dm table: set flush capability based on underlying devices
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 /*
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
31 */
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
34
35 static const char *_name = DM_NAME;
36
37 static unsigned int major = 0;
38 static unsigned int _major = 0;
39
40 static DEFINE_IDR(_minor_idr);
41
42 static DEFINE_SPINLOCK(_minor_lock);
43 /*
44 * For bio-based dm.
45 * One of these is allocated per bio.
46 */
47 struct dm_io {
48 struct mapped_device *md;
49 int error;
50 atomic_t io_count;
51 struct bio *bio;
52 unsigned long start_time;
53 spinlock_t endio_lock;
54 };
55
56 /*
57 * For bio-based dm.
58 * One of these is allocated per target within a bio. Hopefully
59 * this will be simplified out one day.
60 */
61 struct dm_target_io {
62 struct dm_io *io;
63 struct dm_target *ti;
64 union map_info info;
65 };
66
67 /*
68 * For request-based dm.
69 * One of these is allocated per request.
70 */
71 struct dm_rq_target_io {
72 struct mapped_device *md;
73 struct dm_target *ti;
74 struct request *orig, clone;
75 int error;
76 union map_info info;
77 };
78
79 /*
80 * For request-based dm.
81 * One of these is allocated per bio.
82 */
83 struct dm_rq_clone_bio_info {
84 struct bio *orig;
85 struct dm_rq_target_io *tio;
86 };
87
88 union map_info *dm_get_mapinfo(struct bio *bio)
89 {
90 if (bio && bio->bi_private)
91 return &((struct dm_target_io *)bio->bi_private)->info;
92 return NULL;
93 }
94
95 union map_info *dm_get_rq_mapinfo(struct request *rq)
96 {
97 if (rq && rq->end_io_data)
98 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
99 return NULL;
100 }
101 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
102
103 #define MINOR_ALLOCED ((void *)-1)
104
105 /*
106 * Bits for the md->flags field.
107 */
108 #define DMF_BLOCK_IO_FOR_SUSPEND 0
109 #define DMF_SUSPENDED 1
110 #define DMF_FROZEN 2
111 #define DMF_FREEING 3
112 #define DMF_DELETING 4
113 #define DMF_NOFLUSH_SUSPENDING 5
114 #define DMF_MERGE_IS_OPTIONAL 6
115
116 /*
117 * Work processed by per-device workqueue.
118 */
119 struct mapped_device {
120 struct rw_semaphore io_lock;
121 struct mutex suspend_lock;
122 rwlock_t map_lock;
123 atomic_t holders;
124 atomic_t open_count;
125
126 unsigned long flags;
127
128 struct request_queue *queue;
129 unsigned type;
130 /* Protect queue and type against concurrent access. */
131 struct mutex type_lock;
132
133 struct gendisk *disk;
134 char name[16];
135
136 void *interface_ptr;
137
138 /*
139 * A list of ios that arrived while we were suspended.
140 */
141 atomic_t pending[2];
142 wait_queue_head_t wait;
143 struct work_struct work;
144 struct bio_list deferred;
145 spinlock_t deferred_lock;
146
147 /*
148 * Processing queue (flush)
149 */
150 struct workqueue_struct *wq;
151
152 /*
153 * The current mapping.
154 */
155 struct dm_table *map;
156
157 /*
158 * io objects are allocated from here.
159 */
160 mempool_t *io_pool;
161 mempool_t *tio_pool;
162
163 struct bio_set *bs;
164
165 /*
166 * Event handling.
167 */
168 atomic_t event_nr;
169 wait_queue_head_t eventq;
170 atomic_t uevent_seq;
171 struct list_head uevent_list;
172 spinlock_t uevent_lock; /* Protect access to uevent_list */
173
174 /*
175 * freeze/thaw support require holding onto a super block
176 */
177 struct super_block *frozen_sb;
178 struct block_device *bdev;
179
180 /* forced geometry settings */
181 struct hd_geometry geometry;
182
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn *saved_make_request_fn;
185
186 /* sysfs handle */
187 struct kobject kobj;
188
189 /* zero-length flush that will be cloned and submitted to targets */
190 struct bio flush_bio;
191 };
192
193 /*
194 * For mempools pre-allocation at the table loading time.
195 */
196 struct dm_md_mempools {
197 mempool_t *io_pool;
198 mempool_t *tio_pool;
199 struct bio_set *bs;
200 };
201
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_tio_cache;
205 static struct kmem_cache *_rq_tio_cache;
206 static struct kmem_cache *_rq_bio_info_cache;
207
208 static int __init local_init(void)
209 {
210 int r = -ENOMEM;
211
212 /* allocate a slab for the dm_ios */
213 _io_cache = KMEM_CACHE(dm_io, 0);
214 if (!_io_cache)
215 return r;
216
217 /* allocate a slab for the target ios */
218 _tio_cache = KMEM_CACHE(dm_target_io, 0);
219 if (!_tio_cache)
220 goto out_free_io_cache;
221
222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 if (!_rq_tio_cache)
224 goto out_free_tio_cache;
225
226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 if (!_rq_bio_info_cache)
228 goto out_free_rq_tio_cache;
229
230 r = dm_uevent_init();
231 if (r)
232 goto out_free_rq_bio_info_cache;
233
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_uevent_exit;
238
239 if (!_major)
240 _major = r;
241
242 return 0;
243
244 out_uevent_exit:
245 dm_uevent_exit();
246 out_free_rq_bio_info_cache:
247 kmem_cache_destroy(_rq_bio_info_cache);
248 out_free_rq_tio_cache:
249 kmem_cache_destroy(_rq_tio_cache);
250 out_free_tio_cache:
251 kmem_cache_destroy(_tio_cache);
252 out_free_io_cache:
253 kmem_cache_destroy(_io_cache);
254
255 return r;
256 }
257
258 static void local_exit(void)
259 {
260 kmem_cache_destroy(_rq_bio_info_cache);
261 kmem_cache_destroy(_rq_tio_cache);
262 kmem_cache_destroy(_tio_cache);
263 kmem_cache_destroy(_io_cache);
264 unregister_blkdev(_major, _name);
265 dm_uevent_exit();
266
267 _major = 0;
268
269 DMINFO("cleaned up");
270 }
271
272 static int (*_inits[])(void) __initdata = {
273 local_init,
274 dm_target_init,
275 dm_linear_init,
276 dm_stripe_init,
277 dm_io_init,
278 dm_kcopyd_init,
279 dm_interface_init,
280 };
281
282 static void (*_exits[])(void) = {
283 local_exit,
284 dm_target_exit,
285 dm_linear_exit,
286 dm_stripe_exit,
287 dm_io_exit,
288 dm_kcopyd_exit,
289 dm_interface_exit,
290 };
291
292 static int __init dm_init(void)
293 {
294 const int count = ARRAY_SIZE(_inits);
295
296 int r, i;
297
298 for (i = 0; i < count; i++) {
299 r = _inits[i]();
300 if (r)
301 goto bad;
302 }
303
304 return 0;
305
306 bad:
307 while (i--)
308 _exits[i]();
309
310 return r;
311 }
312
313 static void __exit dm_exit(void)
314 {
315 int i = ARRAY_SIZE(_exits);
316
317 while (i--)
318 _exits[i]();
319
320 /*
321 * Should be empty by this point.
322 */
323 idr_remove_all(&_minor_idr);
324 idr_destroy(&_minor_idr);
325 }
326
327 /*
328 * Block device functions
329 */
330 int dm_deleting_md(struct mapped_device *md)
331 {
332 return test_bit(DMF_DELETING, &md->flags);
333 }
334
335 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
336 {
337 struct mapped_device *md;
338
339 spin_lock(&_minor_lock);
340
341 md = bdev->bd_disk->private_data;
342 if (!md)
343 goto out;
344
345 if (test_bit(DMF_FREEING, &md->flags) ||
346 dm_deleting_md(md)) {
347 md = NULL;
348 goto out;
349 }
350
351 dm_get(md);
352 atomic_inc(&md->open_count);
353
354 out:
355 spin_unlock(&_minor_lock);
356
357 return md ? 0 : -ENXIO;
358 }
359
360 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
361 {
362 struct mapped_device *md = disk->private_data;
363
364 spin_lock(&_minor_lock);
365
366 atomic_dec(&md->open_count);
367 dm_put(md);
368
369 spin_unlock(&_minor_lock);
370
371 return 0;
372 }
373
374 int dm_open_count(struct mapped_device *md)
375 {
376 return atomic_read(&md->open_count);
377 }
378
379 /*
380 * Guarantees nothing is using the device before it's deleted.
381 */
382 int dm_lock_for_deletion(struct mapped_device *md)
383 {
384 int r = 0;
385
386 spin_lock(&_minor_lock);
387
388 if (dm_open_count(md))
389 r = -EBUSY;
390 else
391 set_bit(DMF_DELETING, &md->flags);
392
393 spin_unlock(&_minor_lock);
394
395 return r;
396 }
397
398 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
399 {
400 struct mapped_device *md = bdev->bd_disk->private_data;
401
402 return dm_get_geometry(md, geo);
403 }
404
405 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
406 unsigned int cmd, unsigned long arg)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409 struct dm_table *map = dm_get_live_table(md);
410 struct dm_target *tgt;
411 int r = -ENOTTY;
412
413 if (!map || !dm_table_get_size(map))
414 goto out;
415
416 /* We only support devices that have a single target */
417 if (dm_table_get_num_targets(map) != 1)
418 goto out;
419
420 tgt = dm_table_get_target(map, 0);
421
422 if (dm_suspended_md(md)) {
423 r = -EAGAIN;
424 goto out;
425 }
426
427 if (tgt->type->ioctl)
428 r = tgt->type->ioctl(tgt, cmd, arg);
429
430 out:
431 dm_table_put(map);
432
433 return r;
434 }
435
436 static struct dm_io *alloc_io(struct mapped_device *md)
437 {
438 return mempool_alloc(md->io_pool, GFP_NOIO);
439 }
440
441 static void free_io(struct mapped_device *md, struct dm_io *io)
442 {
443 mempool_free(io, md->io_pool);
444 }
445
446 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
447 {
448 mempool_free(tio, md->tio_pool);
449 }
450
451 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
452 gfp_t gfp_mask)
453 {
454 return mempool_alloc(md->tio_pool, gfp_mask);
455 }
456
457 static void free_rq_tio(struct dm_rq_target_io *tio)
458 {
459 mempool_free(tio, tio->md->tio_pool);
460 }
461
462 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
463 {
464 return mempool_alloc(md->io_pool, GFP_ATOMIC);
465 }
466
467 static void free_bio_info(struct dm_rq_clone_bio_info *info)
468 {
469 mempool_free(info, info->tio->md->io_pool);
470 }
471
472 static int md_in_flight(struct mapped_device *md)
473 {
474 return atomic_read(&md->pending[READ]) +
475 atomic_read(&md->pending[WRITE]);
476 }
477
478 static void start_io_acct(struct dm_io *io)
479 {
480 struct mapped_device *md = io->md;
481 int cpu;
482 int rw = bio_data_dir(io->bio);
483
484 io->start_time = jiffies;
485
486 cpu = part_stat_lock();
487 part_round_stats(cpu, &dm_disk(md)->part0);
488 part_stat_unlock();
489 atomic_set(&dm_disk(md)->part0.in_flight[rw],
490 atomic_inc_return(&md->pending[rw]));
491 }
492
493 static void end_io_acct(struct dm_io *io)
494 {
495 struct mapped_device *md = io->md;
496 struct bio *bio = io->bio;
497 unsigned long duration = jiffies - io->start_time;
498 int pending, cpu;
499 int rw = bio_data_dir(bio);
500
501 cpu = part_stat_lock();
502 part_round_stats(cpu, &dm_disk(md)->part0);
503 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
504 part_stat_unlock();
505
506 /*
507 * After this is decremented the bio must not be touched if it is
508 * a flush.
509 */
510 pending = atomic_dec_return(&md->pending[rw]);
511 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
512 pending += atomic_read(&md->pending[rw^0x1]);
513
514 /* nudge anyone waiting on suspend queue */
515 if (!pending)
516 wake_up(&md->wait);
517 }
518
519 /*
520 * Add the bio to the list of deferred io.
521 */
522 static void queue_io(struct mapped_device *md, struct bio *bio)
523 {
524 unsigned long flags;
525
526 spin_lock_irqsave(&md->deferred_lock, flags);
527 bio_list_add(&md->deferred, bio);
528 spin_unlock_irqrestore(&md->deferred_lock, flags);
529 queue_work(md->wq, &md->work);
530 }
531
532 /*
533 * Everyone (including functions in this file), should use this
534 * function to access the md->map field, and make sure they call
535 * dm_table_put() when finished.
536 */
537 struct dm_table *dm_get_live_table(struct mapped_device *md)
538 {
539 struct dm_table *t;
540 unsigned long flags;
541
542 read_lock_irqsave(&md->map_lock, flags);
543 t = md->map;
544 if (t)
545 dm_table_get(t);
546 read_unlock_irqrestore(&md->map_lock, flags);
547
548 return t;
549 }
550
551 /*
552 * Get the geometry associated with a dm device
553 */
554 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555 {
556 *geo = md->geometry;
557
558 return 0;
559 }
560
561 /*
562 * Set the geometry of a device.
563 */
564 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565 {
566 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567
568 if (geo->start > sz) {
569 DMWARN("Start sector is beyond the geometry limits.");
570 return -EINVAL;
571 }
572
573 md->geometry = *geo;
574
575 return 0;
576 }
577
578 /*-----------------------------------------------------------------
579 * CRUD START:
580 * A more elegant soln is in the works that uses the queue
581 * merge fn, unfortunately there are a couple of changes to
582 * the block layer that I want to make for this. So in the
583 * interests of getting something for people to use I give
584 * you this clearly demarcated crap.
585 *---------------------------------------------------------------*/
586
587 static int __noflush_suspending(struct mapped_device *md)
588 {
589 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
590 }
591
592 /*
593 * Decrements the number of outstanding ios that a bio has been
594 * cloned into, completing the original io if necc.
595 */
596 static void dec_pending(struct dm_io *io, int error)
597 {
598 unsigned long flags;
599 int io_error;
600 struct bio *bio;
601 struct mapped_device *md = io->md;
602
603 /* Push-back supersedes any I/O errors */
604 if (unlikely(error)) {
605 spin_lock_irqsave(&io->endio_lock, flags);
606 if (!(io->error > 0 && __noflush_suspending(md)))
607 io->error = error;
608 spin_unlock_irqrestore(&io->endio_lock, flags);
609 }
610
611 if (atomic_dec_and_test(&io->io_count)) {
612 if (io->error == DM_ENDIO_REQUEUE) {
613 /*
614 * Target requested pushing back the I/O.
615 */
616 spin_lock_irqsave(&md->deferred_lock, flags);
617 if (__noflush_suspending(md))
618 bio_list_add_head(&md->deferred, io->bio);
619 else
620 /* noflush suspend was interrupted. */
621 io->error = -EIO;
622 spin_unlock_irqrestore(&md->deferred_lock, flags);
623 }
624
625 io_error = io->error;
626 bio = io->bio;
627 end_io_acct(io);
628 free_io(md, io);
629
630 if (io_error == DM_ENDIO_REQUEUE)
631 return;
632
633 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634 /*
635 * Preflush done for flush with data, reissue
636 * without REQ_FLUSH.
637 */
638 bio->bi_rw &= ~REQ_FLUSH;
639 queue_io(md, bio);
640 } else {
641 /* done with normal IO or empty flush */
642 trace_block_bio_complete(md->queue, bio, io_error);
643 bio_endio(bio, io_error);
644 }
645 }
646 }
647
648 static void clone_endio(struct bio *bio, int error)
649 {
650 int r = 0;
651 struct dm_target_io *tio = bio->bi_private;
652 struct dm_io *io = tio->io;
653 struct mapped_device *md = tio->io->md;
654 dm_endio_fn endio = tio->ti->type->end_io;
655
656 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
657 error = -EIO;
658
659 if (endio) {
660 r = endio(tio->ti, bio, error, &tio->info);
661 if (r < 0 || r == DM_ENDIO_REQUEUE)
662 /*
663 * error and requeue request are handled
664 * in dec_pending().
665 */
666 error = r;
667 else if (r == DM_ENDIO_INCOMPLETE)
668 /* The target will handle the io */
669 return;
670 else if (r) {
671 DMWARN("unimplemented target endio return value: %d", r);
672 BUG();
673 }
674 }
675
676 /*
677 * Store md for cleanup instead of tio which is about to get freed.
678 */
679 bio->bi_private = md->bs;
680
681 free_tio(md, tio);
682 bio_put(bio);
683 dec_pending(io, error);
684 }
685
686 /*
687 * Partial completion handling for request-based dm
688 */
689 static void end_clone_bio(struct bio *clone, int error)
690 {
691 struct dm_rq_clone_bio_info *info = clone->bi_private;
692 struct dm_rq_target_io *tio = info->tio;
693 struct bio *bio = info->orig;
694 unsigned int nr_bytes = info->orig->bi_size;
695
696 bio_put(clone);
697
698 if (tio->error)
699 /*
700 * An error has already been detected on the request.
701 * Once error occurred, just let clone->end_io() handle
702 * the remainder.
703 */
704 return;
705 else if (error) {
706 /*
707 * Don't notice the error to the upper layer yet.
708 * The error handling decision is made by the target driver,
709 * when the request is completed.
710 */
711 tio->error = error;
712 return;
713 }
714
715 /*
716 * I/O for the bio successfully completed.
717 * Notice the data completion to the upper layer.
718 */
719
720 /*
721 * bios are processed from the head of the list.
722 * So the completing bio should always be rq->bio.
723 * If it's not, something wrong is happening.
724 */
725 if (tio->orig->bio != bio)
726 DMERR("bio completion is going in the middle of the request");
727
728 /*
729 * Update the original request.
730 * Do not use blk_end_request() here, because it may complete
731 * the original request before the clone, and break the ordering.
732 */
733 blk_update_request(tio->orig, 0, nr_bytes);
734 }
735
736 /*
737 * Don't touch any member of the md after calling this function because
738 * the md may be freed in dm_put() at the end of this function.
739 * Or do dm_get() before calling this function and dm_put() later.
740 */
741 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
742 {
743 atomic_dec(&md->pending[rw]);
744
745 /* nudge anyone waiting on suspend queue */
746 if (!md_in_flight(md))
747 wake_up(&md->wait);
748
749 if (run_queue)
750 blk_run_queue(md->queue);
751
752 /*
753 * dm_put() must be at the end of this function. See the comment above
754 */
755 dm_put(md);
756 }
757
758 static void free_rq_clone(struct request *clone)
759 {
760 struct dm_rq_target_io *tio = clone->end_io_data;
761
762 blk_rq_unprep_clone(clone);
763 free_rq_tio(tio);
764 }
765
766 /*
767 * Complete the clone and the original request.
768 * Must be called without queue lock.
769 */
770 static void dm_end_request(struct request *clone, int error)
771 {
772 int rw = rq_data_dir(clone);
773 struct dm_rq_target_io *tio = clone->end_io_data;
774 struct mapped_device *md = tio->md;
775 struct request *rq = tio->orig;
776
777 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
778 rq->errors = clone->errors;
779 rq->resid_len = clone->resid_len;
780
781 if (rq->sense)
782 /*
783 * We are using the sense buffer of the original
784 * request.
785 * So setting the length of the sense data is enough.
786 */
787 rq->sense_len = clone->sense_len;
788 }
789
790 free_rq_clone(clone);
791 blk_end_request_all(rq, error);
792 rq_completed(md, rw, true);
793 }
794
795 static void dm_unprep_request(struct request *rq)
796 {
797 struct request *clone = rq->special;
798
799 rq->special = NULL;
800 rq->cmd_flags &= ~REQ_DONTPREP;
801
802 free_rq_clone(clone);
803 }
804
805 /*
806 * Requeue the original request of a clone.
807 */
808 void dm_requeue_unmapped_request(struct request *clone)
809 {
810 int rw = rq_data_dir(clone);
811 struct dm_rq_target_io *tio = clone->end_io_data;
812 struct mapped_device *md = tio->md;
813 struct request *rq = tio->orig;
814 struct request_queue *q = rq->q;
815 unsigned long flags;
816
817 dm_unprep_request(rq);
818
819 spin_lock_irqsave(q->queue_lock, flags);
820 blk_requeue_request(q, rq);
821 spin_unlock_irqrestore(q->queue_lock, flags);
822
823 rq_completed(md, rw, 0);
824 }
825 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
826
827 static void __stop_queue(struct request_queue *q)
828 {
829 blk_stop_queue(q);
830 }
831
832 static void stop_queue(struct request_queue *q)
833 {
834 unsigned long flags;
835
836 spin_lock_irqsave(q->queue_lock, flags);
837 __stop_queue(q);
838 spin_unlock_irqrestore(q->queue_lock, flags);
839 }
840
841 static void __start_queue(struct request_queue *q)
842 {
843 if (blk_queue_stopped(q))
844 blk_start_queue(q);
845 }
846
847 static void start_queue(struct request_queue *q)
848 {
849 unsigned long flags;
850
851 spin_lock_irqsave(q->queue_lock, flags);
852 __start_queue(q);
853 spin_unlock_irqrestore(q->queue_lock, flags);
854 }
855
856 static void dm_done(struct request *clone, int error, bool mapped)
857 {
858 int r = error;
859 struct dm_rq_target_io *tio = clone->end_io_data;
860 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
861
862 if (mapped && rq_end_io)
863 r = rq_end_io(tio->ti, clone, error, &tio->info);
864
865 if (r <= 0)
866 /* The target wants to complete the I/O */
867 dm_end_request(clone, r);
868 else if (r == DM_ENDIO_INCOMPLETE)
869 /* The target will handle the I/O */
870 return;
871 else if (r == DM_ENDIO_REQUEUE)
872 /* The target wants to requeue the I/O */
873 dm_requeue_unmapped_request(clone);
874 else {
875 DMWARN("unimplemented target endio return value: %d", r);
876 BUG();
877 }
878 }
879
880 /*
881 * Request completion handler for request-based dm
882 */
883 static void dm_softirq_done(struct request *rq)
884 {
885 bool mapped = true;
886 struct request *clone = rq->completion_data;
887 struct dm_rq_target_io *tio = clone->end_io_data;
888
889 if (rq->cmd_flags & REQ_FAILED)
890 mapped = false;
891
892 dm_done(clone, tio->error, mapped);
893 }
894
895 /*
896 * Complete the clone and the original request with the error status
897 * through softirq context.
898 */
899 static void dm_complete_request(struct request *clone, int error)
900 {
901 struct dm_rq_target_io *tio = clone->end_io_data;
902 struct request *rq = tio->orig;
903
904 tio->error = error;
905 rq->completion_data = clone;
906 blk_complete_request(rq);
907 }
908
909 /*
910 * Complete the not-mapped clone and the original request with the error status
911 * through softirq context.
912 * Target's rq_end_io() function isn't called.
913 * This may be used when the target's map_rq() function fails.
914 */
915 void dm_kill_unmapped_request(struct request *clone, int error)
916 {
917 struct dm_rq_target_io *tio = clone->end_io_data;
918 struct request *rq = tio->orig;
919
920 rq->cmd_flags |= REQ_FAILED;
921 dm_complete_request(clone, error);
922 }
923 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
924
925 /*
926 * Called with the queue lock held
927 */
928 static void end_clone_request(struct request *clone, int error)
929 {
930 /*
931 * For just cleaning up the information of the queue in which
932 * the clone was dispatched.
933 * The clone is *NOT* freed actually here because it is alloced from
934 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
935 */
936 __blk_put_request(clone->q, clone);
937
938 /*
939 * Actual request completion is done in a softirq context which doesn't
940 * hold the queue lock. Otherwise, deadlock could occur because:
941 * - another request may be submitted by the upper level driver
942 * of the stacking during the completion
943 * - the submission which requires queue lock may be done
944 * against this queue
945 */
946 dm_complete_request(clone, error);
947 }
948
949 /*
950 * Return maximum size of I/O possible at the supplied sector up to the current
951 * target boundary.
952 */
953 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
954 {
955 sector_t target_offset = dm_target_offset(ti, sector);
956
957 return ti->len - target_offset;
958 }
959
960 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
961 {
962 sector_t len = max_io_len_target_boundary(sector, ti);
963
964 /*
965 * Does the target need to split even further ?
966 */
967 if (ti->split_io) {
968 sector_t boundary;
969 sector_t offset = dm_target_offset(ti, sector);
970 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
971 - offset;
972 if (len > boundary)
973 len = boundary;
974 }
975
976 return len;
977 }
978
979 static void __map_bio(struct dm_target *ti, struct bio *clone,
980 struct dm_target_io *tio)
981 {
982 int r;
983 sector_t sector;
984 struct mapped_device *md;
985
986 clone->bi_end_io = clone_endio;
987 clone->bi_private = tio;
988
989 /*
990 * Map the clone. If r == 0 we don't need to do
991 * anything, the target has assumed ownership of
992 * this io.
993 */
994 atomic_inc(&tio->io->io_count);
995 sector = clone->bi_sector;
996 r = ti->type->map(ti, clone, &tio->info);
997 if (r == DM_MAPIO_REMAPPED) {
998 /* the bio has been remapped so dispatch it */
999
1000 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001 tio->io->bio->bi_bdev->bd_dev, sector);
1002
1003 generic_make_request(clone);
1004 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005 /* error the io and bail out, or requeue it if needed */
1006 md = tio->io->md;
1007 dec_pending(tio->io, r);
1008 /*
1009 * Store bio_set for cleanup.
1010 */
1011 clone->bi_private = md->bs;
1012 bio_put(clone);
1013 free_tio(md, tio);
1014 } else if (r) {
1015 DMWARN("unimplemented target map return value: %d", r);
1016 BUG();
1017 }
1018 }
1019
1020 struct clone_info {
1021 struct mapped_device *md;
1022 struct dm_table *map;
1023 struct bio *bio;
1024 struct dm_io *io;
1025 sector_t sector;
1026 sector_t sector_count;
1027 unsigned short idx;
1028 };
1029
1030 static void dm_bio_destructor(struct bio *bio)
1031 {
1032 struct bio_set *bs = bio->bi_private;
1033
1034 bio_free(bio, bs);
1035 }
1036
1037 /*
1038 * Creates a little bio that just does part of a bvec.
1039 */
1040 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041 unsigned short idx, unsigned int offset,
1042 unsigned int len, struct bio_set *bs)
1043 {
1044 struct bio *clone;
1045 struct bio_vec *bv = bio->bi_io_vec + idx;
1046
1047 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048 clone->bi_destructor = dm_bio_destructor;
1049 *clone->bi_io_vec = *bv;
1050
1051 clone->bi_sector = sector;
1052 clone->bi_bdev = bio->bi_bdev;
1053 clone->bi_rw = bio->bi_rw;
1054 clone->bi_vcnt = 1;
1055 clone->bi_size = to_bytes(len);
1056 clone->bi_io_vec->bv_offset = offset;
1057 clone->bi_io_vec->bv_len = clone->bi_size;
1058 clone->bi_flags |= 1 << BIO_CLONED;
1059
1060 if (bio_integrity(bio)) {
1061 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062 bio_integrity_trim(clone,
1063 bio_sector_offset(bio, idx, offset), len);
1064 }
1065
1066 return clone;
1067 }
1068
1069 /*
1070 * Creates a bio that consists of range of complete bvecs.
1071 */
1072 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073 unsigned short idx, unsigned short bv_count,
1074 unsigned int len, struct bio_set *bs)
1075 {
1076 struct bio *clone;
1077
1078 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079 __bio_clone(clone, bio);
1080 clone->bi_destructor = dm_bio_destructor;
1081 clone->bi_sector = sector;
1082 clone->bi_idx = idx;
1083 clone->bi_vcnt = idx + bv_count;
1084 clone->bi_size = to_bytes(len);
1085 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086
1087 if (bio_integrity(bio)) {
1088 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089
1090 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091 bio_integrity_trim(clone,
1092 bio_sector_offset(bio, idx, 0), len);
1093 }
1094
1095 return clone;
1096 }
1097
1098 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099 struct dm_target *ti)
1100 {
1101 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102
1103 tio->io = ci->io;
1104 tio->ti = ti;
1105 memset(&tio->info, 0, sizeof(tio->info));
1106
1107 return tio;
1108 }
1109
1110 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111 unsigned request_nr, sector_t len)
1112 {
1113 struct dm_target_io *tio = alloc_tio(ci, ti);
1114 struct bio *clone;
1115
1116 tio->info.target_request_nr = request_nr;
1117
1118 /*
1119 * Discard requests require the bio's inline iovecs be initialized.
1120 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121 * and discard, so no need for concern about wasted bvec allocations.
1122 */
1123 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124 __bio_clone(clone, ci->bio);
1125 clone->bi_destructor = dm_bio_destructor;
1126 if (len) {
1127 clone->bi_sector = ci->sector;
1128 clone->bi_size = to_bytes(len);
1129 }
1130
1131 __map_bio(ti, clone, tio);
1132 }
1133
1134 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135 unsigned num_requests, sector_t len)
1136 {
1137 unsigned request_nr;
1138
1139 for (request_nr = 0; request_nr < num_requests; request_nr++)
1140 __issue_target_request(ci, ti, request_nr, len);
1141 }
1142
1143 static int __clone_and_map_empty_flush(struct clone_info *ci)
1144 {
1145 unsigned target_nr = 0;
1146 struct dm_target *ti;
1147
1148 BUG_ON(bio_has_data(ci->bio));
1149 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151
1152 return 0;
1153 }
1154
1155 /*
1156 * Perform all io with a single clone.
1157 */
1158 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159 {
1160 struct bio *clone, *bio = ci->bio;
1161 struct dm_target_io *tio;
1162
1163 tio = alloc_tio(ci, ti);
1164 clone = clone_bio(bio, ci->sector, ci->idx,
1165 bio->bi_vcnt - ci->idx, ci->sector_count,
1166 ci->md->bs);
1167 __map_bio(ti, clone, tio);
1168 ci->sector_count = 0;
1169 }
1170
1171 static int __clone_and_map_discard(struct clone_info *ci)
1172 {
1173 struct dm_target *ti;
1174 sector_t len;
1175
1176 do {
1177 ti = dm_table_find_target(ci->map, ci->sector);
1178 if (!dm_target_is_valid(ti))
1179 return -EIO;
1180
1181 /*
1182 * Even though the device advertised discard support,
1183 * that does not mean every target supports it, and
1184 * reconfiguration might also have changed that since the
1185 * check was performed.
1186 */
1187 if (!ti->num_discard_requests)
1188 return -EOPNOTSUPP;
1189
1190 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1191
1192 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1193
1194 ci->sector += len;
1195 } while (ci->sector_count -= len);
1196
1197 return 0;
1198 }
1199
1200 static int __clone_and_map(struct clone_info *ci)
1201 {
1202 struct bio *clone, *bio = ci->bio;
1203 struct dm_target *ti;
1204 sector_t len = 0, max;
1205 struct dm_target_io *tio;
1206
1207 if (unlikely(bio->bi_rw & REQ_DISCARD))
1208 return __clone_and_map_discard(ci);
1209
1210 ti = dm_table_find_target(ci->map, ci->sector);
1211 if (!dm_target_is_valid(ti))
1212 return -EIO;
1213
1214 max = max_io_len(ci->sector, ti);
1215
1216 if (ci->sector_count <= max) {
1217 /*
1218 * Optimise for the simple case where we can do all of
1219 * the remaining io with a single clone.
1220 */
1221 __clone_and_map_simple(ci, ti);
1222
1223 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224 /*
1225 * There are some bvecs that don't span targets.
1226 * Do as many of these as possible.
1227 */
1228 int i;
1229 sector_t remaining = max;
1230 sector_t bv_len;
1231
1232 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1234
1235 if (bv_len > remaining)
1236 break;
1237
1238 remaining -= bv_len;
1239 len += bv_len;
1240 }
1241
1242 tio = alloc_tio(ci, ti);
1243 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244 ci->md->bs);
1245 __map_bio(ti, clone, tio);
1246
1247 ci->sector += len;
1248 ci->sector_count -= len;
1249 ci->idx = i;
1250
1251 } else {
1252 /*
1253 * Handle a bvec that must be split between two or more targets.
1254 */
1255 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256 sector_t remaining = to_sector(bv->bv_len);
1257 unsigned int offset = 0;
1258
1259 do {
1260 if (offset) {
1261 ti = dm_table_find_target(ci->map, ci->sector);
1262 if (!dm_target_is_valid(ti))
1263 return -EIO;
1264
1265 max = max_io_len(ci->sector, ti);
1266 }
1267
1268 len = min(remaining, max);
1269
1270 tio = alloc_tio(ci, ti);
1271 clone = split_bvec(bio, ci->sector, ci->idx,
1272 bv->bv_offset + offset, len,
1273 ci->md->bs);
1274
1275 __map_bio(ti, clone, tio);
1276
1277 ci->sector += len;
1278 ci->sector_count -= len;
1279 offset += to_bytes(len);
1280 } while (remaining -= len);
1281
1282 ci->idx++;
1283 }
1284
1285 return 0;
1286 }
1287
1288 /*
1289 * Split the bio into several clones and submit it to targets.
1290 */
1291 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1292 {
1293 struct clone_info ci;
1294 int error = 0;
1295
1296 ci.map = dm_get_live_table(md);
1297 if (unlikely(!ci.map)) {
1298 bio_io_error(bio);
1299 return;
1300 }
1301
1302 ci.md = md;
1303 ci.io = alloc_io(md);
1304 ci.io->error = 0;
1305 atomic_set(&ci.io->io_count, 1);
1306 ci.io->bio = bio;
1307 ci.io->md = md;
1308 spin_lock_init(&ci.io->endio_lock);
1309 ci.sector = bio->bi_sector;
1310 ci.idx = bio->bi_idx;
1311
1312 start_io_acct(ci.io);
1313 if (bio->bi_rw & REQ_FLUSH) {
1314 ci.bio = &ci.md->flush_bio;
1315 ci.sector_count = 0;
1316 error = __clone_and_map_empty_flush(&ci);
1317 /* dec_pending submits any data associated with flush */
1318 } else {
1319 ci.bio = bio;
1320 ci.sector_count = bio_sectors(bio);
1321 while (ci.sector_count && !error)
1322 error = __clone_and_map(&ci);
1323 }
1324
1325 /* drop the extra reference count */
1326 dec_pending(ci.io, error);
1327 dm_table_put(ci.map);
1328 }
1329 /*-----------------------------------------------------------------
1330 * CRUD END
1331 *---------------------------------------------------------------*/
1332
1333 static int dm_merge_bvec(struct request_queue *q,
1334 struct bvec_merge_data *bvm,
1335 struct bio_vec *biovec)
1336 {
1337 struct mapped_device *md = q->queuedata;
1338 struct dm_table *map = dm_get_live_table(md);
1339 struct dm_target *ti;
1340 sector_t max_sectors;
1341 int max_size = 0;
1342
1343 if (unlikely(!map))
1344 goto out;
1345
1346 ti = dm_table_find_target(map, bvm->bi_sector);
1347 if (!dm_target_is_valid(ti))
1348 goto out_table;
1349
1350 /*
1351 * Find maximum amount of I/O that won't need splitting
1352 */
1353 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354 (sector_t) BIO_MAX_SECTORS);
1355 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356 if (max_size < 0)
1357 max_size = 0;
1358
1359 /*
1360 * merge_bvec_fn() returns number of bytes
1361 * it can accept at this offset
1362 * max is precomputed maximal io size
1363 */
1364 if (max_size && ti->type->merge)
1365 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366 /*
1367 * If the target doesn't support merge method and some of the devices
1368 * provided their merge_bvec method (we know this by looking at
1369 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370 * entries. So always set max_size to 0, and the code below allows
1371 * just one page.
1372 */
1373 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374
1375 max_size = 0;
1376
1377 out_table:
1378 dm_table_put(map);
1379
1380 out:
1381 /*
1382 * Always allow an entire first page
1383 */
1384 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385 max_size = biovec->bv_len;
1386
1387 return max_size;
1388 }
1389
1390 /*
1391 * The request function that just remaps the bio built up by
1392 * dm_merge_bvec.
1393 */
1394 static int _dm_request(struct request_queue *q, struct bio *bio)
1395 {
1396 int rw = bio_data_dir(bio);
1397 struct mapped_device *md = q->queuedata;
1398 int cpu;
1399
1400 down_read(&md->io_lock);
1401
1402 cpu = part_stat_lock();
1403 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405 part_stat_unlock();
1406
1407 /* if we're suspended, we have to queue this io for later */
1408 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409 up_read(&md->io_lock);
1410
1411 if (bio_rw(bio) != READA)
1412 queue_io(md, bio);
1413 else
1414 bio_io_error(bio);
1415 return 0;
1416 }
1417
1418 __split_and_process_bio(md, bio);
1419 up_read(&md->io_lock);
1420 return 0;
1421 }
1422
1423 static int dm_make_request(struct request_queue *q, struct bio *bio)
1424 {
1425 struct mapped_device *md = q->queuedata;
1426
1427 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428 }
1429
1430 static int dm_request_based(struct mapped_device *md)
1431 {
1432 return blk_queue_stackable(md->queue);
1433 }
1434
1435 static int dm_request(struct request_queue *q, struct bio *bio)
1436 {
1437 struct mapped_device *md = q->queuedata;
1438
1439 if (dm_request_based(md))
1440 return dm_make_request(q, bio);
1441
1442 return _dm_request(q, bio);
1443 }
1444
1445 void dm_dispatch_request(struct request *rq)
1446 {
1447 int r;
1448
1449 if (blk_queue_io_stat(rq->q))
1450 rq->cmd_flags |= REQ_IO_STAT;
1451
1452 rq->start_time = jiffies;
1453 r = blk_insert_cloned_request(rq->q, rq);
1454 if (r)
1455 dm_complete_request(rq, r);
1456 }
1457 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458
1459 static void dm_rq_bio_destructor(struct bio *bio)
1460 {
1461 struct dm_rq_clone_bio_info *info = bio->bi_private;
1462 struct mapped_device *md = info->tio->md;
1463
1464 free_bio_info(info);
1465 bio_free(bio, md->bs);
1466 }
1467
1468 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469 void *data)
1470 {
1471 struct dm_rq_target_io *tio = data;
1472 struct mapped_device *md = tio->md;
1473 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474
1475 if (!info)
1476 return -ENOMEM;
1477
1478 info->orig = bio_orig;
1479 info->tio = tio;
1480 bio->bi_end_io = end_clone_bio;
1481 bio->bi_private = info;
1482 bio->bi_destructor = dm_rq_bio_destructor;
1483
1484 return 0;
1485 }
1486
1487 static int setup_clone(struct request *clone, struct request *rq,
1488 struct dm_rq_target_io *tio)
1489 {
1490 int r;
1491
1492 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493 dm_rq_bio_constructor, tio);
1494 if (r)
1495 return r;
1496
1497 clone->cmd = rq->cmd;
1498 clone->cmd_len = rq->cmd_len;
1499 clone->sense = rq->sense;
1500 clone->buffer = rq->buffer;
1501 clone->end_io = end_clone_request;
1502 clone->end_io_data = tio;
1503
1504 return 0;
1505 }
1506
1507 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508 gfp_t gfp_mask)
1509 {
1510 struct request *clone;
1511 struct dm_rq_target_io *tio;
1512
1513 tio = alloc_rq_tio(md, gfp_mask);
1514 if (!tio)
1515 return NULL;
1516
1517 tio->md = md;
1518 tio->ti = NULL;
1519 tio->orig = rq;
1520 tio->error = 0;
1521 memset(&tio->info, 0, sizeof(tio->info));
1522
1523 clone = &tio->clone;
1524 if (setup_clone(clone, rq, tio)) {
1525 /* -ENOMEM */
1526 free_rq_tio(tio);
1527 return NULL;
1528 }
1529
1530 return clone;
1531 }
1532
1533 /*
1534 * Called with the queue lock held.
1535 */
1536 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1537 {
1538 struct mapped_device *md = q->queuedata;
1539 struct request *clone;
1540
1541 if (unlikely(rq->special)) {
1542 DMWARN("Already has something in rq->special.");
1543 return BLKPREP_KILL;
1544 }
1545
1546 clone = clone_rq(rq, md, GFP_ATOMIC);
1547 if (!clone)
1548 return BLKPREP_DEFER;
1549
1550 rq->special = clone;
1551 rq->cmd_flags |= REQ_DONTPREP;
1552
1553 return BLKPREP_OK;
1554 }
1555
1556 /*
1557 * Returns:
1558 * 0 : the request has been processed (not requeued)
1559 * !0 : the request has been requeued
1560 */
1561 static int map_request(struct dm_target *ti, struct request *clone,
1562 struct mapped_device *md)
1563 {
1564 int r, requeued = 0;
1565 struct dm_rq_target_io *tio = clone->end_io_data;
1566
1567 /*
1568 * Hold the md reference here for the in-flight I/O.
1569 * We can't rely on the reference count by device opener,
1570 * because the device may be closed during the request completion
1571 * when all bios are completed.
1572 * See the comment in rq_completed() too.
1573 */
1574 dm_get(md);
1575
1576 tio->ti = ti;
1577 r = ti->type->map_rq(ti, clone, &tio->info);
1578 switch (r) {
1579 case DM_MAPIO_SUBMITTED:
1580 /* The target has taken the I/O to submit by itself later */
1581 break;
1582 case DM_MAPIO_REMAPPED:
1583 /* The target has remapped the I/O so dispatch it */
1584 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585 blk_rq_pos(tio->orig));
1586 dm_dispatch_request(clone);
1587 break;
1588 case DM_MAPIO_REQUEUE:
1589 /* The target wants to requeue the I/O */
1590 dm_requeue_unmapped_request(clone);
1591 requeued = 1;
1592 break;
1593 default:
1594 if (r > 0) {
1595 DMWARN("unimplemented target map return value: %d", r);
1596 BUG();
1597 }
1598
1599 /* The target wants to complete the I/O */
1600 dm_kill_unmapped_request(clone, r);
1601 break;
1602 }
1603
1604 return requeued;
1605 }
1606
1607 /*
1608 * q->request_fn for request-based dm.
1609 * Called with the queue lock held.
1610 */
1611 static void dm_request_fn(struct request_queue *q)
1612 {
1613 struct mapped_device *md = q->queuedata;
1614 struct dm_table *map = dm_get_live_table(md);
1615 struct dm_target *ti;
1616 struct request *rq, *clone;
1617 sector_t pos;
1618
1619 /*
1620 * For suspend, check blk_queue_stopped() and increment
1621 * ->pending within a single queue_lock not to increment the
1622 * number of in-flight I/Os after the queue is stopped in
1623 * dm_suspend().
1624 */
1625 while (!blk_queue_stopped(q)) {
1626 rq = blk_peek_request(q);
1627 if (!rq)
1628 goto delay_and_out;
1629
1630 /* always use block 0 to find the target for flushes for now */
1631 pos = 0;
1632 if (!(rq->cmd_flags & REQ_FLUSH))
1633 pos = blk_rq_pos(rq);
1634
1635 ti = dm_table_find_target(map, pos);
1636 BUG_ON(!dm_target_is_valid(ti));
1637
1638 if (ti->type->busy && ti->type->busy(ti))
1639 goto delay_and_out;
1640
1641 blk_start_request(rq);
1642 clone = rq->special;
1643 atomic_inc(&md->pending[rq_data_dir(clone)]);
1644
1645 spin_unlock(q->queue_lock);
1646 if (map_request(ti, clone, md))
1647 goto requeued;
1648
1649 BUG_ON(!irqs_disabled());
1650 spin_lock(q->queue_lock);
1651 }
1652
1653 goto out;
1654
1655 requeued:
1656 BUG_ON(!irqs_disabled());
1657 spin_lock(q->queue_lock);
1658
1659 delay_and_out:
1660 blk_delay_queue(q, HZ / 10);
1661 out:
1662 dm_table_put(map);
1663
1664 return;
1665 }
1666
1667 int dm_underlying_device_busy(struct request_queue *q)
1668 {
1669 return blk_lld_busy(q);
1670 }
1671 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672
1673 static int dm_lld_busy(struct request_queue *q)
1674 {
1675 int r;
1676 struct mapped_device *md = q->queuedata;
1677 struct dm_table *map = dm_get_live_table(md);
1678
1679 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680 r = 1;
1681 else
1682 r = dm_table_any_busy_target(map);
1683
1684 dm_table_put(map);
1685
1686 return r;
1687 }
1688
1689 static int dm_any_congested(void *congested_data, int bdi_bits)
1690 {
1691 int r = bdi_bits;
1692 struct mapped_device *md = congested_data;
1693 struct dm_table *map;
1694
1695 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696 map = dm_get_live_table(md);
1697 if (map) {
1698 /*
1699 * Request-based dm cares about only own queue for
1700 * the query about congestion status of request_queue
1701 */
1702 if (dm_request_based(md))
1703 r = md->queue->backing_dev_info.state &
1704 bdi_bits;
1705 else
1706 r = dm_table_any_congested(map, bdi_bits);
1707
1708 dm_table_put(map);
1709 }
1710 }
1711
1712 return r;
1713 }
1714
1715 /*-----------------------------------------------------------------
1716 * An IDR is used to keep track of allocated minor numbers.
1717 *---------------------------------------------------------------*/
1718 static void free_minor(int minor)
1719 {
1720 spin_lock(&_minor_lock);
1721 idr_remove(&_minor_idr, minor);
1722 spin_unlock(&_minor_lock);
1723 }
1724
1725 /*
1726 * See if the device with a specific minor # is free.
1727 */
1728 static int specific_minor(int minor)
1729 {
1730 int r, m;
1731
1732 if (minor >= (1 << MINORBITS))
1733 return -EINVAL;
1734
1735 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736 if (!r)
1737 return -ENOMEM;
1738
1739 spin_lock(&_minor_lock);
1740
1741 if (idr_find(&_minor_idr, minor)) {
1742 r = -EBUSY;
1743 goto out;
1744 }
1745
1746 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747 if (r)
1748 goto out;
1749
1750 if (m != minor) {
1751 idr_remove(&_minor_idr, m);
1752 r = -EBUSY;
1753 goto out;
1754 }
1755
1756 out:
1757 spin_unlock(&_minor_lock);
1758 return r;
1759 }
1760
1761 static int next_free_minor(int *minor)
1762 {
1763 int r, m;
1764
1765 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766 if (!r)
1767 return -ENOMEM;
1768
1769 spin_lock(&_minor_lock);
1770
1771 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772 if (r)
1773 goto out;
1774
1775 if (m >= (1 << MINORBITS)) {
1776 idr_remove(&_minor_idr, m);
1777 r = -ENOSPC;
1778 goto out;
1779 }
1780
1781 *minor = m;
1782
1783 out:
1784 spin_unlock(&_minor_lock);
1785 return r;
1786 }
1787
1788 static const struct block_device_operations dm_blk_dops;
1789
1790 static void dm_wq_work(struct work_struct *work);
1791
1792 static void dm_init_md_queue(struct mapped_device *md)
1793 {
1794 /*
1795 * Request-based dm devices cannot be stacked on top of bio-based dm
1796 * devices. The type of this dm device has not been decided yet.
1797 * The type is decided at the first table loading time.
1798 * To prevent problematic device stacking, clear the queue flag
1799 * for request stacking support until then.
1800 *
1801 * This queue is new, so no concurrency on the queue_flags.
1802 */
1803 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1804
1805 md->queue->queuedata = md;
1806 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807 md->queue->backing_dev_info.congested_data = md;
1808 blk_queue_make_request(md->queue, dm_request);
1809 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1811 }
1812
1813 /*
1814 * Allocate and initialise a blank device with a given minor.
1815 */
1816 static struct mapped_device *alloc_dev(int minor)
1817 {
1818 int r;
1819 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1820 void *old_md;
1821
1822 if (!md) {
1823 DMWARN("unable to allocate device, out of memory.");
1824 return NULL;
1825 }
1826
1827 if (!try_module_get(THIS_MODULE))
1828 goto bad_module_get;
1829
1830 /* get a minor number for the dev */
1831 if (minor == DM_ANY_MINOR)
1832 r = next_free_minor(&minor);
1833 else
1834 r = specific_minor(minor);
1835 if (r < 0)
1836 goto bad_minor;
1837
1838 md->type = DM_TYPE_NONE;
1839 init_rwsem(&md->io_lock);
1840 mutex_init(&md->suspend_lock);
1841 mutex_init(&md->type_lock);
1842 spin_lock_init(&md->deferred_lock);
1843 rwlock_init(&md->map_lock);
1844 atomic_set(&md->holders, 1);
1845 atomic_set(&md->open_count, 0);
1846 atomic_set(&md->event_nr, 0);
1847 atomic_set(&md->uevent_seq, 0);
1848 INIT_LIST_HEAD(&md->uevent_list);
1849 spin_lock_init(&md->uevent_lock);
1850
1851 md->queue = blk_alloc_queue(GFP_KERNEL);
1852 if (!md->queue)
1853 goto bad_queue;
1854
1855 dm_init_md_queue(md);
1856
1857 md->disk = alloc_disk(1);
1858 if (!md->disk)
1859 goto bad_disk;
1860
1861 atomic_set(&md->pending[0], 0);
1862 atomic_set(&md->pending[1], 0);
1863 init_waitqueue_head(&md->wait);
1864 INIT_WORK(&md->work, dm_wq_work);
1865 init_waitqueue_head(&md->eventq);
1866
1867 md->disk->major = _major;
1868 md->disk->first_minor = minor;
1869 md->disk->fops = &dm_blk_dops;
1870 md->disk->queue = md->queue;
1871 md->disk->private_data = md;
1872 sprintf(md->disk->disk_name, "dm-%d", minor);
1873 add_disk(md->disk);
1874 format_dev_t(md->name, MKDEV(_major, minor));
1875
1876 md->wq = alloc_workqueue("kdmflush",
1877 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878 if (!md->wq)
1879 goto bad_thread;
1880
1881 md->bdev = bdget_disk(md->disk, 0);
1882 if (!md->bdev)
1883 goto bad_bdev;
1884
1885 bio_init(&md->flush_bio);
1886 md->flush_bio.bi_bdev = md->bdev;
1887 md->flush_bio.bi_rw = WRITE_FLUSH;
1888
1889 /* Populate the mapping, nobody knows we exist yet */
1890 spin_lock(&_minor_lock);
1891 old_md = idr_replace(&_minor_idr, md, minor);
1892 spin_unlock(&_minor_lock);
1893
1894 BUG_ON(old_md != MINOR_ALLOCED);
1895
1896 return md;
1897
1898 bad_bdev:
1899 destroy_workqueue(md->wq);
1900 bad_thread:
1901 del_gendisk(md->disk);
1902 put_disk(md->disk);
1903 bad_disk:
1904 blk_cleanup_queue(md->queue);
1905 bad_queue:
1906 free_minor(minor);
1907 bad_minor:
1908 module_put(THIS_MODULE);
1909 bad_module_get:
1910 kfree(md);
1911 return NULL;
1912 }
1913
1914 static void unlock_fs(struct mapped_device *md);
1915
1916 static void free_dev(struct mapped_device *md)
1917 {
1918 int minor = MINOR(disk_devt(md->disk));
1919
1920 unlock_fs(md);
1921 bdput(md->bdev);
1922 destroy_workqueue(md->wq);
1923 if (md->tio_pool)
1924 mempool_destroy(md->tio_pool);
1925 if (md->io_pool)
1926 mempool_destroy(md->io_pool);
1927 if (md->bs)
1928 bioset_free(md->bs);
1929 blk_integrity_unregister(md->disk);
1930 del_gendisk(md->disk);
1931 free_minor(minor);
1932
1933 spin_lock(&_minor_lock);
1934 md->disk->private_data = NULL;
1935 spin_unlock(&_minor_lock);
1936
1937 put_disk(md->disk);
1938 blk_cleanup_queue(md->queue);
1939 module_put(THIS_MODULE);
1940 kfree(md);
1941 }
1942
1943 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944 {
1945 struct dm_md_mempools *p;
1946
1947 if (md->io_pool && md->tio_pool && md->bs)
1948 /* the md already has necessary mempools */
1949 goto out;
1950
1951 p = dm_table_get_md_mempools(t);
1952 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953
1954 md->io_pool = p->io_pool;
1955 p->io_pool = NULL;
1956 md->tio_pool = p->tio_pool;
1957 p->tio_pool = NULL;
1958 md->bs = p->bs;
1959 p->bs = NULL;
1960
1961 out:
1962 /* mempool bind completed, now no need any mempools in the table */
1963 dm_table_free_md_mempools(t);
1964 }
1965
1966 /*
1967 * Bind a table to the device.
1968 */
1969 static void event_callback(void *context)
1970 {
1971 unsigned long flags;
1972 LIST_HEAD(uevents);
1973 struct mapped_device *md = (struct mapped_device *) context;
1974
1975 spin_lock_irqsave(&md->uevent_lock, flags);
1976 list_splice_init(&md->uevent_list, &uevents);
1977 spin_unlock_irqrestore(&md->uevent_lock, flags);
1978
1979 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980
1981 atomic_inc(&md->event_nr);
1982 wake_up(&md->eventq);
1983 }
1984
1985 /*
1986 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 */
1988 static void __set_size(struct mapped_device *md, sector_t size)
1989 {
1990 set_capacity(md->disk, size);
1991
1992 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993 }
1994
1995 /*
1996 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997 *
1998 * If this function returns 0, then the device is either a non-dm
1999 * device without a merge_bvec_fn, or it is a dm device that is
2000 * able to split any bios it receives that are too big.
2001 */
2002 int dm_queue_merge_is_compulsory(struct request_queue *q)
2003 {
2004 struct mapped_device *dev_md;
2005
2006 if (!q->merge_bvec_fn)
2007 return 0;
2008
2009 if (q->make_request_fn == dm_request) {
2010 dev_md = q->queuedata;
2011 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012 return 0;
2013 }
2014
2015 return 1;
2016 }
2017
2018 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019 struct dm_dev *dev, sector_t start,
2020 sector_t len, void *data)
2021 {
2022 struct block_device *bdev = dev->bdev;
2023 struct request_queue *q = bdev_get_queue(bdev);
2024
2025 return dm_queue_merge_is_compulsory(q);
2026 }
2027
2028 /*
2029 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030 * on the properties of the underlying devices.
2031 */
2032 static int dm_table_merge_is_optional(struct dm_table *table)
2033 {
2034 unsigned i = 0;
2035 struct dm_target *ti;
2036
2037 while (i < dm_table_get_num_targets(table)) {
2038 ti = dm_table_get_target(table, i++);
2039
2040 if (ti->type->iterate_devices &&
2041 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042 return 0;
2043 }
2044
2045 return 1;
2046 }
2047
2048 /*
2049 * Returns old map, which caller must destroy.
2050 */
2051 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052 struct queue_limits *limits)
2053 {
2054 struct dm_table *old_map;
2055 struct request_queue *q = md->queue;
2056 sector_t size;
2057 unsigned long flags;
2058 int merge_is_optional;
2059
2060 size = dm_table_get_size(t);
2061
2062 /*
2063 * Wipe any geometry if the size of the table changed.
2064 */
2065 if (size != get_capacity(md->disk))
2066 memset(&md->geometry, 0, sizeof(md->geometry));
2067
2068 __set_size(md, size);
2069
2070 dm_table_event_callback(t, event_callback, md);
2071
2072 /*
2073 * The queue hasn't been stopped yet, if the old table type wasn't
2074 * for request-based during suspension. So stop it to prevent
2075 * I/O mapping before resume.
2076 * This must be done before setting the queue restrictions,
2077 * because request-based dm may be run just after the setting.
2078 */
2079 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080 stop_queue(q);
2081
2082 __bind_mempools(md, t);
2083
2084 merge_is_optional = dm_table_merge_is_optional(t);
2085
2086 write_lock_irqsave(&md->map_lock, flags);
2087 old_map = md->map;
2088 md->map = t;
2089 dm_table_set_restrictions(t, q, limits);
2090 if (merge_is_optional)
2091 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092 else
2093 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094 write_unlock_irqrestore(&md->map_lock, flags);
2095
2096 return old_map;
2097 }
2098
2099 /*
2100 * Returns unbound table for the caller to free.
2101 */
2102 static struct dm_table *__unbind(struct mapped_device *md)
2103 {
2104 struct dm_table *map = md->map;
2105 unsigned long flags;
2106
2107 if (!map)
2108 return NULL;
2109
2110 dm_table_event_callback(map, NULL, NULL);
2111 write_lock_irqsave(&md->map_lock, flags);
2112 md->map = NULL;
2113 write_unlock_irqrestore(&md->map_lock, flags);
2114
2115 return map;
2116 }
2117
2118 /*
2119 * Constructor for a new device.
2120 */
2121 int dm_create(int minor, struct mapped_device **result)
2122 {
2123 struct mapped_device *md;
2124
2125 md = alloc_dev(minor);
2126 if (!md)
2127 return -ENXIO;
2128
2129 dm_sysfs_init(md);
2130
2131 *result = md;
2132 return 0;
2133 }
2134
2135 /*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
2139 void dm_lock_md_type(struct mapped_device *md)
2140 {
2141 mutex_lock(&md->type_lock);
2142 }
2143
2144 void dm_unlock_md_type(struct mapped_device *md)
2145 {
2146 mutex_unlock(&md->type_lock);
2147 }
2148
2149 void dm_set_md_type(struct mapped_device *md, unsigned type)
2150 {
2151 md->type = type;
2152 }
2153
2154 unsigned dm_get_md_type(struct mapped_device *md)
2155 {
2156 return md->type;
2157 }
2158
2159 /*
2160 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2161 */
2162 static int dm_init_request_based_queue(struct mapped_device *md)
2163 {
2164 struct request_queue *q = NULL;
2165
2166 if (md->queue->elevator)
2167 return 1;
2168
2169 /* Fully initialize the queue */
2170 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171 if (!q)
2172 return 0;
2173
2174 md->queue = q;
2175 md->saved_make_request_fn = md->queue->make_request_fn;
2176 dm_init_md_queue(md);
2177 blk_queue_softirq_done(md->queue, dm_softirq_done);
2178 blk_queue_prep_rq(md->queue, dm_prep_fn);
2179 blk_queue_lld_busy(md->queue, dm_lld_busy);
2180
2181 elv_register_queue(md->queue);
2182
2183 return 1;
2184 }
2185
2186 /*
2187 * Setup the DM device's queue based on md's type
2188 */
2189 int dm_setup_md_queue(struct mapped_device *md)
2190 {
2191 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192 !dm_init_request_based_queue(md)) {
2193 DMWARN("Cannot initialize queue for request-based mapped device");
2194 return -EINVAL;
2195 }
2196
2197 return 0;
2198 }
2199
2200 static struct mapped_device *dm_find_md(dev_t dev)
2201 {
2202 struct mapped_device *md;
2203 unsigned minor = MINOR(dev);
2204
2205 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206 return NULL;
2207
2208 spin_lock(&_minor_lock);
2209
2210 md = idr_find(&_minor_idr, minor);
2211 if (md && (md == MINOR_ALLOCED ||
2212 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213 dm_deleting_md(md) ||
2214 test_bit(DMF_FREEING, &md->flags))) {
2215 md = NULL;
2216 goto out;
2217 }
2218
2219 out:
2220 spin_unlock(&_minor_lock);
2221
2222 return md;
2223 }
2224
2225 struct mapped_device *dm_get_md(dev_t dev)
2226 {
2227 struct mapped_device *md = dm_find_md(dev);
2228
2229 if (md)
2230 dm_get(md);
2231
2232 return md;
2233 }
2234
2235 void *dm_get_mdptr(struct mapped_device *md)
2236 {
2237 return md->interface_ptr;
2238 }
2239
2240 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241 {
2242 md->interface_ptr = ptr;
2243 }
2244
2245 void dm_get(struct mapped_device *md)
2246 {
2247 atomic_inc(&md->holders);
2248 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249 }
2250
2251 const char *dm_device_name(struct mapped_device *md)
2252 {
2253 return md->name;
2254 }
2255 EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257 static void __dm_destroy(struct mapped_device *md, bool wait)
2258 {
2259 struct dm_table *map;
2260
2261 might_sleep();
2262
2263 spin_lock(&_minor_lock);
2264 map = dm_get_live_table(md);
2265 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266 set_bit(DMF_FREEING, &md->flags);
2267 spin_unlock(&_minor_lock);
2268
2269 if (!dm_suspended_md(md)) {
2270 dm_table_presuspend_targets(map);
2271 dm_table_postsuspend_targets(map);
2272 }
2273
2274 /*
2275 * Rare, but there may be I/O requests still going to complete,
2276 * for example. Wait for all references to disappear.
2277 * No one should increment the reference count of the mapped_device,
2278 * after the mapped_device state becomes DMF_FREEING.
2279 */
2280 if (wait)
2281 while (atomic_read(&md->holders))
2282 msleep(1);
2283 else if (atomic_read(&md->holders))
2284 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285 dm_device_name(md), atomic_read(&md->holders));
2286
2287 dm_sysfs_exit(md);
2288 dm_table_put(map);
2289 dm_table_destroy(__unbind(md));
2290 free_dev(md);
2291 }
2292
2293 void dm_destroy(struct mapped_device *md)
2294 {
2295 __dm_destroy(md, true);
2296 }
2297
2298 void dm_destroy_immediate(struct mapped_device *md)
2299 {
2300 __dm_destroy(md, false);
2301 }
2302
2303 void dm_put(struct mapped_device *md)
2304 {
2305 atomic_dec(&md->holders);
2306 }
2307 EXPORT_SYMBOL_GPL(dm_put);
2308
2309 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310 {
2311 int r = 0;
2312 DECLARE_WAITQUEUE(wait, current);
2313
2314 add_wait_queue(&md->wait, &wait);
2315
2316 while (1) {
2317 set_current_state(interruptible);
2318
2319 smp_mb();
2320 if (!md_in_flight(md))
2321 break;
2322
2323 if (interruptible == TASK_INTERRUPTIBLE &&
2324 signal_pending(current)) {
2325 r = -EINTR;
2326 break;
2327 }
2328
2329 io_schedule();
2330 }
2331 set_current_state(TASK_RUNNING);
2332
2333 remove_wait_queue(&md->wait, &wait);
2334
2335 return r;
2336 }
2337
2338 /*
2339 * Process the deferred bios
2340 */
2341 static void dm_wq_work(struct work_struct *work)
2342 {
2343 struct mapped_device *md = container_of(work, struct mapped_device,
2344 work);
2345 struct bio *c;
2346
2347 down_read(&md->io_lock);
2348
2349 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350 spin_lock_irq(&md->deferred_lock);
2351 c = bio_list_pop(&md->deferred);
2352 spin_unlock_irq(&md->deferred_lock);
2353
2354 if (!c)
2355 break;
2356
2357 up_read(&md->io_lock);
2358
2359 if (dm_request_based(md))
2360 generic_make_request(c);
2361 else
2362 __split_and_process_bio(md, c);
2363
2364 down_read(&md->io_lock);
2365 }
2366
2367 up_read(&md->io_lock);
2368 }
2369
2370 static void dm_queue_flush(struct mapped_device *md)
2371 {
2372 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373 smp_mb__after_clear_bit();
2374 queue_work(md->wq, &md->work);
2375 }
2376
2377 /*
2378 * Swap in a new table, returning the old one for the caller to destroy.
2379 */
2380 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381 {
2382 struct dm_table *map = ERR_PTR(-EINVAL);
2383 struct queue_limits limits;
2384 int r;
2385
2386 mutex_lock(&md->suspend_lock);
2387
2388 /* device must be suspended */
2389 if (!dm_suspended_md(md))
2390 goto out;
2391
2392 r = dm_calculate_queue_limits(table, &limits);
2393 if (r) {
2394 map = ERR_PTR(r);
2395 goto out;
2396 }
2397
2398 map = __bind(md, table, &limits);
2399
2400 out:
2401 mutex_unlock(&md->suspend_lock);
2402 return map;
2403 }
2404
2405 /*
2406 * Functions to lock and unlock any filesystem running on the
2407 * device.
2408 */
2409 static int lock_fs(struct mapped_device *md)
2410 {
2411 int r;
2412
2413 WARN_ON(md->frozen_sb);
2414
2415 md->frozen_sb = freeze_bdev(md->bdev);
2416 if (IS_ERR(md->frozen_sb)) {
2417 r = PTR_ERR(md->frozen_sb);
2418 md->frozen_sb = NULL;
2419 return r;
2420 }
2421
2422 set_bit(DMF_FROZEN, &md->flags);
2423
2424 return 0;
2425 }
2426
2427 static void unlock_fs(struct mapped_device *md)
2428 {
2429 if (!test_bit(DMF_FROZEN, &md->flags))
2430 return;
2431
2432 thaw_bdev(md->bdev, md->frozen_sb);
2433 md->frozen_sb = NULL;
2434 clear_bit(DMF_FROZEN, &md->flags);
2435 }
2436
2437 /*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem. For example we might want to move some data in
2440 * the background. Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444 /*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454 {
2455 struct dm_table *map = NULL;
2456 int r = 0;
2457 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459
2460 mutex_lock(&md->suspend_lock);
2461
2462 if (dm_suspended_md(md)) {
2463 r = -EINVAL;
2464 goto out_unlock;
2465 }
2466
2467 map = dm_get_live_table(md);
2468
2469 /*
2470 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 * This flag is cleared before dm_suspend returns.
2472 */
2473 if (noflush)
2474 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475
2476 /* This does not get reverted if there's an error later. */
2477 dm_table_presuspend_targets(map);
2478
2479 /*
2480 * Flush I/O to the device.
2481 * Any I/O submitted after lock_fs() may not be flushed.
2482 * noflush takes precedence over do_lockfs.
2483 * (lock_fs() flushes I/Os and waits for them to complete.)
2484 */
2485 if (!noflush && do_lockfs) {
2486 r = lock_fs(md);
2487 if (r)
2488 goto out;
2489 }
2490
2491 /*
2492 * Here we must make sure that no processes are submitting requests
2493 * to target drivers i.e. no one may be executing
2494 * __split_and_process_bio. This is called from dm_request and
2495 * dm_wq_work.
2496 *
2497 * To get all processes out of __split_and_process_bio in dm_request,
2498 * we take the write lock. To prevent any process from reentering
2499 * __split_and_process_bio from dm_request and quiesce the thread
2500 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501 * flush_workqueue(md->wq).
2502 */
2503 down_write(&md->io_lock);
2504 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505 up_write(&md->io_lock);
2506
2507 /*
2508 * Stop md->queue before flushing md->wq in case request-based
2509 * dm defers requests to md->wq from md->queue.
2510 */
2511 if (dm_request_based(md))
2512 stop_queue(md->queue);
2513
2514 flush_workqueue(md->wq);
2515
2516 /*
2517 * At this point no more requests are entering target request routines.
2518 * We call dm_wait_for_completion to wait for all existing requests
2519 * to finish.
2520 */
2521 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2522
2523 down_write(&md->io_lock);
2524 if (noflush)
2525 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526 up_write(&md->io_lock);
2527
2528 /* were we interrupted ? */
2529 if (r < 0) {
2530 dm_queue_flush(md);
2531
2532 if (dm_request_based(md))
2533 start_queue(md->queue);
2534
2535 unlock_fs(md);
2536 goto out; /* pushback list is already flushed, so skip flush */
2537 }
2538
2539 /*
2540 * If dm_wait_for_completion returned 0, the device is completely
2541 * quiescent now. There is no request-processing activity. All new
2542 * requests are being added to md->deferred list.
2543 */
2544
2545 set_bit(DMF_SUSPENDED, &md->flags);
2546
2547 dm_table_postsuspend_targets(map);
2548
2549 out:
2550 dm_table_put(map);
2551
2552 out_unlock:
2553 mutex_unlock(&md->suspend_lock);
2554 return r;
2555 }
2556
2557 int dm_resume(struct mapped_device *md)
2558 {
2559 int r = -EINVAL;
2560 struct dm_table *map = NULL;
2561
2562 mutex_lock(&md->suspend_lock);
2563 if (!dm_suspended_md(md))
2564 goto out;
2565
2566 map = dm_get_live_table(md);
2567 if (!map || !dm_table_get_size(map))
2568 goto out;
2569
2570 r = dm_table_resume_targets(map);
2571 if (r)
2572 goto out;
2573
2574 dm_queue_flush(md);
2575
2576 /*
2577 * Flushing deferred I/Os must be done after targets are resumed
2578 * so that mapping of targets can work correctly.
2579 * Request-based dm is queueing the deferred I/Os in its request_queue.
2580 */
2581 if (dm_request_based(md))
2582 start_queue(md->queue);
2583
2584 unlock_fs(md);
2585
2586 clear_bit(DMF_SUSPENDED, &md->flags);
2587
2588 r = 0;
2589 out:
2590 dm_table_put(map);
2591 mutex_unlock(&md->suspend_lock);
2592
2593 return r;
2594 }
2595
2596 /*-----------------------------------------------------------------
2597 * Event notification.
2598 *---------------------------------------------------------------*/
2599 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600 unsigned cookie)
2601 {
2602 char udev_cookie[DM_COOKIE_LENGTH];
2603 char *envp[] = { udev_cookie, NULL };
2604
2605 if (!cookie)
2606 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607 else {
2608 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609 DM_COOKIE_ENV_VAR_NAME, cookie);
2610 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611 action, envp);
2612 }
2613 }
2614
2615 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616 {
2617 return atomic_add_return(1, &md->uevent_seq);
2618 }
2619
2620 uint32_t dm_get_event_nr(struct mapped_device *md)
2621 {
2622 return atomic_read(&md->event_nr);
2623 }
2624
2625 int dm_wait_event(struct mapped_device *md, int event_nr)
2626 {
2627 return wait_event_interruptible(md->eventq,
2628 (event_nr != atomic_read(&md->event_nr)));
2629 }
2630
2631 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632 {
2633 unsigned long flags;
2634
2635 spin_lock_irqsave(&md->uevent_lock, flags);
2636 list_add(elist, &md->uevent_list);
2637 spin_unlock_irqrestore(&md->uevent_lock, flags);
2638 }
2639
2640 /*
2641 * The gendisk is only valid as long as you have a reference
2642 * count on 'md'.
2643 */
2644 struct gendisk *dm_disk(struct mapped_device *md)
2645 {
2646 return md->disk;
2647 }
2648
2649 struct kobject *dm_kobject(struct mapped_device *md)
2650 {
2651 return &md->kobj;
2652 }
2653
2654 /*
2655 * struct mapped_device should not be exported outside of dm.c
2656 * so use this check to verify that kobj is part of md structure
2657 */
2658 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659 {
2660 struct mapped_device *md;
2661
2662 md = container_of(kobj, struct mapped_device, kobj);
2663 if (&md->kobj != kobj)
2664 return NULL;
2665
2666 if (test_bit(DMF_FREEING, &md->flags) ||
2667 dm_deleting_md(md))
2668 return NULL;
2669
2670 dm_get(md);
2671 return md;
2672 }
2673
2674 int dm_suspended_md(struct mapped_device *md)
2675 {
2676 return test_bit(DMF_SUSPENDED, &md->flags);
2677 }
2678
2679 int dm_suspended(struct dm_target *ti)
2680 {
2681 return dm_suspended_md(dm_table_get_md(ti->table));
2682 }
2683 EXPORT_SYMBOL_GPL(dm_suspended);
2684
2685 int dm_noflush_suspending(struct dm_target *ti)
2686 {
2687 return __noflush_suspending(dm_table_get_md(ti->table));
2688 }
2689 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690
2691 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2692 {
2693 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2695
2696 if (!pools)
2697 return NULL;
2698
2699 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702 if (!pools->io_pool)
2703 goto free_pools_and_out;
2704
2705 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708 if (!pools->tio_pool)
2709 goto free_io_pool_and_out;
2710
2711 pools->bs = bioset_create(pool_size, 0);
2712 if (!pools->bs)
2713 goto free_tio_pool_and_out;
2714
2715 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716 goto free_bioset_and_out;
2717
2718 return pools;
2719
2720 free_bioset_and_out:
2721 bioset_free(pools->bs);
2722
2723 free_tio_pool_and_out:
2724 mempool_destroy(pools->tio_pool);
2725
2726 free_io_pool_and_out:
2727 mempool_destroy(pools->io_pool);
2728
2729 free_pools_and_out:
2730 kfree(pools);
2731
2732 return NULL;
2733 }
2734
2735 void dm_free_md_mempools(struct dm_md_mempools *pools)
2736 {
2737 if (!pools)
2738 return;
2739
2740 if (pools->io_pool)
2741 mempool_destroy(pools->io_pool);
2742
2743 if (pools->tio_pool)
2744 mempool_destroy(pools->tio_pool);
2745
2746 if (pools->bs)
2747 bioset_free(pools->bs);
2748
2749 kfree(pools);
2750 }
2751
2752 static const struct block_device_operations dm_blk_dops = {
2753 .open = dm_blk_open,
2754 .release = dm_blk_close,
2755 .ioctl = dm_blk_ioctl,
2756 .getgeo = dm_blk_getgeo,
2757 .owner = THIS_MODULE
2758 };
2759
2760 EXPORT_SYMBOL(dm_get_mapinfo);
2761
2762 /*
2763 * module hooks
2764 */
2765 module_init(dm_init);
2766 module_exit(dm_exit);
2767
2768 module_param(major, uint, 0);
2769 MODULE_PARM_DESC(major, "The major number of the device mapper");
2770 MODULE_DESCRIPTION(DM_NAME " driver");
2771 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772 MODULE_LICENSE("GPL");
This page took 0.098798 seconds and 6 git commands to generate.