Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
43 };
44
45 /*
46 * One of these is allocated per target within a bio. Hopefully
47 * this will be simplified out one day.
48 */
49 struct dm_target_io {
50 struct dm_io *io;
51 struct dm_target *ti;
52 union map_info info;
53 };
54
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 if (bio && bio->bi_private)
58 return &((struct dm_target_io *)bio->bi_private)->info;
59 return NULL;
60 }
61
62 #define MINOR_ALLOCED ((void *)-1)
63
64 /*
65 * Bits for the md->flags field.
66 */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73
74 /*
75 * Work processed by per-device workqueue.
76 */
77 struct dm_wq_req {
78 enum {
79 DM_WQ_FLUSH_ALL,
80 DM_WQ_FLUSH_DEFERRED,
81 } type;
82 struct work_struct work;
83 struct mapped_device *md;
84 void *context;
85 };
86
87 struct mapped_device {
88 struct rw_semaphore io_lock;
89 struct mutex suspend_lock;
90 spinlock_t pushback_lock;
91 rwlock_t map_lock;
92 atomic_t holders;
93 atomic_t open_count;
94
95 unsigned long flags;
96
97 struct request_queue *queue;
98 struct gendisk *disk;
99 char name[16];
100
101 void *interface_ptr;
102
103 /*
104 * A list of ios that arrived while we were suspended.
105 */
106 atomic_t pending;
107 wait_queue_head_t wait;
108 struct bio_list deferred;
109 struct bio_list pushback;
110
111 /*
112 * Processing queue (flush/barriers)
113 */
114 struct workqueue_struct *wq;
115
116 /*
117 * The current mapping.
118 */
119 struct dm_table *map;
120
121 /*
122 * io objects are allocated from here.
123 */
124 mempool_t *io_pool;
125 mempool_t *tio_pool;
126
127 struct bio_set *bs;
128
129 /*
130 * Event handling.
131 */
132 atomic_t event_nr;
133 wait_queue_head_t eventq;
134 atomic_t uevent_seq;
135 struct list_head uevent_list;
136 spinlock_t uevent_lock; /* Protect access to uevent_list */
137
138 /*
139 * freeze/thaw support require holding onto a super block
140 */
141 struct super_block *frozen_sb;
142 struct block_device *suspended_bdev;
143
144 /* forced geometry settings */
145 struct hd_geometry geometry;
146 };
147
148 #define MIN_IOS 256
149 static struct kmem_cache *_io_cache;
150 static struct kmem_cache *_tio_cache;
151
152 static int __init local_init(void)
153 {
154 int r;
155
156 /* allocate a slab for the dm_ios */
157 _io_cache = KMEM_CACHE(dm_io, 0);
158 if (!_io_cache)
159 return -ENOMEM;
160
161 /* allocate a slab for the target ios */
162 _tio_cache = KMEM_CACHE(dm_target_io, 0);
163 if (!_tio_cache) {
164 kmem_cache_destroy(_io_cache);
165 return -ENOMEM;
166 }
167
168 r = dm_uevent_init();
169 if (r) {
170 kmem_cache_destroy(_tio_cache);
171 kmem_cache_destroy(_io_cache);
172 return r;
173 }
174
175 _major = major;
176 r = register_blkdev(_major, _name);
177 if (r < 0) {
178 kmem_cache_destroy(_tio_cache);
179 kmem_cache_destroy(_io_cache);
180 dm_uevent_exit();
181 return r;
182 }
183
184 if (!_major)
185 _major = r;
186
187 return 0;
188 }
189
190 static void local_exit(void)
191 {
192 kmem_cache_destroy(_tio_cache);
193 kmem_cache_destroy(_io_cache);
194 unregister_blkdev(_major, _name);
195 dm_uevent_exit();
196
197 _major = 0;
198
199 DMINFO("cleaned up");
200 }
201
202 static int (*_inits[])(void) __initdata = {
203 local_init,
204 dm_target_init,
205 dm_linear_init,
206 dm_stripe_init,
207 dm_kcopyd_init,
208 dm_interface_init,
209 };
210
211 static void (*_exits[])(void) = {
212 local_exit,
213 dm_target_exit,
214 dm_linear_exit,
215 dm_stripe_exit,
216 dm_kcopyd_exit,
217 dm_interface_exit,
218 };
219
220 static int __init dm_init(void)
221 {
222 const int count = ARRAY_SIZE(_inits);
223
224 int r, i;
225
226 for (i = 0; i < count; i++) {
227 r = _inits[i]();
228 if (r)
229 goto bad;
230 }
231
232 return 0;
233
234 bad:
235 while (i--)
236 _exits[i]();
237
238 return r;
239 }
240
241 static void __exit dm_exit(void)
242 {
243 int i = ARRAY_SIZE(_exits);
244
245 while (i--)
246 _exits[i]();
247 }
248
249 /*
250 * Block device functions
251 */
252 static int dm_blk_open(struct inode *inode, struct file *file)
253 {
254 struct mapped_device *md;
255
256 spin_lock(&_minor_lock);
257
258 md = inode->i_bdev->bd_disk->private_data;
259 if (!md)
260 goto out;
261
262 if (test_bit(DMF_FREEING, &md->flags) ||
263 test_bit(DMF_DELETING, &md->flags)) {
264 md = NULL;
265 goto out;
266 }
267
268 dm_get(md);
269 atomic_inc(&md->open_count);
270
271 out:
272 spin_unlock(&_minor_lock);
273
274 return md ? 0 : -ENXIO;
275 }
276
277 static int dm_blk_close(struct inode *inode, struct file *file)
278 {
279 struct mapped_device *md;
280
281 md = inode->i_bdev->bd_disk->private_data;
282 atomic_dec(&md->open_count);
283 dm_put(md);
284 return 0;
285 }
286
287 int dm_open_count(struct mapped_device *md)
288 {
289 return atomic_read(&md->open_count);
290 }
291
292 /*
293 * Guarantees nothing is using the device before it's deleted.
294 */
295 int dm_lock_for_deletion(struct mapped_device *md)
296 {
297 int r = 0;
298
299 spin_lock(&_minor_lock);
300
301 if (dm_open_count(md))
302 r = -EBUSY;
303 else
304 set_bit(DMF_DELETING, &md->flags);
305
306 spin_unlock(&_minor_lock);
307
308 return r;
309 }
310
311 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
312 {
313 struct mapped_device *md = bdev->bd_disk->private_data;
314
315 return dm_get_geometry(md, geo);
316 }
317
318 static int dm_blk_ioctl(struct inode *inode, struct file *file,
319 unsigned int cmd, unsigned long arg)
320 {
321 struct mapped_device *md;
322 struct dm_table *map;
323 struct dm_target *tgt;
324 int r = -ENOTTY;
325
326 /* We don't really need this lock, but we do need 'inode'. */
327 unlock_kernel();
328
329 md = inode->i_bdev->bd_disk->private_data;
330
331 map = dm_get_table(md);
332
333 if (!map || !dm_table_get_size(map))
334 goto out;
335
336 /* We only support devices that have a single target */
337 if (dm_table_get_num_targets(map) != 1)
338 goto out;
339
340 tgt = dm_table_get_target(map, 0);
341
342 if (dm_suspended(md)) {
343 r = -EAGAIN;
344 goto out;
345 }
346
347 if (tgt->type->ioctl)
348 r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
349
350 out:
351 dm_table_put(map);
352
353 lock_kernel();
354 return r;
355 }
356
357 static struct dm_io *alloc_io(struct mapped_device *md)
358 {
359 return mempool_alloc(md->io_pool, GFP_NOIO);
360 }
361
362 static void free_io(struct mapped_device *md, struct dm_io *io)
363 {
364 mempool_free(io, md->io_pool);
365 }
366
367 static struct dm_target_io *alloc_tio(struct mapped_device *md)
368 {
369 return mempool_alloc(md->tio_pool, GFP_NOIO);
370 }
371
372 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
373 {
374 mempool_free(tio, md->tio_pool);
375 }
376
377 static void start_io_acct(struct dm_io *io)
378 {
379 struct mapped_device *md = io->md;
380
381 io->start_time = jiffies;
382
383 preempt_disable();
384 disk_round_stats(dm_disk(md));
385 preempt_enable();
386 dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
387 }
388
389 static int end_io_acct(struct dm_io *io)
390 {
391 struct mapped_device *md = io->md;
392 struct bio *bio = io->bio;
393 unsigned long duration = jiffies - io->start_time;
394 int pending;
395 int rw = bio_data_dir(bio);
396
397 preempt_disable();
398 disk_round_stats(dm_disk(md));
399 preempt_enable();
400 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
401
402 disk_stat_add(dm_disk(md), ticks[rw], duration);
403
404 return !pending;
405 }
406
407 /*
408 * Add the bio to the list of deferred io.
409 */
410 static int queue_io(struct mapped_device *md, struct bio *bio)
411 {
412 down_write(&md->io_lock);
413
414 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
415 up_write(&md->io_lock);
416 return 1;
417 }
418
419 bio_list_add(&md->deferred, bio);
420
421 up_write(&md->io_lock);
422 return 0; /* deferred successfully */
423 }
424
425 /*
426 * Everyone (including functions in this file), should use this
427 * function to access the md->map field, and make sure they call
428 * dm_table_put() when finished.
429 */
430 struct dm_table *dm_get_table(struct mapped_device *md)
431 {
432 struct dm_table *t;
433
434 read_lock(&md->map_lock);
435 t = md->map;
436 if (t)
437 dm_table_get(t);
438 read_unlock(&md->map_lock);
439
440 return t;
441 }
442
443 /*
444 * Get the geometry associated with a dm device
445 */
446 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
447 {
448 *geo = md->geometry;
449
450 return 0;
451 }
452
453 /*
454 * Set the geometry of a device.
455 */
456 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
457 {
458 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
459
460 if (geo->start > sz) {
461 DMWARN("Start sector is beyond the geometry limits.");
462 return -EINVAL;
463 }
464
465 md->geometry = *geo;
466
467 return 0;
468 }
469
470 /*-----------------------------------------------------------------
471 * CRUD START:
472 * A more elegant soln is in the works that uses the queue
473 * merge fn, unfortunately there are a couple of changes to
474 * the block layer that I want to make for this. So in the
475 * interests of getting something for people to use I give
476 * you this clearly demarcated crap.
477 *---------------------------------------------------------------*/
478
479 static int __noflush_suspending(struct mapped_device *md)
480 {
481 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
482 }
483
484 /*
485 * Decrements the number of outstanding ios that a bio has been
486 * cloned into, completing the original io if necc.
487 */
488 static void dec_pending(struct dm_io *io, int error)
489 {
490 unsigned long flags;
491
492 /* Push-back supersedes any I/O errors */
493 if (error && !(io->error > 0 && __noflush_suspending(io->md)))
494 io->error = error;
495
496 if (atomic_dec_and_test(&io->io_count)) {
497 if (io->error == DM_ENDIO_REQUEUE) {
498 /*
499 * Target requested pushing back the I/O.
500 * This must be handled before the sleeper on
501 * suspend queue merges the pushback list.
502 */
503 spin_lock_irqsave(&io->md->pushback_lock, flags);
504 if (__noflush_suspending(io->md))
505 bio_list_add(&io->md->pushback, io->bio);
506 else
507 /* noflush suspend was interrupted. */
508 io->error = -EIO;
509 spin_unlock_irqrestore(&io->md->pushback_lock, flags);
510 }
511
512 if (end_io_acct(io))
513 /* nudge anyone waiting on suspend queue */
514 wake_up(&io->md->wait);
515
516 if (io->error != DM_ENDIO_REQUEUE) {
517 blk_add_trace_bio(io->md->queue, io->bio,
518 BLK_TA_COMPLETE);
519
520 bio_endio(io->bio, io->error);
521 }
522
523 free_io(io->md, io);
524 }
525 }
526
527 static void clone_endio(struct bio *bio, int error)
528 {
529 int r = 0;
530 struct dm_target_io *tio = bio->bi_private;
531 struct mapped_device *md = tio->io->md;
532 dm_endio_fn endio = tio->ti->type->end_io;
533
534 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
535 error = -EIO;
536
537 if (endio) {
538 r = endio(tio->ti, bio, error, &tio->info);
539 if (r < 0 || r == DM_ENDIO_REQUEUE)
540 /*
541 * error and requeue request are handled
542 * in dec_pending().
543 */
544 error = r;
545 else if (r == DM_ENDIO_INCOMPLETE)
546 /* The target will handle the io */
547 return;
548 else if (r) {
549 DMWARN("unimplemented target endio return value: %d", r);
550 BUG();
551 }
552 }
553
554 dec_pending(tio->io, error);
555
556 /*
557 * Store md for cleanup instead of tio which is about to get freed.
558 */
559 bio->bi_private = md->bs;
560
561 bio_put(bio);
562 free_tio(md, tio);
563 }
564
565 static sector_t max_io_len(struct mapped_device *md,
566 sector_t sector, struct dm_target *ti)
567 {
568 sector_t offset = sector - ti->begin;
569 sector_t len = ti->len - offset;
570
571 /*
572 * Does the target need to split even further ?
573 */
574 if (ti->split_io) {
575 sector_t boundary;
576 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
577 - offset;
578 if (len > boundary)
579 len = boundary;
580 }
581
582 return len;
583 }
584
585 static void __map_bio(struct dm_target *ti, struct bio *clone,
586 struct dm_target_io *tio)
587 {
588 int r;
589 sector_t sector;
590 struct mapped_device *md;
591
592 /*
593 * Sanity checks.
594 */
595 BUG_ON(!clone->bi_size);
596
597 clone->bi_end_io = clone_endio;
598 clone->bi_private = tio;
599
600 /*
601 * Map the clone. If r == 0 we don't need to do
602 * anything, the target has assumed ownership of
603 * this io.
604 */
605 atomic_inc(&tio->io->io_count);
606 sector = clone->bi_sector;
607 r = ti->type->map(ti, clone, &tio->info);
608 if (r == DM_MAPIO_REMAPPED) {
609 /* the bio has been remapped so dispatch it */
610
611 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
612 tio->io->bio->bi_bdev->bd_dev,
613 clone->bi_sector, sector);
614
615 generic_make_request(clone);
616 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
617 /* error the io and bail out, or requeue it if needed */
618 md = tio->io->md;
619 dec_pending(tio->io, r);
620 /*
621 * Store bio_set for cleanup.
622 */
623 clone->bi_private = md->bs;
624 bio_put(clone);
625 free_tio(md, tio);
626 } else if (r) {
627 DMWARN("unimplemented target map return value: %d", r);
628 BUG();
629 }
630 }
631
632 struct clone_info {
633 struct mapped_device *md;
634 struct dm_table *map;
635 struct bio *bio;
636 struct dm_io *io;
637 sector_t sector;
638 sector_t sector_count;
639 unsigned short idx;
640 };
641
642 static void dm_bio_destructor(struct bio *bio)
643 {
644 struct bio_set *bs = bio->bi_private;
645
646 bio_free(bio, bs);
647 }
648
649 /*
650 * Creates a little bio that is just does part of a bvec.
651 */
652 static struct bio *split_bvec(struct bio *bio, sector_t sector,
653 unsigned short idx, unsigned int offset,
654 unsigned int len, struct bio_set *bs)
655 {
656 struct bio *clone;
657 struct bio_vec *bv = bio->bi_io_vec + idx;
658
659 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
660 clone->bi_destructor = dm_bio_destructor;
661 *clone->bi_io_vec = *bv;
662
663 clone->bi_sector = sector;
664 clone->bi_bdev = bio->bi_bdev;
665 clone->bi_rw = bio->bi_rw;
666 clone->bi_vcnt = 1;
667 clone->bi_size = to_bytes(len);
668 clone->bi_io_vec->bv_offset = offset;
669 clone->bi_io_vec->bv_len = clone->bi_size;
670
671 return clone;
672 }
673
674 /*
675 * Creates a bio that consists of range of complete bvecs.
676 */
677 static struct bio *clone_bio(struct bio *bio, sector_t sector,
678 unsigned short idx, unsigned short bv_count,
679 unsigned int len, struct bio_set *bs)
680 {
681 struct bio *clone;
682
683 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
684 __bio_clone(clone, bio);
685 clone->bi_destructor = dm_bio_destructor;
686 clone->bi_sector = sector;
687 clone->bi_idx = idx;
688 clone->bi_vcnt = idx + bv_count;
689 clone->bi_size = to_bytes(len);
690 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
691
692 return clone;
693 }
694
695 static int __clone_and_map(struct clone_info *ci)
696 {
697 struct bio *clone, *bio = ci->bio;
698 struct dm_target *ti;
699 sector_t len = 0, max;
700 struct dm_target_io *tio;
701
702 ti = dm_table_find_target(ci->map, ci->sector);
703 if (!dm_target_is_valid(ti))
704 return -EIO;
705
706 max = max_io_len(ci->md, ci->sector, ti);
707
708 /*
709 * Allocate a target io object.
710 */
711 tio = alloc_tio(ci->md);
712 tio->io = ci->io;
713 tio->ti = ti;
714 memset(&tio->info, 0, sizeof(tio->info));
715
716 if (ci->sector_count <= max) {
717 /*
718 * Optimise for the simple case where we can do all of
719 * the remaining io with a single clone.
720 */
721 clone = clone_bio(bio, ci->sector, ci->idx,
722 bio->bi_vcnt - ci->idx, ci->sector_count,
723 ci->md->bs);
724 __map_bio(ti, clone, tio);
725 ci->sector_count = 0;
726
727 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
728 /*
729 * There are some bvecs that don't span targets.
730 * Do as many of these as possible.
731 */
732 int i;
733 sector_t remaining = max;
734 sector_t bv_len;
735
736 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
737 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
738
739 if (bv_len > remaining)
740 break;
741
742 remaining -= bv_len;
743 len += bv_len;
744 }
745
746 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
747 ci->md->bs);
748 __map_bio(ti, clone, tio);
749
750 ci->sector += len;
751 ci->sector_count -= len;
752 ci->idx = i;
753
754 } else {
755 /*
756 * Handle a bvec that must be split between two or more targets.
757 */
758 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
759 sector_t remaining = to_sector(bv->bv_len);
760 unsigned int offset = 0;
761
762 do {
763 if (offset) {
764 ti = dm_table_find_target(ci->map, ci->sector);
765 if (!dm_target_is_valid(ti))
766 return -EIO;
767
768 max = max_io_len(ci->md, ci->sector, ti);
769
770 tio = alloc_tio(ci->md);
771 tio->io = ci->io;
772 tio->ti = ti;
773 memset(&tio->info, 0, sizeof(tio->info));
774 }
775
776 len = min(remaining, max);
777
778 clone = split_bvec(bio, ci->sector, ci->idx,
779 bv->bv_offset + offset, len,
780 ci->md->bs);
781
782 __map_bio(ti, clone, tio);
783
784 ci->sector += len;
785 ci->sector_count -= len;
786 offset += to_bytes(len);
787 } while (remaining -= len);
788
789 ci->idx++;
790 }
791
792 return 0;
793 }
794
795 /*
796 * Split the bio into several clones.
797 */
798 static int __split_bio(struct mapped_device *md, struct bio *bio)
799 {
800 struct clone_info ci;
801 int error = 0;
802
803 ci.map = dm_get_table(md);
804 if (unlikely(!ci.map))
805 return -EIO;
806
807 ci.md = md;
808 ci.bio = bio;
809 ci.io = alloc_io(md);
810 ci.io->error = 0;
811 atomic_set(&ci.io->io_count, 1);
812 ci.io->bio = bio;
813 ci.io->md = md;
814 ci.sector = bio->bi_sector;
815 ci.sector_count = bio_sectors(bio);
816 ci.idx = bio->bi_idx;
817
818 start_io_acct(ci.io);
819 while (ci.sector_count && !error)
820 error = __clone_and_map(&ci);
821
822 /* drop the extra reference count */
823 dec_pending(ci.io, error);
824 dm_table_put(ci.map);
825
826 return 0;
827 }
828 /*-----------------------------------------------------------------
829 * CRUD END
830 *---------------------------------------------------------------*/
831
832 static int dm_merge_bvec(struct request_queue *q,
833 struct bvec_merge_data *bvm,
834 struct bio_vec *biovec)
835 {
836 struct mapped_device *md = q->queuedata;
837 struct dm_table *map = dm_get_table(md);
838 struct dm_target *ti;
839 sector_t max_sectors;
840 int max_size;
841
842 if (unlikely(!map))
843 return 0;
844
845 ti = dm_table_find_target(map, bvm->bi_sector);
846
847 /*
848 * Find maximum amount of I/O that won't need splitting
849 */
850 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
851 (sector_t) BIO_MAX_SECTORS);
852 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
853 if (max_size < 0)
854 max_size = 0;
855
856 /*
857 * merge_bvec_fn() returns number of bytes
858 * it can accept at this offset
859 * max is precomputed maximal io size
860 */
861 if (max_size && ti->type->merge)
862 max_size = ti->type->merge(ti, bvm, biovec, max_size);
863
864 /*
865 * Always allow an entire first page
866 */
867 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
868 max_size = biovec->bv_len;
869
870 dm_table_put(map);
871
872 return max_size;
873 }
874
875 /*
876 * The request function that just remaps the bio built up by
877 * dm_merge_bvec.
878 */
879 static int dm_request(struct request_queue *q, struct bio *bio)
880 {
881 int r = -EIO;
882 int rw = bio_data_dir(bio);
883 struct mapped_device *md = q->queuedata;
884
885 /*
886 * There is no use in forwarding any barrier request since we can't
887 * guarantee it is (or can be) handled by the targets correctly.
888 */
889 if (unlikely(bio_barrier(bio))) {
890 bio_endio(bio, -EOPNOTSUPP);
891 return 0;
892 }
893
894 down_read(&md->io_lock);
895
896 disk_stat_inc(dm_disk(md), ios[rw]);
897 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
898
899 /*
900 * If we're suspended we have to queue
901 * this io for later.
902 */
903 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
904 up_read(&md->io_lock);
905
906 if (bio_rw(bio) != READA)
907 r = queue_io(md, bio);
908
909 if (r <= 0)
910 goto out_req;
911
912 /*
913 * We're in a while loop, because someone could suspend
914 * before we get to the following read lock.
915 */
916 down_read(&md->io_lock);
917 }
918
919 r = __split_bio(md, bio);
920 up_read(&md->io_lock);
921
922 out_req:
923 if (r < 0)
924 bio_io_error(bio);
925
926 return 0;
927 }
928
929 static void dm_unplug_all(struct request_queue *q)
930 {
931 struct mapped_device *md = q->queuedata;
932 struct dm_table *map = dm_get_table(md);
933
934 if (map) {
935 dm_table_unplug_all(map);
936 dm_table_put(map);
937 }
938 }
939
940 static int dm_any_congested(void *congested_data, int bdi_bits)
941 {
942 int r;
943 struct mapped_device *md = (struct mapped_device *) congested_data;
944 struct dm_table *map = dm_get_table(md);
945
946 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
947 r = bdi_bits;
948 else
949 r = dm_table_any_congested(map, bdi_bits);
950
951 dm_table_put(map);
952 return r;
953 }
954
955 /*-----------------------------------------------------------------
956 * An IDR is used to keep track of allocated minor numbers.
957 *---------------------------------------------------------------*/
958 static DEFINE_IDR(_minor_idr);
959
960 static void free_minor(int minor)
961 {
962 spin_lock(&_minor_lock);
963 idr_remove(&_minor_idr, minor);
964 spin_unlock(&_minor_lock);
965 }
966
967 /*
968 * See if the device with a specific minor # is free.
969 */
970 static int specific_minor(int minor)
971 {
972 int r, m;
973
974 if (minor >= (1 << MINORBITS))
975 return -EINVAL;
976
977 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
978 if (!r)
979 return -ENOMEM;
980
981 spin_lock(&_minor_lock);
982
983 if (idr_find(&_minor_idr, minor)) {
984 r = -EBUSY;
985 goto out;
986 }
987
988 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
989 if (r)
990 goto out;
991
992 if (m != minor) {
993 idr_remove(&_minor_idr, m);
994 r = -EBUSY;
995 goto out;
996 }
997
998 out:
999 spin_unlock(&_minor_lock);
1000 return r;
1001 }
1002
1003 static int next_free_minor(int *minor)
1004 {
1005 int r, m;
1006
1007 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1008 if (!r)
1009 return -ENOMEM;
1010
1011 spin_lock(&_minor_lock);
1012
1013 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1014 if (r)
1015 goto out;
1016
1017 if (m >= (1 << MINORBITS)) {
1018 idr_remove(&_minor_idr, m);
1019 r = -ENOSPC;
1020 goto out;
1021 }
1022
1023 *minor = m;
1024
1025 out:
1026 spin_unlock(&_minor_lock);
1027 return r;
1028 }
1029
1030 static struct block_device_operations dm_blk_dops;
1031
1032 /*
1033 * Allocate and initialise a blank device with a given minor.
1034 */
1035 static struct mapped_device *alloc_dev(int minor)
1036 {
1037 int r;
1038 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1039 void *old_md;
1040
1041 if (!md) {
1042 DMWARN("unable to allocate device, out of memory.");
1043 return NULL;
1044 }
1045
1046 if (!try_module_get(THIS_MODULE))
1047 goto bad_module_get;
1048
1049 /* get a minor number for the dev */
1050 if (minor == DM_ANY_MINOR)
1051 r = next_free_minor(&minor);
1052 else
1053 r = specific_minor(minor);
1054 if (r < 0)
1055 goto bad_minor;
1056
1057 init_rwsem(&md->io_lock);
1058 mutex_init(&md->suspend_lock);
1059 spin_lock_init(&md->pushback_lock);
1060 rwlock_init(&md->map_lock);
1061 atomic_set(&md->holders, 1);
1062 atomic_set(&md->open_count, 0);
1063 atomic_set(&md->event_nr, 0);
1064 atomic_set(&md->uevent_seq, 0);
1065 INIT_LIST_HEAD(&md->uevent_list);
1066 spin_lock_init(&md->uevent_lock);
1067
1068 md->queue = blk_alloc_queue(GFP_KERNEL);
1069 if (!md->queue)
1070 goto bad_queue;
1071
1072 md->queue->queuedata = md;
1073 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1074 md->queue->backing_dev_info.congested_data = md;
1075 blk_queue_make_request(md->queue, dm_request);
1076 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1077 md->queue->unplug_fn = dm_unplug_all;
1078 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1079
1080 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1081 if (!md->io_pool)
1082 goto bad_io_pool;
1083
1084 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1085 if (!md->tio_pool)
1086 goto bad_tio_pool;
1087
1088 md->bs = bioset_create(16, 16);
1089 if (!md->bs)
1090 goto bad_no_bioset;
1091
1092 md->disk = alloc_disk(1);
1093 if (!md->disk)
1094 goto bad_disk;
1095
1096 atomic_set(&md->pending, 0);
1097 init_waitqueue_head(&md->wait);
1098 init_waitqueue_head(&md->eventq);
1099
1100 md->disk->major = _major;
1101 md->disk->first_minor = minor;
1102 md->disk->fops = &dm_blk_dops;
1103 md->disk->queue = md->queue;
1104 md->disk->private_data = md;
1105 sprintf(md->disk->disk_name, "dm-%d", minor);
1106 add_disk(md->disk);
1107 format_dev_t(md->name, MKDEV(_major, minor));
1108
1109 md->wq = create_singlethread_workqueue("kdmflush");
1110 if (!md->wq)
1111 goto bad_thread;
1112
1113 /* Populate the mapping, nobody knows we exist yet */
1114 spin_lock(&_minor_lock);
1115 old_md = idr_replace(&_minor_idr, md, minor);
1116 spin_unlock(&_minor_lock);
1117
1118 BUG_ON(old_md != MINOR_ALLOCED);
1119
1120 return md;
1121
1122 bad_thread:
1123 put_disk(md->disk);
1124 bad_disk:
1125 bioset_free(md->bs);
1126 bad_no_bioset:
1127 mempool_destroy(md->tio_pool);
1128 bad_tio_pool:
1129 mempool_destroy(md->io_pool);
1130 bad_io_pool:
1131 blk_cleanup_queue(md->queue);
1132 bad_queue:
1133 free_minor(minor);
1134 bad_minor:
1135 module_put(THIS_MODULE);
1136 bad_module_get:
1137 kfree(md);
1138 return NULL;
1139 }
1140
1141 static void unlock_fs(struct mapped_device *md);
1142
1143 static void free_dev(struct mapped_device *md)
1144 {
1145 int minor = md->disk->first_minor;
1146
1147 if (md->suspended_bdev) {
1148 unlock_fs(md);
1149 bdput(md->suspended_bdev);
1150 }
1151 destroy_workqueue(md->wq);
1152 mempool_destroy(md->tio_pool);
1153 mempool_destroy(md->io_pool);
1154 bioset_free(md->bs);
1155 del_gendisk(md->disk);
1156 free_minor(minor);
1157
1158 spin_lock(&_minor_lock);
1159 md->disk->private_data = NULL;
1160 spin_unlock(&_minor_lock);
1161
1162 put_disk(md->disk);
1163 blk_cleanup_queue(md->queue);
1164 module_put(THIS_MODULE);
1165 kfree(md);
1166 }
1167
1168 /*
1169 * Bind a table to the device.
1170 */
1171 static void event_callback(void *context)
1172 {
1173 unsigned long flags;
1174 LIST_HEAD(uevents);
1175 struct mapped_device *md = (struct mapped_device *) context;
1176
1177 spin_lock_irqsave(&md->uevent_lock, flags);
1178 list_splice_init(&md->uevent_list, &uevents);
1179 spin_unlock_irqrestore(&md->uevent_lock, flags);
1180
1181 dm_send_uevents(&uevents, &md->disk->dev.kobj);
1182
1183 atomic_inc(&md->event_nr);
1184 wake_up(&md->eventq);
1185 }
1186
1187 static void __set_size(struct mapped_device *md, sector_t size)
1188 {
1189 set_capacity(md->disk, size);
1190
1191 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1192 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1193 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1194 }
1195
1196 static int __bind(struct mapped_device *md, struct dm_table *t)
1197 {
1198 struct request_queue *q = md->queue;
1199 sector_t size;
1200
1201 size = dm_table_get_size(t);
1202
1203 /*
1204 * Wipe any geometry if the size of the table changed.
1205 */
1206 if (size != get_capacity(md->disk))
1207 memset(&md->geometry, 0, sizeof(md->geometry));
1208
1209 if (md->suspended_bdev)
1210 __set_size(md, size);
1211 if (size == 0)
1212 return 0;
1213
1214 dm_table_get(t);
1215 dm_table_event_callback(t, event_callback, md);
1216
1217 write_lock(&md->map_lock);
1218 md->map = t;
1219 dm_table_set_restrictions(t, q);
1220 write_unlock(&md->map_lock);
1221
1222 return 0;
1223 }
1224
1225 static void __unbind(struct mapped_device *md)
1226 {
1227 struct dm_table *map = md->map;
1228
1229 if (!map)
1230 return;
1231
1232 dm_table_event_callback(map, NULL, NULL);
1233 write_lock(&md->map_lock);
1234 md->map = NULL;
1235 write_unlock(&md->map_lock);
1236 dm_table_put(map);
1237 }
1238
1239 /*
1240 * Constructor for a new device.
1241 */
1242 int dm_create(int minor, struct mapped_device **result)
1243 {
1244 struct mapped_device *md;
1245
1246 md = alloc_dev(minor);
1247 if (!md)
1248 return -ENXIO;
1249
1250 *result = md;
1251 return 0;
1252 }
1253
1254 static struct mapped_device *dm_find_md(dev_t dev)
1255 {
1256 struct mapped_device *md;
1257 unsigned minor = MINOR(dev);
1258
1259 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1260 return NULL;
1261
1262 spin_lock(&_minor_lock);
1263
1264 md = idr_find(&_minor_idr, minor);
1265 if (md && (md == MINOR_ALLOCED ||
1266 (dm_disk(md)->first_minor != minor) ||
1267 test_bit(DMF_FREEING, &md->flags))) {
1268 md = NULL;
1269 goto out;
1270 }
1271
1272 out:
1273 spin_unlock(&_minor_lock);
1274
1275 return md;
1276 }
1277
1278 struct mapped_device *dm_get_md(dev_t dev)
1279 {
1280 struct mapped_device *md = dm_find_md(dev);
1281
1282 if (md)
1283 dm_get(md);
1284
1285 return md;
1286 }
1287
1288 void *dm_get_mdptr(struct mapped_device *md)
1289 {
1290 return md->interface_ptr;
1291 }
1292
1293 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1294 {
1295 md->interface_ptr = ptr;
1296 }
1297
1298 void dm_get(struct mapped_device *md)
1299 {
1300 atomic_inc(&md->holders);
1301 }
1302
1303 const char *dm_device_name(struct mapped_device *md)
1304 {
1305 return md->name;
1306 }
1307 EXPORT_SYMBOL_GPL(dm_device_name);
1308
1309 void dm_put(struct mapped_device *md)
1310 {
1311 struct dm_table *map;
1312
1313 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1314
1315 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1316 map = dm_get_table(md);
1317 idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1318 set_bit(DMF_FREEING, &md->flags);
1319 spin_unlock(&_minor_lock);
1320 if (!dm_suspended(md)) {
1321 dm_table_presuspend_targets(map);
1322 dm_table_postsuspend_targets(map);
1323 }
1324 __unbind(md);
1325 dm_table_put(map);
1326 free_dev(md);
1327 }
1328 }
1329 EXPORT_SYMBOL_GPL(dm_put);
1330
1331 static int dm_wait_for_completion(struct mapped_device *md)
1332 {
1333 int r = 0;
1334
1335 while (1) {
1336 set_current_state(TASK_INTERRUPTIBLE);
1337
1338 smp_mb();
1339 if (!atomic_read(&md->pending))
1340 break;
1341
1342 if (signal_pending(current)) {
1343 r = -EINTR;
1344 break;
1345 }
1346
1347 io_schedule();
1348 }
1349 set_current_state(TASK_RUNNING);
1350
1351 return r;
1352 }
1353
1354 /*
1355 * Process the deferred bios
1356 */
1357 static void __flush_deferred_io(struct mapped_device *md)
1358 {
1359 struct bio *c;
1360
1361 while ((c = bio_list_pop(&md->deferred))) {
1362 if (__split_bio(md, c))
1363 bio_io_error(c);
1364 }
1365
1366 clear_bit(DMF_BLOCK_IO, &md->flags);
1367 }
1368
1369 static void __merge_pushback_list(struct mapped_device *md)
1370 {
1371 unsigned long flags;
1372
1373 spin_lock_irqsave(&md->pushback_lock, flags);
1374 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1375 bio_list_merge_head(&md->deferred, &md->pushback);
1376 bio_list_init(&md->pushback);
1377 spin_unlock_irqrestore(&md->pushback_lock, flags);
1378 }
1379
1380 static void dm_wq_work(struct work_struct *work)
1381 {
1382 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1383 struct mapped_device *md = req->md;
1384
1385 down_write(&md->io_lock);
1386 switch (req->type) {
1387 case DM_WQ_FLUSH_ALL:
1388 __merge_pushback_list(md);
1389 /* pass through */
1390 case DM_WQ_FLUSH_DEFERRED:
1391 __flush_deferred_io(md);
1392 break;
1393 default:
1394 DMERR("dm_wq_work: unrecognised work type %d", req->type);
1395 BUG();
1396 }
1397 up_write(&md->io_lock);
1398 }
1399
1400 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1401 struct dm_wq_req *req)
1402 {
1403 req->type = type;
1404 req->md = md;
1405 req->context = context;
1406 INIT_WORK(&req->work, dm_wq_work);
1407 queue_work(md->wq, &req->work);
1408 }
1409
1410 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1411 {
1412 struct dm_wq_req req;
1413
1414 dm_wq_queue(md, type, context, &req);
1415 flush_workqueue(md->wq);
1416 }
1417
1418 /*
1419 * Swap in a new table (destroying old one).
1420 */
1421 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1422 {
1423 int r = -EINVAL;
1424
1425 mutex_lock(&md->suspend_lock);
1426
1427 /* device must be suspended */
1428 if (!dm_suspended(md))
1429 goto out;
1430
1431 /* without bdev, the device size cannot be changed */
1432 if (!md->suspended_bdev)
1433 if (get_capacity(md->disk) != dm_table_get_size(table))
1434 goto out;
1435
1436 __unbind(md);
1437 r = __bind(md, table);
1438
1439 out:
1440 mutex_unlock(&md->suspend_lock);
1441 return r;
1442 }
1443
1444 /*
1445 * Functions to lock and unlock any filesystem running on the
1446 * device.
1447 */
1448 static int lock_fs(struct mapped_device *md)
1449 {
1450 int r;
1451
1452 WARN_ON(md->frozen_sb);
1453
1454 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1455 if (IS_ERR(md->frozen_sb)) {
1456 r = PTR_ERR(md->frozen_sb);
1457 md->frozen_sb = NULL;
1458 return r;
1459 }
1460
1461 set_bit(DMF_FROZEN, &md->flags);
1462
1463 /* don't bdput right now, we don't want the bdev
1464 * to go away while it is locked.
1465 */
1466 return 0;
1467 }
1468
1469 static void unlock_fs(struct mapped_device *md)
1470 {
1471 if (!test_bit(DMF_FROZEN, &md->flags))
1472 return;
1473
1474 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1475 md->frozen_sb = NULL;
1476 clear_bit(DMF_FROZEN, &md->flags);
1477 }
1478
1479 /*
1480 * We need to be able to change a mapping table under a mounted
1481 * filesystem. For example we might want to move some data in
1482 * the background. Before the table can be swapped with
1483 * dm_bind_table, dm_suspend must be called to flush any in
1484 * flight bios and ensure that any further io gets deferred.
1485 */
1486 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1487 {
1488 struct dm_table *map = NULL;
1489 DECLARE_WAITQUEUE(wait, current);
1490 int r = 0;
1491 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1492 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1493
1494 mutex_lock(&md->suspend_lock);
1495
1496 if (dm_suspended(md)) {
1497 r = -EINVAL;
1498 goto out_unlock;
1499 }
1500
1501 map = dm_get_table(md);
1502
1503 /*
1504 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1505 * This flag is cleared before dm_suspend returns.
1506 */
1507 if (noflush)
1508 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1509
1510 /* This does not get reverted if there's an error later. */
1511 dm_table_presuspend_targets(map);
1512
1513 /* bdget() can stall if the pending I/Os are not flushed */
1514 if (!noflush) {
1515 md->suspended_bdev = bdget_disk(md->disk, 0);
1516 if (!md->suspended_bdev) {
1517 DMWARN("bdget failed in dm_suspend");
1518 r = -ENOMEM;
1519 goto flush_and_out;
1520 }
1521
1522 /*
1523 * Flush I/O to the device. noflush supersedes do_lockfs,
1524 * because lock_fs() needs to flush I/Os.
1525 */
1526 if (do_lockfs) {
1527 r = lock_fs(md);
1528 if (r)
1529 goto out;
1530 }
1531 }
1532
1533 /*
1534 * First we set the BLOCK_IO flag so no more ios will be mapped.
1535 */
1536 down_write(&md->io_lock);
1537 set_bit(DMF_BLOCK_IO, &md->flags);
1538
1539 add_wait_queue(&md->wait, &wait);
1540 up_write(&md->io_lock);
1541
1542 /* unplug */
1543 if (map)
1544 dm_table_unplug_all(map);
1545
1546 /*
1547 * Wait for the already-mapped ios to complete.
1548 */
1549 r = dm_wait_for_completion(md);
1550
1551 down_write(&md->io_lock);
1552 remove_wait_queue(&md->wait, &wait);
1553
1554 if (noflush)
1555 __merge_pushback_list(md);
1556 up_write(&md->io_lock);
1557
1558 /* were we interrupted ? */
1559 if (r < 0) {
1560 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1561
1562 unlock_fs(md);
1563 goto out; /* pushback list is already flushed, so skip flush */
1564 }
1565
1566 dm_table_postsuspend_targets(map);
1567
1568 set_bit(DMF_SUSPENDED, &md->flags);
1569
1570 flush_and_out:
1571 if (r && noflush)
1572 /*
1573 * Because there may be already I/Os in the pushback list,
1574 * flush them before return.
1575 */
1576 dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL);
1577
1578 out:
1579 if (r && md->suspended_bdev) {
1580 bdput(md->suspended_bdev);
1581 md->suspended_bdev = NULL;
1582 }
1583
1584 dm_table_put(map);
1585
1586 out_unlock:
1587 mutex_unlock(&md->suspend_lock);
1588 return r;
1589 }
1590
1591 int dm_resume(struct mapped_device *md)
1592 {
1593 int r = -EINVAL;
1594 struct dm_table *map = NULL;
1595
1596 mutex_lock(&md->suspend_lock);
1597 if (!dm_suspended(md))
1598 goto out;
1599
1600 map = dm_get_table(md);
1601 if (!map || !dm_table_get_size(map))
1602 goto out;
1603
1604 r = dm_table_resume_targets(map);
1605 if (r)
1606 goto out;
1607
1608 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1609
1610 unlock_fs(md);
1611
1612 if (md->suspended_bdev) {
1613 bdput(md->suspended_bdev);
1614 md->suspended_bdev = NULL;
1615 }
1616
1617 clear_bit(DMF_SUSPENDED, &md->flags);
1618
1619 dm_table_unplug_all(map);
1620
1621 dm_kobject_uevent(md);
1622
1623 r = 0;
1624
1625 out:
1626 dm_table_put(map);
1627 mutex_unlock(&md->suspend_lock);
1628
1629 return r;
1630 }
1631
1632 /*-----------------------------------------------------------------
1633 * Event notification.
1634 *---------------------------------------------------------------*/
1635 void dm_kobject_uevent(struct mapped_device *md)
1636 {
1637 kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE);
1638 }
1639
1640 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1641 {
1642 return atomic_add_return(1, &md->uevent_seq);
1643 }
1644
1645 uint32_t dm_get_event_nr(struct mapped_device *md)
1646 {
1647 return atomic_read(&md->event_nr);
1648 }
1649
1650 int dm_wait_event(struct mapped_device *md, int event_nr)
1651 {
1652 return wait_event_interruptible(md->eventq,
1653 (event_nr != atomic_read(&md->event_nr)));
1654 }
1655
1656 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1657 {
1658 unsigned long flags;
1659
1660 spin_lock_irqsave(&md->uevent_lock, flags);
1661 list_add(elist, &md->uevent_list);
1662 spin_unlock_irqrestore(&md->uevent_lock, flags);
1663 }
1664
1665 /*
1666 * The gendisk is only valid as long as you have a reference
1667 * count on 'md'.
1668 */
1669 struct gendisk *dm_disk(struct mapped_device *md)
1670 {
1671 return md->disk;
1672 }
1673
1674 int dm_suspended(struct mapped_device *md)
1675 {
1676 return test_bit(DMF_SUSPENDED, &md->flags);
1677 }
1678
1679 int dm_noflush_suspending(struct dm_target *ti)
1680 {
1681 struct mapped_device *md = dm_table_get_md(ti->table);
1682 int r = __noflush_suspending(md);
1683
1684 dm_put(md);
1685
1686 return r;
1687 }
1688 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1689
1690 static struct block_device_operations dm_blk_dops = {
1691 .open = dm_blk_open,
1692 .release = dm_blk_close,
1693 .ioctl = dm_blk_ioctl,
1694 .getgeo = dm_blk_getgeo,
1695 .owner = THIS_MODULE
1696 };
1697
1698 EXPORT_SYMBOL(dm_get_mapinfo);
1699
1700 /*
1701 * module hooks
1702 */
1703 module_init(dm_init);
1704 module_exit(dm_exit);
1705
1706 module_param(major, uint, 0);
1707 MODULE_PARM_DESC(major, "The major number of the device mapper");
1708 MODULE_DESCRIPTION(DM_NAME " driver");
1709 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1710 MODULE_LICENSE("GPL");
This page took 0.117082 seconds and 5 git commands to generate.