Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24
25 #include <trace/events/block.h>
26
27 #define DM_MSG_PREFIX "core"
28
29 #ifdef CONFIG_PRINTK
30 /*
31 * ratelimit state to be used in DMXXX_LIMIT().
32 */
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 DEFAULT_RATELIMIT_INTERVAL,
35 DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
37 #endif
38
39 /*
40 * Cookies are numeric values sent with CHANGE and REMOVE
41 * uevents while resuming, removing or renaming the device.
42 */
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
45
46 static const char *_name = DM_NAME;
47
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
50
51 static DEFINE_IDR(_minor_idr);
52
53 static DEFINE_SPINLOCK(_minor_lock);
54
55 static void do_deferred_remove(struct work_struct *w);
56
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
58
59 static struct workqueue_struct *deferred_remove_workqueue;
60
61 /*
62 * For bio-based dm.
63 * One of these is allocated per bio.
64 */
65 struct dm_io {
66 struct mapped_device *md;
67 int error;
68 atomic_t io_count;
69 struct bio *bio;
70 unsigned long start_time;
71 spinlock_t endio_lock;
72 struct dm_stats_aux stats_aux;
73 };
74
75 /*
76 * For request-based dm.
77 * One of these is allocated per request.
78 */
79 struct dm_rq_target_io {
80 struct mapped_device *md;
81 struct dm_target *ti;
82 struct request *orig, *clone;
83 struct kthread_work work;
84 int error;
85 union map_info info;
86 };
87
88 /*
89 * For request-based dm - the bio clones we allocate are embedded in these
90 * structs.
91 *
92 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
93 * the bioset is created - this means the bio has to come at the end of the
94 * struct.
95 */
96 struct dm_rq_clone_bio_info {
97 struct bio *orig;
98 struct dm_rq_target_io *tio;
99 struct bio clone;
100 };
101
102 union map_info *dm_get_rq_mapinfo(struct request *rq)
103 {
104 if (rq && rq->end_io_data)
105 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
106 return NULL;
107 }
108 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
109
110 #define MINOR_ALLOCED ((void *)-1)
111
112 /*
113 * Bits for the md->flags field.
114 */
115 #define DMF_BLOCK_IO_FOR_SUSPEND 0
116 #define DMF_SUSPENDED 1
117 #define DMF_FROZEN 2
118 #define DMF_FREEING 3
119 #define DMF_DELETING 4
120 #define DMF_NOFLUSH_SUSPENDING 5
121 #define DMF_MERGE_IS_OPTIONAL 6
122 #define DMF_DEFERRED_REMOVE 7
123 #define DMF_SUSPENDED_INTERNALLY 8
124
125 /*
126 * A dummy definition to make RCU happy.
127 * struct dm_table should never be dereferenced in this file.
128 */
129 struct dm_table {
130 int undefined__;
131 };
132
133 /*
134 * Work processed by per-device workqueue.
135 */
136 struct mapped_device {
137 struct srcu_struct io_barrier;
138 struct mutex suspend_lock;
139 atomic_t holders;
140 atomic_t open_count;
141
142 /*
143 * The current mapping.
144 * Use dm_get_live_table{_fast} or take suspend_lock for
145 * dereference.
146 */
147 struct dm_table __rcu *map;
148
149 struct list_head table_devices;
150 struct mutex table_devices_lock;
151
152 unsigned long flags;
153
154 struct request_queue *queue;
155 unsigned type;
156 /* Protect queue and type against concurrent access. */
157 struct mutex type_lock;
158
159 struct target_type *immutable_target_type;
160
161 struct gendisk *disk;
162 char name[16];
163
164 void *interface_ptr;
165
166 /*
167 * A list of ios that arrived while we were suspended.
168 */
169 atomic_t pending[2];
170 wait_queue_head_t wait;
171 struct work_struct work;
172 struct bio_list deferred;
173 spinlock_t deferred_lock;
174
175 /*
176 * Processing queue (flush)
177 */
178 struct workqueue_struct *wq;
179
180 /*
181 * io objects are allocated from here.
182 */
183 mempool_t *io_pool;
184 mempool_t *rq_pool;
185
186 struct bio_set *bs;
187
188 /*
189 * Event handling.
190 */
191 atomic_t event_nr;
192 wait_queue_head_t eventq;
193 atomic_t uevent_seq;
194 struct list_head uevent_list;
195 spinlock_t uevent_lock; /* Protect access to uevent_list */
196
197 /*
198 * freeze/thaw support require holding onto a super block
199 */
200 struct super_block *frozen_sb;
201 struct block_device *bdev;
202
203 /* forced geometry settings */
204 struct hd_geometry geometry;
205
206 /* kobject and completion */
207 struct dm_kobject_holder kobj_holder;
208
209 /* zero-length flush that will be cloned and submitted to targets */
210 struct bio flush_bio;
211
212 /* the number of internal suspends */
213 unsigned internal_suspend_count;
214
215 struct dm_stats stats;
216
217 struct kthread_worker kworker;
218 struct task_struct *kworker_task;
219 };
220
221 /*
222 * For mempools pre-allocation at the table loading time.
223 */
224 struct dm_md_mempools {
225 mempool_t *io_pool;
226 mempool_t *rq_pool;
227 struct bio_set *bs;
228 };
229
230 struct table_device {
231 struct list_head list;
232 atomic_t count;
233 struct dm_dev dm_dev;
234 };
235
236 #define RESERVED_BIO_BASED_IOS 16
237 #define RESERVED_REQUEST_BASED_IOS 256
238 #define RESERVED_MAX_IOS 1024
239 static struct kmem_cache *_io_cache;
240 static struct kmem_cache *_rq_tio_cache;
241 static struct kmem_cache *_rq_cache;
242
243 /*
244 * Bio-based DM's mempools' reserved IOs set by the user.
245 */
246 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
247
248 /*
249 * Request-based DM's mempools' reserved IOs set by the user.
250 */
251 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
252
253 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
254 unsigned def, unsigned max)
255 {
256 unsigned ios = ACCESS_ONCE(*reserved_ios);
257 unsigned modified_ios = 0;
258
259 if (!ios)
260 modified_ios = def;
261 else if (ios > max)
262 modified_ios = max;
263
264 if (modified_ios) {
265 (void)cmpxchg(reserved_ios, ios, modified_ios);
266 ios = modified_ios;
267 }
268
269 return ios;
270 }
271
272 unsigned dm_get_reserved_bio_based_ios(void)
273 {
274 return __dm_get_reserved_ios(&reserved_bio_based_ios,
275 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
276 }
277 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
278
279 unsigned dm_get_reserved_rq_based_ios(void)
280 {
281 return __dm_get_reserved_ios(&reserved_rq_based_ios,
282 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
283 }
284 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
285
286 static int __init local_init(void)
287 {
288 int r = -ENOMEM;
289
290 /* allocate a slab for the dm_ios */
291 _io_cache = KMEM_CACHE(dm_io, 0);
292 if (!_io_cache)
293 return r;
294
295 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
296 if (!_rq_tio_cache)
297 goto out_free_io_cache;
298
299 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
300 __alignof__(struct request), 0, NULL);
301 if (!_rq_cache)
302 goto out_free_rq_tio_cache;
303
304 r = dm_uevent_init();
305 if (r)
306 goto out_free_rq_cache;
307
308 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
309 if (!deferred_remove_workqueue) {
310 r = -ENOMEM;
311 goto out_uevent_exit;
312 }
313
314 _major = major;
315 r = register_blkdev(_major, _name);
316 if (r < 0)
317 goto out_free_workqueue;
318
319 if (!_major)
320 _major = r;
321
322 return 0;
323
324 out_free_workqueue:
325 destroy_workqueue(deferred_remove_workqueue);
326 out_uevent_exit:
327 dm_uevent_exit();
328 out_free_rq_cache:
329 kmem_cache_destroy(_rq_cache);
330 out_free_rq_tio_cache:
331 kmem_cache_destroy(_rq_tio_cache);
332 out_free_io_cache:
333 kmem_cache_destroy(_io_cache);
334
335 return r;
336 }
337
338 static void local_exit(void)
339 {
340 flush_scheduled_work();
341 destroy_workqueue(deferred_remove_workqueue);
342
343 kmem_cache_destroy(_rq_cache);
344 kmem_cache_destroy(_rq_tio_cache);
345 kmem_cache_destroy(_io_cache);
346 unregister_blkdev(_major, _name);
347 dm_uevent_exit();
348
349 _major = 0;
350
351 DMINFO("cleaned up");
352 }
353
354 static int (*_inits[])(void) __initdata = {
355 local_init,
356 dm_target_init,
357 dm_linear_init,
358 dm_stripe_init,
359 dm_io_init,
360 dm_kcopyd_init,
361 dm_interface_init,
362 dm_statistics_init,
363 };
364
365 static void (*_exits[])(void) = {
366 local_exit,
367 dm_target_exit,
368 dm_linear_exit,
369 dm_stripe_exit,
370 dm_io_exit,
371 dm_kcopyd_exit,
372 dm_interface_exit,
373 dm_statistics_exit,
374 };
375
376 static int __init dm_init(void)
377 {
378 const int count = ARRAY_SIZE(_inits);
379
380 int r, i;
381
382 for (i = 0; i < count; i++) {
383 r = _inits[i]();
384 if (r)
385 goto bad;
386 }
387
388 return 0;
389
390 bad:
391 while (i--)
392 _exits[i]();
393
394 return r;
395 }
396
397 static void __exit dm_exit(void)
398 {
399 int i = ARRAY_SIZE(_exits);
400
401 while (i--)
402 _exits[i]();
403
404 /*
405 * Should be empty by this point.
406 */
407 idr_destroy(&_minor_idr);
408 }
409
410 /*
411 * Block device functions
412 */
413 int dm_deleting_md(struct mapped_device *md)
414 {
415 return test_bit(DMF_DELETING, &md->flags);
416 }
417
418 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
419 {
420 struct mapped_device *md;
421
422 spin_lock(&_minor_lock);
423
424 md = bdev->bd_disk->private_data;
425 if (!md)
426 goto out;
427
428 if (test_bit(DMF_FREEING, &md->flags) ||
429 dm_deleting_md(md)) {
430 md = NULL;
431 goto out;
432 }
433
434 dm_get(md);
435 atomic_inc(&md->open_count);
436
437 out:
438 spin_unlock(&_minor_lock);
439
440 return md ? 0 : -ENXIO;
441 }
442
443 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
444 {
445 struct mapped_device *md = disk->private_data;
446
447 spin_lock(&_minor_lock);
448
449 if (atomic_dec_and_test(&md->open_count) &&
450 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
451 queue_work(deferred_remove_workqueue, &deferred_remove_work);
452
453 dm_put(md);
454
455 spin_unlock(&_minor_lock);
456 }
457
458 int dm_open_count(struct mapped_device *md)
459 {
460 return atomic_read(&md->open_count);
461 }
462
463 /*
464 * Guarantees nothing is using the device before it's deleted.
465 */
466 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
467 {
468 int r = 0;
469
470 spin_lock(&_minor_lock);
471
472 if (dm_open_count(md)) {
473 r = -EBUSY;
474 if (mark_deferred)
475 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
476 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
477 r = -EEXIST;
478 else
479 set_bit(DMF_DELETING, &md->flags);
480
481 spin_unlock(&_minor_lock);
482
483 return r;
484 }
485
486 int dm_cancel_deferred_remove(struct mapped_device *md)
487 {
488 int r = 0;
489
490 spin_lock(&_minor_lock);
491
492 if (test_bit(DMF_DELETING, &md->flags))
493 r = -EBUSY;
494 else
495 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
496
497 spin_unlock(&_minor_lock);
498
499 return r;
500 }
501
502 static void do_deferred_remove(struct work_struct *w)
503 {
504 dm_deferred_remove();
505 }
506
507 sector_t dm_get_size(struct mapped_device *md)
508 {
509 return get_capacity(md->disk);
510 }
511
512 struct request_queue *dm_get_md_queue(struct mapped_device *md)
513 {
514 return md->queue;
515 }
516
517 struct dm_stats *dm_get_stats(struct mapped_device *md)
518 {
519 return &md->stats;
520 }
521
522 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
523 {
524 struct mapped_device *md = bdev->bd_disk->private_data;
525
526 return dm_get_geometry(md, geo);
527 }
528
529 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
530 unsigned int cmd, unsigned long arg)
531 {
532 struct mapped_device *md = bdev->bd_disk->private_data;
533 int srcu_idx;
534 struct dm_table *map;
535 struct dm_target *tgt;
536 int r = -ENOTTY;
537
538 retry:
539 map = dm_get_live_table(md, &srcu_idx);
540
541 if (!map || !dm_table_get_size(map))
542 goto out;
543
544 /* We only support devices that have a single target */
545 if (dm_table_get_num_targets(map) != 1)
546 goto out;
547
548 tgt = dm_table_get_target(map, 0);
549 if (!tgt->type->ioctl)
550 goto out;
551
552 if (dm_suspended_md(md)) {
553 r = -EAGAIN;
554 goto out;
555 }
556
557 r = tgt->type->ioctl(tgt, cmd, arg);
558
559 out:
560 dm_put_live_table(md, srcu_idx);
561
562 if (r == -ENOTCONN) {
563 msleep(10);
564 goto retry;
565 }
566
567 return r;
568 }
569
570 static struct dm_io *alloc_io(struct mapped_device *md)
571 {
572 return mempool_alloc(md->io_pool, GFP_NOIO);
573 }
574
575 static void free_io(struct mapped_device *md, struct dm_io *io)
576 {
577 mempool_free(io, md->io_pool);
578 }
579
580 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
581 {
582 bio_put(&tio->clone);
583 }
584
585 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
586 gfp_t gfp_mask)
587 {
588 return mempool_alloc(md->io_pool, gfp_mask);
589 }
590
591 static void free_rq_tio(struct dm_rq_target_io *tio)
592 {
593 mempool_free(tio, tio->md->io_pool);
594 }
595
596 static struct request *alloc_clone_request(struct mapped_device *md,
597 gfp_t gfp_mask)
598 {
599 return mempool_alloc(md->rq_pool, gfp_mask);
600 }
601
602 static void free_clone_request(struct mapped_device *md, struct request *rq)
603 {
604 mempool_free(rq, md->rq_pool);
605 }
606
607 static int md_in_flight(struct mapped_device *md)
608 {
609 return atomic_read(&md->pending[READ]) +
610 atomic_read(&md->pending[WRITE]);
611 }
612
613 static void start_io_acct(struct dm_io *io)
614 {
615 struct mapped_device *md = io->md;
616 struct bio *bio = io->bio;
617 int cpu;
618 int rw = bio_data_dir(bio);
619
620 io->start_time = jiffies;
621
622 cpu = part_stat_lock();
623 part_round_stats(cpu, &dm_disk(md)->part0);
624 part_stat_unlock();
625 atomic_set(&dm_disk(md)->part0.in_flight[rw],
626 atomic_inc_return(&md->pending[rw]));
627
628 if (unlikely(dm_stats_used(&md->stats)))
629 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
630 bio_sectors(bio), false, 0, &io->stats_aux);
631 }
632
633 static void end_io_acct(struct dm_io *io)
634 {
635 struct mapped_device *md = io->md;
636 struct bio *bio = io->bio;
637 unsigned long duration = jiffies - io->start_time;
638 int pending;
639 int rw = bio_data_dir(bio);
640
641 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
642
643 if (unlikely(dm_stats_used(&md->stats)))
644 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
645 bio_sectors(bio), true, duration, &io->stats_aux);
646
647 /*
648 * After this is decremented the bio must not be touched if it is
649 * a flush.
650 */
651 pending = atomic_dec_return(&md->pending[rw]);
652 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
653 pending += atomic_read(&md->pending[rw^0x1]);
654
655 /* nudge anyone waiting on suspend queue */
656 if (!pending)
657 wake_up(&md->wait);
658 }
659
660 /*
661 * Add the bio to the list of deferred io.
662 */
663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 unsigned long flags;
666
667 spin_lock_irqsave(&md->deferred_lock, flags);
668 bio_list_add(&md->deferred, bio);
669 spin_unlock_irqrestore(&md->deferred_lock, flags);
670 queue_work(md->wq, &md->work);
671 }
672
673 /*
674 * Everyone (including functions in this file), should use this
675 * function to access the md->map field, and make sure they call
676 * dm_put_live_table() when finished.
677 */
678 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
679 {
680 *srcu_idx = srcu_read_lock(&md->io_barrier);
681
682 return srcu_dereference(md->map, &md->io_barrier);
683 }
684
685 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
686 {
687 srcu_read_unlock(&md->io_barrier, srcu_idx);
688 }
689
690 void dm_sync_table(struct mapped_device *md)
691 {
692 synchronize_srcu(&md->io_barrier);
693 synchronize_rcu_expedited();
694 }
695
696 /*
697 * A fast alternative to dm_get_live_table/dm_put_live_table.
698 * The caller must not block between these two functions.
699 */
700 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
701 {
702 rcu_read_lock();
703 return rcu_dereference(md->map);
704 }
705
706 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
707 {
708 rcu_read_unlock();
709 }
710
711 /*
712 * Open a table device so we can use it as a map destination.
713 */
714 static int open_table_device(struct table_device *td, dev_t dev,
715 struct mapped_device *md)
716 {
717 static char *_claim_ptr = "I belong to device-mapper";
718 struct block_device *bdev;
719
720 int r;
721
722 BUG_ON(td->dm_dev.bdev);
723
724 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
725 if (IS_ERR(bdev))
726 return PTR_ERR(bdev);
727
728 r = bd_link_disk_holder(bdev, dm_disk(md));
729 if (r) {
730 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
731 return r;
732 }
733
734 td->dm_dev.bdev = bdev;
735 return 0;
736 }
737
738 /*
739 * Close a table device that we've been using.
740 */
741 static void close_table_device(struct table_device *td, struct mapped_device *md)
742 {
743 if (!td->dm_dev.bdev)
744 return;
745
746 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
747 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
748 td->dm_dev.bdev = NULL;
749 }
750
751 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
752 fmode_t mode) {
753 struct table_device *td;
754
755 list_for_each_entry(td, l, list)
756 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
757 return td;
758
759 return NULL;
760 }
761
762 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
763 struct dm_dev **result) {
764 int r;
765 struct table_device *td;
766
767 mutex_lock(&md->table_devices_lock);
768 td = find_table_device(&md->table_devices, dev, mode);
769 if (!td) {
770 td = kmalloc(sizeof(*td), GFP_KERNEL);
771 if (!td) {
772 mutex_unlock(&md->table_devices_lock);
773 return -ENOMEM;
774 }
775
776 td->dm_dev.mode = mode;
777 td->dm_dev.bdev = NULL;
778
779 if ((r = open_table_device(td, dev, md))) {
780 mutex_unlock(&md->table_devices_lock);
781 kfree(td);
782 return r;
783 }
784
785 format_dev_t(td->dm_dev.name, dev);
786
787 atomic_set(&td->count, 0);
788 list_add(&td->list, &md->table_devices);
789 }
790 atomic_inc(&td->count);
791 mutex_unlock(&md->table_devices_lock);
792
793 *result = &td->dm_dev;
794 return 0;
795 }
796 EXPORT_SYMBOL_GPL(dm_get_table_device);
797
798 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
799 {
800 struct table_device *td = container_of(d, struct table_device, dm_dev);
801
802 mutex_lock(&md->table_devices_lock);
803 if (atomic_dec_and_test(&td->count)) {
804 close_table_device(td, md);
805 list_del(&td->list);
806 kfree(td);
807 }
808 mutex_unlock(&md->table_devices_lock);
809 }
810 EXPORT_SYMBOL(dm_put_table_device);
811
812 static void free_table_devices(struct list_head *devices)
813 {
814 struct list_head *tmp, *next;
815
816 list_for_each_safe(tmp, next, devices) {
817 struct table_device *td = list_entry(tmp, struct table_device, list);
818
819 DMWARN("dm_destroy: %s still exists with %d references",
820 td->dm_dev.name, atomic_read(&td->count));
821 kfree(td);
822 }
823 }
824
825 /*
826 * Get the geometry associated with a dm device
827 */
828 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
829 {
830 *geo = md->geometry;
831
832 return 0;
833 }
834
835 /*
836 * Set the geometry of a device.
837 */
838 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
839 {
840 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
841
842 if (geo->start > sz) {
843 DMWARN("Start sector is beyond the geometry limits.");
844 return -EINVAL;
845 }
846
847 md->geometry = *geo;
848
849 return 0;
850 }
851
852 /*-----------------------------------------------------------------
853 * CRUD START:
854 * A more elegant soln is in the works that uses the queue
855 * merge fn, unfortunately there are a couple of changes to
856 * the block layer that I want to make for this. So in the
857 * interests of getting something for people to use I give
858 * you this clearly demarcated crap.
859 *---------------------------------------------------------------*/
860
861 static int __noflush_suspending(struct mapped_device *md)
862 {
863 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
864 }
865
866 /*
867 * Decrements the number of outstanding ios that a bio has been
868 * cloned into, completing the original io if necc.
869 */
870 static void dec_pending(struct dm_io *io, int error)
871 {
872 unsigned long flags;
873 int io_error;
874 struct bio *bio;
875 struct mapped_device *md = io->md;
876
877 /* Push-back supersedes any I/O errors */
878 if (unlikely(error)) {
879 spin_lock_irqsave(&io->endio_lock, flags);
880 if (!(io->error > 0 && __noflush_suspending(md)))
881 io->error = error;
882 spin_unlock_irqrestore(&io->endio_lock, flags);
883 }
884
885 if (atomic_dec_and_test(&io->io_count)) {
886 if (io->error == DM_ENDIO_REQUEUE) {
887 /*
888 * Target requested pushing back the I/O.
889 */
890 spin_lock_irqsave(&md->deferred_lock, flags);
891 if (__noflush_suspending(md))
892 bio_list_add_head(&md->deferred, io->bio);
893 else
894 /* noflush suspend was interrupted. */
895 io->error = -EIO;
896 spin_unlock_irqrestore(&md->deferred_lock, flags);
897 }
898
899 io_error = io->error;
900 bio = io->bio;
901 end_io_acct(io);
902 free_io(md, io);
903
904 if (io_error == DM_ENDIO_REQUEUE)
905 return;
906
907 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
908 /*
909 * Preflush done for flush with data, reissue
910 * without REQ_FLUSH.
911 */
912 bio->bi_rw &= ~REQ_FLUSH;
913 queue_io(md, bio);
914 } else {
915 /* done with normal IO or empty flush */
916 trace_block_bio_complete(md->queue, bio, io_error);
917 bio_endio(bio, io_error);
918 }
919 }
920 }
921
922 static void disable_write_same(struct mapped_device *md)
923 {
924 struct queue_limits *limits = dm_get_queue_limits(md);
925
926 /* device doesn't really support WRITE SAME, disable it */
927 limits->max_write_same_sectors = 0;
928 }
929
930 static void clone_endio(struct bio *bio, int error)
931 {
932 int r = error;
933 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
934 struct dm_io *io = tio->io;
935 struct mapped_device *md = tio->io->md;
936 dm_endio_fn endio = tio->ti->type->end_io;
937
938 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
939 error = -EIO;
940
941 if (endio) {
942 r = endio(tio->ti, bio, error);
943 if (r < 0 || r == DM_ENDIO_REQUEUE)
944 /*
945 * error and requeue request are handled
946 * in dec_pending().
947 */
948 error = r;
949 else if (r == DM_ENDIO_INCOMPLETE)
950 /* The target will handle the io */
951 return;
952 else if (r) {
953 DMWARN("unimplemented target endio return value: %d", r);
954 BUG();
955 }
956 }
957
958 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
959 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
960 disable_write_same(md);
961
962 free_tio(md, tio);
963 dec_pending(io, error);
964 }
965
966 /*
967 * Partial completion handling for request-based dm
968 */
969 static void end_clone_bio(struct bio *clone, int error)
970 {
971 struct dm_rq_clone_bio_info *info =
972 container_of(clone, struct dm_rq_clone_bio_info, clone);
973 struct dm_rq_target_io *tio = info->tio;
974 struct bio *bio = info->orig;
975 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
976
977 bio_put(clone);
978
979 if (tio->error)
980 /*
981 * An error has already been detected on the request.
982 * Once error occurred, just let clone->end_io() handle
983 * the remainder.
984 */
985 return;
986 else if (error) {
987 /*
988 * Don't notice the error to the upper layer yet.
989 * The error handling decision is made by the target driver,
990 * when the request is completed.
991 */
992 tio->error = error;
993 return;
994 }
995
996 /*
997 * I/O for the bio successfully completed.
998 * Notice the data completion to the upper layer.
999 */
1000
1001 /*
1002 * bios are processed from the head of the list.
1003 * So the completing bio should always be rq->bio.
1004 * If it's not, something wrong is happening.
1005 */
1006 if (tio->orig->bio != bio)
1007 DMERR("bio completion is going in the middle of the request");
1008
1009 /*
1010 * Update the original request.
1011 * Do not use blk_end_request() here, because it may complete
1012 * the original request before the clone, and break the ordering.
1013 */
1014 blk_update_request(tio->orig, 0, nr_bytes);
1015 }
1016
1017 /*
1018 * Don't touch any member of the md after calling this function because
1019 * the md may be freed in dm_put() at the end of this function.
1020 * Or do dm_get() before calling this function and dm_put() later.
1021 */
1022 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1023 {
1024 atomic_dec(&md->pending[rw]);
1025
1026 /* nudge anyone waiting on suspend queue */
1027 if (!md_in_flight(md))
1028 wake_up(&md->wait);
1029
1030 /*
1031 * Run this off this callpath, as drivers could invoke end_io while
1032 * inside their request_fn (and holding the queue lock). Calling
1033 * back into ->request_fn() could deadlock attempting to grab the
1034 * queue lock again.
1035 */
1036 if (run_queue)
1037 blk_run_queue_async(md->queue);
1038
1039 /*
1040 * dm_put() must be at the end of this function. See the comment above
1041 */
1042 dm_put(md);
1043 }
1044
1045 static void free_rq_clone(struct request *clone)
1046 {
1047 struct dm_rq_target_io *tio = clone->end_io_data;
1048
1049 blk_rq_unprep_clone(clone);
1050 if (clone->q && clone->q->mq_ops)
1051 tio->ti->type->release_clone_rq(clone);
1052 else
1053 free_clone_request(tio->md, clone);
1054 free_rq_tio(tio);
1055 }
1056
1057 /*
1058 * Complete the clone and the original request.
1059 * Must be called without clone's queue lock held,
1060 * see end_clone_request() for more details.
1061 */
1062 static void dm_end_request(struct request *clone, int error)
1063 {
1064 int rw = rq_data_dir(clone);
1065 struct dm_rq_target_io *tio = clone->end_io_data;
1066 struct mapped_device *md = tio->md;
1067 struct request *rq = tio->orig;
1068
1069 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1070 rq->errors = clone->errors;
1071 rq->resid_len = clone->resid_len;
1072
1073 if (rq->sense)
1074 /*
1075 * We are using the sense buffer of the original
1076 * request.
1077 * So setting the length of the sense data is enough.
1078 */
1079 rq->sense_len = clone->sense_len;
1080 }
1081
1082 free_rq_clone(clone);
1083 blk_end_request_all(rq, error);
1084 rq_completed(md, rw, true);
1085 }
1086
1087 static void dm_unprep_request(struct request *rq)
1088 {
1089 struct dm_rq_target_io *tio = rq->special;
1090 struct request *clone = tio->clone;
1091
1092 rq->special = NULL;
1093 rq->cmd_flags &= ~REQ_DONTPREP;
1094
1095 if (clone)
1096 free_rq_clone(clone);
1097 }
1098
1099 /*
1100 * Requeue the original request of a clone.
1101 */
1102 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1103 struct request *rq)
1104 {
1105 int rw = rq_data_dir(rq);
1106 struct request_queue *q = rq->q;
1107 unsigned long flags;
1108
1109 dm_unprep_request(rq);
1110
1111 spin_lock_irqsave(q->queue_lock, flags);
1112 blk_requeue_request(q, rq);
1113 spin_unlock_irqrestore(q->queue_lock, flags);
1114
1115 rq_completed(md, rw, false);
1116 }
1117
1118 static void dm_requeue_unmapped_request(struct request *clone)
1119 {
1120 struct dm_rq_target_io *tio = clone->end_io_data;
1121
1122 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1123 }
1124
1125 static void __stop_queue(struct request_queue *q)
1126 {
1127 blk_stop_queue(q);
1128 }
1129
1130 static void stop_queue(struct request_queue *q)
1131 {
1132 unsigned long flags;
1133
1134 spin_lock_irqsave(q->queue_lock, flags);
1135 __stop_queue(q);
1136 spin_unlock_irqrestore(q->queue_lock, flags);
1137 }
1138
1139 static void __start_queue(struct request_queue *q)
1140 {
1141 if (blk_queue_stopped(q))
1142 blk_start_queue(q);
1143 }
1144
1145 static void start_queue(struct request_queue *q)
1146 {
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(q->queue_lock, flags);
1150 __start_queue(q);
1151 spin_unlock_irqrestore(q->queue_lock, flags);
1152 }
1153
1154 static void dm_done(struct request *clone, int error, bool mapped)
1155 {
1156 int r = error;
1157 struct dm_rq_target_io *tio = clone->end_io_data;
1158 dm_request_endio_fn rq_end_io = NULL;
1159
1160 if (tio->ti) {
1161 rq_end_io = tio->ti->type->rq_end_io;
1162
1163 if (mapped && rq_end_io)
1164 r = rq_end_io(tio->ti, clone, error, &tio->info);
1165 }
1166
1167 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1168 !clone->q->limits.max_write_same_sectors))
1169 disable_write_same(tio->md);
1170
1171 if (r <= 0)
1172 /* The target wants to complete the I/O */
1173 dm_end_request(clone, r);
1174 else if (r == DM_ENDIO_INCOMPLETE)
1175 /* The target will handle the I/O */
1176 return;
1177 else if (r == DM_ENDIO_REQUEUE)
1178 /* The target wants to requeue the I/O */
1179 dm_requeue_unmapped_request(clone);
1180 else {
1181 DMWARN("unimplemented target endio return value: %d", r);
1182 BUG();
1183 }
1184 }
1185
1186 /*
1187 * Request completion handler for request-based dm
1188 */
1189 static void dm_softirq_done(struct request *rq)
1190 {
1191 bool mapped = true;
1192 struct dm_rq_target_io *tio = rq->special;
1193 struct request *clone = tio->clone;
1194
1195 if (!clone) {
1196 blk_end_request_all(rq, tio->error);
1197 rq_completed(tio->md, rq_data_dir(rq), false);
1198 free_rq_tio(tio);
1199 return;
1200 }
1201
1202 if (rq->cmd_flags & REQ_FAILED)
1203 mapped = false;
1204
1205 dm_done(clone, tio->error, mapped);
1206 }
1207
1208 /*
1209 * Complete the clone and the original request with the error status
1210 * through softirq context.
1211 */
1212 static void dm_complete_request(struct request *rq, int error)
1213 {
1214 struct dm_rq_target_io *tio = rq->special;
1215
1216 tio->error = error;
1217 blk_complete_request(rq);
1218 }
1219
1220 /*
1221 * Complete the not-mapped clone and the original request with the error status
1222 * through softirq context.
1223 * Target's rq_end_io() function isn't called.
1224 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1225 */
1226 static void dm_kill_unmapped_request(struct request *rq, int error)
1227 {
1228 rq->cmd_flags |= REQ_FAILED;
1229 dm_complete_request(rq, error);
1230 }
1231
1232 /*
1233 * Called with the clone's queue lock held
1234 */
1235 static void end_clone_request(struct request *clone, int error)
1236 {
1237 struct dm_rq_target_io *tio = clone->end_io_data;
1238
1239 if (!clone->q->mq_ops) {
1240 /*
1241 * For just cleaning up the information of the queue in which
1242 * the clone was dispatched.
1243 * The clone is *NOT* freed actually here because it is alloced
1244 * from dm own mempool (REQ_ALLOCED isn't set).
1245 */
1246 __blk_put_request(clone->q, clone);
1247 }
1248
1249 /*
1250 * Actual request completion is done in a softirq context which doesn't
1251 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1252 * - another request may be submitted by the upper level driver
1253 * of the stacking during the completion
1254 * - the submission which requires queue lock may be done
1255 * against this clone's queue
1256 */
1257 dm_complete_request(tio->orig, error);
1258 }
1259
1260 /*
1261 * Return maximum size of I/O possible at the supplied sector up to the current
1262 * target boundary.
1263 */
1264 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1265 {
1266 sector_t target_offset = dm_target_offset(ti, sector);
1267
1268 return ti->len - target_offset;
1269 }
1270
1271 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1272 {
1273 sector_t len = max_io_len_target_boundary(sector, ti);
1274 sector_t offset, max_len;
1275
1276 /*
1277 * Does the target need to split even further?
1278 */
1279 if (ti->max_io_len) {
1280 offset = dm_target_offset(ti, sector);
1281 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1282 max_len = sector_div(offset, ti->max_io_len);
1283 else
1284 max_len = offset & (ti->max_io_len - 1);
1285 max_len = ti->max_io_len - max_len;
1286
1287 if (len > max_len)
1288 len = max_len;
1289 }
1290
1291 return len;
1292 }
1293
1294 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1295 {
1296 if (len > UINT_MAX) {
1297 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1298 (unsigned long long)len, UINT_MAX);
1299 ti->error = "Maximum size of target IO is too large";
1300 return -EINVAL;
1301 }
1302
1303 ti->max_io_len = (uint32_t) len;
1304
1305 return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1308
1309 /*
1310 * A target may call dm_accept_partial_bio only from the map routine. It is
1311 * allowed for all bio types except REQ_FLUSH.
1312 *
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1316 *
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1319 * | 1 | 2 | 3 |
1320 * +--------------------+---------------+-------+
1321 *
1322 * <-------------- *tio->len_ptr --------------->
1323 * <------- bi_size ------->
1324 * <-- n_sectors -->
1325 *
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 * (it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 * (it may be empty if region 1 is non-empty, although there is no reason
1330 * to make it empty)
1331 * The target requires that region 3 is to be sent in the next bio.
1332 *
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1336 */
1337 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1338 {
1339 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1340 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1341 BUG_ON(bio->bi_rw & REQ_FLUSH);
1342 BUG_ON(bi_size > *tio->len_ptr);
1343 BUG_ON(n_sectors > bi_size);
1344 *tio->len_ptr -= bi_size - n_sectors;
1345 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1346 }
1347 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1348
1349 static void __map_bio(struct dm_target_io *tio)
1350 {
1351 int r;
1352 sector_t sector;
1353 struct mapped_device *md;
1354 struct bio *clone = &tio->clone;
1355 struct dm_target *ti = tio->ti;
1356
1357 clone->bi_end_io = clone_endio;
1358
1359 /*
1360 * Map the clone. If r == 0 we don't need to do
1361 * anything, the target has assumed ownership of
1362 * this io.
1363 */
1364 atomic_inc(&tio->io->io_count);
1365 sector = clone->bi_iter.bi_sector;
1366 r = ti->type->map(ti, clone);
1367 if (r == DM_MAPIO_REMAPPED) {
1368 /* the bio has been remapped so dispatch it */
1369
1370 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1371 tio->io->bio->bi_bdev->bd_dev, sector);
1372
1373 generic_make_request(clone);
1374 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1375 /* error the io and bail out, or requeue it if needed */
1376 md = tio->io->md;
1377 dec_pending(tio->io, r);
1378 free_tio(md, tio);
1379 } else if (r) {
1380 DMWARN("unimplemented target map return value: %d", r);
1381 BUG();
1382 }
1383 }
1384
1385 struct clone_info {
1386 struct mapped_device *md;
1387 struct dm_table *map;
1388 struct bio *bio;
1389 struct dm_io *io;
1390 sector_t sector;
1391 unsigned sector_count;
1392 };
1393
1394 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1395 {
1396 bio->bi_iter.bi_sector = sector;
1397 bio->bi_iter.bi_size = to_bytes(len);
1398 }
1399
1400 /*
1401 * Creates a bio that consists of range of complete bvecs.
1402 */
1403 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1404 sector_t sector, unsigned len)
1405 {
1406 struct bio *clone = &tio->clone;
1407
1408 __bio_clone_fast(clone, bio);
1409
1410 if (bio_integrity(bio))
1411 bio_integrity_clone(clone, bio, GFP_NOIO);
1412
1413 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1414 clone->bi_iter.bi_size = to_bytes(len);
1415
1416 if (bio_integrity(bio))
1417 bio_integrity_trim(clone, 0, len);
1418 }
1419
1420 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1421 struct dm_target *ti,
1422 unsigned target_bio_nr)
1423 {
1424 struct dm_target_io *tio;
1425 struct bio *clone;
1426
1427 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1428 tio = container_of(clone, struct dm_target_io, clone);
1429
1430 tio->io = ci->io;
1431 tio->ti = ti;
1432 tio->target_bio_nr = target_bio_nr;
1433
1434 return tio;
1435 }
1436
1437 static void __clone_and_map_simple_bio(struct clone_info *ci,
1438 struct dm_target *ti,
1439 unsigned target_bio_nr, unsigned *len)
1440 {
1441 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1442 struct bio *clone = &tio->clone;
1443
1444 tio->len_ptr = len;
1445
1446 __bio_clone_fast(clone, ci->bio);
1447 if (len)
1448 bio_setup_sector(clone, ci->sector, *len);
1449
1450 __map_bio(tio);
1451 }
1452
1453 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1454 unsigned num_bios, unsigned *len)
1455 {
1456 unsigned target_bio_nr;
1457
1458 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1459 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1460 }
1461
1462 static int __send_empty_flush(struct clone_info *ci)
1463 {
1464 unsigned target_nr = 0;
1465 struct dm_target *ti;
1466
1467 BUG_ON(bio_has_data(ci->bio));
1468 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1469 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1470
1471 return 0;
1472 }
1473
1474 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1475 sector_t sector, unsigned *len)
1476 {
1477 struct bio *bio = ci->bio;
1478 struct dm_target_io *tio;
1479 unsigned target_bio_nr;
1480 unsigned num_target_bios = 1;
1481
1482 /*
1483 * Does the target want to receive duplicate copies of the bio?
1484 */
1485 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1486 num_target_bios = ti->num_write_bios(ti, bio);
1487
1488 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1489 tio = alloc_tio(ci, ti, target_bio_nr);
1490 tio->len_ptr = len;
1491 clone_bio(tio, bio, sector, *len);
1492 __map_bio(tio);
1493 }
1494 }
1495
1496 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1497
1498 static unsigned get_num_discard_bios(struct dm_target *ti)
1499 {
1500 return ti->num_discard_bios;
1501 }
1502
1503 static unsigned get_num_write_same_bios(struct dm_target *ti)
1504 {
1505 return ti->num_write_same_bios;
1506 }
1507
1508 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1509
1510 static bool is_split_required_for_discard(struct dm_target *ti)
1511 {
1512 return ti->split_discard_bios;
1513 }
1514
1515 static int __send_changing_extent_only(struct clone_info *ci,
1516 get_num_bios_fn get_num_bios,
1517 is_split_required_fn is_split_required)
1518 {
1519 struct dm_target *ti;
1520 unsigned len;
1521 unsigned num_bios;
1522
1523 do {
1524 ti = dm_table_find_target(ci->map, ci->sector);
1525 if (!dm_target_is_valid(ti))
1526 return -EIO;
1527
1528 /*
1529 * Even though the device advertised support for this type of
1530 * request, that does not mean every target supports it, and
1531 * reconfiguration might also have changed that since the
1532 * check was performed.
1533 */
1534 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1535 if (!num_bios)
1536 return -EOPNOTSUPP;
1537
1538 if (is_split_required && !is_split_required(ti))
1539 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1540 else
1541 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1542
1543 __send_duplicate_bios(ci, ti, num_bios, &len);
1544
1545 ci->sector += len;
1546 } while (ci->sector_count -= len);
1547
1548 return 0;
1549 }
1550
1551 static int __send_discard(struct clone_info *ci)
1552 {
1553 return __send_changing_extent_only(ci, get_num_discard_bios,
1554 is_split_required_for_discard);
1555 }
1556
1557 static int __send_write_same(struct clone_info *ci)
1558 {
1559 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1560 }
1561
1562 /*
1563 * Select the correct strategy for processing a non-flush bio.
1564 */
1565 static int __split_and_process_non_flush(struct clone_info *ci)
1566 {
1567 struct bio *bio = ci->bio;
1568 struct dm_target *ti;
1569 unsigned len;
1570
1571 if (unlikely(bio->bi_rw & REQ_DISCARD))
1572 return __send_discard(ci);
1573 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1574 return __send_write_same(ci);
1575
1576 ti = dm_table_find_target(ci->map, ci->sector);
1577 if (!dm_target_is_valid(ti))
1578 return -EIO;
1579
1580 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1581
1582 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1583
1584 ci->sector += len;
1585 ci->sector_count -= len;
1586
1587 return 0;
1588 }
1589
1590 /*
1591 * Entry point to split a bio into clones and submit them to the targets.
1592 */
1593 static void __split_and_process_bio(struct mapped_device *md,
1594 struct dm_table *map, struct bio *bio)
1595 {
1596 struct clone_info ci;
1597 int error = 0;
1598
1599 if (unlikely(!map)) {
1600 bio_io_error(bio);
1601 return;
1602 }
1603
1604 ci.map = map;
1605 ci.md = md;
1606 ci.io = alloc_io(md);
1607 ci.io->error = 0;
1608 atomic_set(&ci.io->io_count, 1);
1609 ci.io->bio = bio;
1610 ci.io->md = md;
1611 spin_lock_init(&ci.io->endio_lock);
1612 ci.sector = bio->bi_iter.bi_sector;
1613
1614 start_io_acct(ci.io);
1615
1616 if (bio->bi_rw & REQ_FLUSH) {
1617 ci.bio = &ci.md->flush_bio;
1618 ci.sector_count = 0;
1619 error = __send_empty_flush(&ci);
1620 /* dec_pending submits any data associated with flush */
1621 } else {
1622 ci.bio = bio;
1623 ci.sector_count = bio_sectors(bio);
1624 while (ci.sector_count && !error)
1625 error = __split_and_process_non_flush(&ci);
1626 }
1627
1628 /* drop the extra reference count */
1629 dec_pending(ci.io, error);
1630 }
1631 /*-----------------------------------------------------------------
1632 * CRUD END
1633 *---------------------------------------------------------------*/
1634
1635 static int dm_merge_bvec(struct request_queue *q,
1636 struct bvec_merge_data *bvm,
1637 struct bio_vec *biovec)
1638 {
1639 struct mapped_device *md = q->queuedata;
1640 struct dm_table *map = dm_get_live_table_fast(md);
1641 struct dm_target *ti;
1642 sector_t max_sectors;
1643 int max_size = 0;
1644
1645 if (unlikely(!map))
1646 goto out;
1647
1648 ti = dm_table_find_target(map, bvm->bi_sector);
1649 if (!dm_target_is_valid(ti))
1650 goto out;
1651
1652 /*
1653 * Find maximum amount of I/O that won't need splitting
1654 */
1655 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1656 (sector_t) queue_max_sectors(q));
1657 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1658 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1659 max_size = 0;
1660
1661 /*
1662 * merge_bvec_fn() returns number of bytes
1663 * it can accept at this offset
1664 * max is precomputed maximal io size
1665 */
1666 if (max_size && ti->type->merge)
1667 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1668 /*
1669 * If the target doesn't support merge method and some of the devices
1670 * provided their merge_bvec method (we know this by looking for the
1671 * max_hw_sectors that dm_set_device_limits may set), then we can't
1672 * allow bios with multiple vector entries. So always set max_size
1673 * to 0, and the code below allows just one page.
1674 */
1675 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1676 max_size = 0;
1677
1678 out:
1679 dm_put_live_table_fast(md);
1680 /*
1681 * Always allow an entire first page
1682 */
1683 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1684 max_size = biovec->bv_len;
1685
1686 return max_size;
1687 }
1688
1689 /*
1690 * The request function that just remaps the bio built up by
1691 * dm_merge_bvec.
1692 */
1693 static void _dm_request(struct request_queue *q, struct bio *bio)
1694 {
1695 int rw = bio_data_dir(bio);
1696 struct mapped_device *md = q->queuedata;
1697 int srcu_idx;
1698 struct dm_table *map;
1699
1700 map = dm_get_live_table(md, &srcu_idx);
1701
1702 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1703
1704 /* if we're suspended, we have to queue this io for later */
1705 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1706 dm_put_live_table(md, srcu_idx);
1707
1708 if (bio_rw(bio) != READA)
1709 queue_io(md, bio);
1710 else
1711 bio_io_error(bio);
1712 return;
1713 }
1714
1715 __split_and_process_bio(md, map, bio);
1716 dm_put_live_table(md, srcu_idx);
1717 return;
1718 }
1719
1720 int dm_request_based(struct mapped_device *md)
1721 {
1722 return blk_queue_stackable(md->queue);
1723 }
1724
1725 static void dm_request(struct request_queue *q, struct bio *bio)
1726 {
1727 struct mapped_device *md = q->queuedata;
1728
1729 if (dm_request_based(md))
1730 blk_queue_bio(q, bio);
1731 else
1732 _dm_request(q, bio);
1733 }
1734
1735 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1736 {
1737 int r;
1738
1739 if (blk_queue_io_stat(clone->q))
1740 clone->cmd_flags |= REQ_IO_STAT;
1741
1742 clone->start_time = jiffies;
1743 r = blk_insert_cloned_request(clone->q, clone);
1744 if (r)
1745 /* must complete clone in terms of original request */
1746 dm_complete_request(rq, r);
1747 }
1748
1749 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1750 void *data)
1751 {
1752 struct dm_rq_target_io *tio = data;
1753 struct dm_rq_clone_bio_info *info =
1754 container_of(bio, struct dm_rq_clone_bio_info, clone);
1755
1756 info->orig = bio_orig;
1757 info->tio = tio;
1758 bio->bi_end_io = end_clone_bio;
1759
1760 return 0;
1761 }
1762
1763 static int setup_clone(struct request *clone, struct request *rq,
1764 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1765 {
1766 int r;
1767
1768 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1769 dm_rq_bio_constructor, tio);
1770 if (r)
1771 return r;
1772
1773 clone->cmd = rq->cmd;
1774 clone->cmd_len = rq->cmd_len;
1775 clone->sense = rq->sense;
1776 clone->end_io = end_clone_request;
1777 clone->end_io_data = tio;
1778
1779 tio->clone = clone;
1780
1781 return 0;
1782 }
1783
1784 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1785 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1786 {
1787 struct request *clone = alloc_clone_request(md, gfp_mask);
1788
1789 if (!clone)
1790 return NULL;
1791
1792 blk_rq_init(NULL, clone);
1793 if (setup_clone(clone, rq, tio, gfp_mask)) {
1794 /* -ENOMEM */
1795 free_clone_request(md, clone);
1796 return NULL;
1797 }
1798
1799 return clone;
1800 }
1801
1802 static void map_tio_request(struct kthread_work *work);
1803
1804 static struct dm_rq_target_io *prep_tio(struct request *rq,
1805 struct mapped_device *md, gfp_t gfp_mask)
1806 {
1807 struct dm_rq_target_io *tio;
1808 int srcu_idx;
1809 struct dm_table *table;
1810
1811 tio = alloc_rq_tio(md, gfp_mask);
1812 if (!tio)
1813 return NULL;
1814
1815 tio->md = md;
1816 tio->ti = NULL;
1817 tio->clone = NULL;
1818 tio->orig = rq;
1819 tio->error = 0;
1820 memset(&tio->info, 0, sizeof(tio->info));
1821 init_kthread_work(&tio->work, map_tio_request);
1822
1823 table = dm_get_live_table(md, &srcu_idx);
1824 if (!dm_table_mq_request_based(table)) {
1825 if (!clone_rq(rq, md, tio, gfp_mask)) {
1826 dm_put_live_table(md, srcu_idx);
1827 free_rq_tio(tio);
1828 return NULL;
1829 }
1830 }
1831 dm_put_live_table(md, srcu_idx);
1832
1833 return tio;
1834 }
1835
1836 /*
1837 * Called with the queue lock held.
1838 */
1839 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1840 {
1841 struct mapped_device *md = q->queuedata;
1842 struct dm_rq_target_io *tio;
1843
1844 if (unlikely(rq->special)) {
1845 DMWARN("Already has something in rq->special.");
1846 return BLKPREP_KILL;
1847 }
1848
1849 tio = prep_tio(rq, md, GFP_ATOMIC);
1850 if (!tio)
1851 return BLKPREP_DEFER;
1852
1853 rq->special = tio;
1854 rq->cmd_flags |= REQ_DONTPREP;
1855
1856 return BLKPREP_OK;
1857 }
1858
1859 /*
1860 * Returns:
1861 * 0 : the request has been processed
1862 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1863 * < 0 : the request was completed due to failure
1864 */
1865 static int map_request(struct dm_target *ti, struct request *rq,
1866 struct mapped_device *md)
1867 {
1868 int r;
1869 struct dm_rq_target_io *tio = rq->special;
1870 struct request *clone = NULL;
1871
1872 if (tio->clone) {
1873 clone = tio->clone;
1874 r = ti->type->map_rq(ti, clone, &tio->info);
1875 } else {
1876 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1877 if (r < 0) {
1878 /* The target wants to complete the I/O */
1879 dm_kill_unmapped_request(rq, r);
1880 return r;
1881 }
1882 if (IS_ERR(clone))
1883 return DM_MAPIO_REQUEUE;
1884 if (setup_clone(clone, rq, tio, GFP_KERNEL)) {
1885 /* -ENOMEM */
1886 ti->type->release_clone_rq(clone);
1887 return DM_MAPIO_REQUEUE;
1888 }
1889 }
1890
1891 switch (r) {
1892 case DM_MAPIO_SUBMITTED:
1893 /* The target has taken the I/O to submit by itself later */
1894 break;
1895 case DM_MAPIO_REMAPPED:
1896 /* The target has remapped the I/O so dispatch it */
1897 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1898 blk_rq_pos(rq));
1899 dm_dispatch_clone_request(clone, rq);
1900 break;
1901 case DM_MAPIO_REQUEUE:
1902 /* The target wants to requeue the I/O */
1903 dm_requeue_unmapped_request(clone);
1904 break;
1905 default:
1906 if (r > 0) {
1907 DMWARN("unimplemented target map return value: %d", r);
1908 BUG();
1909 }
1910
1911 /* The target wants to complete the I/O */
1912 dm_kill_unmapped_request(rq, r);
1913 return r;
1914 }
1915
1916 return 0;
1917 }
1918
1919 static void map_tio_request(struct kthread_work *work)
1920 {
1921 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1922 struct request *rq = tio->orig;
1923 struct mapped_device *md = tio->md;
1924
1925 if (map_request(tio->ti, rq, md) == DM_MAPIO_REQUEUE)
1926 dm_requeue_unmapped_original_request(md, rq);
1927 }
1928
1929 static void dm_start_request(struct mapped_device *md, struct request *orig)
1930 {
1931 blk_start_request(orig);
1932 atomic_inc(&md->pending[rq_data_dir(orig)]);
1933
1934 /*
1935 * Hold the md reference here for the in-flight I/O.
1936 * We can't rely on the reference count by device opener,
1937 * because the device may be closed during the request completion
1938 * when all bios are completed.
1939 * See the comment in rq_completed() too.
1940 */
1941 dm_get(md);
1942 }
1943
1944 /*
1945 * q->request_fn for request-based dm.
1946 * Called with the queue lock held.
1947 */
1948 static void dm_request_fn(struct request_queue *q)
1949 {
1950 struct mapped_device *md = q->queuedata;
1951 int srcu_idx;
1952 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1953 struct dm_target *ti;
1954 struct request *rq;
1955 struct dm_rq_target_io *tio;
1956 sector_t pos;
1957
1958 /*
1959 * For suspend, check blk_queue_stopped() and increment
1960 * ->pending within a single queue_lock not to increment the
1961 * number of in-flight I/Os after the queue is stopped in
1962 * dm_suspend().
1963 */
1964 while (!blk_queue_stopped(q)) {
1965 rq = blk_peek_request(q);
1966 if (!rq)
1967 goto delay_and_out;
1968
1969 /* always use block 0 to find the target for flushes for now */
1970 pos = 0;
1971 if (!(rq->cmd_flags & REQ_FLUSH))
1972 pos = blk_rq_pos(rq);
1973
1974 ti = dm_table_find_target(map, pos);
1975 if (!dm_target_is_valid(ti)) {
1976 /*
1977 * Must perform setup, that rq_completed() requires,
1978 * before calling dm_kill_unmapped_request
1979 */
1980 DMERR_LIMIT("request attempted access beyond the end of device");
1981 dm_start_request(md, rq);
1982 dm_kill_unmapped_request(rq, -EIO);
1983 continue;
1984 }
1985
1986 if (ti->type->busy && ti->type->busy(ti))
1987 goto delay_and_out;
1988
1989 dm_start_request(md, rq);
1990
1991 tio = rq->special;
1992 /* Establish tio->ti before queuing work (map_tio_request) */
1993 tio->ti = ti;
1994 queue_kthread_work(&md->kworker, &tio->work);
1995 BUG_ON(!irqs_disabled());
1996 }
1997
1998 goto out;
1999
2000 delay_and_out:
2001 blk_delay_queue(q, HZ / 10);
2002 out:
2003 dm_put_live_table(md, srcu_idx);
2004 }
2005
2006 int dm_underlying_device_busy(struct request_queue *q)
2007 {
2008 return blk_lld_busy(q);
2009 }
2010 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
2011
2012 static int dm_lld_busy(struct request_queue *q)
2013 {
2014 int r;
2015 struct mapped_device *md = q->queuedata;
2016 struct dm_table *map = dm_get_live_table_fast(md);
2017
2018 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
2019 r = 1;
2020 else
2021 r = dm_table_any_busy_target(map);
2022
2023 dm_put_live_table_fast(md);
2024
2025 return r;
2026 }
2027
2028 static int dm_any_congested(void *congested_data, int bdi_bits)
2029 {
2030 int r = bdi_bits;
2031 struct mapped_device *md = congested_data;
2032 struct dm_table *map;
2033
2034 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2035 map = dm_get_live_table_fast(md);
2036 if (map) {
2037 /*
2038 * Request-based dm cares about only own queue for
2039 * the query about congestion status of request_queue
2040 */
2041 if (dm_request_based(md))
2042 r = md->queue->backing_dev_info.state &
2043 bdi_bits;
2044 else
2045 r = dm_table_any_congested(map, bdi_bits);
2046 }
2047 dm_put_live_table_fast(md);
2048 }
2049
2050 return r;
2051 }
2052
2053 /*-----------------------------------------------------------------
2054 * An IDR is used to keep track of allocated minor numbers.
2055 *---------------------------------------------------------------*/
2056 static void free_minor(int minor)
2057 {
2058 spin_lock(&_minor_lock);
2059 idr_remove(&_minor_idr, minor);
2060 spin_unlock(&_minor_lock);
2061 }
2062
2063 /*
2064 * See if the device with a specific minor # is free.
2065 */
2066 static int specific_minor(int minor)
2067 {
2068 int r;
2069
2070 if (minor >= (1 << MINORBITS))
2071 return -EINVAL;
2072
2073 idr_preload(GFP_KERNEL);
2074 spin_lock(&_minor_lock);
2075
2076 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2077
2078 spin_unlock(&_minor_lock);
2079 idr_preload_end();
2080 if (r < 0)
2081 return r == -ENOSPC ? -EBUSY : r;
2082 return 0;
2083 }
2084
2085 static int next_free_minor(int *minor)
2086 {
2087 int r;
2088
2089 idr_preload(GFP_KERNEL);
2090 spin_lock(&_minor_lock);
2091
2092 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2093
2094 spin_unlock(&_minor_lock);
2095 idr_preload_end();
2096 if (r < 0)
2097 return r;
2098 *minor = r;
2099 return 0;
2100 }
2101
2102 static const struct block_device_operations dm_blk_dops;
2103
2104 static void dm_wq_work(struct work_struct *work);
2105
2106 static void dm_init_md_queue(struct mapped_device *md)
2107 {
2108 /*
2109 * Request-based dm devices cannot be stacked on top of bio-based dm
2110 * devices. The type of this dm device has not been decided yet.
2111 * The type is decided at the first table loading time.
2112 * To prevent problematic device stacking, clear the queue flag
2113 * for request stacking support until then.
2114 *
2115 * This queue is new, so no concurrency on the queue_flags.
2116 */
2117 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2118
2119 md->queue->queuedata = md;
2120 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2121 md->queue->backing_dev_info.congested_data = md;
2122 blk_queue_make_request(md->queue, dm_request);
2123 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2124 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2125 }
2126
2127 /*
2128 * Allocate and initialise a blank device with a given minor.
2129 */
2130 static struct mapped_device *alloc_dev(int minor)
2131 {
2132 int r;
2133 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2134 void *old_md;
2135
2136 if (!md) {
2137 DMWARN("unable to allocate device, out of memory.");
2138 return NULL;
2139 }
2140
2141 if (!try_module_get(THIS_MODULE))
2142 goto bad_module_get;
2143
2144 /* get a minor number for the dev */
2145 if (minor == DM_ANY_MINOR)
2146 r = next_free_minor(&minor);
2147 else
2148 r = specific_minor(minor);
2149 if (r < 0)
2150 goto bad_minor;
2151
2152 r = init_srcu_struct(&md->io_barrier);
2153 if (r < 0)
2154 goto bad_io_barrier;
2155
2156 md->type = DM_TYPE_NONE;
2157 mutex_init(&md->suspend_lock);
2158 mutex_init(&md->type_lock);
2159 mutex_init(&md->table_devices_lock);
2160 spin_lock_init(&md->deferred_lock);
2161 atomic_set(&md->holders, 1);
2162 atomic_set(&md->open_count, 0);
2163 atomic_set(&md->event_nr, 0);
2164 atomic_set(&md->uevent_seq, 0);
2165 INIT_LIST_HEAD(&md->uevent_list);
2166 INIT_LIST_HEAD(&md->table_devices);
2167 spin_lock_init(&md->uevent_lock);
2168
2169 md->queue = blk_alloc_queue(GFP_KERNEL);
2170 if (!md->queue)
2171 goto bad_queue;
2172
2173 dm_init_md_queue(md);
2174
2175 md->disk = alloc_disk(1);
2176 if (!md->disk)
2177 goto bad_disk;
2178
2179 atomic_set(&md->pending[0], 0);
2180 atomic_set(&md->pending[1], 0);
2181 init_waitqueue_head(&md->wait);
2182 INIT_WORK(&md->work, dm_wq_work);
2183 init_waitqueue_head(&md->eventq);
2184 init_completion(&md->kobj_holder.completion);
2185 md->kworker_task = NULL;
2186
2187 md->disk->major = _major;
2188 md->disk->first_minor = minor;
2189 md->disk->fops = &dm_blk_dops;
2190 md->disk->queue = md->queue;
2191 md->disk->private_data = md;
2192 sprintf(md->disk->disk_name, "dm-%d", minor);
2193 add_disk(md->disk);
2194 format_dev_t(md->name, MKDEV(_major, minor));
2195
2196 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2197 if (!md->wq)
2198 goto bad_thread;
2199
2200 md->bdev = bdget_disk(md->disk, 0);
2201 if (!md->bdev)
2202 goto bad_bdev;
2203
2204 bio_init(&md->flush_bio);
2205 md->flush_bio.bi_bdev = md->bdev;
2206 md->flush_bio.bi_rw = WRITE_FLUSH;
2207
2208 dm_stats_init(&md->stats);
2209
2210 /* Populate the mapping, nobody knows we exist yet */
2211 spin_lock(&_minor_lock);
2212 old_md = idr_replace(&_minor_idr, md, minor);
2213 spin_unlock(&_minor_lock);
2214
2215 BUG_ON(old_md != MINOR_ALLOCED);
2216
2217 return md;
2218
2219 bad_bdev:
2220 destroy_workqueue(md->wq);
2221 bad_thread:
2222 del_gendisk(md->disk);
2223 put_disk(md->disk);
2224 bad_disk:
2225 blk_cleanup_queue(md->queue);
2226 bad_queue:
2227 cleanup_srcu_struct(&md->io_barrier);
2228 bad_io_barrier:
2229 free_minor(minor);
2230 bad_minor:
2231 module_put(THIS_MODULE);
2232 bad_module_get:
2233 kfree(md);
2234 return NULL;
2235 }
2236
2237 static void unlock_fs(struct mapped_device *md);
2238
2239 static void free_dev(struct mapped_device *md)
2240 {
2241 int minor = MINOR(disk_devt(md->disk));
2242
2243 unlock_fs(md);
2244 bdput(md->bdev);
2245 destroy_workqueue(md->wq);
2246
2247 if (md->kworker_task)
2248 kthread_stop(md->kworker_task);
2249 if (md->io_pool)
2250 mempool_destroy(md->io_pool);
2251 if (md->rq_pool)
2252 mempool_destroy(md->rq_pool);
2253 if (md->bs)
2254 bioset_free(md->bs);
2255 blk_integrity_unregister(md->disk);
2256 del_gendisk(md->disk);
2257 cleanup_srcu_struct(&md->io_barrier);
2258 free_table_devices(&md->table_devices);
2259 free_minor(minor);
2260
2261 spin_lock(&_minor_lock);
2262 md->disk->private_data = NULL;
2263 spin_unlock(&_minor_lock);
2264
2265 put_disk(md->disk);
2266 blk_cleanup_queue(md->queue);
2267 dm_stats_cleanup(&md->stats);
2268 module_put(THIS_MODULE);
2269 kfree(md);
2270 }
2271
2272 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2273 {
2274 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2275
2276 if (md->io_pool && md->bs) {
2277 /* The md already has necessary mempools. */
2278 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2279 /*
2280 * Reload bioset because front_pad may have changed
2281 * because a different table was loaded.
2282 */
2283 bioset_free(md->bs);
2284 md->bs = p->bs;
2285 p->bs = NULL;
2286 }
2287 /*
2288 * There's no need to reload with request-based dm
2289 * because the size of front_pad doesn't change.
2290 * Note for future: If you are to reload bioset,
2291 * prep-ed requests in the queue may refer
2292 * to bio from the old bioset, so you must walk
2293 * through the queue to unprep.
2294 */
2295 goto out;
2296 }
2297
2298 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2299
2300 md->io_pool = p->io_pool;
2301 p->io_pool = NULL;
2302 md->rq_pool = p->rq_pool;
2303 p->rq_pool = NULL;
2304 md->bs = p->bs;
2305 p->bs = NULL;
2306
2307 out:
2308 /* mempool bind completed, now no need any mempools in the table */
2309 dm_table_free_md_mempools(t);
2310 }
2311
2312 /*
2313 * Bind a table to the device.
2314 */
2315 static void event_callback(void *context)
2316 {
2317 unsigned long flags;
2318 LIST_HEAD(uevents);
2319 struct mapped_device *md = (struct mapped_device *) context;
2320
2321 spin_lock_irqsave(&md->uevent_lock, flags);
2322 list_splice_init(&md->uevent_list, &uevents);
2323 spin_unlock_irqrestore(&md->uevent_lock, flags);
2324
2325 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2326
2327 atomic_inc(&md->event_nr);
2328 wake_up(&md->eventq);
2329 }
2330
2331 /*
2332 * Protected by md->suspend_lock obtained by dm_swap_table().
2333 */
2334 static void __set_size(struct mapped_device *md, sector_t size)
2335 {
2336 set_capacity(md->disk, size);
2337
2338 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2339 }
2340
2341 /*
2342 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2343 *
2344 * If this function returns 0, then the device is either a non-dm
2345 * device without a merge_bvec_fn, or it is a dm device that is
2346 * able to split any bios it receives that are too big.
2347 */
2348 int dm_queue_merge_is_compulsory(struct request_queue *q)
2349 {
2350 struct mapped_device *dev_md;
2351
2352 if (!q->merge_bvec_fn)
2353 return 0;
2354
2355 if (q->make_request_fn == dm_request) {
2356 dev_md = q->queuedata;
2357 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2358 return 0;
2359 }
2360
2361 return 1;
2362 }
2363
2364 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2365 struct dm_dev *dev, sector_t start,
2366 sector_t len, void *data)
2367 {
2368 struct block_device *bdev = dev->bdev;
2369 struct request_queue *q = bdev_get_queue(bdev);
2370
2371 return dm_queue_merge_is_compulsory(q);
2372 }
2373
2374 /*
2375 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2376 * on the properties of the underlying devices.
2377 */
2378 static int dm_table_merge_is_optional(struct dm_table *table)
2379 {
2380 unsigned i = 0;
2381 struct dm_target *ti;
2382
2383 while (i < dm_table_get_num_targets(table)) {
2384 ti = dm_table_get_target(table, i++);
2385
2386 if (ti->type->iterate_devices &&
2387 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2388 return 0;
2389 }
2390
2391 return 1;
2392 }
2393
2394 /*
2395 * Returns old map, which caller must destroy.
2396 */
2397 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2398 struct queue_limits *limits)
2399 {
2400 struct dm_table *old_map;
2401 struct request_queue *q = md->queue;
2402 sector_t size;
2403 int merge_is_optional;
2404
2405 size = dm_table_get_size(t);
2406
2407 /*
2408 * Wipe any geometry if the size of the table changed.
2409 */
2410 if (size != dm_get_size(md))
2411 memset(&md->geometry, 0, sizeof(md->geometry));
2412
2413 __set_size(md, size);
2414
2415 dm_table_event_callback(t, event_callback, md);
2416
2417 /*
2418 * The queue hasn't been stopped yet, if the old table type wasn't
2419 * for request-based during suspension. So stop it to prevent
2420 * I/O mapping before resume.
2421 * This must be done before setting the queue restrictions,
2422 * because request-based dm may be run just after the setting.
2423 */
2424 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2425 stop_queue(q);
2426
2427 __bind_mempools(md, t);
2428
2429 merge_is_optional = dm_table_merge_is_optional(t);
2430
2431 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2432 rcu_assign_pointer(md->map, t);
2433 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2434
2435 dm_table_set_restrictions(t, q, limits);
2436 if (merge_is_optional)
2437 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2438 else
2439 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2440 if (old_map)
2441 dm_sync_table(md);
2442
2443 return old_map;
2444 }
2445
2446 /*
2447 * Returns unbound table for the caller to free.
2448 */
2449 static struct dm_table *__unbind(struct mapped_device *md)
2450 {
2451 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2452
2453 if (!map)
2454 return NULL;
2455
2456 dm_table_event_callback(map, NULL, NULL);
2457 RCU_INIT_POINTER(md->map, NULL);
2458 dm_sync_table(md);
2459
2460 return map;
2461 }
2462
2463 /*
2464 * Constructor for a new device.
2465 */
2466 int dm_create(int minor, struct mapped_device **result)
2467 {
2468 struct mapped_device *md;
2469
2470 md = alloc_dev(minor);
2471 if (!md)
2472 return -ENXIO;
2473
2474 dm_sysfs_init(md);
2475
2476 *result = md;
2477 return 0;
2478 }
2479
2480 /*
2481 * Functions to manage md->type.
2482 * All are required to hold md->type_lock.
2483 */
2484 void dm_lock_md_type(struct mapped_device *md)
2485 {
2486 mutex_lock(&md->type_lock);
2487 }
2488
2489 void dm_unlock_md_type(struct mapped_device *md)
2490 {
2491 mutex_unlock(&md->type_lock);
2492 }
2493
2494 void dm_set_md_type(struct mapped_device *md, unsigned type)
2495 {
2496 BUG_ON(!mutex_is_locked(&md->type_lock));
2497 md->type = type;
2498 }
2499
2500 unsigned dm_get_md_type(struct mapped_device *md)
2501 {
2502 BUG_ON(!mutex_is_locked(&md->type_lock));
2503 return md->type;
2504 }
2505
2506 static bool dm_md_type_request_based(struct mapped_device *md)
2507 {
2508 unsigned table_type = dm_get_md_type(md);
2509
2510 return (table_type == DM_TYPE_REQUEST_BASED ||
2511 table_type == DM_TYPE_MQ_REQUEST_BASED);
2512 }
2513
2514 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2515 {
2516 return md->immutable_target_type;
2517 }
2518
2519 /*
2520 * The queue_limits are only valid as long as you have a reference
2521 * count on 'md'.
2522 */
2523 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2524 {
2525 BUG_ON(!atomic_read(&md->holders));
2526 return &md->queue->limits;
2527 }
2528 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2529
2530 /*
2531 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2532 */
2533 static int dm_init_request_based_queue(struct mapped_device *md)
2534 {
2535 struct request_queue *q = NULL;
2536
2537 if (md->queue->elevator)
2538 return 1;
2539
2540 /* Fully initialize the queue */
2541 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2542 if (!q)
2543 return 0;
2544
2545 md->queue = q;
2546 dm_init_md_queue(md);
2547 blk_queue_softirq_done(md->queue, dm_softirq_done);
2548 blk_queue_prep_rq(md->queue, dm_prep_fn);
2549 blk_queue_lld_busy(md->queue, dm_lld_busy);
2550
2551 /* Also initialize the request-based DM worker thread */
2552 init_kthread_worker(&md->kworker);
2553 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2554 "kdmwork-%s", dm_device_name(md));
2555
2556 elv_register_queue(md->queue);
2557
2558 return 1;
2559 }
2560
2561 /*
2562 * Setup the DM device's queue based on md's type
2563 */
2564 int dm_setup_md_queue(struct mapped_device *md)
2565 {
2566 if (dm_md_type_request_based(md) && !dm_init_request_based_queue(md)) {
2567 DMWARN("Cannot initialize queue for request-based mapped device");
2568 return -EINVAL;
2569 }
2570
2571 return 0;
2572 }
2573
2574 struct mapped_device *dm_get_md(dev_t dev)
2575 {
2576 struct mapped_device *md;
2577 unsigned minor = MINOR(dev);
2578
2579 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2580 return NULL;
2581
2582 spin_lock(&_minor_lock);
2583
2584 md = idr_find(&_minor_idr, minor);
2585 if (md) {
2586 if ((md == MINOR_ALLOCED ||
2587 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2588 dm_deleting_md(md) ||
2589 test_bit(DMF_FREEING, &md->flags))) {
2590 md = NULL;
2591 goto out;
2592 }
2593 dm_get(md);
2594 }
2595
2596 out:
2597 spin_unlock(&_minor_lock);
2598
2599 return md;
2600 }
2601 EXPORT_SYMBOL_GPL(dm_get_md);
2602
2603 void *dm_get_mdptr(struct mapped_device *md)
2604 {
2605 return md->interface_ptr;
2606 }
2607
2608 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2609 {
2610 md->interface_ptr = ptr;
2611 }
2612
2613 void dm_get(struct mapped_device *md)
2614 {
2615 atomic_inc(&md->holders);
2616 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2617 }
2618
2619 const char *dm_device_name(struct mapped_device *md)
2620 {
2621 return md->name;
2622 }
2623 EXPORT_SYMBOL_GPL(dm_device_name);
2624
2625 static void __dm_destroy(struct mapped_device *md, bool wait)
2626 {
2627 struct dm_table *map;
2628 int srcu_idx;
2629
2630 might_sleep();
2631
2632 spin_lock(&_minor_lock);
2633 map = dm_get_live_table(md, &srcu_idx);
2634 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2635 set_bit(DMF_FREEING, &md->flags);
2636 spin_unlock(&_minor_lock);
2637
2638 if (dm_request_based(md))
2639 flush_kthread_worker(&md->kworker);
2640
2641 if (!dm_suspended_md(md)) {
2642 dm_table_presuspend_targets(map);
2643 dm_table_postsuspend_targets(map);
2644 }
2645
2646 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2647 dm_put_live_table(md, srcu_idx);
2648
2649 /*
2650 * Rare, but there may be I/O requests still going to complete,
2651 * for example. Wait for all references to disappear.
2652 * No one should increment the reference count of the mapped_device,
2653 * after the mapped_device state becomes DMF_FREEING.
2654 */
2655 if (wait)
2656 while (atomic_read(&md->holders))
2657 msleep(1);
2658 else if (atomic_read(&md->holders))
2659 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2660 dm_device_name(md), atomic_read(&md->holders));
2661
2662 dm_sysfs_exit(md);
2663 dm_table_destroy(__unbind(md));
2664 free_dev(md);
2665 }
2666
2667 void dm_destroy(struct mapped_device *md)
2668 {
2669 __dm_destroy(md, true);
2670 }
2671
2672 void dm_destroy_immediate(struct mapped_device *md)
2673 {
2674 __dm_destroy(md, false);
2675 }
2676
2677 void dm_put(struct mapped_device *md)
2678 {
2679 atomic_dec(&md->holders);
2680 }
2681 EXPORT_SYMBOL_GPL(dm_put);
2682
2683 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2684 {
2685 int r = 0;
2686 DECLARE_WAITQUEUE(wait, current);
2687
2688 add_wait_queue(&md->wait, &wait);
2689
2690 while (1) {
2691 set_current_state(interruptible);
2692
2693 if (!md_in_flight(md))
2694 break;
2695
2696 if (interruptible == TASK_INTERRUPTIBLE &&
2697 signal_pending(current)) {
2698 r = -EINTR;
2699 break;
2700 }
2701
2702 io_schedule();
2703 }
2704 set_current_state(TASK_RUNNING);
2705
2706 remove_wait_queue(&md->wait, &wait);
2707
2708 return r;
2709 }
2710
2711 /*
2712 * Process the deferred bios
2713 */
2714 static void dm_wq_work(struct work_struct *work)
2715 {
2716 struct mapped_device *md = container_of(work, struct mapped_device,
2717 work);
2718 struct bio *c;
2719 int srcu_idx;
2720 struct dm_table *map;
2721
2722 map = dm_get_live_table(md, &srcu_idx);
2723
2724 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2725 spin_lock_irq(&md->deferred_lock);
2726 c = bio_list_pop(&md->deferred);
2727 spin_unlock_irq(&md->deferred_lock);
2728
2729 if (!c)
2730 break;
2731
2732 if (dm_request_based(md))
2733 generic_make_request(c);
2734 else
2735 __split_and_process_bio(md, map, c);
2736 }
2737
2738 dm_put_live_table(md, srcu_idx);
2739 }
2740
2741 static void dm_queue_flush(struct mapped_device *md)
2742 {
2743 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2744 smp_mb__after_atomic();
2745 queue_work(md->wq, &md->work);
2746 }
2747
2748 /*
2749 * Swap in a new table, returning the old one for the caller to destroy.
2750 */
2751 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2752 {
2753 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2754 struct queue_limits limits;
2755 int r;
2756
2757 mutex_lock(&md->suspend_lock);
2758
2759 /* device must be suspended */
2760 if (!dm_suspended_md(md))
2761 goto out;
2762
2763 /*
2764 * If the new table has no data devices, retain the existing limits.
2765 * This helps multipath with queue_if_no_path if all paths disappear,
2766 * then new I/O is queued based on these limits, and then some paths
2767 * reappear.
2768 */
2769 if (dm_table_has_no_data_devices(table)) {
2770 live_map = dm_get_live_table_fast(md);
2771 if (live_map)
2772 limits = md->queue->limits;
2773 dm_put_live_table_fast(md);
2774 }
2775
2776 if (!live_map) {
2777 r = dm_calculate_queue_limits(table, &limits);
2778 if (r) {
2779 map = ERR_PTR(r);
2780 goto out;
2781 }
2782 }
2783
2784 map = __bind(md, table, &limits);
2785
2786 out:
2787 mutex_unlock(&md->suspend_lock);
2788 return map;
2789 }
2790
2791 /*
2792 * Functions to lock and unlock any filesystem running on the
2793 * device.
2794 */
2795 static int lock_fs(struct mapped_device *md)
2796 {
2797 int r;
2798
2799 WARN_ON(md->frozen_sb);
2800
2801 md->frozen_sb = freeze_bdev(md->bdev);
2802 if (IS_ERR(md->frozen_sb)) {
2803 r = PTR_ERR(md->frozen_sb);
2804 md->frozen_sb = NULL;
2805 return r;
2806 }
2807
2808 set_bit(DMF_FROZEN, &md->flags);
2809
2810 return 0;
2811 }
2812
2813 static void unlock_fs(struct mapped_device *md)
2814 {
2815 if (!test_bit(DMF_FROZEN, &md->flags))
2816 return;
2817
2818 thaw_bdev(md->bdev, md->frozen_sb);
2819 md->frozen_sb = NULL;
2820 clear_bit(DMF_FROZEN, &md->flags);
2821 }
2822
2823 /*
2824 * If __dm_suspend returns 0, the device is completely quiescent
2825 * now. There is no request-processing activity. All new requests
2826 * are being added to md->deferred list.
2827 *
2828 * Caller must hold md->suspend_lock
2829 */
2830 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2831 unsigned suspend_flags, int interruptible)
2832 {
2833 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2834 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2835 int r;
2836
2837 /*
2838 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2839 * This flag is cleared before dm_suspend returns.
2840 */
2841 if (noflush)
2842 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2843
2844 /*
2845 * This gets reverted if there's an error later and the targets
2846 * provide the .presuspend_undo hook.
2847 */
2848 dm_table_presuspend_targets(map);
2849
2850 /*
2851 * Flush I/O to the device.
2852 * Any I/O submitted after lock_fs() may not be flushed.
2853 * noflush takes precedence over do_lockfs.
2854 * (lock_fs() flushes I/Os and waits for them to complete.)
2855 */
2856 if (!noflush && do_lockfs) {
2857 r = lock_fs(md);
2858 if (r) {
2859 dm_table_presuspend_undo_targets(map);
2860 return r;
2861 }
2862 }
2863
2864 /*
2865 * Here we must make sure that no processes are submitting requests
2866 * to target drivers i.e. no one may be executing
2867 * __split_and_process_bio. This is called from dm_request and
2868 * dm_wq_work.
2869 *
2870 * To get all processes out of __split_and_process_bio in dm_request,
2871 * we take the write lock. To prevent any process from reentering
2872 * __split_and_process_bio from dm_request and quiesce the thread
2873 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2874 * flush_workqueue(md->wq).
2875 */
2876 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2877 if (map)
2878 synchronize_srcu(&md->io_barrier);
2879
2880 /*
2881 * Stop md->queue before flushing md->wq in case request-based
2882 * dm defers requests to md->wq from md->queue.
2883 */
2884 if (dm_request_based(md)) {
2885 stop_queue(md->queue);
2886 flush_kthread_worker(&md->kworker);
2887 }
2888
2889 flush_workqueue(md->wq);
2890
2891 /*
2892 * At this point no more requests are entering target request routines.
2893 * We call dm_wait_for_completion to wait for all existing requests
2894 * to finish.
2895 */
2896 r = dm_wait_for_completion(md, interruptible);
2897
2898 if (noflush)
2899 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2900 if (map)
2901 synchronize_srcu(&md->io_barrier);
2902
2903 /* were we interrupted ? */
2904 if (r < 0) {
2905 dm_queue_flush(md);
2906
2907 if (dm_request_based(md))
2908 start_queue(md->queue);
2909
2910 unlock_fs(md);
2911 dm_table_presuspend_undo_targets(map);
2912 /* pushback list is already flushed, so skip flush */
2913 }
2914
2915 return r;
2916 }
2917
2918 /*
2919 * We need to be able to change a mapping table under a mounted
2920 * filesystem. For example we might want to move some data in
2921 * the background. Before the table can be swapped with
2922 * dm_bind_table, dm_suspend must be called to flush any in
2923 * flight bios and ensure that any further io gets deferred.
2924 */
2925 /*
2926 * Suspend mechanism in request-based dm.
2927 *
2928 * 1. Flush all I/Os by lock_fs() if needed.
2929 * 2. Stop dispatching any I/O by stopping the request_queue.
2930 * 3. Wait for all in-flight I/Os to be completed or requeued.
2931 *
2932 * To abort suspend, start the request_queue.
2933 */
2934 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2935 {
2936 struct dm_table *map = NULL;
2937 int r = 0;
2938
2939 retry:
2940 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2941
2942 if (dm_suspended_md(md)) {
2943 r = -EINVAL;
2944 goto out_unlock;
2945 }
2946
2947 if (dm_suspended_internally_md(md)) {
2948 /* already internally suspended, wait for internal resume */
2949 mutex_unlock(&md->suspend_lock);
2950 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2951 if (r)
2952 return r;
2953 goto retry;
2954 }
2955
2956 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2957
2958 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2959 if (r)
2960 goto out_unlock;
2961
2962 set_bit(DMF_SUSPENDED, &md->flags);
2963
2964 dm_table_postsuspend_targets(map);
2965
2966 out_unlock:
2967 mutex_unlock(&md->suspend_lock);
2968 return r;
2969 }
2970
2971 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2972 {
2973 if (map) {
2974 int r = dm_table_resume_targets(map);
2975 if (r)
2976 return r;
2977 }
2978
2979 dm_queue_flush(md);
2980
2981 /*
2982 * Flushing deferred I/Os must be done after targets are resumed
2983 * so that mapping of targets can work correctly.
2984 * Request-based dm is queueing the deferred I/Os in its request_queue.
2985 */
2986 if (dm_request_based(md))
2987 start_queue(md->queue);
2988
2989 unlock_fs(md);
2990
2991 return 0;
2992 }
2993
2994 int dm_resume(struct mapped_device *md)
2995 {
2996 int r = -EINVAL;
2997 struct dm_table *map = NULL;
2998
2999 retry:
3000 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3001
3002 if (!dm_suspended_md(md))
3003 goto out;
3004
3005 if (dm_suspended_internally_md(md)) {
3006 /* already internally suspended, wait for internal resume */
3007 mutex_unlock(&md->suspend_lock);
3008 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3009 if (r)
3010 return r;
3011 goto retry;
3012 }
3013
3014 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3015 if (!map || !dm_table_get_size(map))
3016 goto out;
3017
3018 r = __dm_resume(md, map);
3019 if (r)
3020 goto out;
3021
3022 clear_bit(DMF_SUSPENDED, &md->flags);
3023
3024 r = 0;
3025 out:
3026 mutex_unlock(&md->suspend_lock);
3027
3028 return r;
3029 }
3030
3031 /*
3032 * Internal suspend/resume works like userspace-driven suspend. It waits
3033 * until all bios finish and prevents issuing new bios to the target drivers.
3034 * It may be used only from the kernel.
3035 */
3036
3037 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3038 {
3039 struct dm_table *map = NULL;
3040
3041 if (md->internal_suspend_count++)
3042 return; /* nested internal suspend */
3043
3044 if (dm_suspended_md(md)) {
3045 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3046 return; /* nest suspend */
3047 }
3048
3049 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3050
3051 /*
3052 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3053 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3054 * would require changing .presuspend to return an error -- avoid this
3055 * until there is a need for more elaborate variants of internal suspend.
3056 */
3057 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3058
3059 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3060
3061 dm_table_postsuspend_targets(map);
3062 }
3063
3064 static void __dm_internal_resume(struct mapped_device *md)
3065 {
3066 BUG_ON(!md->internal_suspend_count);
3067
3068 if (--md->internal_suspend_count)
3069 return; /* resume from nested internal suspend */
3070
3071 if (dm_suspended_md(md))
3072 goto done; /* resume from nested suspend */
3073
3074 /*
3075 * NOTE: existing callers don't need to call dm_table_resume_targets
3076 * (which may fail -- so best to avoid it for now by passing NULL map)
3077 */
3078 (void) __dm_resume(md, NULL);
3079
3080 done:
3081 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3082 smp_mb__after_atomic();
3083 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3084 }
3085
3086 void dm_internal_suspend_noflush(struct mapped_device *md)
3087 {
3088 mutex_lock(&md->suspend_lock);
3089 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3090 mutex_unlock(&md->suspend_lock);
3091 }
3092 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3093
3094 void dm_internal_resume(struct mapped_device *md)
3095 {
3096 mutex_lock(&md->suspend_lock);
3097 __dm_internal_resume(md);
3098 mutex_unlock(&md->suspend_lock);
3099 }
3100 EXPORT_SYMBOL_GPL(dm_internal_resume);
3101
3102 /*
3103 * Fast variants of internal suspend/resume hold md->suspend_lock,
3104 * which prevents interaction with userspace-driven suspend.
3105 */
3106
3107 void dm_internal_suspend_fast(struct mapped_device *md)
3108 {
3109 mutex_lock(&md->suspend_lock);
3110 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3111 return;
3112
3113 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3114 synchronize_srcu(&md->io_barrier);
3115 flush_workqueue(md->wq);
3116 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3117 }
3118
3119 void dm_internal_resume_fast(struct mapped_device *md)
3120 {
3121 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3122 goto done;
3123
3124 dm_queue_flush(md);
3125
3126 done:
3127 mutex_unlock(&md->suspend_lock);
3128 }
3129
3130 /*-----------------------------------------------------------------
3131 * Event notification.
3132 *---------------------------------------------------------------*/
3133 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3134 unsigned cookie)
3135 {
3136 char udev_cookie[DM_COOKIE_LENGTH];
3137 char *envp[] = { udev_cookie, NULL };
3138
3139 if (!cookie)
3140 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3141 else {
3142 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3143 DM_COOKIE_ENV_VAR_NAME, cookie);
3144 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3145 action, envp);
3146 }
3147 }
3148
3149 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3150 {
3151 return atomic_add_return(1, &md->uevent_seq);
3152 }
3153
3154 uint32_t dm_get_event_nr(struct mapped_device *md)
3155 {
3156 return atomic_read(&md->event_nr);
3157 }
3158
3159 int dm_wait_event(struct mapped_device *md, int event_nr)
3160 {
3161 return wait_event_interruptible(md->eventq,
3162 (event_nr != atomic_read(&md->event_nr)));
3163 }
3164
3165 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3166 {
3167 unsigned long flags;
3168
3169 spin_lock_irqsave(&md->uevent_lock, flags);
3170 list_add(elist, &md->uevent_list);
3171 spin_unlock_irqrestore(&md->uevent_lock, flags);
3172 }
3173
3174 /*
3175 * The gendisk is only valid as long as you have a reference
3176 * count on 'md'.
3177 */
3178 struct gendisk *dm_disk(struct mapped_device *md)
3179 {
3180 return md->disk;
3181 }
3182
3183 struct kobject *dm_kobject(struct mapped_device *md)
3184 {
3185 return &md->kobj_holder.kobj;
3186 }
3187
3188 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3189 {
3190 struct mapped_device *md;
3191
3192 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3193
3194 if (test_bit(DMF_FREEING, &md->flags) ||
3195 dm_deleting_md(md))
3196 return NULL;
3197
3198 dm_get(md);
3199 return md;
3200 }
3201
3202 int dm_suspended_md(struct mapped_device *md)
3203 {
3204 return test_bit(DMF_SUSPENDED, &md->flags);
3205 }
3206
3207 int dm_suspended_internally_md(struct mapped_device *md)
3208 {
3209 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3210 }
3211
3212 int dm_test_deferred_remove_flag(struct mapped_device *md)
3213 {
3214 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3215 }
3216
3217 int dm_suspended(struct dm_target *ti)
3218 {
3219 return dm_suspended_md(dm_table_get_md(ti->table));
3220 }
3221 EXPORT_SYMBOL_GPL(dm_suspended);
3222
3223 int dm_noflush_suspending(struct dm_target *ti)
3224 {
3225 return __noflush_suspending(dm_table_get_md(ti->table));
3226 }
3227 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3228
3229 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3230 {
3231 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3232 struct kmem_cache *cachep;
3233 unsigned int pool_size = 0;
3234 unsigned int front_pad;
3235
3236 if (!pools)
3237 return NULL;
3238
3239 switch (type) {
3240 case DM_TYPE_BIO_BASED:
3241 cachep = _io_cache;
3242 pool_size = dm_get_reserved_bio_based_ios();
3243 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3244 break;
3245 case DM_TYPE_REQUEST_BASED:
3246 pool_size = dm_get_reserved_rq_based_ios();
3247 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3248 if (!pools->rq_pool)
3249 goto out;
3250 /* fall through to setup remaining rq-based pools */
3251 case DM_TYPE_MQ_REQUEST_BASED:
3252 cachep = _rq_tio_cache;
3253 if (!pool_size)
3254 pool_size = dm_get_reserved_rq_based_ios();
3255 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3256 /* per_bio_data_size is not used. See __bind_mempools(). */
3257 WARN_ON(per_bio_data_size != 0);
3258 break;
3259 default:
3260 goto out;
3261 }
3262
3263 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3264 if (!pools->io_pool)
3265 goto out;
3266
3267 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3268 if (!pools->bs)
3269 goto out;
3270
3271 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3272 goto out;
3273
3274 return pools;
3275
3276 out:
3277 dm_free_md_mempools(pools);
3278
3279 return NULL;
3280 }
3281
3282 void dm_free_md_mempools(struct dm_md_mempools *pools)
3283 {
3284 if (!pools)
3285 return;
3286
3287 if (pools->io_pool)
3288 mempool_destroy(pools->io_pool);
3289
3290 if (pools->rq_pool)
3291 mempool_destroy(pools->rq_pool);
3292
3293 if (pools->bs)
3294 bioset_free(pools->bs);
3295
3296 kfree(pools);
3297 }
3298
3299 static const struct block_device_operations dm_blk_dops = {
3300 .open = dm_blk_open,
3301 .release = dm_blk_close,
3302 .ioctl = dm_blk_ioctl,
3303 .getgeo = dm_blk_getgeo,
3304 .owner = THIS_MODULE
3305 };
3306
3307 /*
3308 * module hooks
3309 */
3310 module_init(dm_init);
3311 module_exit(dm_exit);
3312
3313 module_param(major, uint, 0);
3314 MODULE_PARM_DESC(major, "The major number of the device mapper");
3315
3316 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3317 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3318
3319 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3320 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3321
3322 MODULE_DESCRIPTION(DM_NAME " driver");
3323 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3324 MODULE_LICENSE("GPL");
This page took 0.095477 seconds and 6 git commands to generate.