dm: keep old table until after resume succeeded
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 /*
28 * Cookies are numeric values sent with CHANGE and REMOVE
29 * uevents while resuming, removing or renaming the device.
30 */
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
33
34 static const char *_name = DM_NAME;
35
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
38
39 static DEFINE_SPINLOCK(_minor_lock);
40 /*
41 * For bio-based dm.
42 * One of these is allocated per bio.
43 */
44 struct dm_io {
45 struct mapped_device *md;
46 int error;
47 atomic_t io_count;
48 struct bio *bio;
49 unsigned long start_time;
50 spinlock_t endio_lock;
51 };
52
53 /*
54 * For bio-based dm.
55 * One of these is allocated per target within a bio. Hopefully
56 * this will be simplified out one day.
57 */
58 struct dm_target_io {
59 struct dm_io *io;
60 struct dm_target *ti;
61 union map_info info;
62 };
63
64 /*
65 * For request-based dm.
66 * One of these is allocated per request.
67 */
68 struct dm_rq_target_io {
69 struct mapped_device *md;
70 struct dm_target *ti;
71 struct request *orig, clone;
72 int error;
73 union map_info info;
74 };
75
76 /*
77 * For request-based dm.
78 * One of these is allocated per bio.
79 */
80 struct dm_rq_clone_bio_info {
81 struct bio *orig;
82 struct dm_rq_target_io *tio;
83 };
84
85 union map_info *dm_get_mapinfo(struct bio *bio)
86 {
87 if (bio && bio->bi_private)
88 return &((struct dm_target_io *)bio->bi_private)->info;
89 return NULL;
90 }
91
92 union map_info *dm_get_rq_mapinfo(struct request *rq)
93 {
94 if (rq && rq->end_io_data)
95 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
96 return NULL;
97 }
98 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
99
100 #define MINOR_ALLOCED ((void *)-1)
101
102 /*
103 * Bits for the md->flags field.
104 */
105 #define DMF_BLOCK_IO_FOR_SUSPEND 0
106 #define DMF_SUSPENDED 1
107 #define DMF_FROZEN 2
108 #define DMF_FREEING 3
109 #define DMF_DELETING 4
110 #define DMF_NOFLUSH_SUSPENDING 5
111 #define DMF_QUEUE_IO_TO_THREAD 6
112
113 /*
114 * Work processed by per-device workqueue.
115 */
116 struct mapped_device {
117 struct rw_semaphore io_lock;
118 struct mutex suspend_lock;
119 rwlock_t map_lock;
120 atomic_t holders;
121 atomic_t open_count;
122
123 unsigned long flags;
124
125 struct request_queue *queue;
126 struct gendisk *disk;
127 char name[16];
128
129 void *interface_ptr;
130
131 /*
132 * A list of ios that arrived while we were suspended.
133 */
134 atomic_t pending[2];
135 wait_queue_head_t wait;
136 struct work_struct work;
137 struct bio_list deferred;
138 spinlock_t deferred_lock;
139
140 /*
141 * An error from the barrier request currently being processed.
142 */
143 int barrier_error;
144
145 /*
146 * Protect barrier_error from concurrent endio processing
147 * in request-based dm.
148 */
149 spinlock_t barrier_error_lock;
150
151 /*
152 * Processing queue (flush/barriers)
153 */
154 struct workqueue_struct *wq;
155 struct work_struct barrier_work;
156
157 /* A pointer to the currently processing pre/post flush request */
158 struct request *flush_request;
159
160 /*
161 * The current mapping.
162 */
163 struct dm_table *map;
164
165 /*
166 * io objects are allocated from here.
167 */
168 mempool_t *io_pool;
169 mempool_t *tio_pool;
170
171 struct bio_set *bs;
172
173 /*
174 * Event handling.
175 */
176 atomic_t event_nr;
177 wait_queue_head_t eventq;
178 atomic_t uevent_seq;
179 struct list_head uevent_list;
180 spinlock_t uevent_lock; /* Protect access to uevent_list */
181
182 /*
183 * freeze/thaw support require holding onto a super block
184 */
185 struct super_block *frozen_sb;
186 struct block_device *bdev;
187
188 /* forced geometry settings */
189 struct hd_geometry geometry;
190
191 /* For saving the address of __make_request for request based dm */
192 make_request_fn *saved_make_request_fn;
193
194 /* sysfs handle */
195 struct kobject kobj;
196
197 /* zero-length barrier that will be cloned and submitted to targets */
198 struct bio barrier_bio;
199 };
200
201 /*
202 * For mempools pre-allocation at the table loading time.
203 */
204 struct dm_md_mempools {
205 mempool_t *io_pool;
206 mempool_t *tio_pool;
207 struct bio_set *bs;
208 };
209
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215
216 static int __init local_init(void)
217 {
218 int r = -ENOMEM;
219
220 /* allocate a slab for the dm_ios */
221 _io_cache = KMEM_CACHE(dm_io, 0);
222 if (!_io_cache)
223 return r;
224
225 /* allocate a slab for the target ios */
226 _tio_cache = KMEM_CACHE(dm_target_io, 0);
227 if (!_tio_cache)
228 goto out_free_io_cache;
229
230 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 if (!_rq_tio_cache)
232 goto out_free_tio_cache;
233
234 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 if (!_rq_bio_info_cache)
236 goto out_free_rq_tio_cache;
237
238 r = dm_uevent_init();
239 if (r)
240 goto out_free_rq_bio_info_cache;
241
242 _major = major;
243 r = register_blkdev(_major, _name);
244 if (r < 0)
245 goto out_uevent_exit;
246
247 if (!_major)
248 _major = r;
249
250 return 0;
251
252 out_uevent_exit:
253 dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 kmem_cache_destroy(_io_cache);
262
263 return r;
264 }
265
266 static void local_exit(void)
267 {
268 kmem_cache_destroy(_rq_bio_info_cache);
269 kmem_cache_destroy(_rq_tio_cache);
270 kmem_cache_destroy(_tio_cache);
271 kmem_cache_destroy(_io_cache);
272 unregister_blkdev(_major, _name);
273 dm_uevent_exit();
274
275 _major = 0;
276
277 DMINFO("cleaned up");
278 }
279
280 static int (*_inits[])(void) __initdata = {
281 local_init,
282 dm_target_init,
283 dm_linear_init,
284 dm_stripe_init,
285 dm_io_init,
286 dm_kcopyd_init,
287 dm_interface_init,
288 };
289
290 static void (*_exits[])(void) = {
291 local_exit,
292 dm_target_exit,
293 dm_linear_exit,
294 dm_stripe_exit,
295 dm_io_exit,
296 dm_kcopyd_exit,
297 dm_interface_exit,
298 };
299
300 static int __init dm_init(void)
301 {
302 const int count = ARRAY_SIZE(_inits);
303
304 int r, i;
305
306 for (i = 0; i < count; i++) {
307 r = _inits[i]();
308 if (r)
309 goto bad;
310 }
311
312 return 0;
313
314 bad:
315 while (i--)
316 _exits[i]();
317
318 return r;
319 }
320
321 static void __exit dm_exit(void)
322 {
323 int i = ARRAY_SIZE(_exits);
324
325 while (i--)
326 _exits[i]();
327 }
328
329 /*
330 * Block device functions
331 */
332 int dm_deleting_md(struct mapped_device *md)
333 {
334 return test_bit(DMF_DELETING, &md->flags);
335 }
336
337 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
338 {
339 struct mapped_device *md;
340
341 spin_lock(&_minor_lock);
342
343 md = bdev->bd_disk->private_data;
344 if (!md)
345 goto out;
346
347 if (test_bit(DMF_FREEING, &md->flags) ||
348 dm_deleting_md(md)) {
349 md = NULL;
350 goto out;
351 }
352
353 dm_get(md);
354 atomic_inc(&md->open_count);
355
356 out:
357 spin_unlock(&_minor_lock);
358
359 return md ? 0 : -ENXIO;
360 }
361
362 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
363 {
364 struct mapped_device *md = disk->private_data;
365 atomic_dec(&md->open_count);
366 dm_put(md);
367 return 0;
368 }
369
370 int dm_open_count(struct mapped_device *md)
371 {
372 return atomic_read(&md->open_count);
373 }
374
375 /*
376 * Guarantees nothing is using the device before it's deleted.
377 */
378 int dm_lock_for_deletion(struct mapped_device *md)
379 {
380 int r = 0;
381
382 spin_lock(&_minor_lock);
383
384 if (dm_open_count(md))
385 r = -EBUSY;
386 else
387 set_bit(DMF_DELETING, &md->flags);
388
389 spin_unlock(&_minor_lock);
390
391 return r;
392 }
393
394 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
395 {
396 struct mapped_device *md = bdev->bd_disk->private_data;
397
398 return dm_get_geometry(md, geo);
399 }
400
401 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
402 unsigned int cmd, unsigned long arg)
403 {
404 struct mapped_device *md = bdev->bd_disk->private_data;
405 struct dm_table *map = dm_get_live_table(md);
406 struct dm_target *tgt;
407 int r = -ENOTTY;
408
409 if (!map || !dm_table_get_size(map))
410 goto out;
411
412 /* We only support devices that have a single target */
413 if (dm_table_get_num_targets(map) != 1)
414 goto out;
415
416 tgt = dm_table_get_target(map, 0);
417
418 if (dm_suspended(md)) {
419 r = -EAGAIN;
420 goto out;
421 }
422
423 if (tgt->type->ioctl)
424 r = tgt->type->ioctl(tgt, cmd, arg);
425
426 out:
427 dm_table_put(map);
428
429 return r;
430 }
431
432 static struct dm_io *alloc_io(struct mapped_device *md)
433 {
434 return mempool_alloc(md->io_pool, GFP_NOIO);
435 }
436
437 static void free_io(struct mapped_device *md, struct dm_io *io)
438 {
439 mempool_free(io, md->io_pool);
440 }
441
442 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
443 {
444 mempool_free(tio, md->tio_pool);
445 }
446
447 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
448 gfp_t gfp_mask)
449 {
450 return mempool_alloc(md->tio_pool, gfp_mask);
451 }
452
453 static void free_rq_tio(struct dm_rq_target_io *tio)
454 {
455 mempool_free(tio, tio->md->tio_pool);
456 }
457
458 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
459 {
460 return mempool_alloc(md->io_pool, GFP_ATOMIC);
461 }
462
463 static void free_bio_info(struct dm_rq_clone_bio_info *info)
464 {
465 mempool_free(info, info->tio->md->io_pool);
466 }
467
468 static int md_in_flight(struct mapped_device *md)
469 {
470 return atomic_read(&md->pending[READ]) +
471 atomic_read(&md->pending[WRITE]);
472 }
473
474 static void start_io_acct(struct dm_io *io)
475 {
476 struct mapped_device *md = io->md;
477 int cpu;
478 int rw = bio_data_dir(io->bio);
479
480 io->start_time = jiffies;
481
482 cpu = part_stat_lock();
483 part_round_stats(cpu, &dm_disk(md)->part0);
484 part_stat_unlock();
485 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
486 }
487
488 static void end_io_acct(struct dm_io *io)
489 {
490 struct mapped_device *md = io->md;
491 struct bio *bio = io->bio;
492 unsigned long duration = jiffies - io->start_time;
493 int pending, cpu;
494 int rw = bio_data_dir(bio);
495
496 cpu = part_stat_lock();
497 part_round_stats(cpu, &dm_disk(md)->part0);
498 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
499 part_stat_unlock();
500
501 /*
502 * After this is decremented the bio must not be touched if it is
503 * a barrier.
504 */
505 dm_disk(md)->part0.in_flight[rw] = pending =
506 atomic_dec_return(&md->pending[rw]);
507 pending += atomic_read(&md->pending[rw^0x1]);
508
509 /* nudge anyone waiting on suspend queue */
510 if (!pending)
511 wake_up(&md->wait);
512 }
513
514 /*
515 * Add the bio to the list of deferred io.
516 */
517 static void queue_io(struct mapped_device *md, struct bio *bio)
518 {
519 down_write(&md->io_lock);
520
521 spin_lock_irq(&md->deferred_lock);
522 bio_list_add(&md->deferred, bio);
523 spin_unlock_irq(&md->deferred_lock);
524
525 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
526 queue_work(md->wq, &md->work);
527
528 up_write(&md->io_lock);
529 }
530
531 /*
532 * Everyone (including functions in this file), should use this
533 * function to access the md->map field, and make sure they call
534 * dm_table_put() when finished.
535 */
536 struct dm_table *dm_get_live_table(struct mapped_device *md)
537 {
538 struct dm_table *t;
539 unsigned long flags;
540
541 read_lock_irqsave(&md->map_lock, flags);
542 t = md->map;
543 if (t)
544 dm_table_get(t);
545 read_unlock_irqrestore(&md->map_lock, flags);
546
547 return t;
548 }
549
550 /*
551 * Get the geometry associated with a dm device
552 */
553 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
554 {
555 *geo = md->geometry;
556
557 return 0;
558 }
559
560 /*
561 * Set the geometry of a device.
562 */
563 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
564 {
565 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
566
567 if (geo->start > sz) {
568 DMWARN("Start sector is beyond the geometry limits.");
569 return -EINVAL;
570 }
571
572 md->geometry = *geo;
573
574 return 0;
575 }
576
577 /*-----------------------------------------------------------------
578 * CRUD START:
579 * A more elegant soln is in the works that uses the queue
580 * merge fn, unfortunately there are a couple of changes to
581 * the block layer that I want to make for this. So in the
582 * interests of getting something for people to use I give
583 * you this clearly demarcated crap.
584 *---------------------------------------------------------------*/
585
586 static int __noflush_suspending(struct mapped_device *md)
587 {
588 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
589 }
590
591 /*
592 * Decrements the number of outstanding ios that a bio has been
593 * cloned into, completing the original io if necc.
594 */
595 static void dec_pending(struct dm_io *io, int error)
596 {
597 unsigned long flags;
598 int io_error;
599 struct bio *bio;
600 struct mapped_device *md = io->md;
601
602 /* Push-back supersedes any I/O errors */
603 if (unlikely(error)) {
604 spin_lock_irqsave(&io->endio_lock, flags);
605 if (!(io->error > 0 && __noflush_suspending(md)))
606 io->error = error;
607 spin_unlock_irqrestore(&io->endio_lock, flags);
608 }
609
610 if (atomic_dec_and_test(&io->io_count)) {
611 if (io->error == DM_ENDIO_REQUEUE) {
612 /*
613 * Target requested pushing back the I/O.
614 */
615 spin_lock_irqsave(&md->deferred_lock, flags);
616 if (__noflush_suspending(md)) {
617 if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER))
618 bio_list_add_head(&md->deferred,
619 io->bio);
620 } else
621 /* noflush suspend was interrupted. */
622 io->error = -EIO;
623 spin_unlock_irqrestore(&md->deferred_lock, flags);
624 }
625
626 io_error = io->error;
627 bio = io->bio;
628
629 if (bio_rw_flagged(bio, BIO_RW_BARRIER)) {
630 /*
631 * There can be just one barrier request so we use
632 * a per-device variable for error reporting.
633 * Note that you can't touch the bio after end_io_acct
634 */
635 if (!md->barrier_error && io_error != -EOPNOTSUPP)
636 md->barrier_error = io_error;
637 end_io_acct(io);
638 } else {
639 end_io_acct(io);
640
641 if (io_error != DM_ENDIO_REQUEUE) {
642 trace_block_bio_complete(md->queue, bio);
643
644 bio_endio(bio, io_error);
645 }
646 }
647
648 free_io(md, io);
649 }
650 }
651
652 static void clone_endio(struct bio *bio, int error)
653 {
654 int r = 0;
655 struct dm_target_io *tio = bio->bi_private;
656 struct dm_io *io = tio->io;
657 struct mapped_device *md = tio->io->md;
658 dm_endio_fn endio = tio->ti->type->end_io;
659
660 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
661 error = -EIO;
662
663 if (endio) {
664 r = endio(tio->ti, bio, error, &tio->info);
665 if (r < 0 || r == DM_ENDIO_REQUEUE)
666 /*
667 * error and requeue request are handled
668 * in dec_pending().
669 */
670 error = r;
671 else if (r == DM_ENDIO_INCOMPLETE)
672 /* The target will handle the io */
673 return;
674 else if (r) {
675 DMWARN("unimplemented target endio return value: %d", r);
676 BUG();
677 }
678 }
679
680 /*
681 * Store md for cleanup instead of tio which is about to get freed.
682 */
683 bio->bi_private = md->bs;
684
685 free_tio(md, tio);
686 bio_put(bio);
687 dec_pending(io, error);
688 }
689
690 /*
691 * Partial completion handling for request-based dm
692 */
693 static void end_clone_bio(struct bio *clone, int error)
694 {
695 struct dm_rq_clone_bio_info *info = clone->bi_private;
696 struct dm_rq_target_io *tio = info->tio;
697 struct bio *bio = info->orig;
698 unsigned int nr_bytes = info->orig->bi_size;
699
700 bio_put(clone);
701
702 if (tio->error)
703 /*
704 * An error has already been detected on the request.
705 * Once error occurred, just let clone->end_io() handle
706 * the remainder.
707 */
708 return;
709 else if (error) {
710 /*
711 * Don't notice the error to the upper layer yet.
712 * The error handling decision is made by the target driver,
713 * when the request is completed.
714 */
715 tio->error = error;
716 return;
717 }
718
719 /*
720 * I/O for the bio successfully completed.
721 * Notice the data completion to the upper layer.
722 */
723
724 /*
725 * bios are processed from the head of the list.
726 * So the completing bio should always be rq->bio.
727 * If it's not, something wrong is happening.
728 */
729 if (tio->orig->bio != bio)
730 DMERR("bio completion is going in the middle of the request");
731
732 /*
733 * Update the original request.
734 * Do not use blk_end_request() here, because it may complete
735 * the original request before the clone, and break the ordering.
736 */
737 blk_update_request(tio->orig, 0, nr_bytes);
738 }
739
740 static void store_barrier_error(struct mapped_device *md, int error)
741 {
742 unsigned long flags;
743
744 spin_lock_irqsave(&md->barrier_error_lock, flags);
745 /*
746 * Basically, the first error is taken, but:
747 * -EOPNOTSUPP supersedes any I/O error.
748 * Requeue request supersedes any I/O error but -EOPNOTSUPP.
749 */
750 if (!md->barrier_error || error == -EOPNOTSUPP ||
751 (md->barrier_error != -EOPNOTSUPP &&
752 error == DM_ENDIO_REQUEUE))
753 md->barrier_error = error;
754 spin_unlock_irqrestore(&md->barrier_error_lock, flags);
755 }
756
757 /*
758 * Don't touch any member of the md after calling this function because
759 * the md may be freed in dm_put() at the end of this function.
760 * Or do dm_get() before calling this function and dm_put() later.
761 */
762 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
763 {
764 atomic_dec(&md->pending[rw]);
765
766 /* nudge anyone waiting on suspend queue */
767 if (!md_in_flight(md))
768 wake_up(&md->wait);
769
770 if (run_queue)
771 blk_run_queue(md->queue);
772
773 /*
774 * dm_put() must be at the end of this function. See the comment above
775 */
776 dm_put(md);
777 }
778
779 static void free_rq_clone(struct request *clone)
780 {
781 struct dm_rq_target_io *tio = clone->end_io_data;
782
783 blk_rq_unprep_clone(clone);
784 free_rq_tio(tio);
785 }
786
787 /*
788 * Complete the clone and the original request.
789 * Must be called without queue lock.
790 */
791 static void dm_end_request(struct request *clone, int error)
792 {
793 int rw = rq_data_dir(clone);
794 int run_queue = 1;
795 bool is_barrier = blk_barrier_rq(clone);
796 struct dm_rq_target_io *tio = clone->end_io_data;
797 struct mapped_device *md = tio->md;
798 struct request *rq = tio->orig;
799
800 if (blk_pc_request(rq) && !is_barrier) {
801 rq->errors = clone->errors;
802 rq->resid_len = clone->resid_len;
803
804 if (rq->sense)
805 /*
806 * We are using the sense buffer of the original
807 * request.
808 * So setting the length of the sense data is enough.
809 */
810 rq->sense_len = clone->sense_len;
811 }
812
813 free_rq_clone(clone);
814
815 if (unlikely(is_barrier)) {
816 if (unlikely(error))
817 store_barrier_error(md, error);
818 run_queue = 0;
819 } else
820 blk_end_request_all(rq, error);
821
822 rq_completed(md, rw, run_queue);
823 }
824
825 static void dm_unprep_request(struct request *rq)
826 {
827 struct request *clone = rq->special;
828
829 rq->special = NULL;
830 rq->cmd_flags &= ~REQ_DONTPREP;
831
832 free_rq_clone(clone);
833 }
834
835 /*
836 * Requeue the original request of a clone.
837 */
838 void dm_requeue_unmapped_request(struct request *clone)
839 {
840 int rw = rq_data_dir(clone);
841 struct dm_rq_target_io *tio = clone->end_io_data;
842 struct mapped_device *md = tio->md;
843 struct request *rq = tio->orig;
844 struct request_queue *q = rq->q;
845 unsigned long flags;
846
847 if (unlikely(blk_barrier_rq(clone))) {
848 /*
849 * Barrier clones share an original request.
850 * Leave it to dm_end_request(), which handles this special
851 * case.
852 */
853 dm_end_request(clone, DM_ENDIO_REQUEUE);
854 return;
855 }
856
857 dm_unprep_request(rq);
858
859 spin_lock_irqsave(q->queue_lock, flags);
860 if (elv_queue_empty(q))
861 blk_plug_device(q);
862 blk_requeue_request(q, rq);
863 spin_unlock_irqrestore(q->queue_lock, flags);
864
865 rq_completed(md, rw, 0);
866 }
867 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
868
869 static void __stop_queue(struct request_queue *q)
870 {
871 blk_stop_queue(q);
872 }
873
874 static void stop_queue(struct request_queue *q)
875 {
876 unsigned long flags;
877
878 spin_lock_irqsave(q->queue_lock, flags);
879 __stop_queue(q);
880 spin_unlock_irqrestore(q->queue_lock, flags);
881 }
882
883 static void __start_queue(struct request_queue *q)
884 {
885 if (blk_queue_stopped(q))
886 blk_start_queue(q);
887 }
888
889 static void start_queue(struct request_queue *q)
890 {
891 unsigned long flags;
892
893 spin_lock_irqsave(q->queue_lock, flags);
894 __start_queue(q);
895 spin_unlock_irqrestore(q->queue_lock, flags);
896 }
897
898 static void dm_done(struct request *clone, int error, bool mapped)
899 {
900 int r = error;
901 struct dm_rq_target_io *tio = clone->end_io_data;
902 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
903
904 if (mapped && rq_end_io)
905 r = rq_end_io(tio->ti, clone, error, &tio->info);
906
907 if (r <= 0)
908 /* The target wants to complete the I/O */
909 dm_end_request(clone, r);
910 else if (r == DM_ENDIO_INCOMPLETE)
911 /* The target will handle the I/O */
912 return;
913 else if (r == DM_ENDIO_REQUEUE)
914 /* The target wants to requeue the I/O */
915 dm_requeue_unmapped_request(clone);
916 else {
917 DMWARN("unimplemented target endio return value: %d", r);
918 BUG();
919 }
920 }
921
922 /*
923 * Request completion handler for request-based dm
924 */
925 static void dm_softirq_done(struct request *rq)
926 {
927 bool mapped = true;
928 struct request *clone = rq->completion_data;
929 struct dm_rq_target_io *tio = clone->end_io_data;
930
931 if (rq->cmd_flags & REQ_FAILED)
932 mapped = false;
933
934 dm_done(clone, tio->error, mapped);
935 }
936
937 /*
938 * Complete the clone and the original request with the error status
939 * through softirq context.
940 */
941 static void dm_complete_request(struct request *clone, int error)
942 {
943 struct dm_rq_target_io *tio = clone->end_io_data;
944 struct request *rq = tio->orig;
945
946 if (unlikely(blk_barrier_rq(clone))) {
947 /*
948 * Barrier clones share an original request. So can't use
949 * softirq_done with the original.
950 * Pass the clone to dm_done() directly in this special case.
951 * It is safe (even if clone->q->queue_lock is held here)
952 * because there is no I/O dispatching during the completion
953 * of barrier clone.
954 */
955 dm_done(clone, error, true);
956 return;
957 }
958
959 tio->error = error;
960 rq->completion_data = clone;
961 blk_complete_request(rq);
962 }
963
964 /*
965 * Complete the not-mapped clone and the original request with the error status
966 * through softirq context.
967 * Target's rq_end_io() function isn't called.
968 * This may be used when the target's map_rq() function fails.
969 */
970 void dm_kill_unmapped_request(struct request *clone, int error)
971 {
972 struct dm_rq_target_io *tio = clone->end_io_data;
973 struct request *rq = tio->orig;
974
975 if (unlikely(blk_barrier_rq(clone))) {
976 /*
977 * Barrier clones share an original request.
978 * Leave it to dm_end_request(), which handles this special
979 * case.
980 */
981 BUG_ON(error > 0);
982 dm_end_request(clone, error);
983 return;
984 }
985
986 rq->cmd_flags |= REQ_FAILED;
987 dm_complete_request(clone, error);
988 }
989 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
990
991 /*
992 * Called with the queue lock held
993 */
994 static void end_clone_request(struct request *clone, int error)
995 {
996 /*
997 * For just cleaning up the information of the queue in which
998 * the clone was dispatched.
999 * The clone is *NOT* freed actually here because it is alloced from
1000 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1001 */
1002 __blk_put_request(clone->q, clone);
1003
1004 /*
1005 * Actual request completion is done in a softirq context which doesn't
1006 * hold the queue lock. Otherwise, deadlock could occur because:
1007 * - another request may be submitted by the upper level driver
1008 * of the stacking during the completion
1009 * - the submission which requires queue lock may be done
1010 * against this queue
1011 */
1012 dm_complete_request(clone, error);
1013 }
1014
1015 static sector_t max_io_len(struct mapped_device *md,
1016 sector_t sector, struct dm_target *ti)
1017 {
1018 sector_t offset = sector - ti->begin;
1019 sector_t len = ti->len - offset;
1020
1021 /*
1022 * Does the target need to split even further ?
1023 */
1024 if (ti->split_io) {
1025 sector_t boundary;
1026 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
1027 - offset;
1028 if (len > boundary)
1029 len = boundary;
1030 }
1031
1032 return len;
1033 }
1034
1035 static void __map_bio(struct dm_target *ti, struct bio *clone,
1036 struct dm_target_io *tio)
1037 {
1038 int r;
1039 sector_t sector;
1040 struct mapped_device *md;
1041
1042 clone->bi_end_io = clone_endio;
1043 clone->bi_private = tio;
1044
1045 /*
1046 * Map the clone. If r == 0 we don't need to do
1047 * anything, the target has assumed ownership of
1048 * this io.
1049 */
1050 atomic_inc(&tio->io->io_count);
1051 sector = clone->bi_sector;
1052 r = ti->type->map(ti, clone, &tio->info);
1053 if (r == DM_MAPIO_REMAPPED) {
1054 /* the bio has been remapped so dispatch it */
1055
1056 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
1057 tio->io->bio->bi_bdev->bd_dev, sector);
1058
1059 generic_make_request(clone);
1060 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1061 /* error the io and bail out, or requeue it if needed */
1062 md = tio->io->md;
1063 dec_pending(tio->io, r);
1064 /*
1065 * Store bio_set for cleanup.
1066 */
1067 clone->bi_private = md->bs;
1068 bio_put(clone);
1069 free_tio(md, tio);
1070 } else if (r) {
1071 DMWARN("unimplemented target map return value: %d", r);
1072 BUG();
1073 }
1074 }
1075
1076 struct clone_info {
1077 struct mapped_device *md;
1078 struct dm_table *map;
1079 struct bio *bio;
1080 struct dm_io *io;
1081 sector_t sector;
1082 sector_t sector_count;
1083 unsigned short idx;
1084 };
1085
1086 static void dm_bio_destructor(struct bio *bio)
1087 {
1088 struct bio_set *bs = bio->bi_private;
1089
1090 bio_free(bio, bs);
1091 }
1092
1093 /*
1094 * Creates a little bio that is just does part of a bvec.
1095 */
1096 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1097 unsigned short idx, unsigned int offset,
1098 unsigned int len, struct bio_set *bs)
1099 {
1100 struct bio *clone;
1101 struct bio_vec *bv = bio->bi_io_vec + idx;
1102
1103 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1104 clone->bi_destructor = dm_bio_destructor;
1105 *clone->bi_io_vec = *bv;
1106
1107 clone->bi_sector = sector;
1108 clone->bi_bdev = bio->bi_bdev;
1109 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1110 clone->bi_vcnt = 1;
1111 clone->bi_size = to_bytes(len);
1112 clone->bi_io_vec->bv_offset = offset;
1113 clone->bi_io_vec->bv_len = clone->bi_size;
1114 clone->bi_flags |= 1 << BIO_CLONED;
1115
1116 if (bio_integrity(bio)) {
1117 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1118 bio_integrity_trim(clone,
1119 bio_sector_offset(bio, idx, offset), len);
1120 }
1121
1122 return clone;
1123 }
1124
1125 /*
1126 * Creates a bio that consists of range of complete bvecs.
1127 */
1128 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1129 unsigned short idx, unsigned short bv_count,
1130 unsigned int len, struct bio_set *bs)
1131 {
1132 struct bio *clone;
1133
1134 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1135 __bio_clone(clone, bio);
1136 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
1137 clone->bi_destructor = dm_bio_destructor;
1138 clone->bi_sector = sector;
1139 clone->bi_idx = idx;
1140 clone->bi_vcnt = idx + bv_count;
1141 clone->bi_size = to_bytes(len);
1142 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1143
1144 if (bio_integrity(bio)) {
1145 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1146
1147 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1148 bio_integrity_trim(clone,
1149 bio_sector_offset(bio, idx, 0), len);
1150 }
1151
1152 return clone;
1153 }
1154
1155 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1156 struct dm_target *ti)
1157 {
1158 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1159
1160 tio->io = ci->io;
1161 tio->ti = ti;
1162 memset(&tio->info, 0, sizeof(tio->info));
1163
1164 return tio;
1165 }
1166
1167 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1168 unsigned flush_nr)
1169 {
1170 struct dm_target_io *tio = alloc_tio(ci, ti);
1171 struct bio *clone;
1172
1173 tio->info.flush_request = flush_nr;
1174
1175 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1176 __bio_clone(clone, ci->bio);
1177 clone->bi_destructor = dm_bio_destructor;
1178
1179 __map_bio(ti, clone, tio);
1180 }
1181
1182 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1183 {
1184 unsigned target_nr = 0, flush_nr;
1185 struct dm_target *ti;
1186
1187 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1188 for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1189 flush_nr++)
1190 __flush_target(ci, ti, flush_nr);
1191
1192 ci->sector_count = 0;
1193
1194 return 0;
1195 }
1196
1197 static int __clone_and_map(struct clone_info *ci)
1198 {
1199 struct bio *clone, *bio = ci->bio;
1200 struct dm_target *ti;
1201 sector_t len = 0, max;
1202 struct dm_target_io *tio;
1203
1204 if (unlikely(bio_empty_barrier(bio)))
1205 return __clone_and_map_empty_barrier(ci);
1206
1207 ti = dm_table_find_target(ci->map, ci->sector);
1208 if (!dm_target_is_valid(ti))
1209 return -EIO;
1210
1211 max = max_io_len(ci->md, ci->sector, ti);
1212
1213 /*
1214 * Allocate a target io object.
1215 */
1216 tio = alloc_tio(ci, ti);
1217
1218 if (ci->sector_count <= max) {
1219 /*
1220 * Optimise for the simple case where we can do all of
1221 * the remaining io with a single clone.
1222 */
1223 clone = clone_bio(bio, ci->sector, ci->idx,
1224 bio->bi_vcnt - ci->idx, ci->sector_count,
1225 ci->md->bs);
1226 __map_bio(ti, clone, tio);
1227 ci->sector_count = 0;
1228
1229 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1230 /*
1231 * There are some bvecs that don't span targets.
1232 * Do as many of these as possible.
1233 */
1234 int i;
1235 sector_t remaining = max;
1236 sector_t bv_len;
1237
1238 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1239 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1240
1241 if (bv_len > remaining)
1242 break;
1243
1244 remaining -= bv_len;
1245 len += bv_len;
1246 }
1247
1248 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1249 ci->md->bs);
1250 __map_bio(ti, clone, tio);
1251
1252 ci->sector += len;
1253 ci->sector_count -= len;
1254 ci->idx = i;
1255
1256 } else {
1257 /*
1258 * Handle a bvec that must be split between two or more targets.
1259 */
1260 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1261 sector_t remaining = to_sector(bv->bv_len);
1262 unsigned int offset = 0;
1263
1264 do {
1265 if (offset) {
1266 ti = dm_table_find_target(ci->map, ci->sector);
1267 if (!dm_target_is_valid(ti))
1268 return -EIO;
1269
1270 max = max_io_len(ci->md, ci->sector, ti);
1271
1272 tio = alloc_tio(ci, ti);
1273 }
1274
1275 len = min(remaining, max);
1276
1277 clone = split_bvec(bio, ci->sector, ci->idx,
1278 bv->bv_offset + offset, len,
1279 ci->md->bs);
1280
1281 __map_bio(ti, clone, tio);
1282
1283 ci->sector += len;
1284 ci->sector_count -= len;
1285 offset += to_bytes(len);
1286 } while (remaining -= len);
1287
1288 ci->idx++;
1289 }
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * Split the bio into several clones and submit it to targets.
1296 */
1297 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1298 {
1299 struct clone_info ci;
1300 int error = 0;
1301
1302 ci.map = dm_get_live_table(md);
1303 if (unlikely(!ci.map)) {
1304 if (!bio_rw_flagged(bio, BIO_RW_BARRIER))
1305 bio_io_error(bio);
1306 else
1307 if (!md->barrier_error)
1308 md->barrier_error = -EIO;
1309 return;
1310 }
1311
1312 ci.md = md;
1313 ci.bio = bio;
1314 ci.io = alloc_io(md);
1315 ci.io->error = 0;
1316 atomic_set(&ci.io->io_count, 1);
1317 ci.io->bio = bio;
1318 ci.io->md = md;
1319 spin_lock_init(&ci.io->endio_lock);
1320 ci.sector = bio->bi_sector;
1321 ci.sector_count = bio_sectors(bio);
1322 if (unlikely(bio_empty_barrier(bio)))
1323 ci.sector_count = 1;
1324 ci.idx = bio->bi_idx;
1325
1326 start_io_acct(ci.io);
1327 while (ci.sector_count && !error)
1328 error = __clone_and_map(&ci);
1329
1330 /* drop the extra reference count */
1331 dec_pending(ci.io, error);
1332 dm_table_put(ci.map);
1333 }
1334 /*-----------------------------------------------------------------
1335 * CRUD END
1336 *---------------------------------------------------------------*/
1337
1338 static int dm_merge_bvec(struct request_queue *q,
1339 struct bvec_merge_data *bvm,
1340 struct bio_vec *biovec)
1341 {
1342 struct mapped_device *md = q->queuedata;
1343 struct dm_table *map = dm_get_live_table(md);
1344 struct dm_target *ti;
1345 sector_t max_sectors;
1346 int max_size = 0;
1347
1348 if (unlikely(!map))
1349 goto out;
1350
1351 ti = dm_table_find_target(map, bvm->bi_sector);
1352 if (!dm_target_is_valid(ti))
1353 goto out_table;
1354
1355 /*
1356 * Find maximum amount of I/O that won't need splitting
1357 */
1358 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1359 (sector_t) BIO_MAX_SECTORS);
1360 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1361 if (max_size < 0)
1362 max_size = 0;
1363
1364 /*
1365 * merge_bvec_fn() returns number of bytes
1366 * it can accept at this offset
1367 * max is precomputed maximal io size
1368 */
1369 if (max_size && ti->type->merge)
1370 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1371 /*
1372 * If the target doesn't support merge method and some of the devices
1373 * provided their merge_bvec method (we know this by looking at
1374 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1375 * entries. So always set max_size to 0, and the code below allows
1376 * just one page.
1377 */
1378 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1379
1380 max_size = 0;
1381
1382 out_table:
1383 dm_table_put(map);
1384
1385 out:
1386 /*
1387 * Always allow an entire first page
1388 */
1389 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1390 max_size = biovec->bv_len;
1391
1392 return max_size;
1393 }
1394
1395 /*
1396 * The request function that just remaps the bio built up by
1397 * dm_merge_bvec.
1398 */
1399 static int _dm_request(struct request_queue *q, struct bio *bio)
1400 {
1401 int rw = bio_data_dir(bio);
1402 struct mapped_device *md = q->queuedata;
1403 int cpu;
1404
1405 down_read(&md->io_lock);
1406
1407 cpu = part_stat_lock();
1408 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1409 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1410 part_stat_unlock();
1411
1412 /*
1413 * If we're suspended or the thread is processing barriers
1414 * we have to queue this io for later.
1415 */
1416 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1417 unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1418 up_read(&md->io_lock);
1419
1420 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1421 bio_rw(bio) == READA) {
1422 bio_io_error(bio);
1423 return 0;
1424 }
1425
1426 queue_io(md, bio);
1427
1428 return 0;
1429 }
1430
1431 __split_and_process_bio(md, bio);
1432 up_read(&md->io_lock);
1433 return 0;
1434 }
1435
1436 static int dm_make_request(struct request_queue *q, struct bio *bio)
1437 {
1438 struct mapped_device *md = q->queuedata;
1439
1440 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1441 }
1442
1443 static int dm_request_based(struct mapped_device *md)
1444 {
1445 return blk_queue_stackable(md->queue);
1446 }
1447
1448 static int dm_request(struct request_queue *q, struct bio *bio)
1449 {
1450 struct mapped_device *md = q->queuedata;
1451
1452 if (dm_request_based(md))
1453 return dm_make_request(q, bio);
1454
1455 return _dm_request(q, bio);
1456 }
1457
1458 /*
1459 * Mark this request as flush request, so that dm_request_fn() can
1460 * recognize.
1461 */
1462 static void dm_rq_prepare_flush(struct request_queue *q, struct request *rq)
1463 {
1464 rq->cmd_type = REQ_TYPE_LINUX_BLOCK;
1465 rq->cmd[0] = REQ_LB_OP_FLUSH;
1466 }
1467
1468 static bool dm_rq_is_flush_request(struct request *rq)
1469 {
1470 if (rq->cmd_type == REQ_TYPE_LINUX_BLOCK &&
1471 rq->cmd[0] == REQ_LB_OP_FLUSH)
1472 return true;
1473 else
1474 return false;
1475 }
1476
1477 void dm_dispatch_request(struct request *rq)
1478 {
1479 int r;
1480
1481 if (blk_queue_io_stat(rq->q))
1482 rq->cmd_flags |= REQ_IO_STAT;
1483
1484 rq->start_time = jiffies;
1485 r = blk_insert_cloned_request(rq->q, rq);
1486 if (r)
1487 dm_complete_request(rq, r);
1488 }
1489 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1490
1491 static void dm_rq_bio_destructor(struct bio *bio)
1492 {
1493 struct dm_rq_clone_bio_info *info = bio->bi_private;
1494 struct mapped_device *md = info->tio->md;
1495
1496 free_bio_info(info);
1497 bio_free(bio, md->bs);
1498 }
1499
1500 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1501 void *data)
1502 {
1503 struct dm_rq_target_io *tio = data;
1504 struct mapped_device *md = tio->md;
1505 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1506
1507 if (!info)
1508 return -ENOMEM;
1509
1510 info->orig = bio_orig;
1511 info->tio = tio;
1512 bio->bi_end_io = end_clone_bio;
1513 bio->bi_private = info;
1514 bio->bi_destructor = dm_rq_bio_destructor;
1515
1516 return 0;
1517 }
1518
1519 static int setup_clone(struct request *clone, struct request *rq,
1520 struct dm_rq_target_io *tio)
1521 {
1522 int r;
1523
1524 if (dm_rq_is_flush_request(rq)) {
1525 blk_rq_init(NULL, clone);
1526 clone->cmd_type = REQ_TYPE_FS;
1527 clone->cmd_flags |= (REQ_HARDBARRIER | WRITE);
1528 } else {
1529 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1530 dm_rq_bio_constructor, tio);
1531 if (r)
1532 return r;
1533
1534 clone->cmd = rq->cmd;
1535 clone->cmd_len = rq->cmd_len;
1536 clone->sense = rq->sense;
1537 clone->buffer = rq->buffer;
1538 }
1539
1540 clone->end_io = end_clone_request;
1541 clone->end_io_data = tio;
1542
1543 return 0;
1544 }
1545
1546 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1547 gfp_t gfp_mask)
1548 {
1549 struct request *clone;
1550 struct dm_rq_target_io *tio;
1551
1552 tio = alloc_rq_tio(md, gfp_mask);
1553 if (!tio)
1554 return NULL;
1555
1556 tio->md = md;
1557 tio->ti = NULL;
1558 tio->orig = rq;
1559 tio->error = 0;
1560 memset(&tio->info, 0, sizeof(tio->info));
1561
1562 clone = &tio->clone;
1563 if (setup_clone(clone, rq, tio)) {
1564 /* -ENOMEM */
1565 free_rq_tio(tio);
1566 return NULL;
1567 }
1568
1569 return clone;
1570 }
1571
1572 /*
1573 * Called with the queue lock held.
1574 */
1575 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1576 {
1577 struct mapped_device *md = q->queuedata;
1578 struct request *clone;
1579
1580 if (unlikely(dm_rq_is_flush_request(rq)))
1581 return BLKPREP_OK;
1582
1583 if (unlikely(rq->special)) {
1584 DMWARN("Already has something in rq->special.");
1585 return BLKPREP_KILL;
1586 }
1587
1588 clone = clone_rq(rq, md, GFP_ATOMIC);
1589 if (!clone)
1590 return BLKPREP_DEFER;
1591
1592 rq->special = clone;
1593 rq->cmd_flags |= REQ_DONTPREP;
1594
1595 return BLKPREP_OK;
1596 }
1597
1598 static void map_request(struct dm_target *ti, struct request *clone,
1599 struct mapped_device *md)
1600 {
1601 int r;
1602 struct dm_rq_target_io *tio = clone->end_io_data;
1603
1604 /*
1605 * Hold the md reference here for the in-flight I/O.
1606 * We can't rely on the reference count by device opener,
1607 * because the device may be closed during the request completion
1608 * when all bios are completed.
1609 * See the comment in rq_completed() too.
1610 */
1611 dm_get(md);
1612
1613 tio->ti = ti;
1614 r = ti->type->map_rq(ti, clone, &tio->info);
1615 switch (r) {
1616 case DM_MAPIO_SUBMITTED:
1617 /* The target has taken the I/O to submit by itself later */
1618 break;
1619 case DM_MAPIO_REMAPPED:
1620 /* The target has remapped the I/O so dispatch it */
1621 dm_dispatch_request(clone);
1622 break;
1623 case DM_MAPIO_REQUEUE:
1624 /* The target wants to requeue the I/O */
1625 dm_requeue_unmapped_request(clone);
1626 break;
1627 default:
1628 if (r > 0) {
1629 DMWARN("unimplemented target map return value: %d", r);
1630 BUG();
1631 }
1632
1633 /* The target wants to complete the I/O */
1634 dm_kill_unmapped_request(clone, r);
1635 break;
1636 }
1637 }
1638
1639 /*
1640 * q->request_fn for request-based dm.
1641 * Called with the queue lock held.
1642 */
1643 static void dm_request_fn(struct request_queue *q)
1644 {
1645 struct mapped_device *md = q->queuedata;
1646 struct dm_table *map = dm_get_live_table(md);
1647 struct dm_target *ti;
1648 struct request *rq, *clone;
1649
1650 /*
1651 * For suspend, check blk_queue_stopped() and increment
1652 * ->pending within a single queue_lock not to increment the
1653 * number of in-flight I/Os after the queue is stopped in
1654 * dm_suspend().
1655 */
1656 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1657 rq = blk_peek_request(q);
1658 if (!rq)
1659 goto plug_and_out;
1660
1661 if (unlikely(dm_rq_is_flush_request(rq))) {
1662 BUG_ON(md->flush_request);
1663 md->flush_request = rq;
1664 blk_start_request(rq);
1665 queue_work(md->wq, &md->barrier_work);
1666 goto out;
1667 }
1668
1669 ti = dm_table_find_target(map, blk_rq_pos(rq));
1670 if (ti->type->busy && ti->type->busy(ti))
1671 goto plug_and_out;
1672
1673 blk_start_request(rq);
1674 clone = rq->special;
1675 atomic_inc(&md->pending[rq_data_dir(clone)]);
1676
1677 spin_unlock(q->queue_lock);
1678 map_request(ti, clone, md);
1679 spin_lock_irq(q->queue_lock);
1680 }
1681
1682 goto out;
1683
1684 plug_and_out:
1685 if (!elv_queue_empty(q))
1686 /* Some requests still remain, retry later */
1687 blk_plug_device(q);
1688
1689 out:
1690 dm_table_put(map);
1691
1692 return;
1693 }
1694
1695 int dm_underlying_device_busy(struct request_queue *q)
1696 {
1697 return blk_lld_busy(q);
1698 }
1699 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1700
1701 static int dm_lld_busy(struct request_queue *q)
1702 {
1703 int r;
1704 struct mapped_device *md = q->queuedata;
1705 struct dm_table *map = dm_get_live_table(md);
1706
1707 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1708 r = 1;
1709 else
1710 r = dm_table_any_busy_target(map);
1711
1712 dm_table_put(map);
1713
1714 return r;
1715 }
1716
1717 static void dm_unplug_all(struct request_queue *q)
1718 {
1719 struct mapped_device *md = q->queuedata;
1720 struct dm_table *map = dm_get_live_table(md);
1721
1722 if (map) {
1723 if (dm_request_based(md))
1724 generic_unplug_device(q);
1725
1726 dm_table_unplug_all(map);
1727 dm_table_put(map);
1728 }
1729 }
1730
1731 static int dm_any_congested(void *congested_data, int bdi_bits)
1732 {
1733 int r = bdi_bits;
1734 struct mapped_device *md = congested_data;
1735 struct dm_table *map;
1736
1737 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1738 map = dm_get_live_table(md);
1739 if (map) {
1740 /*
1741 * Request-based dm cares about only own queue for
1742 * the query about congestion status of request_queue
1743 */
1744 if (dm_request_based(md))
1745 r = md->queue->backing_dev_info.state &
1746 bdi_bits;
1747 else
1748 r = dm_table_any_congested(map, bdi_bits);
1749
1750 dm_table_put(map);
1751 }
1752 }
1753
1754 return r;
1755 }
1756
1757 /*-----------------------------------------------------------------
1758 * An IDR is used to keep track of allocated minor numbers.
1759 *---------------------------------------------------------------*/
1760 static DEFINE_IDR(_minor_idr);
1761
1762 static void free_minor(int minor)
1763 {
1764 spin_lock(&_minor_lock);
1765 idr_remove(&_minor_idr, minor);
1766 spin_unlock(&_minor_lock);
1767 }
1768
1769 /*
1770 * See if the device with a specific minor # is free.
1771 */
1772 static int specific_minor(int minor)
1773 {
1774 int r, m;
1775
1776 if (minor >= (1 << MINORBITS))
1777 return -EINVAL;
1778
1779 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1780 if (!r)
1781 return -ENOMEM;
1782
1783 spin_lock(&_minor_lock);
1784
1785 if (idr_find(&_minor_idr, minor)) {
1786 r = -EBUSY;
1787 goto out;
1788 }
1789
1790 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1791 if (r)
1792 goto out;
1793
1794 if (m != minor) {
1795 idr_remove(&_minor_idr, m);
1796 r = -EBUSY;
1797 goto out;
1798 }
1799
1800 out:
1801 spin_unlock(&_minor_lock);
1802 return r;
1803 }
1804
1805 static int next_free_minor(int *minor)
1806 {
1807 int r, m;
1808
1809 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1810 if (!r)
1811 return -ENOMEM;
1812
1813 spin_lock(&_minor_lock);
1814
1815 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1816 if (r)
1817 goto out;
1818
1819 if (m >= (1 << MINORBITS)) {
1820 idr_remove(&_minor_idr, m);
1821 r = -ENOSPC;
1822 goto out;
1823 }
1824
1825 *minor = m;
1826
1827 out:
1828 spin_unlock(&_minor_lock);
1829 return r;
1830 }
1831
1832 static const struct block_device_operations dm_blk_dops;
1833
1834 static void dm_wq_work(struct work_struct *work);
1835 static void dm_rq_barrier_work(struct work_struct *work);
1836
1837 /*
1838 * Allocate and initialise a blank device with a given minor.
1839 */
1840 static struct mapped_device *alloc_dev(int minor)
1841 {
1842 int r;
1843 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1844 void *old_md;
1845
1846 if (!md) {
1847 DMWARN("unable to allocate device, out of memory.");
1848 return NULL;
1849 }
1850
1851 if (!try_module_get(THIS_MODULE))
1852 goto bad_module_get;
1853
1854 /* get a minor number for the dev */
1855 if (minor == DM_ANY_MINOR)
1856 r = next_free_minor(&minor);
1857 else
1858 r = specific_minor(minor);
1859 if (r < 0)
1860 goto bad_minor;
1861
1862 init_rwsem(&md->io_lock);
1863 mutex_init(&md->suspend_lock);
1864 spin_lock_init(&md->deferred_lock);
1865 spin_lock_init(&md->barrier_error_lock);
1866 rwlock_init(&md->map_lock);
1867 atomic_set(&md->holders, 1);
1868 atomic_set(&md->open_count, 0);
1869 atomic_set(&md->event_nr, 0);
1870 atomic_set(&md->uevent_seq, 0);
1871 INIT_LIST_HEAD(&md->uevent_list);
1872 spin_lock_init(&md->uevent_lock);
1873
1874 md->queue = blk_init_queue(dm_request_fn, NULL);
1875 if (!md->queue)
1876 goto bad_queue;
1877
1878 /*
1879 * Request-based dm devices cannot be stacked on top of bio-based dm
1880 * devices. The type of this dm device has not been decided yet,
1881 * although we initialized the queue using blk_init_queue().
1882 * The type is decided at the first table loading time.
1883 * To prevent problematic device stacking, clear the queue flag
1884 * for request stacking support until then.
1885 *
1886 * This queue is new, so no concurrency on the queue_flags.
1887 */
1888 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1889 md->saved_make_request_fn = md->queue->make_request_fn;
1890 md->queue->queuedata = md;
1891 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1892 md->queue->backing_dev_info.congested_data = md;
1893 blk_queue_make_request(md->queue, dm_request);
1894 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1895 md->queue->unplug_fn = dm_unplug_all;
1896 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1897 blk_queue_softirq_done(md->queue, dm_softirq_done);
1898 blk_queue_prep_rq(md->queue, dm_prep_fn);
1899 blk_queue_lld_busy(md->queue, dm_lld_busy);
1900 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN_FLUSH,
1901 dm_rq_prepare_flush);
1902
1903 md->disk = alloc_disk(1);
1904 if (!md->disk)
1905 goto bad_disk;
1906
1907 atomic_set(&md->pending[0], 0);
1908 atomic_set(&md->pending[1], 0);
1909 init_waitqueue_head(&md->wait);
1910 INIT_WORK(&md->work, dm_wq_work);
1911 INIT_WORK(&md->barrier_work, dm_rq_barrier_work);
1912 init_waitqueue_head(&md->eventq);
1913
1914 md->disk->major = _major;
1915 md->disk->first_minor = minor;
1916 md->disk->fops = &dm_blk_dops;
1917 md->disk->queue = md->queue;
1918 md->disk->private_data = md;
1919 sprintf(md->disk->disk_name, "dm-%d", minor);
1920 add_disk(md->disk);
1921 format_dev_t(md->name, MKDEV(_major, minor));
1922
1923 md->wq = create_singlethread_workqueue("kdmflush");
1924 if (!md->wq)
1925 goto bad_thread;
1926
1927 md->bdev = bdget_disk(md->disk, 0);
1928 if (!md->bdev)
1929 goto bad_bdev;
1930
1931 /* Populate the mapping, nobody knows we exist yet */
1932 spin_lock(&_minor_lock);
1933 old_md = idr_replace(&_minor_idr, md, minor);
1934 spin_unlock(&_minor_lock);
1935
1936 BUG_ON(old_md != MINOR_ALLOCED);
1937
1938 return md;
1939
1940 bad_bdev:
1941 destroy_workqueue(md->wq);
1942 bad_thread:
1943 del_gendisk(md->disk);
1944 put_disk(md->disk);
1945 bad_disk:
1946 blk_cleanup_queue(md->queue);
1947 bad_queue:
1948 free_minor(minor);
1949 bad_minor:
1950 module_put(THIS_MODULE);
1951 bad_module_get:
1952 kfree(md);
1953 return NULL;
1954 }
1955
1956 static void unlock_fs(struct mapped_device *md);
1957
1958 static void free_dev(struct mapped_device *md)
1959 {
1960 int minor = MINOR(disk_devt(md->disk));
1961
1962 unlock_fs(md);
1963 bdput(md->bdev);
1964 destroy_workqueue(md->wq);
1965 if (md->tio_pool)
1966 mempool_destroy(md->tio_pool);
1967 if (md->io_pool)
1968 mempool_destroy(md->io_pool);
1969 if (md->bs)
1970 bioset_free(md->bs);
1971 blk_integrity_unregister(md->disk);
1972 del_gendisk(md->disk);
1973 free_minor(minor);
1974
1975 spin_lock(&_minor_lock);
1976 md->disk->private_data = NULL;
1977 spin_unlock(&_minor_lock);
1978
1979 put_disk(md->disk);
1980 blk_cleanup_queue(md->queue);
1981 module_put(THIS_MODULE);
1982 kfree(md);
1983 }
1984
1985 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1986 {
1987 struct dm_md_mempools *p;
1988
1989 if (md->io_pool && md->tio_pool && md->bs)
1990 /* the md already has necessary mempools */
1991 goto out;
1992
1993 p = dm_table_get_md_mempools(t);
1994 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1995
1996 md->io_pool = p->io_pool;
1997 p->io_pool = NULL;
1998 md->tio_pool = p->tio_pool;
1999 p->tio_pool = NULL;
2000 md->bs = p->bs;
2001 p->bs = NULL;
2002
2003 out:
2004 /* mempool bind completed, now no need any mempools in the table */
2005 dm_table_free_md_mempools(t);
2006 }
2007
2008 /*
2009 * Bind a table to the device.
2010 */
2011 static void event_callback(void *context)
2012 {
2013 unsigned long flags;
2014 LIST_HEAD(uevents);
2015 struct mapped_device *md = (struct mapped_device *) context;
2016
2017 spin_lock_irqsave(&md->uevent_lock, flags);
2018 list_splice_init(&md->uevent_list, &uevents);
2019 spin_unlock_irqrestore(&md->uevent_lock, flags);
2020
2021 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2022
2023 atomic_inc(&md->event_nr);
2024 wake_up(&md->eventq);
2025 }
2026
2027 static void __set_size(struct mapped_device *md, sector_t size)
2028 {
2029 set_capacity(md->disk, size);
2030
2031 mutex_lock(&md->bdev->bd_inode->i_mutex);
2032 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2033 mutex_unlock(&md->bdev->bd_inode->i_mutex);
2034 }
2035
2036 /*
2037 * Returns old map, which caller must destroy.
2038 */
2039 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2040 struct queue_limits *limits)
2041 {
2042 struct dm_table *old_map;
2043 struct request_queue *q = md->queue;
2044 sector_t size;
2045 unsigned long flags;
2046
2047 size = dm_table_get_size(t);
2048
2049 /*
2050 * Wipe any geometry if the size of the table changed.
2051 */
2052 if (size != get_capacity(md->disk))
2053 memset(&md->geometry, 0, sizeof(md->geometry));
2054
2055 __set_size(md, size);
2056
2057 dm_table_event_callback(t, event_callback, md);
2058
2059 /*
2060 * The queue hasn't been stopped yet, if the old table type wasn't
2061 * for request-based during suspension. So stop it to prevent
2062 * I/O mapping before resume.
2063 * This must be done before setting the queue restrictions,
2064 * because request-based dm may be run just after the setting.
2065 */
2066 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2067 stop_queue(q);
2068
2069 __bind_mempools(md, t);
2070
2071 write_lock_irqsave(&md->map_lock, flags);
2072 old_map = md->map;
2073 md->map = t;
2074 dm_table_set_restrictions(t, q, limits);
2075 write_unlock_irqrestore(&md->map_lock, flags);
2076
2077 return old_map;
2078 }
2079
2080 /*
2081 * Returns unbound table for the caller to free.
2082 */
2083 static struct dm_table *__unbind(struct mapped_device *md)
2084 {
2085 struct dm_table *map = md->map;
2086 unsigned long flags;
2087
2088 if (!map)
2089 return NULL;
2090
2091 dm_table_event_callback(map, NULL, NULL);
2092 write_lock_irqsave(&md->map_lock, flags);
2093 md->map = NULL;
2094 write_unlock_irqrestore(&md->map_lock, flags);
2095
2096 return map;
2097 }
2098
2099 /*
2100 * Constructor for a new device.
2101 */
2102 int dm_create(int minor, struct mapped_device **result)
2103 {
2104 struct mapped_device *md;
2105
2106 md = alloc_dev(minor);
2107 if (!md)
2108 return -ENXIO;
2109
2110 dm_sysfs_init(md);
2111
2112 *result = md;
2113 return 0;
2114 }
2115
2116 static struct mapped_device *dm_find_md(dev_t dev)
2117 {
2118 struct mapped_device *md;
2119 unsigned minor = MINOR(dev);
2120
2121 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2122 return NULL;
2123
2124 spin_lock(&_minor_lock);
2125
2126 md = idr_find(&_minor_idr, minor);
2127 if (md && (md == MINOR_ALLOCED ||
2128 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2129 test_bit(DMF_FREEING, &md->flags))) {
2130 md = NULL;
2131 goto out;
2132 }
2133
2134 out:
2135 spin_unlock(&_minor_lock);
2136
2137 return md;
2138 }
2139
2140 struct mapped_device *dm_get_md(dev_t dev)
2141 {
2142 struct mapped_device *md = dm_find_md(dev);
2143
2144 if (md)
2145 dm_get(md);
2146
2147 return md;
2148 }
2149
2150 void *dm_get_mdptr(struct mapped_device *md)
2151 {
2152 return md->interface_ptr;
2153 }
2154
2155 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2156 {
2157 md->interface_ptr = ptr;
2158 }
2159
2160 void dm_get(struct mapped_device *md)
2161 {
2162 atomic_inc(&md->holders);
2163 }
2164
2165 const char *dm_device_name(struct mapped_device *md)
2166 {
2167 return md->name;
2168 }
2169 EXPORT_SYMBOL_GPL(dm_device_name);
2170
2171 void dm_put(struct mapped_device *md)
2172 {
2173 struct dm_table *map;
2174
2175 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2176
2177 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
2178 map = dm_get_live_table(md);
2179 idr_replace(&_minor_idr, MINOR_ALLOCED,
2180 MINOR(disk_devt(dm_disk(md))));
2181 set_bit(DMF_FREEING, &md->flags);
2182 spin_unlock(&_minor_lock);
2183 if (!dm_suspended(md)) {
2184 dm_table_presuspend_targets(map);
2185 dm_table_postsuspend_targets(map);
2186 }
2187 dm_sysfs_exit(md);
2188 dm_table_put(map);
2189 dm_table_destroy(__unbind(md));
2190 free_dev(md);
2191 }
2192 }
2193 EXPORT_SYMBOL_GPL(dm_put);
2194
2195 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2196 {
2197 int r = 0;
2198 DECLARE_WAITQUEUE(wait, current);
2199
2200 dm_unplug_all(md->queue);
2201
2202 add_wait_queue(&md->wait, &wait);
2203
2204 while (1) {
2205 set_current_state(interruptible);
2206
2207 smp_mb();
2208 if (!md_in_flight(md))
2209 break;
2210
2211 if (interruptible == TASK_INTERRUPTIBLE &&
2212 signal_pending(current)) {
2213 r = -EINTR;
2214 break;
2215 }
2216
2217 io_schedule();
2218 }
2219 set_current_state(TASK_RUNNING);
2220
2221 remove_wait_queue(&md->wait, &wait);
2222
2223 return r;
2224 }
2225
2226 static void dm_flush(struct mapped_device *md)
2227 {
2228 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2229
2230 bio_init(&md->barrier_bio);
2231 md->barrier_bio.bi_bdev = md->bdev;
2232 md->barrier_bio.bi_rw = WRITE_BARRIER;
2233 __split_and_process_bio(md, &md->barrier_bio);
2234
2235 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2236 }
2237
2238 static void process_barrier(struct mapped_device *md, struct bio *bio)
2239 {
2240 md->barrier_error = 0;
2241
2242 dm_flush(md);
2243
2244 if (!bio_empty_barrier(bio)) {
2245 __split_and_process_bio(md, bio);
2246 dm_flush(md);
2247 }
2248
2249 if (md->barrier_error != DM_ENDIO_REQUEUE)
2250 bio_endio(bio, md->barrier_error);
2251 else {
2252 spin_lock_irq(&md->deferred_lock);
2253 bio_list_add_head(&md->deferred, bio);
2254 spin_unlock_irq(&md->deferred_lock);
2255 }
2256 }
2257
2258 /*
2259 * Process the deferred bios
2260 */
2261 static void dm_wq_work(struct work_struct *work)
2262 {
2263 struct mapped_device *md = container_of(work, struct mapped_device,
2264 work);
2265 struct bio *c;
2266
2267 down_write(&md->io_lock);
2268
2269 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2270 spin_lock_irq(&md->deferred_lock);
2271 c = bio_list_pop(&md->deferred);
2272 spin_unlock_irq(&md->deferred_lock);
2273
2274 if (!c) {
2275 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2276 break;
2277 }
2278
2279 up_write(&md->io_lock);
2280
2281 if (dm_request_based(md))
2282 generic_make_request(c);
2283 else {
2284 if (bio_rw_flagged(c, BIO_RW_BARRIER))
2285 process_barrier(md, c);
2286 else
2287 __split_and_process_bio(md, c);
2288 }
2289
2290 down_write(&md->io_lock);
2291 }
2292
2293 up_write(&md->io_lock);
2294 }
2295
2296 static void dm_queue_flush(struct mapped_device *md)
2297 {
2298 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2299 smp_mb__after_clear_bit();
2300 queue_work(md->wq, &md->work);
2301 }
2302
2303 static void dm_rq_set_flush_nr(struct request *clone, unsigned flush_nr)
2304 {
2305 struct dm_rq_target_io *tio = clone->end_io_data;
2306
2307 tio->info.flush_request = flush_nr;
2308 }
2309
2310 /* Issue barrier requests to targets and wait for their completion. */
2311 static int dm_rq_barrier(struct mapped_device *md)
2312 {
2313 int i, j;
2314 struct dm_table *map = dm_get_live_table(md);
2315 unsigned num_targets = dm_table_get_num_targets(map);
2316 struct dm_target *ti;
2317 struct request *clone;
2318
2319 md->barrier_error = 0;
2320
2321 for (i = 0; i < num_targets; i++) {
2322 ti = dm_table_get_target(map, i);
2323 for (j = 0; j < ti->num_flush_requests; j++) {
2324 clone = clone_rq(md->flush_request, md, GFP_NOIO);
2325 dm_rq_set_flush_nr(clone, j);
2326 atomic_inc(&md->pending[rq_data_dir(clone)]);
2327 map_request(ti, clone, md);
2328 }
2329 }
2330
2331 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2332 dm_table_put(map);
2333
2334 return md->barrier_error;
2335 }
2336
2337 static void dm_rq_barrier_work(struct work_struct *work)
2338 {
2339 int error;
2340 struct mapped_device *md = container_of(work, struct mapped_device,
2341 barrier_work);
2342 struct request_queue *q = md->queue;
2343 struct request *rq;
2344 unsigned long flags;
2345
2346 /*
2347 * Hold the md reference here and leave it at the last part so that
2348 * the md can't be deleted by device opener when the barrier request
2349 * completes.
2350 */
2351 dm_get(md);
2352
2353 error = dm_rq_barrier(md);
2354
2355 rq = md->flush_request;
2356 md->flush_request = NULL;
2357
2358 if (error == DM_ENDIO_REQUEUE) {
2359 spin_lock_irqsave(q->queue_lock, flags);
2360 blk_requeue_request(q, rq);
2361 spin_unlock_irqrestore(q->queue_lock, flags);
2362 } else
2363 blk_end_request_all(rq, error);
2364
2365 blk_run_queue(q);
2366
2367 dm_put(md);
2368 }
2369
2370 /*
2371 * Swap in a new table, returning the old one for the caller to destroy.
2372 */
2373 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2374 {
2375 struct dm_table *map = ERR_PTR(-EINVAL);
2376 struct queue_limits limits;
2377 int r;
2378
2379 mutex_lock(&md->suspend_lock);
2380
2381 /* device must be suspended */
2382 if (!dm_suspended(md))
2383 goto out;
2384
2385 r = dm_calculate_queue_limits(table, &limits);
2386 if (r) {
2387 map = ERR_PTR(r);
2388 goto out;
2389 }
2390
2391 /* cannot change the device type, once a table is bound */
2392 if (md->map &&
2393 (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2394 DMWARN("can't change the device type after a table is bound");
2395 goto out;
2396 }
2397
2398 map = __bind(md, table, &limits);
2399
2400 out:
2401 mutex_unlock(&md->suspend_lock);
2402 return map;
2403 }
2404
2405 /*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409 static int lock_fs(struct mapped_device *md)
2410 {
2411 int r;
2412
2413 WARN_ON(md->frozen_sb);
2414
2415 md->frozen_sb = freeze_bdev(md->bdev);
2416 if (IS_ERR(md->frozen_sb)) {
2417 r = PTR_ERR(md->frozen_sb);
2418 md->frozen_sb = NULL;
2419 return r;
2420 }
2421
2422 set_bit(DMF_FROZEN, &md->flags);
2423
2424 return 0;
2425 }
2426
2427 static void unlock_fs(struct mapped_device *md)
2428 {
2429 if (!test_bit(DMF_FROZEN, &md->flags))
2430 return;
2431
2432 thaw_bdev(md->bdev, md->frozen_sb);
2433 md->frozen_sb = NULL;
2434 clear_bit(DMF_FROZEN, &md->flags);
2435 }
2436
2437 /*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem. For example we might want to move some data in
2440 * the background. Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444 /*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454 {
2455 struct dm_table *map = NULL;
2456 int r = 0;
2457 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460 mutex_lock(&md->suspend_lock);
2461
2462 if (dm_suspended(md)) {
2463 r = -EINVAL;
2464 goto out_unlock;
2465 }
2466
2467 map = dm_get_live_table(md);
2468
2469 /*
2470 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 * This flag is cleared before dm_suspend returns.
2472 */
2473 if (noflush)
2474 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475
2476 /* This does not get reverted if there's an error later. */
2477 dm_table_presuspend_targets(map);
2478
2479 /*
2480 * Flush I/O to the device.
2481 * Any I/O submitted after lock_fs() may not be flushed.
2482 * noflush takes precedence over do_lockfs.
2483 * (lock_fs() flushes I/Os and waits for them to complete.)
2484 */
2485 if (!noflush && do_lockfs) {
2486 r = lock_fs(md);
2487 if (r)
2488 goto out;
2489 }
2490
2491 /*
2492 * Here we must make sure that no processes are submitting requests
2493 * to target drivers i.e. no one may be executing
2494 * __split_and_process_bio. This is called from dm_request and
2495 * dm_wq_work.
2496 *
2497 * To get all processes out of __split_and_process_bio in dm_request,
2498 * we take the write lock. To prevent any process from reentering
2499 * __split_and_process_bio from dm_request, we set
2500 * DMF_QUEUE_IO_TO_THREAD.
2501 *
2502 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2503 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2504 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2505 * further calls to __split_and_process_bio from dm_wq_work.
2506 */
2507 down_write(&md->io_lock);
2508 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2509 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2510 up_write(&md->io_lock);
2511
2512 /*
2513 * Request-based dm uses md->wq for barrier (dm_rq_barrier_work) which
2514 * can be kicked until md->queue is stopped. So stop md->queue before
2515 * flushing md->wq.
2516 */
2517 if (dm_request_based(md))
2518 stop_queue(md->queue);
2519
2520 flush_workqueue(md->wq);
2521
2522 /*
2523 * At this point no more requests are entering target request routines.
2524 * We call dm_wait_for_completion to wait for all existing requests
2525 * to finish.
2526 */
2527 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2528
2529 down_write(&md->io_lock);
2530 if (noflush)
2531 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2532 up_write(&md->io_lock);
2533
2534 /* were we interrupted ? */
2535 if (r < 0) {
2536 dm_queue_flush(md);
2537
2538 if (dm_request_based(md))
2539 start_queue(md->queue);
2540
2541 unlock_fs(md);
2542 goto out; /* pushback list is already flushed, so skip flush */
2543 }
2544
2545 /*
2546 * If dm_wait_for_completion returned 0, the device is completely
2547 * quiescent now. There is no request-processing activity. All new
2548 * requests are being added to md->deferred list.
2549 */
2550
2551 dm_table_postsuspend_targets(map);
2552
2553 set_bit(DMF_SUSPENDED, &md->flags);
2554
2555 out:
2556 dm_table_put(map);
2557
2558 out_unlock:
2559 mutex_unlock(&md->suspend_lock);
2560 return r;
2561 }
2562
2563 int dm_resume(struct mapped_device *md)
2564 {
2565 int r = -EINVAL;
2566 struct dm_table *map = NULL;
2567
2568 mutex_lock(&md->suspend_lock);
2569 if (!dm_suspended(md))
2570 goto out;
2571
2572 map = dm_get_live_table(md);
2573 if (!map || !dm_table_get_size(map))
2574 goto out;
2575
2576 r = dm_table_resume_targets(map);
2577 if (r)
2578 goto out;
2579
2580 dm_queue_flush(md);
2581
2582 /*
2583 * Flushing deferred I/Os must be done after targets are resumed
2584 * so that mapping of targets can work correctly.
2585 * Request-based dm is queueing the deferred I/Os in its request_queue.
2586 */
2587 if (dm_request_based(md))
2588 start_queue(md->queue);
2589
2590 unlock_fs(md);
2591
2592 clear_bit(DMF_SUSPENDED, &md->flags);
2593
2594 dm_table_unplug_all(map);
2595 r = 0;
2596 out:
2597 dm_table_put(map);
2598 mutex_unlock(&md->suspend_lock);
2599
2600 return r;
2601 }
2602
2603 /*-----------------------------------------------------------------
2604 * Event notification.
2605 *---------------------------------------------------------------*/
2606 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2607 unsigned cookie)
2608 {
2609 char udev_cookie[DM_COOKIE_LENGTH];
2610 char *envp[] = { udev_cookie, NULL };
2611
2612 if (!cookie)
2613 kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2614 else {
2615 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2616 DM_COOKIE_ENV_VAR_NAME, cookie);
2617 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2618 }
2619 }
2620
2621 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2622 {
2623 return atomic_add_return(1, &md->uevent_seq);
2624 }
2625
2626 uint32_t dm_get_event_nr(struct mapped_device *md)
2627 {
2628 return atomic_read(&md->event_nr);
2629 }
2630
2631 int dm_wait_event(struct mapped_device *md, int event_nr)
2632 {
2633 return wait_event_interruptible(md->eventq,
2634 (event_nr != atomic_read(&md->event_nr)));
2635 }
2636
2637 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2638 {
2639 unsigned long flags;
2640
2641 spin_lock_irqsave(&md->uevent_lock, flags);
2642 list_add(elist, &md->uevent_list);
2643 spin_unlock_irqrestore(&md->uevent_lock, flags);
2644 }
2645
2646 /*
2647 * The gendisk is only valid as long as you have a reference
2648 * count on 'md'.
2649 */
2650 struct gendisk *dm_disk(struct mapped_device *md)
2651 {
2652 return md->disk;
2653 }
2654
2655 struct kobject *dm_kobject(struct mapped_device *md)
2656 {
2657 return &md->kobj;
2658 }
2659
2660 /*
2661 * struct mapped_device should not be exported outside of dm.c
2662 * so use this check to verify that kobj is part of md structure
2663 */
2664 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2665 {
2666 struct mapped_device *md;
2667
2668 md = container_of(kobj, struct mapped_device, kobj);
2669 if (&md->kobj != kobj)
2670 return NULL;
2671
2672 if (test_bit(DMF_FREEING, &md->flags) ||
2673 dm_deleting_md(md))
2674 return NULL;
2675
2676 dm_get(md);
2677 return md;
2678 }
2679
2680 int dm_suspended(struct mapped_device *md)
2681 {
2682 return test_bit(DMF_SUSPENDED, &md->flags);
2683 }
2684
2685 int dm_noflush_suspending(struct dm_target *ti)
2686 {
2687 struct mapped_device *md = dm_table_get_md(ti->table);
2688 int r = __noflush_suspending(md);
2689
2690 dm_put(md);
2691
2692 return r;
2693 }
2694 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2695
2696 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2697 {
2698 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2699
2700 if (!pools)
2701 return NULL;
2702
2703 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2704 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2705 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2706 if (!pools->io_pool)
2707 goto free_pools_and_out;
2708
2709 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2710 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2711 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2712 if (!pools->tio_pool)
2713 goto free_io_pool_and_out;
2714
2715 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2716 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2717 if (!pools->bs)
2718 goto free_tio_pool_and_out;
2719
2720 return pools;
2721
2722 free_tio_pool_and_out:
2723 mempool_destroy(pools->tio_pool);
2724
2725 free_io_pool_and_out:
2726 mempool_destroy(pools->io_pool);
2727
2728 free_pools_and_out:
2729 kfree(pools);
2730
2731 return NULL;
2732 }
2733
2734 void dm_free_md_mempools(struct dm_md_mempools *pools)
2735 {
2736 if (!pools)
2737 return;
2738
2739 if (pools->io_pool)
2740 mempool_destroy(pools->io_pool);
2741
2742 if (pools->tio_pool)
2743 mempool_destroy(pools->tio_pool);
2744
2745 if (pools->bs)
2746 bioset_free(pools->bs);
2747
2748 kfree(pools);
2749 }
2750
2751 static const struct block_device_operations dm_blk_dops = {
2752 .open = dm_blk_open,
2753 .release = dm_blk_close,
2754 .ioctl = dm_blk_ioctl,
2755 .getgeo = dm_blk_getgeo,
2756 .owner = THIS_MODULE
2757 };
2758
2759 EXPORT_SYMBOL(dm_get_mapinfo);
2760
2761 /*
2762 * module hooks
2763 */
2764 module_init(dm_init);
2765 module_exit(dm_exit);
2766
2767 module_param(major, uint, 0);
2768 MODULE_PARM_DESC(major, "The major number of the device mapper");
2769 MODULE_DESCRIPTION(DM_NAME " driver");
2770 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2771 MODULE_LICENSE("GPL");
This page took 0.100331 seconds and 5 git commands to generate.