513 tio = container_of(clone, struct dm_target_io, clone);
1514
1515 tio->io = ci->io;
1516 tio->ti = ti;
1517 tio->target_bio_nr = target_bio_nr;
1518
1519 return tio;
1520 }
1521
1522 static void __clone_and_map_simple_bio(struct clone_info *ci,
1523 struct dm_target *ti,
1524 unsigned target_bio_nr, unsigned *len)
1525 {
1526 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1527 struct bio *clone = &tio->clone;
1528
1529 tio->len_ptr = len;
1530
1531 __bio_clone_fast(clone, ci->bio);
1532 if (len)
1533 bio_setup_sector(clone, ci->sector, *len);
1534
1535 __map_bio(tio);
1536 }
1537
1538 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1539 unsigned num_bios, unsigned *len)
1540 {
1541 unsigned target_bio_nr;
1542
1543 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1544 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1545 }
1546
1547 static int __send_empty_flush(struct clone_info *ci)
1548 {
1549 unsigned target_nr = 0;
1550 struct dm_target *ti;
1551
1552 BUG_ON(bio_has_data(ci->bio));
1553 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1554 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1555
1556 return 0;
1557 }
1558
1559 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1560 sector_t sector, unsigned *len)
1561 {
1562 struct bio *bio = ci->bio;
1563 struct dm_target_io *tio;
1564 unsigned target_bio_nr;
1565 unsigned num_target_bios = 1;
1566
1567 /*
1568 * Does the target want to receive duplicate copies of the bio?
1569 */
1570 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1571 num_target_bios = ti->num_write_bios(ti, bio);
1572
1573 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1574 tio = alloc_tio(ci, ti, target_bio_nr);
1575 tio->len_ptr = len;
1576 clone_bio(tio, bio, sector, *len);
1577 __map_bio(tio);
1578 }
1579 }
1580
1581 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1582
1583 static unsigned get_num_discard_bios(struct dm_target *ti)
1584 {
1585 return ti->num_discard_bios;
1586 }
1587
1588 static unsigned get_num_write_same_bios(struct dm_target *ti)
1589 {
1590 return ti->num_write_same_bios;
1591 }
1592
1593 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1594
1595 static bool is_split_required_for_discard(struct dm_target *ti)
1596 {
1597 return ti->split_discard_bios;
1598 }
1599
1600 static int __send_changing_extent_only(struct clone_info *ci,
1601 get_num_bios_fn get_num_bios,
1602 is_split_required_fn is_split_required)
1603 {
1604 struct dm_target *ti;
1605 unsigned len;
1606 unsigned num_bios;
1607
1608 do {
1609 ti = dm_table_find_target(ci->map, ci->sector);
1610 if (!dm_target_is_valid(ti))
1611 return -EIO;
1612
1613 /*
1614 * Even though the device advertised support for this type of
1615 * request, that does not mean every target supports it, and
1616 * reconfiguration might also have changed that since the
1617 * check was performed.
1618 */
1619 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1620 if (!num_bios)
1621 return -EOPNOTSUPP;
1622
1623 if (is_split_required && !is_split_required(ti))
1624 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1625 else
1626 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1627
1628 __send_duplicate_bios(ci, ti, num_bios, &len);
1629
1630 ci->sector += len;
1631 } while (ci->sector_count -= len);
1632
1633 return 0;
1634 }
1635
1636 static int __send_discard(struct clone_info *ci)
1637 {
1638 return __send_changing_extent_only(ci, get_num_discard_bios,
1639 is_split_required_for_discard);
1640 }
1641
1642 static int __send_write_same(struct clone_info *ci)
1643 {
1644 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1645 }
1646
1647 /*
1648 * Select the correct strategy for processing a non-flush bio.
1649 */
1650 static int __split_and_process_non_flush(struct clone_info *ci)
1651 {
1652 struct bio *bio = ci->bio;
1653 struct dm_target *ti;
1654 unsigned len;
1655
1656 if (unlikely(bio->bi_rw & REQ_DISCARD))
1657 return __send_discard(ci);
1658 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1659 return __send_write_same(ci);
1660
1661 ti = dm_table_find_target(ci->map, ci->sector);
1662 if (!dm_target_is_valid(ti))
1663 return -EIO;
1664
1665 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1666
1667 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1668
1669 ci->sector += len;
1670 ci->sector_count -= len;
1671
1672 return 0;
1673 }
1674
1675 /*
1676 * Entry point to split a bio into clones and submit them to the targets.
1677 */
1678 static void __split_and_process_bio(struct mapped_device *md,
1679 struct dm_table *map, struct bio *bio)
1680 {
1681 struct clone_info ci;
1682 int error = 0;
1683
1684 if (unlikely(!map)) {
1685 bio_io_error(bio);
1686 return;
1687 }
1688
1689 ci.map = map;
1690 ci.md = md;
1691 ci.io = alloc_io(md);
1692 ci.io->error = 0;
1693 atomic_set(&ci.io->io_count, 1);
1694 ci.io->bio = bio;
1695 ci.io->md = md;
1696 spin_lock_init(&ci.io->endio_lock);
1697 ci.sector = bio->bi_iter.bi_sector;
1698
1699 start_io_acct(ci.io);
1700
1701 if (bio->bi_rw & REQ_FLUSH) {
1702 ci.bio = &ci.md->flush_bio;
1703 ci.sector_count = 0;
1704 error = __send_empty_flush(&ci);
1705 /* dec_pending submits any data associated with flush */
1706 } else {
1707 ci.bio = bio;
1708 ci.sector_count = bio_sectors(bio);
1709 while (ci.sector_count && !error)
1710 error = __split_and_process_non_flush(&ci);
1711 }
1712
1713 /* drop the extra reference count */
1714 dec_pending(ci.io, error);
1715 }
1716 /*-----------------------------------------------------------------
1717 * CRUD END
1718 *---------------------------------------------------------------*/
1719
1720 static int dm_merge_bvec(struct request_queue *q,
1721 struct bvec_merge_data *bvm,
1722 struct bio_vec *biovec)
1723 {
1724 struct mapped_device *md = q->queuedata;
1725 struct dm_table *map = dm_get_live_table_fast(md);
1726 struct dm_target *ti;
1727 sector_t max_sectors;
1728 int max_size = 0;
1729
1730 if (unlikely(!map))
1731 goto out;
1732
1733 ti = dm_table_find_target(map, bvm->bi_sector);
1734 if (!dm_target_is_valid(ti))
1735 goto out;
1736
1737 /*
1738 * Find maximum amount of I/O that won't need splitting
1739 */
1740 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1741 (sector_t) queue_max_sectors(q));
1742 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1743 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1744 max_size = 0;
1745
1746 /*
1747 * merge_bvec_fn() returns number of bytes
1748 * it can accept at this offset
1749 * max is precomputed maximal io size
1750 */
1751 if (max_size && ti->type->merge)
1752 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1753 /*
1754 * If the target doesn't support merge method and some of the devices
1755 * provided their merge_bvec method (we know this by looking for the
1756 * max_hw_sectors that dm_set_device_limits may set), then we can't
1757 * allow bios with multiple vector entries. So always set max_size
1758 * to 0, and the code below allows just one page.
1759 */
1760 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1761 max_size = 0;
1762
1763 out:
1764 dm_put_live_table_fast(md);
1765 /*
1766 * Always allow an entire first page
1767 */
1768 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1769 max_size = biovec->bv_len;
1770
1771 return max_size;
1772 }
1773
1774 /*
1775 * The request function that just remaps the bio built up by
1776 * dm_merge_bvec.
1777 */
1778 static void dm_make_request(struct request_queue *q, struct bio *bio)
1779 {
1780 int rw = bio_data_dir(bio);
1781 struct mapped_device *md = q->queuedata;
1782 int srcu_idx;
1783 struct dm_table *map;
1784
1785 map = dm_get_live_table(md, &srcu_idx);
1786
1787 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1788
1789 /* if we're suspended, we have to queue this io for later */
1790 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1791 dm_put_live_table(md, srcu_idx);
1792
1793 if (bio_rw(bio) != READA)
1794 queue_io(md, bio);
1795 else
1796 bio_io_error(bio);
1797 return;
1798 }
1799
1800 __split_and_process_bio(md, map, bio);
1801 dm_put_live_table(md, srcu_idx);
1802 return;
1803 }
1804
1805 int dm_request_based(struct mapped_device *md)
1806 {
1807 return blk_queue_stackable(md->queue);
1808 }
1809
1810 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1811 {
1812 int r;
1813
1814 if (blk_queue_io_stat(clone->q))
1815 clone->cmd_flags |= REQ_IO_STAT;
1816
1817 clone->start_time = jiffies;
1818 r = blk_insert_cloned_request(clone->q, clone);
1819 if (r)
1820 /* must complete clone in terms of original request */
1821 dm_complete_request(rq, r);
1822 }
1823
1824 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1825 void *data)
1826 {
1827 struct dm_rq_target_io *tio = data;
1828 struct dm_rq_clone_bio_info *info =
1829 container_of(bio, struct dm_rq_clone_bio_info, clone);
1830
1831 info->orig = bio_orig;
1832 info->tio = tio;
1833 bio->bi_end_io = end_clone_bio;
1834
1835 return 0;
1836 }
1837
1838 static int setup_clone(struct request *clone, struct request *rq,
1839 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1840 {
1841 int r;
1842
1843 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1844 dm_rq_bio_constructor, tio);
1845 if (r)
1846 return r;
1847
1848 clone->cmd = rq->cmd;
1849 clone->cmd_len = rq->cmd_len;
1850 clone->sense = rq->sense;
1851 clone->end_io = end_clone_request;
1852 clone->end_io_data = tio;
1853
1854 tio->clone = clone;
1855
1856 return 0;
1857 }
1858
1859 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1860 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1861 {
1862 /*
1863 * Do not allocate a clone if tio->clone was already set
1864 * (see: dm_mq_queue_rq).
1865 */
1866 bool alloc_clone = !tio->clone;
1867 struct request *clone;
1868
1869 if (alloc_clone) {
1870 clone = alloc_clone_request(md, gfp_mask);
1871 if (!clone)
1872 return NULL;
1873 } else
1874 clone = tio->clone;
1875
1876 blk_rq_init(NULL, clone);
1877 if (setup_clone(clone, rq, tio, gfp_mask)) {
1878 /* -ENOMEM */
1879 if (alloc_clone)
1880 free_clone_request(md, clone);
1881 return NULL;
1882 }
1883
1884 return clone;
1885 }
1886
1887 static void map_tio_request(struct kthread_work *work);
1888
1889 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1890 struct mapped_device *md)
1891 {
1892 tio->md = md;
1893 tio->ti = NULL;
1894 tio->clone = NULL;
1895 tio->orig = rq;
1896 tio->error = 0;
1897 memset(&tio->info, 0, sizeof(tio->info));
1898 if (md->kworker_task)
1899 init_kthread_work(&tio->work, map_tio_request);
1900 }
1901
1902 static struct dm_rq_target_io *prep_tio(struct request *rq,
1903 struct mapped_device *md, gfp_t gfp_mask)
1904 {
1905 struct dm_rq_target_io *tio;
1906 int srcu_idx;
1907 struct dm_table *table;
1908
1909 tio = alloc_rq_tio(md, gfp_mask);
1910 if (!tio)
1911 return NULL;
1912
1913 init_tio(tio, rq, md);
1914
1915 table = dm_get_live_table(md, &srcu_idx);
1916 if (!dm_table_mq_request_based(table)) {
1917 if (!clone_rq(rq, md, tio, gfp_mask)) {
1918 dm_put_live_table(md, srcu_idx);
1919 free_rq_tio(tio);
1920 return NULL;
1921 }
1922 }
1923 dm_put_live_table(md, srcu_idx);
1924
1925 return tio;
1926 }
1927
1928 /*
1929 * Called with the queue lock held.
1930 */
1931 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1932 {
1933 struct mapped_device *md = q->queuedata;
1934 struct dm_rq_target_io *tio;
1935
1936 if (unlikely(rq->special)) {
1937 DMWARN("Already has something in rq->special.");
1938 return BLKPREP_KILL;
1939 }
1940
1941 tio = prep_tio(rq, md, GFP_ATOMIC);
1942 if (!tio)
1943 return BLKPREP_DEFER;
1944
1945 rq->special = tio;
1946 rq->cmd_flags |= REQ_DONTPREP;
1947
1948 return BLKPREP_OK;
1949 }
1950
1951 /*
1952 * Returns:
1953 * 0 : the request has been processed
1954 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1955 * < 0 : the request was completed due to failure
1956 */
1957 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1958 struct mapped_device *md)
1959 {
1960 int r;
1961 struct dm_target *ti = tio->ti;
1962 struct request *clone = NULL;
1963
1964 if (tio->clone) {
1965 clone = tio->clone;
1966 r = ti->type->map_rq(ti, clone, &tio->info);
1967 } else {
1968 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1969 if (r < 0) {
1970 /* The target wants to complete the I/O */
1971 dm_kill_unmapped_request(rq, r);
1972 return r;
1973 }
1974 if (IS_ERR(clone))
1975 return DM_MAPIO_REQUEUE;
1976 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1977 /* -ENOMEM */
1978 ti->type->release_clone_rq(clone);
1979 return DM_MAPIO_REQUEUE;
1980 }
1981 }
1982
1983 switch (r) {
1984 case DM_MAPIO_SUBMITTED:
1985 /* The target has taken the I/O to submit by itself later */
1986 break;
1987 case DM_MAPIO_REMAPPED:
1988 /* The target has remapped the I/O so dispatch it */
1989 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1990 blk_rq_pos(rq));
1991 dm_dispatch_clone_request(clone, rq);
1992 break;
1993 case DM_MAPIO_REQUEUE:
1994 /* The target wants to requeue the I/O */
1995 dm_requeue_unmapped_request(clone);
1996 break;
1997 default:
1998 if (r > 0) {
1999 DMWARN("unimplemented target map return value: %d", r);
2000 BUG();
2001 }
2002
2003 /* The target wants to complete the I/O */
2004 dm_kill_unmapped_request(rq, r);
2005 return r;
2006 }
2007
2008 return 0;
2009 }
2010
2011 static void map_tio_request(struct kthread_work *work)
2012 {
2013 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2014 struct request *rq = tio->orig;
2015 struct mapped_device *md = tio->md;
2016
2017 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2018 dm_requeue_unmapped_original_request(md, rq);
2019 }
2020
2021 static void dm_start_request(struct mapped_device *md, struct request *orig)
2022 {
2023 if (!orig->q->mq_ops)
2024 blk_start_request(orig);
2025 else
2026 blk_mq_start_request(orig);
2027 atomic_inc(&md->pending[rq_data_dir(orig)]);
2028
2029 if (md->seq_rq_merge_deadline_usecs) {
2030 md->last_rq_pos = rq_end_sector(orig);
2031 md->last_rq_rw = rq_data_dir(orig);
2032 md->last_rq_start_time = ktime_get();
2033 }
2034
2035 /*
2036 * Hold the md reference here for the in-flight I/O.
2037 * We can't rely on the reference count by device opener,
2038 * because the device may be closed during the request completion
2039 * when all bios are completed.
2040 * See the comment in rq_completed() too.
2041 */
2042 dm_get(md);
2043 }
2044
2045 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2046
2047 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2048 {
2049 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2050 }
2051
2052 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2053 const char *buf, size_t count)
2054 {
2055 unsigned deadline;
2056
2057 if (!dm_request_based(md) || md->use_blk_mq)
2058 return count;
2059
2060 if (kstrtouint(buf, 10, &deadline))
2061 return -EINVAL;
2062
2063 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2064 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2065
2066 md->seq_rq_merge_deadline_usecs = deadline;
2067
2068 return count;
2069 }
2070
2071 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2072 {
2073 ktime_t kt_deadline;
2074
2075 if (!md->seq_rq_merge_deadline_usecs)
2076 return false;
2077
2078 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2079 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2080
2081 return !ktime_after(ktime_get(), kt_deadline);
2082 }
2083
2084 /*
2085 * q->request_fn for request-based dm.
2086 * Called with the queue lock held.
2087 */
2088 static void dm_request_fn(struct request_queue *q)
2089 {
2090 struct mapped_device *md = q->queuedata;
2091 int srcu_idx;
2092 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2093 struct dm_target *ti;
2094 struct request *rq;
2095 struct dm_rq_target_io *tio;
2096 sector_t pos;
2097
2098 /*
2099 * For suspend, check blk_queue_stopped() and increment
2100 * ->pending within a single queue_lock not to increment the
2101 * number of in-flight I/Os after the queue is stopped in
2102 * dm_suspend().
2103 */
2104 while (!blk_queue_stopped(q)) {
2105 rq = blk_peek_request(q);
2106 if (!rq)
2107 goto out;
2108
2109 /* always use block 0 to find the target for flushes for now */
2110 pos = 0;
2111 if (!(rq->cmd_flags & REQ_FLUSH))
2112 pos = blk_rq_pos(rq);
2113
2114 ti = dm_table_find_target(map, pos);
2115 if (!dm_target_is_valid(ti)) {
2116 /*
2117 * Must perform setup, that rq_completed() requires,
2118 * before calling dm_kill_unmapped_request
2119 */
2120 DMERR_LIMIT("request attempted access beyond the end of device");
2121 dm_start_request(md, rq);
2122 dm_kill_unmapped_request(rq, -EIO);
2123 continue;
2124 }
2125
2126 if (dm_request_peeked_before_merge_deadline(md) &&
2127 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2128 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2129 goto delay_and_out;
2130
2131 if (ti->type->busy && ti->type->busy(ti))
2132 goto delay_and_out;
2133
2134 dm_start_request(md, rq);
2135
2136 tio = tio_from_request(rq);
2137 /* Establish tio->ti before queuing work (map_tio_request) */
2138 tio->ti = ti;
2139 queue_kthread_work(&md->kworker, &tio->work);
2140 BUG_ON(!irqs_disabled());
2141 }
2142
2143 goto out;
2144
2145 delay_and_out:
2146 blk_delay_queue(q, HZ / 100);
2147 out:
2148 dm_put_live_table(md, srcu_idx);
2149 }
2150
2151 static int dm_any_congested(void *congested_data, int bdi_bits)
2152 {
2153 int r = bdi_bits;
2154 struct mapped_device *md = congested_data;
2155 struct dm_table *map;
2156
2157 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2158 map = dm_get_live_table_fast(md);
2159 if (map) {
2160 /*
2161 * Request-based dm cares about only own queue for
2162 * the query about congestion status of request_queue
2163 */
2164 if (dm_request_based(md))
2165 r = md->queue->backing_dev_info.state &
2166 bdi_bits;
2167 else
2168 r = dm_table_any_congested(map, bdi_bits);
2169 }
2170 dm_put_live_table_fast(md);
2171 }
2172
2173 return r;
2174 }
2175
2176 /*-----------------------------------------------------------------
2177 * An IDR is used to keep track of allocated minor numbers.
2178 *---------------------------------------------------------------*/
2179 static void free_minor(int minor)
2180 {
2181 spin_lock(&_minor_lock);
2182 idr_remove(&_minor_idr, minor);
2183 spin_unlock(&_minor_lock);
2184 }
2185
2186 /*
2187 * See if the device with a specific minor # is free.
2188 */
2189 static int specific_minor(int minor)
2190 {
2191 int r;
2192
2193 if (minor >= (1 << MINORBITS))
2194 return -EINVAL;
2195
2196 idr_preload(GFP_KERNEL);
2197 spin_lock(&_minor_lock);
2198
2199 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2200
2201 spin_unlock(&_minor_lock);
2202 idr_preload_end();
2203 if (r < 0)
2204 return r == -ENOSPC ? -EBUSY : r;
2205 return 0;
2206 }
2207
2208 static int next_free_minor(int *minor)
2209 {
2210 int r;
2211
2212 idr_preload(GFP_KERNEL);
2213 spin_lock(&_minor_lock);
2214
2215 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2216
2217 spin_unlock(&_minor_lock);
2218 idr_preload_end();
2219 if (r < 0)
2220 return r;
2221 *minor = r;
2222 return 0;
2223 }
2224
2225 static const struct block_device_operations dm_blk_dops;
2226
2227 static void dm_wq_work(struct work_struct *work);
2228
2229 static void dm_init_md_queue(struct mapped_device *md)
2230 {
2231 /*
2232 * Request-based dm devices cannot be stacked on top of bio-based dm
2233 * devices. The type of this dm device may not have been decided yet.
2234 * The type is decided at the first table loading time.
2235 * To prevent problematic device stacking, clear the queue flag
2236 * for request stacking support until then.
2237 *
2238 * This queue is new, so no concurrency on the queue_flags.
2239 */
2240 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2241 }
2242
2243 static void dm_init_old_md_queue(struct mapped_device *md)
2244 {
2245 md->use_blk_mq = false;
2246 dm_init_md_queue(md);
2247
2248 /*
2249 * Initialize aspects of queue that aren't relevant for blk-mq
2250 */
2251 md->queue->queuedata = md;
2252 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2253 md->queue->backing_dev_info.congested_data = md;
2254
2255 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2256 }
2257
2258 /*
2259 * Allocate and initialise a blank device with a given minor.
2260 */
2261 static struct mapped_device *alloc_dev(int minor)
2262 {
2263 int r;
2264 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2265 void *old_md;
2266
2267 if (!md) {
2268 DMWARN("unable to allocate device, out of memory.");
2269 return NULL;
2270 }
2271
2272 if (!try_module_get(THIS_MODULE))
2273 goto bad_module_get;
2274
2275 /* get a minor number for the dev */
2276 if (minor == DM_ANY_MINOR)
2277 r = next_free_minor(&minor);
2278 else
2279 r = specific_minor(minor);
2280 if (r < 0)
2281 goto bad_minor;
2282
2283 r = init_srcu_struct(&md->io_barrier);
2284 if (r < 0)
2285 goto bad_io_barrier;
2286
2287 md->use_blk_mq = use_blk_mq;
2288 md->type = DM_TYPE_NONE;
2289 mutex_init(&md->suspend_lock);
2290 mutex_init(&md->type_lock);
2291 mutex_init(&md->table_devices_lock);
2292 spin_lock_init(&md->deferred_lock);
2293 atomic_set(&md->holders, 1);
2294 atomic_set(&md->open_count, 0);
2295 atomic_set(&md->event_nr, 0);
2296 atomic_set(&md->uevent_seq, 0);
2297 INIT_LIST_HEAD(&md->uevent_list);
2298 INIT_LIST_HEAD(&md->table_devices);
2299 spin_lock_init(&md->uevent_lock);
2300
2301 md->queue = blk_alloc_queue(GFP_KERNEL);
2302 if (!md->queue)
2303 goto bad_queue;
2304
2305 dm_init_md_queue(md);
2306
2307 md->disk = alloc_disk(1);
2308 if (!md->disk)
2309 goto bad_disk;
2310
2311 atomic_set(&md->pending[0], 0);
2312 atomic_set(&md->pending[1], 0);
2313 init_waitqueue_head(&md->wait);
2314 INIT_WORK(&md->work, dm_wq_work);
2315 init_waitqueue_head(&md->eventq);
2316 init_completion(&md->kobj_holder.completion);
2317 md->kworker_task = NULL;
2318
2319 md->disk->major = _major;
2320 md->disk->first_minor = minor;
2321 md->disk->fops = &dm_blk_dops;
2322 md->disk->queue = md->queue;
2323 md->disk->private_data = md;
2324 sprintf(md->disk->disk_name, "dm-%d", minor);
2325 add_disk(md->disk);
2326 format_dev_t(md->name, MKDEV(_major, minor));
2327
2328 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2329 if (!md->wq)
2330 goto bad_thread;
2331
2332 md->bdev = bdget_disk(md->disk, 0);
2333 if (!md->bdev)
2334 goto bad_bdev;
2335
2336 bio_init(&md->flush_bio);
2337 md->flush_bio.bi_bdev = md->bdev;
2338 md->flush_bio.bi_rw = WRITE_FLUSH;
2339
2340 dm_stats_init(&md->stats);
2341
2342 /* Populate the mapping, nobody knows we exist yet */
2343 spin_lock(&_minor_lock);
2344 old_md = idr_replace(&_minor_idr, md, minor);
2345 spin_unlock(&_minor_lock);
2346
2347 BUG_ON(old_md != MINOR_ALLOCED);
2348
2349 return md;
2350
2351 bad_bdev:
2352 destroy_workqueue(md->wq);
2353 bad_thread:
2354 del_gendisk(md->disk);
2355 put_disk(md->disk);
2356 bad_disk:
2357 blk_cleanup_queue(md->queue);
2358 bad_queue:
2359 cleanup_srcu_struct(&md->io_barrier);
2360 bad_io_barrier:
2361 free_minor(minor);
2362 bad_minor:
2363 module_put(THIS_MODULE);
2364 bad_module_get:
2365 kfree(md);
2366 return NULL;
2367 }
2368
2369 static void unlock_fs(struct mapped_device *md);
2370
2371 static void free_dev(struct mapped_device *md)
2372 {
2373 int minor = MINOR(disk_devt(md->disk));
2374
2375 unlock_fs(md);
2376 destroy_workqueue(md->wq);
2377
2378 if (md->kworker_task)
2379 kthread_stop(md->kworker_task);
2380 if (md->io_pool)
2381 mempool_destroy(md->io_pool);
2382 if (md->rq_pool)
2383 mempool_destroy(md->rq_pool);
2384 if (md->bs)
2385 bioset_free(md->bs);
2386
2387 cleanup_srcu_struct(&md->io_barrier);
2388 free_table_devices(&md->table_devices);
2389 dm_stats_cleanup(&md->stats);
2390
2391 spin_lock(&_minor_lock);
2392 md->disk->private_data = NULL;
2393 spin_unlock(&_minor_lock);
2394 if (blk_get_integrity(md->disk))
2395 blk_integrity_unregister(md->disk);
2396 del_gendisk(md->disk);
2397 put_disk(md->disk);
2398 blk_cleanup_queue(md->queue);
2399 if (md->use_blk_mq)
2400 blk_mq_free_tag_set(&md->tag_set);
2401 bdput(md->bdev);
2402 free_minor(minor);
2403
2404 module_put(THIS_MODULE);
2405 kfree(md);
2406 }
2407
2408 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2409 {
2410 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2411
2412 if (md->bs) {
2413 /* The md already has necessary mempools. */
2414 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2415 /*
2416 * Reload bioset because front_pad may have changed
2417 * because a different table was loaded.
2418 */
2419 bioset_free(md->bs);
2420 md->bs = p->bs;
2421 p->bs = NULL;
2422 }
2423 /*
2424 * There's no need to reload with request-based dm
2425 * because the size of front_pad doesn't change.
2426 * Note for future: If you are to reload bioset,
2427 * prep-ed requests in the queue may refer
2428 * to bio from the old bioset, so you must walk
2429 * through the queue to unprep.
2430 */
2431 goto out;
2432 }
2433
2434 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2435
2436 md->io_pool = p->io_pool;
2437 p->io_pool = NULL;
2438 md->rq_pool = p->rq_pool;
2439 p->rq_pool = NULL;
2440 md->bs = p->bs;
2441 p->bs = NULL;
2442
2443 out:
2444 /* mempool bind completed, no longer need any mempools in the table */
2445 dm_table_free_md_mempools(t);
2446 }
2447
2448 /*
2449 * Bind a table to the device.
2450 */
2451 static void event_callback(void *context)
2452 {
2453 unsigned long flags;
2454 LIST_HEAD(uevents);
2455 struct mapped_device *md = (struct mapped_device *) context;
2456
2457 spin_lock_irqsave(&md->uevent_lock, flags);
2458 list_splice_init(&md->uevent_list, &uevents);
2459 spin_unlock_irqrestore(&md->uevent_lock, flags);
2460
2461 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2462
2463 atomic_inc(&md->event_nr);
2464 wake_up(&md->eventq);
2465 }
2466
2467 /*
2468 * Protected by md->suspend_lock obtained by dm_swap_table().
2469 */
2470 static void __set_size(struct mapped_device *md, sector_t size)
2471 {
2472 set_capacity(md->disk, size);
2473
2474 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2475 }
2476
2477 /*
2478 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2479 *
2480 * If this function returns 0, then the device is either a non-dm
2481 * device without a merge_bvec_fn, or it is a dm device that is
2482 * able to split any bios it receives that are too big.
2483 */
2484 int dm_queue_merge_is_compulsory(struct request_queue *q)
2485 {
2486 struct mapped_device *dev_md;
2487
2488 if (!q->merge_bvec_fn)
2489 return 0;
2490
2491 if (q->make_request_fn == dm_make_request) {
2492 dev_md = q->queuedata;
2493 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2494 return 0;
2495 }
2496
2497 return 1;
2498 }
2499
2500 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2501 struct dm_dev *dev, sector_t start,
2502 sector_t len, void *data)
2503 {
2504 struct block_device *bdev = dev->bdev;
2505 struct request_queue *q = bdev_get_queue(bdev);
2506
2507 return dm_queue_merge_is_compulsory(q);
2508 }
2509
2510 /*
2511 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2512 * on the properties of the underlying devices.
2513 */
2514 static int dm_table_merge_is_optional(struct dm_table *table)
2515 {
2516 unsigned i = 0;
2517 struct dm_target *ti;
2518
2519 while (i < dm_table_get_num_targets(table)) {
2520 ti = dm_table_get_target(table, i++);
2521
2522 if (ti->type->iterate_devices &&
2523 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2524 return 0;
2525 }
2526
2527 return 1;
2528 }
2529
2530 /*
2531 * Returns old map, which caller must destroy.
2532 */
2533 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2534 struct queue_limits *limits)
2535 {
2536 struct dm_table *old_map;
2537 struct request_queue *q = md->queue;
2538 sector_t size;
2539 int merge_is_optional;
2540
2541 size = dm_table_get_size(t);
2542
2543 /*
2544 * Wipe any geometry if the size of the table changed.
2545 */
2546 if (size != dm_get_size(md))
2547 memset(&md->geometry, 0, sizeof(md->geometry));
2548
2549 __set_size(md, size);
2550
2551 dm_table_event_callback(t, event_callback, md);
2552
2553 /*
2554 * The queue hasn't been stopped yet, if the old table type wasn't
2555 * for request-based during suspension. So stop it to prevent
2556 * I/O mapping before resume.
2557 * This must be done before setting the queue restrictions,
2558 * because request-based dm may be run just after the setting.
2559 */
2560 if (dm_table_request_based(t))
2561 stop_queue(q);
2562
2563 __bind_mempools(md, t);
2564
2565 merge_is_optional = dm_table_merge_is_optional(t);
2566
2567 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2568 rcu_assign_pointer(md->map, t);
2569 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2570
2571 dm_table_set_restrictions(t, q, limits);
2572 if (merge_is_optional)
2573 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2574 else
2575 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2576 if (old_map)
2577 dm_sync_table(md);
2578
2579 return old_map;
2580 }
2581
2582 /*
2583 * Returns unbound table for the caller to free.
2584 */
2585 static struct dm_table *__unbind(struct mapped_device *md)
2586 {
2587 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2588
2589 if (!map)
2590 return NULL;
2591
2592 dm_table_event_callback(map, NULL, NULL);
2593 RCU_INIT_POINTER(md->map, NULL);
2594 dm_sync_table(md);
2595
2596 return map;
2597 }
2598
2599 /*
2600 * Constructor for a new device.
2601 */
2602 int dm_create(int minor, struct mapped_device **result)
2603 {
2604 struct mapped_device *md;
2605
2606 md = alloc_dev(minor);
2607 if (!md)
2608 return -ENXIO;
2609
2610 dm_sysfs_init(md);
2611
2612 *result = md;
2613 return 0;
2614 }
2615
2616 /*
2617 * Functions to manage md->type.
2618 * All are required to hold md->type_lock.
2619 */
2620 void dm_lock_md_type(struct mapped_device *md)
2621 {
2622 mutex_lock(&md->type_lock);
2623 }
2624
2625 void dm_unlock_md_type(struct mapped_device *md)
2626 {
2627 mutex_unlock(&md->type_lock);
2628 }
2629
2630 void dm_set_md_type(struct mapped_device *md, unsigned type)
2631 {
2632 BUG_ON(!mutex_is_locked(&md->type_lock));
2633 md->type = type;
2634 }
2635
2636 unsigned dm_get_md_type(struct mapped_device *md)
2637 {
2638 BUG_ON(!mutex_is_locked(&md->type_lock));
2639 return md->type;
2640 }
2641
2642 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2643 {
2644 return md->immutable_target_type;
2645 }
2646
2647 /*
2648 * The queue_limits are only valid as long as you have a reference
2649 * count on 'md'.
2650 */
2651 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2652 {
2653 BUG_ON(!atomic_read(&md->holders));
2654 return &md->queue->limits;
2655 }
2656 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2657
2658 static void init_rq_based_worker_thread(struct mapped_device *md)
2659 {
2660 /* Initialize the request-based DM worker thread */
2661 init_kthread_worker(&md->kworker);
2662 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2663 "kdmwork-%s", dm_device_name(md));
2664 }
2665
2666 /*
2667 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2668 */
2669 static int dm_init_request_based_queue(struct mapped_device *md)
2670 {
2671 struct request_queue *q = NULL;
2672
2673 /* Fully initialize the queue */
2674 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2675 if (!q)
2676 return -EINVAL;
2677
2678 /* disable dm_request_fn's merge heuristic by default */
2679 md->seq_rq_merge_deadline_usecs = 0;
2680
2681 md->queue = q;
2682 dm_init_old_md_queue(md);
2683 blk_queue_softirq_done(md->queue, dm_softirq_done);
2684 blk_queue_prep_rq(md->queue, dm_prep_fn);
2685
2686 init_rq_based_worker_thread(md);
2687
2688 elv_register_queue(md->queue);
2689
2690 return 0;
2691 }
2692
2693 static int dm_mq_init_request(void *data, struct request *rq,
2694 unsigned int hctx_idx, unsigned int request_idx,
2695 unsigned int numa_node)
2696 {
2697 struct mapped_device *md = data;
2698 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2699
2700 /*
2701 * Must initialize md member of tio, otherwise it won't
2702 * be available in dm_mq_queue_rq.
2703 */
2704 tio->md = md;
2705
2706 return 0;
2707 }
2708
2709 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2710 const struct blk_mq_queue_data *bd)
2711 {
2712 struct request *rq = bd->rq;
2713 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2714 struct mapped_device *md = tio->md;
2715 int srcu_idx;
2716 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2717 struct dm_target *ti;
2718 sector_t pos;
2719
2720 /* always use block 0 to find the target for flushes for now */
2721 pos = 0;
2722 if (!(rq->cmd_flags & REQ_FLUSH))
2723 pos = blk_rq_pos(rq);
2724
2725 ti = dm_table_find_target(map, pos);
2726 if (!dm_target_is_valid(ti)) {
2727 dm_put_live_table(md, srcu_idx);
2728 DMERR_LIMIT("request attempted access beyond the end of device");
2729 /*
2730 * Must perform setup, that rq_completed() requires,
2731 * before returning BLK_MQ_RQ_QUEUE_ERROR
2732 */
2733 dm_start_request(md, rq);
2734 return BLK_MQ_RQ_QUEUE_ERROR;
2735 }
2736 dm_put_live_table(md, srcu_idx);
2737
2738 if (ti->type->busy && ti->type->busy(ti))
2739 return BLK_MQ_RQ_QUEUE_BUSY;
2740
2741 dm_start_request(md, rq);
2742
2743 /* Init tio using md established in .init_request */
2744 init_tio(tio, rq, md);
2745
2746 /*
2747 * Establish tio->ti before queuing work (map_tio_request)
2748 * or making direct call to map_request().
2749 */
2750 tio->ti = ti;
2751
2752 /* Clone the request if underlying devices aren't blk-mq */
2753 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2754 /* clone request is allocated at the end of the pdu */
2755 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2756 if (!clone_rq(rq, md, tio, GFP_ATOMIC))
2757 return BLK_MQ_RQ_QUEUE_BUSY;
2758 queue_kthread_work(&md->kworker, &tio->work);
2759 } else {
2760 /* Direct call is fine since .queue_rq allows allocations */
2761 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2762 dm_requeue_unmapped_original_request(md, rq);
2763 }
2764
2765 return BLK_MQ_RQ_QUEUE_OK;
2766 }
2767
2768 static struct blk_mq_ops dm_mq_ops = {
2769 .queue_rq = dm_mq_queue_rq,
2770 .map_queue = blk_mq_map_queue,
2771 .complete = dm_softirq_done,
2772 .init_request = dm_mq_init_request,
2773 };
2774
2775 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2776 {
2777 unsigned md_type = dm_get_md_type(md);
2778 struct request_queue *q;
2779 int err;
2780
2781 memset(&md->tag_set, 0, sizeof(md->tag_set));
2782 md->tag_set.ops = &dm_mq_ops;
2783 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2784 md->tag_set.numa_node = NUMA_NO_NODE;
2785 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2786 md->tag_set.nr_hw_queues = 1;
2787 if (md_type == DM_TYPE_REQUEST_BASED) {
2788 /* make the memory for non-blk-mq clone part of the pdu */
2789 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2790 } else
2791 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2792 md->tag_set.driver_data = md;
2793
2794 err = blk_mq_alloc_tag_set(&md->tag_set);
2795 if (err)
2796 return err;
2797
2798 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2799 if (IS_ERR(q)) {
2800 err = PTR_ERR(q);
2801 goto out_tag_set;
2802 }
2803 md->queue = q;
2804 dm_init_md_queue(md);
2805
2806 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2807 blk_mq_register_disk(md->disk);
2808
2809 if (md_type == DM_TYPE_REQUEST_BASED)
2810 init_rq_based_worker_thread(md);
2811
2812 return 0;
2813
2814 out_tag_set:
2815 blk_mq_free_tag_set(&md->tag_set);
2816 return err;
2817 }
2818
2819 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2820 {
2821 if (type == DM_TYPE_BIO_BASED)
2822 return type;
2823
2824 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2825 }
2826
2827 /*
2828 * Setup the DM device's queue based on md's type
2829 */
2830 int dm_setup_md_queue(struct mapped_device *md)
2831 {
2832 int r;
2833 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2834
2835 switch (md_type) {
2836 case DM_TYPE_REQUEST_BASED:
2837 r = dm_init_request_based_queue(md);
2838 if (r) {
2839 DMWARN("Cannot initialize queue for request-based mapped device");
2840 return r;
2841 }
2842 break;
2843 case DM_TYPE_MQ_REQUEST_BASED:
2844 r = dm_init_request_based_blk_mq_queue(md);
2845 if (r) {
2846 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2847 return r;
2848 }
2849 break;
2850 case DM_TYPE_BIO_BASED:
2851 dm_init_old_md_queue(md);
2852 blk_queue_make_request(md->queue, dm_make_request);
2853 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2854 break;
2855 }
2856
2857 return 0;
2858 }
2859
2860 struct mapped_device *dm_get_md(dev_t dev)
2861 {
2862 struct mapped_device *md;
2863 unsigned minor = MINOR(dev);
2864
2865 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2866 return NULL;
2867
2868 spin_lock(&_minor_lock);
2869
2870 md = idr_find(&_minor_idr, minor);
2871 if (md) {
2872 if ((md == MINOR_ALLOCED ||
2873 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2874 dm_deleting_md(md) ||
2875 test_bit(DMF_FREEING, &md->flags))) {
2876 md = NULL;
2877 goto out;
2878 }
2879 dm_get(md);
2880 }
2881
2882 out:
2883 spin_unlock(&_minor_lock);
2884
2885 return md;
2886 }
2887 EXPORT_SYMBOL_GPL(dm_get_md);
2888
2889 void *dm_get_mdptr(struct mapped_device *md)
2890 {
2891 return md->interface_ptr;
2892 }
2893
2894 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2895 {
2896 md->interface_ptr = ptr;
2897 }
2898
2899 void dm_get(struct mapped_device *md)
2900 {
2901 atomic_inc(&md->holders);
2902 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2903 }
2904
2905 int dm_hold(struct mapped_device *md)
2906 {
2907 spin_lock(&_minor_lock);
2908 if (test_bit(DMF_FREEING, &md->flags)) {
2909 spin_unlock(&_minor_lock);
2910 return -EBUSY;
2911 }
2912 dm_get(md);
2913 spin_unlock(&_minor_lock);
2914 return 0;
2915 }
2916 EXPORT_SYMBOL_GPL(dm_hold);
2917
2918 const char *dm_device_name(struct mapped_device *md)
2919 {
2920 return md->name;
2921 }
2922 EXPORT_SYMBOL_GPL(dm_device_name);
2923
2924 static void __dm_destroy(struct mapped_device *md, bool wait)
2925 {
2926 struct dm_table *map;
2927 int srcu_idx;
2928
2929 might_sleep();
2930
2931 map = dm_get_live_table(md, &srcu_idx);
2932
2933 spin_lock(&_minor_lock);
2934 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2935 set_bit(DMF_FREEING, &md->flags);
2936 spin_unlock(&_minor_lock);
2937
2938 if (dm_request_based(md) && md->kworker_task)
2939 flush_kthread_worker(&md->kworker);
2940
2941 /*
2942 * Take suspend_lock so that presuspend and postsuspend methods
2943 * do not race with internal suspend.
2944 */
2945 mutex_lock(&md->suspend_lock);
2946 if (!dm_suspended_md(md)) {
2947 dm_table_presuspend_targets(map);
2948 dm_table_postsuspend_targets(map);
2949 }
2950 mutex_unlock(&md->suspend_lock);
2951
2952 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2953 dm_put_live_table(md, srcu_idx);
2954
2955 /*
2956 * Rare, but there may be I/O requests still going to complete,
2957 * for example. Wait for all references to disappear.
2958 * No one should increment the reference count of the mapped_device,
2959 * after the mapped_device state becomes DMF_FREEING.
2960 */
2961 if (wait)
2962 while (atomic_read(&md->holders))
2963 msleep(1);
2964 else if (atomic_read(&md->holders))
2965 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2966 dm_device_name(md), atomic_read(&md->holders));
2967
2968 dm_sysfs_exit(md);
2969 dm_table_destroy(__unbind(md));
2970 free_dev(md);
2971 }
2972
2973 void dm_destroy(struct mapped_device *md)
2974 {
2975 __dm_destroy(md, true);
2976 }
2977
2978 void dm_destroy_immediate(struct mapped_device *md)
2979 {
2980 __dm_destroy(md, false);
2981 }
2982
2983 void dm_put(struct mapped_device *md)
2984 {
2985 atomic_dec(&md->holders);
2986 }
2987 EXPORT_SYMBOL_GPL(dm_put);
2988
2989 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2990 {
2991 int r = 0;
2992 DECLARE_WAITQUEUE(wait, current);
2993
2994 add_wait_queue(&md->wait, &wait);
2995
2996 while (1) {
2997 set_current_state(interruptible);
2998
2999 if (!md_in_flight(md))
3000 break;
3001
3002 if (interruptible == TASK_INTERRUPTIBLE &&
3003 signal_pending(current)) {
3004 r = -EINTR;
3005 break;
3006 }
3007
3008 io_schedule();
3009 }
3010 set_current_state(TASK_RUNNING);
3011
3012 remove_wait_queue(&md->wait, &wait);
3013
3014 return r;
3015 }
3016
3017 /*
3018 * Process the deferred bios
3019 */
3020 static void dm_wq_work(struct work_struct *work)
3021 {
3022 struct mapped_device *md = container_of(work, struct mapped_device,
3023 work);
3024 struct bio *c;
3025 int srcu_idx;
3026 struct dm_table *map;
3027
3028 map = dm_get_live_table(md, &srcu_idx);
3029
3030 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3031 spin_lock_irq(&md->deferred_lock);
3032 c = bio_list_pop(&md->deferred);
3033 spin_unlock_irq(&md->deferred_lock);
3034
3035 if (!c)
3036 break;
3037
3038 if (dm_request_based(md))
3039 generic_make_request(c);
3040 else
3041 __split_and_process_bio(md, map, c);
3042 }
3043
3044 dm_put_live_table(md, srcu_idx);
3045 }
3046
3047 static void dm_queue_flush(struct mapped_device *md)
3048 {
3049 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3050 smp_mb__after_atomic();
3051 queue_work(md->wq, &md->work);
3052 }
3053
3054 /*
3055 * Swap in a new table, returning the old one for the caller to destroy.
3056 */
3057 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3058 {
3059 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3060 struct queue_limits limits;
3061 int r;
3062
3063 mutex_lock(&md->suspend_lock);
3064
3065 /* device must be suspended */
3066 if (!dm_suspended_md(md))
3067 goto out;
3068
3069 /*
3070 * If the new table has no data devices, retain the existing limits.
3071 * This helps multipath with queue_if_no_path if all paths disappear,
3072 * then new I/O is queued based on these limits, and then some paths
3073 * reappear.
3074 */
3075 if (dm_table_has_no_data_devices(table)) {
3076 live_map = dm_get_live_table_fast(md);
3077 if (live_map)
3078 limits = md->queue->limits;
3079 dm_put_live_table_fast(md);
3080 }
3081
3082 if (!live_map) {
3083 r = dm_calculate_queue_limits(table, &limits);
3084 if (r) {
3085 map = ERR_PTR(r);
3086 goto out;
3087 }
3088 }
3089
3090 map = __bind(md, table, &limits);
3091
3092 out:
3093 mutex_unlock(&md->suspend_lock);
3094 return map;
3095 }
3096
3097 /*
3098 * Functions to lock and unlock any filesystem running on the
3099 * device.
3100 */
3101 static int lock_fs(struct mapped_device *md)
3102 {
3103 int r;
3104
3105 WARN_ON(md->frozen_sb);
3106
3107 md->frozen_sb = freeze_bdev(md->bdev);
3108 if (IS_ERR(md->frozen_sb)) {
3109 r = PTR_ERR(md->frozen_sb);
3110 md->frozen_sb = NULL;
3111 return r;
3112 }
3113
3114 set_bit(DMF_FROZEN, &md->flags);
3115
3116 return 0;
3117 }
3118
3119 static void unlock_fs(struct mapped_device *md)
3120 {
3121 if (!test_bit(DMF_FROZEN, &md->flags))
3122 return;
3123
3124 thaw_bdev(md->bdev, md->frozen_sb);
3125 md->frozen_sb = NULL;
3126 clear_bit(DMF_FROZEN, &md->flags);
3127 }
3128
3129 /*
3130 * If __dm_suspend returns 0, the device is completely quiescent
3131 * now. There is no request-processing activity. All new requests
3132 * are being added to md->deferred list.
3133 *
3134 * Caller must hold md->suspend_lock
3135 */
3136 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3137 unsigned suspend_flags, int interruptible)
3138 {
3139 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3140 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3141 int r;
3142
3143 /*
3144 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3145 * This flag is cleared before dm_suspend returns.
3146 */
3147 if (noflush)
3148 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3149
3150 /*
3151 * This gets reverted if there's an error later and the targets
3152 * provide the .presuspend_undo hook.
3153 */
3154 dm_table_presuspend_targets(map);
3155
3156 /*
3157 * Flush I/O to the device.
3158 * Any I/O submitted after lock_fs() may not be flushed.
3159 * noflush takes precedence over do_lockfs.
3160 * (lock_fs() flushes I/Os and waits for them to complete.)
3161 */
3162 if (!noflush && do_lockfs) {
3163 r = lock_fs(md);
3164 if (r) {
3165 dm_table_presuspend_undo_targets(map);
3166 return r;
3167 }
3168 }
3169
3170 /*
3171 * Here we must make sure that no processes are submitting requests
3172 * to target drivers i.e. no one may be executing
3173 * __split_and_process_bio. This is called from dm_request and
3174 * dm_wq_work.
3175 *
3176 * To get all processes out of __split_and_process_bio in dm_request,
3177 * we take the write lock. To prevent any process from reentering
3178 * __split_and_process_bio from dm_request and quiesce the thread
3179 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3180 * flush_workqueue(md->wq).
3181 */
3182 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3183 if (map)
3184 synchronize_srcu(&md->io_barrier);
3185
3186 /*
3187 * Stop md->queue before flushing md->wq in case request-based
3188 * dm defers requests to md->wq from md->queue.
3189 */
3190 if (dm_request_based(md)) {
3191 stop_queue(md->queue);
3192 if (md->kworker_task)
3193 flush_kthread_worker(&md->kworker);
3194 }
3195
3196 flush_workqueue(md->wq);
3197
3198 /*
3199 * At this point no more requests are entering target request routines.
3200 * We call dm_wait_for_completion to wait for all existing requests
3201 * to finish.
3202 */
3203 r = dm_wait_for_completion(md, interruptible);
3204
3205 if (noflush)
3206 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3207 if (map)
3208 synchronize_srcu(&md->io_barrier);
3209
3210 /* were we interrupted ? */
3211 if (r < 0) {
3212 dm_queue_flush(md);
3213
3214 if (dm_request_based(md))
3215 start_queue(md->queue);
3216
3217 unlock_fs(md);
3218 dm_table_presuspend_undo_targets(map);
3219 /* pushback list is already flushed, so skip flush */
3220 }
3221
3222 return r;
3223 }
3224
3225 /*
3226 * We need to be able to change a mapping table under a mounted
3227 * filesystem. For example we might want to move some data in
3228 * the background. Before the table can be swapped with
3229 * dm_bind_table, dm_suspend must be called to flush any in
3230 * flight bios and ensure that any further io gets deferred.
3231 */
3232 /*
3233 * Suspend mechanism in request-based dm.
3234 *
3235 * 1. Flush all I/Os by lock_fs() if needed.
3236 * 2. Stop dispatching any I/O by stopping the request_queue.
3237 * 3. Wait for all in-flight I/Os to be completed or requeued.
3238 *
3239 * To abort suspend, start the request_queue.
3240 */
3241 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3242 {
3243 struct dm_table *map = NULL;
3244 int r = 0;
3245
3246 retry:
3247 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3248
3249 if (dm_suspended_md(md)) {
3250 r = -EINVAL;
3251 goto out_unlock;
3252 }
3253
3254 if (dm_suspended_internally_md(md)) {
3255 /* already internally suspended, wait for internal resume */
3256 mutex_unlock(&md->suspend_lock);
3257 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3258 if (r)
3259 return r;
3260 goto retry;
3261 }
3262
3263 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3264
3265 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3266 if (r)
3267 goto out_unlock;
3268
3269 set_bit(DMF_SUSPENDED, &md->flags);
3270
3271 dm_table_postsuspend_targets(map);
3272
3273 out_unlock:
3274 mutex_unlock(&md->suspend_lock);
3275 return r;
3276 }
3277
3278 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3279 {
3280 if (map) {
3281 int r = dm_table_resume_targets(map);
3282 if (r)
3283 return r;
3284 }
3285
3286 dm_queue_flush(md);
3287
3288 /*
3289 * Flushing deferred I/Os must be done after targets are resumed
3290 * so that mapping of targets can work correctly.
3291 * Request-based dm is queueing the deferred I/Os in its request_queue.
3292 */
3293 if (dm_request_based(md))
3294 start_queue(md->queue);
3295
3296 unlock_fs(md);
3297
3298 return 0;
3299 }
3300
3301 int dm_resume(struct mapped_device *md)
3302 {
3303 int r = -EINVAL;
3304 struct dm_table *map = NULL;
3305
3306 retry:
3307 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3308
3309 if (!dm_suspended_md(md))
3310 goto out;
3311
3312 if (dm_suspended_internally_md(md)) {
3313 /* already internally suspended, wait for internal resume */
3314 mutex_unlock(&md->suspend_lock);
3315 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3316 if (r)
3317 return r;
3318 goto retry;
3319 }
3320
3321 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3322 if (!map || !dm_table_get_size(map))
3323 goto out;
3324
3325 r = __dm_resume(md, map);
3326 if (r)
3327 goto out;
3328
3329 clear_bit(DMF_SUSPENDED, &md->flags);
3330
3331 r = 0;
3332 out:
3333 mutex_unlock(&md->suspend_lock);
3334
3335 return r;
3336 }
3337
3338 /*
3339 * Internal suspend/resume works like userspace-driven suspend. It waits
3340 * until all bios finish and prevents issuing new bios to the target drivers.
3341 * It may be used only from the kernel.
3342 */
3343
3344 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3345 {
3346 struct dm_table *map = NULL;
3347
3348 if (md->internal_suspend_count++)
3349 return; /* nested internal suspend */
3350
3351 if (dm_suspended_md(md)) {
3352 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3353 return; /* nest suspend */
3354 }
3355
3356 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3357
3358 /*
3359 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3360 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3361 * would require changing .presuspend to return an error -- avoid this
3362 * until there is a need for more elaborate variants of internal suspend.
3363 */
3364 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3365
3366 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3367
3368 dm_table_postsuspend_targets(map);
3369 }
3370
3371 static void __dm_internal_resume(struct mapped_device *md)
3372 {
3373 BUG_ON(!md->internal_suspend_count);
3374
3375 if (--md->internal_suspend_count)
3376 return; /* resume from nested internal suspend */
3377
3378 if (dm_suspended_md(md))
3379 goto done; /* resume from nested suspend */
3380
3381 /*
3382 * NOTE: existing callers don't need to call dm_table_resume_targets
3383 * (which may fail -- so best to avoid it for now by passing NULL map)
3384 */
3385 (void) __dm_resume(md, NULL);
3386
3387 done:
3388 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3389 smp_mb__after_atomic();
3390 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3391 }
3392
3393 void dm_internal_suspend_noflush(struct mapped_device *md)
3394 {
3395 mutex_lock(&md->suspend_lock);
3396 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3397 mutex_unlock(&md->suspend_lock);
3398 }
3399 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3400
3401 void dm_internal_resume(struct mapped_device *md)
3402 {
3403 mutex_lock(&md->suspend_lock);
3404 __dm_internal_resume(md);
3405 mutex_unlock(&md->suspend_lock);
3406 }
3407 EXPORT_SYMBOL_GPL(dm_internal_resume);
3408
3409 /*
3410 * Fast variants of internal suspend/resume hold md->suspend_lock,
3411 * which prevents interaction with userspace-driven suspend.
3412 */
3413
3414 void dm_internal_suspend_fast(struct mapped_device *md)
3415 {
3416 mutex_lock(&md->suspend_lock);
3417 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3418 return;
3419
3420 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3421 synchronize_srcu(&md->io_barrier);
3422 flush_workqueue(md->wq);
3423 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3424 }
3425 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3426
3427 void dm_internal_resume_fast(struct mapped_device *md)
3428 {
3429 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3430 goto done;
3431
3432 dm_queue_flush(md);
3433
3434 done:
3435 mutex_unlock(&md->suspend_lock);
3436 }
3437 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3438
3439 /*-----------------------------------------------------------------
3440 * Event notification.
3441 *---------------------------------------------------------------*/
3442 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3443 unsigned cookie)
3444 {
3445 char udev_cookie[DM_COOKIE_LENGTH];
3446 char *envp[] = { udev_cookie, NULL };
3447
3448 if (!cookie)
3449 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3450 else {
3451 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3452 DM_COOKIE_ENV_VAR_NAME, cookie);
3453 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3454 action, envp);
3455 }
3456 }
3457
3458 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3459 {
3460 return atomic_add_return(1, &md->uevent_seq);
3461 }
3462
3463 uint32_t dm_get_event_nr(struct mapped_device *md)
3464 {
3465 return atomic_read(&md->event_nr);
3466 }
3467
3468 int dm_wait_event(struct mapped_device *md, int event_nr)
3469 {
3470 return wait_event_interruptible(md->eventq,
3471 (event_nr != atomic_read(&md->event_nr)));
3472 }
3473
3474 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3475 {
3476 unsigned long flags;
3477
3478 spin_lock_irqsave(&md->uevent_lock, flags);
3479 list_add(elist, &md->uevent_list);
3480 spin_unlock_irqrestore(&md->uevent_lock, flags);
3481 }
3482
3483 /*
3484 * The gendisk is only valid as long as you have a reference
3485 * count on 'md'.
3486 */
3487 struct gendisk *dm_disk(struct mapped_device *md)
3488 {
3489 return md->disk;
3490 }
3491 EXPORT_SYMBOL_GPL(dm_disk);
3492
3493 struct kobject *dm_kobject(struct mapped_device *md)
3494 {
3495 return &md->kobj_holder.kobj;
3496 }
3497
3498 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3499 {
3500 struct mapped_device *md;
3501
3502 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3503
3504 if (test_bit(DMF_FREEING, &md->flags) ||
3505 dm_deleting_md(md))
3506 return NULL;
3507
3508 dm_get(md);
3509 return md;
3510 }
3511
3512 int dm_suspended_md(struct mapped_device *md)
3513 {
3514 return test_bit(DMF_SUSPENDED, &md->flags);
3515 }
3516
3517 int dm_suspended_internally_md(struct mapped_device *md)
3518 {
3519 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3520 }
3521
3522 int dm_test_deferred_remove_flag(struct mapped_device *md)
3523 {
3524 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3525 }
3526
3527 int dm_suspended(struct dm_target *ti)
3528 {
3529 return dm_suspended_md(dm_table_get_md(ti->table));
3530 }
3531 EXPORT_SYMBOL_GPL(dm_suspended);
3532
3533 int dm_noflush_suspending(struct dm_target *ti)
3534 {
3535 return __noflush_suspending(dm_table_get_md(ti->table));
3536 }
3537 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3538
3539 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3540 unsigned integrity, unsigned per_bio_data_size)
3541 {
3542 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3543 struct kmem_cache *cachep = NULL;
3544 unsigned int pool_size = 0;
3545 unsigned int front_pad;
3546
3547 if (!pools)
3548 return NULL;
3549
3550 type = filter_md_type(type, md);
3551
3552 switch (type) {
3553 case DM_TYPE_BIO_BASED:
3554 cachep = _io_cache;
3555 pool_size = dm_get_reserved_bio_based_ios();
3556 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3557 break;
3558 case DM_TYPE_REQUEST_BASED:
3559 cachep = _rq_tio_cache;
3560 pool_size = dm_get_reserved_rq_based_ios();
3561 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3562 if (!pools->rq_pool)
3563 goto out;
3564 /* fall through to setup remaining rq-based pools */
3565 case DM_TYPE_MQ_REQUEST_BASED:
3566 if (!pool_size)
3567 pool_size = dm_get_reserved_rq_based_ios();
3568 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3569 /* per_bio_data_size is not used. See __bind_mempools(). */
3570 WARN_ON(per_bio_data_size != 0);
3571 break;
3572 default:
3573 BUG();
3574 }
3575
3576 if (cachep) {
3577 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3578 if (!pools->io_pool)
3579 goto out;
3580 }
3581
3582 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3583 if (!pools->bs)
3584 goto out;
3585
3586 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3587 goto out;
3588
3589 return pools;
3590
3591 out:
3592 dm_free_md_mempools(pools);
3593
3594 return NULL;
3595 }
3596
3597 void dm_free_md_mempools(struct dm_md_mempools *pools)
3598 {
3599 if (!pools)
3600 return;
3601
3602 if (pools->io_pool)
3603 mempool_destroy(pools->io_pool);
3604
3605 if (pools->rq_pool)
3606 mempool_destroy(pools->rq_pool);
3607
3608 if (pools->bs)
3609 bioset_free(pools->bs);
3610
3611 kfree(pools);
3612 }
3613
3614 static const struct block_device_operations dm_blk_dops = {
3615 .open = dm_blk_open,
3616 .release = dm_blk_close,
3617 .ioctl = dm_blk_ioctl,
3618 .getgeo = dm_blk_getgeo,
3619 .owner = THIS_MODULE
3620 };
3621
3622 /*
3623 * module hooks
3624 */
3625 module_init(dm_init);
3626 module_exit(dm_exit);
3627
3628 module_param(major, uint, 0);
3629 MODULE_PARM_DESC(major, "The major number of the device mapper");
3630
3631 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3632 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3633
3634 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3635 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3636
3637 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3638 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3639
3640 MODULE_DESCRIPTION(DM_NAME " driver");
3641 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3642 MODULE_LICENSE("GPL");
This page took 0.106926 seconds and 5 git commands to generate.