Merge remote-tracking branch 'regulator/topic/da9063' into regulator-next
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 struct dm_stats_aux stats_aux;
64 };
65
66 /*
67 * For request-based dm.
68 * One of these is allocated per request.
69 */
70 struct dm_rq_target_io {
71 struct mapped_device *md;
72 struct dm_target *ti;
73 struct request *orig, clone;
74 int error;
75 union map_info info;
76 };
77
78 /*
79 * For request-based dm - the bio clones we allocate are embedded in these
80 * structs.
81 *
82 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
83 * the bioset is created - this means the bio has to come at the end of the
84 * struct.
85 */
86 struct dm_rq_clone_bio_info {
87 struct bio *orig;
88 struct dm_rq_target_io *tio;
89 struct bio clone;
90 };
91
92 union map_info *dm_get_mapinfo(struct bio *bio)
93 {
94 if (bio && bio->bi_private)
95 return &((struct dm_target_io *)bio->bi_private)->info;
96 return NULL;
97 }
98
99 union map_info *dm_get_rq_mapinfo(struct request *rq)
100 {
101 if (rq && rq->end_io_data)
102 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
103 return NULL;
104 }
105 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
106
107 #define MINOR_ALLOCED ((void *)-1)
108
109 /*
110 * Bits for the md->flags field.
111 */
112 #define DMF_BLOCK_IO_FOR_SUSPEND 0
113 #define DMF_SUSPENDED 1
114 #define DMF_FROZEN 2
115 #define DMF_FREEING 3
116 #define DMF_DELETING 4
117 #define DMF_NOFLUSH_SUSPENDING 5
118 #define DMF_MERGE_IS_OPTIONAL 6
119
120 /*
121 * A dummy definition to make RCU happy.
122 * struct dm_table should never be dereferenced in this file.
123 */
124 struct dm_table {
125 int undefined__;
126 };
127
128 /*
129 * Work processed by per-device workqueue.
130 */
131 struct mapped_device {
132 struct srcu_struct io_barrier;
133 struct mutex suspend_lock;
134 atomic_t holders;
135 atomic_t open_count;
136
137 /*
138 * The current mapping.
139 * Use dm_get_live_table{_fast} or take suspend_lock for
140 * dereference.
141 */
142 struct dm_table *map;
143
144 unsigned long flags;
145
146 struct request_queue *queue;
147 unsigned type;
148 /* Protect queue and type against concurrent access. */
149 struct mutex type_lock;
150
151 struct target_type *immutable_target_type;
152
153 struct gendisk *disk;
154 char name[16];
155
156 void *interface_ptr;
157
158 /*
159 * A list of ios that arrived while we were suspended.
160 */
161 atomic_t pending[2];
162 wait_queue_head_t wait;
163 struct work_struct work;
164 struct bio_list deferred;
165 spinlock_t deferred_lock;
166
167 /*
168 * Processing queue (flush)
169 */
170 struct workqueue_struct *wq;
171
172 /*
173 * io objects are allocated from here.
174 */
175 mempool_t *io_pool;
176
177 struct bio_set *bs;
178
179 /*
180 * Event handling.
181 */
182 atomic_t event_nr;
183 wait_queue_head_t eventq;
184 atomic_t uevent_seq;
185 struct list_head uevent_list;
186 spinlock_t uevent_lock; /* Protect access to uevent_list */
187
188 /*
189 * freeze/thaw support require holding onto a super block
190 */
191 struct super_block *frozen_sb;
192 struct block_device *bdev;
193
194 /* forced geometry settings */
195 struct hd_geometry geometry;
196
197 /* sysfs handle */
198 struct kobject kobj;
199
200 /* zero-length flush that will be cloned and submitted to targets */
201 struct bio flush_bio;
202
203 struct dm_stats stats;
204 };
205
206 /*
207 * For mempools pre-allocation at the table loading time.
208 */
209 struct dm_md_mempools {
210 mempool_t *io_pool;
211 struct bio_set *bs;
212 };
213
214 #define RESERVED_BIO_BASED_IOS 16
215 #define RESERVED_REQUEST_BASED_IOS 256
216 #define RESERVED_MAX_IOS 1024
217 static struct kmem_cache *_io_cache;
218 static struct kmem_cache *_rq_tio_cache;
219
220 /*
221 * Bio-based DM's mempools' reserved IOs set by the user.
222 */
223 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
224
225 /*
226 * Request-based DM's mempools' reserved IOs set by the user.
227 */
228 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
229
230 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
231 unsigned def, unsigned max)
232 {
233 unsigned ios = ACCESS_ONCE(*reserved_ios);
234 unsigned modified_ios = 0;
235
236 if (!ios)
237 modified_ios = def;
238 else if (ios > max)
239 modified_ios = max;
240
241 if (modified_ios) {
242 (void)cmpxchg(reserved_ios, ios, modified_ios);
243 ios = modified_ios;
244 }
245
246 return ios;
247 }
248
249 unsigned dm_get_reserved_bio_based_ios(void)
250 {
251 return __dm_get_reserved_ios(&reserved_bio_based_ios,
252 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
253 }
254 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
255
256 unsigned dm_get_reserved_rq_based_ios(void)
257 {
258 return __dm_get_reserved_ios(&reserved_rq_based_ios,
259 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
260 }
261 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
262
263 static int __init local_init(void)
264 {
265 int r = -ENOMEM;
266
267 /* allocate a slab for the dm_ios */
268 _io_cache = KMEM_CACHE(dm_io, 0);
269 if (!_io_cache)
270 return r;
271
272 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
273 if (!_rq_tio_cache)
274 goto out_free_io_cache;
275
276 r = dm_uevent_init();
277 if (r)
278 goto out_free_rq_tio_cache;
279
280 _major = major;
281 r = register_blkdev(_major, _name);
282 if (r < 0)
283 goto out_uevent_exit;
284
285 if (!_major)
286 _major = r;
287
288 return 0;
289
290 out_uevent_exit:
291 dm_uevent_exit();
292 out_free_rq_tio_cache:
293 kmem_cache_destroy(_rq_tio_cache);
294 out_free_io_cache:
295 kmem_cache_destroy(_io_cache);
296
297 return r;
298 }
299
300 static void local_exit(void)
301 {
302 kmem_cache_destroy(_rq_tio_cache);
303 kmem_cache_destroy(_io_cache);
304 unregister_blkdev(_major, _name);
305 dm_uevent_exit();
306
307 _major = 0;
308
309 DMINFO("cleaned up");
310 }
311
312 static int (*_inits[])(void) __initdata = {
313 local_init,
314 dm_target_init,
315 dm_linear_init,
316 dm_stripe_init,
317 dm_io_init,
318 dm_kcopyd_init,
319 dm_interface_init,
320 dm_statistics_init,
321 };
322
323 static void (*_exits[])(void) = {
324 local_exit,
325 dm_target_exit,
326 dm_linear_exit,
327 dm_stripe_exit,
328 dm_io_exit,
329 dm_kcopyd_exit,
330 dm_interface_exit,
331 dm_statistics_exit,
332 };
333
334 static int __init dm_init(void)
335 {
336 const int count = ARRAY_SIZE(_inits);
337
338 int r, i;
339
340 for (i = 0; i < count; i++) {
341 r = _inits[i]();
342 if (r)
343 goto bad;
344 }
345
346 return 0;
347
348 bad:
349 while (i--)
350 _exits[i]();
351
352 return r;
353 }
354
355 static void __exit dm_exit(void)
356 {
357 int i = ARRAY_SIZE(_exits);
358
359 while (i--)
360 _exits[i]();
361
362 /*
363 * Should be empty by this point.
364 */
365 idr_destroy(&_minor_idr);
366 }
367
368 /*
369 * Block device functions
370 */
371 int dm_deleting_md(struct mapped_device *md)
372 {
373 return test_bit(DMF_DELETING, &md->flags);
374 }
375
376 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
377 {
378 struct mapped_device *md;
379
380 spin_lock(&_minor_lock);
381
382 md = bdev->bd_disk->private_data;
383 if (!md)
384 goto out;
385
386 if (test_bit(DMF_FREEING, &md->flags) ||
387 dm_deleting_md(md)) {
388 md = NULL;
389 goto out;
390 }
391
392 dm_get(md);
393 atomic_inc(&md->open_count);
394
395 out:
396 spin_unlock(&_minor_lock);
397
398 return md ? 0 : -ENXIO;
399 }
400
401 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
402 {
403 struct mapped_device *md = disk->private_data;
404
405 spin_lock(&_minor_lock);
406
407 atomic_dec(&md->open_count);
408 dm_put(md);
409
410 spin_unlock(&_minor_lock);
411 }
412
413 int dm_open_count(struct mapped_device *md)
414 {
415 return atomic_read(&md->open_count);
416 }
417
418 /*
419 * Guarantees nothing is using the device before it's deleted.
420 */
421 int dm_lock_for_deletion(struct mapped_device *md)
422 {
423 int r = 0;
424
425 spin_lock(&_minor_lock);
426
427 if (dm_open_count(md))
428 r = -EBUSY;
429 else
430 set_bit(DMF_DELETING, &md->flags);
431
432 spin_unlock(&_minor_lock);
433
434 return r;
435 }
436
437 sector_t dm_get_size(struct mapped_device *md)
438 {
439 return get_capacity(md->disk);
440 }
441
442 struct dm_stats *dm_get_stats(struct mapped_device *md)
443 {
444 return &md->stats;
445 }
446
447 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
448 {
449 struct mapped_device *md = bdev->bd_disk->private_data;
450
451 return dm_get_geometry(md, geo);
452 }
453
454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 unsigned int cmd, unsigned long arg)
456 {
457 struct mapped_device *md = bdev->bd_disk->private_data;
458 int srcu_idx;
459 struct dm_table *map;
460 struct dm_target *tgt;
461 int r = -ENOTTY;
462
463 retry:
464 map = dm_get_live_table(md, &srcu_idx);
465
466 if (!map || !dm_table_get_size(map))
467 goto out;
468
469 /* We only support devices that have a single target */
470 if (dm_table_get_num_targets(map) != 1)
471 goto out;
472
473 tgt = dm_table_get_target(map, 0);
474
475 if (dm_suspended_md(md)) {
476 r = -EAGAIN;
477 goto out;
478 }
479
480 if (tgt->type->ioctl)
481 r = tgt->type->ioctl(tgt, cmd, arg);
482
483 out:
484 dm_put_live_table(md, srcu_idx);
485
486 if (r == -ENOTCONN) {
487 msleep(10);
488 goto retry;
489 }
490
491 return r;
492 }
493
494 static struct dm_io *alloc_io(struct mapped_device *md)
495 {
496 return mempool_alloc(md->io_pool, GFP_NOIO);
497 }
498
499 static void free_io(struct mapped_device *md, struct dm_io *io)
500 {
501 mempool_free(io, md->io_pool);
502 }
503
504 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
505 {
506 bio_put(&tio->clone);
507 }
508
509 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
510 gfp_t gfp_mask)
511 {
512 return mempool_alloc(md->io_pool, gfp_mask);
513 }
514
515 static void free_rq_tio(struct dm_rq_target_io *tio)
516 {
517 mempool_free(tio, tio->md->io_pool);
518 }
519
520 static int md_in_flight(struct mapped_device *md)
521 {
522 return atomic_read(&md->pending[READ]) +
523 atomic_read(&md->pending[WRITE]);
524 }
525
526 static void start_io_acct(struct dm_io *io)
527 {
528 struct mapped_device *md = io->md;
529 struct bio *bio = io->bio;
530 int cpu;
531 int rw = bio_data_dir(bio);
532
533 io->start_time = jiffies;
534
535 cpu = part_stat_lock();
536 part_round_stats(cpu, &dm_disk(md)->part0);
537 part_stat_unlock();
538 atomic_set(&dm_disk(md)->part0.in_flight[rw],
539 atomic_inc_return(&md->pending[rw]));
540
541 if (unlikely(dm_stats_used(&md->stats)))
542 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
543 bio_sectors(bio), false, 0, &io->stats_aux);
544 }
545
546 static void end_io_acct(struct dm_io *io)
547 {
548 struct mapped_device *md = io->md;
549 struct bio *bio = io->bio;
550 unsigned long duration = jiffies - io->start_time;
551 int pending, cpu;
552 int rw = bio_data_dir(bio);
553
554 cpu = part_stat_lock();
555 part_round_stats(cpu, &dm_disk(md)->part0);
556 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
557 part_stat_unlock();
558
559 if (unlikely(dm_stats_used(&md->stats)))
560 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
561 bio_sectors(bio), true, duration, &io->stats_aux);
562
563 /*
564 * After this is decremented the bio must not be touched if it is
565 * a flush.
566 */
567 pending = atomic_dec_return(&md->pending[rw]);
568 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
569 pending += atomic_read(&md->pending[rw^0x1]);
570
571 /* nudge anyone waiting on suspend queue */
572 if (!pending)
573 wake_up(&md->wait);
574 }
575
576 /*
577 * Add the bio to the list of deferred io.
578 */
579 static void queue_io(struct mapped_device *md, struct bio *bio)
580 {
581 unsigned long flags;
582
583 spin_lock_irqsave(&md->deferred_lock, flags);
584 bio_list_add(&md->deferred, bio);
585 spin_unlock_irqrestore(&md->deferred_lock, flags);
586 queue_work(md->wq, &md->work);
587 }
588
589 /*
590 * Everyone (including functions in this file), should use this
591 * function to access the md->map field, and make sure they call
592 * dm_put_live_table() when finished.
593 */
594 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
595 {
596 *srcu_idx = srcu_read_lock(&md->io_barrier);
597
598 return srcu_dereference(md->map, &md->io_barrier);
599 }
600
601 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
602 {
603 srcu_read_unlock(&md->io_barrier, srcu_idx);
604 }
605
606 void dm_sync_table(struct mapped_device *md)
607 {
608 synchronize_srcu(&md->io_barrier);
609 synchronize_rcu_expedited();
610 }
611
612 /*
613 * A fast alternative to dm_get_live_table/dm_put_live_table.
614 * The caller must not block between these two functions.
615 */
616 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
617 {
618 rcu_read_lock();
619 return rcu_dereference(md->map);
620 }
621
622 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
623 {
624 rcu_read_unlock();
625 }
626
627 /*
628 * Get the geometry associated with a dm device
629 */
630 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
631 {
632 *geo = md->geometry;
633
634 return 0;
635 }
636
637 /*
638 * Set the geometry of a device.
639 */
640 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
641 {
642 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
643
644 if (geo->start > sz) {
645 DMWARN("Start sector is beyond the geometry limits.");
646 return -EINVAL;
647 }
648
649 md->geometry = *geo;
650
651 return 0;
652 }
653
654 /*-----------------------------------------------------------------
655 * CRUD START:
656 * A more elegant soln is in the works that uses the queue
657 * merge fn, unfortunately there are a couple of changes to
658 * the block layer that I want to make for this. So in the
659 * interests of getting something for people to use I give
660 * you this clearly demarcated crap.
661 *---------------------------------------------------------------*/
662
663 static int __noflush_suspending(struct mapped_device *md)
664 {
665 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
666 }
667
668 /*
669 * Decrements the number of outstanding ios that a bio has been
670 * cloned into, completing the original io if necc.
671 */
672 static void dec_pending(struct dm_io *io, int error)
673 {
674 unsigned long flags;
675 int io_error;
676 struct bio *bio;
677 struct mapped_device *md = io->md;
678
679 /* Push-back supersedes any I/O errors */
680 if (unlikely(error)) {
681 spin_lock_irqsave(&io->endio_lock, flags);
682 if (!(io->error > 0 && __noflush_suspending(md)))
683 io->error = error;
684 spin_unlock_irqrestore(&io->endio_lock, flags);
685 }
686
687 if (atomic_dec_and_test(&io->io_count)) {
688 if (io->error == DM_ENDIO_REQUEUE) {
689 /*
690 * Target requested pushing back the I/O.
691 */
692 spin_lock_irqsave(&md->deferred_lock, flags);
693 if (__noflush_suspending(md))
694 bio_list_add_head(&md->deferred, io->bio);
695 else
696 /* noflush suspend was interrupted. */
697 io->error = -EIO;
698 spin_unlock_irqrestore(&md->deferred_lock, flags);
699 }
700
701 io_error = io->error;
702 bio = io->bio;
703 end_io_acct(io);
704 free_io(md, io);
705
706 if (io_error == DM_ENDIO_REQUEUE)
707 return;
708
709 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
710 /*
711 * Preflush done for flush with data, reissue
712 * without REQ_FLUSH.
713 */
714 bio->bi_rw &= ~REQ_FLUSH;
715 queue_io(md, bio);
716 } else {
717 /* done with normal IO or empty flush */
718 trace_block_bio_complete(md->queue, bio, io_error);
719 bio_endio(bio, io_error);
720 }
721 }
722 }
723
724 static void clone_endio(struct bio *bio, int error)
725 {
726 int r = 0;
727 struct dm_target_io *tio = bio->bi_private;
728 struct dm_io *io = tio->io;
729 struct mapped_device *md = tio->io->md;
730 dm_endio_fn endio = tio->ti->type->end_io;
731
732 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
733 error = -EIO;
734
735 if (endio) {
736 r = endio(tio->ti, bio, error);
737 if (r < 0 || r == DM_ENDIO_REQUEUE)
738 /*
739 * error and requeue request are handled
740 * in dec_pending().
741 */
742 error = r;
743 else if (r == DM_ENDIO_INCOMPLETE)
744 /* The target will handle the io */
745 return;
746 else if (r) {
747 DMWARN("unimplemented target endio return value: %d", r);
748 BUG();
749 }
750 }
751
752 free_tio(md, tio);
753 dec_pending(io, error);
754 }
755
756 /*
757 * Partial completion handling for request-based dm
758 */
759 static void end_clone_bio(struct bio *clone, int error)
760 {
761 struct dm_rq_clone_bio_info *info = clone->bi_private;
762 struct dm_rq_target_io *tio = info->tio;
763 struct bio *bio = info->orig;
764 unsigned int nr_bytes = info->orig->bi_size;
765
766 bio_put(clone);
767
768 if (tio->error)
769 /*
770 * An error has already been detected on the request.
771 * Once error occurred, just let clone->end_io() handle
772 * the remainder.
773 */
774 return;
775 else if (error) {
776 /*
777 * Don't notice the error to the upper layer yet.
778 * The error handling decision is made by the target driver,
779 * when the request is completed.
780 */
781 tio->error = error;
782 return;
783 }
784
785 /*
786 * I/O for the bio successfully completed.
787 * Notice the data completion to the upper layer.
788 */
789
790 /*
791 * bios are processed from the head of the list.
792 * So the completing bio should always be rq->bio.
793 * If it's not, something wrong is happening.
794 */
795 if (tio->orig->bio != bio)
796 DMERR("bio completion is going in the middle of the request");
797
798 /*
799 * Update the original request.
800 * Do not use blk_end_request() here, because it may complete
801 * the original request before the clone, and break the ordering.
802 */
803 blk_update_request(tio->orig, 0, nr_bytes);
804 }
805
806 /*
807 * Don't touch any member of the md after calling this function because
808 * the md may be freed in dm_put() at the end of this function.
809 * Or do dm_get() before calling this function and dm_put() later.
810 */
811 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
812 {
813 atomic_dec(&md->pending[rw]);
814
815 /* nudge anyone waiting on suspend queue */
816 if (!md_in_flight(md))
817 wake_up(&md->wait);
818
819 /*
820 * Run this off this callpath, as drivers could invoke end_io while
821 * inside their request_fn (and holding the queue lock). Calling
822 * back into ->request_fn() could deadlock attempting to grab the
823 * queue lock again.
824 */
825 if (run_queue)
826 blk_run_queue_async(md->queue);
827
828 /*
829 * dm_put() must be at the end of this function. See the comment above
830 */
831 dm_put(md);
832 }
833
834 static void free_rq_clone(struct request *clone)
835 {
836 struct dm_rq_target_io *tio = clone->end_io_data;
837
838 blk_rq_unprep_clone(clone);
839 free_rq_tio(tio);
840 }
841
842 /*
843 * Complete the clone and the original request.
844 * Must be called without queue lock.
845 */
846 static void dm_end_request(struct request *clone, int error)
847 {
848 int rw = rq_data_dir(clone);
849 struct dm_rq_target_io *tio = clone->end_io_data;
850 struct mapped_device *md = tio->md;
851 struct request *rq = tio->orig;
852
853 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
854 rq->errors = clone->errors;
855 rq->resid_len = clone->resid_len;
856
857 if (rq->sense)
858 /*
859 * We are using the sense buffer of the original
860 * request.
861 * So setting the length of the sense data is enough.
862 */
863 rq->sense_len = clone->sense_len;
864 }
865
866 free_rq_clone(clone);
867 blk_end_request_all(rq, error);
868 rq_completed(md, rw, true);
869 }
870
871 static void dm_unprep_request(struct request *rq)
872 {
873 struct request *clone = rq->special;
874
875 rq->special = NULL;
876 rq->cmd_flags &= ~REQ_DONTPREP;
877
878 free_rq_clone(clone);
879 }
880
881 /*
882 * Requeue the original request of a clone.
883 */
884 void dm_requeue_unmapped_request(struct request *clone)
885 {
886 int rw = rq_data_dir(clone);
887 struct dm_rq_target_io *tio = clone->end_io_data;
888 struct mapped_device *md = tio->md;
889 struct request *rq = tio->orig;
890 struct request_queue *q = rq->q;
891 unsigned long flags;
892
893 dm_unprep_request(rq);
894
895 spin_lock_irqsave(q->queue_lock, flags);
896 blk_requeue_request(q, rq);
897 spin_unlock_irqrestore(q->queue_lock, flags);
898
899 rq_completed(md, rw, 0);
900 }
901 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
902
903 static void __stop_queue(struct request_queue *q)
904 {
905 blk_stop_queue(q);
906 }
907
908 static void stop_queue(struct request_queue *q)
909 {
910 unsigned long flags;
911
912 spin_lock_irqsave(q->queue_lock, flags);
913 __stop_queue(q);
914 spin_unlock_irqrestore(q->queue_lock, flags);
915 }
916
917 static void __start_queue(struct request_queue *q)
918 {
919 if (blk_queue_stopped(q))
920 blk_start_queue(q);
921 }
922
923 static void start_queue(struct request_queue *q)
924 {
925 unsigned long flags;
926
927 spin_lock_irqsave(q->queue_lock, flags);
928 __start_queue(q);
929 spin_unlock_irqrestore(q->queue_lock, flags);
930 }
931
932 static void dm_done(struct request *clone, int error, bool mapped)
933 {
934 int r = error;
935 struct dm_rq_target_io *tio = clone->end_io_data;
936 dm_request_endio_fn rq_end_io = NULL;
937
938 if (tio->ti) {
939 rq_end_io = tio->ti->type->rq_end_io;
940
941 if (mapped && rq_end_io)
942 r = rq_end_io(tio->ti, clone, error, &tio->info);
943 }
944
945 if (r <= 0)
946 /* The target wants to complete the I/O */
947 dm_end_request(clone, r);
948 else if (r == DM_ENDIO_INCOMPLETE)
949 /* The target will handle the I/O */
950 return;
951 else if (r == DM_ENDIO_REQUEUE)
952 /* The target wants to requeue the I/O */
953 dm_requeue_unmapped_request(clone);
954 else {
955 DMWARN("unimplemented target endio return value: %d", r);
956 BUG();
957 }
958 }
959
960 /*
961 * Request completion handler for request-based dm
962 */
963 static void dm_softirq_done(struct request *rq)
964 {
965 bool mapped = true;
966 struct request *clone = rq->completion_data;
967 struct dm_rq_target_io *tio = clone->end_io_data;
968
969 if (rq->cmd_flags & REQ_FAILED)
970 mapped = false;
971
972 dm_done(clone, tio->error, mapped);
973 }
974
975 /*
976 * Complete the clone and the original request with the error status
977 * through softirq context.
978 */
979 static void dm_complete_request(struct request *clone, int error)
980 {
981 struct dm_rq_target_io *tio = clone->end_io_data;
982 struct request *rq = tio->orig;
983
984 tio->error = error;
985 rq->completion_data = clone;
986 blk_complete_request(rq);
987 }
988
989 /*
990 * Complete the not-mapped clone and the original request with the error status
991 * through softirq context.
992 * Target's rq_end_io() function isn't called.
993 * This may be used when the target's map_rq() function fails.
994 */
995 void dm_kill_unmapped_request(struct request *clone, int error)
996 {
997 struct dm_rq_target_io *tio = clone->end_io_data;
998 struct request *rq = tio->orig;
999
1000 rq->cmd_flags |= REQ_FAILED;
1001 dm_complete_request(clone, error);
1002 }
1003 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1004
1005 /*
1006 * Called with the queue lock held
1007 */
1008 static void end_clone_request(struct request *clone, int error)
1009 {
1010 /*
1011 * For just cleaning up the information of the queue in which
1012 * the clone was dispatched.
1013 * The clone is *NOT* freed actually here because it is alloced from
1014 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1015 */
1016 __blk_put_request(clone->q, clone);
1017
1018 /*
1019 * Actual request completion is done in a softirq context which doesn't
1020 * hold the queue lock. Otherwise, deadlock could occur because:
1021 * - another request may be submitted by the upper level driver
1022 * of the stacking during the completion
1023 * - the submission which requires queue lock may be done
1024 * against this queue
1025 */
1026 dm_complete_request(clone, error);
1027 }
1028
1029 /*
1030 * Return maximum size of I/O possible at the supplied sector up to the current
1031 * target boundary.
1032 */
1033 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1034 {
1035 sector_t target_offset = dm_target_offset(ti, sector);
1036
1037 return ti->len - target_offset;
1038 }
1039
1040 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1041 {
1042 sector_t len = max_io_len_target_boundary(sector, ti);
1043 sector_t offset, max_len;
1044
1045 /*
1046 * Does the target need to split even further?
1047 */
1048 if (ti->max_io_len) {
1049 offset = dm_target_offset(ti, sector);
1050 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1051 max_len = sector_div(offset, ti->max_io_len);
1052 else
1053 max_len = offset & (ti->max_io_len - 1);
1054 max_len = ti->max_io_len - max_len;
1055
1056 if (len > max_len)
1057 len = max_len;
1058 }
1059
1060 return len;
1061 }
1062
1063 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1064 {
1065 if (len > UINT_MAX) {
1066 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1067 (unsigned long long)len, UINT_MAX);
1068 ti->error = "Maximum size of target IO is too large";
1069 return -EINVAL;
1070 }
1071
1072 ti->max_io_len = (uint32_t) len;
1073
1074 return 0;
1075 }
1076 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1077
1078 static void __map_bio(struct dm_target_io *tio)
1079 {
1080 int r;
1081 sector_t sector;
1082 struct mapped_device *md;
1083 struct bio *clone = &tio->clone;
1084 struct dm_target *ti = tio->ti;
1085
1086 clone->bi_end_io = clone_endio;
1087 clone->bi_private = tio;
1088
1089 /*
1090 * Map the clone. If r == 0 we don't need to do
1091 * anything, the target has assumed ownership of
1092 * this io.
1093 */
1094 atomic_inc(&tio->io->io_count);
1095 sector = clone->bi_sector;
1096 r = ti->type->map(ti, clone);
1097 if (r == DM_MAPIO_REMAPPED) {
1098 /* the bio has been remapped so dispatch it */
1099
1100 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1101 tio->io->bio->bi_bdev->bd_dev, sector);
1102
1103 generic_make_request(clone);
1104 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1105 /* error the io and bail out, or requeue it if needed */
1106 md = tio->io->md;
1107 dec_pending(tio->io, r);
1108 free_tio(md, tio);
1109 } else if (r) {
1110 DMWARN("unimplemented target map return value: %d", r);
1111 BUG();
1112 }
1113 }
1114
1115 struct clone_info {
1116 struct mapped_device *md;
1117 struct dm_table *map;
1118 struct bio *bio;
1119 struct dm_io *io;
1120 sector_t sector;
1121 sector_t sector_count;
1122 unsigned short idx;
1123 };
1124
1125 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1126 {
1127 bio->bi_sector = sector;
1128 bio->bi_size = to_bytes(len);
1129 }
1130
1131 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1132 {
1133 bio->bi_idx = idx;
1134 bio->bi_vcnt = idx + bv_count;
1135 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1136 }
1137
1138 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1139 unsigned short idx, unsigned len, unsigned offset,
1140 unsigned trim)
1141 {
1142 if (!bio_integrity(bio))
1143 return;
1144
1145 bio_integrity_clone(clone, bio, GFP_NOIO);
1146
1147 if (trim)
1148 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1149 }
1150
1151 /*
1152 * Creates a little bio that just does part of a bvec.
1153 */
1154 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1155 sector_t sector, unsigned short idx,
1156 unsigned offset, unsigned len)
1157 {
1158 struct bio *clone = &tio->clone;
1159 struct bio_vec *bv = bio->bi_io_vec + idx;
1160
1161 *clone->bi_io_vec = *bv;
1162
1163 bio_setup_sector(clone, sector, len);
1164
1165 clone->bi_bdev = bio->bi_bdev;
1166 clone->bi_rw = bio->bi_rw;
1167 clone->bi_vcnt = 1;
1168 clone->bi_io_vec->bv_offset = offset;
1169 clone->bi_io_vec->bv_len = clone->bi_size;
1170 clone->bi_flags |= 1 << BIO_CLONED;
1171
1172 clone_bio_integrity(bio, clone, idx, len, offset, 1);
1173 }
1174
1175 /*
1176 * Creates a bio that consists of range of complete bvecs.
1177 */
1178 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1179 sector_t sector, unsigned short idx,
1180 unsigned short bv_count, unsigned len)
1181 {
1182 struct bio *clone = &tio->clone;
1183 unsigned trim = 0;
1184
1185 __bio_clone(clone, bio);
1186 bio_setup_sector(clone, sector, len);
1187 bio_setup_bv(clone, idx, bv_count);
1188
1189 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1190 trim = 1;
1191 clone_bio_integrity(bio, clone, idx, len, 0, trim);
1192 }
1193
1194 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1195 struct dm_target *ti, int nr_iovecs,
1196 unsigned target_bio_nr)
1197 {
1198 struct dm_target_io *tio;
1199 struct bio *clone;
1200
1201 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1202 tio = container_of(clone, struct dm_target_io, clone);
1203
1204 tio->io = ci->io;
1205 tio->ti = ti;
1206 memset(&tio->info, 0, sizeof(tio->info));
1207 tio->target_bio_nr = target_bio_nr;
1208
1209 return tio;
1210 }
1211
1212 static void __clone_and_map_simple_bio(struct clone_info *ci,
1213 struct dm_target *ti,
1214 unsigned target_bio_nr, sector_t len)
1215 {
1216 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1217 struct bio *clone = &tio->clone;
1218
1219 /*
1220 * Discard requests require the bio's inline iovecs be initialized.
1221 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1222 * and discard, so no need for concern about wasted bvec allocations.
1223 */
1224 __bio_clone(clone, ci->bio);
1225 if (len)
1226 bio_setup_sector(clone, ci->sector, len);
1227
1228 __map_bio(tio);
1229 }
1230
1231 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1232 unsigned num_bios, sector_t len)
1233 {
1234 unsigned target_bio_nr;
1235
1236 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1237 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1238 }
1239
1240 static int __send_empty_flush(struct clone_info *ci)
1241 {
1242 unsigned target_nr = 0;
1243 struct dm_target *ti;
1244
1245 BUG_ON(bio_has_data(ci->bio));
1246 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1247 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1248
1249 return 0;
1250 }
1251
1252 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1253 sector_t sector, int nr_iovecs,
1254 unsigned short idx, unsigned short bv_count,
1255 unsigned offset, unsigned len,
1256 unsigned split_bvec)
1257 {
1258 struct bio *bio = ci->bio;
1259 struct dm_target_io *tio;
1260 unsigned target_bio_nr;
1261 unsigned num_target_bios = 1;
1262
1263 /*
1264 * Does the target want to receive duplicate copies of the bio?
1265 */
1266 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1267 num_target_bios = ti->num_write_bios(ti, bio);
1268
1269 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1270 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1271 if (split_bvec)
1272 clone_split_bio(tio, bio, sector, idx, offset, len);
1273 else
1274 clone_bio(tio, bio, sector, idx, bv_count, len);
1275 __map_bio(tio);
1276 }
1277 }
1278
1279 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1280
1281 static unsigned get_num_discard_bios(struct dm_target *ti)
1282 {
1283 return ti->num_discard_bios;
1284 }
1285
1286 static unsigned get_num_write_same_bios(struct dm_target *ti)
1287 {
1288 return ti->num_write_same_bios;
1289 }
1290
1291 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1292
1293 static bool is_split_required_for_discard(struct dm_target *ti)
1294 {
1295 return ti->split_discard_bios;
1296 }
1297
1298 static int __send_changing_extent_only(struct clone_info *ci,
1299 get_num_bios_fn get_num_bios,
1300 is_split_required_fn is_split_required)
1301 {
1302 struct dm_target *ti;
1303 sector_t len;
1304 unsigned num_bios;
1305
1306 do {
1307 ti = dm_table_find_target(ci->map, ci->sector);
1308 if (!dm_target_is_valid(ti))
1309 return -EIO;
1310
1311 /*
1312 * Even though the device advertised support for this type of
1313 * request, that does not mean every target supports it, and
1314 * reconfiguration might also have changed that since the
1315 * check was performed.
1316 */
1317 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1318 if (!num_bios)
1319 return -EOPNOTSUPP;
1320
1321 if (is_split_required && !is_split_required(ti))
1322 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1323 else
1324 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1325
1326 __send_duplicate_bios(ci, ti, num_bios, len);
1327
1328 ci->sector += len;
1329 } while (ci->sector_count -= len);
1330
1331 return 0;
1332 }
1333
1334 static int __send_discard(struct clone_info *ci)
1335 {
1336 return __send_changing_extent_only(ci, get_num_discard_bios,
1337 is_split_required_for_discard);
1338 }
1339
1340 static int __send_write_same(struct clone_info *ci)
1341 {
1342 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1343 }
1344
1345 /*
1346 * Find maximum number of sectors / bvecs we can process with a single bio.
1347 */
1348 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1349 {
1350 struct bio *bio = ci->bio;
1351 sector_t bv_len, total_len = 0;
1352
1353 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1354 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1355
1356 if (bv_len > max)
1357 break;
1358
1359 max -= bv_len;
1360 total_len += bv_len;
1361 }
1362
1363 return total_len;
1364 }
1365
1366 static int __split_bvec_across_targets(struct clone_info *ci,
1367 struct dm_target *ti, sector_t max)
1368 {
1369 struct bio *bio = ci->bio;
1370 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1371 sector_t remaining = to_sector(bv->bv_len);
1372 unsigned offset = 0;
1373 sector_t len;
1374
1375 do {
1376 if (offset) {
1377 ti = dm_table_find_target(ci->map, ci->sector);
1378 if (!dm_target_is_valid(ti))
1379 return -EIO;
1380
1381 max = max_io_len(ci->sector, ti);
1382 }
1383
1384 len = min(remaining, max);
1385
1386 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1387 bv->bv_offset + offset, len, 1);
1388
1389 ci->sector += len;
1390 ci->sector_count -= len;
1391 offset += to_bytes(len);
1392 } while (remaining -= len);
1393
1394 ci->idx++;
1395
1396 return 0;
1397 }
1398
1399 /*
1400 * Select the correct strategy for processing a non-flush bio.
1401 */
1402 static int __split_and_process_non_flush(struct clone_info *ci)
1403 {
1404 struct bio *bio = ci->bio;
1405 struct dm_target *ti;
1406 sector_t len, max;
1407 int idx;
1408
1409 if (unlikely(bio->bi_rw & REQ_DISCARD))
1410 return __send_discard(ci);
1411 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1412 return __send_write_same(ci);
1413
1414 ti = dm_table_find_target(ci->map, ci->sector);
1415 if (!dm_target_is_valid(ti))
1416 return -EIO;
1417
1418 max = max_io_len(ci->sector, ti);
1419
1420 /*
1421 * Optimise for the simple case where we can do all of
1422 * the remaining io with a single clone.
1423 */
1424 if (ci->sector_count <= max) {
1425 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1426 ci->idx, bio->bi_vcnt - ci->idx, 0,
1427 ci->sector_count, 0);
1428 ci->sector_count = 0;
1429 return 0;
1430 }
1431
1432 /*
1433 * There are some bvecs that don't span targets.
1434 * Do as many of these as possible.
1435 */
1436 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1437 len = __len_within_target(ci, max, &idx);
1438
1439 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1440 ci->idx, idx - ci->idx, 0, len, 0);
1441
1442 ci->sector += len;
1443 ci->sector_count -= len;
1444 ci->idx = idx;
1445
1446 return 0;
1447 }
1448
1449 /*
1450 * Handle a bvec that must be split between two or more targets.
1451 */
1452 return __split_bvec_across_targets(ci, ti, max);
1453 }
1454
1455 /*
1456 * Entry point to split a bio into clones and submit them to the targets.
1457 */
1458 static void __split_and_process_bio(struct mapped_device *md,
1459 struct dm_table *map, struct bio *bio)
1460 {
1461 struct clone_info ci;
1462 int error = 0;
1463
1464 if (unlikely(!map)) {
1465 bio_io_error(bio);
1466 return;
1467 }
1468
1469 ci.map = map;
1470 ci.md = md;
1471 ci.io = alloc_io(md);
1472 ci.io->error = 0;
1473 atomic_set(&ci.io->io_count, 1);
1474 ci.io->bio = bio;
1475 ci.io->md = md;
1476 spin_lock_init(&ci.io->endio_lock);
1477 ci.sector = bio->bi_sector;
1478 ci.idx = bio->bi_idx;
1479
1480 start_io_acct(ci.io);
1481
1482 if (bio->bi_rw & REQ_FLUSH) {
1483 ci.bio = &ci.md->flush_bio;
1484 ci.sector_count = 0;
1485 error = __send_empty_flush(&ci);
1486 /* dec_pending submits any data associated with flush */
1487 } else {
1488 ci.bio = bio;
1489 ci.sector_count = bio_sectors(bio);
1490 while (ci.sector_count && !error)
1491 error = __split_and_process_non_flush(&ci);
1492 }
1493
1494 /* drop the extra reference count */
1495 dec_pending(ci.io, error);
1496 }
1497 /*-----------------------------------------------------------------
1498 * CRUD END
1499 *---------------------------------------------------------------*/
1500
1501 static int dm_merge_bvec(struct request_queue *q,
1502 struct bvec_merge_data *bvm,
1503 struct bio_vec *biovec)
1504 {
1505 struct mapped_device *md = q->queuedata;
1506 struct dm_table *map = dm_get_live_table_fast(md);
1507 struct dm_target *ti;
1508 sector_t max_sectors;
1509 int max_size = 0;
1510
1511 if (unlikely(!map))
1512 goto out;
1513
1514 ti = dm_table_find_target(map, bvm->bi_sector);
1515 if (!dm_target_is_valid(ti))
1516 goto out;
1517
1518 /*
1519 * Find maximum amount of I/O that won't need splitting
1520 */
1521 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1522 (sector_t) BIO_MAX_SECTORS);
1523 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1524 if (max_size < 0)
1525 max_size = 0;
1526
1527 /*
1528 * merge_bvec_fn() returns number of bytes
1529 * it can accept at this offset
1530 * max is precomputed maximal io size
1531 */
1532 if (max_size && ti->type->merge)
1533 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1534 /*
1535 * If the target doesn't support merge method and some of the devices
1536 * provided their merge_bvec method (we know this by looking at
1537 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1538 * entries. So always set max_size to 0, and the code below allows
1539 * just one page.
1540 */
1541 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1542
1543 max_size = 0;
1544
1545 out:
1546 dm_put_live_table_fast(md);
1547 /*
1548 * Always allow an entire first page
1549 */
1550 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1551 max_size = biovec->bv_len;
1552
1553 return max_size;
1554 }
1555
1556 /*
1557 * The request function that just remaps the bio built up by
1558 * dm_merge_bvec.
1559 */
1560 static void _dm_request(struct request_queue *q, struct bio *bio)
1561 {
1562 int rw = bio_data_dir(bio);
1563 struct mapped_device *md = q->queuedata;
1564 int cpu;
1565 int srcu_idx;
1566 struct dm_table *map;
1567
1568 map = dm_get_live_table(md, &srcu_idx);
1569
1570 cpu = part_stat_lock();
1571 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1572 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1573 part_stat_unlock();
1574
1575 /* if we're suspended, we have to queue this io for later */
1576 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1577 dm_put_live_table(md, srcu_idx);
1578
1579 if (bio_rw(bio) != READA)
1580 queue_io(md, bio);
1581 else
1582 bio_io_error(bio);
1583 return;
1584 }
1585
1586 __split_and_process_bio(md, map, bio);
1587 dm_put_live_table(md, srcu_idx);
1588 return;
1589 }
1590
1591 int dm_request_based(struct mapped_device *md)
1592 {
1593 return blk_queue_stackable(md->queue);
1594 }
1595
1596 static void dm_request(struct request_queue *q, struct bio *bio)
1597 {
1598 struct mapped_device *md = q->queuedata;
1599
1600 if (dm_request_based(md))
1601 blk_queue_bio(q, bio);
1602 else
1603 _dm_request(q, bio);
1604 }
1605
1606 void dm_dispatch_request(struct request *rq)
1607 {
1608 int r;
1609
1610 if (blk_queue_io_stat(rq->q))
1611 rq->cmd_flags |= REQ_IO_STAT;
1612
1613 rq->start_time = jiffies;
1614 r = blk_insert_cloned_request(rq->q, rq);
1615 if (r)
1616 dm_complete_request(rq, r);
1617 }
1618 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1619
1620 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1621 void *data)
1622 {
1623 struct dm_rq_target_io *tio = data;
1624 struct dm_rq_clone_bio_info *info =
1625 container_of(bio, struct dm_rq_clone_bio_info, clone);
1626
1627 info->orig = bio_orig;
1628 info->tio = tio;
1629 bio->bi_end_io = end_clone_bio;
1630 bio->bi_private = info;
1631
1632 return 0;
1633 }
1634
1635 static int setup_clone(struct request *clone, struct request *rq,
1636 struct dm_rq_target_io *tio)
1637 {
1638 int r;
1639
1640 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1641 dm_rq_bio_constructor, tio);
1642 if (r)
1643 return r;
1644
1645 clone->cmd = rq->cmd;
1646 clone->cmd_len = rq->cmd_len;
1647 clone->sense = rq->sense;
1648 clone->buffer = rq->buffer;
1649 clone->end_io = end_clone_request;
1650 clone->end_io_data = tio;
1651
1652 return 0;
1653 }
1654
1655 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1656 gfp_t gfp_mask)
1657 {
1658 struct request *clone;
1659 struct dm_rq_target_io *tio;
1660
1661 tio = alloc_rq_tio(md, gfp_mask);
1662 if (!tio)
1663 return NULL;
1664
1665 tio->md = md;
1666 tio->ti = NULL;
1667 tio->orig = rq;
1668 tio->error = 0;
1669 memset(&tio->info, 0, sizeof(tio->info));
1670
1671 clone = &tio->clone;
1672 if (setup_clone(clone, rq, tio)) {
1673 /* -ENOMEM */
1674 free_rq_tio(tio);
1675 return NULL;
1676 }
1677
1678 return clone;
1679 }
1680
1681 /*
1682 * Called with the queue lock held.
1683 */
1684 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1685 {
1686 struct mapped_device *md = q->queuedata;
1687 struct request *clone;
1688
1689 if (unlikely(rq->special)) {
1690 DMWARN("Already has something in rq->special.");
1691 return BLKPREP_KILL;
1692 }
1693
1694 clone = clone_rq(rq, md, GFP_ATOMIC);
1695 if (!clone)
1696 return BLKPREP_DEFER;
1697
1698 rq->special = clone;
1699 rq->cmd_flags |= REQ_DONTPREP;
1700
1701 return BLKPREP_OK;
1702 }
1703
1704 /*
1705 * Returns:
1706 * 0 : the request has been processed (not requeued)
1707 * !0 : the request has been requeued
1708 */
1709 static int map_request(struct dm_target *ti, struct request *clone,
1710 struct mapped_device *md)
1711 {
1712 int r, requeued = 0;
1713 struct dm_rq_target_io *tio = clone->end_io_data;
1714
1715 tio->ti = ti;
1716 r = ti->type->map_rq(ti, clone, &tio->info);
1717 switch (r) {
1718 case DM_MAPIO_SUBMITTED:
1719 /* The target has taken the I/O to submit by itself later */
1720 break;
1721 case DM_MAPIO_REMAPPED:
1722 /* The target has remapped the I/O so dispatch it */
1723 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1724 blk_rq_pos(tio->orig));
1725 dm_dispatch_request(clone);
1726 break;
1727 case DM_MAPIO_REQUEUE:
1728 /* The target wants to requeue the I/O */
1729 dm_requeue_unmapped_request(clone);
1730 requeued = 1;
1731 break;
1732 default:
1733 if (r > 0) {
1734 DMWARN("unimplemented target map return value: %d", r);
1735 BUG();
1736 }
1737
1738 /* The target wants to complete the I/O */
1739 dm_kill_unmapped_request(clone, r);
1740 break;
1741 }
1742
1743 return requeued;
1744 }
1745
1746 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1747 {
1748 struct request *clone;
1749
1750 blk_start_request(orig);
1751 clone = orig->special;
1752 atomic_inc(&md->pending[rq_data_dir(clone)]);
1753
1754 /*
1755 * Hold the md reference here for the in-flight I/O.
1756 * We can't rely on the reference count by device opener,
1757 * because the device may be closed during the request completion
1758 * when all bios are completed.
1759 * See the comment in rq_completed() too.
1760 */
1761 dm_get(md);
1762
1763 return clone;
1764 }
1765
1766 /*
1767 * q->request_fn for request-based dm.
1768 * Called with the queue lock held.
1769 */
1770 static void dm_request_fn(struct request_queue *q)
1771 {
1772 struct mapped_device *md = q->queuedata;
1773 int srcu_idx;
1774 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1775 struct dm_target *ti;
1776 struct request *rq, *clone;
1777 sector_t pos;
1778
1779 /*
1780 * For suspend, check blk_queue_stopped() and increment
1781 * ->pending within a single queue_lock not to increment the
1782 * number of in-flight I/Os after the queue is stopped in
1783 * dm_suspend().
1784 */
1785 while (!blk_queue_stopped(q)) {
1786 rq = blk_peek_request(q);
1787 if (!rq)
1788 goto delay_and_out;
1789
1790 /* always use block 0 to find the target for flushes for now */
1791 pos = 0;
1792 if (!(rq->cmd_flags & REQ_FLUSH))
1793 pos = blk_rq_pos(rq);
1794
1795 ti = dm_table_find_target(map, pos);
1796 if (!dm_target_is_valid(ti)) {
1797 /*
1798 * Must perform setup, that dm_done() requires,
1799 * before calling dm_kill_unmapped_request
1800 */
1801 DMERR_LIMIT("request attempted access beyond the end of device");
1802 clone = dm_start_request(md, rq);
1803 dm_kill_unmapped_request(clone, -EIO);
1804 continue;
1805 }
1806
1807 if (ti->type->busy && ti->type->busy(ti))
1808 goto delay_and_out;
1809
1810 clone = dm_start_request(md, rq);
1811
1812 spin_unlock(q->queue_lock);
1813 if (map_request(ti, clone, md))
1814 goto requeued;
1815
1816 BUG_ON(!irqs_disabled());
1817 spin_lock(q->queue_lock);
1818 }
1819
1820 goto out;
1821
1822 requeued:
1823 BUG_ON(!irqs_disabled());
1824 spin_lock(q->queue_lock);
1825
1826 delay_and_out:
1827 blk_delay_queue(q, HZ / 10);
1828 out:
1829 dm_put_live_table(md, srcu_idx);
1830 }
1831
1832 int dm_underlying_device_busy(struct request_queue *q)
1833 {
1834 return blk_lld_busy(q);
1835 }
1836 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1837
1838 static int dm_lld_busy(struct request_queue *q)
1839 {
1840 int r;
1841 struct mapped_device *md = q->queuedata;
1842 struct dm_table *map = dm_get_live_table_fast(md);
1843
1844 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1845 r = 1;
1846 else
1847 r = dm_table_any_busy_target(map);
1848
1849 dm_put_live_table_fast(md);
1850
1851 return r;
1852 }
1853
1854 static int dm_any_congested(void *congested_data, int bdi_bits)
1855 {
1856 int r = bdi_bits;
1857 struct mapped_device *md = congested_data;
1858 struct dm_table *map;
1859
1860 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1861 map = dm_get_live_table_fast(md);
1862 if (map) {
1863 /*
1864 * Request-based dm cares about only own queue for
1865 * the query about congestion status of request_queue
1866 */
1867 if (dm_request_based(md))
1868 r = md->queue->backing_dev_info.state &
1869 bdi_bits;
1870 else
1871 r = dm_table_any_congested(map, bdi_bits);
1872 }
1873 dm_put_live_table_fast(md);
1874 }
1875
1876 return r;
1877 }
1878
1879 /*-----------------------------------------------------------------
1880 * An IDR is used to keep track of allocated minor numbers.
1881 *---------------------------------------------------------------*/
1882 static void free_minor(int minor)
1883 {
1884 spin_lock(&_minor_lock);
1885 idr_remove(&_minor_idr, minor);
1886 spin_unlock(&_minor_lock);
1887 }
1888
1889 /*
1890 * See if the device with a specific minor # is free.
1891 */
1892 static int specific_minor(int minor)
1893 {
1894 int r;
1895
1896 if (minor >= (1 << MINORBITS))
1897 return -EINVAL;
1898
1899 idr_preload(GFP_KERNEL);
1900 spin_lock(&_minor_lock);
1901
1902 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1903
1904 spin_unlock(&_minor_lock);
1905 idr_preload_end();
1906 if (r < 0)
1907 return r == -ENOSPC ? -EBUSY : r;
1908 return 0;
1909 }
1910
1911 static int next_free_minor(int *minor)
1912 {
1913 int r;
1914
1915 idr_preload(GFP_KERNEL);
1916 spin_lock(&_minor_lock);
1917
1918 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1919
1920 spin_unlock(&_minor_lock);
1921 idr_preload_end();
1922 if (r < 0)
1923 return r;
1924 *minor = r;
1925 return 0;
1926 }
1927
1928 static const struct block_device_operations dm_blk_dops;
1929
1930 static void dm_wq_work(struct work_struct *work);
1931
1932 static void dm_init_md_queue(struct mapped_device *md)
1933 {
1934 /*
1935 * Request-based dm devices cannot be stacked on top of bio-based dm
1936 * devices. The type of this dm device has not been decided yet.
1937 * The type is decided at the first table loading time.
1938 * To prevent problematic device stacking, clear the queue flag
1939 * for request stacking support until then.
1940 *
1941 * This queue is new, so no concurrency on the queue_flags.
1942 */
1943 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1944
1945 md->queue->queuedata = md;
1946 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1947 md->queue->backing_dev_info.congested_data = md;
1948 blk_queue_make_request(md->queue, dm_request);
1949 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1950 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1951 }
1952
1953 /*
1954 * Allocate and initialise a blank device with a given minor.
1955 */
1956 static struct mapped_device *alloc_dev(int minor)
1957 {
1958 int r;
1959 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1960 void *old_md;
1961
1962 if (!md) {
1963 DMWARN("unable to allocate device, out of memory.");
1964 return NULL;
1965 }
1966
1967 if (!try_module_get(THIS_MODULE))
1968 goto bad_module_get;
1969
1970 /* get a minor number for the dev */
1971 if (minor == DM_ANY_MINOR)
1972 r = next_free_minor(&minor);
1973 else
1974 r = specific_minor(minor);
1975 if (r < 0)
1976 goto bad_minor;
1977
1978 r = init_srcu_struct(&md->io_barrier);
1979 if (r < 0)
1980 goto bad_io_barrier;
1981
1982 md->type = DM_TYPE_NONE;
1983 mutex_init(&md->suspend_lock);
1984 mutex_init(&md->type_lock);
1985 spin_lock_init(&md->deferred_lock);
1986 atomic_set(&md->holders, 1);
1987 atomic_set(&md->open_count, 0);
1988 atomic_set(&md->event_nr, 0);
1989 atomic_set(&md->uevent_seq, 0);
1990 INIT_LIST_HEAD(&md->uevent_list);
1991 spin_lock_init(&md->uevent_lock);
1992
1993 md->queue = blk_alloc_queue(GFP_KERNEL);
1994 if (!md->queue)
1995 goto bad_queue;
1996
1997 dm_init_md_queue(md);
1998
1999 md->disk = alloc_disk(1);
2000 if (!md->disk)
2001 goto bad_disk;
2002
2003 atomic_set(&md->pending[0], 0);
2004 atomic_set(&md->pending[1], 0);
2005 init_waitqueue_head(&md->wait);
2006 INIT_WORK(&md->work, dm_wq_work);
2007 init_waitqueue_head(&md->eventq);
2008
2009 md->disk->major = _major;
2010 md->disk->first_minor = minor;
2011 md->disk->fops = &dm_blk_dops;
2012 md->disk->queue = md->queue;
2013 md->disk->private_data = md;
2014 sprintf(md->disk->disk_name, "dm-%d", minor);
2015 add_disk(md->disk);
2016 format_dev_t(md->name, MKDEV(_major, minor));
2017
2018 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2019 if (!md->wq)
2020 goto bad_thread;
2021
2022 md->bdev = bdget_disk(md->disk, 0);
2023 if (!md->bdev)
2024 goto bad_bdev;
2025
2026 bio_init(&md->flush_bio);
2027 md->flush_bio.bi_bdev = md->bdev;
2028 md->flush_bio.bi_rw = WRITE_FLUSH;
2029
2030 dm_stats_init(&md->stats);
2031
2032 /* Populate the mapping, nobody knows we exist yet */
2033 spin_lock(&_minor_lock);
2034 old_md = idr_replace(&_minor_idr, md, minor);
2035 spin_unlock(&_minor_lock);
2036
2037 BUG_ON(old_md != MINOR_ALLOCED);
2038
2039 return md;
2040
2041 bad_bdev:
2042 destroy_workqueue(md->wq);
2043 bad_thread:
2044 del_gendisk(md->disk);
2045 put_disk(md->disk);
2046 bad_disk:
2047 blk_cleanup_queue(md->queue);
2048 bad_queue:
2049 cleanup_srcu_struct(&md->io_barrier);
2050 bad_io_barrier:
2051 free_minor(minor);
2052 bad_minor:
2053 module_put(THIS_MODULE);
2054 bad_module_get:
2055 kfree(md);
2056 return NULL;
2057 }
2058
2059 static void unlock_fs(struct mapped_device *md);
2060
2061 static void free_dev(struct mapped_device *md)
2062 {
2063 int minor = MINOR(disk_devt(md->disk));
2064
2065 unlock_fs(md);
2066 bdput(md->bdev);
2067 destroy_workqueue(md->wq);
2068 if (md->io_pool)
2069 mempool_destroy(md->io_pool);
2070 if (md->bs)
2071 bioset_free(md->bs);
2072 blk_integrity_unregister(md->disk);
2073 del_gendisk(md->disk);
2074 cleanup_srcu_struct(&md->io_barrier);
2075 free_minor(minor);
2076
2077 spin_lock(&_minor_lock);
2078 md->disk->private_data = NULL;
2079 spin_unlock(&_minor_lock);
2080
2081 put_disk(md->disk);
2082 blk_cleanup_queue(md->queue);
2083 dm_stats_cleanup(&md->stats);
2084 module_put(THIS_MODULE);
2085 kfree(md);
2086 }
2087
2088 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2089 {
2090 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2091
2092 if (md->io_pool && md->bs) {
2093 /* The md already has necessary mempools. */
2094 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2095 /*
2096 * Reload bioset because front_pad may have changed
2097 * because a different table was loaded.
2098 */
2099 bioset_free(md->bs);
2100 md->bs = p->bs;
2101 p->bs = NULL;
2102 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2103 /*
2104 * There's no need to reload with request-based dm
2105 * because the size of front_pad doesn't change.
2106 * Note for future: If you are to reload bioset,
2107 * prep-ed requests in the queue may refer
2108 * to bio from the old bioset, so you must walk
2109 * through the queue to unprep.
2110 */
2111 }
2112 goto out;
2113 }
2114
2115 BUG_ON(!p || md->io_pool || md->bs);
2116
2117 md->io_pool = p->io_pool;
2118 p->io_pool = NULL;
2119 md->bs = p->bs;
2120 p->bs = NULL;
2121
2122 out:
2123 /* mempool bind completed, now no need any mempools in the table */
2124 dm_table_free_md_mempools(t);
2125 }
2126
2127 /*
2128 * Bind a table to the device.
2129 */
2130 static void event_callback(void *context)
2131 {
2132 unsigned long flags;
2133 LIST_HEAD(uevents);
2134 struct mapped_device *md = (struct mapped_device *) context;
2135
2136 spin_lock_irqsave(&md->uevent_lock, flags);
2137 list_splice_init(&md->uevent_list, &uevents);
2138 spin_unlock_irqrestore(&md->uevent_lock, flags);
2139
2140 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2141
2142 atomic_inc(&md->event_nr);
2143 wake_up(&md->eventq);
2144 }
2145
2146 /*
2147 * Protected by md->suspend_lock obtained by dm_swap_table().
2148 */
2149 static void __set_size(struct mapped_device *md, sector_t size)
2150 {
2151 set_capacity(md->disk, size);
2152
2153 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2154 }
2155
2156 /*
2157 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2158 *
2159 * If this function returns 0, then the device is either a non-dm
2160 * device without a merge_bvec_fn, or it is a dm device that is
2161 * able to split any bios it receives that are too big.
2162 */
2163 int dm_queue_merge_is_compulsory(struct request_queue *q)
2164 {
2165 struct mapped_device *dev_md;
2166
2167 if (!q->merge_bvec_fn)
2168 return 0;
2169
2170 if (q->make_request_fn == dm_request) {
2171 dev_md = q->queuedata;
2172 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2173 return 0;
2174 }
2175
2176 return 1;
2177 }
2178
2179 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2180 struct dm_dev *dev, sector_t start,
2181 sector_t len, void *data)
2182 {
2183 struct block_device *bdev = dev->bdev;
2184 struct request_queue *q = bdev_get_queue(bdev);
2185
2186 return dm_queue_merge_is_compulsory(q);
2187 }
2188
2189 /*
2190 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2191 * on the properties of the underlying devices.
2192 */
2193 static int dm_table_merge_is_optional(struct dm_table *table)
2194 {
2195 unsigned i = 0;
2196 struct dm_target *ti;
2197
2198 while (i < dm_table_get_num_targets(table)) {
2199 ti = dm_table_get_target(table, i++);
2200
2201 if (ti->type->iterate_devices &&
2202 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2203 return 0;
2204 }
2205
2206 return 1;
2207 }
2208
2209 /*
2210 * Returns old map, which caller must destroy.
2211 */
2212 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2213 struct queue_limits *limits)
2214 {
2215 struct dm_table *old_map;
2216 struct request_queue *q = md->queue;
2217 sector_t size;
2218 int merge_is_optional;
2219
2220 size = dm_table_get_size(t);
2221
2222 /*
2223 * Wipe any geometry if the size of the table changed.
2224 */
2225 if (size != dm_get_size(md))
2226 memset(&md->geometry, 0, sizeof(md->geometry));
2227
2228 __set_size(md, size);
2229
2230 dm_table_event_callback(t, event_callback, md);
2231
2232 /*
2233 * The queue hasn't been stopped yet, if the old table type wasn't
2234 * for request-based during suspension. So stop it to prevent
2235 * I/O mapping before resume.
2236 * This must be done before setting the queue restrictions,
2237 * because request-based dm may be run just after the setting.
2238 */
2239 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2240 stop_queue(q);
2241
2242 __bind_mempools(md, t);
2243
2244 merge_is_optional = dm_table_merge_is_optional(t);
2245
2246 old_map = md->map;
2247 rcu_assign_pointer(md->map, t);
2248 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2249
2250 dm_table_set_restrictions(t, q, limits);
2251 if (merge_is_optional)
2252 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2253 else
2254 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2255 dm_sync_table(md);
2256
2257 return old_map;
2258 }
2259
2260 /*
2261 * Returns unbound table for the caller to free.
2262 */
2263 static struct dm_table *__unbind(struct mapped_device *md)
2264 {
2265 struct dm_table *map = md->map;
2266
2267 if (!map)
2268 return NULL;
2269
2270 dm_table_event_callback(map, NULL, NULL);
2271 rcu_assign_pointer(md->map, NULL);
2272 dm_sync_table(md);
2273
2274 return map;
2275 }
2276
2277 /*
2278 * Constructor for a new device.
2279 */
2280 int dm_create(int minor, struct mapped_device **result)
2281 {
2282 struct mapped_device *md;
2283
2284 md = alloc_dev(minor);
2285 if (!md)
2286 return -ENXIO;
2287
2288 dm_sysfs_init(md);
2289
2290 *result = md;
2291 return 0;
2292 }
2293
2294 /*
2295 * Functions to manage md->type.
2296 * All are required to hold md->type_lock.
2297 */
2298 void dm_lock_md_type(struct mapped_device *md)
2299 {
2300 mutex_lock(&md->type_lock);
2301 }
2302
2303 void dm_unlock_md_type(struct mapped_device *md)
2304 {
2305 mutex_unlock(&md->type_lock);
2306 }
2307
2308 void dm_set_md_type(struct mapped_device *md, unsigned type)
2309 {
2310 BUG_ON(!mutex_is_locked(&md->type_lock));
2311 md->type = type;
2312 }
2313
2314 unsigned dm_get_md_type(struct mapped_device *md)
2315 {
2316 BUG_ON(!mutex_is_locked(&md->type_lock));
2317 return md->type;
2318 }
2319
2320 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2321 {
2322 return md->immutable_target_type;
2323 }
2324
2325 /*
2326 * The queue_limits are only valid as long as you have a reference
2327 * count on 'md'.
2328 */
2329 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2330 {
2331 BUG_ON(!atomic_read(&md->holders));
2332 return &md->queue->limits;
2333 }
2334 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2335
2336 /*
2337 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2338 */
2339 static int dm_init_request_based_queue(struct mapped_device *md)
2340 {
2341 struct request_queue *q = NULL;
2342
2343 if (md->queue->elevator)
2344 return 1;
2345
2346 /* Fully initialize the queue */
2347 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2348 if (!q)
2349 return 0;
2350
2351 md->queue = q;
2352 dm_init_md_queue(md);
2353 blk_queue_softirq_done(md->queue, dm_softirq_done);
2354 blk_queue_prep_rq(md->queue, dm_prep_fn);
2355 blk_queue_lld_busy(md->queue, dm_lld_busy);
2356
2357 elv_register_queue(md->queue);
2358
2359 return 1;
2360 }
2361
2362 /*
2363 * Setup the DM device's queue based on md's type
2364 */
2365 int dm_setup_md_queue(struct mapped_device *md)
2366 {
2367 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2368 !dm_init_request_based_queue(md)) {
2369 DMWARN("Cannot initialize queue for request-based mapped device");
2370 return -EINVAL;
2371 }
2372
2373 return 0;
2374 }
2375
2376 static struct mapped_device *dm_find_md(dev_t dev)
2377 {
2378 struct mapped_device *md;
2379 unsigned minor = MINOR(dev);
2380
2381 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2382 return NULL;
2383
2384 spin_lock(&_minor_lock);
2385
2386 md = idr_find(&_minor_idr, minor);
2387 if (md && (md == MINOR_ALLOCED ||
2388 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2389 dm_deleting_md(md) ||
2390 test_bit(DMF_FREEING, &md->flags))) {
2391 md = NULL;
2392 goto out;
2393 }
2394
2395 out:
2396 spin_unlock(&_minor_lock);
2397
2398 return md;
2399 }
2400
2401 struct mapped_device *dm_get_md(dev_t dev)
2402 {
2403 struct mapped_device *md = dm_find_md(dev);
2404
2405 if (md)
2406 dm_get(md);
2407
2408 return md;
2409 }
2410 EXPORT_SYMBOL_GPL(dm_get_md);
2411
2412 void *dm_get_mdptr(struct mapped_device *md)
2413 {
2414 return md->interface_ptr;
2415 }
2416
2417 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2418 {
2419 md->interface_ptr = ptr;
2420 }
2421
2422 void dm_get(struct mapped_device *md)
2423 {
2424 atomic_inc(&md->holders);
2425 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2426 }
2427
2428 const char *dm_device_name(struct mapped_device *md)
2429 {
2430 return md->name;
2431 }
2432 EXPORT_SYMBOL_GPL(dm_device_name);
2433
2434 static void __dm_destroy(struct mapped_device *md, bool wait)
2435 {
2436 struct dm_table *map;
2437 int srcu_idx;
2438
2439 might_sleep();
2440
2441 spin_lock(&_minor_lock);
2442 map = dm_get_live_table(md, &srcu_idx);
2443 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2444 set_bit(DMF_FREEING, &md->flags);
2445 spin_unlock(&_minor_lock);
2446
2447 if (!dm_suspended_md(md)) {
2448 dm_table_presuspend_targets(map);
2449 dm_table_postsuspend_targets(map);
2450 }
2451
2452 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2453 dm_put_live_table(md, srcu_idx);
2454
2455 /*
2456 * Rare, but there may be I/O requests still going to complete,
2457 * for example. Wait for all references to disappear.
2458 * No one should increment the reference count of the mapped_device,
2459 * after the mapped_device state becomes DMF_FREEING.
2460 */
2461 if (wait)
2462 while (atomic_read(&md->holders))
2463 msleep(1);
2464 else if (atomic_read(&md->holders))
2465 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2466 dm_device_name(md), atomic_read(&md->holders));
2467
2468 dm_sysfs_exit(md);
2469 dm_table_destroy(__unbind(md));
2470 free_dev(md);
2471 }
2472
2473 void dm_destroy(struct mapped_device *md)
2474 {
2475 __dm_destroy(md, true);
2476 }
2477
2478 void dm_destroy_immediate(struct mapped_device *md)
2479 {
2480 __dm_destroy(md, false);
2481 }
2482
2483 void dm_put(struct mapped_device *md)
2484 {
2485 atomic_dec(&md->holders);
2486 }
2487 EXPORT_SYMBOL_GPL(dm_put);
2488
2489 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2490 {
2491 int r = 0;
2492 DECLARE_WAITQUEUE(wait, current);
2493
2494 add_wait_queue(&md->wait, &wait);
2495
2496 while (1) {
2497 set_current_state(interruptible);
2498
2499 if (!md_in_flight(md))
2500 break;
2501
2502 if (interruptible == TASK_INTERRUPTIBLE &&
2503 signal_pending(current)) {
2504 r = -EINTR;
2505 break;
2506 }
2507
2508 io_schedule();
2509 }
2510 set_current_state(TASK_RUNNING);
2511
2512 remove_wait_queue(&md->wait, &wait);
2513
2514 return r;
2515 }
2516
2517 /*
2518 * Process the deferred bios
2519 */
2520 static void dm_wq_work(struct work_struct *work)
2521 {
2522 struct mapped_device *md = container_of(work, struct mapped_device,
2523 work);
2524 struct bio *c;
2525 int srcu_idx;
2526 struct dm_table *map;
2527
2528 map = dm_get_live_table(md, &srcu_idx);
2529
2530 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2531 spin_lock_irq(&md->deferred_lock);
2532 c = bio_list_pop(&md->deferred);
2533 spin_unlock_irq(&md->deferred_lock);
2534
2535 if (!c)
2536 break;
2537
2538 if (dm_request_based(md))
2539 generic_make_request(c);
2540 else
2541 __split_and_process_bio(md, map, c);
2542 }
2543
2544 dm_put_live_table(md, srcu_idx);
2545 }
2546
2547 static void dm_queue_flush(struct mapped_device *md)
2548 {
2549 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2550 smp_mb__after_clear_bit();
2551 queue_work(md->wq, &md->work);
2552 }
2553
2554 /*
2555 * Swap in a new table, returning the old one for the caller to destroy.
2556 */
2557 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2558 {
2559 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2560 struct queue_limits limits;
2561 int r;
2562
2563 mutex_lock(&md->suspend_lock);
2564
2565 /* device must be suspended */
2566 if (!dm_suspended_md(md))
2567 goto out;
2568
2569 /*
2570 * If the new table has no data devices, retain the existing limits.
2571 * This helps multipath with queue_if_no_path if all paths disappear,
2572 * then new I/O is queued based on these limits, and then some paths
2573 * reappear.
2574 */
2575 if (dm_table_has_no_data_devices(table)) {
2576 live_map = dm_get_live_table_fast(md);
2577 if (live_map)
2578 limits = md->queue->limits;
2579 dm_put_live_table_fast(md);
2580 }
2581
2582 if (!live_map) {
2583 r = dm_calculate_queue_limits(table, &limits);
2584 if (r) {
2585 map = ERR_PTR(r);
2586 goto out;
2587 }
2588 }
2589
2590 map = __bind(md, table, &limits);
2591
2592 out:
2593 mutex_unlock(&md->suspend_lock);
2594 return map;
2595 }
2596
2597 /*
2598 * Functions to lock and unlock any filesystem running on the
2599 * device.
2600 */
2601 static int lock_fs(struct mapped_device *md)
2602 {
2603 int r;
2604
2605 WARN_ON(md->frozen_sb);
2606
2607 md->frozen_sb = freeze_bdev(md->bdev);
2608 if (IS_ERR(md->frozen_sb)) {
2609 r = PTR_ERR(md->frozen_sb);
2610 md->frozen_sb = NULL;
2611 return r;
2612 }
2613
2614 set_bit(DMF_FROZEN, &md->flags);
2615
2616 return 0;
2617 }
2618
2619 static void unlock_fs(struct mapped_device *md)
2620 {
2621 if (!test_bit(DMF_FROZEN, &md->flags))
2622 return;
2623
2624 thaw_bdev(md->bdev, md->frozen_sb);
2625 md->frozen_sb = NULL;
2626 clear_bit(DMF_FROZEN, &md->flags);
2627 }
2628
2629 /*
2630 * We need to be able to change a mapping table under a mounted
2631 * filesystem. For example we might want to move some data in
2632 * the background. Before the table can be swapped with
2633 * dm_bind_table, dm_suspend must be called to flush any in
2634 * flight bios and ensure that any further io gets deferred.
2635 */
2636 /*
2637 * Suspend mechanism in request-based dm.
2638 *
2639 * 1. Flush all I/Os by lock_fs() if needed.
2640 * 2. Stop dispatching any I/O by stopping the request_queue.
2641 * 3. Wait for all in-flight I/Os to be completed or requeued.
2642 *
2643 * To abort suspend, start the request_queue.
2644 */
2645 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2646 {
2647 struct dm_table *map = NULL;
2648 int r = 0;
2649 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2650 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2651
2652 mutex_lock(&md->suspend_lock);
2653
2654 if (dm_suspended_md(md)) {
2655 r = -EINVAL;
2656 goto out_unlock;
2657 }
2658
2659 map = md->map;
2660
2661 /*
2662 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2663 * This flag is cleared before dm_suspend returns.
2664 */
2665 if (noflush)
2666 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2667
2668 /* This does not get reverted if there's an error later. */
2669 dm_table_presuspend_targets(map);
2670
2671 /*
2672 * Flush I/O to the device.
2673 * Any I/O submitted after lock_fs() may not be flushed.
2674 * noflush takes precedence over do_lockfs.
2675 * (lock_fs() flushes I/Os and waits for them to complete.)
2676 */
2677 if (!noflush && do_lockfs) {
2678 r = lock_fs(md);
2679 if (r)
2680 goto out_unlock;
2681 }
2682
2683 /*
2684 * Here we must make sure that no processes are submitting requests
2685 * to target drivers i.e. no one may be executing
2686 * __split_and_process_bio. This is called from dm_request and
2687 * dm_wq_work.
2688 *
2689 * To get all processes out of __split_and_process_bio in dm_request,
2690 * we take the write lock. To prevent any process from reentering
2691 * __split_and_process_bio from dm_request and quiesce the thread
2692 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2693 * flush_workqueue(md->wq).
2694 */
2695 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2696 synchronize_srcu(&md->io_barrier);
2697
2698 /*
2699 * Stop md->queue before flushing md->wq in case request-based
2700 * dm defers requests to md->wq from md->queue.
2701 */
2702 if (dm_request_based(md))
2703 stop_queue(md->queue);
2704
2705 flush_workqueue(md->wq);
2706
2707 /*
2708 * At this point no more requests are entering target request routines.
2709 * We call dm_wait_for_completion to wait for all existing requests
2710 * to finish.
2711 */
2712 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2713
2714 if (noflush)
2715 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2716 synchronize_srcu(&md->io_barrier);
2717
2718 /* were we interrupted ? */
2719 if (r < 0) {
2720 dm_queue_flush(md);
2721
2722 if (dm_request_based(md))
2723 start_queue(md->queue);
2724
2725 unlock_fs(md);
2726 goto out_unlock; /* pushback list is already flushed, so skip flush */
2727 }
2728
2729 /*
2730 * If dm_wait_for_completion returned 0, the device is completely
2731 * quiescent now. There is no request-processing activity. All new
2732 * requests are being added to md->deferred list.
2733 */
2734
2735 set_bit(DMF_SUSPENDED, &md->flags);
2736
2737 dm_table_postsuspend_targets(map);
2738
2739 out_unlock:
2740 mutex_unlock(&md->suspend_lock);
2741 return r;
2742 }
2743
2744 int dm_resume(struct mapped_device *md)
2745 {
2746 int r = -EINVAL;
2747 struct dm_table *map = NULL;
2748
2749 mutex_lock(&md->suspend_lock);
2750 if (!dm_suspended_md(md))
2751 goto out;
2752
2753 map = md->map;
2754 if (!map || !dm_table_get_size(map))
2755 goto out;
2756
2757 r = dm_table_resume_targets(map);
2758 if (r)
2759 goto out;
2760
2761 dm_queue_flush(md);
2762
2763 /*
2764 * Flushing deferred I/Os must be done after targets are resumed
2765 * so that mapping of targets can work correctly.
2766 * Request-based dm is queueing the deferred I/Os in its request_queue.
2767 */
2768 if (dm_request_based(md))
2769 start_queue(md->queue);
2770
2771 unlock_fs(md);
2772
2773 clear_bit(DMF_SUSPENDED, &md->flags);
2774
2775 r = 0;
2776 out:
2777 mutex_unlock(&md->suspend_lock);
2778
2779 return r;
2780 }
2781
2782 /*
2783 * Internal suspend/resume works like userspace-driven suspend. It waits
2784 * until all bios finish and prevents issuing new bios to the target drivers.
2785 * It may be used only from the kernel.
2786 *
2787 * Internal suspend holds md->suspend_lock, which prevents interaction with
2788 * userspace-driven suspend.
2789 */
2790
2791 void dm_internal_suspend(struct mapped_device *md)
2792 {
2793 mutex_lock(&md->suspend_lock);
2794 if (dm_suspended_md(md))
2795 return;
2796
2797 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2798 synchronize_srcu(&md->io_barrier);
2799 flush_workqueue(md->wq);
2800 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2801 }
2802
2803 void dm_internal_resume(struct mapped_device *md)
2804 {
2805 if (dm_suspended_md(md))
2806 goto done;
2807
2808 dm_queue_flush(md);
2809
2810 done:
2811 mutex_unlock(&md->suspend_lock);
2812 }
2813
2814 /*-----------------------------------------------------------------
2815 * Event notification.
2816 *---------------------------------------------------------------*/
2817 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2818 unsigned cookie)
2819 {
2820 char udev_cookie[DM_COOKIE_LENGTH];
2821 char *envp[] = { udev_cookie, NULL };
2822
2823 if (!cookie)
2824 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2825 else {
2826 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2827 DM_COOKIE_ENV_VAR_NAME, cookie);
2828 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2829 action, envp);
2830 }
2831 }
2832
2833 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2834 {
2835 return atomic_add_return(1, &md->uevent_seq);
2836 }
2837
2838 uint32_t dm_get_event_nr(struct mapped_device *md)
2839 {
2840 return atomic_read(&md->event_nr);
2841 }
2842
2843 int dm_wait_event(struct mapped_device *md, int event_nr)
2844 {
2845 return wait_event_interruptible(md->eventq,
2846 (event_nr != atomic_read(&md->event_nr)));
2847 }
2848
2849 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2850 {
2851 unsigned long flags;
2852
2853 spin_lock_irqsave(&md->uevent_lock, flags);
2854 list_add(elist, &md->uevent_list);
2855 spin_unlock_irqrestore(&md->uevent_lock, flags);
2856 }
2857
2858 /*
2859 * The gendisk is only valid as long as you have a reference
2860 * count on 'md'.
2861 */
2862 struct gendisk *dm_disk(struct mapped_device *md)
2863 {
2864 return md->disk;
2865 }
2866
2867 struct kobject *dm_kobject(struct mapped_device *md)
2868 {
2869 return &md->kobj;
2870 }
2871
2872 /*
2873 * struct mapped_device should not be exported outside of dm.c
2874 * so use this check to verify that kobj is part of md structure
2875 */
2876 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2877 {
2878 struct mapped_device *md;
2879
2880 md = container_of(kobj, struct mapped_device, kobj);
2881 if (&md->kobj != kobj)
2882 return NULL;
2883
2884 if (test_bit(DMF_FREEING, &md->flags) ||
2885 dm_deleting_md(md))
2886 return NULL;
2887
2888 dm_get(md);
2889 return md;
2890 }
2891
2892 int dm_suspended_md(struct mapped_device *md)
2893 {
2894 return test_bit(DMF_SUSPENDED, &md->flags);
2895 }
2896
2897 int dm_suspended(struct dm_target *ti)
2898 {
2899 return dm_suspended_md(dm_table_get_md(ti->table));
2900 }
2901 EXPORT_SYMBOL_GPL(dm_suspended);
2902
2903 int dm_noflush_suspending(struct dm_target *ti)
2904 {
2905 return __noflush_suspending(dm_table_get_md(ti->table));
2906 }
2907 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2908
2909 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2910 {
2911 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2912 struct kmem_cache *cachep;
2913 unsigned int pool_size;
2914 unsigned int front_pad;
2915
2916 if (!pools)
2917 return NULL;
2918
2919 if (type == DM_TYPE_BIO_BASED) {
2920 cachep = _io_cache;
2921 pool_size = dm_get_reserved_bio_based_ios();
2922 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2923 } else if (type == DM_TYPE_REQUEST_BASED) {
2924 cachep = _rq_tio_cache;
2925 pool_size = dm_get_reserved_rq_based_ios();
2926 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2927 /* per_bio_data_size is not used. See __bind_mempools(). */
2928 WARN_ON(per_bio_data_size != 0);
2929 } else
2930 goto out;
2931
2932 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2933 if (!pools->io_pool)
2934 goto out;
2935
2936 pools->bs = bioset_create(pool_size, front_pad);
2937 if (!pools->bs)
2938 goto out;
2939
2940 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2941 goto out;
2942
2943 return pools;
2944
2945 out:
2946 dm_free_md_mempools(pools);
2947
2948 return NULL;
2949 }
2950
2951 void dm_free_md_mempools(struct dm_md_mempools *pools)
2952 {
2953 if (!pools)
2954 return;
2955
2956 if (pools->io_pool)
2957 mempool_destroy(pools->io_pool);
2958
2959 if (pools->bs)
2960 bioset_free(pools->bs);
2961
2962 kfree(pools);
2963 }
2964
2965 static const struct block_device_operations dm_blk_dops = {
2966 .open = dm_blk_open,
2967 .release = dm_blk_close,
2968 .ioctl = dm_blk_ioctl,
2969 .getgeo = dm_blk_getgeo,
2970 .owner = THIS_MODULE
2971 };
2972
2973 EXPORT_SYMBOL(dm_get_mapinfo);
2974
2975 /*
2976 * module hooks
2977 */
2978 module_init(dm_init);
2979 module_exit(dm_exit);
2980
2981 module_param(major, uint, 0);
2982 MODULE_PARM_DESC(major, "The major number of the device mapper");
2983
2984 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2985 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2986
2987 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
2988 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
2989
2990 MODULE_DESCRIPTION(DM_NAME " driver");
2991 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2992 MODULE_LICENSE("GPL");
This page took 0.093526 seconds and 5 git commands to generate.