Merge branch 'stable-4.5' of git://git.infradead.org/users/pcmoore/selinux into for...
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28
29 #include <trace/events/block.h>
30
31 #define DM_MSG_PREFIX "core"
32
33 #ifdef CONFIG_PRINTK
34 /*
35 * ratelimit state to be used in DMXXX_LIMIT().
36 */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 DEFAULT_RATELIMIT_INTERVAL,
39 DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42
43 /*
44 * Cookies are numeric values sent with CHANGE and REMOVE
45 * uevents while resuming, removing or renaming the device.
46 */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per bio.
68 */
69 struct dm_io {
70 struct mapped_device *md;
71 int error;
72 atomic_t io_count;
73 struct bio *bio;
74 unsigned long start_time;
75 spinlock_t endio_lock;
76 struct dm_stats_aux stats_aux;
77 };
78
79 /*
80 * For request-based dm.
81 * One of these is allocated per request.
82 */
83 struct dm_rq_target_io {
84 struct mapped_device *md;
85 struct dm_target *ti;
86 struct request *orig, *clone;
87 struct kthread_work work;
88 int error;
89 union map_info info;
90 struct dm_stats_aux stats_aux;
91 unsigned long duration_jiffies;
92 unsigned n_sectors;
93 };
94
95 /*
96 * For request-based dm - the bio clones we allocate are embedded in these
97 * structs.
98 *
99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100 * the bioset is created - this means the bio has to come at the end of the
101 * struct.
102 */
103 struct dm_rq_clone_bio_info {
104 struct bio *orig;
105 struct dm_rq_target_io *tio;
106 struct bio clone;
107 };
108
109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 if (rq && rq->end_io_data)
112 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116
117 #define MINOR_ALLOCED ((void *)-1)
118
119 /*
120 * Bits for the md->flags field.
121 */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
130
131 /*
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
134 */
135 struct dm_table {
136 int undefined__;
137 };
138
139 /*
140 * Work processed by per-device workqueue.
141 */
142 struct mapped_device {
143 struct srcu_struct io_barrier;
144 struct mutex suspend_lock;
145 atomic_t holders;
146 atomic_t open_count;
147
148 /*
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
151 * dereference.
152 */
153 struct dm_table __rcu *map;
154
155 struct list_head table_devices;
156 struct mutex table_devices_lock;
157
158 unsigned long flags;
159
160 struct request_queue *queue;
161 unsigned type;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock;
164
165 struct target_type *immutable_target_type;
166
167 struct gendisk *disk;
168 char name[16];
169
170 void *interface_ptr;
171
172 /*
173 * A list of ios that arrived while we were suspended.
174 */
175 atomic_t pending[2];
176 wait_queue_head_t wait;
177 struct work_struct work;
178 struct bio_list deferred;
179 spinlock_t deferred_lock;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * Event handling.
196 */
197 atomic_t event_nr;
198 wait_queue_head_t eventq;
199 atomic_t uevent_seq;
200 struct list_head uevent_list;
201 spinlock_t uevent_lock; /* Protect access to uevent_list */
202
203 /*
204 * freeze/thaw support require holding onto a super block
205 */
206 struct super_block *frozen_sb;
207 struct block_device *bdev;
208
209 /* forced geometry settings */
210 struct hd_geometry geometry;
211
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder;
214
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio;
217
218 /* the number of internal suspends */
219 unsigned internal_suspend_count;
220
221 struct dm_stats stats;
222
223 struct kthread_worker kworker;
224 struct task_struct *kworker_task;
225
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs;
228 int last_rq_rw;
229 sector_t last_rq_pos;
230 ktime_t last_rq_start_time;
231
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set;
234 bool use_blk_mq;
235 };
236
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 return md->use_blk_mq;
246 }
247
248 /*
249 * For mempools pre-allocation at the table loading time.
250 */
251 struct dm_md_mempools {
252 mempool_t *io_pool;
253 mempool_t *rq_pool;
254 struct bio_set *bs;
255 };
256
257 struct table_device {
258 struct list_head list;
259 atomic_t count;
260 struct dm_dev dm_dev;
261 };
262
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269
270 /*
271 * Bio-based DM's mempools' reserved IOs set by the user.
272 */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274
275 /*
276 * Request-based DM's mempools' reserved IOs set by the user.
277 */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 unsigned def, unsigned max)
282 {
283 unsigned param = ACCESS_ONCE(*module_param);
284 unsigned modified_param = 0;
285
286 if (!param)
287 modified_param = def;
288 else if (param > max)
289 modified_param = max;
290
291 if (modified_param) {
292 (void)cmpxchg(module_param, param, modified_param);
293 param = modified_param;
294 }
295
296 return param;
297 }
298
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 return __dm_get_module_param(&reserved_bio_based_ios,
302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 return __dm_get_module_param(&reserved_rq_based_ios,
309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312
313 static int __init local_init(void)
314 {
315 int r = -ENOMEM;
316
317 /* allocate a slab for the dm_ios */
318 _io_cache = KMEM_CACHE(dm_io, 0);
319 if (!_io_cache)
320 return r;
321
322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 if (!_rq_tio_cache)
324 goto out_free_io_cache;
325
326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 __alignof__(struct request), 0, NULL);
328 if (!_rq_cache)
329 goto out_free_rq_tio_cache;
330
331 r = dm_uevent_init();
332 if (r)
333 goto out_free_rq_cache;
334
335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 if (!deferred_remove_workqueue) {
337 r = -ENOMEM;
338 goto out_uevent_exit;
339 }
340
341 _major = major;
342 r = register_blkdev(_major, _name);
343 if (r < 0)
344 goto out_free_workqueue;
345
346 if (!_major)
347 _major = r;
348
349 return 0;
350
351 out_free_workqueue:
352 destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 dm_uevent_exit();
355 out_free_rq_cache:
356 kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 kmem_cache_destroy(_io_cache);
361
362 return r;
363 }
364
365 static void local_exit(void)
366 {
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue);
369
370 kmem_cache_destroy(_rq_cache);
371 kmem_cache_destroy(_rq_tio_cache);
372 kmem_cache_destroy(_io_cache);
373 unregister_blkdev(_major, _name);
374 dm_uevent_exit();
375
376 _major = 0;
377
378 DMINFO("cleaned up");
379 }
380
381 static int (*_inits[])(void) __initdata = {
382 local_init,
383 dm_target_init,
384 dm_linear_init,
385 dm_stripe_init,
386 dm_io_init,
387 dm_kcopyd_init,
388 dm_interface_init,
389 dm_statistics_init,
390 };
391
392 static void (*_exits[])(void) = {
393 local_exit,
394 dm_target_exit,
395 dm_linear_exit,
396 dm_stripe_exit,
397 dm_io_exit,
398 dm_kcopyd_exit,
399 dm_interface_exit,
400 dm_statistics_exit,
401 };
402
403 static int __init dm_init(void)
404 {
405 const int count = ARRAY_SIZE(_inits);
406
407 int r, i;
408
409 for (i = 0; i < count; i++) {
410 r = _inits[i]();
411 if (r)
412 goto bad;
413 }
414
415 return 0;
416
417 bad:
418 while (i--)
419 _exits[i]();
420
421 return r;
422 }
423
424 static void __exit dm_exit(void)
425 {
426 int i = ARRAY_SIZE(_exits);
427
428 while (i--)
429 _exits[i]();
430
431 /*
432 * Should be empty by this point.
433 */
434 idr_destroy(&_minor_idr);
435 }
436
437 /*
438 * Block device functions
439 */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 return test_bit(DMF_DELETING, &md->flags);
443 }
444
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 struct mapped_device *md;
448
449 spin_lock(&_minor_lock);
450
451 md = bdev->bd_disk->private_data;
452 if (!md)
453 goto out;
454
455 if (test_bit(DMF_FREEING, &md->flags) ||
456 dm_deleting_md(md)) {
457 md = NULL;
458 goto out;
459 }
460
461 dm_get(md);
462 atomic_inc(&md->open_count);
463 out:
464 spin_unlock(&_minor_lock);
465
466 return md ? 0 : -ENXIO;
467 }
468
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 struct mapped_device *md;
472
473 spin_lock(&_minor_lock);
474
475 md = disk->private_data;
476 if (WARN_ON(!md))
477 goto out;
478
479 if (atomic_dec_and_test(&md->open_count) &&
480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482
483 dm_put(md);
484 out:
485 spin_unlock(&_minor_lock);
486 }
487
488 int dm_open_count(struct mapped_device *md)
489 {
490 return atomic_read(&md->open_count);
491 }
492
493 /*
494 * Guarantees nothing is using the device before it's deleted.
495 */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 int r = 0;
499
500 spin_lock(&_minor_lock);
501
502 if (dm_open_count(md)) {
503 r = -EBUSY;
504 if (mark_deferred)
505 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 r = -EEXIST;
508 else
509 set_bit(DMF_DELETING, &md->flags);
510
511 spin_unlock(&_minor_lock);
512
513 return r;
514 }
515
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 int r = 0;
519
520 spin_lock(&_minor_lock);
521
522 if (test_bit(DMF_DELETING, &md->flags))
523 r = -EBUSY;
524 else
525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526
527 spin_unlock(&_minor_lock);
528
529 return r;
530 }
531
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 dm_deferred_remove();
535 }
536
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 return get_capacity(md->disk);
540 }
541
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 return md->queue;
545 }
546
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 return &md->stats;
550 }
551
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 struct mapped_device *md = bdev->bd_disk->private_data;
555
556 return dm_get_geometry(md, geo);
557 }
558
559 static int dm_get_live_table_for_ioctl(struct mapped_device *md,
560 struct dm_target **tgt, struct block_device **bdev,
561 fmode_t *mode, int *srcu_idx)
562 {
563 struct dm_table *map;
564 int r;
565
566 retry:
567 r = -ENOTTY;
568 map = dm_get_live_table(md, srcu_idx);
569 if (!map || !dm_table_get_size(map))
570 goto out;
571
572 /* We only support devices that have a single target */
573 if (dm_table_get_num_targets(map) != 1)
574 goto out;
575
576 *tgt = dm_table_get_target(map, 0);
577
578 if (!(*tgt)->type->prepare_ioctl)
579 goto out;
580
581 if (dm_suspended_md(md)) {
582 r = -EAGAIN;
583 goto out;
584 }
585
586 r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode);
587 if (r < 0)
588 goto out;
589
590 return r;
591
592 out:
593 dm_put_live_table(md, *srcu_idx);
594 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
595 msleep(10);
596 goto retry;
597 }
598 return r;
599 }
600
601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
602 unsigned int cmd, unsigned long arg)
603 {
604 struct mapped_device *md = bdev->bd_disk->private_data;
605 struct dm_target *tgt;
606 struct block_device *tgt_bdev = NULL;
607 int srcu_idx, r;
608
609 r = dm_get_live_table_for_ioctl(md, &tgt, &tgt_bdev, &mode, &srcu_idx);
610 if (r < 0)
611 return r;
612
613 if (r > 0) {
614 /*
615 * Target determined this ioctl is being issued against
616 * a logical partition of the parent bdev; so extra
617 * validation is needed.
618 */
619 r = scsi_verify_blk_ioctl(NULL, cmd);
620 if (r)
621 goto out;
622 }
623
624 r = __blkdev_driver_ioctl(tgt_bdev, mode, cmd, arg);
625 out:
626 dm_put_live_table(md, srcu_idx);
627 return r;
628 }
629
630 static struct dm_io *alloc_io(struct mapped_device *md)
631 {
632 return mempool_alloc(md->io_pool, GFP_NOIO);
633 }
634
635 static void free_io(struct mapped_device *md, struct dm_io *io)
636 {
637 mempool_free(io, md->io_pool);
638 }
639
640 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
641 {
642 bio_put(&tio->clone);
643 }
644
645 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
646 gfp_t gfp_mask)
647 {
648 return mempool_alloc(md->io_pool, gfp_mask);
649 }
650
651 static void free_rq_tio(struct dm_rq_target_io *tio)
652 {
653 mempool_free(tio, tio->md->io_pool);
654 }
655
656 static struct request *alloc_clone_request(struct mapped_device *md,
657 gfp_t gfp_mask)
658 {
659 return mempool_alloc(md->rq_pool, gfp_mask);
660 }
661
662 static void free_clone_request(struct mapped_device *md, struct request *rq)
663 {
664 mempool_free(rq, md->rq_pool);
665 }
666
667 static int md_in_flight(struct mapped_device *md)
668 {
669 return atomic_read(&md->pending[READ]) +
670 atomic_read(&md->pending[WRITE]);
671 }
672
673 static void start_io_acct(struct dm_io *io)
674 {
675 struct mapped_device *md = io->md;
676 struct bio *bio = io->bio;
677 int cpu;
678 int rw = bio_data_dir(bio);
679
680 io->start_time = jiffies;
681
682 cpu = part_stat_lock();
683 part_round_stats(cpu, &dm_disk(md)->part0);
684 part_stat_unlock();
685 atomic_set(&dm_disk(md)->part0.in_flight[rw],
686 atomic_inc_return(&md->pending[rw]));
687
688 if (unlikely(dm_stats_used(&md->stats)))
689 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
690 bio_sectors(bio), false, 0, &io->stats_aux);
691 }
692
693 static void end_io_acct(struct dm_io *io)
694 {
695 struct mapped_device *md = io->md;
696 struct bio *bio = io->bio;
697 unsigned long duration = jiffies - io->start_time;
698 int pending;
699 int rw = bio_data_dir(bio);
700
701 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
702
703 if (unlikely(dm_stats_used(&md->stats)))
704 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
705 bio_sectors(bio), true, duration, &io->stats_aux);
706
707 /*
708 * After this is decremented the bio must not be touched if it is
709 * a flush.
710 */
711 pending = atomic_dec_return(&md->pending[rw]);
712 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
713 pending += atomic_read(&md->pending[rw^0x1]);
714
715 /* nudge anyone waiting on suspend queue */
716 if (!pending)
717 wake_up(&md->wait);
718 }
719
720 /*
721 * Add the bio to the list of deferred io.
722 */
723 static void queue_io(struct mapped_device *md, struct bio *bio)
724 {
725 unsigned long flags;
726
727 spin_lock_irqsave(&md->deferred_lock, flags);
728 bio_list_add(&md->deferred, bio);
729 spin_unlock_irqrestore(&md->deferred_lock, flags);
730 queue_work(md->wq, &md->work);
731 }
732
733 /*
734 * Everyone (including functions in this file), should use this
735 * function to access the md->map field, and make sure they call
736 * dm_put_live_table() when finished.
737 */
738 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
739 {
740 *srcu_idx = srcu_read_lock(&md->io_barrier);
741
742 return srcu_dereference(md->map, &md->io_barrier);
743 }
744
745 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
746 {
747 srcu_read_unlock(&md->io_barrier, srcu_idx);
748 }
749
750 void dm_sync_table(struct mapped_device *md)
751 {
752 synchronize_srcu(&md->io_barrier);
753 synchronize_rcu_expedited();
754 }
755
756 /*
757 * A fast alternative to dm_get_live_table/dm_put_live_table.
758 * The caller must not block between these two functions.
759 */
760 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
761 {
762 rcu_read_lock();
763 return rcu_dereference(md->map);
764 }
765
766 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
767 {
768 rcu_read_unlock();
769 }
770
771 /*
772 * Open a table device so we can use it as a map destination.
773 */
774 static int open_table_device(struct table_device *td, dev_t dev,
775 struct mapped_device *md)
776 {
777 static char *_claim_ptr = "I belong to device-mapper";
778 struct block_device *bdev;
779
780 int r;
781
782 BUG_ON(td->dm_dev.bdev);
783
784 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
785 if (IS_ERR(bdev))
786 return PTR_ERR(bdev);
787
788 r = bd_link_disk_holder(bdev, dm_disk(md));
789 if (r) {
790 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
791 return r;
792 }
793
794 td->dm_dev.bdev = bdev;
795 return 0;
796 }
797
798 /*
799 * Close a table device that we've been using.
800 */
801 static void close_table_device(struct table_device *td, struct mapped_device *md)
802 {
803 if (!td->dm_dev.bdev)
804 return;
805
806 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
807 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
808 td->dm_dev.bdev = NULL;
809 }
810
811 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
812 fmode_t mode) {
813 struct table_device *td;
814
815 list_for_each_entry(td, l, list)
816 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
817 return td;
818
819 return NULL;
820 }
821
822 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
823 struct dm_dev **result) {
824 int r;
825 struct table_device *td;
826
827 mutex_lock(&md->table_devices_lock);
828 td = find_table_device(&md->table_devices, dev, mode);
829 if (!td) {
830 td = kmalloc(sizeof(*td), GFP_KERNEL);
831 if (!td) {
832 mutex_unlock(&md->table_devices_lock);
833 return -ENOMEM;
834 }
835
836 td->dm_dev.mode = mode;
837 td->dm_dev.bdev = NULL;
838
839 if ((r = open_table_device(td, dev, md))) {
840 mutex_unlock(&md->table_devices_lock);
841 kfree(td);
842 return r;
843 }
844
845 format_dev_t(td->dm_dev.name, dev);
846
847 atomic_set(&td->count, 0);
848 list_add(&td->list, &md->table_devices);
849 }
850 atomic_inc(&td->count);
851 mutex_unlock(&md->table_devices_lock);
852
853 *result = &td->dm_dev;
854 return 0;
855 }
856 EXPORT_SYMBOL_GPL(dm_get_table_device);
857
858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
859 {
860 struct table_device *td = container_of(d, struct table_device, dm_dev);
861
862 mutex_lock(&md->table_devices_lock);
863 if (atomic_dec_and_test(&td->count)) {
864 close_table_device(td, md);
865 list_del(&td->list);
866 kfree(td);
867 }
868 mutex_unlock(&md->table_devices_lock);
869 }
870 EXPORT_SYMBOL(dm_put_table_device);
871
872 static void free_table_devices(struct list_head *devices)
873 {
874 struct list_head *tmp, *next;
875
876 list_for_each_safe(tmp, next, devices) {
877 struct table_device *td = list_entry(tmp, struct table_device, list);
878
879 DMWARN("dm_destroy: %s still exists with %d references",
880 td->dm_dev.name, atomic_read(&td->count));
881 kfree(td);
882 }
883 }
884
885 /*
886 * Get the geometry associated with a dm device
887 */
888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
889 {
890 *geo = md->geometry;
891
892 return 0;
893 }
894
895 /*
896 * Set the geometry of a device.
897 */
898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
901
902 if (geo->start > sz) {
903 DMWARN("Start sector is beyond the geometry limits.");
904 return -EINVAL;
905 }
906
907 md->geometry = *geo;
908
909 return 0;
910 }
911
912 /*-----------------------------------------------------------------
913 * CRUD START:
914 * A more elegant soln is in the works that uses the queue
915 * merge fn, unfortunately there are a couple of changes to
916 * the block layer that I want to make for this. So in the
917 * interests of getting something for people to use I give
918 * you this clearly demarcated crap.
919 *---------------------------------------------------------------*/
920
921 static int __noflush_suspending(struct mapped_device *md)
922 {
923 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
924 }
925
926 /*
927 * Decrements the number of outstanding ios that a bio has been
928 * cloned into, completing the original io if necc.
929 */
930 static void dec_pending(struct dm_io *io, int error)
931 {
932 unsigned long flags;
933 int io_error;
934 struct bio *bio;
935 struct mapped_device *md = io->md;
936
937 /* Push-back supersedes any I/O errors */
938 if (unlikely(error)) {
939 spin_lock_irqsave(&io->endio_lock, flags);
940 if (!(io->error > 0 && __noflush_suspending(md)))
941 io->error = error;
942 spin_unlock_irqrestore(&io->endio_lock, flags);
943 }
944
945 if (atomic_dec_and_test(&io->io_count)) {
946 if (io->error == DM_ENDIO_REQUEUE) {
947 /*
948 * Target requested pushing back the I/O.
949 */
950 spin_lock_irqsave(&md->deferred_lock, flags);
951 if (__noflush_suspending(md))
952 bio_list_add_head(&md->deferred, io->bio);
953 else
954 /* noflush suspend was interrupted. */
955 io->error = -EIO;
956 spin_unlock_irqrestore(&md->deferred_lock, flags);
957 }
958
959 io_error = io->error;
960 bio = io->bio;
961 end_io_acct(io);
962 free_io(md, io);
963
964 if (io_error == DM_ENDIO_REQUEUE)
965 return;
966
967 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
968 /*
969 * Preflush done for flush with data, reissue
970 * without REQ_FLUSH.
971 */
972 bio->bi_rw &= ~REQ_FLUSH;
973 queue_io(md, bio);
974 } else {
975 /* done with normal IO or empty flush */
976 trace_block_bio_complete(md->queue, bio, io_error);
977 bio->bi_error = io_error;
978 bio_endio(bio);
979 }
980 }
981 }
982
983 static void disable_write_same(struct mapped_device *md)
984 {
985 struct queue_limits *limits = dm_get_queue_limits(md);
986
987 /* device doesn't really support WRITE SAME, disable it */
988 limits->max_write_same_sectors = 0;
989 }
990
991 static void clone_endio(struct bio *bio)
992 {
993 int error = bio->bi_error;
994 int r = error;
995 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
996 struct dm_io *io = tio->io;
997 struct mapped_device *md = tio->io->md;
998 dm_endio_fn endio = tio->ti->type->end_io;
999
1000 if (endio) {
1001 r = endio(tio->ti, bio, error);
1002 if (r < 0 || r == DM_ENDIO_REQUEUE)
1003 /*
1004 * error and requeue request are handled
1005 * in dec_pending().
1006 */
1007 error = r;
1008 else if (r == DM_ENDIO_INCOMPLETE)
1009 /* The target will handle the io */
1010 return;
1011 else if (r) {
1012 DMWARN("unimplemented target endio return value: %d", r);
1013 BUG();
1014 }
1015 }
1016
1017 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1018 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1019 disable_write_same(md);
1020
1021 free_tio(md, tio);
1022 dec_pending(io, error);
1023 }
1024
1025 /*
1026 * Partial completion handling for request-based dm
1027 */
1028 static void end_clone_bio(struct bio *clone)
1029 {
1030 struct dm_rq_clone_bio_info *info =
1031 container_of(clone, struct dm_rq_clone_bio_info, clone);
1032 struct dm_rq_target_io *tio = info->tio;
1033 struct bio *bio = info->orig;
1034 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1035 int error = clone->bi_error;
1036
1037 bio_put(clone);
1038
1039 if (tio->error)
1040 /*
1041 * An error has already been detected on the request.
1042 * Once error occurred, just let clone->end_io() handle
1043 * the remainder.
1044 */
1045 return;
1046 else if (error) {
1047 /*
1048 * Don't notice the error to the upper layer yet.
1049 * The error handling decision is made by the target driver,
1050 * when the request is completed.
1051 */
1052 tio->error = error;
1053 return;
1054 }
1055
1056 /*
1057 * I/O for the bio successfully completed.
1058 * Notice the data completion to the upper layer.
1059 */
1060
1061 /*
1062 * bios are processed from the head of the list.
1063 * So the completing bio should always be rq->bio.
1064 * If it's not, something wrong is happening.
1065 */
1066 if (tio->orig->bio != bio)
1067 DMERR("bio completion is going in the middle of the request");
1068
1069 /*
1070 * Update the original request.
1071 * Do not use blk_end_request() here, because it may complete
1072 * the original request before the clone, and break the ordering.
1073 */
1074 blk_update_request(tio->orig, 0, nr_bytes);
1075 }
1076
1077 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1078 {
1079 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1080 }
1081
1082 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1083 {
1084 if (unlikely(dm_stats_used(&md->stats))) {
1085 struct dm_rq_target_io *tio = tio_from_request(orig);
1086 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1087 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1088 tio->n_sectors, true, tio->duration_jiffies,
1089 &tio->stats_aux);
1090 }
1091 }
1092
1093 /*
1094 * Don't touch any member of the md after calling this function because
1095 * the md may be freed in dm_put() at the end of this function.
1096 * Or do dm_get() before calling this function and dm_put() later.
1097 */
1098 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1099 {
1100 atomic_dec(&md->pending[rw]);
1101
1102 /* nudge anyone waiting on suspend queue */
1103 if (!md_in_flight(md))
1104 wake_up(&md->wait);
1105
1106 /*
1107 * Run this off this callpath, as drivers could invoke end_io while
1108 * inside their request_fn (and holding the queue lock). Calling
1109 * back into ->request_fn() could deadlock attempting to grab the
1110 * queue lock again.
1111 */
1112 if (run_queue) {
1113 if (md->queue->mq_ops)
1114 blk_mq_run_hw_queues(md->queue, true);
1115 else
1116 blk_run_queue_async(md->queue);
1117 }
1118
1119 /*
1120 * dm_put() must be at the end of this function. See the comment above
1121 */
1122 dm_put(md);
1123 }
1124
1125 static void free_rq_clone(struct request *clone)
1126 {
1127 struct dm_rq_target_io *tio = clone->end_io_data;
1128 struct mapped_device *md = tio->md;
1129
1130 blk_rq_unprep_clone(clone);
1131
1132 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1133 /* stacked on blk-mq queue(s) */
1134 tio->ti->type->release_clone_rq(clone);
1135 else if (!md->queue->mq_ops)
1136 /* request_fn queue stacked on request_fn queue(s) */
1137 free_clone_request(md, clone);
1138 /*
1139 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1140 * no need to call free_clone_request() because we leverage blk-mq by
1141 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1142 */
1143
1144 if (!md->queue->mq_ops)
1145 free_rq_tio(tio);
1146 }
1147
1148 /*
1149 * Complete the clone and the original request.
1150 * Must be called without clone's queue lock held,
1151 * see end_clone_request() for more details.
1152 */
1153 static void dm_end_request(struct request *clone, int error)
1154 {
1155 int rw = rq_data_dir(clone);
1156 struct dm_rq_target_io *tio = clone->end_io_data;
1157 struct mapped_device *md = tio->md;
1158 struct request *rq = tio->orig;
1159
1160 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1161 rq->errors = clone->errors;
1162 rq->resid_len = clone->resid_len;
1163
1164 if (rq->sense)
1165 /*
1166 * We are using the sense buffer of the original
1167 * request.
1168 * So setting the length of the sense data is enough.
1169 */
1170 rq->sense_len = clone->sense_len;
1171 }
1172
1173 free_rq_clone(clone);
1174 rq_end_stats(md, rq);
1175 if (!rq->q->mq_ops)
1176 blk_end_request_all(rq, error);
1177 else
1178 blk_mq_end_request(rq, error);
1179 rq_completed(md, rw, true);
1180 }
1181
1182 static void dm_unprep_request(struct request *rq)
1183 {
1184 struct dm_rq_target_io *tio = tio_from_request(rq);
1185 struct request *clone = tio->clone;
1186
1187 if (!rq->q->mq_ops) {
1188 rq->special = NULL;
1189 rq->cmd_flags &= ~REQ_DONTPREP;
1190 }
1191
1192 if (clone)
1193 free_rq_clone(clone);
1194 else if (!tio->md->queue->mq_ops)
1195 free_rq_tio(tio);
1196 }
1197
1198 /*
1199 * Requeue the original request of a clone.
1200 */
1201 static void old_requeue_request(struct request *rq)
1202 {
1203 struct request_queue *q = rq->q;
1204 unsigned long flags;
1205
1206 spin_lock_irqsave(q->queue_lock, flags);
1207 blk_requeue_request(q, rq);
1208 blk_run_queue_async(q);
1209 spin_unlock_irqrestore(q->queue_lock, flags);
1210 }
1211
1212 static void dm_requeue_original_request(struct mapped_device *md,
1213 struct request *rq)
1214 {
1215 int rw = rq_data_dir(rq);
1216
1217 dm_unprep_request(rq);
1218
1219 rq_end_stats(md, rq);
1220 if (!rq->q->mq_ops)
1221 old_requeue_request(rq);
1222 else {
1223 blk_mq_requeue_request(rq);
1224 blk_mq_kick_requeue_list(rq->q);
1225 }
1226
1227 rq_completed(md, rw, false);
1228 }
1229
1230 static void old_stop_queue(struct request_queue *q)
1231 {
1232 unsigned long flags;
1233
1234 if (blk_queue_stopped(q))
1235 return;
1236
1237 spin_lock_irqsave(q->queue_lock, flags);
1238 blk_stop_queue(q);
1239 spin_unlock_irqrestore(q->queue_lock, flags);
1240 }
1241
1242 static void stop_queue(struct request_queue *q)
1243 {
1244 if (!q->mq_ops)
1245 old_stop_queue(q);
1246 else
1247 blk_mq_stop_hw_queues(q);
1248 }
1249
1250 static void old_start_queue(struct request_queue *q)
1251 {
1252 unsigned long flags;
1253
1254 spin_lock_irqsave(q->queue_lock, flags);
1255 if (blk_queue_stopped(q))
1256 blk_start_queue(q);
1257 spin_unlock_irqrestore(q->queue_lock, flags);
1258 }
1259
1260 static void start_queue(struct request_queue *q)
1261 {
1262 if (!q->mq_ops)
1263 old_start_queue(q);
1264 else
1265 blk_mq_start_stopped_hw_queues(q, true);
1266 }
1267
1268 static void dm_done(struct request *clone, int error, bool mapped)
1269 {
1270 int r = error;
1271 struct dm_rq_target_io *tio = clone->end_io_data;
1272 dm_request_endio_fn rq_end_io = NULL;
1273
1274 if (tio->ti) {
1275 rq_end_io = tio->ti->type->rq_end_io;
1276
1277 if (mapped && rq_end_io)
1278 r = rq_end_io(tio->ti, clone, error, &tio->info);
1279 }
1280
1281 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1282 !clone->q->limits.max_write_same_sectors))
1283 disable_write_same(tio->md);
1284
1285 if (r <= 0)
1286 /* The target wants to complete the I/O */
1287 dm_end_request(clone, r);
1288 else if (r == DM_ENDIO_INCOMPLETE)
1289 /* The target will handle the I/O */
1290 return;
1291 else if (r == DM_ENDIO_REQUEUE)
1292 /* The target wants to requeue the I/O */
1293 dm_requeue_original_request(tio->md, tio->orig);
1294 else {
1295 DMWARN("unimplemented target endio return value: %d", r);
1296 BUG();
1297 }
1298 }
1299
1300 /*
1301 * Request completion handler for request-based dm
1302 */
1303 static void dm_softirq_done(struct request *rq)
1304 {
1305 bool mapped = true;
1306 struct dm_rq_target_io *tio = tio_from_request(rq);
1307 struct request *clone = tio->clone;
1308 int rw;
1309
1310 if (!clone) {
1311 rq_end_stats(tio->md, rq);
1312 rw = rq_data_dir(rq);
1313 if (!rq->q->mq_ops) {
1314 blk_end_request_all(rq, tio->error);
1315 rq_completed(tio->md, rw, false);
1316 free_rq_tio(tio);
1317 } else {
1318 blk_mq_end_request(rq, tio->error);
1319 rq_completed(tio->md, rw, false);
1320 }
1321 return;
1322 }
1323
1324 if (rq->cmd_flags & REQ_FAILED)
1325 mapped = false;
1326
1327 dm_done(clone, tio->error, mapped);
1328 }
1329
1330 /*
1331 * Complete the clone and the original request with the error status
1332 * through softirq context.
1333 */
1334 static void dm_complete_request(struct request *rq, int error)
1335 {
1336 struct dm_rq_target_io *tio = tio_from_request(rq);
1337
1338 tio->error = error;
1339 blk_complete_request(rq);
1340 }
1341
1342 /*
1343 * Complete the not-mapped clone and the original request with the error status
1344 * through softirq context.
1345 * Target's rq_end_io() function isn't called.
1346 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1347 */
1348 static void dm_kill_unmapped_request(struct request *rq, int error)
1349 {
1350 rq->cmd_flags |= REQ_FAILED;
1351 dm_complete_request(rq, error);
1352 }
1353
1354 /*
1355 * Called with the clone's queue lock held (for non-blk-mq)
1356 */
1357 static void end_clone_request(struct request *clone, int error)
1358 {
1359 struct dm_rq_target_io *tio = clone->end_io_data;
1360
1361 if (!clone->q->mq_ops) {
1362 /*
1363 * For just cleaning up the information of the queue in which
1364 * the clone was dispatched.
1365 * The clone is *NOT* freed actually here because it is alloced
1366 * from dm own mempool (REQ_ALLOCED isn't set).
1367 */
1368 __blk_put_request(clone->q, clone);
1369 }
1370
1371 /*
1372 * Actual request completion is done in a softirq context which doesn't
1373 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1374 * - another request may be submitted by the upper level driver
1375 * of the stacking during the completion
1376 * - the submission which requires queue lock may be done
1377 * against this clone's queue
1378 */
1379 dm_complete_request(tio->orig, error);
1380 }
1381
1382 /*
1383 * Return maximum size of I/O possible at the supplied sector up to the current
1384 * target boundary.
1385 */
1386 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1387 {
1388 sector_t target_offset = dm_target_offset(ti, sector);
1389
1390 return ti->len - target_offset;
1391 }
1392
1393 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1394 {
1395 sector_t len = max_io_len_target_boundary(sector, ti);
1396 sector_t offset, max_len;
1397
1398 /*
1399 * Does the target need to split even further?
1400 */
1401 if (ti->max_io_len) {
1402 offset = dm_target_offset(ti, sector);
1403 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1404 max_len = sector_div(offset, ti->max_io_len);
1405 else
1406 max_len = offset & (ti->max_io_len - 1);
1407 max_len = ti->max_io_len - max_len;
1408
1409 if (len > max_len)
1410 len = max_len;
1411 }
1412
1413 return len;
1414 }
1415
1416 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1417 {
1418 if (len > UINT_MAX) {
1419 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1420 (unsigned long long)len, UINT_MAX);
1421 ti->error = "Maximum size of target IO is too large";
1422 return -EINVAL;
1423 }
1424
1425 ti->max_io_len = (uint32_t) len;
1426
1427 return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1430
1431 /*
1432 * A target may call dm_accept_partial_bio only from the map routine. It is
1433 * allowed for all bio types except REQ_FLUSH.
1434 *
1435 * dm_accept_partial_bio informs the dm that the target only wants to process
1436 * additional n_sectors sectors of the bio and the rest of the data should be
1437 * sent in a next bio.
1438 *
1439 * A diagram that explains the arithmetics:
1440 * +--------------------+---------------+-------+
1441 * | 1 | 2 | 3 |
1442 * +--------------------+---------------+-------+
1443 *
1444 * <-------------- *tio->len_ptr --------------->
1445 * <------- bi_size ------->
1446 * <-- n_sectors -->
1447 *
1448 * Region 1 was already iterated over with bio_advance or similar function.
1449 * (it may be empty if the target doesn't use bio_advance)
1450 * Region 2 is the remaining bio size that the target wants to process.
1451 * (it may be empty if region 1 is non-empty, although there is no reason
1452 * to make it empty)
1453 * The target requires that region 3 is to be sent in the next bio.
1454 *
1455 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1456 * the partially processed part (the sum of regions 1+2) must be the same for all
1457 * copies of the bio.
1458 */
1459 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1460 {
1461 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1462 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1463 BUG_ON(bio->bi_rw & REQ_FLUSH);
1464 BUG_ON(bi_size > *tio->len_ptr);
1465 BUG_ON(n_sectors > bi_size);
1466 *tio->len_ptr -= bi_size - n_sectors;
1467 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1468 }
1469 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1470
1471 static void __map_bio(struct dm_target_io *tio)
1472 {
1473 int r;
1474 sector_t sector;
1475 struct mapped_device *md;
1476 struct bio *clone = &tio->clone;
1477 struct dm_target *ti = tio->ti;
1478
1479 clone->bi_end_io = clone_endio;
1480
1481 /*
1482 * Map the clone. If r == 0 we don't need to do
1483 * anything, the target has assumed ownership of
1484 * this io.
1485 */
1486 atomic_inc(&tio->io->io_count);
1487 sector = clone->bi_iter.bi_sector;
1488 r = ti->type->map(ti, clone);
1489 if (r == DM_MAPIO_REMAPPED) {
1490 /* the bio has been remapped so dispatch it */
1491
1492 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1493 tio->io->bio->bi_bdev->bd_dev, sector);
1494
1495 generic_make_request(clone);
1496 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1497 /* error the io and bail out, or requeue it if needed */
1498 md = tio->io->md;
1499 dec_pending(tio->io, r);
1500 free_tio(md, tio);
1501 } else if (r != DM_MAPIO_SUBMITTED) {
1502 DMWARN("unimplemented target map return value: %d", r);
1503 BUG();
1504 }
1505 }
1506
1507 struct clone_info {
1508 struct mapped_device *md;
1509 struct dm_table *map;
1510 struct bio *bio;
1511 struct dm_io *io;
1512 sector_t sector;
1513 unsigned sector_count;
1514 };
1515
1516 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1517 {
1518 bio->bi_iter.bi_sector = sector;
1519 bio->bi_iter.bi_size = to_bytes(len);
1520 }
1521
1522 /*
1523 * Creates a bio that consists of range of complete bvecs.
1524 */
1525 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1526 sector_t sector, unsigned len)
1527 {
1528 struct bio *clone = &tio->clone;
1529
1530 __bio_clone_fast(clone, bio);
1531
1532 if (bio_integrity(bio))
1533 bio_integrity_clone(clone, bio, GFP_NOIO);
1534
1535 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1536 clone->bi_iter.bi_size = to_bytes(len);
1537
1538 if (bio_integrity(bio))
1539 bio_integrity_trim(clone, 0, len);
1540 }
1541
1542 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1543 struct dm_target *ti,
1544 unsigned target_bio_nr)
1545 {
1546 struct dm_target_io *tio;
1547 struct bio *clone;
1548
1549 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1550 tio = container_of(clone, struct dm_target_io, clone);
1551
1552 tio->io = ci->io;
1553 tio->ti = ti;
1554 tio->target_bio_nr = target_bio_nr;
1555
1556 return tio;
1557 }
1558
1559 static void __clone_and_map_simple_bio(struct clone_info *ci,
1560 struct dm_target *ti,
1561 unsigned target_bio_nr, unsigned *len)
1562 {
1563 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1564 struct bio *clone = &tio->clone;
1565
1566 tio->len_ptr = len;
1567
1568 __bio_clone_fast(clone, ci->bio);
1569 if (len)
1570 bio_setup_sector(clone, ci->sector, *len);
1571
1572 __map_bio(tio);
1573 }
1574
1575 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1576 unsigned num_bios, unsigned *len)
1577 {
1578 unsigned target_bio_nr;
1579
1580 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1581 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1582 }
1583
1584 static int __send_empty_flush(struct clone_info *ci)
1585 {
1586 unsigned target_nr = 0;
1587 struct dm_target *ti;
1588
1589 BUG_ON(bio_has_data(ci->bio));
1590 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1591 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1592
1593 return 0;
1594 }
1595
1596 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1597 sector_t sector, unsigned *len)
1598 {
1599 struct bio *bio = ci->bio;
1600 struct dm_target_io *tio;
1601 unsigned target_bio_nr;
1602 unsigned num_target_bios = 1;
1603
1604 /*
1605 * Does the target want to receive duplicate copies of the bio?
1606 */
1607 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1608 num_target_bios = ti->num_write_bios(ti, bio);
1609
1610 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1611 tio = alloc_tio(ci, ti, target_bio_nr);
1612 tio->len_ptr = len;
1613 clone_bio(tio, bio, sector, *len);
1614 __map_bio(tio);
1615 }
1616 }
1617
1618 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1619
1620 static unsigned get_num_discard_bios(struct dm_target *ti)
1621 {
1622 return ti->num_discard_bios;
1623 }
1624
1625 static unsigned get_num_write_same_bios(struct dm_target *ti)
1626 {
1627 return ti->num_write_same_bios;
1628 }
1629
1630 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1631
1632 static bool is_split_required_for_discard(struct dm_target *ti)
1633 {
1634 return ti->split_discard_bios;
1635 }
1636
1637 static int __send_changing_extent_only(struct clone_info *ci,
1638 get_num_bios_fn get_num_bios,
1639 is_split_required_fn is_split_required)
1640 {
1641 struct dm_target *ti;
1642 unsigned len;
1643 unsigned num_bios;
1644
1645 do {
1646 ti = dm_table_find_target(ci->map, ci->sector);
1647 if (!dm_target_is_valid(ti))
1648 return -EIO;
1649
1650 /*
1651 * Even though the device advertised support for this type of
1652 * request, that does not mean every target supports it, and
1653 * reconfiguration might also have changed that since the
1654 * check was performed.
1655 */
1656 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1657 if (!num_bios)
1658 return -EOPNOTSUPP;
1659
1660 if (is_split_required && !is_split_required(ti))
1661 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1662 else
1663 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1664
1665 __send_duplicate_bios(ci, ti, num_bios, &len);
1666
1667 ci->sector += len;
1668 } while (ci->sector_count -= len);
1669
1670 return 0;
1671 }
1672
1673 static int __send_discard(struct clone_info *ci)
1674 {
1675 return __send_changing_extent_only(ci, get_num_discard_bios,
1676 is_split_required_for_discard);
1677 }
1678
1679 static int __send_write_same(struct clone_info *ci)
1680 {
1681 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1682 }
1683
1684 /*
1685 * Select the correct strategy for processing a non-flush bio.
1686 */
1687 static int __split_and_process_non_flush(struct clone_info *ci)
1688 {
1689 struct bio *bio = ci->bio;
1690 struct dm_target *ti;
1691 unsigned len;
1692
1693 if (unlikely(bio->bi_rw & REQ_DISCARD))
1694 return __send_discard(ci);
1695 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1696 return __send_write_same(ci);
1697
1698 ti = dm_table_find_target(ci->map, ci->sector);
1699 if (!dm_target_is_valid(ti))
1700 return -EIO;
1701
1702 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1703
1704 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1705
1706 ci->sector += len;
1707 ci->sector_count -= len;
1708
1709 return 0;
1710 }
1711
1712 /*
1713 * Entry point to split a bio into clones and submit them to the targets.
1714 */
1715 static void __split_and_process_bio(struct mapped_device *md,
1716 struct dm_table *map, struct bio *bio)
1717 {
1718 struct clone_info ci;
1719 int error = 0;
1720
1721 if (unlikely(!map)) {
1722 bio_io_error(bio);
1723 return;
1724 }
1725
1726 ci.map = map;
1727 ci.md = md;
1728 ci.io = alloc_io(md);
1729 ci.io->error = 0;
1730 atomic_set(&ci.io->io_count, 1);
1731 ci.io->bio = bio;
1732 ci.io->md = md;
1733 spin_lock_init(&ci.io->endio_lock);
1734 ci.sector = bio->bi_iter.bi_sector;
1735
1736 start_io_acct(ci.io);
1737
1738 if (bio->bi_rw & REQ_FLUSH) {
1739 ci.bio = &ci.md->flush_bio;
1740 ci.sector_count = 0;
1741 error = __send_empty_flush(&ci);
1742 /* dec_pending submits any data associated with flush */
1743 } else {
1744 ci.bio = bio;
1745 ci.sector_count = bio_sectors(bio);
1746 while (ci.sector_count && !error)
1747 error = __split_and_process_non_flush(&ci);
1748 }
1749
1750 /* drop the extra reference count */
1751 dec_pending(ci.io, error);
1752 }
1753 /*-----------------------------------------------------------------
1754 * CRUD END
1755 *---------------------------------------------------------------*/
1756
1757 /*
1758 * The request function that just remaps the bio built up by
1759 * dm_merge_bvec.
1760 */
1761 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1762 {
1763 int rw = bio_data_dir(bio);
1764 struct mapped_device *md = q->queuedata;
1765 int srcu_idx;
1766 struct dm_table *map;
1767
1768 map = dm_get_live_table(md, &srcu_idx);
1769
1770 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1771
1772 /* if we're suspended, we have to queue this io for later */
1773 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1774 dm_put_live_table(md, srcu_idx);
1775
1776 if (bio_rw(bio) != READA)
1777 queue_io(md, bio);
1778 else
1779 bio_io_error(bio);
1780 return BLK_QC_T_NONE;
1781 }
1782
1783 __split_and_process_bio(md, map, bio);
1784 dm_put_live_table(md, srcu_idx);
1785 return BLK_QC_T_NONE;
1786 }
1787
1788 int dm_request_based(struct mapped_device *md)
1789 {
1790 return blk_queue_stackable(md->queue);
1791 }
1792
1793 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1794 {
1795 int r;
1796
1797 if (blk_queue_io_stat(clone->q))
1798 clone->cmd_flags |= REQ_IO_STAT;
1799
1800 clone->start_time = jiffies;
1801 r = blk_insert_cloned_request(clone->q, clone);
1802 if (r)
1803 /* must complete clone in terms of original request */
1804 dm_complete_request(rq, r);
1805 }
1806
1807 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1808 void *data)
1809 {
1810 struct dm_rq_target_io *tio = data;
1811 struct dm_rq_clone_bio_info *info =
1812 container_of(bio, struct dm_rq_clone_bio_info, clone);
1813
1814 info->orig = bio_orig;
1815 info->tio = tio;
1816 bio->bi_end_io = end_clone_bio;
1817
1818 return 0;
1819 }
1820
1821 static int setup_clone(struct request *clone, struct request *rq,
1822 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1823 {
1824 int r;
1825
1826 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1827 dm_rq_bio_constructor, tio);
1828 if (r)
1829 return r;
1830
1831 clone->cmd = rq->cmd;
1832 clone->cmd_len = rq->cmd_len;
1833 clone->sense = rq->sense;
1834 clone->end_io = end_clone_request;
1835 clone->end_io_data = tio;
1836
1837 tio->clone = clone;
1838
1839 return 0;
1840 }
1841
1842 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1843 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1844 {
1845 /*
1846 * Do not allocate a clone if tio->clone was already set
1847 * (see: dm_mq_queue_rq).
1848 */
1849 bool alloc_clone = !tio->clone;
1850 struct request *clone;
1851
1852 if (alloc_clone) {
1853 clone = alloc_clone_request(md, gfp_mask);
1854 if (!clone)
1855 return NULL;
1856 } else
1857 clone = tio->clone;
1858
1859 blk_rq_init(NULL, clone);
1860 if (setup_clone(clone, rq, tio, gfp_mask)) {
1861 /* -ENOMEM */
1862 if (alloc_clone)
1863 free_clone_request(md, clone);
1864 return NULL;
1865 }
1866
1867 return clone;
1868 }
1869
1870 static void map_tio_request(struct kthread_work *work);
1871
1872 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1873 struct mapped_device *md)
1874 {
1875 tio->md = md;
1876 tio->ti = NULL;
1877 tio->clone = NULL;
1878 tio->orig = rq;
1879 tio->error = 0;
1880 memset(&tio->info, 0, sizeof(tio->info));
1881 if (md->kworker_task)
1882 init_kthread_work(&tio->work, map_tio_request);
1883 }
1884
1885 static struct dm_rq_target_io *prep_tio(struct request *rq,
1886 struct mapped_device *md, gfp_t gfp_mask)
1887 {
1888 struct dm_rq_target_io *tio;
1889 int srcu_idx;
1890 struct dm_table *table;
1891
1892 tio = alloc_rq_tio(md, gfp_mask);
1893 if (!tio)
1894 return NULL;
1895
1896 init_tio(tio, rq, md);
1897
1898 table = dm_get_live_table(md, &srcu_idx);
1899 if (!dm_table_mq_request_based(table)) {
1900 if (!clone_rq(rq, md, tio, gfp_mask)) {
1901 dm_put_live_table(md, srcu_idx);
1902 free_rq_tio(tio);
1903 return NULL;
1904 }
1905 }
1906 dm_put_live_table(md, srcu_idx);
1907
1908 return tio;
1909 }
1910
1911 /*
1912 * Called with the queue lock held.
1913 */
1914 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1915 {
1916 struct mapped_device *md = q->queuedata;
1917 struct dm_rq_target_io *tio;
1918
1919 if (unlikely(rq->special)) {
1920 DMWARN("Already has something in rq->special.");
1921 return BLKPREP_KILL;
1922 }
1923
1924 tio = prep_tio(rq, md, GFP_ATOMIC);
1925 if (!tio)
1926 return BLKPREP_DEFER;
1927
1928 rq->special = tio;
1929 rq->cmd_flags |= REQ_DONTPREP;
1930
1931 return BLKPREP_OK;
1932 }
1933
1934 /*
1935 * Returns:
1936 * 0 : the request has been processed
1937 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1938 * < 0 : the request was completed due to failure
1939 */
1940 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1941 struct mapped_device *md)
1942 {
1943 int r;
1944 struct dm_target *ti = tio->ti;
1945 struct request *clone = NULL;
1946
1947 if (tio->clone) {
1948 clone = tio->clone;
1949 r = ti->type->map_rq(ti, clone, &tio->info);
1950 } else {
1951 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1952 if (r < 0) {
1953 /* The target wants to complete the I/O */
1954 dm_kill_unmapped_request(rq, r);
1955 return r;
1956 }
1957 if (r != DM_MAPIO_REMAPPED)
1958 return r;
1959 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1960 /* -ENOMEM */
1961 ti->type->release_clone_rq(clone);
1962 return DM_MAPIO_REQUEUE;
1963 }
1964 }
1965
1966 switch (r) {
1967 case DM_MAPIO_SUBMITTED:
1968 /* The target has taken the I/O to submit by itself later */
1969 break;
1970 case DM_MAPIO_REMAPPED:
1971 /* The target has remapped the I/O so dispatch it */
1972 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1973 blk_rq_pos(rq));
1974 dm_dispatch_clone_request(clone, rq);
1975 break;
1976 case DM_MAPIO_REQUEUE:
1977 /* The target wants to requeue the I/O */
1978 dm_requeue_original_request(md, tio->orig);
1979 break;
1980 default:
1981 if (r > 0) {
1982 DMWARN("unimplemented target map return value: %d", r);
1983 BUG();
1984 }
1985
1986 /* The target wants to complete the I/O */
1987 dm_kill_unmapped_request(rq, r);
1988 return r;
1989 }
1990
1991 return 0;
1992 }
1993
1994 static void map_tio_request(struct kthread_work *work)
1995 {
1996 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1997 struct request *rq = tio->orig;
1998 struct mapped_device *md = tio->md;
1999
2000 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2001 dm_requeue_original_request(md, rq);
2002 }
2003
2004 static void dm_start_request(struct mapped_device *md, struct request *orig)
2005 {
2006 if (!orig->q->mq_ops)
2007 blk_start_request(orig);
2008 else
2009 blk_mq_start_request(orig);
2010 atomic_inc(&md->pending[rq_data_dir(orig)]);
2011
2012 if (md->seq_rq_merge_deadline_usecs) {
2013 md->last_rq_pos = rq_end_sector(orig);
2014 md->last_rq_rw = rq_data_dir(orig);
2015 md->last_rq_start_time = ktime_get();
2016 }
2017
2018 if (unlikely(dm_stats_used(&md->stats))) {
2019 struct dm_rq_target_io *tio = tio_from_request(orig);
2020 tio->duration_jiffies = jiffies;
2021 tio->n_sectors = blk_rq_sectors(orig);
2022 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2023 tio->n_sectors, false, 0, &tio->stats_aux);
2024 }
2025
2026 /*
2027 * Hold the md reference here for the in-flight I/O.
2028 * We can't rely on the reference count by device opener,
2029 * because the device may be closed during the request completion
2030 * when all bios are completed.
2031 * See the comment in rq_completed() too.
2032 */
2033 dm_get(md);
2034 }
2035
2036 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2037
2038 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2039 {
2040 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2041 }
2042
2043 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2044 const char *buf, size_t count)
2045 {
2046 unsigned deadline;
2047
2048 if (!dm_request_based(md) || md->use_blk_mq)
2049 return count;
2050
2051 if (kstrtouint(buf, 10, &deadline))
2052 return -EINVAL;
2053
2054 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2055 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2056
2057 md->seq_rq_merge_deadline_usecs = deadline;
2058
2059 return count;
2060 }
2061
2062 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2063 {
2064 ktime_t kt_deadline;
2065
2066 if (!md->seq_rq_merge_deadline_usecs)
2067 return false;
2068
2069 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2070 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2071
2072 return !ktime_after(ktime_get(), kt_deadline);
2073 }
2074
2075 /*
2076 * q->request_fn for request-based dm.
2077 * Called with the queue lock held.
2078 */
2079 static void dm_request_fn(struct request_queue *q)
2080 {
2081 struct mapped_device *md = q->queuedata;
2082 int srcu_idx;
2083 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2084 struct dm_target *ti;
2085 struct request *rq;
2086 struct dm_rq_target_io *tio;
2087 sector_t pos;
2088
2089 /*
2090 * For suspend, check blk_queue_stopped() and increment
2091 * ->pending within a single queue_lock not to increment the
2092 * number of in-flight I/Os after the queue is stopped in
2093 * dm_suspend().
2094 */
2095 while (!blk_queue_stopped(q)) {
2096 rq = blk_peek_request(q);
2097 if (!rq)
2098 goto out;
2099
2100 /* always use block 0 to find the target for flushes for now */
2101 pos = 0;
2102 if (!(rq->cmd_flags & REQ_FLUSH))
2103 pos = blk_rq_pos(rq);
2104
2105 ti = dm_table_find_target(map, pos);
2106 if (!dm_target_is_valid(ti)) {
2107 /*
2108 * Must perform setup, that rq_completed() requires,
2109 * before calling dm_kill_unmapped_request
2110 */
2111 DMERR_LIMIT("request attempted access beyond the end of device");
2112 dm_start_request(md, rq);
2113 dm_kill_unmapped_request(rq, -EIO);
2114 continue;
2115 }
2116
2117 if (dm_request_peeked_before_merge_deadline(md) &&
2118 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2119 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2120 goto delay_and_out;
2121
2122 if (ti->type->busy && ti->type->busy(ti))
2123 goto delay_and_out;
2124
2125 dm_start_request(md, rq);
2126
2127 tio = tio_from_request(rq);
2128 /* Establish tio->ti before queuing work (map_tio_request) */
2129 tio->ti = ti;
2130 queue_kthread_work(&md->kworker, &tio->work);
2131 BUG_ON(!irqs_disabled());
2132 }
2133
2134 goto out;
2135
2136 delay_and_out:
2137 blk_delay_queue(q, HZ / 100);
2138 out:
2139 dm_put_live_table(md, srcu_idx);
2140 }
2141
2142 static int dm_any_congested(void *congested_data, int bdi_bits)
2143 {
2144 int r = bdi_bits;
2145 struct mapped_device *md = congested_data;
2146 struct dm_table *map;
2147
2148 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2149 map = dm_get_live_table_fast(md);
2150 if (map) {
2151 /*
2152 * Request-based dm cares about only own queue for
2153 * the query about congestion status of request_queue
2154 */
2155 if (dm_request_based(md))
2156 r = md->queue->backing_dev_info.wb.state &
2157 bdi_bits;
2158 else
2159 r = dm_table_any_congested(map, bdi_bits);
2160 }
2161 dm_put_live_table_fast(md);
2162 }
2163
2164 return r;
2165 }
2166
2167 /*-----------------------------------------------------------------
2168 * An IDR is used to keep track of allocated minor numbers.
2169 *---------------------------------------------------------------*/
2170 static void free_minor(int minor)
2171 {
2172 spin_lock(&_minor_lock);
2173 idr_remove(&_minor_idr, minor);
2174 spin_unlock(&_minor_lock);
2175 }
2176
2177 /*
2178 * See if the device with a specific minor # is free.
2179 */
2180 static int specific_minor(int minor)
2181 {
2182 int r;
2183
2184 if (minor >= (1 << MINORBITS))
2185 return -EINVAL;
2186
2187 idr_preload(GFP_KERNEL);
2188 spin_lock(&_minor_lock);
2189
2190 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2191
2192 spin_unlock(&_minor_lock);
2193 idr_preload_end();
2194 if (r < 0)
2195 return r == -ENOSPC ? -EBUSY : r;
2196 return 0;
2197 }
2198
2199 static int next_free_minor(int *minor)
2200 {
2201 int r;
2202
2203 idr_preload(GFP_KERNEL);
2204 spin_lock(&_minor_lock);
2205
2206 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2207
2208 spin_unlock(&_minor_lock);
2209 idr_preload_end();
2210 if (r < 0)
2211 return r;
2212 *minor = r;
2213 return 0;
2214 }
2215
2216 static const struct block_device_operations dm_blk_dops;
2217
2218 static void dm_wq_work(struct work_struct *work);
2219
2220 static void dm_init_md_queue(struct mapped_device *md)
2221 {
2222 /*
2223 * Request-based dm devices cannot be stacked on top of bio-based dm
2224 * devices. The type of this dm device may not have been decided yet.
2225 * The type is decided at the first table loading time.
2226 * To prevent problematic device stacking, clear the queue flag
2227 * for request stacking support until then.
2228 *
2229 * This queue is new, so no concurrency on the queue_flags.
2230 */
2231 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2232
2233 /*
2234 * Initialize data that will only be used by a non-blk-mq DM queue
2235 * - must do so here (in alloc_dev callchain) before queue is used
2236 */
2237 md->queue->queuedata = md;
2238 md->queue->backing_dev_info.congested_data = md;
2239 }
2240
2241 static void dm_init_old_md_queue(struct mapped_device *md)
2242 {
2243 md->use_blk_mq = false;
2244 dm_init_md_queue(md);
2245
2246 /*
2247 * Initialize aspects of queue that aren't relevant for blk-mq
2248 */
2249 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2250 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2251 }
2252
2253 static void cleanup_mapped_device(struct mapped_device *md)
2254 {
2255 if (md->wq)
2256 destroy_workqueue(md->wq);
2257 if (md->kworker_task)
2258 kthread_stop(md->kworker_task);
2259 mempool_destroy(md->io_pool);
2260 mempool_destroy(md->rq_pool);
2261 if (md->bs)
2262 bioset_free(md->bs);
2263
2264 cleanup_srcu_struct(&md->io_barrier);
2265
2266 if (md->disk) {
2267 spin_lock(&_minor_lock);
2268 md->disk->private_data = NULL;
2269 spin_unlock(&_minor_lock);
2270 del_gendisk(md->disk);
2271 put_disk(md->disk);
2272 }
2273
2274 if (md->queue)
2275 blk_cleanup_queue(md->queue);
2276
2277 if (md->bdev) {
2278 bdput(md->bdev);
2279 md->bdev = NULL;
2280 }
2281 }
2282
2283 /*
2284 * Allocate and initialise a blank device with a given minor.
2285 */
2286 static struct mapped_device *alloc_dev(int minor)
2287 {
2288 int r;
2289 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2290 void *old_md;
2291
2292 if (!md) {
2293 DMWARN("unable to allocate device, out of memory.");
2294 return NULL;
2295 }
2296
2297 if (!try_module_get(THIS_MODULE))
2298 goto bad_module_get;
2299
2300 /* get a minor number for the dev */
2301 if (minor == DM_ANY_MINOR)
2302 r = next_free_minor(&minor);
2303 else
2304 r = specific_minor(minor);
2305 if (r < 0)
2306 goto bad_minor;
2307
2308 r = init_srcu_struct(&md->io_barrier);
2309 if (r < 0)
2310 goto bad_io_barrier;
2311
2312 md->use_blk_mq = use_blk_mq;
2313 md->type = DM_TYPE_NONE;
2314 mutex_init(&md->suspend_lock);
2315 mutex_init(&md->type_lock);
2316 mutex_init(&md->table_devices_lock);
2317 spin_lock_init(&md->deferred_lock);
2318 atomic_set(&md->holders, 1);
2319 atomic_set(&md->open_count, 0);
2320 atomic_set(&md->event_nr, 0);
2321 atomic_set(&md->uevent_seq, 0);
2322 INIT_LIST_HEAD(&md->uevent_list);
2323 INIT_LIST_HEAD(&md->table_devices);
2324 spin_lock_init(&md->uevent_lock);
2325
2326 md->queue = blk_alloc_queue(GFP_KERNEL);
2327 if (!md->queue)
2328 goto bad;
2329
2330 dm_init_md_queue(md);
2331
2332 md->disk = alloc_disk(1);
2333 if (!md->disk)
2334 goto bad;
2335
2336 atomic_set(&md->pending[0], 0);
2337 atomic_set(&md->pending[1], 0);
2338 init_waitqueue_head(&md->wait);
2339 INIT_WORK(&md->work, dm_wq_work);
2340 init_waitqueue_head(&md->eventq);
2341 init_completion(&md->kobj_holder.completion);
2342 md->kworker_task = NULL;
2343
2344 md->disk->major = _major;
2345 md->disk->first_minor = minor;
2346 md->disk->fops = &dm_blk_dops;
2347 md->disk->queue = md->queue;
2348 md->disk->private_data = md;
2349 sprintf(md->disk->disk_name, "dm-%d", minor);
2350 add_disk(md->disk);
2351 format_dev_t(md->name, MKDEV(_major, minor));
2352
2353 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2354 if (!md->wq)
2355 goto bad;
2356
2357 md->bdev = bdget_disk(md->disk, 0);
2358 if (!md->bdev)
2359 goto bad;
2360
2361 bio_init(&md->flush_bio);
2362 md->flush_bio.bi_bdev = md->bdev;
2363 md->flush_bio.bi_rw = WRITE_FLUSH;
2364
2365 dm_stats_init(&md->stats);
2366
2367 /* Populate the mapping, nobody knows we exist yet */
2368 spin_lock(&_minor_lock);
2369 old_md = idr_replace(&_minor_idr, md, minor);
2370 spin_unlock(&_minor_lock);
2371
2372 BUG_ON(old_md != MINOR_ALLOCED);
2373
2374 return md;
2375
2376 bad:
2377 cleanup_mapped_device(md);
2378 bad_io_barrier:
2379 free_minor(minor);
2380 bad_minor:
2381 module_put(THIS_MODULE);
2382 bad_module_get:
2383 kfree(md);
2384 return NULL;
2385 }
2386
2387 static void unlock_fs(struct mapped_device *md);
2388
2389 static void free_dev(struct mapped_device *md)
2390 {
2391 int minor = MINOR(disk_devt(md->disk));
2392
2393 unlock_fs(md);
2394
2395 cleanup_mapped_device(md);
2396 if (md->use_blk_mq)
2397 blk_mq_free_tag_set(&md->tag_set);
2398
2399 free_table_devices(&md->table_devices);
2400 dm_stats_cleanup(&md->stats);
2401 free_minor(minor);
2402
2403 module_put(THIS_MODULE);
2404 kfree(md);
2405 }
2406
2407 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2408 {
2409 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2410
2411 if (md->bs) {
2412 /* The md already has necessary mempools. */
2413 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2414 /*
2415 * Reload bioset because front_pad may have changed
2416 * because a different table was loaded.
2417 */
2418 bioset_free(md->bs);
2419 md->bs = p->bs;
2420 p->bs = NULL;
2421 }
2422 /*
2423 * There's no need to reload with request-based dm
2424 * because the size of front_pad doesn't change.
2425 * Note for future: If you are to reload bioset,
2426 * prep-ed requests in the queue may refer
2427 * to bio from the old bioset, so you must walk
2428 * through the queue to unprep.
2429 */
2430 goto out;
2431 }
2432
2433 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2434
2435 md->io_pool = p->io_pool;
2436 p->io_pool = NULL;
2437 md->rq_pool = p->rq_pool;
2438 p->rq_pool = NULL;
2439 md->bs = p->bs;
2440 p->bs = NULL;
2441
2442 out:
2443 /* mempool bind completed, no longer need any mempools in the table */
2444 dm_table_free_md_mempools(t);
2445 }
2446
2447 /*
2448 * Bind a table to the device.
2449 */
2450 static void event_callback(void *context)
2451 {
2452 unsigned long flags;
2453 LIST_HEAD(uevents);
2454 struct mapped_device *md = (struct mapped_device *) context;
2455
2456 spin_lock_irqsave(&md->uevent_lock, flags);
2457 list_splice_init(&md->uevent_list, &uevents);
2458 spin_unlock_irqrestore(&md->uevent_lock, flags);
2459
2460 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2461
2462 atomic_inc(&md->event_nr);
2463 wake_up(&md->eventq);
2464 }
2465
2466 /*
2467 * Protected by md->suspend_lock obtained by dm_swap_table().
2468 */
2469 static void __set_size(struct mapped_device *md, sector_t size)
2470 {
2471 set_capacity(md->disk, size);
2472
2473 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2474 }
2475
2476 /*
2477 * Returns old map, which caller must destroy.
2478 */
2479 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2480 struct queue_limits *limits)
2481 {
2482 struct dm_table *old_map;
2483 struct request_queue *q = md->queue;
2484 sector_t size;
2485
2486 size = dm_table_get_size(t);
2487
2488 /*
2489 * Wipe any geometry if the size of the table changed.
2490 */
2491 if (size != dm_get_size(md))
2492 memset(&md->geometry, 0, sizeof(md->geometry));
2493
2494 __set_size(md, size);
2495
2496 dm_table_event_callback(t, event_callback, md);
2497
2498 /*
2499 * The queue hasn't been stopped yet, if the old table type wasn't
2500 * for request-based during suspension. So stop it to prevent
2501 * I/O mapping before resume.
2502 * This must be done before setting the queue restrictions,
2503 * because request-based dm may be run just after the setting.
2504 */
2505 if (dm_table_request_based(t))
2506 stop_queue(q);
2507
2508 __bind_mempools(md, t);
2509
2510 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2511 rcu_assign_pointer(md->map, t);
2512 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2513
2514 dm_table_set_restrictions(t, q, limits);
2515 if (old_map)
2516 dm_sync_table(md);
2517
2518 return old_map;
2519 }
2520
2521 /*
2522 * Returns unbound table for the caller to free.
2523 */
2524 static struct dm_table *__unbind(struct mapped_device *md)
2525 {
2526 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2527
2528 if (!map)
2529 return NULL;
2530
2531 dm_table_event_callback(map, NULL, NULL);
2532 RCU_INIT_POINTER(md->map, NULL);
2533 dm_sync_table(md);
2534
2535 return map;
2536 }
2537
2538 /*
2539 * Constructor for a new device.
2540 */
2541 int dm_create(int minor, struct mapped_device **result)
2542 {
2543 struct mapped_device *md;
2544
2545 md = alloc_dev(minor);
2546 if (!md)
2547 return -ENXIO;
2548
2549 dm_sysfs_init(md);
2550
2551 *result = md;
2552 return 0;
2553 }
2554
2555 /*
2556 * Functions to manage md->type.
2557 * All are required to hold md->type_lock.
2558 */
2559 void dm_lock_md_type(struct mapped_device *md)
2560 {
2561 mutex_lock(&md->type_lock);
2562 }
2563
2564 void dm_unlock_md_type(struct mapped_device *md)
2565 {
2566 mutex_unlock(&md->type_lock);
2567 }
2568
2569 void dm_set_md_type(struct mapped_device *md, unsigned type)
2570 {
2571 BUG_ON(!mutex_is_locked(&md->type_lock));
2572 md->type = type;
2573 }
2574
2575 unsigned dm_get_md_type(struct mapped_device *md)
2576 {
2577 BUG_ON(!mutex_is_locked(&md->type_lock));
2578 return md->type;
2579 }
2580
2581 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2582 {
2583 return md->immutable_target_type;
2584 }
2585
2586 /*
2587 * The queue_limits are only valid as long as you have a reference
2588 * count on 'md'.
2589 */
2590 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2591 {
2592 BUG_ON(!atomic_read(&md->holders));
2593 return &md->queue->limits;
2594 }
2595 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2596
2597 static void init_rq_based_worker_thread(struct mapped_device *md)
2598 {
2599 /* Initialize the request-based DM worker thread */
2600 init_kthread_worker(&md->kworker);
2601 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2602 "kdmwork-%s", dm_device_name(md));
2603 }
2604
2605 /*
2606 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2607 */
2608 static int dm_init_request_based_queue(struct mapped_device *md)
2609 {
2610 struct request_queue *q = NULL;
2611
2612 /* Fully initialize the queue */
2613 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2614 if (!q)
2615 return -EINVAL;
2616
2617 /* disable dm_request_fn's merge heuristic by default */
2618 md->seq_rq_merge_deadline_usecs = 0;
2619
2620 md->queue = q;
2621 dm_init_old_md_queue(md);
2622 blk_queue_softirq_done(md->queue, dm_softirq_done);
2623 blk_queue_prep_rq(md->queue, dm_prep_fn);
2624
2625 init_rq_based_worker_thread(md);
2626
2627 elv_register_queue(md->queue);
2628
2629 return 0;
2630 }
2631
2632 static int dm_mq_init_request(void *data, struct request *rq,
2633 unsigned int hctx_idx, unsigned int request_idx,
2634 unsigned int numa_node)
2635 {
2636 struct mapped_device *md = data;
2637 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2638
2639 /*
2640 * Must initialize md member of tio, otherwise it won't
2641 * be available in dm_mq_queue_rq.
2642 */
2643 tio->md = md;
2644
2645 return 0;
2646 }
2647
2648 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2649 const struct blk_mq_queue_data *bd)
2650 {
2651 struct request *rq = bd->rq;
2652 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2653 struct mapped_device *md = tio->md;
2654 int srcu_idx;
2655 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2656 struct dm_target *ti;
2657 sector_t pos;
2658
2659 /* always use block 0 to find the target for flushes for now */
2660 pos = 0;
2661 if (!(rq->cmd_flags & REQ_FLUSH))
2662 pos = blk_rq_pos(rq);
2663
2664 ti = dm_table_find_target(map, pos);
2665 if (!dm_target_is_valid(ti)) {
2666 dm_put_live_table(md, srcu_idx);
2667 DMERR_LIMIT("request attempted access beyond the end of device");
2668 /*
2669 * Must perform setup, that rq_completed() requires,
2670 * before returning BLK_MQ_RQ_QUEUE_ERROR
2671 */
2672 dm_start_request(md, rq);
2673 return BLK_MQ_RQ_QUEUE_ERROR;
2674 }
2675 dm_put_live_table(md, srcu_idx);
2676
2677 if (ti->type->busy && ti->type->busy(ti))
2678 return BLK_MQ_RQ_QUEUE_BUSY;
2679
2680 dm_start_request(md, rq);
2681
2682 /* Init tio using md established in .init_request */
2683 init_tio(tio, rq, md);
2684
2685 /*
2686 * Establish tio->ti before queuing work (map_tio_request)
2687 * or making direct call to map_request().
2688 */
2689 tio->ti = ti;
2690
2691 /* Clone the request if underlying devices aren't blk-mq */
2692 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2693 /* clone request is allocated at the end of the pdu */
2694 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2695 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2696 queue_kthread_work(&md->kworker, &tio->work);
2697 } else {
2698 /* Direct call is fine since .queue_rq allows allocations */
2699 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2700 /* Undo dm_start_request() before requeuing */
2701 rq_end_stats(md, rq);
2702 rq_completed(md, rq_data_dir(rq), false);
2703 return BLK_MQ_RQ_QUEUE_BUSY;
2704 }
2705 }
2706
2707 return BLK_MQ_RQ_QUEUE_OK;
2708 }
2709
2710 static struct blk_mq_ops dm_mq_ops = {
2711 .queue_rq = dm_mq_queue_rq,
2712 .map_queue = blk_mq_map_queue,
2713 .complete = dm_softirq_done,
2714 .init_request = dm_mq_init_request,
2715 };
2716
2717 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2718 {
2719 unsigned md_type = dm_get_md_type(md);
2720 struct request_queue *q;
2721 int err;
2722
2723 memset(&md->tag_set, 0, sizeof(md->tag_set));
2724 md->tag_set.ops = &dm_mq_ops;
2725 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2726 md->tag_set.numa_node = NUMA_NO_NODE;
2727 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2728 md->tag_set.nr_hw_queues = 1;
2729 if (md_type == DM_TYPE_REQUEST_BASED) {
2730 /* make the memory for non-blk-mq clone part of the pdu */
2731 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2732 } else
2733 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2734 md->tag_set.driver_data = md;
2735
2736 err = blk_mq_alloc_tag_set(&md->tag_set);
2737 if (err)
2738 return err;
2739
2740 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2741 if (IS_ERR(q)) {
2742 err = PTR_ERR(q);
2743 goto out_tag_set;
2744 }
2745 md->queue = q;
2746 dm_init_md_queue(md);
2747
2748 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2749 blk_mq_register_disk(md->disk);
2750
2751 if (md_type == DM_TYPE_REQUEST_BASED)
2752 init_rq_based_worker_thread(md);
2753
2754 return 0;
2755
2756 out_tag_set:
2757 blk_mq_free_tag_set(&md->tag_set);
2758 return err;
2759 }
2760
2761 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2762 {
2763 if (type == DM_TYPE_BIO_BASED)
2764 return type;
2765
2766 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2767 }
2768
2769 /*
2770 * Setup the DM device's queue based on md's type
2771 */
2772 int dm_setup_md_queue(struct mapped_device *md)
2773 {
2774 int r;
2775 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2776
2777 switch (md_type) {
2778 case DM_TYPE_REQUEST_BASED:
2779 r = dm_init_request_based_queue(md);
2780 if (r) {
2781 DMWARN("Cannot initialize queue for request-based mapped device");
2782 return r;
2783 }
2784 break;
2785 case DM_TYPE_MQ_REQUEST_BASED:
2786 r = dm_init_request_based_blk_mq_queue(md);
2787 if (r) {
2788 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2789 return r;
2790 }
2791 break;
2792 case DM_TYPE_BIO_BASED:
2793 dm_init_old_md_queue(md);
2794 blk_queue_make_request(md->queue, dm_make_request);
2795 /*
2796 * DM handles splitting bios as needed. Free the bio_split bioset
2797 * since it won't be used (saves 1 process per bio-based DM device).
2798 */
2799 bioset_free(md->queue->bio_split);
2800 md->queue->bio_split = NULL;
2801 break;
2802 }
2803
2804 return 0;
2805 }
2806
2807 struct mapped_device *dm_get_md(dev_t dev)
2808 {
2809 struct mapped_device *md;
2810 unsigned minor = MINOR(dev);
2811
2812 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2813 return NULL;
2814
2815 spin_lock(&_minor_lock);
2816
2817 md = idr_find(&_minor_idr, minor);
2818 if (md) {
2819 if ((md == MINOR_ALLOCED ||
2820 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2821 dm_deleting_md(md) ||
2822 test_bit(DMF_FREEING, &md->flags))) {
2823 md = NULL;
2824 goto out;
2825 }
2826 dm_get(md);
2827 }
2828
2829 out:
2830 spin_unlock(&_minor_lock);
2831
2832 return md;
2833 }
2834 EXPORT_SYMBOL_GPL(dm_get_md);
2835
2836 void *dm_get_mdptr(struct mapped_device *md)
2837 {
2838 return md->interface_ptr;
2839 }
2840
2841 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2842 {
2843 md->interface_ptr = ptr;
2844 }
2845
2846 void dm_get(struct mapped_device *md)
2847 {
2848 atomic_inc(&md->holders);
2849 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2850 }
2851
2852 int dm_hold(struct mapped_device *md)
2853 {
2854 spin_lock(&_minor_lock);
2855 if (test_bit(DMF_FREEING, &md->flags)) {
2856 spin_unlock(&_minor_lock);
2857 return -EBUSY;
2858 }
2859 dm_get(md);
2860 spin_unlock(&_minor_lock);
2861 return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(dm_hold);
2864
2865 const char *dm_device_name(struct mapped_device *md)
2866 {
2867 return md->name;
2868 }
2869 EXPORT_SYMBOL_GPL(dm_device_name);
2870
2871 static void __dm_destroy(struct mapped_device *md, bool wait)
2872 {
2873 struct dm_table *map;
2874 int srcu_idx;
2875
2876 might_sleep();
2877
2878 spin_lock(&_minor_lock);
2879 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2880 set_bit(DMF_FREEING, &md->flags);
2881 spin_unlock(&_minor_lock);
2882
2883 if (dm_request_based(md) && md->kworker_task)
2884 flush_kthread_worker(&md->kworker);
2885
2886 /*
2887 * Take suspend_lock so that presuspend and postsuspend methods
2888 * do not race with internal suspend.
2889 */
2890 mutex_lock(&md->suspend_lock);
2891 map = dm_get_live_table(md, &srcu_idx);
2892 if (!dm_suspended_md(md)) {
2893 dm_table_presuspend_targets(map);
2894 dm_table_postsuspend_targets(map);
2895 }
2896 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2897 dm_put_live_table(md, srcu_idx);
2898 mutex_unlock(&md->suspend_lock);
2899
2900 /*
2901 * Rare, but there may be I/O requests still going to complete,
2902 * for example. Wait for all references to disappear.
2903 * No one should increment the reference count of the mapped_device,
2904 * after the mapped_device state becomes DMF_FREEING.
2905 */
2906 if (wait)
2907 while (atomic_read(&md->holders))
2908 msleep(1);
2909 else if (atomic_read(&md->holders))
2910 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2911 dm_device_name(md), atomic_read(&md->holders));
2912
2913 dm_sysfs_exit(md);
2914 dm_table_destroy(__unbind(md));
2915 free_dev(md);
2916 }
2917
2918 void dm_destroy(struct mapped_device *md)
2919 {
2920 __dm_destroy(md, true);
2921 }
2922
2923 void dm_destroy_immediate(struct mapped_device *md)
2924 {
2925 __dm_destroy(md, false);
2926 }
2927
2928 void dm_put(struct mapped_device *md)
2929 {
2930 atomic_dec(&md->holders);
2931 }
2932 EXPORT_SYMBOL_GPL(dm_put);
2933
2934 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2935 {
2936 int r = 0;
2937 DECLARE_WAITQUEUE(wait, current);
2938
2939 add_wait_queue(&md->wait, &wait);
2940
2941 while (1) {
2942 set_current_state(interruptible);
2943
2944 if (!md_in_flight(md))
2945 break;
2946
2947 if (interruptible == TASK_INTERRUPTIBLE &&
2948 signal_pending(current)) {
2949 r = -EINTR;
2950 break;
2951 }
2952
2953 io_schedule();
2954 }
2955 set_current_state(TASK_RUNNING);
2956
2957 remove_wait_queue(&md->wait, &wait);
2958
2959 return r;
2960 }
2961
2962 /*
2963 * Process the deferred bios
2964 */
2965 static void dm_wq_work(struct work_struct *work)
2966 {
2967 struct mapped_device *md = container_of(work, struct mapped_device,
2968 work);
2969 struct bio *c;
2970 int srcu_idx;
2971 struct dm_table *map;
2972
2973 map = dm_get_live_table(md, &srcu_idx);
2974
2975 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2976 spin_lock_irq(&md->deferred_lock);
2977 c = bio_list_pop(&md->deferred);
2978 spin_unlock_irq(&md->deferred_lock);
2979
2980 if (!c)
2981 break;
2982
2983 if (dm_request_based(md))
2984 generic_make_request(c);
2985 else
2986 __split_and_process_bio(md, map, c);
2987 }
2988
2989 dm_put_live_table(md, srcu_idx);
2990 }
2991
2992 static void dm_queue_flush(struct mapped_device *md)
2993 {
2994 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2995 smp_mb__after_atomic();
2996 queue_work(md->wq, &md->work);
2997 }
2998
2999 /*
3000 * Swap in a new table, returning the old one for the caller to destroy.
3001 */
3002 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3003 {
3004 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3005 struct queue_limits limits;
3006 int r;
3007
3008 mutex_lock(&md->suspend_lock);
3009
3010 /* device must be suspended */
3011 if (!dm_suspended_md(md))
3012 goto out;
3013
3014 /*
3015 * If the new table has no data devices, retain the existing limits.
3016 * This helps multipath with queue_if_no_path if all paths disappear,
3017 * then new I/O is queued based on these limits, and then some paths
3018 * reappear.
3019 */
3020 if (dm_table_has_no_data_devices(table)) {
3021 live_map = dm_get_live_table_fast(md);
3022 if (live_map)
3023 limits = md->queue->limits;
3024 dm_put_live_table_fast(md);
3025 }
3026
3027 if (!live_map) {
3028 r = dm_calculate_queue_limits(table, &limits);
3029 if (r) {
3030 map = ERR_PTR(r);
3031 goto out;
3032 }
3033 }
3034
3035 map = __bind(md, table, &limits);
3036
3037 out:
3038 mutex_unlock(&md->suspend_lock);
3039 return map;
3040 }
3041
3042 /*
3043 * Functions to lock and unlock any filesystem running on the
3044 * device.
3045 */
3046 static int lock_fs(struct mapped_device *md)
3047 {
3048 int r;
3049
3050 WARN_ON(md->frozen_sb);
3051
3052 md->frozen_sb = freeze_bdev(md->bdev);
3053 if (IS_ERR(md->frozen_sb)) {
3054 r = PTR_ERR(md->frozen_sb);
3055 md->frozen_sb = NULL;
3056 return r;
3057 }
3058
3059 set_bit(DMF_FROZEN, &md->flags);
3060
3061 return 0;
3062 }
3063
3064 static void unlock_fs(struct mapped_device *md)
3065 {
3066 if (!test_bit(DMF_FROZEN, &md->flags))
3067 return;
3068
3069 thaw_bdev(md->bdev, md->frozen_sb);
3070 md->frozen_sb = NULL;
3071 clear_bit(DMF_FROZEN, &md->flags);
3072 }
3073
3074 /*
3075 * If __dm_suspend returns 0, the device is completely quiescent
3076 * now. There is no request-processing activity. All new requests
3077 * are being added to md->deferred list.
3078 *
3079 * Caller must hold md->suspend_lock
3080 */
3081 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3082 unsigned suspend_flags, int interruptible)
3083 {
3084 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3085 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3086 int r;
3087
3088 /*
3089 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3090 * This flag is cleared before dm_suspend returns.
3091 */
3092 if (noflush)
3093 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3094
3095 /*
3096 * This gets reverted if there's an error later and the targets
3097 * provide the .presuspend_undo hook.
3098 */
3099 dm_table_presuspend_targets(map);
3100
3101 /*
3102 * Flush I/O to the device.
3103 * Any I/O submitted after lock_fs() may not be flushed.
3104 * noflush takes precedence over do_lockfs.
3105 * (lock_fs() flushes I/Os and waits for them to complete.)
3106 */
3107 if (!noflush && do_lockfs) {
3108 r = lock_fs(md);
3109 if (r) {
3110 dm_table_presuspend_undo_targets(map);
3111 return r;
3112 }
3113 }
3114
3115 /*
3116 * Here we must make sure that no processes are submitting requests
3117 * to target drivers i.e. no one may be executing
3118 * __split_and_process_bio. This is called from dm_request and
3119 * dm_wq_work.
3120 *
3121 * To get all processes out of __split_and_process_bio in dm_request,
3122 * we take the write lock. To prevent any process from reentering
3123 * __split_and_process_bio from dm_request and quiesce the thread
3124 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3125 * flush_workqueue(md->wq).
3126 */
3127 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3128 if (map)
3129 synchronize_srcu(&md->io_barrier);
3130
3131 /*
3132 * Stop md->queue before flushing md->wq in case request-based
3133 * dm defers requests to md->wq from md->queue.
3134 */
3135 if (dm_request_based(md)) {
3136 stop_queue(md->queue);
3137 if (md->kworker_task)
3138 flush_kthread_worker(&md->kworker);
3139 }
3140
3141 flush_workqueue(md->wq);
3142
3143 /*
3144 * At this point no more requests are entering target request routines.
3145 * We call dm_wait_for_completion to wait for all existing requests
3146 * to finish.
3147 */
3148 r = dm_wait_for_completion(md, interruptible);
3149
3150 if (noflush)
3151 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3152 if (map)
3153 synchronize_srcu(&md->io_barrier);
3154
3155 /* were we interrupted ? */
3156 if (r < 0) {
3157 dm_queue_flush(md);
3158
3159 if (dm_request_based(md))
3160 start_queue(md->queue);
3161
3162 unlock_fs(md);
3163 dm_table_presuspend_undo_targets(map);
3164 /* pushback list is already flushed, so skip flush */
3165 }
3166
3167 return r;
3168 }
3169
3170 /*
3171 * We need to be able to change a mapping table under a mounted
3172 * filesystem. For example we might want to move some data in
3173 * the background. Before the table can be swapped with
3174 * dm_bind_table, dm_suspend must be called to flush any in
3175 * flight bios and ensure that any further io gets deferred.
3176 */
3177 /*
3178 * Suspend mechanism in request-based dm.
3179 *
3180 * 1. Flush all I/Os by lock_fs() if needed.
3181 * 2. Stop dispatching any I/O by stopping the request_queue.
3182 * 3. Wait for all in-flight I/Os to be completed or requeued.
3183 *
3184 * To abort suspend, start the request_queue.
3185 */
3186 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3187 {
3188 struct dm_table *map = NULL;
3189 int r = 0;
3190
3191 retry:
3192 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3193
3194 if (dm_suspended_md(md)) {
3195 r = -EINVAL;
3196 goto out_unlock;
3197 }
3198
3199 if (dm_suspended_internally_md(md)) {
3200 /* already internally suspended, wait for internal resume */
3201 mutex_unlock(&md->suspend_lock);
3202 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3203 if (r)
3204 return r;
3205 goto retry;
3206 }
3207
3208 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3209
3210 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3211 if (r)
3212 goto out_unlock;
3213
3214 set_bit(DMF_SUSPENDED, &md->flags);
3215
3216 dm_table_postsuspend_targets(map);
3217
3218 out_unlock:
3219 mutex_unlock(&md->suspend_lock);
3220 return r;
3221 }
3222
3223 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3224 {
3225 if (map) {
3226 int r = dm_table_resume_targets(map);
3227 if (r)
3228 return r;
3229 }
3230
3231 dm_queue_flush(md);
3232
3233 /*
3234 * Flushing deferred I/Os must be done after targets are resumed
3235 * so that mapping of targets can work correctly.
3236 * Request-based dm is queueing the deferred I/Os in its request_queue.
3237 */
3238 if (dm_request_based(md))
3239 start_queue(md->queue);
3240
3241 unlock_fs(md);
3242
3243 return 0;
3244 }
3245
3246 int dm_resume(struct mapped_device *md)
3247 {
3248 int r = -EINVAL;
3249 struct dm_table *map = NULL;
3250
3251 retry:
3252 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3253
3254 if (!dm_suspended_md(md))
3255 goto out;
3256
3257 if (dm_suspended_internally_md(md)) {
3258 /* already internally suspended, wait for internal resume */
3259 mutex_unlock(&md->suspend_lock);
3260 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3261 if (r)
3262 return r;
3263 goto retry;
3264 }
3265
3266 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3267 if (!map || !dm_table_get_size(map))
3268 goto out;
3269
3270 r = __dm_resume(md, map);
3271 if (r)
3272 goto out;
3273
3274 clear_bit(DMF_SUSPENDED, &md->flags);
3275
3276 r = 0;
3277 out:
3278 mutex_unlock(&md->suspend_lock);
3279
3280 return r;
3281 }
3282
3283 /*
3284 * Internal suspend/resume works like userspace-driven suspend. It waits
3285 * until all bios finish and prevents issuing new bios to the target drivers.
3286 * It may be used only from the kernel.
3287 */
3288
3289 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3290 {
3291 struct dm_table *map = NULL;
3292
3293 if (md->internal_suspend_count++)
3294 return; /* nested internal suspend */
3295
3296 if (dm_suspended_md(md)) {
3297 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3298 return; /* nest suspend */
3299 }
3300
3301 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3302
3303 /*
3304 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3305 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3306 * would require changing .presuspend to return an error -- avoid this
3307 * until there is a need for more elaborate variants of internal suspend.
3308 */
3309 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3310
3311 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3312
3313 dm_table_postsuspend_targets(map);
3314 }
3315
3316 static void __dm_internal_resume(struct mapped_device *md)
3317 {
3318 BUG_ON(!md->internal_suspend_count);
3319
3320 if (--md->internal_suspend_count)
3321 return; /* resume from nested internal suspend */
3322
3323 if (dm_suspended_md(md))
3324 goto done; /* resume from nested suspend */
3325
3326 /*
3327 * NOTE: existing callers don't need to call dm_table_resume_targets
3328 * (which may fail -- so best to avoid it for now by passing NULL map)
3329 */
3330 (void) __dm_resume(md, NULL);
3331
3332 done:
3333 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3334 smp_mb__after_atomic();
3335 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3336 }
3337
3338 void dm_internal_suspend_noflush(struct mapped_device *md)
3339 {
3340 mutex_lock(&md->suspend_lock);
3341 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3342 mutex_unlock(&md->suspend_lock);
3343 }
3344 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3345
3346 void dm_internal_resume(struct mapped_device *md)
3347 {
3348 mutex_lock(&md->suspend_lock);
3349 __dm_internal_resume(md);
3350 mutex_unlock(&md->suspend_lock);
3351 }
3352 EXPORT_SYMBOL_GPL(dm_internal_resume);
3353
3354 /*
3355 * Fast variants of internal suspend/resume hold md->suspend_lock,
3356 * which prevents interaction with userspace-driven suspend.
3357 */
3358
3359 void dm_internal_suspend_fast(struct mapped_device *md)
3360 {
3361 mutex_lock(&md->suspend_lock);
3362 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3363 return;
3364
3365 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3366 synchronize_srcu(&md->io_barrier);
3367 flush_workqueue(md->wq);
3368 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3369 }
3370 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3371
3372 void dm_internal_resume_fast(struct mapped_device *md)
3373 {
3374 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3375 goto done;
3376
3377 dm_queue_flush(md);
3378
3379 done:
3380 mutex_unlock(&md->suspend_lock);
3381 }
3382 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3383
3384 /*-----------------------------------------------------------------
3385 * Event notification.
3386 *---------------------------------------------------------------*/
3387 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3388 unsigned cookie)
3389 {
3390 char udev_cookie[DM_COOKIE_LENGTH];
3391 char *envp[] = { udev_cookie, NULL };
3392
3393 if (!cookie)
3394 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3395 else {
3396 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3397 DM_COOKIE_ENV_VAR_NAME, cookie);
3398 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3399 action, envp);
3400 }
3401 }
3402
3403 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3404 {
3405 return atomic_add_return(1, &md->uevent_seq);
3406 }
3407
3408 uint32_t dm_get_event_nr(struct mapped_device *md)
3409 {
3410 return atomic_read(&md->event_nr);
3411 }
3412
3413 int dm_wait_event(struct mapped_device *md, int event_nr)
3414 {
3415 return wait_event_interruptible(md->eventq,
3416 (event_nr != atomic_read(&md->event_nr)));
3417 }
3418
3419 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3420 {
3421 unsigned long flags;
3422
3423 spin_lock_irqsave(&md->uevent_lock, flags);
3424 list_add(elist, &md->uevent_list);
3425 spin_unlock_irqrestore(&md->uevent_lock, flags);
3426 }
3427
3428 /*
3429 * The gendisk is only valid as long as you have a reference
3430 * count on 'md'.
3431 */
3432 struct gendisk *dm_disk(struct mapped_device *md)
3433 {
3434 return md->disk;
3435 }
3436 EXPORT_SYMBOL_GPL(dm_disk);
3437
3438 struct kobject *dm_kobject(struct mapped_device *md)
3439 {
3440 return &md->kobj_holder.kobj;
3441 }
3442
3443 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3444 {
3445 struct mapped_device *md;
3446
3447 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3448
3449 if (test_bit(DMF_FREEING, &md->flags) ||
3450 dm_deleting_md(md))
3451 return NULL;
3452
3453 dm_get(md);
3454 return md;
3455 }
3456
3457 int dm_suspended_md(struct mapped_device *md)
3458 {
3459 return test_bit(DMF_SUSPENDED, &md->flags);
3460 }
3461
3462 int dm_suspended_internally_md(struct mapped_device *md)
3463 {
3464 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3465 }
3466
3467 int dm_test_deferred_remove_flag(struct mapped_device *md)
3468 {
3469 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3470 }
3471
3472 int dm_suspended(struct dm_target *ti)
3473 {
3474 return dm_suspended_md(dm_table_get_md(ti->table));
3475 }
3476 EXPORT_SYMBOL_GPL(dm_suspended);
3477
3478 int dm_noflush_suspending(struct dm_target *ti)
3479 {
3480 return __noflush_suspending(dm_table_get_md(ti->table));
3481 }
3482 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3483
3484 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3485 unsigned integrity, unsigned per_bio_data_size)
3486 {
3487 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3488 struct kmem_cache *cachep = NULL;
3489 unsigned int pool_size = 0;
3490 unsigned int front_pad;
3491
3492 if (!pools)
3493 return NULL;
3494
3495 type = filter_md_type(type, md);
3496
3497 switch (type) {
3498 case DM_TYPE_BIO_BASED:
3499 cachep = _io_cache;
3500 pool_size = dm_get_reserved_bio_based_ios();
3501 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3502 break;
3503 case DM_TYPE_REQUEST_BASED:
3504 cachep = _rq_tio_cache;
3505 pool_size = dm_get_reserved_rq_based_ios();
3506 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3507 if (!pools->rq_pool)
3508 goto out;
3509 /* fall through to setup remaining rq-based pools */
3510 case DM_TYPE_MQ_REQUEST_BASED:
3511 if (!pool_size)
3512 pool_size = dm_get_reserved_rq_based_ios();
3513 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3514 /* per_bio_data_size is not used. See __bind_mempools(). */
3515 WARN_ON(per_bio_data_size != 0);
3516 break;
3517 default:
3518 BUG();
3519 }
3520
3521 if (cachep) {
3522 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3523 if (!pools->io_pool)
3524 goto out;
3525 }
3526
3527 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3528 if (!pools->bs)
3529 goto out;
3530
3531 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3532 goto out;
3533
3534 return pools;
3535
3536 out:
3537 dm_free_md_mempools(pools);
3538
3539 return NULL;
3540 }
3541
3542 void dm_free_md_mempools(struct dm_md_mempools *pools)
3543 {
3544 if (!pools)
3545 return;
3546
3547 mempool_destroy(pools->io_pool);
3548 mempool_destroy(pools->rq_pool);
3549
3550 if (pools->bs)
3551 bioset_free(pools->bs);
3552
3553 kfree(pools);
3554 }
3555
3556 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3557 u32 flags)
3558 {
3559 struct mapped_device *md = bdev->bd_disk->private_data;
3560 const struct pr_ops *ops;
3561 struct dm_target *tgt;
3562 fmode_t mode;
3563 int srcu_idx, r;
3564
3565 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3566 if (r < 0)
3567 return r;
3568
3569 ops = bdev->bd_disk->fops->pr_ops;
3570 if (ops && ops->pr_register)
3571 r = ops->pr_register(bdev, old_key, new_key, flags);
3572 else
3573 r = -EOPNOTSUPP;
3574
3575 dm_put_live_table(md, srcu_idx);
3576 return r;
3577 }
3578
3579 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3580 u32 flags)
3581 {
3582 struct mapped_device *md = bdev->bd_disk->private_data;
3583 const struct pr_ops *ops;
3584 struct dm_target *tgt;
3585 fmode_t mode;
3586 int srcu_idx, r;
3587
3588 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3589 if (r < 0)
3590 return r;
3591
3592 ops = bdev->bd_disk->fops->pr_ops;
3593 if (ops && ops->pr_reserve)
3594 r = ops->pr_reserve(bdev, key, type, flags);
3595 else
3596 r = -EOPNOTSUPP;
3597
3598 dm_put_live_table(md, srcu_idx);
3599 return r;
3600 }
3601
3602 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3603 {
3604 struct mapped_device *md = bdev->bd_disk->private_data;
3605 const struct pr_ops *ops;
3606 struct dm_target *tgt;
3607 fmode_t mode;
3608 int srcu_idx, r;
3609
3610 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3611 if (r < 0)
3612 return r;
3613
3614 ops = bdev->bd_disk->fops->pr_ops;
3615 if (ops && ops->pr_release)
3616 r = ops->pr_release(bdev, key, type);
3617 else
3618 r = -EOPNOTSUPP;
3619
3620 dm_put_live_table(md, srcu_idx);
3621 return r;
3622 }
3623
3624 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3625 enum pr_type type, bool abort)
3626 {
3627 struct mapped_device *md = bdev->bd_disk->private_data;
3628 const struct pr_ops *ops;
3629 struct dm_target *tgt;
3630 fmode_t mode;
3631 int srcu_idx, r;
3632
3633 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3634 if (r < 0)
3635 return r;
3636
3637 ops = bdev->bd_disk->fops->pr_ops;
3638 if (ops && ops->pr_preempt)
3639 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3640 else
3641 r = -EOPNOTSUPP;
3642
3643 dm_put_live_table(md, srcu_idx);
3644 return r;
3645 }
3646
3647 static int dm_pr_clear(struct block_device *bdev, u64 key)
3648 {
3649 struct mapped_device *md = bdev->bd_disk->private_data;
3650 const struct pr_ops *ops;
3651 struct dm_target *tgt;
3652 fmode_t mode;
3653 int srcu_idx, r;
3654
3655 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3656 if (r < 0)
3657 return r;
3658
3659 ops = bdev->bd_disk->fops->pr_ops;
3660 if (ops && ops->pr_clear)
3661 r = ops->pr_clear(bdev, key);
3662 else
3663 r = -EOPNOTSUPP;
3664
3665 dm_put_live_table(md, srcu_idx);
3666 return r;
3667 }
3668
3669 static const struct pr_ops dm_pr_ops = {
3670 .pr_register = dm_pr_register,
3671 .pr_reserve = dm_pr_reserve,
3672 .pr_release = dm_pr_release,
3673 .pr_preempt = dm_pr_preempt,
3674 .pr_clear = dm_pr_clear,
3675 };
3676
3677 static const struct block_device_operations dm_blk_dops = {
3678 .open = dm_blk_open,
3679 .release = dm_blk_close,
3680 .ioctl = dm_blk_ioctl,
3681 .getgeo = dm_blk_getgeo,
3682 .pr_ops = &dm_pr_ops,
3683 .owner = THIS_MODULE
3684 };
3685
3686 /*
3687 * module hooks
3688 */
3689 module_init(dm_init);
3690 module_exit(dm_exit);
3691
3692 module_param(major, uint, 0);
3693 MODULE_PARM_DESC(major, "The major number of the device mapper");
3694
3695 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3696 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3697
3698 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3699 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3700
3701 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3702 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3703
3704 MODULE_DESCRIPTION(DM_NAME " driver");
3705 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3706 MODULE_LICENSE("GPL");
This page took 0.110365 seconds and 5 git commands to generate.