Revert "drm/i915: Use crtc_state->active in primary check_plane func"
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 struct dm_stats_aux stats_aux;
90 unsigned long duration_jiffies;
91 unsigned n_sectors;
92 };
93
94 /*
95 * For request-based dm - the bio clones we allocate are embedded in these
96 * structs.
97 *
98 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
99 * the bioset is created - this means the bio has to come at the end of the
100 * struct.
101 */
102 struct dm_rq_clone_bio_info {
103 struct bio *orig;
104 struct dm_rq_target_io *tio;
105 struct bio clone;
106 };
107
108 union map_info *dm_get_rq_mapinfo(struct request *rq)
109 {
110 if (rq && rq->end_io_data)
111 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
112 return NULL;
113 }
114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
115
116 #define MINOR_ALLOCED ((void *)-1)
117
118 /*
119 * Bits for the md->flags field.
120 */
121 #define DMF_BLOCK_IO_FOR_SUSPEND 0
122 #define DMF_SUSPENDED 1
123 #define DMF_FROZEN 2
124 #define DMF_FREEING 3
125 #define DMF_DELETING 4
126 #define DMF_NOFLUSH_SUSPENDING 5
127 #define DMF_MERGE_IS_OPTIONAL 6
128 #define DMF_DEFERRED_REMOVE 7
129 #define DMF_SUSPENDED_INTERNALLY 8
130
131 /*
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
134 */
135 struct dm_table {
136 int undefined__;
137 };
138
139 /*
140 * Work processed by per-device workqueue.
141 */
142 struct mapped_device {
143 struct srcu_struct io_barrier;
144 struct mutex suspend_lock;
145 atomic_t holders;
146 atomic_t open_count;
147
148 /*
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
151 * dereference.
152 */
153 struct dm_table __rcu *map;
154
155 struct list_head table_devices;
156 struct mutex table_devices_lock;
157
158 unsigned long flags;
159
160 struct request_queue *queue;
161 unsigned type;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock;
164
165 struct target_type *immutable_target_type;
166
167 struct gendisk *disk;
168 char name[16];
169
170 void *interface_ptr;
171
172 /*
173 * A list of ios that arrived while we were suspended.
174 */
175 atomic_t pending[2];
176 wait_queue_head_t wait;
177 struct work_struct work;
178 struct bio_list deferred;
179 spinlock_t deferred_lock;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * Event handling.
196 */
197 atomic_t event_nr;
198 wait_queue_head_t eventq;
199 atomic_t uevent_seq;
200 struct list_head uevent_list;
201 spinlock_t uevent_lock; /* Protect access to uevent_list */
202
203 /*
204 * freeze/thaw support require holding onto a super block
205 */
206 struct super_block *frozen_sb;
207 struct block_device *bdev;
208
209 /* forced geometry settings */
210 struct hd_geometry geometry;
211
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder;
214
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio;
217
218 /* the number of internal suspends */
219 unsigned internal_suspend_count;
220
221 struct dm_stats stats;
222
223 struct kthread_worker kworker;
224 struct task_struct *kworker_task;
225
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs;
228 int last_rq_rw;
229 sector_t last_rq_pos;
230 ktime_t last_rq_start_time;
231
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set;
234 bool use_blk_mq;
235 };
236
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 return md->use_blk_mq;
246 }
247
248 /*
249 * For mempools pre-allocation at the table loading time.
250 */
251 struct dm_md_mempools {
252 mempool_t *io_pool;
253 mempool_t *rq_pool;
254 struct bio_set *bs;
255 };
256
257 struct table_device {
258 struct list_head list;
259 atomic_t count;
260 struct dm_dev dm_dev;
261 };
262
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269
270 /*
271 * Bio-based DM's mempools' reserved IOs set by the user.
272 */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274
275 /*
276 * Request-based DM's mempools' reserved IOs set by the user.
277 */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 unsigned def, unsigned max)
282 {
283 unsigned param = ACCESS_ONCE(*module_param);
284 unsigned modified_param = 0;
285
286 if (!param)
287 modified_param = def;
288 else if (param > max)
289 modified_param = max;
290
291 if (modified_param) {
292 (void)cmpxchg(module_param, param, modified_param);
293 param = modified_param;
294 }
295
296 return param;
297 }
298
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 return __dm_get_module_param(&reserved_bio_based_ios,
302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 return __dm_get_module_param(&reserved_rq_based_ios,
309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312
313 static int __init local_init(void)
314 {
315 int r = -ENOMEM;
316
317 /* allocate a slab for the dm_ios */
318 _io_cache = KMEM_CACHE(dm_io, 0);
319 if (!_io_cache)
320 return r;
321
322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 if (!_rq_tio_cache)
324 goto out_free_io_cache;
325
326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 __alignof__(struct request), 0, NULL);
328 if (!_rq_cache)
329 goto out_free_rq_tio_cache;
330
331 r = dm_uevent_init();
332 if (r)
333 goto out_free_rq_cache;
334
335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 if (!deferred_remove_workqueue) {
337 r = -ENOMEM;
338 goto out_uevent_exit;
339 }
340
341 _major = major;
342 r = register_blkdev(_major, _name);
343 if (r < 0)
344 goto out_free_workqueue;
345
346 if (!_major)
347 _major = r;
348
349 return 0;
350
351 out_free_workqueue:
352 destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 dm_uevent_exit();
355 out_free_rq_cache:
356 kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 kmem_cache_destroy(_io_cache);
361
362 return r;
363 }
364
365 static void local_exit(void)
366 {
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue);
369
370 kmem_cache_destroy(_rq_cache);
371 kmem_cache_destroy(_rq_tio_cache);
372 kmem_cache_destroy(_io_cache);
373 unregister_blkdev(_major, _name);
374 dm_uevent_exit();
375
376 _major = 0;
377
378 DMINFO("cleaned up");
379 }
380
381 static int (*_inits[])(void) __initdata = {
382 local_init,
383 dm_target_init,
384 dm_linear_init,
385 dm_stripe_init,
386 dm_io_init,
387 dm_kcopyd_init,
388 dm_interface_init,
389 dm_statistics_init,
390 };
391
392 static void (*_exits[])(void) = {
393 local_exit,
394 dm_target_exit,
395 dm_linear_exit,
396 dm_stripe_exit,
397 dm_io_exit,
398 dm_kcopyd_exit,
399 dm_interface_exit,
400 dm_statistics_exit,
401 };
402
403 static int __init dm_init(void)
404 {
405 const int count = ARRAY_SIZE(_inits);
406
407 int r, i;
408
409 for (i = 0; i < count; i++) {
410 r = _inits[i]();
411 if (r)
412 goto bad;
413 }
414
415 return 0;
416
417 bad:
418 while (i--)
419 _exits[i]();
420
421 return r;
422 }
423
424 static void __exit dm_exit(void)
425 {
426 int i = ARRAY_SIZE(_exits);
427
428 while (i--)
429 _exits[i]();
430
431 /*
432 * Should be empty by this point.
433 */
434 idr_destroy(&_minor_idr);
435 }
436
437 /*
438 * Block device functions
439 */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 return test_bit(DMF_DELETING, &md->flags);
443 }
444
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 struct mapped_device *md;
448
449 spin_lock(&_minor_lock);
450
451 md = bdev->bd_disk->private_data;
452 if (!md)
453 goto out;
454
455 if (test_bit(DMF_FREEING, &md->flags) ||
456 dm_deleting_md(md)) {
457 md = NULL;
458 goto out;
459 }
460
461 dm_get(md);
462 atomic_inc(&md->open_count);
463 out:
464 spin_unlock(&_minor_lock);
465
466 return md ? 0 : -ENXIO;
467 }
468
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 struct mapped_device *md;
472
473 spin_lock(&_minor_lock);
474
475 md = disk->private_data;
476 if (WARN_ON(!md))
477 goto out;
478
479 if (atomic_dec_and_test(&md->open_count) &&
480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482
483 dm_put(md);
484 out:
485 spin_unlock(&_minor_lock);
486 }
487
488 int dm_open_count(struct mapped_device *md)
489 {
490 return atomic_read(&md->open_count);
491 }
492
493 /*
494 * Guarantees nothing is using the device before it's deleted.
495 */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 int r = 0;
499
500 spin_lock(&_minor_lock);
501
502 if (dm_open_count(md)) {
503 r = -EBUSY;
504 if (mark_deferred)
505 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 r = -EEXIST;
508 else
509 set_bit(DMF_DELETING, &md->flags);
510
511 spin_unlock(&_minor_lock);
512
513 return r;
514 }
515
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 int r = 0;
519
520 spin_lock(&_minor_lock);
521
522 if (test_bit(DMF_DELETING, &md->flags))
523 r = -EBUSY;
524 else
525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526
527 spin_unlock(&_minor_lock);
528
529 return r;
530 }
531
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 dm_deferred_remove();
535 }
536
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 return get_capacity(md->disk);
540 }
541
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 return md->queue;
545 }
546
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 return &md->stats;
550 }
551
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 struct mapped_device *md = bdev->bd_disk->private_data;
555
556 return dm_get_geometry(md, geo);
557 }
558
559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 unsigned int cmd, unsigned long arg)
561 {
562 struct mapped_device *md = bdev->bd_disk->private_data;
563 int srcu_idx;
564 struct dm_table *map;
565 struct dm_target *tgt;
566 int r = -ENOTTY;
567
568 retry:
569 map = dm_get_live_table(md, &srcu_idx);
570
571 if (!map || !dm_table_get_size(map))
572 goto out;
573
574 /* We only support devices that have a single target */
575 if (dm_table_get_num_targets(map) != 1)
576 goto out;
577
578 tgt = dm_table_get_target(map, 0);
579 if (!tgt->type->ioctl)
580 goto out;
581
582 if (dm_suspended_md(md)) {
583 r = -EAGAIN;
584 goto out;
585 }
586
587 r = tgt->type->ioctl(tgt, cmd, arg);
588
589 out:
590 dm_put_live_table(md, srcu_idx);
591
592 if (r == -ENOTCONN) {
593 msleep(10);
594 goto retry;
595 }
596
597 return r;
598 }
599
600 static struct dm_io *alloc_io(struct mapped_device *md)
601 {
602 return mempool_alloc(md->io_pool, GFP_NOIO);
603 }
604
605 static void free_io(struct mapped_device *md, struct dm_io *io)
606 {
607 mempool_free(io, md->io_pool);
608 }
609
610 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
611 {
612 bio_put(&tio->clone);
613 }
614
615 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
616 gfp_t gfp_mask)
617 {
618 return mempool_alloc(md->io_pool, gfp_mask);
619 }
620
621 static void free_rq_tio(struct dm_rq_target_io *tio)
622 {
623 mempool_free(tio, tio->md->io_pool);
624 }
625
626 static struct request *alloc_clone_request(struct mapped_device *md,
627 gfp_t gfp_mask)
628 {
629 return mempool_alloc(md->rq_pool, gfp_mask);
630 }
631
632 static void free_clone_request(struct mapped_device *md, struct request *rq)
633 {
634 mempool_free(rq, md->rq_pool);
635 }
636
637 static int md_in_flight(struct mapped_device *md)
638 {
639 return atomic_read(&md->pending[READ]) +
640 atomic_read(&md->pending[WRITE]);
641 }
642
643 static void start_io_acct(struct dm_io *io)
644 {
645 struct mapped_device *md = io->md;
646 struct bio *bio = io->bio;
647 int cpu;
648 int rw = bio_data_dir(bio);
649
650 io->start_time = jiffies;
651
652 cpu = part_stat_lock();
653 part_round_stats(cpu, &dm_disk(md)->part0);
654 part_stat_unlock();
655 atomic_set(&dm_disk(md)->part0.in_flight[rw],
656 atomic_inc_return(&md->pending[rw]));
657
658 if (unlikely(dm_stats_used(&md->stats)))
659 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
660 bio_sectors(bio), false, 0, &io->stats_aux);
661 }
662
663 static void end_io_acct(struct dm_io *io)
664 {
665 struct mapped_device *md = io->md;
666 struct bio *bio = io->bio;
667 unsigned long duration = jiffies - io->start_time;
668 int pending;
669 int rw = bio_data_dir(bio);
670
671 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
672
673 if (unlikely(dm_stats_used(&md->stats)))
674 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
675 bio_sectors(bio), true, duration, &io->stats_aux);
676
677 /*
678 * After this is decremented the bio must not be touched if it is
679 * a flush.
680 */
681 pending = atomic_dec_return(&md->pending[rw]);
682 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
683 pending += atomic_read(&md->pending[rw^0x1]);
684
685 /* nudge anyone waiting on suspend queue */
686 if (!pending)
687 wake_up(&md->wait);
688 }
689
690 /*
691 * Add the bio to the list of deferred io.
692 */
693 static void queue_io(struct mapped_device *md, struct bio *bio)
694 {
695 unsigned long flags;
696
697 spin_lock_irqsave(&md->deferred_lock, flags);
698 bio_list_add(&md->deferred, bio);
699 spin_unlock_irqrestore(&md->deferred_lock, flags);
700 queue_work(md->wq, &md->work);
701 }
702
703 /*
704 * Everyone (including functions in this file), should use this
705 * function to access the md->map field, and make sure they call
706 * dm_put_live_table() when finished.
707 */
708 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
709 {
710 *srcu_idx = srcu_read_lock(&md->io_barrier);
711
712 return srcu_dereference(md->map, &md->io_barrier);
713 }
714
715 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
716 {
717 srcu_read_unlock(&md->io_barrier, srcu_idx);
718 }
719
720 void dm_sync_table(struct mapped_device *md)
721 {
722 synchronize_srcu(&md->io_barrier);
723 synchronize_rcu_expedited();
724 }
725
726 /*
727 * A fast alternative to dm_get_live_table/dm_put_live_table.
728 * The caller must not block between these two functions.
729 */
730 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
731 {
732 rcu_read_lock();
733 return rcu_dereference(md->map);
734 }
735
736 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
737 {
738 rcu_read_unlock();
739 }
740
741 /*
742 * Open a table device so we can use it as a map destination.
743 */
744 static int open_table_device(struct table_device *td, dev_t dev,
745 struct mapped_device *md)
746 {
747 static char *_claim_ptr = "I belong to device-mapper";
748 struct block_device *bdev;
749
750 int r;
751
752 BUG_ON(td->dm_dev.bdev);
753
754 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
755 if (IS_ERR(bdev))
756 return PTR_ERR(bdev);
757
758 r = bd_link_disk_holder(bdev, dm_disk(md));
759 if (r) {
760 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
761 return r;
762 }
763
764 td->dm_dev.bdev = bdev;
765 return 0;
766 }
767
768 /*
769 * Close a table device that we've been using.
770 */
771 static void close_table_device(struct table_device *td, struct mapped_device *md)
772 {
773 if (!td->dm_dev.bdev)
774 return;
775
776 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
777 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
778 td->dm_dev.bdev = NULL;
779 }
780
781 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
782 fmode_t mode) {
783 struct table_device *td;
784
785 list_for_each_entry(td, l, list)
786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787 return td;
788
789 return NULL;
790 }
791
792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
793 struct dm_dev **result) {
794 int r;
795 struct table_device *td;
796
797 mutex_lock(&md->table_devices_lock);
798 td = find_table_device(&md->table_devices, dev, mode);
799 if (!td) {
800 td = kmalloc(sizeof(*td), GFP_KERNEL);
801 if (!td) {
802 mutex_unlock(&md->table_devices_lock);
803 return -ENOMEM;
804 }
805
806 td->dm_dev.mode = mode;
807 td->dm_dev.bdev = NULL;
808
809 if ((r = open_table_device(td, dev, md))) {
810 mutex_unlock(&md->table_devices_lock);
811 kfree(td);
812 return r;
813 }
814
815 format_dev_t(td->dm_dev.name, dev);
816
817 atomic_set(&td->count, 0);
818 list_add(&td->list, &md->table_devices);
819 }
820 atomic_inc(&td->count);
821 mutex_unlock(&md->table_devices_lock);
822
823 *result = &td->dm_dev;
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(dm_get_table_device);
827
828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 struct table_device *td = container_of(d, struct table_device, dm_dev);
831
832 mutex_lock(&md->table_devices_lock);
833 if (atomic_dec_and_test(&td->count)) {
834 close_table_device(td, md);
835 list_del(&td->list);
836 kfree(td);
837 }
838 mutex_unlock(&md->table_devices_lock);
839 }
840 EXPORT_SYMBOL(dm_put_table_device);
841
842 static void free_table_devices(struct list_head *devices)
843 {
844 struct list_head *tmp, *next;
845
846 list_for_each_safe(tmp, next, devices) {
847 struct table_device *td = list_entry(tmp, struct table_device, list);
848
849 DMWARN("dm_destroy: %s still exists with %d references",
850 td->dm_dev.name, atomic_read(&td->count));
851 kfree(td);
852 }
853 }
854
855 /*
856 * Get the geometry associated with a dm device
857 */
858 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
859 {
860 *geo = md->geometry;
861
862 return 0;
863 }
864
865 /*
866 * Set the geometry of a device.
867 */
868 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 {
870 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
871
872 if (geo->start > sz) {
873 DMWARN("Start sector is beyond the geometry limits.");
874 return -EINVAL;
875 }
876
877 md->geometry = *geo;
878
879 return 0;
880 }
881
882 /*-----------------------------------------------------------------
883 * CRUD START:
884 * A more elegant soln is in the works that uses the queue
885 * merge fn, unfortunately there are a couple of changes to
886 * the block layer that I want to make for this. So in the
887 * interests of getting something for people to use I give
888 * you this clearly demarcated crap.
889 *---------------------------------------------------------------*/
890
891 static int __noflush_suspending(struct mapped_device *md)
892 {
893 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 }
895
896 /*
897 * Decrements the number of outstanding ios that a bio has been
898 * cloned into, completing the original io if necc.
899 */
900 static void dec_pending(struct dm_io *io, int error)
901 {
902 unsigned long flags;
903 int io_error;
904 struct bio *bio;
905 struct mapped_device *md = io->md;
906
907 /* Push-back supersedes any I/O errors */
908 if (unlikely(error)) {
909 spin_lock_irqsave(&io->endio_lock, flags);
910 if (!(io->error > 0 && __noflush_suspending(md)))
911 io->error = error;
912 spin_unlock_irqrestore(&io->endio_lock, flags);
913 }
914
915 if (atomic_dec_and_test(&io->io_count)) {
916 if (io->error == DM_ENDIO_REQUEUE) {
917 /*
918 * Target requested pushing back the I/O.
919 */
920 spin_lock_irqsave(&md->deferred_lock, flags);
921 if (__noflush_suspending(md))
922 bio_list_add_head(&md->deferred, io->bio);
923 else
924 /* noflush suspend was interrupted. */
925 io->error = -EIO;
926 spin_unlock_irqrestore(&md->deferred_lock, flags);
927 }
928
929 io_error = io->error;
930 bio = io->bio;
931 end_io_acct(io);
932 free_io(md, io);
933
934 if (io_error == DM_ENDIO_REQUEUE)
935 return;
936
937 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
938 /*
939 * Preflush done for flush with data, reissue
940 * without REQ_FLUSH.
941 */
942 bio->bi_rw &= ~REQ_FLUSH;
943 queue_io(md, bio);
944 } else {
945 /* done with normal IO or empty flush */
946 trace_block_bio_complete(md->queue, bio, io_error);
947 bio_endio(bio, io_error);
948 }
949 }
950 }
951
952 static void disable_write_same(struct mapped_device *md)
953 {
954 struct queue_limits *limits = dm_get_queue_limits(md);
955
956 /* device doesn't really support WRITE SAME, disable it */
957 limits->max_write_same_sectors = 0;
958 }
959
960 static void clone_endio(struct bio *bio, int error)
961 {
962 int r = error;
963 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
964 struct dm_io *io = tio->io;
965 struct mapped_device *md = tio->io->md;
966 dm_endio_fn endio = tio->ti->type->end_io;
967
968 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
969 error = -EIO;
970
971 if (endio) {
972 r = endio(tio->ti, bio, error);
973 if (r < 0 || r == DM_ENDIO_REQUEUE)
974 /*
975 * error and requeue request are handled
976 * in dec_pending().
977 */
978 error = r;
979 else if (r == DM_ENDIO_INCOMPLETE)
980 /* The target will handle the io */
981 return;
982 else if (r) {
983 DMWARN("unimplemented target endio return value: %d", r);
984 BUG();
985 }
986 }
987
988 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
989 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
990 disable_write_same(md);
991
992 free_tio(md, tio);
993 dec_pending(io, error);
994 }
995
996 /*
997 * Partial completion handling for request-based dm
998 */
999 static void end_clone_bio(struct bio *clone, int error)
1000 {
1001 struct dm_rq_clone_bio_info *info =
1002 container_of(clone, struct dm_rq_clone_bio_info, clone);
1003 struct dm_rq_target_io *tio = info->tio;
1004 struct bio *bio = info->orig;
1005 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1006
1007 bio_put(clone);
1008
1009 if (tio->error)
1010 /*
1011 * An error has already been detected on the request.
1012 * Once error occurred, just let clone->end_io() handle
1013 * the remainder.
1014 */
1015 return;
1016 else if (error) {
1017 /*
1018 * Don't notice the error to the upper layer yet.
1019 * The error handling decision is made by the target driver,
1020 * when the request is completed.
1021 */
1022 tio->error = error;
1023 return;
1024 }
1025
1026 /*
1027 * I/O for the bio successfully completed.
1028 * Notice the data completion to the upper layer.
1029 */
1030
1031 /*
1032 * bios are processed from the head of the list.
1033 * So the completing bio should always be rq->bio.
1034 * If it's not, something wrong is happening.
1035 */
1036 if (tio->orig->bio != bio)
1037 DMERR("bio completion is going in the middle of the request");
1038
1039 /*
1040 * Update the original request.
1041 * Do not use blk_end_request() here, because it may complete
1042 * the original request before the clone, and break the ordering.
1043 */
1044 blk_update_request(tio->orig, 0, nr_bytes);
1045 }
1046
1047 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1048 {
1049 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1050 }
1051
1052 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1053 {
1054 if (unlikely(dm_stats_used(&md->stats))) {
1055 struct dm_rq_target_io *tio = tio_from_request(orig);
1056 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1057 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1058 tio->n_sectors, true, tio->duration_jiffies,
1059 &tio->stats_aux);
1060 }
1061 }
1062
1063 /*
1064 * Don't touch any member of the md after calling this function because
1065 * the md may be freed in dm_put() at the end of this function.
1066 * Or do dm_get() before calling this function and dm_put() later.
1067 */
1068 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1069 {
1070 int nr_requests_pending;
1071
1072 atomic_dec(&md->pending[rw]);
1073
1074 /* nudge anyone waiting on suspend queue */
1075 nr_requests_pending = md_in_flight(md);
1076 if (!nr_requests_pending)
1077 wake_up(&md->wait);
1078
1079 /*
1080 * Run this off this callpath, as drivers could invoke end_io while
1081 * inside their request_fn (and holding the queue lock). Calling
1082 * back into ->request_fn() could deadlock attempting to grab the
1083 * queue lock again.
1084 */
1085 if (run_queue) {
1086 if (md->queue->mq_ops)
1087 blk_mq_run_hw_queues(md->queue, true);
1088 else if (!nr_requests_pending ||
1089 (nr_requests_pending >= md->queue->nr_congestion_on))
1090 blk_run_queue_async(md->queue);
1091 }
1092
1093 /*
1094 * dm_put() must be at the end of this function. See the comment above
1095 */
1096 dm_put(md);
1097 }
1098
1099 static void free_rq_clone(struct request *clone)
1100 {
1101 struct dm_rq_target_io *tio = clone->end_io_data;
1102 struct mapped_device *md = tio->md;
1103
1104 blk_rq_unprep_clone(clone);
1105
1106 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1107 /* stacked on blk-mq queue(s) */
1108 tio->ti->type->release_clone_rq(clone);
1109 else if (!md->queue->mq_ops)
1110 /* request_fn queue stacked on request_fn queue(s) */
1111 free_clone_request(md, clone);
1112 /*
1113 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1114 * no need to call free_clone_request() because we leverage blk-mq by
1115 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1116 */
1117
1118 if (!md->queue->mq_ops)
1119 free_rq_tio(tio);
1120 }
1121
1122 /*
1123 * Complete the clone and the original request.
1124 * Must be called without clone's queue lock held,
1125 * see end_clone_request() for more details.
1126 */
1127 static void dm_end_request(struct request *clone, int error)
1128 {
1129 int rw = rq_data_dir(clone);
1130 struct dm_rq_target_io *tio = clone->end_io_data;
1131 struct mapped_device *md = tio->md;
1132 struct request *rq = tio->orig;
1133
1134 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1135 rq->errors = clone->errors;
1136 rq->resid_len = clone->resid_len;
1137
1138 if (rq->sense)
1139 /*
1140 * We are using the sense buffer of the original
1141 * request.
1142 * So setting the length of the sense data is enough.
1143 */
1144 rq->sense_len = clone->sense_len;
1145 }
1146
1147 free_rq_clone(clone);
1148 rq_end_stats(md, rq);
1149 if (!rq->q->mq_ops)
1150 blk_end_request_all(rq, error);
1151 else
1152 blk_mq_end_request(rq, error);
1153 rq_completed(md, rw, true);
1154 }
1155
1156 static void dm_unprep_request(struct request *rq)
1157 {
1158 struct dm_rq_target_io *tio = tio_from_request(rq);
1159 struct request *clone = tio->clone;
1160
1161 if (!rq->q->mq_ops) {
1162 rq->special = NULL;
1163 rq->cmd_flags &= ~REQ_DONTPREP;
1164 }
1165
1166 if (clone)
1167 free_rq_clone(clone);
1168 }
1169
1170 /*
1171 * Requeue the original request of a clone.
1172 */
1173 static void old_requeue_request(struct request *rq)
1174 {
1175 struct request_queue *q = rq->q;
1176 unsigned long flags;
1177
1178 spin_lock_irqsave(q->queue_lock, flags);
1179 blk_requeue_request(q, rq);
1180 blk_run_queue_async(q);
1181 spin_unlock_irqrestore(q->queue_lock, flags);
1182 }
1183
1184 static void dm_requeue_original_request(struct mapped_device *md,
1185 struct request *rq)
1186 {
1187 int rw = rq_data_dir(rq);
1188
1189 dm_unprep_request(rq);
1190
1191 rq_end_stats(md, rq);
1192 if (!rq->q->mq_ops)
1193 old_requeue_request(rq);
1194 else {
1195 blk_mq_requeue_request(rq);
1196 blk_mq_kick_requeue_list(rq->q);
1197 }
1198
1199 rq_completed(md, rw, false);
1200 }
1201
1202 static void old_stop_queue(struct request_queue *q)
1203 {
1204 unsigned long flags;
1205
1206 if (blk_queue_stopped(q))
1207 return;
1208
1209 spin_lock_irqsave(q->queue_lock, flags);
1210 blk_stop_queue(q);
1211 spin_unlock_irqrestore(q->queue_lock, flags);
1212 }
1213
1214 static void stop_queue(struct request_queue *q)
1215 {
1216 if (!q->mq_ops)
1217 old_stop_queue(q);
1218 else
1219 blk_mq_stop_hw_queues(q);
1220 }
1221
1222 static void old_start_queue(struct request_queue *q)
1223 {
1224 unsigned long flags;
1225
1226 spin_lock_irqsave(q->queue_lock, flags);
1227 if (blk_queue_stopped(q))
1228 blk_start_queue(q);
1229 spin_unlock_irqrestore(q->queue_lock, flags);
1230 }
1231
1232 static void start_queue(struct request_queue *q)
1233 {
1234 if (!q->mq_ops)
1235 old_start_queue(q);
1236 else
1237 blk_mq_start_stopped_hw_queues(q, true);
1238 }
1239
1240 static void dm_done(struct request *clone, int error, bool mapped)
1241 {
1242 int r = error;
1243 struct dm_rq_target_io *tio = clone->end_io_data;
1244 dm_request_endio_fn rq_end_io = NULL;
1245
1246 if (tio->ti) {
1247 rq_end_io = tio->ti->type->rq_end_io;
1248
1249 if (mapped && rq_end_io)
1250 r = rq_end_io(tio->ti, clone, error, &tio->info);
1251 }
1252
1253 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1254 !clone->q->limits.max_write_same_sectors))
1255 disable_write_same(tio->md);
1256
1257 if (r <= 0)
1258 /* The target wants to complete the I/O */
1259 dm_end_request(clone, r);
1260 else if (r == DM_ENDIO_INCOMPLETE)
1261 /* The target will handle the I/O */
1262 return;
1263 else if (r == DM_ENDIO_REQUEUE)
1264 /* The target wants to requeue the I/O */
1265 dm_requeue_original_request(tio->md, tio->orig);
1266 else {
1267 DMWARN("unimplemented target endio return value: %d", r);
1268 BUG();
1269 }
1270 }
1271
1272 /*
1273 * Request completion handler for request-based dm
1274 */
1275 static void dm_softirq_done(struct request *rq)
1276 {
1277 bool mapped = true;
1278 struct dm_rq_target_io *tio = tio_from_request(rq);
1279 struct request *clone = tio->clone;
1280 int rw;
1281
1282 if (!clone) {
1283 rq_end_stats(tio->md, rq);
1284 rw = rq_data_dir(rq);
1285 if (!rq->q->mq_ops) {
1286 blk_end_request_all(rq, tio->error);
1287 rq_completed(tio->md, rw, false);
1288 free_rq_tio(tio);
1289 } else {
1290 blk_mq_end_request(rq, tio->error);
1291 rq_completed(tio->md, rw, false);
1292 }
1293 return;
1294 }
1295
1296 if (rq->cmd_flags & REQ_FAILED)
1297 mapped = false;
1298
1299 dm_done(clone, tio->error, mapped);
1300 }
1301
1302 /*
1303 * Complete the clone and the original request with the error status
1304 * through softirq context.
1305 */
1306 static void dm_complete_request(struct request *rq, int error)
1307 {
1308 struct dm_rq_target_io *tio = tio_from_request(rq);
1309
1310 tio->error = error;
1311 blk_complete_request(rq);
1312 }
1313
1314 /*
1315 * Complete the not-mapped clone and the original request with the error status
1316 * through softirq context.
1317 * Target's rq_end_io() function isn't called.
1318 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1319 */
1320 static void dm_kill_unmapped_request(struct request *rq, int error)
1321 {
1322 rq->cmd_flags |= REQ_FAILED;
1323 dm_complete_request(rq, error);
1324 }
1325
1326 /*
1327 * Called with the clone's queue lock held (for non-blk-mq)
1328 */
1329 static void end_clone_request(struct request *clone, int error)
1330 {
1331 struct dm_rq_target_io *tio = clone->end_io_data;
1332
1333 if (!clone->q->mq_ops) {
1334 /*
1335 * For just cleaning up the information of the queue in which
1336 * the clone was dispatched.
1337 * The clone is *NOT* freed actually here because it is alloced
1338 * from dm own mempool (REQ_ALLOCED isn't set).
1339 */
1340 __blk_put_request(clone->q, clone);
1341 }
1342
1343 /*
1344 * Actual request completion is done in a softirq context which doesn't
1345 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1346 * - another request may be submitted by the upper level driver
1347 * of the stacking during the completion
1348 * - the submission which requires queue lock may be done
1349 * against this clone's queue
1350 */
1351 dm_complete_request(tio->orig, error);
1352 }
1353
1354 /*
1355 * Return maximum size of I/O possible at the supplied sector up to the current
1356 * target boundary.
1357 */
1358 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1359 {
1360 sector_t target_offset = dm_target_offset(ti, sector);
1361
1362 return ti->len - target_offset;
1363 }
1364
1365 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1366 {
1367 sector_t len = max_io_len_target_boundary(sector, ti);
1368 sector_t offset, max_len;
1369
1370 /*
1371 * Does the target need to split even further?
1372 */
1373 if (ti->max_io_len) {
1374 offset = dm_target_offset(ti, sector);
1375 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1376 max_len = sector_div(offset, ti->max_io_len);
1377 else
1378 max_len = offset & (ti->max_io_len - 1);
1379 max_len = ti->max_io_len - max_len;
1380
1381 if (len > max_len)
1382 len = max_len;
1383 }
1384
1385 return len;
1386 }
1387
1388 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1389 {
1390 if (len > UINT_MAX) {
1391 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1392 (unsigned long long)len, UINT_MAX);
1393 ti->error = "Maximum size of target IO is too large";
1394 return -EINVAL;
1395 }
1396
1397 ti->max_io_len = (uint32_t) len;
1398
1399 return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1402
1403 /*
1404 * A target may call dm_accept_partial_bio only from the map routine. It is
1405 * allowed for all bio types except REQ_FLUSH.
1406 *
1407 * dm_accept_partial_bio informs the dm that the target only wants to process
1408 * additional n_sectors sectors of the bio and the rest of the data should be
1409 * sent in a next bio.
1410 *
1411 * A diagram that explains the arithmetics:
1412 * +--------------------+---------------+-------+
1413 * | 1 | 2 | 3 |
1414 * +--------------------+---------------+-------+
1415 *
1416 * <-------------- *tio->len_ptr --------------->
1417 * <------- bi_size ------->
1418 * <-- n_sectors -->
1419 *
1420 * Region 1 was already iterated over with bio_advance or similar function.
1421 * (it may be empty if the target doesn't use bio_advance)
1422 * Region 2 is the remaining bio size that the target wants to process.
1423 * (it may be empty if region 1 is non-empty, although there is no reason
1424 * to make it empty)
1425 * The target requires that region 3 is to be sent in the next bio.
1426 *
1427 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1428 * the partially processed part (the sum of regions 1+2) must be the same for all
1429 * copies of the bio.
1430 */
1431 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1432 {
1433 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1434 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1435 BUG_ON(bio->bi_rw & REQ_FLUSH);
1436 BUG_ON(bi_size > *tio->len_ptr);
1437 BUG_ON(n_sectors > bi_size);
1438 *tio->len_ptr -= bi_size - n_sectors;
1439 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1440 }
1441 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1442
1443 static void __map_bio(struct dm_target_io *tio)
1444 {
1445 int r;
1446 sector_t sector;
1447 struct mapped_device *md;
1448 struct bio *clone = &tio->clone;
1449 struct dm_target *ti = tio->ti;
1450
1451 clone->bi_end_io = clone_endio;
1452
1453 /*
1454 * Map the clone. If r == 0 we don't need to do
1455 * anything, the target has assumed ownership of
1456 * this io.
1457 */
1458 atomic_inc(&tio->io->io_count);
1459 sector = clone->bi_iter.bi_sector;
1460 r = ti->type->map(ti, clone);
1461 if (r == DM_MAPIO_REMAPPED) {
1462 /* the bio has been remapped so dispatch it */
1463
1464 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1465 tio->io->bio->bi_bdev->bd_dev, sector);
1466
1467 generic_make_request(clone);
1468 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1469 /* error the io and bail out, or requeue it if needed */
1470 md = tio->io->md;
1471 dec_pending(tio->io, r);
1472 free_tio(md, tio);
1473 } else if (r) {
1474 DMWARN("unimplemented target map return value: %d", r);
1475 BUG();
1476 }
1477 }
1478
1479 struct clone_info {
1480 struct mapped_device *md;
1481 struct dm_table *map;
1482 struct bio *bio;
1483 struct dm_io *io;
1484 sector_t sector;
1485 unsigned sector_count;
1486 };
1487
1488 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1489 {
1490 bio->bi_iter.bi_sector = sector;
1491 bio->bi_iter.bi_size = to_bytes(len);
1492 }
1493
1494 /*
1495 * Creates a bio that consists of range of complete bvecs.
1496 */
1497 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1498 sector_t sector, unsigned len)
1499 {
1500 struct bio *clone = &tio->clone;
1501
1502 __bio_clone_fast(clone, bio);
1503
1504 if (bio_integrity(bio))
1505 bio_integrity_clone(clone, bio, GFP_NOIO);
1506
1507 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1508 clone->bi_iter.bi_size = to_bytes(len);
1509
1510 if (bio_integrity(bio))
1511 bio_integrity_trim(clone, 0, len);
1512 }
1513
1514 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1515 struct dm_target *ti,
1516 unsigned target_bio_nr)
1517 {
1518 struct dm_target_io *tio;
1519 struct bio *clone;
1520
1521 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1522 tio = container_of(clone, struct dm_target_io, clone);
1523
1524 tio->io = ci->io;
1525 tio->ti = ti;
1526 tio->target_bio_nr = target_bio_nr;
1527
1528 return tio;
1529 }
1530
1531 static void __clone_and_map_simple_bio(struct clone_info *ci,
1532 struct dm_target *ti,
1533 unsigned target_bio_nr, unsigned *len)
1534 {
1535 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1536 struct bio *clone = &tio->clone;
1537
1538 tio->len_ptr = len;
1539
1540 __bio_clone_fast(clone, ci->bio);
1541 if (len)
1542 bio_setup_sector(clone, ci->sector, *len);
1543
1544 __map_bio(tio);
1545 }
1546
1547 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1548 unsigned num_bios, unsigned *len)
1549 {
1550 unsigned target_bio_nr;
1551
1552 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1553 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1554 }
1555
1556 static int __send_empty_flush(struct clone_info *ci)
1557 {
1558 unsigned target_nr = 0;
1559 struct dm_target *ti;
1560
1561 BUG_ON(bio_has_data(ci->bio));
1562 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1563 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1564
1565 return 0;
1566 }
1567
1568 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1569 sector_t sector, unsigned *len)
1570 {
1571 struct bio *bio = ci->bio;
1572 struct dm_target_io *tio;
1573 unsigned target_bio_nr;
1574 unsigned num_target_bios = 1;
1575
1576 /*
1577 * Does the target want to receive duplicate copies of the bio?
1578 */
1579 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1580 num_target_bios = ti->num_write_bios(ti, bio);
1581
1582 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1583 tio = alloc_tio(ci, ti, target_bio_nr);
1584 tio->len_ptr = len;
1585 clone_bio(tio, bio, sector, *len);
1586 __map_bio(tio);
1587 }
1588 }
1589
1590 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1591
1592 static unsigned get_num_discard_bios(struct dm_target *ti)
1593 {
1594 return ti->num_discard_bios;
1595 }
1596
1597 static unsigned get_num_write_same_bios(struct dm_target *ti)
1598 {
1599 return ti->num_write_same_bios;
1600 }
1601
1602 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1603
1604 static bool is_split_required_for_discard(struct dm_target *ti)
1605 {
1606 return ti->split_discard_bios;
1607 }
1608
1609 static int __send_changing_extent_only(struct clone_info *ci,
1610 get_num_bios_fn get_num_bios,
1611 is_split_required_fn is_split_required)
1612 {
1613 struct dm_target *ti;
1614 unsigned len;
1615 unsigned num_bios;
1616
1617 do {
1618 ti = dm_table_find_target(ci->map, ci->sector);
1619 if (!dm_target_is_valid(ti))
1620 return -EIO;
1621
1622 /*
1623 * Even though the device advertised support for this type of
1624 * request, that does not mean every target supports it, and
1625 * reconfiguration might also have changed that since the
1626 * check was performed.
1627 */
1628 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1629 if (!num_bios)
1630 return -EOPNOTSUPP;
1631
1632 if (is_split_required && !is_split_required(ti))
1633 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1634 else
1635 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1636
1637 __send_duplicate_bios(ci, ti, num_bios, &len);
1638
1639 ci->sector += len;
1640 } while (ci->sector_count -= len);
1641
1642 return 0;
1643 }
1644
1645 static int __send_discard(struct clone_info *ci)
1646 {
1647 return __send_changing_extent_only(ci, get_num_discard_bios,
1648 is_split_required_for_discard);
1649 }
1650
1651 static int __send_write_same(struct clone_info *ci)
1652 {
1653 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1654 }
1655
1656 /*
1657 * Select the correct strategy for processing a non-flush bio.
1658 */
1659 static int __split_and_process_non_flush(struct clone_info *ci)
1660 {
1661 struct bio *bio = ci->bio;
1662 struct dm_target *ti;
1663 unsigned len;
1664
1665 if (unlikely(bio->bi_rw & REQ_DISCARD))
1666 return __send_discard(ci);
1667 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1668 return __send_write_same(ci);
1669
1670 ti = dm_table_find_target(ci->map, ci->sector);
1671 if (!dm_target_is_valid(ti))
1672 return -EIO;
1673
1674 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1675
1676 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1677
1678 ci->sector += len;
1679 ci->sector_count -= len;
1680
1681 return 0;
1682 }
1683
1684 /*
1685 * Entry point to split a bio into clones and submit them to the targets.
1686 */
1687 static void __split_and_process_bio(struct mapped_device *md,
1688 struct dm_table *map, struct bio *bio)
1689 {
1690 struct clone_info ci;
1691 int error = 0;
1692
1693 if (unlikely(!map)) {
1694 bio_io_error(bio);
1695 return;
1696 }
1697
1698 ci.map = map;
1699 ci.md = md;
1700 ci.io = alloc_io(md);
1701 ci.io->error = 0;
1702 atomic_set(&ci.io->io_count, 1);
1703 ci.io->bio = bio;
1704 ci.io->md = md;
1705 spin_lock_init(&ci.io->endio_lock);
1706 ci.sector = bio->bi_iter.bi_sector;
1707
1708 start_io_acct(ci.io);
1709
1710 if (bio->bi_rw & REQ_FLUSH) {
1711 ci.bio = &ci.md->flush_bio;
1712 ci.sector_count = 0;
1713 error = __send_empty_flush(&ci);
1714 /* dec_pending submits any data associated with flush */
1715 } else {
1716 ci.bio = bio;
1717 ci.sector_count = bio_sectors(bio);
1718 while (ci.sector_count && !error)
1719 error = __split_and_process_non_flush(&ci);
1720 }
1721
1722 /* drop the extra reference count */
1723 dec_pending(ci.io, error);
1724 }
1725 /*-----------------------------------------------------------------
1726 * CRUD END
1727 *---------------------------------------------------------------*/
1728
1729 static int dm_merge_bvec(struct request_queue *q,
1730 struct bvec_merge_data *bvm,
1731 struct bio_vec *biovec)
1732 {
1733 struct mapped_device *md = q->queuedata;
1734 struct dm_table *map = dm_get_live_table_fast(md);
1735 struct dm_target *ti;
1736 sector_t max_sectors, max_size = 0;
1737
1738 if (unlikely(!map))
1739 goto out;
1740
1741 ti = dm_table_find_target(map, bvm->bi_sector);
1742 if (!dm_target_is_valid(ti))
1743 goto out;
1744
1745 /*
1746 * Find maximum amount of I/O that won't need splitting
1747 */
1748 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1749 (sector_t) queue_max_sectors(q));
1750 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1751
1752 /*
1753 * FIXME: this stop-gap fix _must_ be cleaned up (by passing a sector_t
1754 * to the targets' merge function since it holds sectors not bytes).
1755 * Just doing this as an interim fix for stable@ because the more
1756 * comprehensive cleanup of switching to sector_t will impact every
1757 * DM target that implements a ->merge hook.
1758 */
1759 if (max_size > INT_MAX)
1760 max_size = INT_MAX;
1761
1762 /*
1763 * merge_bvec_fn() returns number of bytes
1764 * it can accept at this offset
1765 * max is precomputed maximal io size
1766 */
1767 if (max_size && ti->type->merge)
1768 max_size = ti->type->merge(ti, bvm, biovec, (int) max_size);
1769 /*
1770 * If the target doesn't support merge method and some of the devices
1771 * provided their merge_bvec method (we know this by looking for the
1772 * max_hw_sectors that dm_set_device_limits may set), then we can't
1773 * allow bios with multiple vector entries. So always set max_size
1774 * to 0, and the code below allows just one page.
1775 */
1776 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1777 max_size = 0;
1778
1779 out:
1780 dm_put_live_table_fast(md);
1781 /*
1782 * Always allow an entire first page
1783 */
1784 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1785 max_size = biovec->bv_len;
1786
1787 return max_size;
1788 }
1789
1790 /*
1791 * The request function that just remaps the bio built up by
1792 * dm_merge_bvec.
1793 */
1794 static void dm_make_request(struct request_queue *q, struct bio *bio)
1795 {
1796 int rw = bio_data_dir(bio);
1797 struct mapped_device *md = q->queuedata;
1798 int srcu_idx;
1799 struct dm_table *map;
1800
1801 map = dm_get_live_table(md, &srcu_idx);
1802
1803 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1804
1805 /* if we're suspended, we have to queue this io for later */
1806 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1807 dm_put_live_table(md, srcu_idx);
1808
1809 if (bio_rw(bio) != READA)
1810 queue_io(md, bio);
1811 else
1812 bio_io_error(bio);
1813 return;
1814 }
1815
1816 __split_and_process_bio(md, map, bio);
1817 dm_put_live_table(md, srcu_idx);
1818 return;
1819 }
1820
1821 int dm_request_based(struct mapped_device *md)
1822 {
1823 return blk_queue_stackable(md->queue);
1824 }
1825
1826 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1827 {
1828 int r;
1829
1830 if (blk_queue_io_stat(clone->q))
1831 clone->cmd_flags |= REQ_IO_STAT;
1832
1833 clone->start_time = jiffies;
1834 r = blk_insert_cloned_request(clone->q, clone);
1835 if (r)
1836 /* must complete clone in terms of original request */
1837 dm_complete_request(rq, r);
1838 }
1839
1840 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1841 void *data)
1842 {
1843 struct dm_rq_target_io *tio = data;
1844 struct dm_rq_clone_bio_info *info =
1845 container_of(bio, struct dm_rq_clone_bio_info, clone);
1846
1847 info->orig = bio_orig;
1848 info->tio = tio;
1849 bio->bi_end_io = end_clone_bio;
1850
1851 return 0;
1852 }
1853
1854 static int setup_clone(struct request *clone, struct request *rq,
1855 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1856 {
1857 int r;
1858
1859 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1860 dm_rq_bio_constructor, tio);
1861 if (r)
1862 return r;
1863
1864 clone->cmd = rq->cmd;
1865 clone->cmd_len = rq->cmd_len;
1866 clone->sense = rq->sense;
1867 clone->end_io = end_clone_request;
1868 clone->end_io_data = tio;
1869
1870 tio->clone = clone;
1871
1872 return 0;
1873 }
1874
1875 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1876 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1877 {
1878 /*
1879 * Do not allocate a clone if tio->clone was already set
1880 * (see: dm_mq_queue_rq).
1881 */
1882 bool alloc_clone = !tio->clone;
1883 struct request *clone;
1884
1885 if (alloc_clone) {
1886 clone = alloc_clone_request(md, gfp_mask);
1887 if (!clone)
1888 return NULL;
1889 } else
1890 clone = tio->clone;
1891
1892 blk_rq_init(NULL, clone);
1893 if (setup_clone(clone, rq, tio, gfp_mask)) {
1894 /* -ENOMEM */
1895 if (alloc_clone)
1896 free_clone_request(md, clone);
1897 return NULL;
1898 }
1899
1900 return clone;
1901 }
1902
1903 static void map_tio_request(struct kthread_work *work);
1904
1905 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1906 struct mapped_device *md)
1907 {
1908 tio->md = md;
1909 tio->ti = NULL;
1910 tio->clone = NULL;
1911 tio->orig = rq;
1912 tio->error = 0;
1913 memset(&tio->info, 0, sizeof(tio->info));
1914 if (md->kworker_task)
1915 init_kthread_work(&tio->work, map_tio_request);
1916 }
1917
1918 static struct dm_rq_target_io *prep_tio(struct request *rq,
1919 struct mapped_device *md, gfp_t gfp_mask)
1920 {
1921 struct dm_rq_target_io *tio;
1922 int srcu_idx;
1923 struct dm_table *table;
1924
1925 tio = alloc_rq_tio(md, gfp_mask);
1926 if (!tio)
1927 return NULL;
1928
1929 init_tio(tio, rq, md);
1930
1931 table = dm_get_live_table(md, &srcu_idx);
1932 if (!dm_table_mq_request_based(table)) {
1933 if (!clone_rq(rq, md, tio, gfp_mask)) {
1934 dm_put_live_table(md, srcu_idx);
1935 free_rq_tio(tio);
1936 return NULL;
1937 }
1938 }
1939 dm_put_live_table(md, srcu_idx);
1940
1941 return tio;
1942 }
1943
1944 /*
1945 * Called with the queue lock held.
1946 */
1947 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1948 {
1949 struct mapped_device *md = q->queuedata;
1950 struct dm_rq_target_io *tio;
1951
1952 if (unlikely(rq->special)) {
1953 DMWARN("Already has something in rq->special.");
1954 return BLKPREP_KILL;
1955 }
1956
1957 tio = prep_tio(rq, md, GFP_ATOMIC);
1958 if (!tio)
1959 return BLKPREP_DEFER;
1960
1961 rq->special = tio;
1962 rq->cmd_flags |= REQ_DONTPREP;
1963
1964 return BLKPREP_OK;
1965 }
1966
1967 /*
1968 * Returns:
1969 * 0 : the request has been processed
1970 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1971 * < 0 : the request was completed due to failure
1972 */
1973 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1974 struct mapped_device *md)
1975 {
1976 int r;
1977 struct dm_target *ti = tio->ti;
1978 struct request *clone = NULL;
1979
1980 if (tio->clone) {
1981 clone = tio->clone;
1982 r = ti->type->map_rq(ti, clone, &tio->info);
1983 } else {
1984 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1985 if (r < 0) {
1986 /* The target wants to complete the I/O */
1987 dm_kill_unmapped_request(rq, r);
1988 return r;
1989 }
1990 if (r != DM_MAPIO_REMAPPED)
1991 return r;
1992 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1993 /* -ENOMEM */
1994 ti->type->release_clone_rq(clone);
1995 return DM_MAPIO_REQUEUE;
1996 }
1997 }
1998
1999 switch (r) {
2000 case DM_MAPIO_SUBMITTED:
2001 /* The target has taken the I/O to submit by itself later */
2002 break;
2003 case DM_MAPIO_REMAPPED:
2004 /* The target has remapped the I/O so dispatch it */
2005 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2006 blk_rq_pos(rq));
2007 dm_dispatch_clone_request(clone, rq);
2008 break;
2009 case DM_MAPIO_REQUEUE:
2010 /* The target wants to requeue the I/O */
2011 dm_requeue_original_request(md, tio->orig);
2012 break;
2013 default:
2014 if (r > 0) {
2015 DMWARN("unimplemented target map return value: %d", r);
2016 BUG();
2017 }
2018
2019 /* The target wants to complete the I/O */
2020 dm_kill_unmapped_request(rq, r);
2021 return r;
2022 }
2023
2024 return 0;
2025 }
2026
2027 static void map_tio_request(struct kthread_work *work)
2028 {
2029 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2030 struct request *rq = tio->orig;
2031 struct mapped_device *md = tio->md;
2032
2033 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2034 dm_requeue_original_request(md, rq);
2035 }
2036
2037 static void dm_start_request(struct mapped_device *md, struct request *orig)
2038 {
2039 if (!orig->q->mq_ops)
2040 blk_start_request(orig);
2041 else
2042 blk_mq_start_request(orig);
2043 atomic_inc(&md->pending[rq_data_dir(orig)]);
2044
2045 if (md->seq_rq_merge_deadline_usecs) {
2046 md->last_rq_pos = rq_end_sector(orig);
2047 md->last_rq_rw = rq_data_dir(orig);
2048 md->last_rq_start_time = ktime_get();
2049 }
2050
2051 if (unlikely(dm_stats_used(&md->stats))) {
2052 struct dm_rq_target_io *tio = tio_from_request(orig);
2053 tio->duration_jiffies = jiffies;
2054 tio->n_sectors = blk_rq_sectors(orig);
2055 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2056 tio->n_sectors, false, 0, &tio->stats_aux);
2057 }
2058
2059 /*
2060 * Hold the md reference here for the in-flight I/O.
2061 * We can't rely on the reference count by device opener,
2062 * because the device may be closed during the request completion
2063 * when all bios are completed.
2064 * See the comment in rq_completed() too.
2065 */
2066 dm_get(md);
2067 }
2068
2069 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2070
2071 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2072 {
2073 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2074 }
2075
2076 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2077 const char *buf, size_t count)
2078 {
2079 unsigned deadline;
2080
2081 if (!dm_request_based(md) || md->use_blk_mq)
2082 return count;
2083
2084 if (kstrtouint(buf, 10, &deadline))
2085 return -EINVAL;
2086
2087 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2088 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2089
2090 md->seq_rq_merge_deadline_usecs = deadline;
2091
2092 return count;
2093 }
2094
2095 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2096 {
2097 ktime_t kt_deadline;
2098
2099 if (!md->seq_rq_merge_deadline_usecs)
2100 return false;
2101
2102 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2103 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2104
2105 return !ktime_after(ktime_get(), kt_deadline);
2106 }
2107
2108 /*
2109 * q->request_fn for request-based dm.
2110 * Called with the queue lock held.
2111 */
2112 static void dm_request_fn(struct request_queue *q)
2113 {
2114 struct mapped_device *md = q->queuedata;
2115 int srcu_idx;
2116 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2117 struct dm_target *ti;
2118 struct request *rq;
2119 struct dm_rq_target_io *tio;
2120 sector_t pos;
2121
2122 /*
2123 * For suspend, check blk_queue_stopped() and increment
2124 * ->pending within a single queue_lock not to increment the
2125 * number of in-flight I/Os after the queue is stopped in
2126 * dm_suspend().
2127 */
2128 while (!blk_queue_stopped(q)) {
2129 rq = blk_peek_request(q);
2130 if (!rq)
2131 goto out;
2132
2133 /* always use block 0 to find the target for flushes for now */
2134 pos = 0;
2135 if (!(rq->cmd_flags & REQ_FLUSH))
2136 pos = blk_rq_pos(rq);
2137
2138 ti = dm_table_find_target(map, pos);
2139 if (!dm_target_is_valid(ti)) {
2140 /*
2141 * Must perform setup, that rq_completed() requires,
2142 * before calling dm_kill_unmapped_request
2143 */
2144 DMERR_LIMIT("request attempted access beyond the end of device");
2145 dm_start_request(md, rq);
2146 dm_kill_unmapped_request(rq, -EIO);
2147 continue;
2148 }
2149
2150 if (dm_request_peeked_before_merge_deadline(md) &&
2151 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2152 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2153 goto delay_and_out;
2154
2155 if (ti->type->busy && ti->type->busy(ti))
2156 goto delay_and_out;
2157
2158 dm_start_request(md, rq);
2159
2160 tio = tio_from_request(rq);
2161 /* Establish tio->ti before queuing work (map_tio_request) */
2162 tio->ti = ti;
2163 queue_kthread_work(&md->kworker, &tio->work);
2164 BUG_ON(!irqs_disabled());
2165 }
2166
2167 goto out;
2168
2169 delay_and_out:
2170 blk_delay_queue(q, HZ / 100);
2171 out:
2172 dm_put_live_table(md, srcu_idx);
2173 }
2174
2175 static int dm_any_congested(void *congested_data, int bdi_bits)
2176 {
2177 int r = bdi_bits;
2178 struct mapped_device *md = congested_data;
2179 struct dm_table *map;
2180
2181 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2182 map = dm_get_live_table_fast(md);
2183 if (map) {
2184 /*
2185 * Request-based dm cares about only own queue for
2186 * the query about congestion status of request_queue
2187 */
2188 if (dm_request_based(md))
2189 r = md->queue->backing_dev_info.wb.state &
2190 bdi_bits;
2191 else
2192 r = dm_table_any_congested(map, bdi_bits);
2193 }
2194 dm_put_live_table_fast(md);
2195 }
2196
2197 return r;
2198 }
2199
2200 /*-----------------------------------------------------------------
2201 * An IDR is used to keep track of allocated minor numbers.
2202 *---------------------------------------------------------------*/
2203 static void free_minor(int minor)
2204 {
2205 spin_lock(&_minor_lock);
2206 idr_remove(&_minor_idr, minor);
2207 spin_unlock(&_minor_lock);
2208 }
2209
2210 /*
2211 * See if the device with a specific minor # is free.
2212 */
2213 static int specific_minor(int minor)
2214 {
2215 int r;
2216
2217 if (minor >= (1 << MINORBITS))
2218 return -EINVAL;
2219
2220 idr_preload(GFP_KERNEL);
2221 spin_lock(&_minor_lock);
2222
2223 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2224
2225 spin_unlock(&_minor_lock);
2226 idr_preload_end();
2227 if (r < 0)
2228 return r == -ENOSPC ? -EBUSY : r;
2229 return 0;
2230 }
2231
2232 static int next_free_minor(int *minor)
2233 {
2234 int r;
2235
2236 idr_preload(GFP_KERNEL);
2237 spin_lock(&_minor_lock);
2238
2239 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2240
2241 spin_unlock(&_minor_lock);
2242 idr_preload_end();
2243 if (r < 0)
2244 return r;
2245 *minor = r;
2246 return 0;
2247 }
2248
2249 static const struct block_device_operations dm_blk_dops;
2250
2251 static void dm_wq_work(struct work_struct *work);
2252
2253 static void dm_init_md_queue(struct mapped_device *md)
2254 {
2255 /*
2256 * Request-based dm devices cannot be stacked on top of bio-based dm
2257 * devices. The type of this dm device may not have been decided yet.
2258 * The type is decided at the first table loading time.
2259 * To prevent problematic device stacking, clear the queue flag
2260 * for request stacking support until then.
2261 *
2262 * This queue is new, so no concurrency on the queue_flags.
2263 */
2264 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2265 }
2266
2267 static void dm_init_old_md_queue(struct mapped_device *md)
2268 {
2269 md->use_blk_mq = false;
2270 dm_init_md_queue(md);
2271
2272 /*
2273 * Initialize aspects of queue that aren't relevant for blk-mq
2274 */
2275 md->queue->queuedata = md;
2276 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2277 md->queue->backing_dev_info.congested_data = md;
2278
2279 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2280 }
2281
2282 static void cleanup_mapped_device(struct mapped_device *md)
2283 {
2284 cleanup_srcu_struct(&md->io_barrier);
2285
2286 if (md->wq)
2287 destroy_workqueue(md->wq);
2288 if (md->kworker_task)
2289 kthread_stop(md->kworker_task);
2290 if (md->io_pool)
2291 mempool_destroy(md->io_pool);
2292 if (md->rq_pool)
2293 mempool_destroy(md->rq_pool);
2294 if (md->bs)
2295 bioset_free(md->bs);
2296
2297 if (md->disk) {
2298 spin_lock(&_minor_lock);
2299 md->disk->private_data = NULL;
2300 spin_unlock(&_minor_lock);
2301 if (blk_get_integrity(md->disk))
2302 blk_integrity_unregister(md->disk);
2303 del_gendisk(md->disk);
2304 put_disk(md->disk);
2305 }
2306
2307 if (md->queue)
2308 blk_cleanup_queue(md->queue);
2309
2310 if (md->bdev) {
2311 bdput(md->bdev);
2312 md->bdev = NULL;
2313 }
2314 }
2315
2316 /*
2317 * Allocate and initialise a blank device with a given minor.
2318 */
2319 static struct mapped_device *alloc_dev(int minor)
2320 {
2321 int r;
2322 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2323 void *old_md;
2324
2325 if (!md) {
2326 DMWARN("unable to allocate device, out of memory.");
2327 return NULL;
2328 }
2329
2330 if (!try_module_get(THIS_MODULE))
2331 goto bad_module_get;
2332
2333 /* get a minor number for the dev */
2334 if (minor == DM_ANY_MINOR)
2335 r = next_free_minor(&minor);
2336 else
2337 r = specific_minor(minor);
2338 if (r < 0)
2339 goto bad_minor;
2340
2341 r = init_srcu_struct(&md->io_barrier);
2342 if (r < 0)
2343 goto bad_io_barrier;
2344
2345 md->use_blk_mq = use_blk_mq;
2346 md->type = DM_TYPE_NONE;
2347 mutex_init(&md->suspend_lock);
2348 mutex_init(&md->type_lock);
2349 mutex_init(&md->table_devices_lock);
2350 spin_lock_init(&md->deferred_lock);
2351 atomic_set(&md->holders, 1);
2352 atomic_set(&md->open_count, 0);
2353 atomic_set(&md->event_nr, 0);
2354 atomic_set(&md->uevent_seq, 0);
2355 INIT_LIST_HEAD(&md->uevent_list);
2356 INIT_LIST_HEAD(&md->table_devices);
2357 spin_lock_init(&md->uevent_lock);
2358
2359 md->queue = blk_alloc_queue(GFP_KERNEL);
2360 if (!md->queue)
2361 goto bad;
2362
2363 dm_init_md_queue(md);
2364
2365 md->disk = alloc_disk(1);
2366 if (!md->disk)
2367 goto bad;
2368
2369 atomic_set(&md->pending[0], 0);
2370 atomic_set(&md->pending[1], 0);
2371 init_waitqueue_head(&md->wait);
2372 INIT_WORK(&md->work, dm_wq_work);
2373 init_waitqueue_head(&md->eventq);
2374 init_completion(&md->kobj_holder.completion);
2375 md->kworker_task = NULL;
2376
2377 md->disk->major = _major;
2378 md->disk->first_minor = minor;
2379 md->disk->fops = &dm_blk_dops;
2380 md->disk->queue = md->queue;
2381 md->disk->private_data = md;
2382 sprintf(md->disk->disk_name, "dm-%d", minor);
2383 add_disk(md->disk);
2384 format_dev_t(md->name, MKDEV(_major, minor));
2385
2386 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2387 if (!md->wq)
2388 goto bad;
2389
2390 md->bdev = bdget_disk(md->disk, 0);
2391 if (!md->bdev)
2392 goto bad;
2393
2394 bio_init(&md->flush_bio);
2395 md->flush_bio.bi_bdev = md->bdev;
2396 md->flush_bio.bi_rw = WRITE_FLUSH;
2397
2398 dm_stats_init(&md->stats);
2399
2400 /* Populate the mapping, nobody knows we exist yet */
2401 spin_lock(&_minor_lock);
2402 old_md = idr_replace(&_minor_idr, md, minor);
2403 spin_unlock(&_minor_lock);
2404
2405 BUG_ON(old_md != MINOR_ALLOCED);
2406
2407 return md;
2408
2409 bad:
2410 cleanup_mapped_device(md);
2411 bad_io_barrier:
2412 free_minor(minor);
2413 bad_minor:
2414 module_put(THIS_MODULE);
2415 bad_module_get:
2416 kfree(md);
2417 return NULL;
2418 }
2419
2420 static void unlock_fs(struct mapped_device *md);
2421
2422 static void free_dev(struct mapped_device *md)
2423 {
2424 int minor = MINOR(disk_devt(md->disk));
2425
2426 unlock_fs(md);
2427
2428 cleanup_mapped_device(md);
2429 if (md->use_blk_mq)
2430 blk_mq_free_tag_set(&md->tag_set);
2431
2432 free_table_devices(&md->table_devices);
2433 dm_stats_cleanup(&md->stats);
2434 free_minor(minor);
2435
2436 module_put(THIS_MODULE);
2437 kfree(md);
2438 }
2439
2440 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2441 {
2442 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2443
2444 if (md->bs) {
2445 /* The md already has necessary mempools. */
2446 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2447 /*
2448 * Reload bioset because front_pad may have changed
2449 * because a different table was loaded.
2450 */
2451 bioset_free(md->bs);
2452 md->bs = p->bs;
2453 p->bs = NULL;
2454 }
2455 /*
2456 * There's no need to reload with request-based dm
2457 * because the size of front_pad doesn't change.
2458 * Note for future: If you are to reload bioset,
2459 * prep-ed requests in the queue may refer
2460 * to bio from the old bioset, so you must walk
2461 * through the queue to unprep.
2462 */
2463 goto out;
2464 }
2465
2466 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2467
2468 md->io_pool = p->io_pool;
2469 p->io_pool = NULL;
2470 md->rq_pool = p->rq_pool;
2471 p->rq_pool = NULL;
2472 md->bs = p->bs;
2473 p->bs = NULL;
2474
2475 out:
2476 /* mempool bind completed, no longer need any mempools in the table */
2477 dm_table_free_md_mempools(t);
2478 }
2479
2480 /*
2481 * Bind a table to the device.
2482 */
2483 static void event_callback(void *context)
2484 {
2485 unsigned long flags;
2486 LIST_HEAD(uevents);
2487 struct mapped_device *md = (struct mapped_device *) context;
2488
2489 spin_lock_irqsave(&md->uevent_lock, flags);
2490 list_splice_init(&md->uevent_list, &uevents);
2491 spin_unlock_irqrestore(&md->uevent_lock, flags);
2492
2493 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2494
2495 atomic_inc(&md->event_nr);
2496 wake_up(&md->eventq);
2497 }
2498
2499 /*
2500 * Protected by md->suspend_lock obtained by dm_swap_table().
2501 */
2502 static void __set_size(struct mapped_device *md, sector_t size)
2503 {
2504 set_capacity(md->disk, size);
2505
2506 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2507 }
2508
2509 /*
2510 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2511 *
2512 * If this function returns 0, then the device is either a non-dm
2513 * device without a merge_bvec_fn, or it is a dm device that is
2514 * able to split any bios it receives that are too big.
2515 */
2516 int dm_queue_merge_is_compulsory(struct request_queue *q)
2517 {
2518 struct mapped_device *dev_md;
2519
2520 if (!q->merge_bvec_fn)
2521 return 0;
2522
2523 if (q->make_request_fn == dm_make_request) {
2524 dev_md = q->queuedata;
2525 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2526 return 0;
2527 }
2528
2529 return 1;
2530 }
2531
2532 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2533 struct dm_dev *dev, sector_t start,
2534 sector_t len, void *data)
2535 {
2536 struct block_device *bdev = dev->bdev;
2537 struct request_queue *q = bdev_get_queue(bdev);
2538
2539 return dm_queue_merge_is_compulsory(q);
2540 }
2541
2542 /*
2543 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2544 * on the properties of the underlying devices.
2545 */
2546 static int dm_table_merge_is_optional(struct dm_table *table)
2547 {
2548 unsigned i = 0;
2549 struct dm_target *ti;
2550
2551 while (i < dm_table_get_num_targets(table)) {
2552 ti = dm_table_get_target(table, i++);
2553
2554 if (ti->type->iterate_devices &&
2555 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2556 return 0;
2557 }
2558
2559 return 1;
2560 }
2561
2562 /*
2563 * Returns old map, which caller must destroy.
2564 */
2565 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2566 struct queue_limits *limits)
2567 {
2568 struct dm_table *old_map;
2569 struct request_queue *q = md->queue;
2570 sector_t size;
2571 int merge_is_optional;
2572
2573 size = dm_table_get_size(t);
2574
2575 /*
2576 * Wipe any geometry if the size of the table changed.
2577 */
2578 if (size != dm_get_size(md))
2579 memset(&md->geometry, 0, sizeof(md->geometry));
2580
2581 __set_size(md, size);
2582
2583 dm_table_event_callback(t, event_callback, md);
2584
2585 /*
2586 * The queue hasn't been stopped yet, if the old table type wasn't
2587 * for request-based during suspension. So stop it to prevent
2588 * I/O mapping before resume.
2589 * This must be done before setting the queue restrictions,
2590 * because request-based dm may be run just after the setting.
2591 */
2592 if (dm_table_request_based(t))
2593 stop_queue(q);
2594
2595 __bind_mempools(md, t);
2596
2597 merge_is_optional = dm_table_merge_is_optional(t);
2598
2599 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2600 rcu_assign_pointer(md->map, t);
2601 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2602
2603 dm_table_set_restrictions(t, q, limits);
2604 if (merge_is_optional)
2605 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2606 else
2607 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2608 if (old_map)
2609 dm_sync_table(md);
2610
2611 return old_map;
2612 }
2613
2614 /*
2615 * Returns unbound table for the caller to free.
2616 */
2617 static struct dm_table *__unbind(struct mapped_device *md)
2618 {
2619 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2620
2621 if (!map)
2622 return NULL;
2623
2624 dm_table_event_callback(map, NULL, NULL);
2625 RCU_INIT_POINTER(md->map, NULL);
2626 dm_sync_table(md);
2627
2628 return map;
2629 }
2630
2631 /*
2632 * Constructor for a new device.
2633 */
2634 int dm_create(int minor, struct mapped_device **result)
2635 {
2636 struct mapped_device *md;
2637
2638 md = alloc_dev(minor);
2639 if (!md)
2640 return -ENXIO;
2641
2642 dm_sysfs_init(md);
2643
2644 *result = md;
2645 return 0;
2646 }
2647
2648 /*
2649 * Functions to manage md->type.
2650 * All are required to hold md->type_lock.
2651 */
2652 void dm_lock_md_type(struct mapped_device *md)
2653 {
2654 mutex_lock(&md->type_lock);
2655 }
2656
2657 void dm_unlock_md_type(struct mapped_device *md)
2658 {
2659 mutex_unlock(&md->type_lock);
2660 }
2661
2662 void dm_set_md_type(struct mapped_device *md, unsigned type)
2663 {
2664 BUG_ON(!mutex_is_locked(&md->type_lock));
2665 md->type = type;
2666 }
2667
2668 unsigned dm_get_md_type(struct mapped_device *md)
2669 {
2670 BUG_ON(!mutex_is_locked(&md->type_lock));
2671 return md->type;
2672 }
2673
2674 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2675 {
2676 return md->immutable_target_type;
2677 }
2678
2679 /*
2680 * The queue_limits are only valid as long as you have a reference
2681 * count on 'md'.
2682 */
2683 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2684 {
2685 BUG_ON(!atomic_read(&md->holders));
2686 return &md->queue->limits;
2687 }
2688 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2689
2690 static void init_rq_based_worker_thread(struct mapped_device *md)
2691 {
2692 /* Initialize the request-based DM worker thread */
2693 init_kthread_worker(&md->kworker);
2694 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2695 "kdmwork-%s", dm_device_name(md));
2696 }
2697
2698 /*
2699 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2700 */
2701 static int dm_init_request_based_queue(struct mapped_device *md)
2702 {
2703 struct request_queue *q = NULL;
2704
2705 /* Fully initialize the queue */
2706 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2707 if (!q)
2708 return -EINVAL;
2709
2710 /* disable dm_request_fn's merge heuristic by default */
2711 md->seq_rq_merge_deadline_usecs = 0;
2712
2713 md->queue = q;
2714 dm_init_old_md_queue(md);
2715 blk_queue_softirq_done(md->queue, dm_softirq_done);
2716 blk_queue_prep_rq(md->queue, dm_prep_fn);
2717
2718 init_rq_based_worker_thread(md);
2719
2720 elv_register_queue(md->queue);
2721
2722 return 0;
2723 }
2724
2725 static int dm_mq_init_request(void *data, struct request *rq,
2726 unsigned int hctx_idx, unsigned int request_idx,
2727 unsigned int numa_node)
2728 {
2729 struct mapped_device *md = data;
2730 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2731
2732 /*
2733 * Must initialize md member of tio, otherwise it won't
2734 * be available in dm_mq_queue_rq.
2735 */
2736 tio->md = md;
2737
2738 return 0;
2739 }
2740
2741 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2742 const struct blk_mq_queue_data *bd)
2743 {
2744 struct request *rq = bd->rq;
2745 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2746 struct mapped_device *md = tio->md;
2747 int srcu_idx;
2748 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2749 struct dm_target *ti;
2750 sector_t pos;
2751
2752 /* always use block 0 to find the target for flushes for now */
2753 pos = 0;
2754 if (!(rq->cmd_flags & REQ_FLUSH))
2755 pos = blk_rq_pos(rq);
2756
2757 ti = dm_table_find_target(map, pos);
2758 if (!dm_target_is_valid(ti)) {
2759 dm_put_live_table(md, srcu_idx);
2760 DMERR_LIMIT("request attempted access beyond the end of device");
2761 /*
2762 * Must perform setup, that rq_completed() requires,
2763 * before returning BLK_MQ_RQ_QUEUE_ERROR
2764 */
2765 dm_start_request(md, rq);
2766 return BLK_MQ_RQ_QUEUE_ERROR;
2767 }
2768 dm_put_live_table(md, srcu_idx);
2769
2770 if (ti->type->busy && ti->type->busy(ti))
2771 return BLK_MQ_RQ_QUEUE_BUSY;
2772
2773 dm_start_request(md, rq);
2774
2775 /* Init tio using md established in .init_request */
2776 init_tio(tio, rq, md);
2777
2778 /*
2779 * Establish tio->ti before queuing work (map_tio_request)
2780 * or making direct call to map_request().
2781 */
2782 tio->ti = ti;
2783
2784 /* Clone the request if underlying devices aren't blk-mq */
2785 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2786 /* clone request is allocated at the end of the pdu */
2787 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2788 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2789 queue_kthread_work(&md->kworker, &tio->work);
2790 } else {
2791 /* Direct call is fine since .queue_rq allows allocations */
2792 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2793 /* Undo dm_start_request() before requeuing */
2794 rq_end_stats(md, rq);
2795 rq_completed(md, rq_data_dir(rq), false);
2796 return BLK_MQ_RQ_QUEUE_BUSY;
2797 }
2798 }
2799
2800 return BLK_MQ_RQ_QUEUE_OK;
2801 }
2802
2803 static struct blk_mq_ops dm_mq_ops = {
2804 .queue_rq = dm_mq_queue_rq,
2805 .map_queue = blk_mq_map_queue,
2806 .complete = dm_softirq_done,
2807 .init_request = dm_mq_init_request,
2808 };
2809
2810 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2811 {
2812 unsigned md_type = dm_get_md_type(md);
2813 struct request_queue *q;
2814 int err;
2815
2816 memset(&md->tag_set, 0, sizeof(md->tag_set));
2817 md->tag_set.ops = &dm_mq_ops;
2818 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2819 md->tag_set.numa_node = NUMA_NO_NODE;
2820 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2821 md->tag_set.nr_hw_queues = 1;
2822 if (md_type == DM_TYPE_REQUEST_BASED) {
2823 /* make the memory for non-blk-mq clone part of the pdu */
2824 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2825 } else
2826 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2827 md->tag_set.driver_data = md;
2828
2829 err = blk_mq_alloc_tag_set(&md->tag_set);
2830 if (err)
2831 return err;
2832
2833 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2834 if (IS_ERR(q)) {
2835 err = PTR_ERR(q);
2836 goto out_tag_set;
2837 }
2838 md->queue = q;
2839 dm_init_md_queue(md);
2840
2841 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2842 blk_mq_register_disk(md->disk);
2843
2844 if (md_type == DM_TYPE_REQUEST_BASED)
2845 init_rq_based_worker_thread(md);
2846
2847 return 0;
2848
2849 out_tag_set:
2850 blk_mq_free_tag_set(&md->tag_set);
2851 return err;
2852 }
2853
2854 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2855 {
2856 if (type == DM_TYPE_BIO_BASED)
2857 return type;
2858
2859 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2860 }
2861
2862 /*
2863 * Setup the DM device's queue based on md's type
2864 */
2865 int dm_setup_md_queue(struct mapped_device *md)
2866 {
2867 int r;
2868 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2869
2870 switch (md_type) {
2871 case DM_TYPE_REQUEST_BASED:
2872 r = dm_init_request_based_queue(md);
2873 if (r) {
2874 DMWARN("Cannot initialize queue for request-based mapped device");
2875 return r;
2876 }
2877 break;
2878 case DM_TYPE_MQ_REQUEST_BASED:
2879 r = dm_init_request_based_blk_mq_queue(md);
2880 if (r) {
2881 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2882 return r;
2883 }
2884 break;
2885 case DM_TYPE_BIO_BASED:
2886 dm_init_old_md_queue(md);
2887 blk_queue_make_request(md->queue, dm_make_request);
2888 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2889 break;
2890 }
2891
2892 return 0;
2893 }
2894
2895 struct mapped_device *dm_get_md(dev_t dev)
2896 {
2897 struct mapped_device *md;
2898 unsigned minor = MINOR(dev);
2899
2900 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2901 return NULL;
2902
2903 spin_lock(&_minor_lock);
2904
2905 md = idr_find(&_minor_idr, minor);
2906 if (md) {
2907 if ((md == MINOR_ALLOCED ||
2908 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2909 dm_deleting_md(md) ||
2910 test_bit(DMF_FREEING, &md->flags))) {
2911 md = NULL;
2912 goto out;
2913 }
2914 dm_get(md);
2915 }
2916
2917 out:
2918 spin_unlock(&_minor_lock);
2919
2920 return md;
2921 }
2922 EXPORT_SYMBOL_GPL(dm_get_md);
2923
2924 void *dm_get_mdptr(struct mapped_device *md)
2925 {
2926 return md->interface_ptr;
2927 }
2928
2929 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2930 {
2931 md->interface_ptr = ptr;
2932 }
2933
2934 void dm_get(struct mapped_device *md)
2935 {
2936 atomic_inc(&md->holders);
2937 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2938 }
2939
2940 int dm_hold(struct mapped_device *md)
2941 {
2942 spin_lock(&_minor_lock);
2943 if (test_bit(DMF_FREEING, &md->flags)) {
2944 spin_unlock(&_minor_lock);
2945 return -EBUSY;
2946 }
2947 dm_get(md);
2948 spin_unlock(&_minor_lock);
2949 return 0;
2950 }
2951 EXPORT_SYMBOL_GPL(dm_hold);
2952
2953 const char *dm_device_name(struct mapped_device *md)
2954 {
2955 return md->name;
2956 }
2957 EXPORT_SYMBOL_GPL(dm_device_name);
2958
2959 static void __dm_destroy(struct mapped_device *md, bool wait)
2960 {
2961 struct dm_table *map;
2962 int srcu_idx;
2963
2964 might_sleep();
2965
2966 map = dm_get_live_table(md, &srcu_idx);
2967
2968 spin_lock(&_minor_lock);
2969 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2970 set_bit(DMF_FREEING, &md->flags);
2971 spin_unlock(&_minor_lock);
2972
2973 if (dm_request_based(md) && md->kworker_task)
2974 flush_kthread_worker(&md->kworker);
2975
2976 /*
2977 * Take suspend_lock so that presuspend and postsuspend methods
2978 * do not race with internal suspend.
2979 */
2980 mutex_lock(&md->suspend_lock);
2981 if (!dm_suspended_md(md)) {
2982 dm_table_presuspend_targets(map);
2983 dm_table_postsuspend_targets(map);
2984 }
2985 mutex_unlock(&md->suspend_lock);
2986
2987 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2988 dm_put_live_table(md, srcu_idx);
2989
2990 /*
2991 * Rare, but there may be I/O requests still going to complete,
2992 * for example. Wait for all references to disappear.
2993 * No one should increment the reference count of the mapped_device,
2994 * after the mapped_device state becomes DMF_FREEING.
2995 */
2996 if (wait)
2997 while (atomic_read(&md->holders))
2998 msleep(1);
2999 else if (atomic_read(&md->holders))
3000 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
3001 dm_device_name(md), atomic_read(&md->holders));
3002
3003 dm_sysfs_exit(md);
3004 dm_table_destroy(__unbind(md));
3005 free_dev(md);
3006 }
3007
3008 void dm_destroy(struct mapped_device *md)
3009 {
3010 __dm_destroy(md, true);
3011 }
3012
3013 void dm_destroy_immediate(struct mapped_device *md)
3014 {
3015 __dm_destroy(md, false);
3016 }
3017
3018 void dm_put(struct mapped_device *md)
3019 {
3020 atomic_dec(&md->holders);
3021 }
3022 EXPORT_SYMBOL_GPL(dm_put);
3023
3024 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
3025 {
3026 int r = 0;
3027 DECLARE_WAITQUEUE(wait, current);
3028
3029 add_wait_queue(&md->wait, &wait);
3030
3031 while (1) {
3032 set_current_state(interruptible);
3033
3034 if (!md_in_flight(md))
3035 break;
3036
3037 if (interruptible == TASK_INTERRUPTIBLE &&
3038 signal_pending(current)) {
3039 r = -EINTR;
3040 break;
3041 }
3042
3043 io_schedule();
3044 }
3045 set_current_state(TASK_RUNNING);
3046
3047 remove_wait_queue(&md->wait, &wait);
3048
3049 return r;
3050 }
3051
3052 /*
3053 * Process the deferred bios
3054 */
3055 static void dm_wq_work(struct work_struct *work)
3056 {
3057 struct mapped_device *md = container_of(work, struct mapped_device,
3058 work);
3059 struct bio *c;
3060 int srcu_idx;
3061 struct dm_table *map;
3062
3063 map = dm_get_live_table(md, &srcu_idx);
3064
3065 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3066 spin_lock_irq(&md->deferred_lock);
3067 c = bio_list_pop(&md->deferred);
3068 spin_unlock_irq(&md->deferred_lock);
3069
3070 if (!c)
3071 break;
3072
3073 if (dm_request_based(md))
3074 generic_make_request(c);
3075 else
3076 __split_and_process_bio(md, map, c);
3077 }
3078
3079 dm_put_live_table(md, srcu_idx);
3080 }
3081
3082 static void dm_queue_flush(struct mapped_device *md)
3083 {
3084 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3085 smp_mb__after_atomic();
3086 queue_work(md->wq, &md->work);
3087 }
3088
3089 /*
3090 * Swap in a new table, returning the old one for the caller to destroy.
3091 */
3092 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3093 {
3094 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3095 struct queue_limits limits;
3096 int r;
3097
3098 mutex_lock(&md->suspend_lock);
3099
3100 /* device must be suspended */
3101 if (!dm_suspended_md(md))
3102 goto out;
3103
3104 /*
3105 * If the new table has no data devices, retain the existing limits.
3106 * This helps multipath with queue_if_no_path if all paths disappear,
3107 * then new I/O is queued based on these limits, and then some paths
3108 * reappear.
3109 */
3110 if (dm_table_has_no_data_devices(table)) {
3111 live_map = dm_get_live_table_fast(md);
3112 if (live_map)
3113 limits = md->queue->limits;
3114 dm_put_live_table_fast(md);
3115 }
3116
3117 if (!live_map) {
3118 r = dm_calculate_queue_limits(table, &limits);
3119 if (r) {
3120 map = ERR_PTR(r);
3121 goto out;
3122 }
3123 }
3124
3125 map = __bind(md, table, &limits);
3126
3127 out:
3128 mutex_unlock(&md->suspend_lock);
3129 return map;
3130 }
3131
3132 /*
3133 * Functions to lock and unlock any filesystem running on the
3134 * device.
3135 */
3136 static int lock_fs(struct mapped_device *md)
3137 {
3138 int r;
3139
3140 WARN_ON(md->frozen_sb);
3141
3142 md->frozen_sb = freeze_bdev(md->bdev);
3143 if (IS_ERR(md->frozen_sb)) {
3144 r = PTR_ERR(md->frozen_sb);
3145 md->frozen_sb = NULL;
3146 return r;
3147 }
3148
3149 set_bit(DMF_FROZEN, &md->flags);
3150
3151 return 0;
3152 }
3153
3154 static void unlock_fs(struct mapped_device *md)
3155 {
3156 if (!test_bit(DMF_FROZEN, &md->flags))
3157 return;
3158
3159 thaw_bdev(md->bdev, md->frozen_sb);
3160 md->frozen_sb = NULL;
3161 clear_bit(DMF_FROZEN, &md->flags);
3162 }
3163
3164 /*
3165 * If __dm_suspend returns 0, the device is completely quiescent
3166 * now. There is no request-processing activity. All new requests
3167 * are being added to md->deferred list.
3168 *
3169 * Caller must hold md->suspend_lock
3170 */
3171 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3172 unsigned suspend_flags, int interruptible)
3173 {
3174 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3175 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3176 int r;
3177
3178 /*
3179 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3180 * This flag is cleared before dm_suspend returns.
3181 */
3182 if (noflush)
3183 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3184
3185 /*
3186 * This gets reverted if there's an error later and the targets
3187 * provide the .presuspend_undo hook.
3188 */
3189 dm_table_presuspend_targets(map);
3190
3191 /*
3192 * Flush I/O to the device.
3193 * Any I/O submitted after lock_fs() may not be flushed.
3194 * noflush takes precedence over do_lockfs.
3195 * (lock_fs() flushes I/Os and waits for them to complete.)
3196 */
3197 if (!noflush && do_lockfs) {
3198 r = lock_fs(md);
3199 if (r) {
3200 dm_table_presuspend_undo_targets(map);
3201 return r;
3202 }
3203 }
3204
3205 /*
3206 * Here we must make sure that no processes are submitting requests
3207 * to target drivers i.e. no one may be executing
3208 * __split_and_process_bio. This is called from dm_request and
3209 * dm_wq_work.
3210 *
3211 * To get all processes out of __split_and_process_bio in dm_request,
3212 * we take the write lock. To prevent any process from reentering
3213 * __split_and_process_bio from dm_request and quiesce the thread
3214 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3215 * flush_workqueue(md->wq).
3216 */
3217 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3218 if (map)
3219 synchronize_srcu(&md->io_barrier);
3220
3221 /*
3222 * Stop md->queue before flushing md->wq in case request-based
3223 * dm defers requests to md->wq from md->queue.
3224 */
3225 if (dm_request_based(md)) {
3226 stop_queue(md->queue);
3227 if (md->kworker_task)
3228 flush_kthread_worker(&md->kworker);
3229 }
3230
3231 flush_workqueue(md->wq);
3232
3233 /*
3234 * At this point no more requests are entering target request routines.
3235 * We call dm_wait_for_completion to wait for all existing requests
3236 * to finish.
3237 */
3238 r = dm_wait_for_completion(md, interruptible);
3239
3240 if (noflush)
3241 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3242 if (map)
3243 synchronize_srcu(&md->io_barrier);
3244
3245 /* were we interrupted ? */
3246 if (r < 0) {
3247 dm_queue_flush(md);
3248
3249 if (dm_request_based(md))
3250 start_queue(md->queue);
3251
3252 unlock_fs(md);
3253 dm_table_presuspend_undo_targets(map);
3254 /* pushback list is already flushed, so skip flush */
3255 }
3256
3257 return r;
3258 }
3259
3260 /*
3261 * We need to be able to change a mapping table under a mounted
3262 * filesystem. For example we might want to move some data in
3263 * the background. Before the table can be swapped with
3264 * dm_bind_table, dm_suspend must be called to flush any in
3265 * flight bios and ensure that any further io gets deferred.
3266 */
3267 /*
3268 * Suspend mechanism in request-based dm.
3269 *
3270 * 1. Flush all I/Os by lock_fs() if needed.
3271 * 2. Stop dispatching any I/O by stopping the request_queue.
3272 * 3. Wait for all in-flight I/Os to be completed or requeued.
3273 *
3274 * To abort suspend, start the request_queue.
3275 */
3276 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3277 {
3278 struct dm_table *map = NULL;
3279 int r = 0;
3280
3281 retry:
3282 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3283
3284 if (dm_suspended_md(md)) {
3285 r = -EINVAL;
3286 goto out_unlock;
3287 }
3288
3289 if (dm_suspended_internally_md(md)) {
3290 /* already internally suspended, wait for internal resume */
3291 mutex_unlock(&md->suspend_lock);
3292 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3293 if (r)
3294 return r;
3295 goto retry;
3296 }
3297
3298 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3299
3300 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3301 if (r)
3302 goto out_unlock;
3303
3304 set_bit(DMF_SUSPENDED, &md->flags);
3305
3306 dm_table_postsuspend_targets(map);
3307
3308 out_unlock:
3309 mutex_unlock(&md->suspend_lock);
3310 return r;
3311 }
3312
3313 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3314 {
3315 if (map) {
3316 int r = dm_table_resume_targets(map);
3317 if (r)
3318 return r;
3319 }
3320
3321 dm_queue_flush(md);
3322
3323 /*
3324 * Flushing deferred I/Os must be done after targets are resumed
3325 * so that mapping of targets can work correctly.
3326 * Request-based dm is queueing the deferred I/Os in its request_queue.
3327 */
3328 if (dm_request_based(md))
3329 start_queue(md->queue);
3330
3331 unlock_fs(md);
3332
3333 return 0;
3334 }
3335
3336 int dm_resume(struct mapped_device *md)
3337 {
3338 int r = -EINVAL;
3339 struct dm_table *map = NULL;
3340
3341 retry:
3342 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3343
3344 if (!dm_suspended_md(md))
3345 goto out;
3346
3347 if (dm_suspended_internally_md(md)) {
3348 /* already internally suspended, wait for internal resume */
3349 mutex_unlock(&md->suspend_lock);
3350 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3351 if (r)
3352 return r;
3353 goto retry;
3354 }
3355
3356 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3357 if (!map || !dm_table_get_size(map))
3358 goto out;
3359
3360 r = __dm_resume(md, map);
3361 if (r)
3362 goto out;
3363
3364 clear_bit(DMF_SUSPENDED, &md->flags);
3365
3366 r = 0;
3367 out:
3368 mutex_unlock(&md->suspend_lock);
3369
3370 return r;
3371 }
3372
3373 /*
3374 * Internal suspend/resume works like userspace-driven suspend. It waits
3375 * until all bios finish and prevents issuing new bios to the target drivers.
3376 * It may be used only from the kernel.
3377 */
3378
3379 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3380 {
3381 struct dm_table *map = NULL;
3382
3383 if (md->internal_suspend_count++)
3384 return; /* nested internal suspend */
3385
3386 if (dm_suspended_md(md)) {
3387 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3388 return; /* nest suspend */
3389 }
3390
3391 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3392
3393 /*
3394 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3395 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3396 * would require changing .presuspend to return an error -- avoid this
3397 * until there is a need for more elaborate variants of internal suspend.
3398 */
3399 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3400
3401 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3402
3403 dm_table_postsuspend_targets(map);
3404 }
3405
3406 static void __dm_internal_resume(struct mapped_device *md)
3407 {
3408 BUG_ON(!md->internal_suspend_count);
3409
3410 if (--md->internal_suspend_count)
3411 return; /* resume from nested internal suspend */
3412
3413 if (dm_suspended_md(md))
3414 goto done; /* resume from nested suspend */
3415
3416 /*
3417 * NOTE: existing callers don't need to call dm_table_resume_targets
3418 * (which may fail -- so best to avoid it for now by passing NULL map)
3419 */
3420 (void) __dm_resume(md, NULL);
3421
3422 done:
3423 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3424 smp_mb__after_atomic();
3425 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3426 }
3427
3428 void dm_internal_suspend_noflush(struct mapped_device *md)
3429 {
3430 mutex_lock(&md->suspend_lock);
3431 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3432 mutex_unlock(&md->suspend_lock);
3433 }
3434 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3435
3436 void dm_internal_resume(struct mapped_device *md)
3437 {
3438 mutex_lock(&md->suspend_lock);
3439 __dm_internal_resume(md);
3440 mutex_unlock(&md->suspend_lock);
3441 }
3442 EXPORT_SYMBOL_GPL(dm_internal_resume);
3443
3444 /*
3445 * Fast variants of internal suspend/resume hold md->suspend_lock,
3446 * which prevents interaction with userspace-driven suspend.
3447 */
3448
3449 void dm_internal_suspend_fast(struct mapped_device *md)
3450 {
3451 mutex_lock(&md->suspend_lock);
3452 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3453 return;
3454
3455 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3456 synchronize_srcu(&md->io_barrier);
3457 flush_workqueue(md->wq);
3458 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3459 }
3460 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3461
3462 void dm_internal_resume_fast(struct mapped_device *md)
3463 {
3464 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3465 goto done;
3466
3467 dm_queue_flush(md);
3468
3469 done:
3470 mutex_unlock(&md->suspend_lock);
3471 }
3472 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3473
3474 /*-----------------------------------------------------------------
3475 * Event notification.
3476 *---------------------------------------------------------------*/
3477 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3478 unsigned cookie)
3479 {
3480 char udev_cookie[DM_COOKIE_LENGTH];
3481 char *envp[] = { udev_cookie, NULL };
3482
3483 if (!cookie)
3484 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3485 else {
3486 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3487 DM_COOKIE_ENV_VAR_NAME, cookie);
3488 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3489 action, envp);
3490 }
3491 }
3492
3493 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3494 {
3495 return atomic_add_return(1, &md->uevent_seq);
3496 }
3497
3498 uint32_t dm_get_event_nr(struct mapped_device *md)
3499 {
3500 return atomic_read(&md->event_nr);
3501 }
3502
3503 int dm_wait_event(struct mapped_device *md, int event_nr)
3504 {
3505 return wait_event_interruptible(md->eventq,
3506 (event_nr != atomic_read(&md->event_nr)));
3507 }
3508
3509 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3510 {
3511 unsigned long flags;
3512
3513 spin_lock_irqsave(&md->uevent_lock, flags);
3514 list_add(elist, &md->uevent_list);
3515 spin_unlock_irqrestore(&md->uevent_lock, flags);
3516 }
3517
3518 /*
3519 * The gendisk is only valid as long as you have a reference
3520 * count on 'md'.
3521 */
3522 struct gendisk *dm_disk(struct mapped_device *md)
3523 {
3524 return md->disk;
3525 }
3526 EXPORT_SYMBOL_GPL(dm_disk);
3527
3528 struct kobject *dm_kobject(struct mapped_device *md)
3529 {
3530 return &md->kobj_holder.kobj;
3531 }
3532
3533 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3534 {
3535 struct mapped_device *md;
3536
3537 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3538
3539 if (test_bit(DMF_FREEING, &md->flags) ||
3540 dm_deleting_md(md))
3541 return NULL;
3542
3543 dm_get(md);
3544 return md;
3545 }
3546
3547 int dm_suspended_md(struct mapped_device *md)
3548 {
3549 return test_bit(DMF_SUSPENDED, &md->flags);
3550 }
3551
3552 int dm_suspended_internally_md(struct mapped_device *md)
3553 {
3554 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3555 }
3556
3557 int dm_test_deferred_remove_flag(struct mapped_device *md)
3558 {
3559 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3560 }
3561
3562 int dm_suspended(struct dm_target *ti)
3563 {
3564 return dm_suspended_md(dm_table_get_md(ti->table));
3565 }
3566 EXPORT_SYMBOL_GPL(dm_suspended);
3567
3568 int dm_noflush_suspending(struct dm_target *ti)
3569 {
3570 return __noflush_suspending(dm_table_get_md(ti->table));
3571 }
3572 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3573
3574 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3575 unsigned integrity, unsigned per_bio_data_size)
3576 {
3577 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3578 struct kmem_cache *cachep = NULL;
3579 unsigned int pool_size = 0;
3580 unsigned int front_pad;
3581
3582 if (!pools)
3583 return NULL;
3584
3585 type = filter_md_type(type, md);
3586
3587 switch (type) {
3588 case DM_TYPE_BIO_BASED:
3589 cachep = _io_cache;
3590 pool_size = dm_get_reserved_bio_based_ios();
3591 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3592 break;
3593 case DM_TYPE_REQUEST_BASED:
3594 cachep = _rq_tio_cache;
3595 pool_size = dm_get_reserved_rq_based_ios();
3596 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3597 if (!pools->rq_pool)
3598 goto out;
3599 /* fall through to setup remaining rq-based pools */
3600 case DM_TYPE_MQ_REQUEST_BASED:
3601 if (!pool_size)
3602 pool_size = dm_get_reserved_rq_based_ios();
3603 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3604 /* per_bio_data_size is not used. See __bind_mempools(). */
3605 WARN_ON(per_bio_data_size != 0);
3606 break;
3607 default:
3608 BUG();
3609 }
3610
3611 if (cachep) {
3612 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3613 if (!pools->io_pool)
3614 goto out;
3615 }
3616
3617 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3618 if (!pools->bs)
3619 goto out;
3620
3621 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3622 goto out;
3623
3624 return pools;
3625
3626 out:
3627 dm_free_md_mempools(pools);
3628
3629 return NULL;
3630 }
3631
3632 void dm_free_md_mempools(struct dm_md_mempools *pools)
3633 {
3634 if (!pools)
3635 return;
3636
3637 if (pools->io_pool)
3638 mempool_destroy(pools->io_pool);
3639
3640 if (pools->rq_pool)
3641 mempool_destroy(pools->rq_pool);
3642
3643 if (pools->bs)
3644 bioset_free(pools->bs);
3645
3646 kfree(pools);
3647 }
3648
3649 static const struct block_device_operations dm_blk_dops = {
3650 .open = dm_blk_open,
3651 .release = dm_blk_close,
3652 .ioctl = dm_blk_ioctl,
3653 .getgeo = dm_blk_getgeo,
3654 .owner = THIS_MODULE
3655 };
3656
3657 /*
3658 * module hooks
3659 */
3660 module_init(dm_init);
3661 module_exit(dm_exit);
3662
3663 module_param(major, uint, 0);
3664 MODULE_PARM_DESC(major, "The major number of the device mapper");
3665
3666 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3667 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3668
3669 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3670 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3671
3672 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3673 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3674
3675 MODULE_DESCRIPTION(DM_NAME " driver");
3676 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3677 MODULE_LICENSE("GPL");
This page took 0.153028 seconds and 5 git commands to generate.