Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 };
90
91 /*
92 * For request-based dm - the bio clones we allocate are embedded in these
93 * structs.
94 *
95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96 * the bioset is created - this means the bio has to come at the end of the
97 * struct.
98 */
99 struct dm_rq_clone_bio_info {
100 struct bio *orig;
101 struct dm_rq_target_io *tio;
102 struct bio clone;
103 };
104
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 if (rq && rq->end_io_data)
108 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112
113 #define MINOR_ALLOCED ((void *)-1)
114
115 /*
116 * Bits for the md->flags field.
117 */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127
128 /*
129 * A dummy definition to make RCU happy.
130 * struct dm_table should never be dereferenced in this file.
131 */
132 struct dm_table {
133 int undefined__;
134 };
135
136 /*
137 * Work processed by per-device workqueue.
138 */
139 struct mapped_device {
140 struct srcu_struct io_barrier;
141 struct mutex suspend_lock;
142 atomic_t holders;
143 atomic_t open_count;
144
145 /*
146 * The current mapping.
147 * Use dm_get_live_table{_fast} or take suspend_lock for
148 * dereference.
149 */
150 struct dm_table __rcu *map;
151
152 struct list_head table_devices;
153 struct mutex table_devices_lock;
154
155 unsigned long flags;
156
157 struct request_queue *queue;
158 unsigned type;
159 /* Protect queue and type against concurrent access. */
160 struct mutex type_lock;
161
162 struct target_type *immutable_target_type;
163
164 struct gendisk *disk;
165 char name[16];
166
167 void *interface_ptr;
168
169 /*
170 * A list of ios that arrived while we were suspended.
171 */
172 atomic_t pending[2];
173 wait_queue_head_t wait;
174 struct work_struct work;
175 struct bio_list deferred;
176 spinlock_t deferred_lock;
177
178 /*
179 * Processing queue (flush)
180 */
181 struct workqueue_struct *wq;
182
183 /*
184 * io objects are allocated from here.
185 */
186 mempool_t *io_pool;
187 mempool_t *rq_pool;
188
189 struct bio_set *bs;
190
191 /*
192 * Event handling.
193 */
194 atomic_t event_nr;
195 wait_queue_head_t eventq;
196 atomic_t uevent_seq;
197 struct list_head uevent_list;
198 spinlock_t uevent_lock; /* Protect access to uevent_list */
199
200 /*
201 * freeze/thaw support require holding onto a super block
202 */
203 struct super_block *frozen_sb;
204 struct block_device *bdev;
205
206 /* forced geometry settings */
207 struct hd_geometry geometry;
208
209 /* kobject and completion */
210 struct dm_kobject_holder kobj_holder;
211
212 /* zero-length flush that will be cloned and submitted to targets */
213 struct bio flush_bio;
214
215 /* the number of internal suspends */
216 unsigned internal_suspend_count;
217
218 struct dm_stats stats;
219
220 struct kthread_worker kworker;
221 struct task_struct *kworker_task;
222
223 /* for request-based merge heuristic in dm_request_fn() */
224 unsigned seq_rq_merge_deadline_usecs;
225 int last_rq_rw;
226 sector_t last_rq_pos;
227 ktime_t last_rq_start_time;
228
229 /* for blk-mq request-based DM support */
230 struct blk_mq_tag_set tag_set;
231 bool use_blk_mq;
232 };
233
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
236 #else
237 static bool use_blk_mq = false;
238 #endif
239
240 bool dm_use_blk_mq(struct mapped_device *md)
241 {
242 return md->use_blk_mq;
243 }
244
245 /*
246 * For mempools pre-allocation at the table loading time.
247 */
248 struct dm_md_mempools {
249 mempool_t *io_pool;
250 mempool_t *rq_pool;
251 struct bio_set *bs;
252 };
253
254 struct table_device {
255 struct list_head list;
256 atomic_t count;
257 struct dm_dev dm_dev;
258 };
259
260 #define RESERVED_BIO_BASED_IOS 16
261 #define RESERVED_REQUEST_BASED_IOS 256
262 #define RESERVED_MAX_IOS 1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
266
267 /*
268 * Bio-based DM's mempools' reserved IOs set by the user.
269 */
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271
272 /*
273 * Request-based DM's mempools' reserved IOs set by the user.
274 */
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276
277 static unsigned __dm_get_module_param(unsigned *module_param,
278 unsigned def, unsigned max)
279 {
280 unsigned param = ACCESS_ONCE(*module_param);
281 unsigned modified_param = 0;
282
283 if (!param)
284 modified_param = def;
285 else if (param > max)
286 modified_param = max;
287
288 if (modified_param) {
289 (void)cmpxchg(module_param, param, modified_param);
290 param = modified_param;
291 }
292
293 return param;
294 }
295
296 unsigned dm_get_reserved_bio_based_ios(void)
297 {
298 return __dm_get_module_param(&reserved_bio_based_ios,
299 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300 }
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302
303 unsigned dm_get_reserved_rq_based_ios(void)
304 {
305 return __dm_get_module_param(&reserved_rq_based_ios,
306 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307 }
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309
310 static int __init local_init(void)
311 {
312 int r = -ENOMEM;
313
314 /* allocate a slab for the dm_ios */
315 _io_cache = KMEM_CACHE(dm_io, 0);
316 if (!_io_cache)
317 return r;
318
319 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320 if (!_rq_tio_cache)
321 goto out_free_io_cache;
322
323 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 __alignof__(struct request), 0, NULL);
325 if (!_rq_cache)
326 goto out_free_rq_tio_cache;
327
328 r = dm_uevent_init();
329 if (r)
330 goto out_free_rq_cache;
331
332 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 if (!deferred_remove_workqueue) {
334 r = -ENOMEM;
335 goto out_uevent_exit;
336 }
337
338 _major = major;
339 r = register_blkdev(_major, _name);
340 if (r < 0)
341 goto out_free_workqueue;
342
343 if (!_major)
344 _major = r;
345
346 return 0;
347
348 out_free_workqueue:
349 destroy_workqueue(deferred_remove_workqueue);
350 out_uevent_exit:
351 dm_uevent_exit();
352 out_free_rq_cache:
353 kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 kmem_cache_destroy(_rq_tio_cache);
356 out_free_io_cache:
357 kmem_cache_destroy(_io_cache);
358
359 return r;
360 }
361
362 static void local_exit(void)
363 {
364 flush_scheduled_work();
365 destroy_workqueue(deferred_remove_workqueue);
366
367 kmem_cache_destroy(_rq_cache);
368 kmem_cache_destroy(_rq_tio_cache);
369 kmem_cache_destroy(_io_cache);
370 unregister_blkdev(_major, _name);
371 dm_uevent_exit();
372
373 _major = 0;
374
375 DMINFO("cleaned up");
376 }
377
378 static int (*_inits[])(void) __initdata = {
379 local_init,
380 dm_target_init,
381 dm_linear_init,
382 dm_stripe_init,
383 dm_io_init,
384 dm_kcopyd_init,
385 dm_interface_init,
386 dm_statistics_init,
387 };
388
389 static void (*_exits[])(void) = {
390 local_exit,
391 dm_target_exit,
392 dm_linear_exit,
393 dm_stripe_exit,
394 dm_io_exit,
395 dm_kcopyd_exit,
396 dm_interface_exit,
397 dm_statistics_exit,
398 };
399
400 static int __init dm_init(void)
401 {
402 const int count = ARRAY_SIZE(_inits);
403
404 int r, i;
405
406 for (i = 0; i < count; i++) {
407 r = _inits[i]();
408 if (r)
409 goto bad;
410 }
411
412 return 0;
413
414 bad:
415 while (i--)
416 _exits[i]();
417
418 return r;
419 }
420
421 static void __exit dm_exit(void)
422 {
423 int i = ARRAY_SIZE(_exits);
424
425 while (i--)
426 _exits[i]();
427
428 /*
429 * Should be empty by this point.
430 */
431 idr_destroy(&_minor_idr);
432 }
433
434 /*
435 * Block device functions
436 */
437 int dm_deleting_md(struct mapped_device *md)
438 {
439 return test_bit(DMF_DELETING, &md->flags);
440 }
441
442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443 {
444 struct mapped_device *md;
445
446 spin_lock(&_minor_lock);
447
448 md = bdev->bd_disk->private_data;
449 if (!md)
450 goto out;
451
452 if (test_bit(DMF_FREEING, &md->flags) ||
453 dm_deleting_md(md)) {
454 md = NULL;
455 goto out;
456 }
457
458 dm_get(md);
459 atomic_inc(&md->open_count);
460 out:
461 spin_unlock(&_minor_lock);
462
463 return md ? 0 : -ENXIO;
464 }
465
466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467 {
468 struct mapped_device *md;
469
470 spin_lock(&_minor_lock);
471
472 md = disk->private_data;
473 if (WARN_ON(!md))
474 goto out;
475
476 if (atomic_dec_and_test(&md->open_count) &&
477 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 queue_work(deferred_remove_workqueue, &deferred_remove_work);
479
480 dm_put(md);
481 out:
482 spin_unlock(&_minor_lock);
483 }
484
485 int dm_open_count(struct mapped_device *md)
486 {
487 return atomic_read(&md->open_count);
488 }
489
490 /*
491 * Guarantees nothing is using the device before it's deleted.
492 */
493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494 {
495 int r = 0;
496
497 spin_lock(&_minor_lock);
498
499 if (dm_open_count(md)) {
500 r = -EBUSY;
501 if (mark_deferred)
502 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504 r = -EEXIST;
505 else
506 set_bit(DMF_DELETING, &md->flags);
507
508 spin_unlock(&_minor_lock);
509
510 return r;
511 }
512
513 int dm_cancel_deferred_remove(struct mapped_device *md)
514 {
515 int r = 0;
516
517 spin_lock(&_minor_lock);
518
519 if (test_bit(DMF_DELETING, &md->flags))
520 r = -EBUSY;
521 else
522 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523
524 spin_unlock(&_minor_lock);
525
526 return r;
527 }
528
529 static void do_deferred_remove(struct work_struct *w)
530 {
531 dm_deferred_remove();
532 }
533
534 sector_t dm_get_size(struct mapped_device *md)
535 {
536 return get_capacity(md->disk);
537 }
538
539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
540 {
541 return md->queue;
542 }
543
544 struct dm_stats *dm_get_stats(struct mapped_device *md)
545 {
546 return &md->stats;
547 }
548
549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550 {
551 struct mapped_device *md = bdev->bd_disk->private_data;
552
553 return dm_get_geometry(md, geo);
554 }
555
556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 unsigned int cmd, unsigned long arg)
558 {
559 struct mapped_device *md = bdev->bd_disk->private_data;
560 int srcu_idx;
561 struct dm_table *map;
562 struct dm_target *tgt;
563 int r = -ENOTTY;
564
565 retry:
566 map = dm_get_live_table(md, &srcu_idx);
567
568 if (!map || !dm_table_get_size(map))
569 goto out;
570
571 /* We only support devices that have a single target */
572 if (dm_table_get_num_targets(map) != 1)
573 goto out;
574
575 tgt = dm_table_get_target(map, 0);
576 if (!tgt->type->ioctl)
577 goto out;
578
579 if (dm_suspended_md(md)) {
580 r = -EAGAIN;
581 goto out;
582 }
583
584 r = tgt->type->ioctl(tgt, cmd, arg);
585
586 out:
587 dm_put_live_table(md, srcu_idx);
588
589 if (r == -ENOTCONN) {
590 msleep(10);
591 goto retry;
592 }
593
594 return r;
595 }
596
597 static struct dm_io *alloc_io(struct mapped_device *md)
598 {
599 return mempool_alloc(md->io_pool, GFP_NOIO);
600 }
601
602 static void free_io(struct mapped_device *md, struct dm_io *io)
603 {
604 mempool_free(io, md->io_pool);
605 }
606
607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608 {
609 bio_put(&tio->clone);
610 }
611
612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613 gfp_t gfp_mask)
614 {
615 return mempool_alloc(md->io_pool, gfp_mask);
616 }
617
618 static void free_rq_tio(struct dm_rq_target_io *tio)
619 {
620 mempool_free(tio, tio->md->io_pool);
621 }
622
623 static struct request *alloc_clone_request(struct mapped_device *md,
624 gfp_t gfp_mask)
625 {
626 return mempool_alloc(md->rq_pool, gfp_mask);
627 }
628
629 static void free_clone_request(struct mapped_device *md, struct request *rq)
630 {
631 mempool_free(rq, md->rq_pool);
632 }
633
634 static int md_in_flight(struct mapped_device *md)
635 {
636 return atomic_read(&md->pending[READ]) +
637 atomic_read(&md->pending[WRITE]);
638 }
639
640 static void start_io_acct(struct dm_io *io)
641 {
642 struct mapped_device *md = io->md;
643 struct bio *bio = io->bio;
644 int cpu;
645 int rw = bio_data_dir(bio);
646
647 io->start_time = jiffies;
648
649 cpu = part_stat_lock();
650 part_round_stats(cpu, &dm_disk(md)->part0);
651 part_stat_unlock();
652 atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 atomic_inc_return(&md->pending[rw]));
654
655 if (unlikely(dm_stats_used(&md->stats)))
656 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 bio_sectors(bio), false, 0, &io->stats_aux);
658 }
659
660 static void end_io_acct(struct dm_io *io)
661 {
662 struct mapped_device *md = io->md;
663 struct bio *bio = io->bio;
664 unsigned long duration = jiffies - io->start_time;
665 int pending;
666 int rw = bio_data_dir(bio);
667
668 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669
670 if (unlikely(dm_stats_used(&md->stats)))
671 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 bio_sectors(bio), true, duration, &io->stats_aux);
673
674 /*
675 * After this is decremented the bio must not be touched if it is
676 * a flush.
677 */
678 pending = atomic_dec_return(&md->pending[rw]);
679 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 pending += atomic_read(&md->pending[rw^0x1]);
681
682 /* nudge anyone waiting on suspend queue */
683 if (!pending)
684 wake_up(&md->wait);
685 }
686
687 /*
688 * Add the bio to the list of deferred io.
689 */
690 static void queue_io(struct mapped_device *md, struct bio *bio)
691 {
692 unsigned long flags;
693
694 spin_lock_irqsave(&md->deferred_lock, flags);
695 bio_list_add(&md->deferred, bio);
696 spin_unlock_irqrestore(&md->deferred_lock, flags);
697 queue_work(md->wq, &md->work);
698 }
699
700 /*
701 * Everyone (including functions in this file), should use this
702 * function to access the md->map field, and make sure they call
703 * dm_put_live_table() when finished.
704 */
705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706 {
707 *srcu_idx = srcu_read_lock(&md->io_barrier);
708
709 return srcu_dereference(md->map, &md->io_barrier);
710 }
711
712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713 {
714 srcu_read_unlock(&md->io_barrier, srcu_idx);
715 }
716
717 void dm_sync_table(struct mapped_device *md)
718 {
719 synchronize_srcu(&md->io_barrier);
720 synchronize_rcu_expedited();
721 }
722
723 /*
724 * A fast alternative to dm_get_live_table/dm_put_live_table.
725 * The caller must not block between these two functions.
726 */
727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728 {
729 rcu_read_lock();
730 return rcu_dereference(md->map);
731 }
732
733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734 {
735 rcu_read_unlock();
736 }
737
738 /*
739 * Open a table device so we can use it as a map destination.
740 */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 struct mapped_device *md)
743 {
744 static char *_claim_ptr = "I belong to device-mapper";
745 struct block_device *bdev;
746
747 int r;
748
749 BUG_ON(td->dm_dev.bdev);
750
751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752 if (IS_ERR(bdev))
753 return PTR_ERR(bdev);
754
755 r = bd_link_disk_holder(bdev, dm_disk(md));
756 if (r) {
757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 return r;
759 }
760
761 td->dm_dev.bdev = bdev;
762 return 0;
763 }
764
765 /*
766 * Close a table device that we've been using.
767 */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 if (!td->dm_dev.bdev)
771 return;
772
773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 td->dm_dev.bdev = NULL;
776 }
777
778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779 fmode_t mode) {
780 struct table_device *td;
781
782 list_for_each_entry(td, l, list)
783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 return td;
785
786 return NULL;
787 }
788
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 struct dm_dev **result) {
791 int r;
792 struct table_device *td;
793
794 mutex_lock(&md->table_devices_lock);
795 td = find_table_device(&md->table_devices, dev, mode);
796 if (!td) {
797 td = kmalloc(sizeof(*td), GFP_KERNEL);
798 if (!td) {
799 mutex_unlock(&md->table_devices_lock);
800 return -ENOMEM;
801 }
802
803 td->dm_dev.mode = mode;
804 td->dm_dev.bdev = NULL;
805
806 if ((r = open_table_device(td, dev, md))) {
807 mutex_unlock(&md->table_devices_lock);
808 kfree(td);
809 return r;
810 }
811
812 format_dev_t(td->dm_dev.name, dev);
813
814 atomic_set(&td->count, 0);
815 list_add(&td->list, &md->table_devices);
816 }
817 atomic_inc(&td->count);
818 mutex_unlock(&md->table_devices_lock);
819
820 *result = &td->dm_dev;
821 return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 struct table_device *td = container_of(d, struct table_device, dm_dev);
828
829 mutex_lock(&md->table_devices_lock);
830 if (atomic_dec_and_test(&td->count)) {
831 close_table_device(td, md);
832 list_del(&td->list);
833 kfree(td);
834 }
835 mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838
839 static void free_table_devices(struct list_head *devices)
840 {
841 struct list_head *tmp, *next;
842
843 list_for_each_safe(tmp, next, devices) {
844 struct table_device *td = list_entry(tmp, struct table_device, list);
845
846 DMWARN("dm_destroy: %s still exists with %d references",
847 td->dm_dev.name, atomic_read(&td->count));
848 kfree(td);
849 }
850 }
851
852 /*
853 * Get the geometry associated with a dm device
854 */
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 *geo = md->geometry;
858
859 return 0;
860 }
861
862 /*
863 * Set the geometry of a device.
864 */
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868
869 if (geo->start > sz) {
870 DMWARN("Start sector is beyond the geometry limits.");
871 return -EINVAL;
872 }
873
874 md->geometry = *geo;
875
876 return 0;
877 }
878
879 /*-----------------------------------------------------------------
880 * CRUD START:
881 * A more elegant soln is in the works that uses the queue
882 * merge fn, unfortunately there are a couple of changes to
883 * the block layer that I want to make for this. So in the
884 * interests of getting something for people to use I give
885 * you this clearly demarcated crap.
886 *---------------------------------------------------------------*/
887
888 static int __noflush_suspending(struct mapped_device *md)
889 {
890 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891 }
892
893 /*
894 * Decrements the number of outstanding ios that a bio has been
895 * cloned into, completing the original io if necc.
896 */
897 static void dec_pending(struct dm_io *io, int error)
898 {
899 unsigned long flags;
900 int io_error;
901 struct bio *bio;
902 struct mapped_device *md = io->md;
903
904 /* Push-back supersedes any I/O errors */
905 if (unlikely(error)) {
906 spin_lock_irqsave(&io->endio_lock, flags);
907 if (!(io->error > 0 && __noflush_suspending(md)))
908 io->error = error;
909 spin_unlock_irqrestore(&io->endio_lock, flags);
910 }
911
912 if (atomic_dec_and_test(&io->io_count)) {
913 if (io->error == DM_ENDIO_REQUEUE) {
914 /*
915 * Target requested pushing back the I/O.
916 */
917 spin_lock_irqsave(&md->deferred_lock, flags);
918 if (__noflush_suspending(md))
919 bio_list_add_head(&md->deferred, io->bio);
920 else
921 /* noflush suspend was interrupted. */
922 io->error = -EIO;
923 spin_unlock_irqrestore(&md->deferred_lock, flags);
924 }
925
926 io_error = io->error;
927 bio = io->bio;
928 end_io_acct(io);
929 free_io(md, io);
930
931 if (io_error == DM_ENDIO_REQUEUE)
932 return;
933
934 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935 /*
936 * Preflush done for flush with data, reissue
937 * without REQ_FLUSH.
938 */
939 bio->bi_rw &= ~REQ_FLUSH;
940 queue_io(md, bio);
941 } else {
942 /* done with normal IO or empty flush */
943 trace_block_bio_complete(md->queue, bio, io_error);
944 bio_endio(bio, io_error);
945 }
946 }
947 }
948
949 static void disable_write_same(struct mapped_device *md)
950 {
951 struct queue_limits *limits = dm_get_queue_limits(md);
952
953 /* device doesn't really support WRITE SAME, disable it */
954 limits->max_write_same_sectors = 0;
955 }
956
957 static void clone_endio(struct bio *bio, int error)
958 {
959 int r = error;
960 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 struct dm_io *io = tio->io;
962 struct mapped_device *md = tio->io->md;
963 dm_endio_fn endio = tio->ti->type->end_io;
964
965 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966 error = -EIO;
967
968 if (endio) {
969 r = endio(tio->ti, bio, error);
970 if (r < 0 || r == DM_ENDIO_REQUEUE)
971 /*
972 * error and requeue request are handled
973 * in dec_pending().
974 */
975 error = r;
976 else if (r == DM_ENDIO_INCOMPLETE)
977 /* The target will handle the io */
978 return;
979 else if (r) {
980 DMWARN("unimplemented target endio return value: %d", r);
981 BUG();
982 }
983 }
984
985 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 disable_write_same(md);
988
989 free_tio(md, tio);
990 dec_pending(io, error);
991 }
992
993 /*
994 * Partial completion handling for request-based dm
995 */
996 static void end_clone_bio(struct bio *clone, int error)
997 {
998 struct dm_rq_clone_bio_info *info =
999 container_of(clone, struct dm_rq_clone_bio_info, clone);
1000 struct dm_rq_target_io *tio = info->tio;
1001 struct bio *bio = info->orig;
1002 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003
1004 bio_put(clone);
1005
1006 if (tio->error)
1007 /*
1008 * An error has already been detected on the request.
1009 * Once error occurred, just let clone->end_io() handle
1010 * the remainder.
1011 */
1012 return;
1013 else if (error) {
1014 /*
1015 * Don't notice the error to the upper layer yet.
1016 * The error handling decision is made by the target driver,
1017 * when the request is completed.
1018 */
1019 tio->error = error;
1020 return;
1021 }
1022
1023 /*
1024 * I/O for the bio successfully completed.
1025 * Notice the data completion to the upper layer.
1026 */
1027
1028 /*
1029 * bios are processed from the head of the list.
1030 * So the completing bio should always be rq->bio.
1031 * If it's not, something wrong is happening.
1032 */
1033 if (tio->orig->bio != bio)
1034 DMERR("bio completion is going in the middle of the request");
1035
1036 /*
1037 * Update the original request.
1038 * Do not use blk_end_request() here, because it may complete
1039 * the original request before the clone, and break the ordering.
1040 */
1041 blk_update_request(tio->orig, 0, nr_bytes);
1042 }
1043
1044 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045 {
1046 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047 }
1048
1049 /*
1050 * Don't touch any member of the md after calling this function because
1051 * the md may be freed in dm_put() at the end of this function.
1052 * Or do dm_get() before calling this function and dm_put() later.
1053 */
1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055 {
1056 int nr_requests_pending;
1057
1058 atomic_dec(&md->pending[rw]);
1059
1060 /* nudge anyone waiting on suspend queue */
1061 nr_requests_pending = md_in_flight(md);
1062 if (!nr_requests_pending)
1063 wake_up(&md->wait);
1064
1065 /*
1066 * Run this off this callpath, as drivers could invoke end_io while
1067 * inside their request_fn (and holding the queue lock). Calling
1068 * back into ->request_fn() could deadlock attempting to grab the
1069 * queue lock again.
1070 */
1071 if (run_queue) {
1072 if (md->queue->mq_ops)
1073 blk_mq_run_hw_queues(md->queue, true);
1074 else if (!nr_requests_pending ||
1075 (nr_requests_pending >= md->queue->nr_congestion_on))
1076 blk_run_queue_async(md->queue);
1077 }
1078
1079 /*
1080 * dm_put() must be at the end of this function. See the comment above
1081 */
1082 dm_put(md);
1083 }
1084
1085 static void free_rq_clone(struct request *clone)
1086 {
1087 struct dm_rq_target_io *tio = clone->end_io_data;
1088 struct mapped_device *md = tio->md;
1089
1090 blk_rq_unprep_clone(clone);
1091
1092 if (clone->q->mq_ops)
1093 tio->ti->type->release_clone_rq(clone);
1094 else if (!md->queue->mq_ops)
1095 /* request_fn queue stacked on request_fn queue(s) */
1096 free_clone_request(md, clone);
1097
1098 if (!md->queue->mq_ops)
1099 free_rq_tio(tio);
1100 }
1101
1102 /*
1103 * Complete the clone and the original request.
1104 * Must be called without clone's queue lock held,
1105 * see end_clone_request() for more details.
1106 */
1107 static void dm_end_request(struct request *clone, int error)
1108 {
1109 int rw = rq_data_dir(clone);
1110 struct dm_rq_target_io *tio = clone->end_io_data;
1111 struct mapped_device *md = tio->md;
1112 struct request *rq = tio->orig;
1113
1114 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1115 rq->errors = clone->errors;
1116 rq->resid_len = clone->resid_len;
1117
1118 if (rq->sense)
1119 /*
1120 * We are using the sense buffer of the original
1121 * request.
1122 * So setting the length of the sense data is enough.
1123 */
1124 rq->sense_len = clone->sense_len;
1125 }
1126
1127 free_rq_clone(clone);
1128 if (!rq->q->mq_ops)
1129 blk_end_request_all(rq, error);
1130 else
1131 blk_mq_end_request(rq, error);
1132 rq_completed(md, rw, true);
1133 }
1134
1135 static void dm_unprep_request(struct request *rq)
1136 {
1137 struct dm_rq_target_io *tio = tio_from_request(rq);
1138 struct request *clone = tio->clone;
1139
1140 if (!rq->q->mq_ops) {
1141 rq->special = NULL;
1142 rq->cmd_flags &= ~REQ_DONTPREP;
1143 }
1144
1145 if (clone)
1146 free_rq_clone(clone);
1147 }
1148
1149 /*
1150 * Requeue the original request of a clone.
1151 */
1152 static void old_requeue_request(struct request *rq)
1153 {
1154 struct request_queue *q = rq->q;
1155 unsigned long flags;
1156
1157 spin_lock_irqsave(q->queue_lock, flags);
1158 blk_requeue_request(q, rq);
1159 spin_unlock_irqrestore(q->queue_lock, flags);
1160 }
1161
1162 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1163 struct request *rq)
1164 {
1165 int rw = rq_data_dir(rq);
1166
1167 dm_unprep_request(rq);
1168
1169 if (!rq->q->mq_ops)
1170 old_requeue_request(rq);
1171 else {
1172 blk_mq_requeue_request(rq);
1173 blk_mq_kick_requeue_list(rq->q);
1174 }
1175
1176 rq_completed(md, rw, false);
1177 }
1178
1179 static void dm_requeue_unmapped_request(struct request *clone)
1180 {
1181 struct dm_rq_target_io *tio = clone->end_io_data;
1182
1183 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1184 }
1185
1186 static void old_stop_queue(struct request_queue *q)
1187 {
1188 unsigned long flags;
1189
1190 if (blk_queue_stopped(q))
1191 return;
1192
1193 spin_lock_irqsave(q->queue_lock, flags);
1194 blk_stop_queue(q);
1195 spin_unlock_irqrestore(q->queue_lock, flags);
1196 }
1197
1198 static void stop_queue(struct request_queue *q)
1199 {
1200 if (!q->mq_ops)
1201 old_stop_queue(q);
1202 else
1203 blk_mq_stop_hw_queues(q);
1204 }
1205
1206 static void old_start_queue(struct request_queue *q)
1207 {
1208 unsigned long flags;
1209
1210 spin_lock_irqsave(q->queue_lock, flags);
1211 if (blk_queue_stopped(q))
1212 blk_start_queue(q);
1213 spin_unlock_irqrestore(q->queue_lock, flags);
1214 }
1215
1216 static void start_queue(struct request_queue *q)
1217 {
1218 if (!q->mq_ops)
1219 old_start_queue(q);
1220 else
1221 blk_mq_start_stopped_hw_queues(q, true);
1222 }
1223
1224 static void dm_done(struct request *clone, int error, bool mapped)
1225 {
1226 int r = error;
1227 struct dm_rq_target_io *tio = clone->end_io_data;
1228 dm_request_endio_fn rq_end_io = NULL;
1229
1230 if (tio->ti) {
1231 rq_end_io = tio->ti->type->rq_end_io;
1232
1233 if (mapped && rq_end_io)
1234 r = rq_end_io(tio->ti, clone, error, &tio->info);
1235 }
1236
1237 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1238 !clone->q->limits.max_write_same_sectors))
1239 disable_write_same(tio->md);
1240
1241 if (r <= 0)
1242 /* The target wants to complete the I/O */
1243 dm_end_request(clone, r);
1244 else if (r == DM_ENDIO_INCOMPLETE)
1245 /* The target will handle the I/O */
1246 return;
1247 else if (r == DM_ENDIO_REQUEUE)
1248 /* The target wants to requeue the I/O */
1249 dm_requeue_unmapped_request(clone);
1250 else {
1251 DMWARN("unimplemented target endio return value: %d", r);
1252 BUG();
1253 }
1254 }
1255
1256 /*
1257 * Request completion handler for request-based dm
1258 */
1259 static void dm_softirq_done(struct request *rq)
1260 {
1261 bool mapped = true;
1262 struct dm_rq_target_io *tio = tio_from_request(rq);
1263 struct request *clone = tio->clone;
1264 int rw;
1265
1266 if (!clone) {
1267 rw = rq_data_dir(rq);
1268 if (!rq->q->mq_ops) {
1269 blk_end_request_all(rq, tio->error);
1270 rq_completed(tio->md, rw, false);
1271 free_rq_tio(tio);
1272 } else {
1273 blk_mq_end_request(rq, tio->error);
1274 rq_completed(tio->md, rw, false);
1275 }
1276 return;
1277 }
1278
1279 if (rq->cmd_flags & REQ_FAILED)
1280 mapped = false;
1281
1282 dm_done(clone, tio->error, mapped);
1283 }
1284
1285 /*
1286 * Complete the clone and the original request with the error status
1287 * through softirq context.
1288 */
1289 static void dm_complete_request(struct request *rq, int error)
1290 {
1291 struct dm_rq_target_io *tio = tio_from_request(rq);
1292
1293 tio->error = error;
1294 blk_complete_request(rq);
1295 }
1296
1297 /*
1298 * Complete the not-mapped clone and the original request with the error status
1299 * through softirq context.
1300 * Target's rq_end_io() function isn't called.
1301 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1302 */
1303 static void dm_kill_unmapped_request(struct request *rq, int error)
1304 {
1305 rq->cmd_flags |= REQ_FAILED;
1306 dm_complete_request(rq, error);
1307 }
1308
1309 /*
1310 * Called with the clone's queue lock held (for non-blk-mq)
1311 */
1312 static void end_clone_request(struct request *clone, int error)
1313 {
1314 struct dm_rq_target_io *tio = clone->end_io_data;
1315
1316 if (!clone->q->mq_ops) {
1317 /*
1318 * For just cleaning up the information of the queue in which
1319 * the clone was dispatched.
1320 * The clone is *NOT* freed actually here because it is alloced
1321 * from dm own mempool (REQ_ALLOCED isn't set).
1322 */
1323 __blk_put_request(clone->q, clone);
1324 }
1325
1326 /*
1327 * Actual request completion is done in a softirq context which doesn't
1328 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1329 * - another request may be submitted by the upper level driver
1330 * of the stacking during the completion
1331 * - the submission which requires queue lock may be done
1332 * against this clone's queue
1333 */
1334 dm_complete_request(tio->orig, error);
1335 }
1336
1337 /*
1338 * Return maximum size of I/O possible at the supplied sector up to the current
1339 * target boundary.
1340 */
1341 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1342 {
1343 sector_t target_offset = dm_target_offset(ti, sector);
1344
1345 return ti->len - target_offset;
1346 }
1347
1348 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1349 {
1350 sector_t len = max_io_len_target_boundary(sector, ti);
1351 sector_t offset, max_len;
1352
1353 /*
1354 * Does the target need to split even further?
1355 */
1356 if (ti->max_io_len) {
1357 offset = dm_target_offset(ti, sector);
1358 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1359 max_len = sector_div(offset, ti->max_io_len);
1360 else
1361 max_len = offset & (ti->max_io_len - 1);
1362 max_len = ti->max_io_len - max_len;
1363
1364 if (len > max_len)
1365 len = max_len;
1366 }
1367
1368 return len;
1369 }
1370
1371 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1372 {
1373 if (len > UINT_MAX) {
1374 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1375 (unsigned long long)len, UINT_MAX);
1376 ti->error = "Maximum size of target IO is too large";
1377 return -EINVAL;
1378 }
1379
1380 ti->max_io_len = (uint32_t) len;
1381
1382 return 0;
1383 }
1384 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1385
1386 /*
1387 * A target may call dm_accept_partial_bio only from the map routine. It is
1388 * allowed for all bio types except REQ_FLUSH.
1389 *
1390 * dm_accept_partial_bio informs the dm that the target only wants to process
1391 * additional n_sectors sectors of the bio and the rest of the data should be
1392 * sent in a next bio.
1393 *
1394 * A diagram that explains the arithmetics:
1395 * +--------------------+---------------+-------+
1396 * | 1 | 2 | 3 |
1397 * +--------------------+---------------+-------+
1398 *
1399 * <-------------- *tio->len_ptr --------------->
1400 * <------- bi_size ------->
1401 * <-- n_sectors -->
1402 *
1403 * Region 1 was already iterated over with bio_advance or similar function.
1404 * (it may be empty if the target doesn't use bio_advance)
1405 * Region 2 is the remaining bio size that the target wants to process.
1406 * (it may be empty if region 1 is non-empty, although there is no reason
1407 * to make it empty)
1408 * The target requires that region 3 is to be sent in the next bio.
1409 *
1410 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1411 * the partially processed part (the sum of regions 1+2) must be the same for all
1412 * copies of the bio.
1413 */
1414 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1415 {
1416 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1417 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1418 BUG_ON(bio->bi_rw & REQ_FLUSH);
1419 BUG_ON(bi_size > *tio->len_ptr);
1420 BUG_ON(n_sectors > bi_size);
1421 *tio->len_ptr -= bi_size - n_sectors;
1422 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1423 }
1424 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1425
1426 static void __map_bio(struct dm_target_io *tio)
1427 {
1428 int r;
1429 sector_t sector;
1430 struct mapped_device *md;
1431 struct bio *clone = &tio->clone;
1432 struct dm_target *ti = tio->ti;
1433
1434 clone->bi_end_io = clone_endio;
1435
1436 /*
1437 * Map the clone. If r == 0 we don't need to do
1438 * anything, the target has assumed ownership of
1439 * this io.
1440 */
1441 atomic_inc(&tio->io->io_count);
1442 sector = clone->bi_iter.bi_sector;
1443 r = ti->type->map(ti, clone);
1444 if (r == DM_MAPIO_REMAPPED) {
1445 /* the bio has been remapped so dispatch it */
1446
1447 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1448 tio->io->bio->bi_bdev->bd_dev, sector);
1449
1450 generic_make_request(clone);
1451 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1452 /* error the io and bail out, or requeue it if needed */
1453 md = tio->io->md;
1454 dec_pending(tio->io, r);
1455 free_tio(md, tio);
1456 } else if (r) {
1457 DMWARN("unimplemented target map return value: %d", r);
1458 BUG();
1459 }
1460 }
1461
1462 struct clone_info {
1463 struct mapped_device *md;
1464 struct dm_table *map;
1465 struct bio *bio;
1466 struct dm_io *io;
1467 sector_t sector;
1468 unsigned sector_count;
1469 };
1470
1471 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1472 {
1473 bio->bi_iter.bi_sector = sector;
1474 bio->bi_iter.bi_size = to_bytes(len);
1475 }
1476
1477 /*
1478 * Creates a bio that consists of range of complete bvecs.
1479 */
1480 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1481 sector_t sector, unsigned len)
1482 {
1483 struct bio *clone = &tio->clone;
1484
1485 __bio_clone_fast(clone, bio);
1486
1487 if (bio_integrity(bio))
1488 bio_integrity_clone(clone, bio, GFP_NOIO);
1489
1490 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1491 clone->bi_iter.bi_size = to_bytes(len);
1492
1493 if (bio_integrity(bio))
1494 bio_integrity_trim(clone, 0, len);
1495 }
1496
1497 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1498 struct dm_target *ti,
1499 unsigned target_bio_nr)
1500 {
1501 struct dm_target_io *tio;
1502 struct bio *clone;
1503
1504 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1505 tio = container_of(clone, struct dm_target_io, clone);
1506
1507 tio->io = ci->io;
1508 tio->ti = ti;
1509 tio->target_bio_nr = target_bio_nr;
1510
1511 return tio;
1512 }
1513
1514 static void __clone_and_map_simple_bio(struct clone_info *ci,
1515 struct dm_target *ti,
1516 unsigned target_bio_nr, unsigned *len)
1517 {
1518 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1519 struct bio *clone = &tio->clone;
1520
1521 tio->len_ptr = len;
1522
1523 __bio_clone_fast(clone, ci->bio);
1524 if (len)
1525 bio_setup_sector(clone, ci->sector, *len);
1526
1527 __map_bio(tio);
1528 }
1529
1530 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1531 unsigned num_bios, unsigned *len)
1532 {
1533 unsigned target_bio_nr;
1534
1535 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1536 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1537 }
1538
1539 static int __send_empty_flush(struct clone_info *ci)
1540 {
1541 unsigned target_nr = 0;
1542 struct dm_target *ti;
1543
1544 BUG_ON(bio_has_data(ci->bio));
1545 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1546 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1547
1548 return 0;
1549 }
1550
1551 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1552 sector_t sector, unsigned *len)
1553 {
1554 struct bio *bio = ci->bio;
1555 struct dm_target_io *tio;
1556 unsigned target_bio_nr;
1557 unsigned num_target_bios = 1;
1558
1559 /*
1560 * Does the target want to receive duplicate copies of the bio?
1561 */
1562 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1563 num_target_bios = ti->num_write_bios(ti, bio);
1564
1565 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1566 tio = alloc_tio(ci, ti, target_bio_nr);
1567 tio->len_ptr = len;
1568 clone_bio(tio, bio, sector, *len);
1569 __map_bio(tio);
1570 }
1571 }
1572
1573 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1574
1575 static unsigned get_num_discard_bios(struct dm_target *ti)
1576 {
1577 return ti->num_discard_bios;
1578 }
1579
1580 static unsigned get_num_write_same_bios(struct dm_target *ti)
1581 {
1582 return ti->num_write_same_bios;
1583 }
1584
1585 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1586
1587 static bool is_split_required_for_discard(struct dm_target *ti)
1588 {
1589 return ti->split_discard_bios;
1590 }
1591
1592 static int __send_changing_extent_only(struct clone_info *ci,
1593 get_num_bios_fn get_num_bios,
1594 is_split_required_fn is_split_required)
1595 {
1596 struct dm_target *ti;
1597 unsigned len;
1598 unsigned num_bios;
1599
1600 do {
1601 ti = dm_table_find_target(ci->map, ci->sector);
1602 if (!dm_target_is_valid(ti))
1603 return -EIO;
1604
1605 /*
1606 * Even though the device advertised support for this type of
1607 * request, that does not mean every target supports it, and
1608 * reconfiguration might also have changed that since the
1609 * check was performed.
1610 */
1611 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1612 if (!num_bios)
1613 return -EOPNOTSUPP;
1614
1615 if (is_split_required && !is_split_required(ti))
1616 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1617 else
1618 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1619
1620 __send_duplicate_bios(ci, ti, num_bios, &len);
1621
1622 ci->sector += len;
1623 } while (ci->sector_count -= len);
1624
1625 return 0;
1626 }
1627
1628 static int __send_discard(struct clone_info *ci)
1629 {
1630 return __send_changing_extent_only(ci, get_num_discard_bios,
1631 is_split_required_for_discard);
1632 }
1633
1634 static int __send_write_same(struct clone_info *ci)
1635 {
1636 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1637 }
1638
1639 /*
1640 * Select the correct strategy for processing a non-flush bio.
1641 */
1642 static int __split_and_process_non_flush(struct clone_info *ci)
1643 {
1644 struct bio *bio = ci->bio;
1645 struct dm_target *ti;
1646 unsigned len;
1647
1648 if (unlikely(bio->bi_rw & REQ_DISCARD))
1649 return __send_discard(ci);
1650 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1651 return __send_write_same(ci);
1652
1653 ti = dm_table_find_target(ci->map, ci->sector);
1654 if (!dm_target_is_valid(ti))
1655 return -EIO;
1656
1657 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1658
1659 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1660
1661 ci->sector += len;
1662 ci->sector_count -= len;
1663
1664 return 0;
1665 }
1666
1667 /*
1668 * Entry point to split a bio into clones and submit them to the targets.
1669 */
1670 static void __split_and_process_bio(struct mapped_device *md,
1671 struct dm_table *map, struct bio *bio)
1672 {
1673 struct clone_info ci;
1674 int error = 0;
1675
1676 if (unlikely(!map)) {
1677 bio_io_error(bio);
1678 return;
1679 }
1680
1681 ci.map = map;
1682 ci.md = md;
1683 ci.io = alloc_io(md);
1684 ci.io->error = 0;
1685 atomic_set(&ci.io->io_count, 1);
1686 ci.io->bio = bio;
1687 ci.io->md = md;
1688 spin_lock_init(&ci.io->endio_lock);
1689 ci.sector = bio->bi_iter.bi_sector;
1690
1691 start_io_acct(ci.io);
1692
1693 if (bio->bi_rw & REQ_FLUSH) {
1694 ci.bio = &ci.md->flush_bio;
1695 ci.sector_count = 0;
1696 error = __send_empty_flush(&ci);
1697 /* dec_pending submits any data associated with flush */
1698 } else {
1699 ci.bio = bio;
1700 ci.sector_count = bio_sectors(bio);
1701 while (ci.sector_count && !error)
1702 error = __split_and_process_non_flush(&ci);
1703 }
1704
1705 /* drop the extra reference count */
1706 dec_pending(ci.io, error);
1707 }
1708 /*-----------------------------------------------------------------
1709 * CRUD END
1710 *---------------------------------------------------------------*/
1711
1712 static int dm_merge_bvec(struct request_queue *q,
1713 struct bvec_merge_data *bvm,
1714 struct bio_vec *biovec)
1715 {
1716 struct mapped_device *md = q->queuedata;
1717 struct dm_table *map = dm_get_live_table_fast(md);
1718 struct dm_target *ti;
1719 sector_t max_sectors;
1720 int max_size = 0;
1721
1722 if (unlikely(!map))
1723 goto out;
1724
1725 ti = dm_table_find_target(map, bvm->bi_sector);
1726 if (!dm_target_is_valid(ti))
1727 goto out;
1728
1729 /*
1730 * Find maximum amount of I/O that won't need splitting
1731 */
1732 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1733 (sector_t) queue_max_sectors(q));
1734 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1735 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1736 max_size = 0;
1737
1738 /*
1739 * merge_bvec_fn() returns number of bytes
1740 * it can accept at this offset
1741 * max is precomputed maximal io size
1742 */
1743 if (max_size && ti->type->merge)
1744 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1745 /*
1746 * If the target doesn't support merge method and some of the devices
1747 * provided their merge_bvec method (we know this by looking for the
1748 * max_hw_sectors that dm_set_device_limits may set), then we can't
1749 * allow bios with multiple vector entries. So always set max_size
1750 * to 0, and the code below allows just one page.
1751 */
1752 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1753 max_size = 0;
1754
1755 out:
1756 dm_put_live_table_fast(md);
1757 /*
1758 * Always allow an entire first page
1759 */
1760 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1761 max_size = biovec->bv_len;
1762
1763 return max_size;
1764 }
1765
1766 /*
1767 * The request function that just remaps the bio built up by
1768 * dm_merge_bvec.
1769 */
1770 static void dm_make_request(struct request_queue *q, struct bio *bio)
1771 {
1772 int rw = bio_data_dir(bio);
1773 struct mapped_device *md = q->queuedata;
1774 int srcu_idx;
1775 struct dm_table *map;
1776
1777 map = dm_get_live_table(md, &srcu_idx);
1778
1779 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1780
1781 /* if we're suspended, we have to queue this io for later */
1782 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1783 dm_put_live_table(md, srcu_idx);
1784
1785 if (bio_rw(bio) != READA)
1786 queue_io(md, bio);
1787 else
1788 bio_io_error(bio);
1789 return;
1790 }
1791
1792 __split_and_process_bio(md, map, bio);
1793 dm_put_live_table(md, srcu_idx);
1794 return;
1795 }
1796
1797 int dm_request_based(struct mapped_device *md)
1798 {
1799 return blk_queue_stackable(md->queue);
1800 }
1801
1802 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1803 {
1804 int r;
1805
1806 if (blk_queue_io_stat(clone->q))
1807 clone->cmd_flags |= REQ_IO_STAT;
1808
1809 clone->start_time = jiffies;
1810 r = blk_insert_cloned_request(clone->q, clone);
1811 if (r)
1812 /* must complete clone in terms of original request */
1813 dm_complete_request(rq, r);
1814 }
1815
1816 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1817 void *data)
1818 {
1819 struct dm_rq_target_io *tio = data;
1820 struct dm_rq_clone_bio_info *info =
1821 container_of(bio, struct dm_rq_clone_bio_info, clone);
1822
1823 info->orig = bio_orig;
1824 info->tio = tio;
1825 bio->bi_end_io = end_clone_bio;
1826
1827 return 0;
1828 }
1829
1830 static int setup_clone(struct request *clone, struct request *rq,
1831 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1832 {
1833 int r;
1834
1835 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1836 dm_rq_bio_constructor, tio);
1837 if (r)
1838 return r;
1839
1840 clone->cmd = rq->cmd;
1841 clone->cmd_len = rq->cmd_len;
1842 clone->sense = rq->sense;
1843 clone->end_io = end_clone_request;
1844 clone->end_io_data = tio;
1845
1846 tio->clone = clone;
1847
1848 return 0;
1849 }
1850
1851 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1852 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1853 {
1854 /*
1855 * Do not allocate a clone if tio->clone was already set
1856 * (see: dm_mq_queue_rq).
1857 */
1858 bool alloc_clone = !tio->clone;
1859 struct request *clone;
1860
1861 if (alloc_clone) {
1862 clone = alloc_clone_request(md, gfp_mask);
1863 if (!clone)
1864 return NULL;
1865 } else
1866 clone = tio->clone;
1867
1868 blk_rq_init(NULL, clone);
1869 if (setup_clone(clone, rq, tio, gfp_mask)) {
1870 /* -ENOMEM */
1871 if (alloc_clone)
1872 free_clone_request(md, clone);
1873 return NULL;
1874 }
1875
1876 return clone;
1877 }
1878
1879 static void map_tio_request(struct kthread_work *work);
1880
1881 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1882 struct mapped_device *md)
1883 {
1884 tio->md = md;
1885 tio->ti = NULL;
1886 tio->clone = NULL;
1887 tio->orig = rq;
1888 tio->error = 0;
1889 memset(&tio->info, 0, sizeof(tio->info));
1890 if (md->kworker_task)
1891 init_kthread_work(&tio->work, map_tio_request);
1892 }
1893
1894 static struct dm_rq_target_io *prep_tio(struct request *rq,
1895 struct mapped_device *md, gfp_t gfp_mask)
1896 {
1897 struct dm_rq_target_io *tio;
1898 int srcu_idx;
1899 struct dm_table *table;
1900
1901 tio = alloc_rq_tio(md, gfp_mask);
1902 if (!tio)
1903 return NULL;
1904
1905 init_tio(tio, rq, md);
1906
1907 table = dm_get_live_table(md, &srcu_idx);
1908 if (!dm_table_mq_request_based(table)) {
1909 if (!clone_rq(rq, md, tio, gfp_mask)) {
1910 dm_put_live_table(md, srcu_idx);
1911 free_rq_tio(tio);
1912 return NULL;
1913 }
1914 }
1915 dm_put_live_table(md, srcu_idx);
1916
1917 return tio;
1918 }
1919
1920 /*
1921 * Called with the queue lock held.
1922 */
1923 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1924 {
1925 struct mapped_device *md = q->queuedata;
1926 struct dm_rq_target_io *tio;
1927
1928 if (unlikely(rq->special)) {
1929 DMWARN("Already has something in rq->special.");
1930 return BLKPREP_KILL;
1931 }
1932
1933 tio = prep_tio(rq, md, GFP_ATOMIC);
1934 if (!tio)
1935 return BLKPREP_DEFER;
1936
1937 rq->special = tio;
1938 rq->cmd_flags |= REQ_DONTPREP;
1939
1940 return BLKPREP_OK;
1941 }
1942
1943 /*
1944 * Returns:
1945 * 0 : the request has been processed
1946 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1947 * < 0 : the request was completed due to failure
1948 */
1949 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1950 struct mapped_device *md)
1951 {
1952 int r;
1953 struct dm_target *ti = tio->ti;
1954 struct request *clone = NULL;
1955
1956 if (tio->clone) {
1957 clone = tio->clone;
1958 r = ti->type->map_rq(ti, clone, &tio->info);
1959 } else {
1960 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1961 if (r < 0) {
1962 /* The target wants to complete the I/O */
1963 dm_kill_unmapped_request(rq, r);
1964 return r;
1965 }
1966 if (IS_ERR(clone))
1967 return DM_MAPIO_REQUEUE;
1968 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1969 /* -ENOMEM */
1970 ti->type->release_clone_rq(clone);
1971 return DM_MAPIO_REQUEUE;
1972 }
1973 }
1974
1975 switch (r) {
1976 case DM_MAPIO_SUBMITTED:
1977 /* The target has taken the I/O to submit by itself later */
1978 break;
1979 case DM_MAPIO_REMAPPED:
1980 /* The target has remapped the I/O so dispatch it */
1981 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1982 blk_rq_pos(rq));
1983 dm_dispatch_clone_request(clone, rq);
1984 break;
1985 case DM_MAPIO_REQUEUE:
1986 /* The target wants to requeue the I/O */
1987 dm_requeue_unmapped_request(clone);
1988 break;
1989 default:
1990 if (r > 0) {
1991 DMWARN("unimplemented target map return value: %d", r);
1992 BUG();
1993 }
1994
1995 /* The target wants to complete the I/O */
1996 dm_kill_unmapped_request(rq, r);
1997 return r;
1998 }
1999
2000 return 0;
2001 }
2002
2003 static void map_tio_request(struct kthread_work *work)
2004 {
2005 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2006 struct request *rq = tio->orig;
2007 struct mapped_device *md = tio->md;
2008
2009 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2010 dm_requeue_unmapped_original_request(md, rq);
2011 }
2012
2013 static void dm_start_request(struct mapped_device *md, struct request *orig)
2014 {
2015 if (!orig->q->mq_ops)
2016 blk_start_request(orig);
2017 else
2018 blk_mq_start_request(orig);
2019 atomic_inc(&md->pending[rq_data_dir(orig)]);
2020
2021 if (md->seq_rq_merge_deadline_usecs) {
2022 md->last_rq_pos = rq_end_sector(orig);
2023 md->last_rq_rw = rq_data_dir(orig);
2024 md->last_rq_start_time = ktime_get();
2025 }
2026
2027 /*
2028 * Hold the md reference here for the in-flight I/O.
2029 * We can't rely on the reference count by device opener,
2030 * because the device may be closed during the request completion
2031 * when all bios are completed.
2032 * See the comment in rq_completed() too.
2033 */
2034 dm_get(md);
2035 }
2036
2037 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2038
2039 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2040 {
2041 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2042 }
2043
2044 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2045 const char *buf, size_t count)
2046 {
2047 unsigned deadline;
2048
2049 if (!dm_request_based(md) || md->use_blk_mq)
2050 return count;
2051
2052 if (kstrtouint(buf, 10, &deadline))
2053 return -EINVAL;
2054
2055 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2056 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2057
2058 md->seq_rq_merge_deadline_usecs = deadline;
2059
2060 return count;
2061 }
2062
2063 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2064 {
2065 ktime_t kt_deadline;
2066
2067 if (!md->seq_rq_merge_deadline_usecs)
2068 return false;
2069
2070 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2071 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2072
2073 return !ktime_after(ktime_get(), kt_deadline);
2074 }
2075
2076 /*
2077 * q->request_fn for request-based dm.
2078 * Called with the queue lock held.
2079 */
2080 static void dm_request_fn(struct request_queue *q)
2081 {
2082 struct mapped_device *md = q->queuedata;
2083 int srcu_idx;
2084 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2085 struct dm_target *ti;
2086 struct request *rq;
2087 struct dm_rq_target_io *tio;
2088 sector_t pos;
2089
2090 /*
2091 * For suspend, check blk_queue_stopped() and increment
2092 * ->pending within a single queue_lock not to increment the
2093 * number of in-flight I/Os after the queue is stopped in
2094 * dm_suspend().
2095 */
2096 while (!blk_queue_stopped(q)) {
2097 rq = blk_peek_request(q);
2098 if (!rq)
2099 goto out;
2100
2101 /* always use block 0 to find the target for flushes for now */
2102 pos = 0;
2103 if (!(rq->cmd_flags & REQ_FLUSH))
2104 pos = blk_rq_pos(rq);
2105
2106 ti = dm_table_find_target(map, pos);
2107 if (!dm_target_is_valid(ti)) {
2108 /*
2109 * Must perform setup, that rq_completed() requires,
2110 * before calling dm_kill_unmapped_request
2111 */
2112 DMERR_LIMIT("request attempted access beyond the end of device");
2113 dm_start_request(md, rq);
2114 dm_kill_unmapped_request(rq, -EIO);
2115 continue;
2116 }
2117
2118 if (dm_request_peeked_before_merge_deadline(md) &&
2119 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2120 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2121 goto delay_and_out;
2122
2123 if (ti->type->busy && ti->type->busy(ti))
2124 goto delay_and_out;
2125
2126 dm_start_request(md, rq);
2127
2128 tio = tio_from_request(rq);
2129 /* Establish tio->ti before queuing work (map_tio_request) */
2130 tio->ti = ti;
2131 queue_kthread_work(&md->kworker, &tio->work);
2132 BUG_ON(!irqs_disabled());
2133 }
2134
2135 goto out;
2136
2137 delay_and_out:
2138 blk_delay_queue(q, HZ / 100);
2139 out:
2140 dm_put_live_table(md, srcu_idx);
2141 }
2142
2143 static int dm_any_congested(void *congested_data, int bdi_bits)
2144 {
2145 int r = bdi_bits;
2146 struct mapped_device *md = congested_data;
2147 struct dm_table *map;
2148
2149 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2150 map = dm_get_live_table_fast(md);
2151 if (map) {
2152 /*
2153 * Request-based dm cares about only own queue for
2154 * the query about congestion status of request_queue
2155 */
2156 if (dm_request_based(md))
2157 r = md->queue->backing_dev_info.state &
2158 bdi_bits;
2159 else
2160 r = dm_table_any_congested(map, bdi_bits);
2161 }
2162 dm_put_live_table_fast(md);
2163 }
2164
2165 return r;
2166 }
2167
2168 /*-----------------------------------------------------------------
2169 * An IDR is used to keep track of allocated minor numbers.
2170 *---------------------------------------------------------------*/
2171 static void free_minor(int minor)
2172 {
2173 spin_lock(&_minor_lock);
2174 idr_remove(&_minor_idr, minor);
2175 spin_unlock(&_minor_lock);
2176 }
2177
2178 /*
2179 * See if the device with a specific minor # is free.
2180 */
2181 static int specific_minor(int minor)
2182 {
2183 int r;
2184
2185 if (minor >= (1 << MINORBITS))
2186 return -EINVAL;
2187
2188 idr_preload(GFP_KERNEL);
2189 spin_lock(&_minor_lock);
2190
2191 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2192
2193 spin_unlock(&_minor_lock);
2194 idr_preload_end();
2195 if (r < 0)
2196 return r == -ENOSPC ? -EBUSY : r;
2197 return 0;
2198 }
2199
2200 static int next_free_minor(int *minor)
2201 {
2202 int r;
2203
2204 idr_preload(GFP_KERNEL);
2205 spin_lock(&_minor_lock);
2206
2207 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2208
2209 spin_unlock(&_minor_lock);
2210 idr_preload_end();
2211 if (r < 0)
2212 return r;
2213 *minor = r;
2214 return 0;
2215 }
2216
2217 static const struct block_device_operations dm_blk_dops;
2218
2219 static void dm_wq_work(struct work_struct *work);
2220
2221 static void dm_init_md_queue(struct mapped_device *md)
2222 {
2223 /*
2224 * Request-based dm devices cannot be stacked on top of bio-based dm
2225 * devices. The type of this dm device may not have been decided yet.
2226 * The type is decided at the first table loading time.
2227 * To prevent problematic device stacking, clear the queue flag
2228 * for request stacking support until then.
2229 *
2230 * This queue is new, so no concurrency on the queue_flags.
2231 */
2232 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2233 }
2234
2235 static void dm_init_old_md_queue(struct mapped_device *md)
2236 {
2237 md->use_blk_mq = false;
2238 dm_init_md_queue(md);
2239
2240 /*
2241 * Initialize aspects of queue that aren't relevant for blk-mq
2242 */
2243 md->queue->queuedata = md;
2244 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2245 md->queue->backing_dev_info.congested_data = md;
2246
2247 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2248 }
2249
2250 /*
2251 * Allocate and initialise a blank device with a given minor.
2252 */
2253 static struct mapped_device *alloc_dev(int minor)
2254 {
2255 int r;
2256 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2257 void *old_md;
2258
2259 if (!md) {
2260 DMWARN("unable to allocate device, out of memory.");
2261 return NULL;
2262 }
2263
2264 if (!try_module_get(THIS_MODULE))
2265 goto bad_module_get;
2266
2267 /* get a minor number for the dev */
2268 if (minor == DM_ANY_MINOR)
2269 r = next_free_minor(&minor);
2270 else
2271 r = specific_minor(minor);
2272 if (r < 0)
2273 goto bad_minor;
2274
2275 r = init_srcu_struct(&md->io_barrier);
2276 if (r < 0)
2277 goto bad_io_barrier;
2278
2279 md->use_blk_mq = use_blk_mq;
2280 md->type = DM_TYPE_NONE;
2281 mutex_init(&md->suspend_lock);
2282 mutex_init(&md->type_lock);
2283 mutex_init(&md->table_devices_lock);
2284 spin_lock_init(&md->deferred_lock);
2285 atomic_set(&md->holders, 1);
2286 atomic_set(&md->open_count, 0);
2287 atomic_set(&md->event_nr, 0);
2288 atomic_set(&md->uevent_seq, 0);
2289 INIT_LIST_HEAD(&md->uevent_list);
2290 INIT_LIST_HEAD(&md->table_devices);
2291 spin_lock_init(&md->uevent_lock);
2292
2293 md->queue = blk_alloc_queue(GFP_KERNEL);
2294 if (!md->queue)
2295 goto bad_queue;
2296
2297 dm_init_md_queue(md);
2298
2299 md->disk = alloc_disk(1);
2300 if (!md->disk)
2301 goto bad_disk;
2302
2303 atomic_set(&md->pending[0], 0);
2304 atomic_set(&md->pending[1], 0);
2305 init_waitqueue_head(&md->wait);
2306 INIT_WORK(&md->work, dm_wq_work);
2307 init_waitqueue_head(&md->eventq);
2308 init_completion(&md->kobj_holder.completion);
2309 md->kworker_task = NULL;
2310
2311 md->disk->major = _major;
2312 md->disk->first_minor = minor;
2313 md->disk->fops = &dm_blk_dops;
2314 md->disk->queue = md->queue;
2315 md->disk->private_data = md;
2316 sprintf(md->disk->disk_name, "dm-%d", minor);
2317 add_disk(md->disk);
2318 format_dev_t(md->name, MKDEV(_major, minor));
2319
2320 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2321 if (!md->wq)
2322 goto bad_thread;
2323
2324 md->bdev = bdget_disk(md->disk, 0);
2325 if (!md->bdev)
2326 goto bad_bdev;
2327
2328 bio_init(&md->flush_bio);
2329 md->flush_bio.bi_bdev = md->bdev;
2330 md->flush_bio.bi_rw = WRITE_FLUSH;
2331
2332 dm_stats_init(&md->stats);
2333
2334 /* Populate the mapping, nobody knows we exist yet */
2335 spin_lock(&_minor_lock);
2336 old_md = idr_replace(&_minor_idr, md, minor);
2337 spin_unlock(&_minor_lock);
2338
2339 BUG_ON(old_md != MINOR_ALLOCED);
2340
2341 return md;
2342
2343 bad_bdev:
2344 destroy_workqueue(md->wq);
2345 bad_thread:
2346 del_gendisk(md->disk);
2347 put_disk(md->disk);
2348 bad_disk:
2349 blk_cleanup_queue(md->queue);
2350 bad_queue:
2351 cleanup_srcu_struct(&md->io_barrier);
2352 bad_io_barrier:
2353 free_minor(minor);
2354 bad_minor:
2355 module_put(THIS_MODULE);
2356 bad_module_get:
2357 kfree(md);
2358 return NULL;
2359 }
2360
2361 static void unlock_fs(struct mapped_device *md);
2362
2363 static void free_dev(struct mapped_device *md)
2364 {
2365 int minor = MINOR(disk_devt(md->disk));
2366
2367 unlock_fs(md);
2368 destroy_workqueue(md->wq);
2369
2370 if (md->kworker_task)
2371 kthread_stop(md->kworker_task);
2372 if (md->io_pool)
2373 mempool_destroy(md->io_pool);
2374 if (md->rq_pool)
2375 mempool_destroy(md->rq_pool);
2376 if (md->bs)
2377 bioset_free(md->bs);
2378
2379 cleanup_srcu_struct(&md->io_barrier);
2380 free_table_devices(&md->table_devices);
2381 dm_stats_cleanup(&md->stats);
2382
2383 spin_lock(&_minor_lock);
2384 md->disk->private_data = NULL;
2385 spin_unlock(&_minor_lock);
2386 if (blk_get_integrity(md->disk))
2387 blk_integrity_unregister(md->disk);
2388 del_gendisk(md->disk);
2389 put_disk(md->disk);
2390 blk_cleanup_queue(md->queue);
2391 if (md->use_blk_mq)
2392 blk_mq_free_tag_set(&md->tag_set);
2393 bdput(md->bdev);
2394 free_minor(minor);
2395
2396 module_put(THIS_MODULE);
2397 kfree(md);
2398 }
2399
2400 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2401 {
2402 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2403
2404 if (md->bs) {
2405 /* The md already has necessary mempools. */
2406 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2407 /*
2408 * Reload bioset because front_pad may have changed
2409 * because a different table was loaded.
2410 */
2411 bioset_free(md->bs);
2412 md->bs = p->bs;
2413 p->bs = NULL;
2414 }
2415 /*
2416 * There's no need to reload with request-based dm
2417 * because the size of front_pad doesn't change.
2418 * Note for future: If you are to reload bioset,
2419 * prep-ed requests in the queue may refer
2420 * to bio from the old bioset, so you must walk
2421 * through the queue to unprep.
2422 */
2423 goto out;
2424 }
2425
2426 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2427
2428 md->io_pool = p->io_pool;
2429 p->io_pool = NULL;
2430 md->rq_pool = p->rq_pool;
2431 p->rq_pool = NULL;
2432 md->bs = p->bs;
2433 p->bs = NULL;
2434
2435 out:
2436 /* mempool bind completed, no longer need any mempools in the table */
2437 dm_table_free_md_mempools(t);
2438 }
2439
2440 /*
2441 * Bind a table to the device.
2442 */
2443 static void event_callback(void *context)
2444 {
2445 unsigned long flags;
2446 LIST_HEAD(uevents);
2447 struct mapped_device *md = (struct mapped_device *) context;
2448
2449 spin_lock_irqsave(&md->uevent_lock, flags);
2450 list_splice_init(&md->uevent_list, &uevents);
2451 spin_unlock_irqrestore(&md->uevent_lock, flags);
2452
2453 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2454
2455 atomic_inc(&md->event_nr);
2456 wake_up(&md->eventq);
2457 }
2458
2459 /*
2460 * Protected by md->suspend_lock obtained by dm_swap_table().
2461 */
2462 static void __set_size(struct mapped_device *md, sector_t size)
2463 {
2464 set_capacity(md->disk, size);
2465
2466 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2467 }
2468
2469 /*
2470 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2471 *
2472 * If this function returns 0, then the device is either a non-dm
2473 * device without a merge_bvec_fn, or it is a dm device that is
2474 * able to split any bios it receives that are too big.
2475 */
2476 int dm_queue_merge_is_compulsory(struct request_queue *q)
2477 {
2478 struct mapped_device *dev_md;
2479
2480 if (!q->merge_bvec_fn)
2481 return 0;
2482
2483 if (q->make_request_fn == dm_make_request) {
2484 dev_md = q->queuedata;
2485 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2486 return 0;
2487 }
2488
2489 return 1;
2490 }
2491
2492 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2493 struct dm_dev *dev, sector_t start,
2494 sector_t len, void *data)
2495 {
2496 struct block_device *bdev = dev->bdev;
2497 struct request_queue *q = bdev_get_queue(bdev);
2498
2499 return dm_queue_merge_is_compulsory(q);
2500 }
2501
2502 /*
2503 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2504 * on the properties of the underlying devices.
2505 */
2506 static int dm_table_merge_is_optional(struct dm_table *table)
2507 {
2508 unsigned i = 0;
2509 struct dm_target *ti;
2510
2511 while (i < dm_table_get_num_targets(table)) {
2512 ti = dm_table_get_target(table, i++);
2513
2514 if (ti->type->iterate_devices &&
2515 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2516 return 0;
2517 }
2518
2519 return 1;
2520 }
2521
2522 /*
2523 * Returns old map, which caller must destroy.
2524 */
2525 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2526 struct queue_limits *limits)
2527 {
2528 struct dm_table *old_map;
2529 struct request_queue *q = md->queue;
2530 sector_t size;
2531 int merge_is_optional;
2532
2533 size = dm_table_get_size(t);
2534
2535 /*
2536 * Wipe any geometry if the size of the table changed.
2537 */
2538 if (size != dm_get_size(md))
2539 memset(&md->geometry, 0, sizeof(md->geometry));
2540
2541 __set_size(md, size);
2542
2543 dm_table_event_callback(t, event_callback, md);
2544
2545 /*
2546 * The queue hasn't been stopped yet, if the old table type wasn't
2547 * for request-based during suspension. So stop it to prevent
2548 * I/O mapping before resume.
2549 * This must be done before setting the queue restrictions,
2550 * because request-based dm may be run just after the setting.
2551 */
2552 if (dm_table_request_based(t))
2553 stop_queue(q);
2554
2555 __bind_mempools(md, t);
2556
2557 merge_is_optional = dm_table_merge_is_optional(t);
2558
2559 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2560 rcu_assign_pointer(md->map, t);
2561 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2562
2563 dm_table_set_restrictions(t, q, limits);
2564 if (merge_is_optional)
2565 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2566 else
2567 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2568 if (old_map)
2569 dm_sync_table(md);
2570
2571 return old_map;
2572 }
2573
2574 /*
2575 * Returns unbound table for the caller to free.
2576 */
2577 static struct dm_table *__unbind(struct mapped_device *md)
2578 {
2579 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2580
2581 if (!map)
2582 return NULL;
2583
2584 dm_table_event_callback(map, NULL, NULL);
2585 RCU_INIT_POINTER(md->map, NULL);
2586 dm_sync_table(md);
2587
2588 return map;
2589 }
2590
2591 /*
2592 * Constructor for a new device.
2593 */
2594 int dm_create(int minor, struct mapped_device **result)
2595 {
2596 struct mapped_device *md;
2597
2598 md = alloc_dev(minor);
2599 if (!md)
2600 return -ENXIO;
2601
2602 dm_sysfs_init(md);
2603
2604 *result = md;
2605 return 0;
2606 }
2607
2608 /*
2609 * Functions to manage md->type.
2610 * All are required to hold md->type_lock.
2611 */
2612 void dm_lock_md_type(struct mapped_device *md)
2613 {
2614 mutex_lock(&md->type_lock);
2615 }
2616
2617 void dm_unlock_md_type(struct mapped_device *md)
2618 {
2619 mutex_unlock(&md->type_lock);
2620 }
2621
2622 void dm_set_md_type(struct mapped_device *md, unsigned type)
2623 {
2624 BUG_ON(!mutex_is_locked(&md->type_lock));
2625 md->type = type;
2626 }
2627
2628 unsigned dm_get_md_type(struct mapped_device *md)
2629 {
2630 BUG_ON(!mutex_is_locked(&md->type_lock));
2631 return md->type;
2632 }
2633
2634 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2635 {
2636 return md->immutable_target_type;
2637 }
2638
2639 /*
2640 * The queue_limits are only valid as long as you have a reference
2641 * count on 'md'.
2642 */
2643 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2644 {
2645 BUG_ON(!atomic_read(&md->holders));
2646 return &md->queue->limits;
2647 }
2648 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2649
2650 static void init_rq_based_worker_thread(struct mapped_device *md)
2651 {
2652 /* Initialize the request-based DM worker thread */
2653 init_kthread_worker(&md->kworker);
2654 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2655 "kdmwork-%s", dm_device_name(md));
2656 }
2657
2658 /*
2659 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2660 */
2661 static int dm_init_request_based_queue(struct mapped_device *md)
2662 {
2663 struct request_queue *q = NULL;
2664
2665 if (md->queue->elevator)
2666 return 0;
2667
2668 /* Fully initialize the queue */
2669 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2670 if (!q)
2671 return -EINVAL;
2672
2673 /* disable dm_request_fn's merge heuristic by default */
2674 md->seq_rq_merge_deadline_usecs = 0;
2675
2676 md->queue = q;
2677 dm_init_old_md_queue(md);
2678 blk_queue_softirq_done(md->queue, dm_softirq_done);
2679 blk_queue_prep_rq(md->queue, dm_prep_fn);
2680
2681 init_rq_based_worker_thread(md);
2682
2683 elv_register_queue(md->queue);
2684
2685 return 0;
2686 }
2687
2688 static int dm_mq_init_request(void *data, struct request *rq,
2689 unsigned int hctx_idx, unsigned int request_idx,
2690 unsigned int numa_node)
2691 {
2692 struct mapped_device *md = data;
2693 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2694
2695 /*
2696 * Must initialize md member of tio, otherwise it won't
2697 * be available in dm_mq_queue_rq.
2698 */
2699 tio->md = md;
2700
2701 return 0;
2702 }
2703
2704 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2705 const struct blk_mq_queue_data *bd)
2706 {
2707 struct request *rq = bd->rq;
2708 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2709 struct mapped_device *md = tio->md;
2710 int srcu_idx;
2711 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2712 struct dm_target *ti;
2713 sector_t pos;
2714
2715 /* always use block 0 to find the target for flushes for now */
2716 pos = 0;
2717 if (!(rq->cmd_flags & REQ_FLUSH))
2718 pos = blk_rq_pos(rq);
2719
2720 ti = dm_table_find_target(map, pos);
2721 if (!dm_target_is_valid(ti)) {
2722 dm_put_live_table(md, srcu_idx);
2723 DMERR_LIMIT("request attempted access beyond the end of device");
2724 /*
2725 * Must perform setup, that rq_completed() requires,
2726 * before returning BLK_MQ_RQ_QUEUE_ERROR
2727 */
2728 dm_start_request(md, rq);
2729 return BLK_MQ_RQ_QUEUE_ERROR;
2730 }
2731 dm_put_live_table(md, srcu_idx);
2732
2733 if (ti->type->busy && ti->type->busy(ti))
2734 return BLK_MQ_RQ_QUEUE_BUSY;
2735
2736 dm_start_request(md, rq);
2737
2738 /* Init tio using md established in .init_request */
2739 init_tio(tio, rq, md);
2740
2741 /*
2742 * Establish tio->ti before queuing work (map_tio_request)
2743 * or making direct call to map_request().
2744 */
2745 tio->ti = ti;
2746
2747 /* Clone the request if underlying devices aren't blk-mq */
2748 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2749 /* clone request is allocated at the end of the pdu */
2750 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2751 if (!clone_rq(rq, md, tio, GFP_ATOMIC))
2752 return BLK_MQ_RQ_QUEUE_BUSY;
2753 queue_kthread_work(&md->kworker, &tio->work);
2754 } else {
2755 /* Direct call is fine since .queue_rq allows allocations */
2756 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2757 dm_requeue_unmapped_original_request(md, rq);
2758 }
2759
2760 return BLK_MQ_RQ_QUEUE_OK;
2761 }
2762
2763 static struct blk_mq_ops dm_mq_ops = {
2764 .queue_rq = dm_mq_queue_rq,
2765 .map_queue = blk_mq_map_queue,
2766 .complete = dm_softirq_done,
2767 .init_request = dm_mq_init_request,
2768 };
2769
2770 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2771 {
2772 unsigned md_type = dm_get_md_type(md);
2773 struct request_queue *q;
2774 int err;
2775
2776 memset(&md->tag_set, 0, sizeof(md->tag_set));
2777 md->tag_set.ops = &dm_mq_ops;
2778 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2779 md->tag_set.numa_node = NUMA_NO_NODE;
2780 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2781 md->tag_set.nr_hw_queues = 1;
2782 if (md_type == DM_TYPE_REQUEST_BASED) {
2783 /* make the memory for non-blk-mq clone part of the pdu */
2784 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2785 } else
2786 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2787 md->tag_set.driver_data = md;
2788
2789 err = blk_mq_alloc_tag_set(&md->tag_set);
2790 if (err)
2791 return err;
2792
2793 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2794 if (IS_ERR(q)) {
2795 err = PTR_ERR(q);
2796 goto out_tag_set;
2797 }
2798 md->queue = q;
2799 dm_init_md_queue(md);
2800
2801 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2802 blk_mq_register_disk(md->disk);
2803
2804 if (md_type == DM_TYPE_REQUEST_BASED)
2805 init_rq_based_worker_thread(md);
2806
2807 return 0;
2808
2809 out_tag_set:
2810 blk_mq_free_tag_set(&md->tag_set);
2811 return err;
2812 }
2813
2814 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2815 {
2816 if (type == DM_TYPE_BIO_BASED)
2817 return type;
2818
2819 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2820 }
2821
2822 /*
2823 * Setup the DM device's queue based on md's type
2824 */
2825 int dm_setup_md_queue(struct mapped_device *md)
2826 {
2827 int r;
2828 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2829
2830 switch (md_type) {
2831 case DM_TYPE_REQUEST_BASED:
2832 r = dm_init_request_based_queue(md);
2833 if (r) {
2834 DMWARN("Cannot initialize queue for request-based mapped device");
2835 return r;
2836 }
2837 break;
2838 case DM_TYPE_MQ_REQUEST_BASED:
2839 r = dm_init_request_based_blk_mq_queue(md);
2840 if (r) {
2841 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2842 return r;
2843 }
2844 break;
2845 case DM_TYPE_BIO_BASED:
2846 dm_init_old_md_queue(md);
2847 blk_queue_make_request(md->queue, dm_make_request);
2848 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2849 break;
2850 }
2851
2852 return 0;
2853 }
2854
2855 struct mapped_device *dm_get_md(dev_t dev)
2856 {
2857 struct mapped_device *md;
2858 unsigned minor = MINOR(dev);
2859
2860 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2861 return NULL;
2862
2863 spin_lock(&_minor_lock);
2864
2865 md = idr_find(&_minor_idr, minor);
2866 if (md) {
2867 if ((md == MINOR_ALLOCED ||
2868 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2869 dm_deleting_md(md) ||
2870 test_bit(DMF_FREEING, &md->flags))) {
2871 md = NULL;
2872 goto out;
2873 }
2874 dm_get(md);
2875 }
2876
2877 out:
2878 spin_unlock(&_minor_lock);
2879
2880 return md;
2881 }
2882 EXPORT_SYMBOL_GPL(dm_get_md);
2883
2884 void *dm_get_mdptr(struct mapped_device *md)
2885 {
2886 return md->interface_ptr;
2887 }
2888
2889 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2890 {
2891 md->interface_ptr = ptr;
2892 }
2893
2894 void dm_get(struct mapped_device *md)
2895 {
2896 atomic_inc(&md->holders);
2897 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2898 }
2899
2900 int dm_hold(struct mapped_device *md)
2901 {
2902 spin_lock(&_minor_lock);
2903 if (test_bit(DMF_FREEING, &md->flags)) {
2904 spin_unlock(&_minor_lock);
2905 return -EBUSY;
2906 }
2907 dm_get(md);
2908 spin_unlock(&_minor_lock);
2909 return 0;
2910 }
2911 EXPORT_SYMBOL_GPL(dm_hold);
2912
2913 const char *dm_device_name(struct mapped_device *md)
2914 {
2915 return md->name;
2916 }
2917 EXPORT_SYMBOL_GPL(dm_device_name);
2918
2919 static void __dm_destroy(struct mapped_device *md, bool wait)
2920 {
2921 struct dm_table *map;
2922 int srcu_idx;
2923
2924 might_sleep();
2925
2926 map = dm_get_live_table(md, &srcu_idx);
2927
2928 spin_lock(&_minor_lock);
2929 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2930 set_bit(DMF_FREEING, &md->flags);
2931 spin_unlock(&_minor_lock);
2932
2933 if (dm_request_based(md) && md->kworker_task)
2934 flush_kthread_worker(&md->kworker);
2935
2936 /*
2937 * Take suspend_lock so that presuspend and postsuspend methods
2938 * do not race with internal suspend.
2939 */
2940 mutex_lock(&md->suspend_lock);
2941 if (!dm_suspended_md(md)) {
2942 dm_table_presuspend_targets(map);
2943 dm_table_postsuspend_targets(map);
2944 }
2945 mutex_unlock(&md->suspend_lock);
2946
2947 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948 dm_put_live_table(md, srcu_idx);
2949
2950 /*
2951 * Rare, but there may be I/O requests still going to complete,
2952 * for example. Wait for all references to disappear.
2953 * No one should increment the reference count of the mapped_device,
2954 * after the mapped_device state becomes DMF_FREEING.
2955 */
2956 if (wait)
2957 while (atomic_read(&md->holders))
2958 msleep(1);
2959 else if (atomic_read(&md->holders))
2960 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2961 dm_device_name(md), atomic_read(&md->holders));
2962
2963 dm_sysfs_exit(md);
2964 dm_table_destroy(__unbind(md));
2965 free_dev(md);
2966 }
2967
2968 void dm_destroy(struct mapped_device *md)
2969 {
2970 __dm_destroy(md, true);
2971 }
2972
2973 void dm_destroy_immediate(struct mapped_device *md)
2974 {
2975 __dm_destroy(md, false);
2976 }
2977
2978 void dm_put(struct mapped_device *md)
2979 {
2980 atomic_dec(&md->holders);
2981 }
2982 EXPORT_SYMBOL_GPL(dm_put);
2983
2984 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2985 {
2986 int r = 0;
2987 DECLARE_WAITQUEUE(wait, current);
2988
2989 add_wait_queue(&md->wait, &wait);
2990
2991 while (1) {
2992 set_current_state(interruptible);
2993
2994 if (!md_in_flight(md))
2995 break;
2996
2997 if (interruptible == TASK_INTERRUPTIBLE &&
2998 signal_pending(current)) {
2999 r = -EINTR;
3000 break;
3001 }
3002
3003 io_schedule();
3004 }
3005 set_current_state(TASK_RUNNING);
3006
3007 remove_wait_queue(&md->wait, &wait);
3008
3009 return r;
3010 }
3011
3012 /*
3013 * Process the deferred bios
3014 */
3015 static void dm_wq_work(struct work_struct *work)
3016 {
3017 struct mapped_device *md = container_of(work, struct mapped_device,
3018 work);
3019 struct bio *c;
3020 int srcu_idx;
3021 struct dm_table *map;
3022
3023 map = dm_get_live_table(md, &srcu_idx);
3024
3025 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3026 spin_lock_irq(&md->deferred_lock);
3027 c = bio_list_pop(&md->deferred);
3028 spin_unlock_irq(&md->deferred_lock);
3029
3030 if (!c)
3031 break;
3032
3033 if (dm_request_based(md))
3034 generic_make_request(c);
3035 else
3036 __split_and_process_bio(md, map, c);
3037 }
3038
3039 dm_put_live_table(md, srcu_idx);
3040 }
3041
3042 static void dm_queue_flush(struct mapped_device *md)
3043 {
3044 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3045 smp_mb__after_atomic();
3046 queue_work(md->wq, &md->work);
3047 }
3048
3049 /*
3050 * Swap in a new table, returning the old one for the caller to destroy.
3051 */
3052 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3053 {
3054 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3055 struct queue_limits limits;
3056 int r;
3057
3058 mutex_lock(&md->suspend_lock);
3059
3060 /* device must be suspended */
3061 if (!dm_suspended_md(md))
3062 goto out;
3063
3064 /*
3065 * If the new table has no data devices, retain the existing limits.
3066 * This helps multipath with queue_if_no_path if all paths disappear,
3067 * then new I/O is queued based on these limits, and then some paths
3068 * reappear.
3069 */
3070 if (dm_table_has_no_data_devices(table)) {
3071 live_map = dm_get_live_table_fast(md);
3072 if (live_map)
3073 limits = md->queue->limits;
3074 dm_put_live_table_fast(md);
3075 }
3076
3077 if (!live_map) {
3078 r = dm_calculate_queue_limits(table, &limits);
3079 if (r) {
3080 map = ERR_PTR(r);
3081 goto out;
3082 }
3083 }
3084
3085 map = __bind(md, table, &limits);
3086
3087 out:
3088 mutex_unlock(&md->suspend_lock);
3089 return map;
3090 }
3091
3092 /*
3093 * Functions to lock and unlock any filesystem running on the
3094 * device.
3095 */
3096 static int lock_fs(struct mapped_device *md)
3097 {
3098 int r;
3099
3100 WARN_ON(md->frozen_sb);
3101
3102 md->frozen_sb = freeze_bdev(md->bdev);
3103 if (IS_ERR(md->frozen_sb)) {
3104 r = PTR_ERR(md->frozen_sb);
3105 md->frozen_sb = NULL;
3106 return r;
3107 }
3108
3109 set_bit(DMF_FROZEN, &md->flags);
3110
3111 return 0;
3112 }
3113
3114 static void unlock_fs(struct mapped_device *md)
3115 {
3116 if (!test_bit(DMF_FROZEN, &md->flags))
3117 return;
3118
3119 thaw_bdev(md->bdev, md->frozen_sb);
3120 md->frozen_sb = NULL;
3121 clear_bit(DMF_FROZEN, &md->flags);
3122 }
3123
3124 /*
3125 * If __dm_suspend returns 0, the device is completely quiescent
3126 * now. There is no request-processing activity. All new requests
3127 * are being added to md->deferred list.
3128 *
3129 * Caller must hold md->suspend_lock
3130 */
3131 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3132 unsigned suspend_flags, int interruptible)
3133 {
3134 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3135 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3136 int r;
3137
3138 /*
3139 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3140 * This flag is cleared before dm_suspend returns.
3141 */
3142 if (noflush)
3143 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3144
3145 /*
3146 * This gets reverted if there's an error later and the targets
3147 * provide the .presuspend_undo hook.
3148 */
3149 dm_table_presuspend_targets(map);
3150
3151 /*
3152 * Flush I/O to the device.
3153 * Any I/O submitted after lock_fs() may not be flushed.
3154 * noflush takes precedence over do_lockfs.
3155 * (lock_fs() flushes I/Os and waits for them to complete.)
3156 */
3157 if (!noflush && do_lockfs) {
3158 r = lock_fs(md);
3159 if (r) {
3160 dm_table_presuspend_undo_targets(map);
3161 return r;
3162 }
3163 }
3164
3165 /*
3166 * Here we must make sure that no processes are submitting requests
3167 * to target drivers i.e. no one may be executing
3168 * __split_and_process_bio. This is called from dm_request and
3169 * dm_wq_work.
3170 *
3171 * To get all processes out of __split_and_process_bio in dm_request,
3172 * we take the write lock. To prevent any process from reentering
3173 * __split_and_process_bio from dm_request and quiesce the thread
3174 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3175 * flush_workqueue(md->wq).
3176 */
3177 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3178 if (map)
3179 synchronize_srcu(&md->io_barrier);
3180
3181 /*
3182 * Stop md->queue before flushing md->wq in case request-based
3183 * dm defers requests to md->wq from md->queue.
3184 */
3185 if (dm_request_based(md)) {
3186 stop_queue(md->queue);
3187 if (md->kworker_task)
3188 flush_kthread_worker(&md->kworker);
3189 }
3190
3191 flush_workqueue(md->wq);
3192
3193 /*
3194 * At this point no more requests are entering target request routines.
3195 * We call dm_wait_for_completion to wait for all existing requests
3196 * to finish.
3197 */
3198 r = dm_wait_for_completion(md, interruptible);
3199
3200 if (noflush)
3201 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3202 if (map)
3203 synchronize_srcu(&md->io_barrier);
3204
3205 /* were we interrupted ? */
3206 if (r < 0) {
3207 dm_queue_flush(md);
3208
3209 if (dm_request_based(md))
3210 start_queue(md->queue);
3211
3212 unlock_fs(md);
3213 dm_table_presuspend_undo_targets(map);
3214 /* pushback list is already flushed, so skip flush */
3215 }
3216
3217 return r;
3218 }
3219
3220 /*
3221 * We need to be able to change a mapping table under a mounted
3222 * filesystem. For example we might want to move some data in
3223 * the background. Before the table can be swapped with
3224 * dm_bind_table, dm_suspend must be called to flush any in
3225 * flight bios and ensure that any further io gets deferred.
3226 */
3227 /*
3228 * Suspend mechanism in request-based dm.
3229 *
3230 * 1. Flush all I/Os by lock_fs() if needed.
3231 * 2. Stop dispatching any I/O by stopping the request_queue.
3232 * 3. Wait for all in-flight I/Os to be completed or requeued.
3233 *
3234 * To abort suspend, start the request_queue.
3235 */
3236 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3237 {
3238 struct dm_table *map = NULL;
3239 int r = 0;
3240
3241 retry:
3242 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3243
3244 if (dm_suspended_md(md)) {
3245 r = -EINVAL;
3246 goto out_unlock;
3247 }
3248
3249 if (dm_suspended_internally_md(md)) {
3250 /* already internally suspended, wait for internal resume */
3251 mutex_unlock(&md->suspend_lock);
3252 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3253 if (r)
3254 return r;
3255 goto retry;
3256 }
3257
3258 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3259
3260 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3261 if (r)
3262 goto out_unlock;
3263
3264 set_bit(DMF_SUSPENDED, &md->flags);
3265
3266 dm_table_postsuspend_targets(map);
3267
3268 out_unlock:
3269 mutex_unlock(&md->suspend_lock);
3270 return r;
3271 }
3272
3273 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3274 {
3275 if (map) {
3276 int r = dm_table_resume_targets(map);
3277 if (r)
3278 return r;
3279 }
3280
3281 dm_queue_flush(md);
3282
3283 /*
3284 * Flushing deferred I/Os must be done after targets are resumed
3285 * so that mapping of targets can work correctly.
3286 * Request-based dm is queueing the deferred I/Os in its request_queue.
3287 */
3288 if (dm_request_based(md))
3289 start_queue(md->queue);
3290
3291 unlock_fs(md);
3292
3293 return 0;
3294 }
3295
3296 int dm_resume(struct mapped_device *md)
3297 {
3298 int r = -EINVAL;
3299 struct dm_table *map = NULL;
3300
3301 retry:
3302 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3303
3304 if (!dm_suspended_md(md))
3305 goto out;
3306
3307 if (dm_suspended_internally_md(md)) {
3308 /* already internally suspended, wait for internal resume */
3309 mutex_unlock(&md->suspend_lock);
3310 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3311 if (r)
3312 return r;
3313 goto retry;
3314 }
3315
3316 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3317 if (!map || !dm_table_get_size(map))
3318 goto out;
3319
3320 r = __dm_resume(md, map);
3321 if (r)
3322 goto out;
3323
3324 clear_bit(DMF_SUSPENDED, &md->flags);
3325
3326 r = 0;
3327 out:
3328 mutex_unlock(&md->suspend_lock);
3329
3330 return r;
3331 }
3332
3333 /*
3334 * Internal suspend/resume works like userspace-driven suspend. It waits
3335 * until all bios finish and prevents issuing new bios to the target drivers.
3336 * It may be used only from the kernel.
3337 */
3338
3339 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3340 {
3341 struct dm_table *map = NULL;
3342
3343 if (md->internal_suspend_count++)
3344 return; /* nested internal suspend */
3345
3346 if (dm_suspended_md(md)) {
3347 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3348 return; /* nest suspend */
3349 }
3350
3351 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3352
3353 /*
3354 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3355 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3356 * would require changing .presuspend to return an error -- avoid this
3357 * until there is a need for more elaborate variants of internal suspend.
3358 */
3359 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3360
3361 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3362
3363 dm_table_postsuspend_targets(map);
3364 }
3365
3366 static void __dm_internal_resume(struct mapped_device *md)
3367 {
3368 BUG_ON(!md->internal_suspend_count);
3369
3370 if (--md->internal_suspend_count)
3371 return; /* resume from nested internal suspend */
3372
3373 if (dm_suspended_md(md))
3374 goto done; /* resume from nested suspend */
3375
3376 /*
3377 * NOTE: existing callers don't need to call dm_table_resume_targets
3378 * (which may fail -- so best to avoid it for now by passing NULL map)
3379 */
3380 (void) __dm_resume(md, NULL);
3381
3382 done:
3383 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3384 smp_mb__after_atomic();
3385 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3386 }
3387
3388 void dm_internal_suspend_noflush(struct mapped_device *md)
3389 {
3390 mutex_lock(&md->suspend_lock);
3391 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3392 mutex_unlock(&md->suspend_lock);
3393 }
3394 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3395
3396 void dm_internal_resume(struct mapped_device *md)
3397 {
3398 mutex_lock(&md->suspend_lock);
3399 __dm_internal_resume(md);
3400 mutex_unlock(&md->suspend_lock);
3401 }
3402 EXPORT_SYMBOL_GPL(dm_internal_resume);
3403
3404 /*
3405 * Fast variants of internal suspend/resume hold md->suspend_lock,
3406 * which prevents interaction with userspace-driven suspend.
3407 */
3408
3409 void dm_internal_suspend_fast(struct mapped_device *md)
3410 {
3411 mutex_lock(&md->suspend_lock);
3412 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3413 return;
3414
3415 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3416 synchronize_srcu(&md->io_barrier);
3417 flush_workqueue(md->wq);
3418 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3419 }
3420 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3421
3422 void dm_internal_resume_fast(struct mapped_device *md)
3423 {
3424 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3425 goto done;
3426
3427 dm_queue_flush(md);
3428
3429 done:
3430 mutex_unlock(&md->suspend_lock);
3431 }
3432 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3433
3434 /*-----------------------------------------------------------------
3435 * Event notification.
3436 *---------------------------------------------------------------*/
3437 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3438 unsigned cookie)
3439 {
3440 char udev_cookie[DM_COOKIE_LENGTH];
3441 char *envp[] = { udev_cookie, NULL };
3442
3443 if (!cookie)
3444 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3445 else {
3446 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3447 DM_COOKIE_ENV_VAR_NAME, cookie);
3448 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3449 action, envp);
3450 }
3451 }
3452
3453 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3454 {
3455 return atomic_add_return(1, &md->uevent_seq);
3456 }
3457
3458 uint32_t dm_get_event_nr(struct mapped_device *md)
3459 {
3460 return atomic_read(&md->event_nr);
3461 }
3462
3463 int dm_wait_event(struct mapped_device *md, int event_nr)
3464 {
3465 return wait_event_interruptible(md->eventq,
3466 (event_nr != atomic_read(&md->event_nr)));
3467 }
3468
3469 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3470 {
3471 unsigned long flags;
3472
3473 spin_lock_irqsave(&md->uevent_lock, flags);
3474 list_add(elist, &md->uevent_list);
3475 spin_unlock_irqrestore(&md->uevent_lock, flags);
3476 }
3477
3478 /*
3479 * The gendisk is only valid as long as you have a reference
3480 * count on 'md'.
3481 */
3482 struct gendisk *dm_disk(struct mapped_device *md)
3483 {
3484 return md->disk;
3485 }
3486 EXPORT_SYMBOL_GPL(dm_disk);
3487
3488 struct kobject *dm_kobject(struct mapped_device *md)
3489 {
3490 return &md->kobj_holder.kobj;
3491 }
3492
3493 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3494 {
3495 struct mapped_device *md;
3496
3497 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3498
3499 if (test_bit(DMF_FREEING, &md->flags) ||
3500 dm_deleting_md(md))
3501 return NULL;
3502
3503 dm_get(md);
3504 return md;
3505 }
3506
3507 int dm_suspended_md(struct mapped_device *md)
3508 {
3509 return test_bit(DMF_SUSPENDED, &md->flags);
3510 }
3511
3512 int dm_suspended_internally_md(struct mapped_device *md)
3513 {
3514 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3515 }
3516
3517 int dm_test_deferred_remove_flag(struct mapped_device *md)
3518 {
3519 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3520 }
3521
3522 int dm_suspended(struct dm_target *ti)
3523 {
3524 return dm_suspended_md(dm_table_get_md(ti->table));
3525 }
3526 EXPORT_SYMBOL_GPL(dm_suspended);
3527
3528 int dm_noflush_suspending(struct dm_target *ti)
3529 {
3530 return __noflush_suspending(dm_table_get_md(ti->table));
3531 }
3532 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3533
3534 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3535 unsigned integrity, unsigned per_bio_data_size)
3536 {
3537 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3538 struct kmem_cache *cachep = NULL;
3539 unsigned int pool_size = 0;
3540 unsigned int front_pad;
3541
3542 if (!pools)
3543 return NULL;
3544
3545 type = filter_md_type(type, md);
3546
3547 switch (type) {
3548 case DM_TYPE_BIO_BASED:
3549 cachep = _io_cache;
3550 pool_size = dm_get_reserved_bio_based_ios();
3551 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3552 break;
3553 case DM_TYPE_REQUEST_BASED:
3554 cachep = _rq_tio_cache;
3555 pool_size = dm_get_reserved_rq_based_ios();
3556 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3557 if (!pools->rq_pool)
3558 goto out;
3559 /* fall through to setup remaining rq-based pools */
3560 case DM_TYPE_MQ_REQUEST_BASED:
3561 if (!pool_size)
3562 pool_size = dm_get_reserved_rq_based_ios();
3563 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3564 /* per_bio_data_size is not used. See __bind_mempools(). */
3565 WARN_ON(per_bio_data_size != 0);
3566 break;
3567 default:
3568 BUG();
3569 }
3570
3571 if (cachep) {
3572 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3573 if (!pools->io_pool)
3574 goto out;
3575 }
3576
3577 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3578 if (!pools->bs)
3579 goto out;
3580
3581 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3582 goto out;
3583
3584 return pools;
3585
3586 out:
3587 dm_free_md_mempools(pools);
3588
3589 return NULL;
3590 }
3591
3592 void dm_free_md_mempools(struct dm_md_mempools *pools)
3593 {
3594 if (!pools)
3595 return;
3596
3597 if (pools->io_pool)
3598 mempool_destroy(pools->io_pool);
3599
3600 if (pools->rq_pool)
3601 mempool_destroy(pools->rq_pool);
3602
3603 if (pools->bs)
3604 bioset_free(pools->bs);
3605
3606 kfree(pools);
3607 }
3608
3609 static const struct block_device_operations dm_blk_dops = {
3610 .open = dm_blk_open,
3611 .release = dm_blk_close,
3612 .ioctl = dm_blk_ioctl,
3613 .getgeo = dm_blk_getgeo,
3614 .owner = THIS_MODULE
3615 };
3616
3617 /*
3618 * module hooks
3619 */
3620 module_init(dm_init);
3621 module_exit(dm_exit);
3622
3623 module_param(major, uint, 0);
3624 MODULE_PARM_DESC(major, "The major number of the device mapper");
3625
3626 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3627 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3628
3629 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3630 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3631
3632 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3633 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3634
3635 MODULE_DESCRIPTION(DM_NAME " driver");
3636 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3637 MODULE_LICENSE("GPL");
This page took 0.151483 seconds and 5 git commands to generate.