md-cluster: Improve md_reload_sb to be less error prone
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258 int cpu;
259
260 blk_queue_split(q, &bio, q->bio_split);
261
262 if (mddev == NULL || mddev->pers == NULL
263 || !mddev->ready) {
264 bio_io_error(bio);
265 return;
266 }
267 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 if (bio_sectors(bio) != 0)
269 bio->bi_error = -EROFS;
270 bio_endio(bio);
271 return;
272 }
273 smp_rmb(); /* Ensure implications of 'active' are visible */
274 rcu_read_lock();
275 if (mddev->suspended) {
276 DEFINE_WAIT(__wait);
277 for (;;) {
278 prepare_to_wait(&mddev->sb_wait, &__wait,
279 TASK_UNINTERRUPTIBLE);
280 if (!mddev->suspended)
281 break;
282 rcu_read_unlock();
283 schedule();
284 rcu_read_lock();
285 }
286 finish_wait(&mddev->sb_wait, &__wait);
287 }
288 atomic_inc(&mddev->active_io);
289 rcu_read_unlock();
290
291 /*
292 * save the sectors now since our bio can
293 * go away inside make_request
294 */
295 sectors = bio_sectors(bio);
296 mddev->pers->make_request(mddev, bio);
297
298 cpu = part_stat_lock();
299 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301 part_stat_unlock();
302
303 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 wake_up(&mddev->sb_wait);
305 }
306
307 /* mddev_suspend makes sure no new requests are submitted
308 * to the device, and that any requests that have been submitted
309 * are completely handled.
310 * Once mddev_detach() is called and completes, the module will be
311 * completely unused.
312 */
313 void mddev_suspend(struct mddev *mddev)
314 {
315 BUG_ON(mddev->suspended);
316 mddev->suspended = 1;
317 synchronize_rcu();
318 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
319 mddev->pers->quiesce(mddev, 1);
320
321 del_timer_sync(&mddev->safemode_timer);
322 }
323 EXPORT_SYMBOL_GPL(mddev_suspend);
324
325 void mddev_resume(struct mddev *mddev)
326 {
327 mddev->suspended = 0;
328 wake_up(&mddev->sb_wait);
329 mddev->pers->quiesce(mddev, 0);
330
331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
332 md_wakeup_thread(mddev->thread);
333 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
334 }
335 EXPORT_SYMBOL_GPL(mddev_resume);
336
337 int mddev_congested(struct mddev *mddev, int bits)
338 {
339 struct md_personality *pers = mddev->pers;
340 int ret = 0;
341
342 rcu_read_lock();
343 if (mddev->suspended)
344 ret = 1;
345 else if (pers && pers->congested)
346 ret = pers->congested(mddev, bits);
347 rcu_read_unlock();
348 return ret;
349 }
350 EXPORT_SYMBOL_GPL(mddev_congested);
351 static int md_congested(void *data, int bits)
352 {
353 struct mddev *mddev = data;
354 return mddev_congested(mddev, bits);
355 }
356
357 /*
358 * Generic flush handling for md
359 */
360
361 static void md_end_flush(struct bio *bio)
362 {
363 struct md_rdev *rdev = bio->bi_private;
364 struct mddev *mddev = rdev->mddev;
365
366 rdev_dec_pending(rdev, mddev);
367
368 if (atomic_dec_and_test(&mddev->flush_pending)) {
369 /* The pre-request flush has finished */
370 queue_work(md_wq, &mddev->flush_work);
371 }
372 bio_put(bio);
373 }
374
375 static void md_submit_flush_data(struct work_struct *ws);
376
377 static void submit_flushes(struct work_struct *ws)
378 {
379 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
380 struct md_rdev *rdev;
381
382 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
383 atomic_set(&mddev->flush_pending, 1);
384 rcu_read_lock();
385 rdev_for_each_rcu(rdev, mddev)
386 if (rdev->raid_disk >= 0 &&
387 !test_bit(Faulty, &rdev->flags)) {
388 /* Take two references, one is dropped
389 * when request finishes, one after
390 * we reclaim rcu_read_lock
391 */
392 struct bio *bi;
393 atomic_inc(&rdev->nr_pending);
394 atomic_inc(&rdev->nr_pending);
395 rcu_read_unlock();
396 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
397 bi->bi_end_io = md_end_flush;
398 bi->bi_private = rdev;
399 bi->bi_bdev = rdev->bdev;
400 atomic_inc(&mddev->flush_pending);
401 submit_bio(WRITE_FLUSH, bi);
402 rcu_read_lock();
403 rdev_dec_pending(rdev, mddev);
404 }
405 rcu_read_unlock();
406 if (atomic_dec_and_test(&mddev->flush_pending))
407 queue_work(md_wq, &mddev->flush_work);
408 }
409
410 static void md_submit_flush_data(struct work_struct *ws)
411 {
412 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
413 struct bio *bio = mddev->flush_bio;
414
415 if (bio->bi_iter.bi_size == 0)
416 /* an empty barrier - all done */
417 bio_endio(bio);
418 else {
419 bio->bi_rw &= ~REQ_FLUSH;
420 mddev->pers->make_request(mddev, bio);
421 }
422
423 mddev->flush_bio = NULL;
424 wake_up(&mddev->sb_wait);
425 }
426
427 void md_flush_request(struct mddev *mddev, struct bio *bio)
428 {
429 spin_lock_irq(&mddev->lock);
430 wait_event_lock_irq(mddev->sb_wait,
431 !mddev->flush_bio,
432 mddev->lock);
433 mddev->flush_bio = bio;
434 spin_unlock_irq(&mddev->lock);
435
436 INIT_WORK(&mddev->flush_work, submit_flushes);
437 queue_work(md_wq, &mddev->flush_work);
438 }
439 EXPORT_SYMBOL(md_flush_request);
440
441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
442 {
443 struct mddev *mddev = cb->data;
444 md_wakeup_thread(mddev->thread);
445 kfree(cb);
446 }
447 EXPORT_SYMBOL(md_unplug);
448
449 static inline struct mddev *mddev_get(struct mddev *mddev)
450 {
451 atomic_inc(&mddev->active);
452 return mddev;
453 }
454
455 static void mddev_delayed_delete(struct work_struct *ws);
456
457 static void mddev_put(struct mddev *mddev)
458 {
459 struct bio_set *bs = NULL;
460
461 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
462 return;
463 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
464 mddev->ctime == 0 && !mddev->hold_active) {
465 /* Array is not configured at all, and not held active,
466 * so destroy it */
467 list_del_init(&mddev->all_mddevs);
468 bs = mddev->bio_set;
469 mddev->bio_set = NULL;
470 if (mddev->gendisk) {
471 /* We did a probe so need to clean up. Call
472 * queue_work inside the spinlock so that
473 * flush_workqueue() after mddev_find will
474 * succeed in waiting for the work to be done.
475 */
476 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
477 queue_work(md_misc_wq, &mddev->del_work);
478 } else
479 kfree(mddev);
480 }
481 spin_unlock(&all_mddevs_lock);
482 if (bs)
483 bioset_free(bs);
484 }
485
486 static void md_safemode_timeout(unsigned long data);
487
488 void mddev_init(struct mddev *mddev)
489 {
490 mutex_init(&mddev->open_mutex);
491 mutex_init(&mddev->reconfig_mutex);
492 mutex_init(&mddev->bitmap_info.mutex);
493 INIT_LIST_HEAD(&mddev->disks);
494 INIT_LIST_HEAD(&mddev->all_mddevs);
495 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
496 (unsigned long) mddev);
497 atomic_set(&mddev->active, 1);
498 atomic_set(&mddev->openers, 0);
499 atomic_set(&mddev->active_io, 0);
500 spin_lock_init(&mddev->lock);
501 atomic_set(&mddev->flush_pending, 0);
502 init_waitqueue_head(&mddev->sb_wait);
503 init_waitqueue_head(&mddev->recovery_wait);
504 mddev->reshape_position = MaxSector;
505 mddev->reshape_backwards = 0;
506 mddev->last_sync_action = "none";
507 mddev->resync_min = 0;
508 mddev->resync_max = MaxSector;
509 mddev->level = LEVEL_NONE;
510 }
511 EXPORT_SYMBOL_GPL(mddev_init);
512
513 static struct mddev *mddev_find(dev_t unit)
514 {
515 struct mddev *mddev, *new = NULL;
516
517 if (unit && MAJOR(unit) != MD_MAJOR)
518 unit &= ~((1<<MdpMinorShift)-1);
519
520 retry:
521 spin_lock(&all_mddevs_lock);
522
523 if (unit) {
524 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
525 if (mddev->unit == unit) {
526 mddev_get(mddev);
527 spin_unlock(&all_mddevs_lock);
528 kfree(new);
529 return mddev;
530 }
531
532 if (new) {
533 list_add(&new->all_mddevs, &all_mddevs);
534 spin_unlock(&all_mddevs_lock);
535 new->hold_active = UNTIL_IOCTL;
536 return new;
537 }
538 } else if (new) {
539 /* find an unused unit number */
540 static int next_minor = 512;
541 int start = next_minor;
542 int is_free = 0;
543 int dev = 0;
544 while (!is_free) {
545 dev = MKDEV(MD_MAJOR, next_minor);
546 next_minor++;
547 if (next_minor > MINORMASK)
548 next_minor = 0;
549 if (next_minor == start) {
550 /* Oh dear, all in use. */
551 spin_unlock(&all_mddevs_lock);
552 kfree(new);
553 return NULL;
554 }
555
556 is_free = 1;
557 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
558 if (mddev->unit == dev) {
559 is_free = 0;
560 break;
561 }
562 }
563 new->unit = dev;
564 new->md_minor = MINOR(dev);
565 new->hold_active = UNTIL_STOP;
566 list_add(&new->all_mddevs, &all_mddevs);
567 spin_unlock(&all_mddevs_lock);
568 return new;
569 }
570 spin_unlock(&all_mddevs_lock);
571
572 new = kzalloc(sizeof(*new), GFP_KERNEL);
573 if (!new)
574 return NULL;
575
576 new->unit = unit;
577 if (MAJOR(unit) == MD_MAJOR)
578 new->md_minor = MINOR(unit);
579 else
580 new->md_minor = MINOR(unit) >> MdpMinorShift;
581
582 mddev_init(new);
583
584 goto retry;
585 }
586
587 static struct attribute_group md_redundancy_group;
588
589 void mddev_unlock(struct mddev *mddev)
590 {
591 if (mddev->to_remove) {
592 /* These cannot be removed under reconfig_mutex as
593 * an access to the files will try to take reconfig_mutex
594 * while holding the file unremovable, which leads to
595 * a deadlock.
596 * So hold set sysfs_active while the remove in happeing,
597 * and anything else which might set ->to_remove or my
598 * otherwise change the sysfs namespace will fail with
599 * -EBUSY if sysfs_active is still set.
600 * We set sysfs_active under reconfig_mutex and elsewhere
601 * test it under the same mutex to ensure its correct value
602 * is seen.
603 */
604 struct attribute_group *to_remove = mddev->to_remove;
605 mddev->to_remove = NULL;
606 mddev->sysfs_active = 1;
607 mutex_unlock(&mddev->reconfig_mutex);
608
609 if (mddev->kobj.sd) {
610 if (to_remove != &md_redundancy_group)
611 sysfs_remove_group(&mddev->kobj, to_remove);
612 if (mddev->pers == NULL ||
613 mddev->pers->sync_request == NULL) {
614 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
615 if (mddev->sysfs_action)
616 sysfs_put(mddev->sysfs_action);
617 mddev->sysfs_action = NULL;
618 }
619 }
620 mddev->sysfs_active = 0;
621 } else
622 mutex_unlock(&mddev->reconfig_mutex);
623
624 /* As we've dropped the mutex we need a spinlock to
625 * make sure the thread doesn't disappear
626 */
627 spin_lock(&pers_lock);
628 md_wakeup_thread(mddev->thread);
629 spin_unlock(&pers_lock);
630 }
631 EXPORT_SYMBOL_GPL(mddev_unlock);
632
633 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
634 {
635 struct md_rdev *rdev;
636
637 rdev_for_each_rcu(rdev, mddev)
638 if (rdev->desc_nr == nr)
639 return rdev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
644
645 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
646 {
647 struct md_rdev *rdev;
648
649 rdev_for_each(rdev, mddev)
650 if (rdev->bdev->bd_dev == dev)
651 return rdev;
652
653 return NULL;
654 }
655
656 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
657 {
658 struct md_rdev *rdev;
659
660 rdev_for_each_rcu(rdev, mddev)
661 if (rdev->bdev->bd_dev == dev)
662 return rdev;
663
664 return NULL;
665 }
666
667 static struct md_personality *find_pers(int level, char *clevel)
668 {
669 struct md_personality *pers;
670 list_for_each_entry(pers, &pers_list, list) {
671 if (level != LEVEL_NONE && pers->level == level)
672 return pers;
673 if (strcmp(pers->name, clevel)==0)
674 return pers;
675 }
676 return NULL;
677 }
678
679 /* return the offset of the super block in 512byte sectors */
680 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
681 {
682 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
683 return MD_NEW_SIZE_SECTORS(num_sectors);
684 }
685
686 static int alloc_disk_sb(struct md_rdev *rdev)
687 {
688 rdev->sb_page = alloc_page(GFP_KERNEL);
689 if (!rdev->sb_page) {
690 printk(KERN_ALERT "md: out of memory.\n");
691 return -ENOMEM;
692 }
693
694 return 0;
695 }
696
697 void md_rdev_clear(struct md_rdev *rdev)
698 {
699 if (rdev->sb_page) {
700 put_page(rdev->sb_page);
701 rdev->sb_loaded = 0;
702 rdev->sb_page = NULL;
703 rdev->sb_start = 0;
704 rdev->sectors = 0;
705 }
706 if (rdev->bb_page) {
707 put_page(rdev->bb_page);
708 rdev->bb_page = NULL;
709 }
710 kfree(rdev->badblocks.page);
711 rdev->badblocks.page = NULL;
712 }
713 EXPORT_SYMBOL_GPL(md_rdev_clear);
714
715 static void super_written(struct bio *bio)
716 {
717 struct md_rdev *rdev = bio->bi_private;
718 struct mddev *mddev = rdev->mddev;
719
720 if (bio->bi_error) {
721 printk("md: super_written gets error=%d\n", bio->bi_error);
722 md_error(mddev, rdev);
723 }
724
725 if (atomic_dec_and_test(&mddev->pending_writes))
726 wake_up(&mddev->sb_wait);
727 bio_put(bio);
728 }
729
730 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
731 sector_t sector, int size, struct page *page)
732 {
733 /* write first size bytes of page to sector of rdev
734 * Increment mddev->pending_writes before returning
735 * and decrement it on completion, waking up sb_wait
736 * if zero is reached.
737 * If an error occurred, call md_error
738 */
739 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
740
741 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
742 bio->bi_iter.bi_sector = sector;
743 bio_add_page(bio, page, size, 0);
744 bio->bi_private = rdev;
745 bio->bi_end_io = super_written;
746
747 atomic_inc(&mddev->pending_writes);
748 submit_bio(WRITE_FLUSH_FUA, bio);
749 }
750
751 void md_super_wait(struct mddev *mddev)
752 {
753 /* wait for all superblock writes that were scheduled to complete */
754 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
755 }
756
757 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
758 struct page *page, int rw, bool metadata_op)
759 {
760 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
761 int ret;
762
763 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
764 rdev->meta_bdev : rdev->bdev;
765 if (metadata_op)
766 bio->bi_iter.bi_sector = sector + rdev->sb_start;
767 else if (rdev->mddev->reshape_position != MaxSector &&
768 (rdev->mddev->reshape_backwards ==
769 (sector >= rdev->mddev->reshape_position)))
770 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
771 else
772 bio->bi_iter.bi_sector = sector + rdev->data_offset;
773 bio_add_page(bio, page, size, 0);
774 submit_bio_wait(rw, bio);
775
776 ret = !bio->bi_error;
777 bio_put(bio);
778 return ret;
779 }
780 EXPORT_SYMBOL_GPL(sync_page_io);
781
782 static int read_disk_sb(struct md_rdev *rdev, int size)
783 {
784 char b[BDEVNAME_SIZE];
785
786 if (rdev->sb_loaded)
787 return 0;
788
789 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
790 goto fail;
791 rdev->sb_loaded = 1;
792 return 0;
793
794 fail:
795 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
796 bdevname(rdev->bdev,b));
797 return -EINVAL;
798 }
799
800 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
801 {
802 return sb1->set_uuid0 == sb2->set_uuid0 &&
803 sb1->set_uuid1 == sb2->set_uuid1 &&
804 sb1->set_uuid2 == sb2->set_uuid2 &&
805 sb1->set_uuid3 == sb2->set_uuid3;
806 }
807
808 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
809 {
810 int ret;
811 mdp_super_t *tmp1, *tmp2;
812
813 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
814 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
815
816 if (!tmp1 || !tmp2) {
817 ret = 0;
818 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
819 goto abort;
820 }
821
822 *tmp1 = *sb1;
823 *tmp2 = *sb2;
824
825 /*
826 * nr_disks is not constant
827 */
828 tmp1->nr_disks = 0;
829 tmp2->nr_disks = 0;
830
831 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
832 abort:
833 kfree(tmp1);
834 kfree(tmp2);
835 return ret;
836 }
837
838 static u32 md_csum_fold(u32 csum)
839 {
840 csum = (csum & 0xffff) + (csum >> 16);
841 return (csum & 0xffff) + (csum >> 16);
842 }
843
844 static unsigned int calc_sb_csum(mdp_super_t *sb)
845 {
846 u64 newcsum = 0;
847 u32 *sb32 = (u32*)sb;
848 int i;
849 unsigned int disk_csum, csum;
850
851 disk_csum = sb->sb_csum;
852 sb->sb_csum = 0;
853
854 for (i = 0; i < MD_SB_BYTES/4 ; i++)
855 newcsum += sb32[i];
856 csum = (newcsum & 0xffffffff) + (newcsum>>32);
857
858 #ifdef CONFIG_ALPHA
859 /* This used to use csum_partial, which was wrong for several
860 * reasons including that different results are returned on
861 * different architectures. It isn't critical that we get exactly
862 * the same return value as before (we always csum_fold before
863 * testing, and that removes any differences). However as we
864 * know that csum_partial always returned a 16bit value on
865 * alphas, do a fold to maximise conformity to previous behaviour.
866 */
867 sb->sb_csum = md_csum_fold(disk_csum);
868 #else
869 sb->sb_csum = disk_csum;
870 #endif
871 return csum;
872 }
873
874 /*
875 * Handle superblock details.
876 * We want to be able to handle multiple superblock formats
877 * so we have a common interface to them all, and an array of
878 * different handlers.
879 * We rely on user-space to write the initial superblock, and support
880 * reading and updating of superblocks.
881 * Interface methods are:
882 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
883 * loads and validates a superblock on dev.
884 * if refdev != NULL, compare superblocks on both devices
885 * Return:
886 * 0 - dev has a superblock that is compatible with refdev
887 * 1 - dev has a superblock that is compatible and newer than refdev
888 * so dev should be used as the refdev in future
889 * -EINVAL superblock incompatible or invalid
890 * -othererror e.g. -EIO
891 *
892 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
893 * Verify that dev is acceptable into mddev.
894 * The first time, mddev->raid_disks will be 0, and data from
895 * dev should be merged in. Subsequent calls check that dev
896 * is new enough. Return 0 or -EINVAL
897 *
898 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
899 * Update the superblock for rdev with data in mddev
900 * This does not write to disc.
901 *
902 */
903
904 struct super_type {
905 char *name;
906 struct module *owner;
907 int (*load_super)(struct md_rdev *rdev,
908 struct md_rdev *refdev,
909 int minor_version);
910 int (*validate_super)(struct mddev *mddev,
911 struct md_rdev *rdev);
912 void (*sync_super)(struct mddev *mddev,
913 struct md_rdev *rdev);
914 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
915 sector_t num_sectors);
916 int (*allow_new_offset)(struct md_rdev *rdev,
917 unsigned long long new_offset);
918 };
919
920 /*
921 * Check that the given mddev has no bitmap.
922 *
923 * This function is called from the run method of all personalities that do not
924 * support bitmaps. It prints an error message and returns non-zero if mddev
925 * has a bitmap. Otherwise, it returns 0.
926 *
927 */
928 int md_check_no_bitmap(struct mddev *mddev)
929 {
930 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
931 return 0;
932 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
933 mdname(mddev), mddev->pers->name);
934 return 1;
935 }
936 EXPORT_SYMBOL(md_check_no_bitmap);
937
938 /*
939 * load_super for 0.90.0
940 */
941 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
942 {
943 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
944 mdp_super_t *sb;
945 int ret;
946
947 /*
948 * Calculate the position of the superblock (512byte sectors),
949 * it's at the end of the disk.
950 *
951 * It also happens to be a multiple of 4Kb.
952 */
953 rdev->sb_start = calc_dev_sboffset(rdev);
954
955 ret = read_disk_sb(rdev, MD_SB_BYTES);
956 if (ret) return ret;
957
958 ret = -EINVAL;
959
960 bdevname(rdev->bdev, b);
961 sb = page_address(rdev->sb_page);
962
963 if (sb->md_magic != MD_SB_MAGIC) {
964 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
965 b);
966 goto abort;
967 }
968
969 if (sb->major_version != 0 ||
970 sb->minor_version < 90 ||
971 sb->minor_version > 91) {
972 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
973 sb->major_version, sb->minor_version,
974 b);
975 goto abort;
976 }
977
978 if (sb->raid_disks <= 0)
979 goto abort;
980
981 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
982 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
983 b);
984 goto abort;
985 }
986
987 rdev->preferred_minor = sb->md_minor;
988 rdev->data_offset = 0;
989 rdev->new_data_offset = 0;
990 rdev->sb_size = MD_SB_BYTES;
991 rdev->badblocks.shift = -1;
992
993 if (sb->level == LEVEL_MULTIPATH)
994 rdev->desc_nr = -1;
995 else
996 rdev->desc_nr = sb->this_disk.number;
997
998 if (!refdev) {
999 ret = 1;
1000 } else {
1001 __u64 ev1, ev2;
1002 mdp_super_t *refsb = page_address(refdev->sb_page);
1003 if (!uuid_equal(refsb, sb)) {
1004 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1005 b, bdevname(refdev->bdev,b2));
1006 goto abort;
1007 }
1008 if (!sb_equal(refsb, sb)) {
1009 printk(KERN_WARNING "md: %s has same UUID"
1010 " but different superblock to %s\n",
1011 b, bdevname(refdev->bdev, b2));
1012 goto abort;
1013 }
1014 ev1 = md_event(sb);
1015 ev2 = md_event(refsb);
1016 if (ev1 > ev2)
1017 ret = 1;
1018 else
1019 ret = 0;
1020 }
1021 rdev->sectors = rdev->sb_start;
1022 /* Limit to 4TB as metadata cannot record more than that.
1023 * (not needed for Linear and RAID0 as metadata doesn't
1024 * record this size)
1025 */
1026 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1027 rdev->sectors = (2ULL << 32) - 2;
1028
1029 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030 /* "this cannot possibly happen" ... */
1031 ret = -EINVAL;
1032
1033 abort:
1034 return ret;
1035 }
1036
1037 /*
1038 * validate_super for 0.90.0
1039 */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042 mdp_disk_t *desc;
1043 mdp_super_t *sb = page_address(rdev->sb_page);
1044 __u64 ev1 = md_event(sb);
1045
1046 rdev->raid_disk = -1;
1047 clear_bit(Faulty, &rdev->flags);
1048 clear_bit(In_sync, &rdev->flags);
1049 clear_bit(Bitmap_sync, &rdev->flags);
1050 clear_bit(WriteMostly, &rdev->flags);
1051
1052 if (mddev->raid_disks == 0) {
1053 mddev->major_version = 0;
1054 mddev->minor_version = sb->minor_version;
1055 mddev->patch_version = sb->patch_version;
1056 mddev->external = 0;
1057 mddev->chunk_sectors = sb->chunk_size >> 9;
1058 mddev->ctime = sb->ctime;
1059 mddev->utime = sb->utime;
1060 mddev->level = sb->level;
1061 mddev->clevel[0] = 0;
1062 mddev->layout = sb->layout;
1063 mddev->raid_disks = sb->raid_disks;
1064 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065 mddev->events = ev1;
1066 mddev->bitmap_info.offset = 0;
1067 mddev->bitmap_info.space = 0;
1068 /* bitmap can use 60 K after the 4K superblocks */
1069 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071 mddev->reshape_backwards = 0;
1072
1073 if (mddev->minor_version >= 91) {
1074 mddev->reshape_position = sb->reshape_position;
1075 mddev->delta_disks = sb->delta_disks;
1076 mddev->new_level = sb->new_level;
1077 mddev->new_layout = sb->new_layout;
1078 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079 if (mddev->delta_disks < 0)
1080 mddev->reshape_backwards = 1;
1081 } else {
1082 mddev->reshape_position = MaxSector;
1083 mddev->delta_disks = 0;
1084 mddev->new_level = mddev->level;
1085 mddev->new_layout = mddev->layout;
1086 mddev->new_chunk_sectors = mddev->chunk_sectors;
1087 }
1088
1089 if (sb->state & (1<<MD_SB_CLEAN))
1090 mddev->recovery_cp = MaxSector;
1091 else {
1092 if (sb->events_hi == sb->cp_events_hi &&
1093 sb->events_lo == sb->cp_events_lo) {
1094 mddev->recovery_cp = sb->recovery_cp;
1095 } else
1096 mddev->recovery_cp = 0;
1097 }
1098
1099 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103
1104 mddev->max_disks = MD_SB_DISKS;
1105
1106 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107 mddev->bitmap_info.file == NULL) {
1108 mddev->bitmap_info.offset =
1109 mddev->bitmap_info.default_offset;
1110 mddev->bitmap_info.space =
1111 mddev->bitmap_info.default_space;
1112 }
1113
1114 } else if (mddev->pers == NULL) {
1115 /* Insist on good event counter while assembling, except
1116 * for spares (which don't need an event count) */
1117 ++ev1;
1118 if (sb->disks[rdev->desc_nr].state & (
1119 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120 if (ev1 < mddev->events)
1121 return -EINVAL;
1122 } else if (mddev->bitmap) {
1123 /* if adding to array with a bitmap, then we can accept an
1124 * older device ... but not too old.
1125 */
1126 if (ev1 < mddev->bitmap->events_cleared)
1127 return 0;
1128 if (ev1 < mddev->events)
1129 set_bit(Bitmap_sync, &rdev->flags);
1130 } else {
1131 if (ev1 < mddev->events)
1132 /* just a hot-add of a new device, leave raid_disk at -1 */
1133 return 0;
1134 }
1135
1136 if (mddev->level != LEVEL_MULTIPATH) {
1137 desc = sb->disks + rdev->desc_nr;
1138
1139 if (desc->state & (1<<MD_DISK_FAULTY))
1140 set_bit(Faulty, &rdev->flags);
1141 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142 desc->raid_disk < mddev->raid_disks */) {
1143 set_bit(In_sync, &rdev->flags);
1144 rdev->raid_disk = desc->raid_disk;
1145 rdev->saved_raid_disk = desc->raid_disk;
1146 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147 /* active but not in sync implies recovery up to
1148 * reshape position. We don't know exactly where
1149 * that is, so set to zero for now */
1150 if (mddev->minor_version >= 91) {
1151 rdev->recovery_offset = 0;
1152 rdev->raid_disk = desc->raid_disk;
1153 }
1154 }
1155 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156 set_bit(WriteMostly, &rdev->flags);
1157 } else /* MULTIPATH are always insync */
1158 set_bit(In_sync, &rdev->flags);
1159 return 0;
1160 }
1161
1162 /*
1163 * sync_super for 0.90.0
1164 */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167 mdp_super_t *sb;
1168 struct md_rdev *rdev2;
1169 int next_spare = mddev->raid_disks;
1170
1171 /* make rdev->sb match mddev data..
1172 *
1173 * 1/ zero out disks
1174 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175 * 3/ any empty disks < next_spare become removed
1176 *
1177 * disks[0] gets initialised to REMOVED because
1178 * we cannot be sure from other fields if it has
1179 * been initialised or not.
1180 */
1181 int i;
1182 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183
1184 rdev->sb_size = MD_SB_BYTES;
1185
1186 sb = page_address(rdev->sb_page);
1187
1188 memset(sb, 0, sizeof(*sb));
1189
1190 sb->md_magic = MD_SB_MAGIC;
1191 sb->major_version = mddev->major_version;
1192 sb->patch_version = mddev->patch_version;
1193 sb->gvalid_words = 0; /* ignored */
1194 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198
1199 sb->ctime = mddev->ctime;
1200 sb->level = mddev->level;
1201 sb->size = mddev->dev_sectors / 2;
1202 sb->raid_disks = mddev->raid_disks;
1203 sb->md_minor = mddev->md_minor;
1204 sb->not_persistent = 0;
1205 sb->utime = mddev->utime;
1206 sb->state = 0;
1207 sb->events_hi = (mddev->events>>32);
1208 sb->events_lo = (u32)mddev->events;
1209
1210 if (mddev->reshape_position == MaxSector)
1211 sb->minor_version = 90;
1212 else {
1213 sb->minor_version = 91;
1214 sb->reshape_position = mddev->reshape_position;
1215 sb->new_level = mddev->new_level;
1216 sb->delta_disks = mddev->delta_disks;
1217 sb->new_layout = mddev->new_layout;
1218 sb->new_chunk = mddev->new_chunk_sectors << 9;
1219 }
1220 mddev->minor_version = sb->minor_version;
1221 if (mddev->in_sync)
1222 {
1223 sb->recovery_cp = mddev->recovery_cp;
1224 sb->cp_events_hi = (mddev->events>>32);
1225 sb->cp_events_lo = (u32)mddev->events;
1226 if (mddev->recovery_cp == MaxSector)
1227 sb->state = (1<< MD_SB_CLEAN);
1228 } else
1229 sb->recovery_cp = 0;
1230
1231 sb->layout = mddev->layout;
1232 sb->chunk_size = mddev->chunk_sectors << 9;
1233
1234 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236
1237 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238 rdev_for_each(rdev2, mddev) {
1239 mdp_disk_t *d;
1240 int desc_nr;
1241 int is_active = test_bit(In_sync, &rdev2->flags);
1242
1243 if (rdev2->raid_disk >= 0 &&
1244 sb->minor_version >= 91)
1245 /* we have nowhere to store the recovery_offset,
1246 * but if it is not below the reshape_position,
1247 * we can piggy-back on that.
1248 */
1249 is_active = 1;
1250 if (rdev2->raid_disk < 0 ||
1251 test_bit(Faulty, &rdev2->flags))
1252 is_active = 0;
1253 if (is_active)
1254 desc_nr = rdev2->raid_disk;
1255 else
1256 desc_nr = next_spare++;
1257 rdev2->desc_nr = desc_nr;
1258 d = &sb->disks[rdev2->desc_nr];
1259 nr_disks++;
1260 d->number = rdev2->desc_nr;
1261 d->major = MAJOR(rdev2->bdev->bd_dev);
1262 d->minor = MINOR(rdev2->bdev->bd_dev);
1263 if (is_active)
1264 d->raid_disk = rdev2->raid_disk;
1265 else
1266 d->raid_disk = rdev2->desc_nr; /* compatibility */
1267 if (test_bit(Faulty, &rdev2->flags))
1268 d->state = (1<<MD_DISK_FAULTY);
1269 else if (is_active) {
1270 d->state = (1<<MD_DISK_ACTIVE);
1271 if (test_bit(In_sync, &rdev2->flags))
1272 d->state |= (1<<MD_DISK_SYNC);
1273 active++;
1274 working++;
1275 } else {
1276 d->state = 0;
1277 spare++;
1278 working++;
1279 }
1280 if (test_bit(WriteMostly, &rdev2->flags))
1281 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282 }
1283 /* now set the "removed" and "faulty" bits on any missing devices */
1284 for (i=0 ; i < mddev->raid_disks ; i++) {
1285 mdp_disk_t *d = &sb->disks[i];
1286 if (d->state == 0 && d->number == 0) {
1287 d->number = i;
1288 d->raid_disk = i;
1289 d->state = (1<<MD_DISK_REMOVED);
1290 d->state |= (1<<MD_DISK_FAULTY);
1291 failed++;
1292 }
1293 }
1294 sb->nr_disks = nr_disks;
1295 sb->active_disks = active;
1296 sb->working_disks = working;
1297 sb->failed_disks = failed;
1298 sb->spare_disks = spare;
1299
1300 sb->this_disk = sb->disks[rdev->desc_nr];
1301 sb->sb_csum = calc_sb_csum(sb);
1302 }
1303
1304 /*
1305 * rdev_size_change for 0.90.0
1306 */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311 return 0; /* component must fit device */
1312 if (rdev->mddev->bitmap_info.offset)
1313 return 0; /* can't move bitmap */
1314 rdev->sb_start = calc_dev_sboffset(rdev);
1315 if (!num_sectors || num_sectors > rdev->sb_start)
1316 num_sectors = rdev->sb_start;
1317 /* Limit to 4TB as metadata cannot record more than that.
1318 * 4TB == 2^32 KB, or 2*2^32 sectors.
1319 */
1320 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1321 num_sectors = (2ULL << 32) - 2;
1322 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1323 rdev->sb_page);
1324 md_super_wait(rdev->mddev);
1325 return num_sectors;
1326 }
1327
1328 static int
1329 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1330 {
1331 /* non-zero offset changes not possible with v0.90 */
1332 return new_offset == 0;
1333 }
1334
1335 /*
1336 * version 1 superblock
1337 */
1338
1339 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1340 {
1341 __le32 disk_csum;
1342 u32 csum;
1343 unsigned long long newcsum;
1344 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1345 __le32 *isuper = (__le32*)sb;
1346
1347 disk_csum = sb->sb_csum;
1348 sb->sb_csum = 0;
1349 newcsum = 0;
1350 for (; size >= 4; size -= 4)
1351 newcsum += le32_to_cpu(*isuper++);
1352
1353 if (size == 2)
1354 newcsum += le16_to_cpu(*(__le16*) isuper);
1355
1356 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1357 sb->sb_csum = disk_csum;
1358 return cpu_to_le32(csum);
1359 }
1360
1361 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1362 int acknowledged);
1363 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1364 {
1365 struct mdp_superblock_1 *sb;
1366 int ret;
1367 sector_t sb_start;
1368 sector_t sectors;
1369 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1370 int bmask;
1371
1372 /*
1373 * Calculate the position of the superblock in 512byte sectors.
1374 * It is always aligned to a 4K boundary and
1375 * depeding on minor_version, it can be:
1376 * 0: At least 8K, but less than 12K, from end of device
1377 * 1: At start of device
1378 * 2: 4K from start of device.
1379 */
1380 switch(minor_version) {
1381 case 0:
1382 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1383 sb_start -= 8*2;
1384 sb_start &= ~(sector_t)(4*2-1);
1385 break;
1386 case 1:
1387 sb_start = 0;
1388 break;
1389 case 2:
1390 sb_start = 8;
1391 break;
1392 default:
1393 return -EINVAL;
1394 }
1395 rdev->sb_start = sb_start;
1396
1397 /* superblock is rarely larger than 1K, but it can be larger,
1398 * and it is safe to read 4k, so we do that
1399 */
1400 ret = read_disk_sb(rdev, 4096);
1401 if (ret) return ret;
1402
1403 sb = page_address(rdev->sb_page);
1404
1405 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406 sb->major_version != cpu_to_le32(1) ||
1407 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410 return -EINVAL;
1411
1412 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413 printk("md: invalid superblock checksum on %s\n",
1414 bdevname(rdev->bdev,b));
1415 return -EINVAL;
1416 }
1417 if (le64_to_cpu(sb->data_size) < 10) {
1418 printk("md: data_size too small on %s\n",
1419 bdevname(rdev->bdev,b));
1420 return -EINVAL;
1421 }
1422 if (sb->pad0 ||
1423 sb->pad3[0] ||
1424 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1425 /* Some padding is non-zero, might be a new feature */
1426 return -EINVAL;
1427
1428 rdev->preferred_minor = 0xffff;
1429 rdev->data_offset = le64_to_cpu(sb->data_offset);
1430 rdev->new_data_offset = rdev->data_offset;
1431 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1432 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1433 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1434 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1435
1436 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1437 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1438 if (rdev->sb_size & bmask)
1439 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1440
1441 if (minor_version
1442 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1443 return -EINVAL;
1444 if (minor_version
1445 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1446 return -EINVAL;
1447
1448 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1449 rdev->desc_nr = -1;
1450 else
1451 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1452
1453 if (!rdev->bb_page) {
1454 rdev->bb_page = alloc_page(GFP_KERNEL);
1455 if (!rdev->bb_page)
1456 return -ENOMEM;
1457 }
1458 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1459 rdev->badblocks.count == 0) {
1460 /* need to load the bad block list.
1461 * Currently we limit it to one page.
1462 */
1463 s32 offset;
1464 sector_t bb_sector;
1465 u64 *bbp;
1466 int i;
1467 int sectors = le16_to_cpu(sb->bblog_size);
1468 if (sectors > (PAGE_SIZE / 512))
1469 return -EINVAL;
1470 offset = le32_to_cpu(sb->bblog_offset);
1471 if (offset == 0)
1472 return -EINVAL;
1473 bb_sector = (long long)offset;
1474 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1475 rdev->bb_page, READ, true))
1476 return -EIO;
1477 bbp = (u64 *)page_address(rdev->bb_page);
1478 rdev->badblocks.shift = sb->bblog_shift;
1479 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1480 u64 bb = le64_to_cpu(*bbp);
1481 int count = bb & (0x3ff);
1482 u64 sector = bb >> 10;
1483 sector <<= sb->bblog_shift;
1484 count <<= sb->bblog_shift;
1485 if (bb + 1 == 0)
1486 break;
1487 if (md_set_badblocks(&rdev->badblocks,
1488 sector, count, 1) == 0)
1489 return -EINVAL;
1490 }
1491 } else if (sb->bblog_offset != 0)
1492 rdev->badblocks.shift = 0;
1493
1494 if (!refdev) {
1495 ret = 1;
1496 } else {
1497 __u64 ev1, ev2;
1498 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1499
1500 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1501 sb->level != refsb->level ||
1502 sb->layout != refsb->layout ||
1503 sb->chunksize != refsb->chunksize) {
1504 printk(KERN_WARNING "md: %s has strangely different"
1505 " superblock to %s\n",
1506 bdevname(rdev->bdev,b),
1507 bdevname(refdev->bdev,b2));
1508 return -EINVAL;
1509 }
1510 ev1 = le64_to_cpu(sb->events);
1511 ev2 = le64_to_cpu(refsb->events);
1512
1513 if (ev1 > ev2)
1514 ret = 1;
1515 else
1516 ret = 0;
1517 }
1518 if (minor_version) {
1519 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1520 sectors -= rdev->data_offset;
1521 } else
1522 sectors = rdev->sb_start;
1523 if (sectors < le64_to_cpu(sb->data_size))
1524 return -EINVAL;
1525 rdev->sectors = le64_to_cpu(sb->data_size);
1526 return ret;
1527 }
1528
1529 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1532 __u64 ev1 = le64_to_cpu(sb->events);
1533
1534 rdev->raid_disk = -1;
1535 clear_bit(Faulty, &rdev->flags);
1536 clear_bit(In_sync, &rdev->flags);
1537 clear_bit(Bitmap_sync, &rdev->flags);
1538 clear_bit(WriteMostly, &rdev->flags);
1539
1540 if (mddev->raid_disks == 0) {
1541 mddev->major_version = 1;
1542 mddev->patch_version = 0;
1543 mddev->external = 0;
1544 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1545 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1546 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1547 mddev->level = le32_to_cpu(sb->level);
1548 mddev->clevel[0] = 0;
1549 mddev->layout = le32_to_cpu(sb->layout);
1550 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1551 mddev->dev_sectors = le64_to_cpu(sb->size);
1552 mddev->events = ev1;
1553 mddev->bitmap_info.offset = 0;
1554 mddev->bitmap_info.space = 0;
1555 /* Default location for bitmap is 1K after superblock
1556 * using 3K - total of 4K
1557 */
1558 mddev->bitmap_info.default_offset = 1024 >> 9;
1559 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1560 mddev->reshape_backwards = 0;
1561
1562 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1563 memcpy(mddev->uuid, sb->set_uuid, 16);
1564
1565 mddev->max_disks = (4096-256)/2;
1566
1567 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1568 mddev->bitmap_info.file == NULL) {
1569 mddev->bitmap_info.offset =
1570 (__s32)le32_to_cpu(sb->bitmap_offset);
1571 /* Metadata doesn't record how much space is available.
1572 * For 1.0, we assume we can use up to the superblock
1573 * if before, else to 4K beyond superblock.
1574 * For others, assume no change is possible.
1575 */
1576 if (mddev->minor_version > 0)
1577 mddev->bitmap_info.space = 0;
1578 else if (mddev->bitmap_info.offset > 0)
1579 mddev->bitmap_info.space =
1580 8 - mddev->bitmap_info.offset;
1581 else
1582 mddev->bitmap_info.space =
1583 -mddev->bitmap_info.offset;
1584 }
1585
1586 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1587 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1588 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1589 mddev->new_level = le32_to_cpu(sb->new_level);
1590 mddev->new_layout = le32_to_cpu(sb->new_layout);
1591 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1592 if (mddev->delta_disks < 0 ||
1593 (mddev->delta_disks == 0 &&
1594 (le32_to_cpu(sb->feature_map)
1595 & MD_FEATURE_RESHAPE_BACKWARDS)))
1596 mddev->reshape_backwards = 1;
1597 } else {
1598 mddev->reshape_position = MaxSector;
1599 mddev->delta_disks = 0;
1600 mddev->new_level = mddev->level;
1601 mddev->new_layout = mddev->layout;
1602 mddev->new_chunk_sectors = mddev->chunk_sectors;
1603 }
1604
1605 } else if (mddev->pers == NULL) {
1606 /* Insist of good event counter while assembling, except for
1607 * spares (which don't need an event count) */
1608 ++ev1;
1609 if (rdev->desc_nr >= 0 &&
1610 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1611 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1612 if (ev1 < mddev->events)
1613 return -EINVAL;
1614 } else if (mddev->bitmap) {
1615 /* If adding to array with a bitmap, then we can accept an
1616 * older device, but not too old.
1617 */
1618 if (ev1 < mddev->bitmap->events_cleared)
1619 return 0;
1620 if (ev1 < mddev->events)
1621 set_bit(Bitmap_sync, &rdev->flags);
1622 } else {
1623 if (ev1 < mddev->events)
1624 /* just a hot-add of a new device, leave raid_disk at -1 */
1625 return 0;
1626 }
1627 if (mddev->level != LEVEL_MULTIPATH) {
1628 int role;
1629 if (rdev->desc_nr < 0 ||
1630 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1631 role = 0xffff;
1632 rdev->desc_nr = -1;
1633 } else
1634 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1635 switch(role) {
1636 case 0xffff: /* spare */
1637 break;
1638 case 0xfffe: /* faulty */
1639 set_bit(Faulty, &rdev->flags);
1640 break;
1641 default:
1642 rdev->saved_raid_disk = role;
1643 if ((le32_to_cpu(sb->feature_map) &
1644 MD_FEATURE_RECOVERY_OFFSET)) {
1645 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1646 if (!(le32_to_cpu(sb->feature_map) &
1647 MD_FEATURE_RECOVERY_BITMAP))
1648 rdev->saved_raid_disk = -1;
1649 } else
1650 set_bit(In_sync, &rdev->flags);
1651 rdev->raid_disk = role;
1652 break;
1653 }
1654 if (sb->devflags & WriteMostly1)
1655 set_bit(WriteMostly, &rdev->flags);
1656 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1657 set_bit(Replacement, &rdev->flags);
1658 } else /* MULTIPATH are always insync */
1659 set_bit(In_sync, &rdev->flags);
1660
1661 return 0;
1662 }
1663
1664 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1665 {
1666 struct mdp_superblock_1 *sb;
1667 struct md_rdev *rdev2;
1668 int max_dev, i;
1669 /* make rdev->sb match mddev and rdev data. */
1670
1671 sb = page_address(rdev->sb_page);
1672
1673 sb->feature_map = 0;
1674 sb->pad0 = 0;
1675 sb->recovery_offset = cpu_to_le64(0);
1676 memset(sb->pad3, 0, sizeof(sb->pad3));
1677
1678 sb->utime = cpu_to_le64((__u64)mddev->utime);
1679 sb->events = cpu_to_le64(mddev->events);
1680 if (mddev->in_sync)
1681 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1682 else
1683 sb->resync_offset = cpu_to_le64(0);
1684
1685 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1686
1687 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1688 sb->size = cpu_to_le64(mddev->dev_sectors);
1689 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1690 sb->level = cpu_to_le32(mddev->level);
1691 sb->layout = cpu_to_le32(mddev->layout);
1692
1693 if (test_bit(WriteMostly, &rdev->flags))
1694 sb->devflags |= WriteMostly1;
1695 else
1696 sb->devflags &= ~WriteMostly1;
1697 sb->data_offset = cpu_to_le64(rdev->data_offset);
1698 sb->data_size = cpu_to_le64(rdev->sectors);
1699
1700 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1701 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1702 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1703 }
1704
1705 if (rdev->raid_disk >= 0 &&
1706 !test_bit(In_sync, &rdev->flags)) {
1707 sb->feature_map |=
1708 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1709 sb->recovery_offset =
1710 cpu_to_le64(rdev->recovery_offset);
1711 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1712 sb->feature_map |=
1713 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1714 }
1715 if (test_bit(Replacement, &rdev->flags))
1716 sb->feature_map |=
1717 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1718
1719 if (mddev->reshape_position != MaxSector) {
1720 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1721 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1722 sb->new_layout = cpu_to_le32(mddev->new_layout);
1723 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1724 sb->new_level = cpu_to_le32(mddev->new_level);
1725 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1726 if (mddev->delta_disks == 0 &&
1727 mddev->reshape_backwards)
1728 sb->feature_map
1729 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1730 if (rdev->new_data_offset != rdev->data_offset) {
1731 sb->feature_map
1732 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1733 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1734 - rdev->data_offset));
1735 }
1736 }
1737
1738 if (mddev_is_clustered(mddev))
1739 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1740
1741 if (rdev->badblocks.count == 0)
1742 /* Nothing to do for bad blocks*/ ;
1743 else if (sb->bblog_offset == 0)
1744 /* Cannot record bad blocks on this device */
1745 md_error(mddev, rdev);
1746 else {
1747 struct badblocks *bb = &rdev->badblocks;
1748 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1749 u64 *p = bb->page;
1750 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1751 if (bb->changed) {
1752 unsigned seq;
1753
1754 retry:
1755 seq = read_seqbegin(&bb->lock);
1756
1757 memset(bbp, 0xff, PAGE_SIZE);
1758
1759 for (i = 0 ; i < bb->count ; i++) {
1760 u64 internal_bb = p[i];
1761 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1762 | BB_LEN(internal_bb));
1763 bbp[i] = cpu_to_le64(store_bb);
1764 }
1765 bb->changed = 0;
1766 if (read_seqretry(&bb->lock, seq))
1767 goto retry;
1768
1769 bb->sector = (rdev->sb_start +
1770 (int)le32_to_cpu(sb->bblog_offset));
1771 bb->size = le16_to_cpu(sb->bblog_size);
1772 }
1773 }
1774
1775 max_dev = 0;
1776 rdev_for_each(rdev2, mddev)
1777 if (rdev2->desc_nr+1 > max_dev)
1778 max_dev = rdev2->desc_nr+1;
1779
1780 if (max_dev > le32_to_cpu(sb->max_dev)) {
1781 int bmask;
1782 sb->max_dev = cpu_to_le32(max_dev);
1783 rdev->sb_size = max_dev * 2 + 256;
1784 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1785 if (rdev->sb_size & bmask)
1786 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1787 } else
1788 max_dev = le32_to_cpu(sb->max_dev);
1789
1790 for (i=0; i<max_dev;i++)
1791 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1792
1793 rdev_for_each(rdev2, mddev) {
1794 i = rdev2->desc_nr;
1795 if (test_bit(Faulty, &rdev2->flags))
1796 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1797 else if (test_bit(In_sync, &rdev2->flags))
1798 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1799 else if (rdev2->raid_disk >= 0)
1800 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1801 else
1802 sb->dev_roles[i] = cpu_to_le16(0xffff);
1803 }
1804
1805 sb->sb_csum = calc_sb_1_csum(sb);
1806 }
1807
1808 static unsigned long long
1809 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1810 {
1811 struct mdp_superblock_1 *sb;
1812 sector_t max_sectors;
1813 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1814 return 0; /* component must fit device */
1815 if (rdev->data_offset != rdev->new_data_offset)
1816 return 0; /* too confusing */
1817 if (rdev->sb_start < rdev->data_offset) {
1818 /* minor versions 1 and 2; superblock before data */
1819 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1820 max_sectors -= rdev->data_offset;
1821 if (!num_sectors || num_sectors > max_sectors)
1822 num_sectors = max_sectors;
1823 } else if (rdev->mddev->bitmap_info.offset) {
1824 /* minor version 0 with bitmap we can't move */
1825 return 0;
1826 } else {
1827 /* minor version 0; superblock after data */
1828 sector_t sb_start;
1829 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1830 sb_start &= ~(sector_t)(4*2 - 1);
1831 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1832 if (!num_sectors || num_sectors > max_sectors)
1833 num_sectors = max_sectors;
1834 rdev->sb_start = sb_start;
1835 }
1836 sb = page_address(rdev->sb_page);
1837 sb->data_size = cpu_to_le64(num_sectors);
1838 sb->super_offset = rdev->sb_start;
1839 sb->sb_csum = calc_sb_1_csum(sb);
1840 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1841 rdev->sb_page);
1842 md_super_wait(rdev->mddev);
1843 return num_sectors;
1844
1845 }
1846
1847 static int
1848 super_1_allow_new_offset(struct md_rdev *rdev,
1849 unsigned long long new_offset)
1850 {
1851 /* All necessary checks on new >= old have been done */
1852 struct bitmap *bitmap;
1853 if (new_offset >= rdev->data_offset)
1854 return 1;
1855
1856 /* with 1.0 metadata, there is no metadata to tread on
1857 * so we can always move back */
1858 if (rdev->mddev->minor_version == 0)
1859 return 1;
1860
1861 /* otherwise we must be sure not to step on
1862 * any metadata, so stay:
1863 * 36K beyond start of superblock
1864 * beyond end of badblocks
1865 * beyond write-intent bitmap
1866 */
1867 if (rdev->sb_start + (32+4)*2 > new_offset)
1868 return 0;
1869 bitmap = rdev->mddev->bitmap;
1870 if (bitmap && !rdev->mddev->bitmap_info.file &&
1871 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1872 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1873 return 0;
1874 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1875 return 0;
1876
1877 return 1;
1878 }
1879
1880 static struct super_type super_types[] = {
1881 [0] = {
1882 .name = "0.90.0",
1883 .owner = THIS_MODULE,
1884 .load_super = super_90_load,
1885 .validate_super = super_90_validate,
1886 .sync_super = super_90_sync,
1887 .rdev_size_change = super_90_rdev_size_change,
1888 .allow_new_offset = super_90_allow_new_offset,
1889 },
1890 [1] = {
1891 .name = "md-1",
1892 .owner = THIS_MODULE,
1893 .load_super = super_1_load,
1894 .validate_super = super_1_validate,
1895 .sync_super = super_1_sync,
1896 .rdev_size_change = super_1_rdev_size_change,
1897 .allow_new_offset = super_1_allow_new_offset,
1898 },
1899 };
1900
1901 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1902 {
1903 if (mddev->sync_super) {
1904 mddev->sync_super(mddev, rdev);
1905 return;
1906 }
1907
1908 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1909
1910 super_types[mddev->major_version].sync_super(mddev, rdev);
1911 }
1912
1913 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1914 {
1915 struct md_rdev *rdev, *rdev2;
1916
1917 rcu_read_lock();
1918 rdev_for_each_rcu(rdev, mddev1)
1919 rdev_for_each_rcu(rdev2, mddev2)
1920 if (rdev->bdev->bd_contains ==
1921 rdev2->bdev->bd_contains) {
1922 rcu_read_unlock();
1923 return 1;
1924 }
1925 rcu_read_unlock();
1926 return 0;
1927 }
1928
1929 static LIST_HEAD(pending_raid_disks);
1930
1931 /*
1932 * Try to register data integrity profile for an mddev
1933 *
1934 * This is called when an array is started and after a disk has been kicked
1935 * from the array. It only succeeds if all working and active component devices
1936 * are integrity capable with matching profiles.
1937 */
1938 int md_integrity_register(struct mddev *mddev)
1939 {
1940 struct md_rdev *rdev, *reference = NULL;
1941
1942 if (list_empty(&mddev->disks))
1943 return 0; /* nothing to do */
1944 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1945 return 0; /* shouldn't register, or already is */
1946 rdev_for_each(rdev, mddev) {
1947 /* skip spares and non-functional disks */
1948 if (test_bit(Faulty, &rdev->flags))
1949 continue;
1950 if (rdev->raid_disk < 0)
1951 continue;
1952 if (!reference) {
1953 /* Use the first rdev as the reference */
1954 reference = rdev;
1955 continue;
1956 }
1957 /* does this rdev's profile match the reference profile? */
1958 if (blk_integrity_compare(reference->bdev->bd_disk,
1959 rdev->bdev->bd_disk) < 0)
1960 return -EINVAL;
1961 }
1962 if (!reference || !bdev_get_integrity(reference->bdev))
1963 return 0;
1964 /*
1965 * All component devices are integrity capable and have matching
1966 * profiles, register the common profile for the md device.
1967 */
1968 if (blk_integrity_register(mddev->gendisk,
1969 bdev_get_integrity(reference->bdev)) != 0) {
1970 printk(KERN_ERR "md: failed to register integrity for %s\n",
1971 mdname(mddev));
1972 return -EINVAL;
1973 }
1974 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1975 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1976 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1977 mdname(mddev));
1978 return -EINVAL;
1979 }
1980 return 0;
1981 }
1982 EXPORT_SYMBOL(md_integrity_register);
1983
1984 /* Disable data integrity if non-capable/non-matching disk is being added */
1985 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1986 {
1987 struct blk_integrity *bi_rdev;
1988 struct blk_integrity *bi_mddev;
1989
1990 if (!mddev->gendisk)
1991 return;
1992
1993 bi_rdev = bdev_get_integrity(rdev->bdev);
1994 bi_mddev = blk_get_integrity(mddev->gendisk);
1995
1996 if (!bi_mddev) /* nothing to do */
1997 return;
1998 if (rdev->raid_disk < 0) /* skip spares */
1999 return;
2000 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2001 rdev->bdev->bd_disk) >= 0)
2002 return;
2003 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2004 blk_integrity_unregister(mddev->gendisk);
2005 }
2006 EXPORT_SYMBOL(md_integrity_add_rdev);
2007
2008 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2009 {
2010 char b[BDEVNAME_SIZE];
2011 struct kobject *ko;
2012 int err;
2013
2014 /* prevent duplicates */
2015 if (find_rdev(mddev, rdev->bdev->bd_dev))
2016 return -EEXIST;
2017
2018 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2019 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2020 rdev->sectors < mddev->dev_sectors)) {
2021 if (mddev->pers) {
2022 /* Cannot change size, so fail
2023 * If mddev->level <= 0, then we don't care
2024 * about aligning sizes (e.g. linear)
2025 */
2026 if (mddev->level > 0)
2027 return -ENOSPC;
2028 } else
2029 mddev->dev_sectors = rdev->sectors;
2030 }
2031
2032 /* Verify rdev->desc_nr is unique.
2033 * If it is -1, assign a free number, else
2034 * check number is not in use
2035 */
2036 rcu_read_lock();
2037 if (rdev->desc_nr < 0) {
2038 int choice = 0;
2039 if (mddev->pers)
2040 choice = mddev->raid_disks;
2041 while (md_find_rdev_nr_rcu(mddev, choice))
2042 choice++;
2043 rdev->desc_nr = choice;
2044 } else {
2045 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2046 rcu_read_unlock();
2047 return -EBUSY;
2048 }
2049 }
2050 rcu_read_unlock();
2051 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053 mdname(mddev), mddev->max_disks);
2054 return -EBUSY;
2055 }
2056 bdevname(rdev->bdev,b);
2057 strreplace(b, '/', '!');
2058
2059 rdev->mddev = mddev;
2060 printk(KERN_INFO "md: bind<%s>\n", b);
2061
2062 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2063 goto fail;
2064
2065 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2066 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2067 /* failure here is OK */;
2068 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2069
2070 list_add_rcu(&rdev->same_set, &mddev->disks);
2071 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2072
2073 /* May as well allow recovery to be retried once */
2074 mddev->recovery_disabled++;
2075
2076 return 0;
2077
2078 fail:
2079 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2080 b, mdname(mddev));
2081 return err;
2082 }
2083
2084 static void md_delayed_delete(struct work_struct *ws)
2085 {
2086 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2087 kobject_del(&rdev->kobj);
2088 kobject_put(&rdev->kobj);
2089 }
2090
2091 static void unbind_rdev_from_array(struct md_rdev *rdev)
2092 {
2093 char b[BDEVNAME_SIZE];
2094
2095 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2096 list_del_rcu(&rdev->same_set);
2097 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2098 rdev->mddev = NULL;
2099 sysfs_remove_link(&rdev->kobj, "block");
2100 sysfs_put(rdev->sysfs_state);
2101 rdev->sysfs_state = NULL;
2102 rdev->badblocks.count = 0;
2103 /* We need to delay this, otherwise we can deadlock when
2104 * writing to 'remove' to "dev/state". We also need
2105 * to delay it due to rcu usage.
2106 */
2107 synchronize_rcu();
2108 INIT_WORK(&rdev->del_work, md_delayed_delete);
2109 kobject_get(&rdev->kobj);
2110 queue_work(md_misc_wq, &rdev->del_work);
2111 }
2112
2113 /*
2114 * prevent the device from being mounted, repartitioned or
2115 * otherwise reused by a RAID array (or any other kernel
2116 * subsystem), by bd_claiming the device.
2117 */
2118 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2119 {
2120 int err = 0;
2121 struct block_device *bdev;
2122 char b[BDEVNAME_SIZE];
2123
2124 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2125 shared ? (struct md_rdev *)lock_rdev : rdev);
2126 if (IS_ERR(bdev)) {
2127 printk(KERN_ERR "md: could not open %s.\n",
2128 __bdevname(dev, b));
2129 return PTR_ERR(bdev);
2130 }
2131 rdev->bdev = bdev;
2132 return err;
2133 }
2134
2135 static void unlock_rdev(struct md_rdev *rdev)
2136 {
2137 struct block_device *bdev = rdev->bdev;
2138 rdev->bdev = NULL;
2139 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2140 }
2141
2142 void md_autodetect_dev(dev_t dev);
2143
2144 static void export_rdev(struct md_rdev *rdev)
2145 {
2146 char b[BDEVNAME_SIZE];
2147
2148 printk(KERN_INFO "md: export_rdev(%s)\n",
2149 bdevname(rdev->bdev,b));
2150 md_rdev_clear(rdev);
2151 #ifndef MODULE
2152 if (test_bit(AutoDetected, &rdev->flags))
2153 md_autodetect_dev(rdev->bdev->bd_dev);
2154 #endif
2155 unlock_rdev(rdev);
2156 kobject_put(&rdev->kobj);
2157 }
2158
2159 void md_kick_rdev_from_array(struct md_rdev *rdev)
2160 {
2161 unbind_rdev_from_array(rdev);
2162 export_rdev(rdev);
2163 }
2164 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2165
2166 static void export_array(struct mddev *mddev)
2167 {
2168 struct md_rdev *rdev;
2169
2170 while (!list_empty(&mddev->disks)) {
2171 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2172 same_set);
2173 md_kick_rdev_from_array(rdev);
2174 }
2175 mddev->raid_disks = 0;
2176 mddev->major_version = 0;
2177 }
2178
2179 static void sync_sbs(struct mddev *mddev, int nospares)
2180 {
2181 /* Update each superblock (in-memory image), but
2182 * if we are allowed to, skip spares which already
2183 * have the right event counter, or have one earlier
2184 * (which would mean they aren't being marked as dirty
2185 * with the rest of the array)
2186 */
2187 struct md_rdev *rdev;
2188 rdev_for_each(rdev, mddev) {
2189 if (rdev->sb_events == mddev->events ||
2190 (nospares &&
2191 rdev->raid_disk < 0 &&
2192 rdev->sb_events+1 == mddev->events)) {
2193 /* Don't update this superblock */
2194 rdev->sb_loaded = 2;
2195 } else {
2196 sync_super(mddev, rdev);
2197 rdev->sb_loaded = 1;
2198 }
2199 }
2200 }
2201
2202 void md_update_sb(struct mddev *mddev, int force_change)
2203 {
2204 struct md_rdev *rdev;
2205 int sync_req;
2206 int nospares = 0;
2207 int any_badblocks_changed = 0;
2208
2209 if (mddev->ro) {
2210 if (force_change)
2211 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2212 return;
2213 }
2214 repeat:
2215 /* First make sure individual recovery_offsets are correct */
2216 rdev_for_each(rdev, mddev) {
2217 if (rdev->raid_disk >= 0 &&
2218 mddev->delta_disks >= 0 &&
2219 !test_bit(In_sync, &rdev->flags) &&
2220 mddev->curr_resync_completed > rdev->recovery_offset)
2221 rdev->recovery_offset = mddev->curr_resync_completed;
2222
2223 }
2224 if (!mddev->persistent) {
2225 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2226 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2227 if (!mddev->external) {
2228 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2229 rdev_for_each(rdev, mddev) {
2230 if (rdev->badblocks.changed) {
2231 rdev->badblocks.changed = 0;
2232 md_ack_all_badblocks(&rdev->badblocks);
2233 md_error(mddev, rdev);
2234 }
2235 clear_bit(Blocked, &rdev->flags);
2236 clear_bit(BlockedBadBlocks, &rdev->flags);
2237 wake_up(&rdev->blocked_wait);
2238 }
2239 }
2240 wake_up(&mddev->sb_wait);
2241 return;
2242 }
2243
2244 spin_lock(&mddev->lock);
2245
2246 mddev->utime = get_seconds();
2247
2248 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2249 force_change = 1;
2250 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2251 /* just a clean<-> dirty transition, possibly leave spares alone,
2252 * though if events isn't the right even/odd, we will have to do
2253 * spares after all
2254 */
2255 nospares = 1;
2256 if (force_change)
2257 nospares = 0;
2258 if (mddev->degraded)
2259 /* If the array is degraded, then skipping spares is both
2260 * dangerous and fairly pointless.
2261 * Dangerous because a device that was removed from the array
2262 * might have a event_count that still looks up-to-date,
2263 * so it can be re-added without a resync.
2264 * Pointless because if there are any spares to skip,
2265 * then a recovery will happen and soon that array won't
2266 * be degraded any more and the spare can go back to sleep then.
2267 */
2268 nospares = 0;
2269
2270 sync_req = mddev->in_sync;
2271
2272 /* If this is just a dirty<->clean transition, and the array is clean
2273 * and 'events' is odd, we can roll back to the previous clean state */
2274 if (nospares
2275 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2276 && mddev->can_decrease_events
2277 && mddev->events != 1) {
2278 mddev->events--;
2279 mddev->can_decrease_events = 0;
2280 } else {
2281 /* otherwise we have to go forward and ... */
2282 mddev->events ++;
2283 mddev->can_decrease_events = nospares;
2284 }
2285
2286 /*
2287 * This 64-bit counter should never wrap.
2288 * Either we are in around ~1 trillion A.C., assuming
2289 * 1 reboot per second, or we have a bug...
2290 */
2291 WARN_ON(mddev->events == 0);
2292
2293 rdev_for_each(rdev, mddev) {
2294 if (rdev->badblocks.changed)
2295 any_badblocks_changed++;
2296 if (test_bit(Faulty, &rdev->flags))
2297 set_bit(FaultRecorded, &rdev->flags);
2298 }
2299
2300 sync_sbs(mddev, nospares);
2301 spin_unlock(&mddev->lock);
2302
2303 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2304 mdname(mddev), mddev->in_sync);
2305
2306 bitmap_update_sb(mddev->bitmap);
2307 rdev_for_each(rdev, mddev) {
2308 char b[BDEVNAME_SIZE];
2309
2310 if (rdev->sb_loaded != 1)
2311 continue; /* no noise on spare devices */
2312
2313 if (!test_bit(Faulty, &rdev->flags)) {
2314 md_super_write(mddev,rdev,
2315 rdev->sb_start, rdev->sb_size,
2316 rdev->sb_page);
2317 pr_debug("md: (write) %s's sb offset: %llu\n",
2318 bdevname(rdev->bdev, b),
2319 (unsigned long long)rdev->sb_start);
2320 rdev->sb_events = mddev->events;
2321 if (rdev->badblocks.size) {
2322 md_super_write(mddev, rdev,
2323 rdev->badblocks.sector,
2324 rdev->badblocks.size << 9,
2325 rdev->bb_page);
2326 rdev->badblocks.size = 0;
2327 }
2328
2329 } else
2330 pr_debug("md: %s (skipping faulty)\n",
2331 bdevname(rdev->bdev, b));
2332
2333 if (mddev->level == LEVEL_MULTIPATH)
2334 /* only need to write one superblock... */
2335 break;
2336 }
2337 md_super_wait(mddev);
2338 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2339
2340 spin_lock(&mddev->lock);
2341 if (mddev->in_sync != sync_req ||
2342 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2343 /* have to write it out again */
2344 spin_unlock(&mddev->lock);
2345 goto repeat;
2346 }
2347 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2348 spin_unlock(&mddev->lock);
2349 wake_up(&mddev->sb_wait);
2350 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2351 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2352
2353 rdev_for_each(rdev, mddev) {
2354 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2355 clear_bit(Blocked, &rdev->flags);
2356
2357 if (any_badblocks_changed)
2358 md_ack_all_badblocks(&rdev->badblocks);
2359 clear_bit(BlockedBadBlocks, &rdev->flags);
2360 wake_up(&rdev->blocked_wait);
2361 }
2362 }
2363 EXPORT_SYMBOL(md_update_sb);
2364
2365 static int add_bound_rdev(struct md_rdev *rdev)
2366 {
2367 struct mddev *mddev = rdev->mddev;
2368 int err = 0;
2369
2370 if (!mddev->pers->hot_remove_disk) {
2371 /* If there is hot_add_disk but no hot_remove_disk
2372 * then added disks for geometry changes,
2373 * and should be added immediately.
2374 */
2375 super_types[mddev->major_version].
2376 validate_super(mddev, rdev);
2377 err = mddev->pers->hot_add_disk(mddev, rdev);
2378 if (err) {
2379 unbind_rdev_from_array(rdev);
2380 export_rdev(rdev);
2381 return err;
2382 }
2383 }
2384 sysfs_notify_dirent_safe(rdev->sysfs_state);
2385
2386 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2387 if (mddev->degraded)
2388 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2389 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2390 md_new_event(mddev);
2391 md_wakeup_thread(mddev->thread);
2392 return 0;
2393 }
2394
2395 /* words written to sysfs files may, or may not, be \n terminated.
2396 * We want to accept with case. For this we use cmd_match.
2397 */
2398 static int cmd_match(const char *cmd, const char *str)
2399 {
2400 /* See if cmd, written into a sysfs file, matches
2401 * str. They must either be the same, or cmd can
2402 * have a trailing newline
2403 */
2404 while (*cmd && *str && *cmd == *str) {
2405 cmd++;
2406 str++;
2407 }
2408 if (*cmd == '\n')
2409 cmd++;
2410 if (*str || *cmd)
2411 return 0;
2412 return 1;
2413 }
2414
2415 struct rdev_sysfs_entry {
2416 struct attribute attr;
2417 ssize_t (*show)(struct md_rdev *, char *);
2418 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2419 };
2420
2421 static ssize_t
2422 state_show(struct md_rdev *rdev, char *page)
2423 {
2424 char *sep = "";
2425 size_t len = 0;
2426 unsigned long flags = ACCESS_ONCE(rdev->flags);
2427
2428 if (test_bit(Faulty, &flags) ||
2429 rdev->badblocks.unacked_exist) {
2430 len+= sprintf(page+len, "%sfaulty",sep);
2431 sep = ",";
2432 }
2433 if (test_bit(In_sync, &flags)) {
2434 len += sprintf(page+len, "%sin_sync",sep);
2435 sep = ",";
2436 }
2437 if (test_bit(WriteMostly, &flags)) {
2438 len += sprintf(page+len, "%swrite_mostly",sep);
2439 sep = ",";
2440 }
2441 if (test_bit(Blocked, &flags) ||
2442 (rdev->badblocks.unacked_exist
2443 && !test_bit(Faulty, &flags))) {
2444 len += sprintf(page+len, "%sblocked", sep);
2445 sep = ",";
2446 }
2447 if (!test_bit(Faulty, &flags) &&
2448 !test_bit(In_sync, &flags)) {
2449 len += sprintf(page+len, "%sspare", sep);
2450 sep = ",";
2451 }
2452 if (test_bit(WriteErrorSeen, &flags)) {
2453 len += sprintf(page+len, "%swrite_error", sep);
2454 sep = ",";
2455 }
2456 if (test_bit(WantReplacement, &flags)) {
2457 len += sprintf(page+len, "%swant_replacement", sep);
2458 sep = ",";
2459 }
2460 if (test_bit(Replacement, &flags)) {
2461 len += sprintf(page+len, "%sreplacement", sep);
2462 sep = ",";
2463 }
2464
2465 return len+sprintf(page+len, "\n");
2466 }
2467
2468 static ssize_t
2469 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2470 {
2471 /* can write
2472 * faulty - simulates an error
2473 * remove - disconnects the device
2474 * writemostly - sets write_mostly
2475 * -writemostly - clears write_mostly
2476 * blocked - sets the Blocked flags
2477 * -blocked - clears the Blocked and possibly simulates an error
2478 * insync - sets Insync providing device isn't active
2479 * -insync - clear Insync for a device with a slot assigned,
2480 * so that it gets rebuilt based on bitmap
2481 * write_error - sets WriteErrorSeen
2482 * -write_error - clears WriteErrorSeen
2483 */
2484 int err = -EINVAL;
2485 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2486 md_error(rdev->mddev, rdev);
2487 if (test_bit(Faulty, &rdev->flags))
2488 err = 0;
2489 else
2490 err = -EBUSY;
2491 } else if (cmd_match(buf, "remove")) {
2492 if (rdev->raid_disk >= 0)
2493 err = -EBUSY;
2494 else {
2495 struct mddev *mddev = rdev->mddev;
2496 if (mddev_is_clustered(mddev))
2497 md_cluster_ops->remove_disk(mddev, rdev);
2498 md_kick_rdev_from_array(rdev);
2499 if (mddev_is_clustered(mddev))
2500 md_cluster_ops->metadata_update_start(mddev);
2501 if (mddev->pers)
2502 md_update_sb(mddev, 1);
2503 md_new_event(mddev);
2504 if (mddev_is_clustered(mddev))
2505 md_cluster_ops->metadata_update_finish(mddev);
2506 err = 0;
2507 }
2508 } else if (cmd_match(buf, "writemostly")) {
2509 set_bit(WriteMostly, &rdev->flags);
2510 err = 0;
2511 } else if (cmd_match(buf, "-writemostly")) {
2512 clear_bit(WriteMostly, &rdev->flags);
2513 err = 0;
2514 } else if (cmd_match(buf, "blocked")) {
2515 set_bit(Blocked, &rdev->flags);
2516 err = 0;
2517 } else if (cmd_match(buf, "-blocked")) {
2518 if (!test_bit(Faulty, &rdev->flags) &&
2519 rdev->badblocks.unacked_exist) {
2520 /* metadata handler doesn't understand badblocks,
2521 * so we need to fail the device
2522 */
2523 md_error(rdev->mddev, rdev);
2524 }
2525 clear_bit(Blocked, &rdev->flags);
2526 clear_bit(BlockedBadBlocks, &rdev->flags);
2527 wake_up(&rdev->blocked_wait);
2528 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2529 md_wakeup_thread(rdev->mddev->thread);
2530
2531 err = 0;
2532 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2533 set_bit(In_sync, &rdev->flags);
2534 err = 0;
2535 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2536 if (rdev->mddev->pers == NULL) {
2537 clear_bit(In_sync, &rdev->flags);
2538 rdev->saved_raid_disk = rdev->raid_disk;
2539 rdev->raid_disk = -1;
2540 err = 0;
2541 }
2542 } else if (cmd_match(buf, "write_error")) {
2543 set_bit(WriteErrorSeen, &rdev->flags);
2544 err = 0;
2545 } else if (cmd_match(buf, "-write_error")) {
2546 clear_bit(WriteErrorSeen, &rdev->flags);
2547 err = 0;
2548 } else if (cmd_match(buf, "want_replacement")) {
2549 /* Any non-spare device that is not a replacement can
2550 * become want_replacement at any time, but we then need to
2551 * check if recovery is needed.
2552 */
2553 if (rdev->raid_disk >= 0 &&
2554 !test_bit(Replacement, &rdev->flags))
2555 set_bit(WantReplacement, &rdev->flags);
2556 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2557 md_wakeup_thread(rdev->mddev->thread);
2558 err = 0;
2559 } else if (cmd_match(buf, "-want_replacement")) {
2560 /* Clearing 'want_replacement' is always allowed.
2561 * Once replacements starts it is too late though.
2562 */
2563 err = 0;
2564 clear_bit(WantReplacement, &rdev->flags);
2565 } else if (cmd_match(buf, "replacement")) {
2566 /* Can only set a device as a replacement when array has not
2567 * yet been started. Once running, replacement is automatic
2568 * from spares, or by assigning 'slot'.
2569 */
2570 if (rdev->mddev->pers)
2571 err = -EBUSY;
2572 else {
2573 set_bit(Replacement, &rdev->flags);
2574 err = 0;
2575 }
2576 } else if (cmd_match(buf, "-replacement")) {
2577 /* Similarly, can only clear Replacement before start */
2578 if (rdev->mddev->pers)
2579 err = -EBUSY;
2580 else {
2581 clear_bit(Replacement, &rdev->flags);
2582 err = 0;
2583 }
2584 } else if (cmd_match(buf, "re-add")) {
2585 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2586 /* clear_bit is performed _after_ all the devices
2587 * have their local Faulty bit cleared. If any writes
2588 * happen in the meantime in the local node, they
2589 * will land in the local bitmap, which will be synced
2590 * by this node eventually
2591 */
2592 if (!mddev_is_clustered(rdev->mddev) ||
2593 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2594 clear_bit(Faulty, &rdev->flags);
2595 err = add_bound_rdev(rdev);
2596 }
2597 } else
2598 err = -EBUSY;
2599 }
2600 if (!err)
2601 sysfs_notify_dirent_safe(rdev->sysfs_state);
2602 return err ? err : len;
2603 }
2604 static struct rdev_sysfs_entry rdev_state =
2605 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2606
2607 static ssize_t
2608 errors_show(struct md_rdev *rdev, char *page)
2609 {
2610 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2611 }
2612
2613 static ssize_t
2614 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2615 {
2616 unsigned int n;
2617 int rv;
2618
2619 rv = kstrtouint(buf, 10, &n);
2620 if (rv < 0)
2621 return rv;
2622 atomic_set(&rdev->corrected_errors, n);
2623 return len;
2624 }
2625 static struct rdev_sysfs_entry rdev_errors =
2626 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2627
2628 static ssize_t
2629 slot_show(struct md_rdev *rdev, char *page)
2630 {
2631 if (rdev->raid_disk < 0)
2632 return sprintf(page, "none\n");
2633 else
2634 return sprintf(page, "%d\n", rdev->raid_disk);
2635 }
2636
2637 static ssize_t
2638 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2639 {
2640 int slot;
2641 int err;
2642
2643 if (strncmp(buf, "none", 4)==0)
2644 slot = -1;
2645 else {
2646 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2647 if (err < 0)
2648 return err;
2649 }
2650 if (rdev->mddev->pers && slot == -1) {
2651 /* Setting 'slot' on an active array requires also
2652 * updating the 'rd%d' link, and communicating
2653 * with the personality with ->hot_*_disk.
2654 * For now we only support removing
2655 * failed/spare devices. This normally happens automatically,
2656 * but not when the metadata is externally managed.
2657 */
2658 if (rdev->raid_disk == -1)
2659 return -EEXIST;
2660 /* personality does all needed checks */
2661 if (rdev->mddev->pers->hot_remove_disk == NULL)
2662 return -EINVAL;
2663 clear_bit(Blocked, &rdev->flags);
2664 remove_and_add_spares(rdev->mddev, rdev);
2665 if (rdev->raid_disk >= 0)
2666 return -EBUSY;
2667 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2668 md_wakeup_thread(rdev->mddev->thread);
2669 } else if (rdev->mddev->pers) {
2670 /* Activating a spare .. or possibly reactivating
2671 * if we ever get bitmaps working here.
2672 */
2673
2674 if (rdev->raid_disk != -1)
2675 return -EBUSY;
2676
2677 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2678 return -EBUSY;
2679
2680 if (rdev->mddev->pers->hot_add_disk == NULL)
2681 return -EINVAL;
2682
2683 if (slot >= rdev->mddev->raid_disks &&
2684 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2685 return -ENOSPC;
2686
2687 rdev->raid_disk = slot;
2688 if (test_bit(In_sync, &rdev->flags))
2689 rdev->saved_raid_disk = slot;
2690 else
2691 rdev->saved_raid_disk = -1;
2692 clear_bit(In_sync, &rdev->flags);
2693 clear_bit(Bitmap_sync, &rdev->flags);
2694 remove_and_add_spares(rdev->mddev, rdev);
2695 if (rdev->raid_disk == -1)
2696 return -EBUSY;
2697 /* don't wakeup anyone, leave that to userspace. */
2698 } else {
2699 if (slot >= rdev->mddev->raid_disks &&
2700 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2701 return -ENOSPC;
2702 rdev->raid_disk = slot;
2703 /* assume it is working */
2704 clear_bit(Faulty, &rdev->flags);
2705 clear_bit(WriteMostly, &rdev->flags);
2706 set_bit(In_sync, &rdev->flags);
2707 sysfs_notify_dirent_safe(rdev->sysfs_state);
2708 }
2709 return len;
2710 }
2711
2712 static struct rdev_sysfs_entry rdev_slot =
2713 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2714
2715 static ssize_t
2716 offset_show(struct md_rdev *rdev, char *page)
2717 {
2718 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2719 }
2720
2721 static ssize_t
2722 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2723 {
2724 unsigned long long offset;
2725 if (kstrtoull(buf, 10, &offset) < 0)
2726 return -EINVAL;
2727 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2728 return -EBUSY;
2729 if (rdev->sectors && rdev->mddev->external)
2730 /* Must set offset before size, so overlap checks
2731 * can be sane */
2732 return -EBUSY;
2733 rdev->data_offset = offset;
2734 rdev->new_data_offset = offset;
2735 return len;
2736 }
2737
2738 static struct rdev_sysfs_entry rdev_offset =
2739 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2740
2741 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2742 {
2743 return sprintf(page, "%llu\n",
2744 (unsigned long long)rdev->new_data_offset);
2745 }
2746
2747 static ssize_t new_offset_store(struct md_rdev *rdev,
2748 const char *buf, size_t len)
2749 {
2750 unsigned long long new_offset;
2751 struct mddev *mddev = rdev->mddev;
2752
2753 if (kstrtoull(buf, 10, &new_offset) < 0)
2754 return -EINVAL;
2755
2756 if (mddev->sync_thread ||
2757 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2758 return -EBUSY;
2759 if (new_offset == rdev->data_offset)
2760 /* reset is always permitted */
2761 ;
2762 else if (new_offset > rdev->data_offset) {
2763 /* must not push array size beyond rdev_sectors */
2764 if (new_offset - rdev->data_offset
2765 + mddev->dev_sectors > rdev->sectors)
2766 return -E2BIG;
2767 }
2768 /* Metadata worries about other space details. */
2769
2770 /* decreasing the offset is inconsistent with a backwards
2771 * reshape.
2772 */
2773 if (new_offset < rdev->data_offset &&
2774 mddev->reshape_backwards)
2775 return -EINVAL;
2776 /* Increasing offset is inconsistent with forwards
2777 * reshape. reshape_direction should be set to
2778 * 'backwards' first.
2779 */
2780 if (new_offset > rdev->data_offset &&
2781 !mddev->reshape_backwards)
2782 return -EINVAL;
2783
2784 if (mddev->pers && mddev->persistent &&
2785 !super_types[mddev->major_version]
2786 .allow_new_offset(rdev, new_offset))
2787 return -E2BIG;
2788 rdev->new_data_offset = new_offset;
2789 if (new_offset > rdev->data_offset)
2790 mddev->reshape_backwards = 1;
2791 else if (new_offset < rdev->data_offset)
2792 mddev->reshape_backwards = 0;
2793
2794 return len;
2795 }
2796 static struct rdev_sysfs_entry rdev_new_offset =
2797 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2798
2799 static ssize_t
2800 rdev_size_show(struct md_rdev *rdev, char *page)
2801 {
2802 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2803 }
2804
2805 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2806 {
2807 /* check if two start/length pairs overlap */
2808 if (s1+l1 <= s2)
2809 return 0;
2810 if (s2+l2 <= s1)
2811 return 0;
2812 return 1;
2813 }
2814
2815 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2816 {
2817 unsigned long long blocks;
2818 sector_t new;
2819
2820 if (kstrtoull(buf, 10, &blocks) < 0)
2821 return -EINVAL;
2822
2823 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2824 return -EINVAL; /* sector conversion overflow */
2825
2826 new = blocks * 2;
2827 if (new != blocks * 2)
2828 return -EINVAL; /* unsigned long long to sector_t overflow */
2829
2830 *sectors = new;
2831 return 0;
2832 }
2833
2834 static ssize_t
2835 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2836 {
2837 struct mddev *my_mddev = rdev->mddev;
2838 sector_t oldsectors = rdev->sectors;
2839 sector_t sectors;
2840
2841 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2842 return -EINVAL;
2843 if (rdev->data_offset != rdev->new_data_offset)
2844 return -EINVAL; /* too confusing */
2845 if (my_mddev->pers && rdev->raid_disk >= 0) {
2846 if (my_mddev->persistent) {
2847 sectors = super_types[my_mddev->major_version].
2848 rdev_size_change(rdev, sectors);
2849 if (!sectors)
2850 return -EBUSY;
2851 } else if (!sectors)
2852 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2853 rdev->data_offset;
2854 if (!my_mddev->pers->resize)
2855 /* Cannot change size for RAID0 or Linear etc */
2856 return -EINVAL;
2857 }
2858 if (sectors < my_mddev->dev_sectors)
2859 return -EINVAL; /* component must fit device */
2860
2861 rdev->sectors = sectors;
2862 if (sectors > oldsectors && my_mddev->external) {
2863 /* Need to check that all other rdevs with the same
2864 * ->bdev do not overlap. 'rcu' is sufficient to walk
2865 * the rdev lists safely.
2866 * This check does not provide a hard guarantee, it
2867 * just helps avoid dangerous mistakes.
2868 */
2869 struct mddev *mddev;
2870 int overlap = 0;
2871 struct list_head *tmp;
2872
2873 rcu_read_lock();
2874 for_each_mddev(mddev, tmp) {
2875 struct md_rdev *rdev2;
2876
2877 rdev_for_each(rdev2, mddev)
2878 if (rdev->bdev == rdev2->bdev &&
2879 rdev != rdev2 &&
2880 overlaps(rdev->data_offset, rdev->sectors,
2881 rdev2->data_offset,
2882 rdev2->sectors)) {
2883 overlap = 1;
2884 break;
2885 }
2886 if (overlap) {
2887 mddev_put(mddev);
2888 break;
2889 }
2890 }
2891 rcu_read_unlock();
2892 if (overlap) {
2893 /* Someone else could have slipped in a size
2894 * change here, but doing so is just silly.
2895 * We put oldsectors back because we *know* it is
2896 * safe, and trust userspace not to race with
2897 * itself
2898 */
2899 rdev->sectors = oldsectors;
2900 return -EBUSY;
2901 }
2902 }
2903 return len;
2904 }
2905
2906 static struct rdev_sysfs_entry rdev_size =
2907 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2908
2909 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2910 {
2911 unsigned long long recovery_start = rdev->recovery_offset;
2912
2913 if (test_bit(In_sync, &rdev->flags) ||
2914 recovery_start == MaxSector)
2915 return sprintf(page, "none\n");
2916
2917 return sprintf(page, "%llu\n", recovery_start);
2918 }
2919
2920 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2921 {
2922 unsigned long long recovery_start;
2923
2924 if (cmd_match(buf, "none"))
2925 recovery_start = MaxSector;
2926 else if (kstrtoull(buf, 10, &recovery_start))
2927 return -EINVAL;
2928
2929 if (rdev->mddev->pers &&
2930 rdev->raid_disk >= 0)
2931 return -EBUSY;
2932
2933 rdev->recovery_offset = recovery_start;
2934 if (recovery_start == MaxSector)
2935 set_bit(In_sync, &rdev->flags);
2936 else
2937 clear_bit(In_sync, &rdev->flags);
2938 return len;
2939 }
2940
2941 static struct rdev_sysfs_entry rdev_recovery_start =
2942 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2943
2944 static ssize_t
2945 badblocks_show(struct badblocks *bb, char *page, int unack);
2946 static ssize_t
2947 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2948
2949 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2950 {
2951 return badblocks_show(&rdev->badblocks, page, 0);
2952 }
2953 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2954 {
2955 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2956 /* Maybe that ack was all we needed */
2957 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2958 wake_up(&rdev->blocked_wait);
2959 return rv;
2960 }
2961 static struct rdev_sysfs_entry rdev_bad_blocks =
2962 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2963
2964 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2965 {
2966 return badblocks_show(&rdev->badblocks, page, 1);
2967 }
2968 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2969 {
2970 return badblocks_store(&rdev->badblocks, page, len, 1);
2971 }
2972 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2973 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2974
2975 static struct attribute *rdev_default_attrs[] = {
2976 &rdev_state.attr,
2977 &rdev_errors.attr,
2978 &rdev_slot.attr,
2979 &rdev_offset.attr,
2980 &rdev_new_offset.attr,
2981 &rdev_size.attr,
2982 &rdev_recovery_start.attr,
2983 &rdev_bad_blocks.attr,
2984 &rdev_unack_bad_blocks.attr,
2985 NULL,
2986 };
2987 static ssize_t
2988 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2989 {
2990 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2991 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2992
2993 if (!entry->show)
2994 return -EIO;
2995 if (!rdev->mddev)
2996 return -EBUSY;
2997 return entry->show(rdev, page);
2998 }
2999
3000 static ssize_t
3001 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3002 const char *page, size_t length)
3003 {
3004 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3005 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3006 ssize_t rv;
3007 struct mddev *mddev = rdev->mddev;
3008
3009 if (!entry->store)
3010 return -EIO;
3011 if (!capable(CAP_SYS_ADMIN))
3012 return -EACCES;
3013 rv = mddev ? mddev_lock(mddev): -EBUSY;
3014 if (!rv) {
3015 if (rdev->mddev == NULL)
3016 rv = -EBUSY;
3017 else
3018 rv = entry->store(rdev, page, length);
3019 mddev_unlock(mddev);
3020 }
3021 return rv;
3022 }
3023
3024 static void rdev_free(struct kobject *ko)
3025 {
3026 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3027 kfree(rdev);
3028 }
3029 static const struct sysfs_ops rdev_sysfs_ops = {
3030 .show = rdev_attr_show,
3031 .store = rdev_attr_store,
3032 };
3033 static struct kobj_type rdev_ktype = {
3034 .release = rdev_free,
3035 .sysfs_ops = &rdev_sysfs_ops,
3036 .default_attrs = rdev_default_attrs,
3037 };
3038
3039 int md_rdev_init(struct md_rdev *rdev)
3040 {
3041 rdev->desc_nr = -1;
3042 rdev->saved_raid_disk = -1;
3043 rdev->raid_disk = -1;
3044 rdev->flags = 0;
3045 rdev->data_offset = 0;
3046 rdev->new_data_offset = 0;
3047 rdev->sb_events = 0;
3048 rdev->last_read_error.tv_sec = 0;
3049 rdev->last_read_error.tv_nsec = 0;
3050 rdev->sb_loaded = 0;
3051 rdev->bb_page = NULL;
3052 atomic_set(&rdev->nr_pending, 0);
3053 atomic_set(&rdev->read_errors, 0);
3054 atomic_set(&rdev->corrected_errors, 0);
3055
3056 INIT_LIST_HEAD(&rdev->same_set);
3057 init_waitqueue_head(&rdev->blocked_wait);
3058
3059 /* Add space to store bad block list.
3060 * This reserves the space even on arrays where it cannot
3061 * be used - I wonder if that matters
3062 */
3063 rdev->badblocks.count = 0;
3064 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3065 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3066 seqlock_init(&rdev->badblocks.lock);
3067 if (rdev->badblocks.page == NULL)
3068 return -ENOMEM;
3069
3070 return 0;
3071 }
3072 EXPORT_SYMBOL_GPL(md_rdev_init);
3073 /*
3074 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3075 *
3076 * mark the device faulty if:
3077 *
3078 * - the device is nonexistent (zero size)
3079 * - the device has no valid superblock
3080 *
3081 * a faulty rdev _never_ has rdev->sb set.
3082 */
3083 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3084 {
3085 char b[BDEVNAME_SIZE];
3086 int err;
3087 struct md_rdev *rdev;
3088 sector_t size;
3089
3090 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3091 if (!rdev) {
3092 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3093 return ERR_PTR(-ENOMEM);
3094 }
3095
3096 err = md_rdev_init(rdev);
3097 if (err)
3098 goto abort_free;
3099 err = alloc_disk_sb(rdev);
3100 if (err)
3101 goto abort_free;
3102
3103 err = lock_rdev(rdev, newdev, super_format == -2);
3104 if (err)
3105 goto abort_free;
3106
3107 kobject_init(&rdev->kobj, &rdev_ktype);
3108
3109 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3110 if (!size) {
3111 printk(KERN_WARNING
3112 "md: %s has zero or unknown size, marking faulty!\n",
3113 bdevname(rdev->bdev,b));
3114 err = -EINVAL;
3115 goto abort_free;
3116 }
3117
3118 if (super_format >= 0) {
3119 err = super_types[super_format].
3120 load_super(rdev, NULL, super_minor);
3121 if (err == -EINVAL) {
3122 printk(KERN_WARNING
3123 "md: %s does not have a valid v%d.%d "
3124 "superblock, not importing!\n",
3125 bdevname(rdev->bdev,b),
3126 super_format, super_minor);
3127 goto abort_free;
3128 }
3129 if (err < 0) {
3130 printk(KERN_WARNING
3131 "md: could not read %s's sb, not importing!\n",
3132 bdevname(rdev->bdev,b));
3133 goto abort_free;
3134 }
3135 }
3136
3137 return rdev;
3138
3139 abort_free:
3140 if (rdev->bdev)
3141 unlock_rdev(rdev);
3142 md_rdev_clear(rdev);
3143 kfree(rdev);
3144 return ERR_PTR(err);
3145 }
3146
3147 /*
3148 * Check a full RAID array for plausibility
3149 */
3150
3151 static void analyze_sbs(struct mddev *mddev)
3152 {
3153 int i;
3154 struct md_rdev *rdev, *freshest, *tmp;
3155 char b[BDEVNAME_SIZE];
3156
3157 freshest = NULL;
3158 rdev_for_each_safe(rdev, tmp, mddev)
3159 switch (super_types[mddev->major_version].
3160 load_super(rdev, freshest, mddev->minor_version)) {
3161 case 1:
3162 freshest = rdev;
3163 break;
3164 case 0:
3165 break;
3166 default:
3167 printk( KERN_ERR \
3168 "md: fatal superblock inconsistency in %s"
3169 " -- removing from array\n",
3170 bdevname(rdev->bdev,b));
3171 md_kick_rdev_from_array(rdev);
3172 }
3173
3174 super_types[mddev->major_version].
3175 validate_super(mddev, freshest);
3176
3177 i = 0;
3178 rdev_for_each_safe(rdev, tmp, mddev) {
3179 if (mddev->max_disks &&
3180 (rdev->desc_nr >= mddev->max_disks ||
3181 i > mddev->max_disks)) {
3182 printk(KERN_WARNING
3183 "md: %s: %s: only %d devices permitted\n",
3184 mdname(mddev), bdevname(rdev->bdev, b),
3185 mddev->max_disks);
3186 md_kick_rdev_from_array(rdev);
3187 continue;
3188 }
3189 if (rdev != freshest) {
3190 if (super_types[mddev->major_version].
3191 validate_super(mddev, rdev)) {
3192 printk(KERN_WARNING "md: kicking non-fresh %s"
3193 " from array!\n",
3194 bdevname(rdev->bdev,b));
3195 md_kick_rdev_from_array(rdev);
3196 continue;
3197 }
3198 /* No device should have a Candidate flag
3199 * when reading devices
3200 */
3201 if (test_bit(Candidate, &rdev->flags)) {
3202 pr_info("md: kicking Cluster Candidate %s from array!\n",
3203 bdevname(rdev->bdev, b));
3204 md_kick_rdev_from_array(rdev);
3205 }
3206 }
3207 if (mddev->level == LEVEL_MULTIPATH) {
3208 rdev->desc_nr = i++;
3209 rdev->raid_disk = rdev->desc_nr;
3210 set_bit(In_sync, &rdev->flags);
3211 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3212 rdev->raid_disk = -1;
3213 clear_bit(In_sync, &rdev->flags);
3214 }
3215 }
3216 }
3217
3218 /* Read a fixed-point number.
3219 * Numbers in sysfs attributes should be in "standard" units where
3220 * possible, so time should be in seconds.
3221 * However we internally use a a much smaller unit such as
3222 * milliseconds or jiffies.
3223 * This function takes a decimal number with a possible fractional
3224 * component, and produces an integer which is the result of
3225 * multiplying that number by 10^'scale'.
3226 * all without any floating-point arithmetic.
3227 */
3228 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3229 {
3230 unsigned long result = 0;
3231 long decimals = -1;
3232 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3233 if (*cp == '.')
3234 decimals = 0;
3235 else if (decimals < scale) {
3236 unsigned int value;
3237 value = *cp - '0';
3238 result = result * 10 + value;
3239 if (decimals >= 0)
3240 decimals++;
3241 }
3242 cp++;
3243 }
3244 if (*cp == '\n')
3245 cp++;
3246 if (*cp)
3247 return -EINVAL;
3248 if (decimals < 0)
3249 decimals = 0;
3250 while (decimals < scale) {
3251 result *= 10;
3252 decimals ++;
3253 }
3254 *res = result;
3255 return 0;
3256 }
3257
3258 static ssize_t
3259 safe_delay_show(struct mddev *mddev, char *page)
3260 {
3261 int msec = (mddev->safemode_delay*1000)/HZ;
3262 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3263 }
3264 static ssize_t
3265 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3266 {
3267 unsigned long msec;
3268
3269 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3270 return -EINVAL;
3271 if (msec == 0)
3272 mddev->safemode_delay = 0;
3273 else {
3274 unsigned long old_delay = mddev->safemode_delay;
3275 unsigned long new_delay = (msec*HZ)/1000;
3276
3277 if (new_delay == 0)
3278 new_delay = 1;
3279 mddev->safemode_delay = new_delay;
3280 if (new_delay < old_delay || old_delay == 0)
3281 mod_timer(&mddev->safemode_timer, jiffies+1);
3282 }
3283 return len;
3284 }
3285 static struct md_sysfs_entry md_safe_delay =
3286 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3287
3288 static ssize_t
3289 level_show(struct mddev *mddev, char *page)
3290 {
3291 struct md_personality *p;
3292 int ret;
3293 spin_lock(&mddev->lock);
3294 p = mddev->pers;
3295 if (p)
3296 ret = sprintf(page, "%s\n", p->name);
3297 else if (mddev->clevel[0])
3298 ret = sprintf(page, "%s\n", mddev->clevel);
3299 else if (mddev->level != LEVEL_NONE)
3300 ret = sprintf(page, "%d\n", mddev->level);
3301 else
3302 ret = 0;
3303 spin_unlock(&mddev->lock);
3304 return ret;
3305 }
3306
3307 static ssize_t
3308 level_store(struct mddev *mddev, const char *buf, size_t len)
3309 {
3310 char clevel[16];
3311 ssize_t rv;
3312 size_t slen = len;
3313 struct md_personality *pers, *oldpers;
3314 long level;
3315 void *priv, *oldpriv;
3316 struct md_rdev *rdev;
3317
3318 if (slen == 0 || slen >= sizeof(clevel))
3319 return -EINVAL;
3320
3321 rv = mddev_lock(mddev);
3322 if (rv)
3323 return rv;
3324
3325 if (mddev->pers == NULL) {
3326 strncpy(mddev->clevel, buf, slen);
3327 if (mddev->clevel[slen-1] == '\n')
3328 slen--;
3329 mddev->clevel[slen] = 0;
3330 mddev->level = LEVEL_NONE;
3331 rv = len;
3332 goto out_unlock;
3333 }
3334 rv = -EROFS;
3335 if (mddev->ro)
3336 goto out_unlock;
3337
3338 /* request to change the personality. Need to ensure:
3339 * - array is not engaged in resync/recovery/reshape
3340 * - old personality can be suspended
3341 * - new personality will access other array.
3342 */
3343
3344 rv = -EBUSY;
3345 if (mddev->sync_thread ||
3346 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3347 mddev->reshape_position != MaxSector ||
3348 mddev->sysfs_active)
3349 goto out_unlock;
3350
3351 rv = -EINVAL;
3352 if (!mddev->pers->quiesce) {
3353 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3354 mdname(mddev), mddev->pers->name);
3355 goto out_unlock;
3356 }
3357
3358 /* Now find the new personality */
3359 strncpy(clevel, buf, slen);
3360 if (clevel[slen-1] == '\n')
3361 slen--;
3362 clevel[slen] = 0;
3363 if (kstrtol(clevel, 10, &level))
3364 level = LEVEL_NONE;
3365
3366 if (request_module("md-%s", clevel) != 0)
3367 request_module("md-level-%s", clevel);
3368 spin_lock(&pers_lock);
3369 pers = find_pers(level, clevel);
3370 if (!pers || !try_module_get(pers->owner)) {
3371 spin_unlock(&pers_lock);
3372 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3373 rv = -EINVAL;
3374 goto out_unlock;
3375 }
3376 spin_unlock(&pers_lock);
3377
3378 if (pers == mddev->pers) {
3379 /* Nothing to do! */
3380 module_put(pers->owner);
3381 rv = len;
3382 goto out_unlock;
3383 }
3384 if (!pers->takeover) {
3385 module_put(pers->owner);
3386 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3387 mdname(mddev), clevel);
3388 rv = -EINVAL;
3389 goto out_unlock;
3390 }
3391
3392 rdev_for_each(rdev, mddev)
3393 rdev->new_raid_disk = rdev->raid_disk;
3394
3395 /* ->takeover must set new_* and/or delta_disks
3396 * if it succeeds, and may set them when it fails.
3397 */
3398 priv = pers->takeover(mddev);
3399 if (IS_ERR(priv)) {
3400 mddev->new_level = mddev->level;
3401 mddev->new_layout = mddev->layout;
3402 mddev->new_chunk_sectors = mddev->chunk_sectors;
3403 mddev->raid_disks -= mddev->delta_disks;
3404 mddev->delta_disks = 0;
3405 mddev->reshape_backwards = 0;
3406 module_put(pers->owner);
3407 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3408 mdname(mddev), clevel);
3409 rv = PTR_ERR(priv);
3410 goto out_unlock;
3411 }
3412
3413 /* Looks like we have a winner */
3414 mddev_suspend(mddev);
3415 mddev_detach(mddev);
3416
3417 spin_lock(&mddev->lock);
3418 oldpers = mddev->pers;
3419 oldpriv = mddev->private;
3420 mddev->pers = pers;
3421 mddev->private = priv;
3422 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3423 mddev->level = mddev->new_level;
3424 mddev->layout = mddev->new_layout;
3425 mddev->chunk_sectors = mddev->new_chunk_sectors;
3426 mddev->delta_disks = 0;
3427 mddev->reshape_backwards = 0;
3428 mddev->degraded = 0;
3429 spin_unlock(&mddev->lock);
3430
3431 if (oldpers->sync_request == NULL &&
3432 mddev->external) {
3433 /* We are converting from a no-redundancy array
3434 * to a redundancy array and metadata is managed
3435 * externally so we need to be sure that writes
3436 * won't block due to a need to transition
3437 * clean->dirty
3438 * until external management is started.
3439 */
3440 mddev->in_sync = 0;
3441 mddev->safemode_delay = 0;
3442 mddev->safemode = 0;
3443 }
3444
3445 oldpers->free(mddev, oldpriv);
3446
3447 if (oldpers->sync_request == NULL &&
3448 pers->sync_request != NULL) {
3449 /* need to add the md_redundancy_group */
3450 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3451 printk(KERN_WARNING
3452 "md: cannot register extra attributes for %s\n",
3453 mdname(mddev));
3454 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3455 }
3456 if (oldpers->sync_request != NULL &&
3457 pers->sync_request == NULL) {
3458 /* need to remove the md_redundancy_group */
3459 if (mddev->to_remove == NULL)
3460 mddev->to_remove = &md_redundancy_group;
3461 }
3462
3463 rdev_for_each(rdev, mddev) {
3464 if (rdev->raid_disk < 0)
3465 continue;
3466 if (rdev->new_raid_disk >= mddev->raid_disks)
3467 rdev->new_raid_disk = -1;
3468 if (rdev->new_raid_disk == rdev->raid_disk)
3469 continue;
3470 sysfs_unlink_rdev(mddev, rdev);
3471 }
3472 rdev_for_each(rdev, mddev) {
3473 if (rdev->raid_disk < 0)
3474 continue;
3475 if (rdev->new_raid_disk == rdev->raid_disk)
3476 continue;
3477 rdev->raid_disk = rdev->new_raid_disk;
3478 if (rdev->raid_disk < 0)
3479 clear_bit(In_sync, &rdev->flags);
3480 else {
3481 if (sysfs_link_rdev(mddev, rdev))
3482 printk(KERN_WARNING "md: cannot register rd%d"
3483 " for %s after level change\n",
3484 rdev->raid_disk, mdname(mddev));
3485 }
3486 }
3487
3488 if (pers->sync_request == NULL) {
3489 /* this is now an array without redundancy, so
3490 * it must always be in_sync
3491 */
3492 mddev->in_sync = 1;
3493 del_timer_sync(&mddev->safemode_timer);
3494 }
3495 blk_set_stacking_limits(&mddev->queue->limits);
3496 pers->run(mddev);
3497 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3498 mddev_resume(mddev);
3499 if (!mddev->thread)
3500 md_update_sb(mddev, 1);
3501 sysfs_notify(&mddev->kobj, NULL, "level");
3502 md_new_event(mddev);
3503 rv = len;
3504 out_unlock:
3505 mddev_unlock(mddev);
3506 return rv;
3507 }
3508
3509 static struct md_sysfs_entry md_level =
3510 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3511
3512 static ssize_t
3513 layout_show(struct mddev *mddev, char *page)
3514 {
3515 /* just a number, not meaningful for all levels */
3516 if (mddev->reshape_position != MaxSector &&
3517 mddev->layout != mddev->new_layout)
3518 return sprintf(page, "%d (%d)\n",
3519 mddev->new_layout, mddev->layout);
3520 return sprintf(page, "%d\n", mddev->layout);
3521 }
3522
3523 static ssize_t
3524 layout_store(struct mddev *mddev, const char *buf, size_t len)
3525 {
3526 unsigned int n;
3527 int err;
3528
3529 err = kstrtouint(buf, 10, &n);
3530 if (err < 0)
3531 return err;
3532 err = mddev_lock(mddev);
3533 if (err)
3534 return err;
3535
3536 if (mddev->pers) {
3537 if (mddev->pers->check_reshape == NULL)
3538 err = -EBUSY;
3539 else if (mddev->ro)
3540 err = -EROFS;
3541 else {
3542 mddev->new_layout = n;
3543 err = mddev->pers->check_reshape(mddev);
3544 if (err)
3545 mddev->new_layout = mddev->layout;
3546 }
3547 } else {
3548 mddev->new_layout = n;
3549 if (mddev->reshape_position == MaxSector)
3550 mddev->layout = n;
3551 }
3552 mddev_unlock(mddev);
3553 return err ?: len;
3554 }
3555 static struct md_sysfs_entry md_layout =
3556 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3557
3558 static ssize_t
3559 raid_disks_show(struct mddev *mddev, char *page)
3560 {
3561 if (mddev->raid_disks == 0)
3562 return 0;
3563 if (mddev->reshape_position != MaxSector &&
3564 mddev->delta_disks != 0)
3565 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3566 mddev->raid_disks - mddev->delta_disks);
3567 return sprintf(page, "%d\n", mddev->raid_disks);
3568 }
3569
3570 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3571
3572 static ssize_t
3573 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3574 {
3575 unsigned int n;
3576 int err;
3577
3578 err = kstrtouint(buf, 10, &n);
3579 if (err < 0)
3580 return err;
3581
3582 err = mddev_lock(mddev);
3583 if (err)
3584 return err;
3585 if (mddev->pers)
3586 err = update_raid_disks(mddev, n);
3587 else if (mddev->reshape_position != MaxSector) {
3588 struct md_rdev *rdev;
3589 int olddisks = mddev->raid_disks - mddev->delta_disks;
3590
3591 err = -EINVAL;
3592 rdev_for_each(rdev, mddev) {
3593 if (olddisks < n &&
3594 rdev->data_offset < rdev->new_data_offset)
3595 goto out_unlock;
3596 if (olddisks > n &&
3597 rdev->data_offset > rdev->new_data_offset)
3598 goto out_unlock;
3599 }
3600 err = 0;
3601 mddev->delta_disks = n - olddisks;
3602 mddev->raid_disks = n;
3603 mddev->reshape_backwards = (mddev->delta_disks < 0);
3604 } else
3605 mddev->raid_disks = n;
3606 out_unlock:
3607 mddev_unlock(mddev);
3608 return err ? err : len;
3609 }
3610 static struct md_sysfs_entry md_raid_disks =
3611 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3612
3613 static ssize_t
3614 chunk_size_show(struct mddev *mddev, char *page)
3615 {
3616 if (mddev->reshape_position != MaxSector &&
3617 mddev->chunk_sectors != mddev->new_chunk_sectors)
3618 return sprintf(page, "%d (%d)\n",
3619 mddev->new_chunk_sectors << 9,
3620 mddev->chunk_sectors << 9);
3621 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3622 }
3623
3624 static ssize_t
3625 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3626 {
3627 unsigned long n;
3628 int err;
3629
3630 err = kstrtoul(buf, 10, &n);
3631 if (err < 0)
3632 return err;
3633
3634 err = mddev_lock(mddev);
3635 if (err)
3636 return err;
3637 if (mddev->pers) {
3638 if (mddev->pers->check_reshape == NULL)
3639 err = -EBUSY;
3640 else if (mddev->ro)
3641 err = -EROFS;
3642 else {
3643 mddev->new_chunk_sectors = n >> 9;
3644 err = mddev->pers->check_reshape(mddev);
3645 if (err)
3646 mddev->new_chunk_sectors = mddev->chunk_sectors;
3647 }
3648 } else {
3649 mddev->new_chunk_sectors = n >> 9;
3650 if (mddev->reshape_position == MaxSector)
3651 mddev->chunk_sectors = n >> 9;
3652 }
3653 mddev_unlock(mddev);
3654 return err ?: len;
3655 }
3656 static struct md_sysfs_entry md_chunk_size =
3657 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3658
3659 static ssize_t
3660 resync_start_show(struct mddev *mddev, char *page)
3661 {
3662 if (mddev->recovery_cp == MaxSector)
3663 return sprintf(page, "none\n");
3664 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3665 }
3666
3667 static ssize_t
3668 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3669 {
3670 unsigned long long n;
3671 int err;
3672
3673 if (cmd_match(buf, "none"))
3674 n = MaxSector;
3675 else {
3676 err = kstrtoull(buf, 10, &n);
3677 if (err < 0)
3678 return err;
3679 if (n != (sector_t)n)
3680 return -EINVAL;
3681 }
3682
3683 err = mddev_lock(mddev);
3684 if (err)
3685 return err;
3686 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3687 err = -EBUSY;
3688
3689 if (!err) {
3690 mddev->recovery_cp = n;
3691 if (mddev->pers)
3692 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3693 }
3694 mddev_unlock(mddev);
3695 return err ?: len;
3696 }
3697 static struct md_sysfs_entry md_resync_start =
3698 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3699 resync_start_show, resync_start_store);
3700
3701 /*
3702 * The array state can be:
3703 *
3704 * clear
3705 * No devices, no size, no level
3706 * Equivalent to STOP_ARRAY ioctl
3707 * inactive
3708 * May have some settings, but array is not active
3709 * all IO results in error
3710 * When written, doesn't tear down array, but just stops it
3711 * suspended (not supported yet)
3712 * All IO requests will block. The array can be reconfigured.
3713 * Writing this, if accepted, will block until array is quiescent
3714 * readonly
3715 * no resync can happen. no superblocks get written.
3716 * write requests fail
3717 * read-auto
3718 * like readonly, but behaves like 'clean' on a write request.
3719 *
3720 * clean - no pending writes, but otherwise active.
3721 * When written to inactive array, starts without resync
3722 * If a write request arrives then
3723 * if metadata is known, mark 'dirty' and switch to 'active'.
3724 * if not known, block and switch to write-pending
3725 * If written to an active array that has pending writes, then fails.
3726 * active
3727 * fully active: IO and resync can be happening.
3728 * When written to inactive array, starts with resync
3729 *
3730 * write-pending
3731 * clean, but writes are blocked waiting for 'active' to be written.
3732 *
3733 * active-idle
3734 * like active, but no writes have been seen for a while (100msec).
3735 *
3736 */
3737 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3738 write_pending, active_idle, bad_word};
3739 static char *array_states[] = {
3740 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3741 "write-pending", "active-idle", NULL };
3742
3743 static int match_word(const char *word, char **list)
3744 {
3745 int n;
3746 for (n=0; list[n]; n++)
3747 if (cmd_match(word, list[n]))
3748 break;
3749 return n;
3750 }
3751
3752 static ssize_t
3753 array_state_show(struct mddev *mddev, char *page)
3754 {
3755 enum array_state st = inactive;
3756
3757 if (mddev->pers)
3758 switch(mddev->ro) {
3759 case 1:
3760 st = readonly;
3761 break;
3762 case 2:
3763 st = read_auto;
3764 break;
3765 case 0:
3766 if (mddev->in_sync)
3767 st = clean;
3768 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3769 st = write_pending;
3770 else if (mddev->safemode)
3771 st = active_idle;
3772 else
3773 st = active;
3774 }
3775 else {
3776 if (list_empty(&mddev->disks) &&
3777 mddev->raid_disks == 0 &&
3778 mddev->dev_sectors == 0)
3779 st = clear;
3780 else
3781 st = inactive;
3782 }
3783 return sprintf(page, "%s\n", array_states[st]);
3784 }
3785
3786 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3787 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3788 static int do_md_run(struct mddev *mddev);
3789 static int restart_array(struct mddev *mddev);
3790
3791 static ssize_t
3792 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3793 {
3794 int err;
3795 enum array_state st = match_word(buf, array_states);
3796
3797 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3798 /* don't take reconfig_mutex when toggling between
3799 * clean and active
3800 */
3801 spin_lock(&mddev->lock);
3802 if (st == active) {
3803 restart_array(mddev);
3804 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3805 wake_up(&mddev->sb_wait);
3806 err = 0;
3807 } else /* st == clean */ {
3808 restart_array(mddev);
3809 if (atomic_read(&mddev->writes_pending) == 0) {
3810 if (mddev->in_sync == 0) {
3811 mddev->in_sync = 1;
3812 if (mddev->safemode == 1)
3813 mddev->safemode = 0;
3814 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3815 }
3816 err = 0;
3817 } else
3818 err = -EBUSY;
3819 }
3820 spin_unlock(&mddev->lock);
3821 return err ?: len;
3822 }
3823 err = mddev_lock(mddev);
3824 if (err)
3825 return err;
3826 err = -EINVAL;
3827 switch(st) {
3828 case bad_word:
3829 break;
3830 case clear:
3831 /* stopping an active array */
3832 err = do_md_stop(mddev, 0, NULL);
3833 break;
3834 case inactive:
3835 /* stopping an active array */
3836 if (mddev->pers)
3837 err = do_md_stop(mddev, 2, NULL);
3838 else
3839 err = 0; /* already inactive */
3840 break;
3841 case suspended:
3842 break; /* not supported yet */
3843 case readonly:
3844 if (mddev->pers)
3845 err = md_set_readonly(mddev, NULL);
3846 else {
3847 mddev->ro = 1;
3848 set_disk_ro(mddev->gendisk, 1);
3849 err = do_md_run(mddev);
3850 }
3851 break;
3852 case read_auto:
3853 if (mddev->pers) {
3854 if (mddev->ro == 0)
3855 err = md_set_readonly(mddev, NULL);
3856 else if (mddev->ro == 1)
3857 err = restart_array(mddev);
3858 if (err == 0) {
3859 mddev->ro = 2;
3860 set_disk_ro(mddev->gendisk, 0);
3861 }
3862 } else {
3863 mddev->ro = 2;
3864 err = do_md_run(mddev);
3865 }
3866 break;
3867 case clean:
3868 if (mddev->pers) {
3869 restart_array(mddev);
3870 spin_lock(&mddev->lock);
3871 if (atomic_read(&mddev->writes_pending) == 0) {
3872 if (mddev->in_sync == 0) {
3873 mddev->in_sync = 1;
3874 if (mddev->safemode == 1)
3875 mddev->safemode = 0;
3876 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3877 }
3878 err = 0;
3879 } else
3880 err = -EBUSY;
3881 spin_unlock(&mddev->lock);
3882 } else
3883 err = -EINVAL;
3884 break;
3885 case active:
3886 if (mddev->pers) {
3887 restart_array(mddev);
3888 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3889 wake_up(&mddev->sb_wait);
3890 err = 0;
3891 } else {
3892 mddev->ro = 0;
3893 set_disk_ro(mddev->gendisk, 0);
3894 err = do_md_run(mddev);
3895 }
3896 break;
3897 case write_pending:
3898 case active_idle:
3899 /* these cannot be set */
3900 break;
3901 }
3902
3903 if (!err) {
3904 if (mddev->hold_active == UNTIL_IOCTL)
3905 mddev->hold_active = 0;
3906 sysfs_notify_dirent_safe(mddev->sysfs_state);
3907 }
3908 mddev_unlock(mddev);
3909 return err ?: len;
3910 }
3911 static struct md_sysfs_entry md_array_state =
3912 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3913
3914 static ssize_t
3915 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3916 return sprintf(page, "%d\n",
3917 atomic_read(&mddev->max_corr_read_errors));
3918 }
3919
3920 static ssize_t
3921 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3922 {
3923 unsigned int n;
3924 int rv;
3925
3926 rv = kstrtouint(buf, 10, &n);
3927 if (rv < 0)
3928 return rv;
3929 atomic_set(&mddev->max_corr_read_errors, n);
3930 return len;
3931 }
3932
3933 static struct md_sysfs_entry max_corr_read_errors =
3934 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3935 max_corrected_read_errors_store);
3936
3937 static ssize_t
3938 null_show(struct mddev *mddev, char *page)
3939 {
3940 return -EINVAL;
3941 }
3942
3943 static ssize_t
3944 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3945 {
3946 /* buf must be %d:%d\n? giving major and minor numbers */
3947 /* The new device is added to the array.
3948 * If the array has a persistent superblock, we read the
3949 * superblock to initialise info and check validity.
3950 * Otherwise, only checking done is that in bind_rdev_to_array,
3951 * which mainly checks size.
3952 */
3953 char *e;
3954 int major = simple_strtoul(buf, &e, 10);
3955 int minor;
3956 dev_t dev;
3957 struct md_rdev *rdev;
3958 int err;
3959
3960 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3961 return -EINVAL;
3962 minor = simple_strtoul(e+1, &e, 10);
3963 if (*e && *e != '\n')
3964 return -EINVAL;
3965 dev = MKDEV(major, minor);
3966 if (major != MAJOR(dev) ||
3967 minor != MINOR(dev))
3968 return -EOVERFLOW;
3969
3970 flush_workqueue(md_misc_wq);
3971
3972 err = mddev_lock(mddev);
3973 if (err)
3974 return err;
3975 if (mddev->persistent) {
3976 rdev = md_import_device(dev, mddev->major_version,
3977 mddev->minor_version);
3978 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3979 struct md_rdev *rdev0
3980 = list_entry(mddev->disks.next,
3981 struct md_rdev, same_set);
3982 err = super_types[mddev->major_version]
3983 .load_super(rdev, rdev0, mddev->minor_version);
3984 if (err < 0)
3985 goto out;
3986 }
3987 } else if (mddev->external)
3988 rdev = md_import_device(dev, -2, -1);
3989 else
3990 rdev = md_import_device(dev, -1, -1);
3991
3992 if (IS_ERR(rdev)) {
3993 mddev_unlock(mddev);
3994 return PTR_ERR(rdev);
3995 }
3996 err = bind_rdev_to_array(rdev, mddev);
3997 out:
3998 if (err)
3999 export_rdev(rdev);
4000 mddev_unlock(mddev);
4001 return err ? err : len;
4002 }
4003
4004 static struct md_sysfs_entry md_new_device =
4005 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4006
4007 static ssize_t
4008 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4009 {
4010 char *end;
4011 unsigned long chunk, end_chunk;
4012 int err;
4013
4014 err = mddev_lock(mddev);
4015 if (err)
4016 return err;
4017 if (!mddev->bitmap)
4018 goto out;
4019 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4020 while (*buf) {
4021 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4022 if (buf == end) break;
4023 if (*end == '-') { /* range */
4024 buf = end + 1;
4025 end_chunk = simple_strtoul(buf, &end, 0);
4026 if (buf == end) break;
4027 }
4028 if (*end && !isspace(*end)) break;
4029 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4030 buf = skip_spaces(end);
4031 }
4032 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4033 out:
4034 mddev_unlock(mddev);
4035 return len;
4036 }
4037
4038 static struct md_sysfs_entry md_bitmap =
4039 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4040
4041 static ssize_t
4042 size_show(struct mddev *mddev, char *page)
4043 {
4044 return sprintf(page, "%llu\n",
4045 (unsigned long long)mddev->dev_sectors / 2);
4046 }
4047
4048 static int update_size(struct mddev *mddev, sector_t num_sectors);
4049
4050 static ssize_t
4051 size_store(struct mddev *mddev, const char *buf, size_t len)
4052 {
4053 /* If array is inactive, we can reduce the component size, but
4054 * not increase it (except from 0).
4055 * If array is active, we can try an on-line resize
4056 */
4057 sector_t sectors;
4058 int err = strict_blocks_to_sectors(buf, &sectors);
4059
4060 if (err < 0)
4061 return err;
4062 err = mddev_lock(mddev);
4063 if (err)
4064 return err;
4065 if (mddev->pers) {
4066 if (mddev_is_clustered(mddev))
4067 md_cluster_ops->metadata_update_start(mddev);
4068 err = update_size(mddev, sectors);
4069 md_update_sb(mddev, 1);
4070 if (mddev_is_clustered(mddev))
4071 md_cluster_ops->metadata_update_finish(mddev);
4072 } else {
4073 if (mddev->dev_sectors == 0 ||
4074 mddev->dev_sectors > sectors)
4075 mddev->dev_sectors = sectors;
4076 else
4077 err = -ENOSPC;
4078 }
4079 mddev_unlock(mddev);
4080 return err ? err : len;
4081 }
4082
4083 static struct md_sysfs_entry md_size =
4084 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4085
4086 /* Metadata version.
4087 * This is one of
4088 * 'none' for arrays with no metadata (good luck...)
4089 * 'external' for arrays with externally managed metadata,
4090 * or N.M for internally known formats
4091 */
4092 static ssize_t
4093 metadata_show(struct mddev *mddev, char *page)
4094 {
4095 if (mddev->persistent)
4096 return sprintf(page, "%d.%d\n",
4097 mddev->major_version, mddev->minor_version);
4098 else if (mddev->external)
4099 return sprintf(page, "external:%s\n", mddev->metadata_type);
4100 else
4101 return sprintf(page, "none\n");
4102 }
4103
4104 static ssize_t
4105 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4106 {
4107 int major, minor;
4108 char *e;
4109 int err;
4110 /* Changing the details of 'external' metadata is
4111 * always permitted. Otherwise there must be
4112 * no devices attached to the array.
4113 */
4114
4115 err = mddev_lock(mddev);
4116 if (err)
4117 return err;
4118 err = -EBUSY;
4119 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4120 ;
4121 else if (!list_empty(&mddev->disks))
4122 goto out_unlock;
4123
4124 err = 0;
4125 if (cmd_match(buf, "none")) {
4126 mddev->persistent = 0;
4127 mddev->external = 0;
4128 mddev->major_version = 0;
4129 mddev->minor_version = 90;
4130 goto out_unlock;
4131 }
4132 if (strncmp(buf, "external:", 9) == 0) {
4133 size_t namelen = len-9;
4134 if (namelen >= sizeof(mddev->metadata_type))
4135 namelen = sizeof(mddev->metadata_type)-1;
4136 strncpy(mddev->metadata_type, buf+9, namelen);
4137 mddev->metadata_type[namelen] = 0;
4138 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4139 mddev->metadata_type[--namelen] = 0;
4140 mddev->persistent = 0;
4141 mddev->external = 1;
4142 mddev->major_version = 0;
4143 mddev->minor_version = 90;
4144 goto out_unlock;
4145 }
4146 major = simple_strtoul(buf, &e, 10);
4147 err = -EINVAL;
4148 if (e==buf || *e != '.')
4149 goto out_unlock;
4150 buf = e+1;
4151 minor = simple_strtoul(buf, &e, 10);
4152 if (e==buf || (*e && *e != '\n') )
4153 goto out_unlock;
4154 err = -ENOENT;
4155 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4156 goto out_unlock;
4157 mddev->major_version = major;
4158 mddev->minor_version = minor;
4159 mddev->persistent = 1;
4160 mddev->external = 0;
4161 err = 0;
4162 out_unlock:
4163 mddev_unlock(mddev);
4164 return err ?: len;
4165 }
4166
4167 static struct md_sysfs_entry md_metadata =
4168 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4169
4170 static ssize_t
4171 action_show(struct mddev *mddev, char *page)
4172 {
4173 char *type = "idle";
4174 unsigned long recovery = mddev->recovery;
4175 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4176 type = "frozen";
4177 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4178 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4179 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4180 type = "reshape";
4181 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4182 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4183 type = "resync";
4184 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4185 type = "check";
4186 else
4187 type = "repair";
4188 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4189 type = "recover";
4190 else if (mddev->reshape_position != MaxSector)
4191 type = "reshape";
4192 }
4193 return sprintf(page, "%s\n", type);
4194 }
4195
4196 static ssize_t
4197 action_store(struct mddev *mddev, const char *page, size_t len)
4198 {
4199 if (!mddev->pers || !mddev->pers->sync_request)
4200 return -EINVAL;
4201
4202
4203 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4204 if (cmd_match(page, "frozen"))
4205 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4206 else
4207 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4208 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4209 mddev_lock(mddev) == 0) {
4210 flush_workqueue(md_misc_wq);
4211 if (mddev->sync_thread) {
4212 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4213 md_reap_sync_thread(mddev);
4214 }
4215 mddev_unlock(mddev);
4216 }
4217 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4218 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4219 return -EBUSY;
4220 else if (cmd_match(page, "resync"))
4221 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4222 else if (cmd_match(page, "recover")) {
4223 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4224 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4225 } else if (cmd_match(page, "reshape")) {
4226 int err;
4227 if (mddev->pers->start_reshape == NULL)
4228 return -EINVAL;
4229 err = mddev_lock(mddev);
4230 if (!err) {
4231 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232 err = mddev->pers->start_reshape(mddev);
4233 mddev_unlock(mddev);
4234 }
4235 if (err)
4236 return err;
4237 sysfs_notify(&mddev->kobj, NULL, "degraded");
4238 } else {
4239 if (cmd_match(page, "check"))
4240 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4241 else if (!cmd_match(page, "repair"))
4242 return -EINVAL;
4243 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4244 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4245 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4246 }
4247 if (mddev->ro == 2) {
4248 /* A write to sync_action is enough to justify
4249 * canceling read-auto mode
4250 */
4251 mddev->ro = 0;
4252 md_wakeup_thread(mddev->sync_thread);
4253 }
4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4255 md_wakeup_thread(mddev->thread);
4256 sysfs_notify_dirent_safe(mddev->sysfs_action);
4257 return len;
4258 }
4259
4260 static struct md_sysfs_entry md_scan_mode =
4261 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4262
4263 static ssize_t
4264 last_sync_action_show(struct mddev *mddev, char *page)
4265 {
4266 return sprintf(page, "%s\n", mddev->last_sync_action);
4267 }
4268
4269 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4270
4271 static ssize_t
4272 mismatch_cnt_show(struct mddev *mddev, char *page)
4273 {
4274 return sprintf(page, "%llu\n",
4275 (unsigned long long)
4276 atomic64_read(&mddev->resync_mismatches));
4277 }
4278
4279 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4280
4281 static ssize_t
4282 sync_min_show(struct mddev *mddev, char *page)
4283 {
4284 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4285 mddev->sync_speed_min ? "local": "system");
4286 }
4287
4288 static ssize_t
4289 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4290 {
4291 unsigned int min;
4292 int rv;
4293
4294 if (strncmp(buf, "system", 6)==0) {
4295 min = 0;
4296 } else {
4297 rv = kstrtouint(buf, 10, &min);
4298 if (rv < 0)
4299 return rv;
4300 if (min == 0)
4301 return -EINVAL;
4302 }
4303 mddev->sync_speed_min = min;
4304 return len;
4305 }
4306
4307 static struct md_sysfs_entry md_sync_min =
4308 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4309
4310 static ssize_t
4311 sync_max_show(struct mddev *mddev, char *page)
4312 {
4313 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4314 mddev->sync_speed_max ? "local": "system");
4315 }
4316
4317 static ssize_t
4318 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4319 {
4320 unsigned int max;
4321 int rv;
4322
4323 if (strncmp(buf, "system", 6)==0) {
4324 max = 0;
4325 } else {
4326 rv = kstrtouint(buf, 10, &max);
4327 if (rv < 0)
4328 return rv;
4329 if (max == 0)
4330 return -EINVAL;
4331 }
4332 mddev->sync_speed_max = max;
4333 return len;
4334 }
4335
4336 static struct md_sysfs_entry md_sync_max =
4337 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4338
4339 static ssize_t
4340 degraded_show(struct mddev *mddev, char *page)
4341 {
4342 return sprintf(page, "%d\n", mddev->degraded);
4343 }
4344 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4345
4346 static ssize_t
4347 sync_force_parallel_show(struct mddev *mddev, char *page)
4348 {
4349 return sprintf(page, "%d\n", mddev->parallel_resync);
4350 }
4351
4352 static ssize_t
4353 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4354 {
4355 long n;
4356
4357 if (kstrtol(buf, 10, &n))
4358 return -EINVAL;
4359
4360 if (n != 0 && n != 1)
4361 return -EINVAL;
4362
4363 mddev->parallel_resync = n;
4364
4365 if (mddev->sync_thread)
4366 wake_up(&resync_wait);
4367
4368 return len;
4369 }
4370
4371 /* force parallel resync, even with shared block devices */
4372 static struct md_sysfs_entry md_sync_force_parallel =
4373 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4374 sync_force_parallel_show, sync_force_parallel_store);
4375
4376 static ssize_t
4377 sync_speed_show(struct mddev *mddev, char *page)
4378 {
4379 unsigned long resync, dt, db;
4380 if (mddev->curr_resync == 0)
4381 return sprintf(page, "none\n");
4382 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4383 dt = (jiffies - mddev->resync_mark) / HZ;
4384 if (!dt) dt++;
4385 db = resync - mddev->resync_mark_cnt;
4386 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4387 }
4388
4389 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4390
4391 static ssize_t
4392 sync_completed_show(struct mddev *mddev, char *page)
4393 {
4394 unsigned long long max_sectors, resync;
4395
4396 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4397 return sprintf(page, "none\n");
4398
4399 if (mddev->curr_resync == 1 ||
4400 mddev->curr_resync == 2)
4401 return sprintf(page, "delayed\n");
4402
4403 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4404 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4405 max_sectors = mddev->resync_max_sectors;
4406 else
4407 max_sectors = mddev->dev_sectors;
4408
4409 resync = mddev->curr_resync_completed;
4410 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4411 }
4412
4413 static struct md_sysfs_entry md_sync_completed =
4414 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4415
4416 static ssize_t
4417 min_sync_show(struct mddev *mddev, char *page)
4418 {
4419 return sprintf(page, "%llu\n",
4420 (unsigned long long)mddev->resync_min);
4421 }
4422 static ssize_t
4423 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4424 {
4425 unsigned long long min;
4426 int err;
4427
4428 if (kstrtoull(buf, 10, &min))
4429 return -EINVAL;
4430
4431 spin_lock(&mddev->lock);
4432 err = -EINVAL;
4433 if (min > mddev->resync_max)
4434 goto out_unlock;
4435
4436 err = -EBUSY;
4437 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4438 goto out_unlock;
4439
4440 /* Round down to multiple of 4K for safety */
4441 mddev->resync_min = round_down(min, 8);
4442 err = 0;
4443
4444 out_unlock:
4445 spin_unlock(&mddev->lock);
4446 return err ?: len;
4447 }
4448
4449 static struct md_sysfs_entry md_min_sync =
4450 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4451
4452 static ssize_t
4453 max_sync_show(struct mddev *mddev, char *page)
4454 {
4455 if (mddev->resync_max == MaxSector)
4456 return sprintf(page, "max\n");
4457 else
4458 return sprintf(page, "%llu\n",
4459 (unsigned long long)mddev->resync_max);
4460 }
4461 static ssize_t
4462 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4463 {
4464 int err;
4465 spin_lock(&mddev->lock);
4466 if (strncmp(buf, "max", 3) == 0)
4467 mddev->resync_max = MaxSector;
4468 else {
4469 unsigned long long max;
4470 int chunk;
4471
4472 err = -EINVAL;
4473 if (kstrtoull(buf, 10, &max))
4474 goto out_unlock;
4475 if (max < mddev->resync_min)
4476 goto out_unlock;
4477
4478 err = -EBUSY;
4479 if (max < mddev->resync_max &&
4480 mddev->ro == 0 &&
4481 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4482 goto out_unlock;
4483
4484 /* Must be a multiple of chunk_size */
4485 chunk = mddev->chunk_sectors;
4486 if (chunk) {
4487 sector_t temp = max;
4488
4489 err = -EINVAL;
4490 if (sector_div(temp, chunk))
4491 goto out_unlock;
4492 }
4493 mddev->resync_max = max;
4494 }
4495 wake_up(&mddev->recovery_wait);
4496 err = 0;
4497 out_unlock:
4498 spin_unlock(&mddev->lock);
4499 return err ?: len;
4500 }
4501
4502 static struct md_sysfs_entry md_max_sync =
4503 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4504
4505 static ssize_t
4506 suspend_lo_show(struct mddev *mddev, char *page)
4507 {
4508 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4509 }
4510
4511 static ssize_t
4512 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4513 {
4514 unsigned long long old, new;
4515 int err;
4516
4517 err = kstrtoull(buf, 10, &new);
4518 if (err < 0)
4519 return err;
4520 if (new != (sector_t)new)
4521 return -EINVAL;
4522
4523 err = mddev_lock(mddev);
4524 if (err)
4525 return err;
4526 err = -EINVAL;
4527 if (mddev->pers == NULL ||
4528 mddev->pers->quiesce == NULL)
4529 goto unlock;
4530 old = mddev->suspend_lo;
4531 mddev->suspend_lo = new;
4532 if (new >= old)
4533 /* Shrinking suspended region */
4534 mddev->pers->quiesce(mddev, 2);
4535 else {
4536 /* Expanding suspended region - need to wait */
4537 mddev->pers->quiesce(mddev, 1);
4538 mddev->pers->quiesce(mddev, 0);
4539 }
4540 err = 0;
4541 unlock:
4542 mddev_unlock(mddev);
4543 return err ?: len;
4544 }
4545 static struct md_sysfs_entry md_suspend_lo =
4546 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4547
4548 static ssize_t
4549 suspend_hi_show(struct mddev *mddev, char *page)
4550 {
4551 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4552 }
4553
4554 static ssize_t
4555 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4556 {
4557 unsigned long long old, new;
4558 int err;
4559
4560 err = kstrtoull(buf, 10, &new);
4561 if (err < 0)
4562 return err;
4563 if (new != (sector_t)new)
4564 return -EINVAL;
4565
4566 err = mddev_lock(mddev);
4567 if (err)
4568 return err;
4569 err = -EINVAL;
4570 if (mddev->pers == NULL ||
4571 mddev->pers->quiesce == NULL)
4572 goto unlock;
4573 old = mddev->suspend_hi;
4574 mddev->suspend_hi = new;
4575 if (new <= old)
4576 /* Shrinking suspended region */
4577 mddev->pers->quiesce(mddev, 2);
4578 else {
4579 /* Expanding suspended region - need to wait */
4580 mddev->pers->quiesce(mddev, 1);
4581 mddev->pers->quiesce(mddev, 0);
4582 }
4583 err = 0;
4584 unlock:
4585 mddev_unlock(mddev);
4586 return err ?: len;
4587 }
4588 static struct md_sysfs_entry md_suspend_hi =
4589 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4590
4591 static ssize_t
4592 reshape_position_show(struct mddev *mddev, char *page)
4593 {
4594 if (mddev->reshape_position != MaxSector)
4595 return sprintf(page, "%llu\n",
4596 (unsigned long long)mddev->reshape_position);
4597 strcpy(page, "none\n");
4598 return 5;
4599 }
4600
4601 static ssize_t
4602 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4603 {
4604 struct md_rdev *rdev;
4605 unsigned long long new;
4606 int err;
4607
4608 err = kstrtoull(buf, 10, &new);
4609 if (err < 0)
4610 return err;
4611 if (new != (sector_t)new)
4612 return -EINVAL;
4613 err = mddev_lock(mddev);
4614 if (err)
4615 return err;
4616 err = -EBUSY;
4617 if (mddev->pers)
4618 goto unlock;
4619 mddev->reshape_position = new;
4620 mddev->delta_disks = 0;
4621 mddev->reshape_backwards = 0;
4622 mddev->new_level = mddev->level;
4623 mddev->new_layout = mddev->layout;
4624 mddev->new_chunk_sectors = mddev->chunk_sectors;
4625 rdev_for_each(rdev, mddev)
4626 rdev->new_data_offset = rdev->data_offset;
4627 err = 0;
4628 unlock:
4629 mddev_unlock(mddev);
4630 return err ?: len;
4631 }
4632
4633 static struct md_sysfs_entry md_reshape_position =
4634 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4635 reshape_position_store);
4636
4637 static ssize_t
4638 reshape_direction_show(struct mddev *mddev, char *page)
4639 {
4640 return sprintf(page, "%s\n",
4641 mddev->reshape_backwards ? "backwards" : "forwards");
4642 }
4643
4644 static ssize_t
4645 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647 int backwards = 0;
4648 int err;
4649
4650 if (cmd_match(buf, "forwards"))
4651 backwards = 0;
4652 else if (cmd_match(buf, "backwards"))
4653 backwards = 1;
4654 else
4655 return -EINVAL;
4656 if (mddev->reshape_backwards == backwards)
4657 return len;
4658
4659 err = mddev_lock(mddev);
4660 if (err)
4661 return err;
4662 /* check if we are allowed to change */
4663 if (mddev->delta_disks)
4664 err = -EBUSY;
4665 else if (mddev->persistent &&
4666 mddev->major_version == 0)
4667 err = -EINVAL;
4668 else
4669 mddev->reshape_backwards = backwards;
4670 mddev_unlock(mddev);
4671 return err ?: len;
4672 }
4673
4674 static struct md_sysfs_entry md_reshape_direction =
4675 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4676 reshape_direction_store);
4677
4678 static ssize_t
4679 array_size_show(struct mddev *mddev, char *page)
4680 {
4681 if (mddev->external_size)
4682 return sprintf(page, "%llu\n",
4683 (unsigned long long)mddev->array_sectors/2);
4684 else
4685 return sprintf(page, "default\n");
4686 }
4687
4688 static ssize_t
4689 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4690 {
4691 sector_t sectors;
4692 int err;
4693
4694 err = mddev_lock(mddev);
4695 if (err)
4696 return err;
4697
4698 if (strncmp(buf, "default", 7) == 0) {
4699 if (mddev->pers)
4700 sectors = mddev->pers->size(mddev, 0, 0);
4701 else
4702 sectors = mddev->array_sectors;
4703
4704 mddev->external_size = 0;
4705 } else {
4706 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4707 err = -EINVAL;
4708 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4709 err = -E2BIG;
4710 else
4711 mddev->external_size = 1;
4712 }
4713
4714 if (!err) {
4715 mddev->array_sectors = sectors;
4716 if (mddev->pers) {
4717 set_capacity(mddev->gendisk, mddev->array_sectors);
4718 revalidate_disk(mddev->gendisk);
4719 }
4720 }
4721 mddev_unlock(mddev);
4722 return err ?: len;
4723 }
4724
4725 static struct md_sysfs_entry md_array_size =
4726 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4727 array_size_store);
4728
4729 static struct attribute *md_default_attrs[] = {
4730 &md_level.attr,
4731 &md_layout.attr,
4732 &md_raid_disks.attr,
4733 &md_chunk_size.attr,
4734 &md_size.attr,
4735 &md_resync_start.attr,
4736 &md_metadata.attr,
4737 &md_new_device.attr,
4738 &md_safe_delay.attr,
4739 &md_array_state.attr,
4740 &md_reshape_position.attr,
4741 &md_reshape_direction.attr,
4742 &md_array_size.attr,
4743 &max_corr_read_errors.attr,
4744 NULL,
4745 };
4746
4747 static struct attribute *md_redundancy_attrs[] = {
4748 &md_scan_mode.attr,
4749 &md_last_scan_mode.attr,
4750 &md_mismatches.attr,
4751 &md_sync_min.attr,
4752 &md_sync_max.attr,
4753 &md_sync_speed.attr,
4754 &md_sync_force_parallel.attr,
4755 &md_sync_completed.attr,
4756 &md_min_sync.attr,
4757 &md_max_sync.attr,
4758 &md_suspend_lo.attr,
4759 &md_suspend_hi.attr,
4760 &md_bitmap.attr,
4761 &md_degraded.attr,
4762 NULL,
4763 };
4764 static struct attribute_group md_redundancy_group = {
4765 .name = NULL,
4766 .attrs = md_redundancy_attrs,
4767 };
4768
4769 static ssize_t
4770 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4771 {
4772 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4773 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4774 ssize_t rv;
4775
4776 if (!entry->show)
4777 return -EIO;
4778 spin_lock(&all_mddevs_lock);
4779 if (list_empty(&mddev->all_mddevs)) {
4780 spin_unlock(&all_mddevs_lock);
4781 return -EBUSY;
4782 }
4783 mddev_get(mddev);
4784 spin_unlock(&all_mddevs_lock);
4785
4786 rv = entry->show(mddev, page);
4787 mddev_put(mddev);
4788 return rv;
4789 }
4790
4791 static ssize_t
4792 md_attr_store(struct kobject *kobj, struct attribute *attr,
4793 const char *page, size_t length)
4794 {
4795 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4796 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4797 ssize_t rv;
4798
4799 if (!entry->store)
4800 return -EIO;
4801 if (!capable(CAP_SYS_ADMIN))
4802 return -EACCES;
4803 spin_lock(&all_mddevs_lock);
4804 if (list_empty(&mddev->all_mddevs)) {
4805 spin_unlock(&all_mddevs_lock);
4806 return -EBUSY;
4807 }
4808 mddev_get(mddev);
4809 spin_unlock(&all_mddevs_lock);
4810 rv = entry->store(mddev, page, length);
4811 mddev_put(mddev);
4812 return rv;
4813 }
4814
4815 static void md_free(struct kobject *ko)
4816 {
4817 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4818
4819 if (mddev->sysfs_state)
4820 sysfs_put(mddev->sysfs_state);
4821
4822 if (mddev->queue)
4823 blk_cleanup_queue(mddev->queue);
4824 if (mddev->gendisk) {
4825 del_gendisk(mddev->gendisk);
4826 put_disk(mddev->gendisk);
4827 }
4828
4829 kfree(mddev);
4830 }
4831
4832 static const struct sysfs_ops md_sysfs_ops = {
4833 .show = md_attr_show,
4834 .store = md_attr_store,
4835 };
4836 static struct kobj_type md_ktype = {
4837 .release = md_free,
4838 .sysfs_ops = &md_sysfs_ops,
4839 .default_attrs = md_default_attrs,
4840 };
4841
4842 int mdp_major = 0;
4843
4844 static void mddev_delayed_delete(struct work_struct *ws)
4845 {
4846 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4847
4848 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4849 kobject_del(&mddev->kobj);
4850 kobject_put(&mddev->kobj);
4851 }
4852
4853 static int md_alloc(dev_t dev, char *name)
4854 {
4855 static DEFINE_MUTEX(disks_mutex);
4856 struct mddev *mddev = mddev_find(dev);
4857 struct gendisk *disk;
4858 int partitioned;
4859 int shift;
4860 int unit;
4861 int error;
4862
4863 if (!mddev)
4864 return -ENODEV;
4865
4866 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4867 shift = partitioned ? MdpMinorShift : 0;
4868 unit = MINOR(mddev->unit) >> shift;
4869
4870 /* wait for any previous instance of this device to be
4871 * completely removed (mddev_delayed_delete).
4872 */
4873 flush_workqueue(md_misc_wq);
4874
4875 mutex_lock(&disks_mutex);
4876 error = -EEXIST;
4877 if (mddev->gendisk)
4878 goto abort;
4879
4880 if (name) {
4881 /* Need to ensure that 'name' is not a duplicate.
4882 */
4883 struct mddev *mddev2;
4884 spin_lock(&all_mddevs_lock);
4885
4886 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4887 if (mddev2->gendisk &&
4888 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4889 spin_unlock(&all_mddevs_lock);
4890 goto abort;
4891 }
4892 spin_unlock(&all_mddevs_lock);
4893 }
4894
4895 error = -ENOMEM;
4896 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4897 if (!mddev->queue)
4898 goto abort;
4899 mddev->queue->queuedata = mddev;
4900
4901 blk_queue_make_request(mddev->queue, md_make_request);
4902 blk_set_stacking_limits(&mddev->queue->limits);
4903
4904 disk = alloc_disk(1 << shift);
4905 if (!disk) {
4906 blk_cleanup_queue(mddev->queue);
4907 mddev->queue = NULL;
4908 goto abort;
4909 }
4910 disk->major = MAJOR(mddev->unit);
4911 disk->first_minor = unit << shift;
4912 if (name)
4913 strcpy(disk->disk_name, name);
4914 else if (partitioned)
4915 sprintf(disk->disk_name, "md_d%d", unit);
4916 else
4917 sprintf(disk->disk_name, "md%d", unit);
4918 disk->fops = &md_fops;
4919 disk->private_data = mddev;
4920 disk->queue = mddev->queue;
4921 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4922 /* Allow extended partitions. This makes the
4923 * 'mdp' device redundant, but we can't really
4924 * remove it now.
4925 */
4926 disk->flags |= GENHD_FL_EXT_DEVT;
4927 mddev->gendisk = disk;
4928 /* As soon as we call add_disk(), another thread could get
4929 * through to md_open, so make sure it doesn't get too far
4930 */
4931 mutex_lock(&mddev->open_mutex);
4932 add_disk(disk);
4933
4934 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4935 &disk_to_dev(disk)->kobj, "%s", "md");
4936 if (error) {
4937 /* This isn't possible, but as kobject_init_and_add is marked
4938 * __must_check, we must do something with the result
4939 */
4940 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4941 disk->disk_name);
4942 error = 0;
4943 }
4944 if (mddev->kobj.sd &&
4945 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4946 printk(KERN_DEBUG "pointless warning\n");
4947 mutex_unlock(&mddev->open_mutex);
4948 abort:
4949 mutex_unlock(&disks_mutex);
4950 if (!error && mddev->kobj.sd) {
4951 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4952 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4953 }
4954 mddev_put(mddev);
4955 return error;
4956 }
4957
4958 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4959 {
4960 md_alloc(dev, NULL);
4961 return NULL;
4962 }
4963
4964 static int add_named_array(const char *val, struct kernel_param *kp)
4965 {
4966 /* val must be "md_*" where * is not all digits.
4967 * We allocate an array with a large free minor number, and
4968 * set the name to val. val must not already be an active name.
4969 */
4970 int len = strlen(val);
4971 char buf[DISK_NAME_LEN];
4972
4973 while (len && val[len-1] == '\n')
4974 len--;
4975 if (len >= DISK_NAME_LEN)
4976 return -E2BIG;
4977 strlcpy(buf, val, len+1);
4978 if (strncmp(buf, "md_", 3) != 0)
4979 return -EINVAL;
4980 return md_alloc(0, buf);
4981 }
4982
4983 static void md_safemode_timeout(unsigned long data)
4984 {
4985 struct mddev *mddev = (struct mddev *) data;
4986
4987 if (!atomic_read(&mddev->writes_pending)) {
4988 mddev->safemode = 1;
4989 if (mddev->external)
4990 sysfs_notify_dirent_safe(mddev->sysfs_state);
4991 }
4992 md_wakeup_thread(mddev->thread);
4993 }
4994
4995 static int start_dirty_degraded;
4996
4997 int md_run(struct mddev *mddev)
4998 {
4999 int err;
5000 struct md_rdev *rdev;
5001 struct md_personality *pers;
5002
5003 if (list_empty(&mddev->disks))
5004 /* cannot run an array with no devices.. */
5005 return -EINVAL;
5006
5007 if (mddev->pers)
5008 return -EBUSY;
5009 /* Cannot run until previous stop completes properly */
5010 if (mddev->sysfs_active)
5011 return -EBUSY;
5012
5013 /*
5014 * Analyze all RAID superblock(s)
5015 */
5016 if (!mddev->raid_disks) {
5017 if (!mddev->persistent)
5018 return -EINVAL;
5019 analyze_sbs(mddev);
5020 }
5021
5022 if (mddev->level != LEVEL_NONE)
5023 request_module("md-level-%d", mddev->level);
5024 else if (mddev->clevel[0])
5025 request_module("md-%s", mddev->clevel);
5026
5027 /*
5028 * Drop all container device buffers, from now on
5029 * the only valid external interface is through the md
5030 * device.
5031 */
5032 rdev_for_each(rdev, mddev) {
5033 if (test_bit(Faulty, &rdev->flags))
5034 continue;
5035 sync_blockdev(rdev->bdev);
5036 invalidate_bdev(rdev->bdev);
5037
5038 /* perform some consistency tests on the device.
5039 * We don't want the data to overlap the metadata,
5040 * Internal Bitmap issues have been handled elsewhere.
5041 */
5042 if (rdev->meta_bdev) {
5043 /* Nothing to check */;
5044 } else if (rdev->data_offset < rdev->sb_start) {
5045 if (mddev->dev_sectors &&
5046 rdev->data_offset + mddev->dev_sectors
5047 > rdev->sb_start) {
5048 printk("md: %s: data overlaps metadata\n",
5049 mdname(mddev));
5050 return -EINVAL;
5051 }
5052 } else {
5053 if (rdev->sb_start + rdev->sb_size/512
5054 > rdev->data_offset) {
5055 printk("md: %s: metadata overlaps data\n",
5056 mdname(mddev));
5057 return -EINVAL;
5058 }
5059 }
5060 sysfs_notify_dirent_safe(rdev->sysfs_state);
5061 }
5062
5063 if (mddev->bio_set == NULL)
5064 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5065
5066 spin_lock(&pers_lock);
5067 pers = find_pers(mddev->level, mddev->clevel);
5068 if (!pers || !try_module_get(pers->owner)) {
5069 spin_unlock(&pers_lock);
5070 if (mddev->level != LEVEL_NONE)
5071 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5072 mddev->level);
5073 else
5074 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5075 mddev->clevel);
5076 return -EINVAL;
5077 }
5078 spin_unlock(&pers_lock);
5079 if (mddev->level != pers->level) {
5080 mddev->level = pers->level;
5081 mddev->new_level = pers->level;
5082 }
5083 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5084
5085 if (mddev->reshape_position != MaxSector &&
5086 pers->start_reshape == NULL) {
5087 /* This personality cannot handle reshaping... */
5088 module_put(pers->owner);
5089 return -EINVAL;
5090 }
5091
5092 if (pers->sync_request) {
5093 /* Warn if this is a potentially silly
5094 * configuration.
5095 */
5096 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5097 struct md_rdev *rdev2;
5098 int warned = 0;
5099
5100 rdev_for_each(rdev, mddev)
5101 rdev_for_each(rdev2, mddev) {
5102 if (rdev < rdev2 &&
5103 rdev->bdev->bd_contains ==
5104 rdev2->bdev->bd_contains) {
5105 printk(KERN_WARNING
5106 "%s: WARNING: %s appears to be"
5107 " on the same physical disk as"
5108 " %s.\n",
5109 mdname(mddev),
5110 bdevname(rdev->bdev,b),
5111 bdevname(rdev2->bdev,b2));
5112 warned = 1;
5113 }
5114 }
5115
5116 if (warned)
5117 printk(KERN_WARNING
5118 "True protection against single-disk"
5119 " failure might be compromised.\n");
5120 }
5121
5122 mddev->recovery = 0;
5123 /* may be over-ridden by personality */
5124 mddev->resync_max_sectors = mddev->dev_sectors;
5125
5126 mddev->ok_start_degraded = start_dirty_degraded;
5127
5128 if (start_readonly && mddev->ro == 0)
5129 mddev->ro = 2; /* read-only, but switch on first write */
5130
5131 err = pers->run(mddev);
5132 if (err)
5133 printk(KERN_ERR "md: pers->run() failed ...\n");
5134 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5135 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5136 " but 'external_size' not in effect?\n", __func__);
5137 printk(KERN_ERR
5138 "md: invalid array_size %llu > default size %llu\n",
5139 (unsigned long long)mddev->array_sectors / 2,
5140 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5141 err = -EINVAL;
5142 }
5143 if (err == 0 && pers->sync_request &&
5144 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5145 struct bitmap *bitmap;
5146
5147 bitmap = bitmap_create(mddev, -1);
5148 if (IS_ERR(bitmap)) {
5149 err = PTR_ERR(bitmap);
5150 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5151 mdname(mddev), err);
5152 } else
5153 mddev->bitmap = bitmap;
5154
5155 }
5156 if (err) {
5157 mddev_detach(mddev);
5158 if (mddev->private)
5159 pers->free(mddev, mddev->private);
5160 mddev->private = NULL;
5161 module_put(pers->owner);
5162 bitmap_destroy(mddev);
5163 return err;
5164 }
5165 if (mddev->queue) {
5166 mddev->queue->backing_dev_info.congested_data = mddev;
5167 mddev->queue->backing_dev_info.congested_fn = md_congested;
5168 }
5169 if (pers->sync_request) {
5170 if (mddev->kobj.sd &&
5171 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5172 printk(KERN_WARNING
5173 "md: cannot register extra attributes for %s\n",
5174 mdname(mddev));
5175 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5176 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5177 mddev->ro = 0;
5178
5179 atomic_set(&mddev->writes_pending,0);
5180 atomic_set(&mddev->max_corr_read_errors,
5181 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5182 mddev->safemode = 0;
5183 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5184 mddev->in_sync = 1;
5185 smp_wmb();
5186 spin_lock(&mddev->lock);
5187 mddev->pers = pers;
5188 mddev->ready = 1;
5189 spin_unlock(&mddev->lock);
5190 rdev_for_each(rdev, mddev)
5191 if (rdev->raid_disk >= 0)
5192 if (sysfs_link_rdev(mddev, rdev))
5193 /* failure here is OK */;
5194
5195 if (mddev->degraded && !mddev->ro)
5196 /* This ensures that recovering status is reported immediately
5197 * via sysfs - until a lack of spares is confirmed.
5198 */
5199 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5200 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5201
5202 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5203 md_update_sb(mddev, 0);
5204
5205 md_new_event(mddev);
5206 sysfs_notify_dirent_safe(mddev->sysfs_state);
5207 sysfs_notify_dirent_safe(mddev->sysfs_action);
5208 sysfs_notify(&mddev->kobj, NULL, "degraded");
5209 return 0;
5210 }
5211 EXPORT_SYMBOL_GPL(md_run);
5212
5213 static int do_md_run(struct mddev *mddev)
5214 {
5215 int err;
5216
5217 err = md_run(mddev);
5218 if (err)
5219 goto out;
5220 err = bitmap_load(mddev);
5221 if (err) {
5222 bitmap_destroy(mddev);
5223 goto out;
5224 }
5225
5226 md_wakeup_thread(mddev->thread);
5227 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5228
5229 set_capacity(mddev->gendisk, mddev->array_sectors);
5230 revalidate_disk(mddev->gendisk);
5231 mddev->changed = 1;
5232 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5233 out:
5234 return err;
5235 }
5236
5237 static int restart_array(struct mddev *mddev)
5238 {
5239 struct gendisk *disk = mddev->gendisk;
5240
5241 /* Complain if it has no devices */
5242 if (list_empty(&mddev->disks))
5243 return -ENXIO;
5244 if (!mddev->pers)
5245 return -EINVAL;
5246 if (!mddev->ro)
5247 return -EBUSY;
5248 mddev->safemode = 0;
5249 mddev->ro = 0;
5250 set_disk_ro(disk, 0);
5251 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5252 mdname(mddev));
5253 /* Kick recovery or resync if necessary */
5254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5255 md_wakeup_thread(mddev->thread);
5256 md_wakeup_thread(mddev->sync_thread);
5257 sysfs_notify_dirent_safe(mddev->sysfs_state);
5258 return 0;
5259 }
5260
5261 static void md_clean(struct mddev *mddev)
5262 {
5263 mddev->array_sectors = 0;
5264 mddev->external_size = 0;
5265 mddev->dev_sectors = 0;
5266 mddev->raid_disks = 0;
5267 mddev->recovery_cp = 0;
5268 mddev->resync_min = 0;
5269 mddev->resync_max = MaxSector;
5270 mddev->reshape_position = MaxSector;
5271 mddev->external = 0;
5272 mddev->persistent = 0;
5273 mddev->level = LEVEL_NONE;
5274 mddev->clevel[0] = 0;
5275 mddev->flags = 0;
5276 mddev->ro = 0;
5277 mddev->metadata_type[0] = 0;
5278 mddev->chunk_sectors = 0;
5279 mddev->ctime = mddev->utime = 0;
5280 mddev->layout = 0;
5281 mddev->max_disks = 0;
5282 mddev->events = 0;
5283 mddev->can_decrease_events = 0;
5284 mddev->delta_disks = 0;
5285 mddev->reshape_backwards = 0;
5286 mddev->new_level = LEVEL_NONE;
5287 mddev->new_layout = 0;
5288 mddev->new_chunk_sectors = 0;
5289 mddev->curr_resync = 0;
5290 atomic64_set(&mddev->resync_mismatches, 0);
5291 mddev->suspend_lo = mddev->suspend_hi = 0;
5292 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5293 mddev->recovery = 0;
5294 mddev->in_sync = 0;
5295 mddev->changed = 0;
5296 mddev->degraded = 0;
5297 mddev->safemode = 0;
5298 mddev->private = NULL;
5299 mddev->bitmap_info.offset = 0;
5300 mddev->bitmap_info.default_offset = 0;
5301 mddev->bitmap_info.default_space = 0;
5302 mddev->bitmap_info.chunksize = 0;
5303 mddev->bitmap_info.daemon_sleep = 0;
5304 mddev->bitmap_info.max_write_behind = 0;
5305 }
5306
5307 static void __md_stop_writes(struct mddev *mddev)
5308 {
5309 if (mddev_is_clustered(mddev))
5310 md_cluster_ops->metadata_update_start(mddev);
5311 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5312 flush_workqueue(md_misc_wq);
5313 if (mddev->sync_thread) {
5314 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5315 md_reap_sync_thread(mddev);
5316 }
5317
5318 del_timer_sync(&mddev->safemode_timer);
5319
5320 bitmap_flush(mddev);
5321 md_super_wait(mddev);
5322
5323 if (mddev->ro == 0 &&
5324 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5325 /* mark array as shutdown cleanly */
5326 mddev->in_sync = 1;
5327 md_update_sb(mddev, 1);
5328 }
5329 if (mddev_is_clustered(mddev))
5330 md_cluster_ops->metadata_update_finish(mddev);
5331 }
5332
5333 void md_stop_writes(struct mddev *mddev)
5334 {
5335 mddev_lock_nointr(mddev);
5336 __md_stop_writes(mddev);
5337 mddev_unlock(mddev);
5338 }
5339 EXPORT_SYMBOL_GPL(md_stop_writes);
5340
5341 static void mddev_detach(struct mddev *mddev)
5342 {
5343 struct bitmap *bitmap = mddev->bitmap;
5344 /* wait for behind writes to complete */
5345 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5346 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5347 mdname(mddev));
5348 /* need to kick something here to make sure I/O goes? */
5349 wait_event(bitmap->behind_wait,
5350 atomic_read(&bitmap->behind_writes) == 0);
5351 }
5352 if (mddev->pers && mddev->pers->quiesce) {
5353 mddev->pers->quiesce(mddev, 1);
5354 mddev->pers->quiesce(mddev, 0);
5355 }
5356 md_unregister_thread(&mddev->thread);
5357 if (mddev->queue)
5358 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5359 }
5360
5361 static void __md_stop(struct mddev *mddev)
5362 {
5363 struct md_personality *pers = mddev->pers;
5364 mddev_detach(mddev);
5365 /* Ensure ->event_work is done */
5366 flush_workqueue(md_misc_wq);
5367 spin_lock(&mddev->lock);
5368 mddev->ready = 0;
5369 mddev->pers = NULL;
5370 spin_unlock(&mddev->lock);
5371 pers->free(mddev, mddev->private);
5372 mddev->private = NULL;
5373 if (pers->sync_request && mddev->to_remove == NULL)
5374 mddev->to_remove = &md_redundancy_group;
5375 module_put(pers->owner);
5376 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5377 }
5378
5379 void md_stop(struct mddev *mddev)
5380 {
5381 /* stop the array and free an attached data structures.
5382 * This is called from dm-raid
5383 */
5384 __md_stop(mddev);
5385 bitmap_destroy(mddev);
5386 if (mddev->bio_set)
5387 bioset_free(mddev->bio_set);
5388 }
5389
5390 EXPORT_SYMBOL_GPL(md_stop);
5391
5392 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5393 {
5394 int err = 0;
5395 int did_freeze = 0;
5396
5397 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5398 did_freeze = 1;
5399 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5400 md_wakeup_thread(mddev->thread);
5401 }
5402 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5403 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5404 if (mddev->sync_thread)
5405 /* Thread might be blocked waiting for metadata update
5406 * which will now never happen */
5407 wake_up_process(mddev->sync_thread->tsk);
5408
5409 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5410 return -EBUSY;
5411 mddev_unlock(mddev);
5412 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5413 &mddev->recovery));
5414 wait_event(mddev->sb_wait,
5415 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5416 mddev_lock_nointr(mddev);
5417
5418 mutex_lock(&mddev->open_mutex);
5419 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5420 mddev->sync_thread ||
5421 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5422 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5423 printk("md: %s still in use.\n",mdname(mddev));
5424 if (did_freeze) {
5425 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5426 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5427 md_wakeup_thread(mddev->thread);
5428 }
5429 err = -EBUSY;
5430 goto out;
5431 }
5432 if (mddev->pers) {
5433 __md_stop_writes(mddev);
5434
5435 err = -ENXIO;
5436 if (mddev->ro==1)
5437 goto out;
5438 mddev->ro = 1;
5439 set_disk_ro(mddev->gendisk, 1);
5440 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5441 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5442 md_wakeup_thread(mddev->thread);
5443 sysfs_notify_dirent_safe(mddev->sysfs_state);
5444 err = 0;
5445 }
5446 out:
5447 mutex_unlock(&mddev->open_mutex);
5448 return err;
5449 }
5450
5451 /* mode:
5452 * 0 - completely stop and dis-assemble array
5453 * 2 - stop but do not disassemble array
5454 */
5455 static int do_md_stop(struct mddev *mddev, int mode,
5456 struct block_device *bdev)
5457 {
5458 struct gendisk *disk = mddev->gendisk;
5459 struct md_rdev *rdev;
5460 int did_freeze = 0;
5461
5462 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5463 did_freeze = 1;
5464 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5465 md_wakeup_thread(mddev->thread);
5466 }
5467 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5468 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5469 if (mddev->sync_thread)
5470 /* Thread might be blocked waiting for metadata update
5471 * which will now never happen */
5472 wake_up_process(mddev->sync_thread->tsk);
5473
5474 mddev_unlock(mddev);
5475 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5476 !test_bit(MD_RECOVERY_RUNNING,
5477 &mddev->recovery)));
5478 mddev_lock_nointr(mddev);
5479
5480 mutex_lock(&mddev->open_mutex);
5481 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5482 mddev->sysfs_active ||
5483 mddev->sync_thread ||
5484 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5485 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5486 printk("md: %s still in use.\n",mdname(mddev));
5487 mutex_unlock(&mddev->open_mutex);
5488 if (did_freeze) {
5489 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5490 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5491 md_wakeup_thread(mddev->thread);
5492 }
5493 return -EBUSY;
5494 }
5495 if (mddev->pers) {
5496 if (mddev->ro)
5497 set_disk_ro(disk, 0);
5498
5499 __md_stop_writes(mddev);
5500 __md_stop(mddev);
5501 mddev->queue->backing_dev_info.congested_fn = NULL;
5502
5503 /* tell userspace to handle 'inactive' */
5504 sysfs_notify_dirent_safe(mddev->sysfs_state);
5505
5506 rdev_for_each(rdev, mddev)
5507 if (rdev->raid_disk >= 0)
5508 sysfs_unlink_rdev(mddev, rdev);
5509
5510 set_capacity(disk, 0);
5511 mutex_unlock(&mddev->open_mutex);
5512 mddev->changed = 1;
5513 revalidate_disk(disk);
5514
5515 if (mddev->ro)
5516 mddev->ro = 0;
5517 } else
5518 mutex_unlock(&mddev->open_mutex);
5519 /*
5520 * Free resources if final stop
5521 */
5522 if (mode == 0) {
5523 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5524
5525 bitmap_destroy(mddev);
5526 if (mddev->bitmap_info.file) {
5527 struct file *f = mddev->bitmap_info.file;
5528 spin_lock(&mddev->lock);
5529 mddev->bitmap_info.file = NULL;
5530 spin_unlock(&mddev->lock);
5531 fput(f);
5532 }
5533 mddev->bitmap_info.offset = 0;
5534
5535 export_array(mddev);
5536
5537 md_clean(mddev);
5538 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5539 if (mddev->hold_active == UNTIL_STOP)
5540 mddev->hold_active = 0;
5541 }
5542 blk_integrity_unregister(disk);
5543 md_new_event(mddev);
5544 sysfs_notify_dirent_safe(mddev->sysfs_state);
5545 return 0;
5546 }
5547
5548 #ifndef MODULE
5549 static void autorun_array(struct mddev *mddev)
5550 {
5551 struct md_rdev *rdev;
5552 int err;
5553
5554 if (list_empty(&mddev->disks))
5555 return;
5556
5557 printk(KERN_INFO "md: running: ");
5558
5559 rdev_for_each(rdev, mddev) {
5560 char b[BDEVNAME_SIZE];
5561 printk("<%s>", bdevname(rdev->bdev,b));
5562 }
5563 printk("\n");
5564
5565 err = do_md_run(mddev);
5566 if (err) {
5567 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5568 do_md_stop(mddev, 0, NULL);
5569 }
5570 }
5571
5572 /*
5573 * lets try to run arrays based on all disks that have arrived
5574 * until now. (those are in pending_raid_disks)
5575 *
5576 * the method: pick the first pending disk, collect all disks with
5577 * the same UUID, remove all from the pending list and put them into
5578 * the 'same_array' list. Then order this list based on superblock
5579 * update time (freshest comes first), kick out 'old' disks and
5580 * compare superblocks. If everything's fine then run it.
5581 *
5582 * If "unit" is allocated, then bump its reference count
5583 */
5584 static void autorun_devices(int part)
5585 {
5586 struct md_rdev *rdev0, *rdev, *tmp;
5587 struct mddev *mddev;
5588 char b[BDEVNAME_SIZE];
5589
5590 printk(KERN_INFO "md: autorun ...\n");
5591 while (!list_empty(&pending_raid_disks)) {
5592 int unit;
5593 dev_t dev;
5594 LIST_HEAD(candidates);
5595 rdev0 = list_entry(pending_raid_disks.next,
5596 struct md_rdev, same_set);
5597
5598 printk(KERN_INFO "md: considering %s ...\n",
5599 bdevname(rdev0->bdev,b));
5600 INIT_LIST_HEAD(&candidates);
5601 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5602 if (super_90_load(rdev, rdev0, 0) >= 0) {
5603 printk(KERN_INFO "md: adding %s ...\n",
5604 bdevname(rdev->bdev,b));
5605 list_move(&rdev->same_set, &candidates);
5606 }
5607 /*
5608 * now we have a set of devices, with all of them having
5609 * mostly sane superblocks. It's time to allocate the
5610 * mddev.
5611 */
5612 if (part) {
5613 dev = MKDEV(mdp_major,
5614 rdev0->preferred_minor << MdpMinorShift);
5615 unit = MINOR(dev) >> MdpMinorShift;
5616 } else {
5617 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5618 unit = MINOR(dev);
5619 }
5620 if (rdev0->preferred_minor != unit) {
5621 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5622 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5623 break;
5624 }
5625
5626 md_probe(dev, NULL, NULL);
5627 mddev = mddev_find(dev);
5628 if (!mddev || !mddev->gendisk) {
5629 if (mddev)
5630 mddev_put(mddev);
5631 printk(KERN_ERR
5632 "md: cannot allocate memory for md drive.\n");
5633 break;
5634 }
5635 if (mddev_lock(mddev))
5636 printk(KERN_WARNING "md: %s locked, cannot run\n",
5637 mdname(mddev));
5638 else if (mddev->raid_disks || mddev->major_version
5639 || !list_empty(&mddev->disks)) {
5640 printk(KERN_WARNING
5641 "md: %s already running, cannot run %s\n",
5642 mdname(mddev), bdevname(rdev0->bdev,b));
5643 mddev_unlock(mddev);
5644 } else {
5645 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5646 mddev->persistent = 1;
5647 rdev_for_each_list(rdev, tmp, &candidates) {
5648 list_del_init(&rdev->same_set);
5649 if (bind_rdev_to_array(rdev, mddev))
5650 export_rdev(rdev);
5651 }
5652 autorun_array(mddev);
5653 mddev_unlock(mddev);
5654 }
5655 /* on success, candidates will be empty, on error
5656 * it won't...
5657 */
5658 rdev_for_each_list(rdev, tmp, &candidates) {
5659 list_del_init(&rdev->same_set);
5660 export_rdev(rdev);
5661 }
5662 mddev_put(mddev);
5663 }
5664 printk(KERN_INFO "md: ... autorun DONE.\n");
5665 }
5666 #endif /* !MODULE */
5667
5668 static int get_version(void __user *arg)
5669 {
5670 mdu_version_t ver;
5671
5672 ver.major = MD_MAJOR_VERSION;
5673 ver.minor = MD_MINOR_VERSION;
5674 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5675
5676 if (copy_to_user(arg, &ver, sizeof(ver)))
5677 return -EFAULT;
5678
5679 return 0;
5680 }
5681
5682 static int get_array_info(struct mddev *mddev, void __user *arg)
5683 {
5684 mdu_array_info_t info;
5685 int nr,working,insync,failed,spare;
5686 struct md_rdev *rdev;
5687
5688 nr = working = insync = failed = spare = 0;
5689 rcu_read_lock();
5690 rdev_for_each_rcu(rdev, mddev) {
5691 nr++;
5692 if (test_bit(Faulty, &rdev->flags))
5693 failed++;
5694 else {
5695 working++;
5696 if (test_bit(In_sync, &rdev->flags))
5697 insync++;
5698 else
5699 spare++;
5700 }
5701 }
5702 rcu_read_unlock();
5703
5704 info.major_version = mddev->major_version;
5705 info.minor_version = mddev->minor_version;
5706 info.patch_version = MD_PATCHLEVEL_VERSION;
5707 info.ctime = mddev->ctime;
5708 info.level = mddev->level;
5709 info.size = mddev->dev_sectors / 2;
5710 if (info.size != mddev->dev_sectors / 2) /* overflow */
5711 info.size = -1;
5712 info.nr_disks = nr;
5713 info.raid_disks = mddev->raid_disks;
5714 info.md_minor = mddev->md_minor;
5715 info.not_persistent= !mddev->persistent;
5716
5717 info.utime = mddev->utime;
5718 info.state = 0;
5719 if (mddev->in_sync)
5720 info.state = (1<<MD_SB_CLEAN);
5721 if (mddev->bitmap && mddev->bitmap_info.offset)
5722 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5723 if (mddev_is_clustered(mddev))
5724 info.state |= (1<<MD_SB_CLUSTERED);
5725 info.active_disks = insync;
5726 info.working_disks = working;
5727 info.failed_disks = failed;
5728 info.spare_disks = spare;
5729
5730 info.layout = mddev->layout;
5731 info.chunk_size = mddev->chunk_sectors << 9;
5732
5733 if (copy_to_user(arg, &info, sizeof(info)))
5734 return -EFAULT;
5735
5736 return 0;
5737 }
5738
5739 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5740 {
5741 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5742 char *ptr;
5743 int err;
5744
5745 file = kzalloc(sizeof(*file), GFP_NOIO);
5746 if (!file)
5747 return -ENOMEM;
5748
5749 err = 0;
5750 spin_lock(&mddev->lock);
5751 /* bitmap enabled */
5752 if (mddev->bitmap_info.file) {
5753 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5754 sizeof(file->pathname));
5755 if (IS_ERR(ptr))
5756 err = PTR_ERR(ptr);
5757 else
5758 memmove(file->pathname, ptr,
5759 sizeof(file->pathname)-(ptr-file->pathname));
5760 }
5761 spin_unlock(&mddev->lock);
5762
5763 if (err == 0 &&
5764 copy_to_user(arg, file, sizeof(*file)))
5765 err = -EFAULT;
5766
5767 kfree(file);
5768 return err;
5769 }
5770
5771 static int get_disk_info(struct mddev *mddev, void __user * arg)
5772 {
5773 mdu_disk_info_t info;
5774 struct md_rdev *rdev;
5775
5776 if (copy_from_user(&info, arg, sizeof(info)))
5777 return -EFAULT;
5778
5779 rcu_read_lock();
5780 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5781 if (rdev) {
5782 info.major = MAJOR(rdev->bdev->bd_dev);
5783 info.minor = MINOR(rdev->bdev->bd_dev);
5784 info.raid_disk = rdev->raid_disk;
5785 info.state = 0;
5786 if (test_bit(Faulty, &rdev->flags))
5787 info.state |= (1<<MD_DISK_FAULTY);
5788 else if (test_bit(In_sync, &rdev->flags)) {
5789 info.state |= (1<<MD_DISK_ACTIVE);
5790 info.state |= (1<<MD_DISK_SYNC);
5791 }
5792 if (test_bit(WriteMostly, &rdev->flags))
5793 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5794 } else {
5795 info.major = info.minor = 0;
5796 info.raid_disk = -1;
5797 info.state = (1<<MD_DISK_REMOVED);
5798 }
5799 rcu_read_unlock();
5800
5801 if (copy_to_user(arg, &info, sizeof(info)))
5802 return -EFAULT;
5803
5804 return 0;
5805 }
5806
5807 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5808 {
5809 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5810 struct md_rdev *rdev;
5811 dev_t dev = MKDEV(info->major,info->minor);
5812
5813 if (mddev_is_clustered(mddev) &&
5814 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5815 pr_err("%s: Cannot add to clustered mddev.\n",
5816 mdname(mddev));
5817 return -EINVAL;
5818 }
5819
5820 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5821 return -EOVERFLOW;
5822
5823 if (!mddev->raid_disks) {
5824 int err;
5825 /* expecting a device which has a superblock */
5826 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5827 if (IS_ERR(rdev)) {
5828 printk(KERN_WARNING
5829 "md: md_import_device returned %ld\n",
5830 PTR_ERR(rdev));
5831 return PTR_ERR(rdev);
5832 }
5833 if (!list_empty(&mddev->disks)) {
5834 struct md_rdev *rdev0
5835 = list_entry(mddev->disks.next,
5836 struct md_rdev, same_set);
5837 err = super_types[mddev->major_version]
5838 .load_super(rdev, rdev0, mddev->minor_version);
5839 if (err < 0) {
5840 printk(KERN_WARNING
5841 "md: %s has different UUID to %s\n",
5842 bdevname(rdev->bdev,b),
5843 bdevname(rdev0->bdev,b2));
5844 export_rdev(rdev);
5845 return -EINVAL;
5846 }
5847 }
5848 err = bind_rdev_to_array(rdev, mddev);
5849 if (err)
5850 export_rdev(rdev);
5851 return err;
5852 }
5853
5854 /*
5855 * add_new_disk can be used once the array is assembled
5856 * to add "hot spares". They must already have a superblock
5857 * written
5858 */
5859 if (mddev->pers) {
5860 int err;
5861 if (!mddev->pers->hot_add_disk) {
5862 printk(KERN_WARNING
5863 "%s: personality does not support diskops!\n",
5864 mdname(mddev));
5865 return -EINVAL;
5866 }
5867 if (mddev->persistent)
5868 rdev = md_import_device(dev, mddev->major_version,
5869 mddev->minor_version);
5870 else
5871 rdev = md_import_device(dev, -1, -1);
5872 if (IS_ERR(rdev)) {
5873 printk(KERN_WARNING
5874 "md: md_import_device returned %ld\n",
5875 PTR_ERR(rdev));
5876 return PTR_ERR(rdev);
5877 }
5878 /* set saved_raid_disk if appropriate */
5879 if (!mddev->persistent) {
5880 if (info->state & (1<<MD_DISK_SYNC) &&
5881 info->raid_disk < mddev->raid_disks) {
5882 rdev->raid_disk = info->raid_disk;
5883 set_bit(In_sync, &rdev->flags);
5884 clear_bit(Bitmap_sync, &rdev->flags);
5885 } else
5886 rdev->raid_disk = -1;
5887 rdev->saved_raid_disk = rdev->raid_disk;
5888 } else
5889 super_types[mddev->major_version].
5890 validate_super(mddev, rdev);
5891 if ((info->state & (1<<MD_DISK_SYNC)) &&
5892 rdev->raid_disk != info->raid_disk) {
5893 /* This was a hot-add request, but events doesn't
5894 * match, so reject it.
5895 */
5896 export_rdev(rdev);
5897 return -EINVAL;
5898 }
5899
5900 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5901 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5902 set_bit(WriteMostly, &rdev->flags);
5903 else
5904 clear_bit(WriteMostly, &rdev->flags);
5905
5906 /*
5907 * check whether the device shows up in other nodes
5908 */
5909 if (mddev_is_clustered(mddev)) {
5910 if (info->state & (1 << MD_DISK_CANDIDATE)) {
5911 /* Through --cluster-confirm */
5912 set_bit(Candidate, &rdev->flags);
5913 err = md_cluster_ops->new_disk_ack(mddev, true);
5914 if (err) {
5915 export_rdev(rdev);
5916 return err;
5917 }
5918 } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5919 /* --add initiated by this node */
5920 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5921 if (err) {
5922 md_cluster_ops->add_new_disk_finish(mddev);
5923 export_rdev(rdev);
5924 return err;
5925 }
5926 }
5927 }
5928
5929 rdev->raid_disk = -1;
5930 err = bind_rdev_to_array(rdev, mddev);
5931 if (err)
5932 export_rdev(rdev);
5933 else
5934 err = add_bound_rdev(rdev);
5935 if (mddev_is_clustered(mddev) &&
5936 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5937 md_cluster_ops->add_new_disk_finish(mddev);
5938 return err;
5939 }
5940
5941 /* otherwise, add_new_disk is only allowed
5942 * for major_version==0 superblocks
5943 */
5944 if (mddev->major_version != 0) {
5945 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5946 mdname(mddev));
5947 return -EINVAL;
5948 }
5949
5950 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5951 int err;
5952 rdev = md_import_device(dev, -1, 0);
5953 if (IS_ERR(rdev)) {
5954 printk(KERN_WARNING
5955 "md: error, md_import_device() returned %ld\n",
5956 PTR_ERR(rdev));
5957 return PTR_ERR(rdev);
5958 }
5959 rdev->desc_nr = info->number;
5960 if (info->raid_disk < mddev->raid_disks)
5961 rdev->raid_disk = info->raid_disk;
5962 else
5963 rdev->raid_disk = -1;
5964
5965 if (rdev->raid_disk < mddev->raid_disks)
5966 if (info->state & (1<<MD_DISK_SYNC))
5967 set_bit(In_sync, &rdev->flags);
5968
5969 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5970 set_bit(WriteMostly, &rdev->flags);
5971
5972 if (!mddev->persistent) {
5973 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5974 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5975 } else
5976 rdev->sb_start = calc_dev_sboffset(rdev);
5977 rdev->sectors = rdev->sb_start;
5978
5979 err = bind_rdev_to_array(rdev, mddev);
5980 if (err) {
5981 export_rdev(rdev);
5982 return err;
5983 }
5984 }
5985
5986 return 0;
5987 }
5988
5989 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5990 {
5991 char b[BDEVNAME_SIZE];
5992 struct md_rdev *rdev;
5993
5994 rdev = find_rdev(mddev, dev);
5995 if (!rdev)
5996 return -ENXIO;
5997
5998 if (mddev_is_clustered(mddev))
5999 md_cluster_ops->metadata_update_start(mddev);
6000
6001 if (rdev->raid_disk < 0)
6002 goto kick_rdev;
6003
6004 clear_bit(Blocked, &rdev->flags);
6005 remove_and_add_spares(mddev, rdev);
6006
6007 if (rdev->raid_disk >= 0)
6008 goto busy;
6009
6010 kick_rdev:
6011 if (mddev_is_clustered(mddev))
6012 md_cluster_ops->remove_disk(mddev, rdev);
6013
6014 md_kick_rdev_from_array(rdev);
6015 md_update_sb(mddev, 1);
6016 md_new_event(mddev);
6017
6018 if (mddev_is_clustered(mddev))
6019 md_cluster_ops->metadata_update_finish(mddev);
6020
6021 return 0;
6022 busy:
6023 if (mddev_is_clustered(mddev))
6024 md_cluster_ops->metadata_update_cancel(mddev);
6025
6026 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6027 bdevname(rdev->bdev,b), mdname(mddev));
6028 return -EBUSY;
6029 }
6030
6031 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6032 {
6033 char b[BDEVNAME_SIZE];
6034 int err;
6035 struct md_rdev *rdev;
6036
6037 if (!mddev->pers)
6038 return -ENODEV;
6039
6040 if (mddev->major_version != 0) {
6041 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6042 " version-0 superblocks.\n",
6043 mdname(mddev));
6044 return -EINVAL;
6045 }
6046 if (!mddev->pers->hot_add_disk) {
6047 printk(KERN_WARNING
6048 "%s: personality does not support diskops!\n",
6049 mdname(mddev));
6050 return -EINVAL;
6051 }
6052
6053 rdev = md_import_device(dev, -1, 0);
6054 if (IS_ERR(rdev)) {
6055 printk(KERN_WARNING
6056 "md: error, md_import_device() returned %ld\n",
6057 PTR_ERR(rdev));
6058 return -EINVAL;
6059 }
6060
6061 if (mddev->persistent)
6062 rdev->sb_start = calc_dev_sboffset(rdev);
6063 else
6064 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6065
6066 rdev->sectors = rdev->sb_start;
6067
6068 if (test_bit(Faulty, &rdev->flags)) {
6069 printk(KERN_WARNING
6070 "md: can not hot-add faulty %s disk to %s!\n",
6071 bdevname(rdev->bdev,b), mdname(mddev));
6072 err = -EINVAL;
6073 goto abort_export;
6074 }
6075
6076 if (mddev_is_clustered(mddev))
6077 md_cluster_ops->metadata_update_start(mddev);
6078 clear_bit(In_sync, &rdev->flags);
6079 rdev->desc_nr = -1;
6080 rdev->saved_raid_disk = -1;
6081 err = bind_rdev_to_array(rdev, mddev);
6082 if (err)
6083 goto abort_clustered;
6084
6085 /*
6086 * The rest should better be atomic, we can have disk failures
6087 * noticed in interrupt contexts ...
6088 */
6089
6090 rdev->raid_disk = -1;
6091
6092 md_update_sb(mddev, 1);
6093
6094 if (mddev_is_clustered(mddev))
6095 md_cluster_ops->metadata_update_finish(mddev);
6096 /*
6097 * Kick recovery, maybe this spare has to be added to the
6098 * array immediately.
6099 */
6100 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6101 md_wakeup_thread(mddev->thread);
6102 md_new_event(mddev);
6103 return 0;
6104
6105 abort_clustered:
6106 if (mddev_is_clustered(mddev))
6107 md_cluster_ops->metadata_update_cancel(mddev);
6108 abort_export:
6109 export_rdev(rdev);
6110 return err;
6111 }
6112
6113 static int set_bitmap_file(struct mddev *mddev, int fd)
6114 {
6115 int err = 0;
6116
6117 if (mddev->pers) {
6118 if (!mddev->pers->quiesce || !mddev->thread)
6119 return -EBUSY;
6120 if (mddev->recovery || mddev->sync_thread)
6121 return -EBUSY;
6122 /* we should be able to change the bitmap.. */
6123 }
6124
6125 if (fd >= 0) {
6126 struct inode *inode;
6127 struct file *f;
6128
6129 if (mddev->bitmap || mddev->bitmap_info.file)
6130 return -EEXIST; /* cannot add when bitmap is present */
6131 f = fget(fd);
6132
6133 if (f == NULL) {
6134 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6135 mdname(mddev));
6136 return -EBADF;
6137 }
6138
6139 inode = f->f_mapping->host;
6140 if (!S_ISREG(inode->i_mode)) {
6141 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6142 mdname(mddev));
6143 err = -EBADF;
6144 } else if (!(f->f_mode & FMODE_WRITE)) {
6145 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6146 mdname(mddev));
6147 err = -EBADF;
6148 } else if (atomic_read(&inode->i_writecount) != 1) {
6149 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6150 mdname(mddev));
6151 err = -EBUSY;
6152 }
6153 if (err) {
6154 fput(f);
6155 return err;
6156 }
6157 mddev->bitmap_info.file = f;
6158 mddev->bitmap_info.offset = 0; /* file overrides offset */
6159 } else if (mddev->bitmap == NULL)
6160 return -ENOENT; /* cannot remove what isn't there */
6161 err = 0;
6162 if (mddev->pers) {
6163 mddev->pers->quiesce(mddev, 1);
6164 if (fd >= 0) {
6165 struct bitmap *bitmap;
6166
6167 bitmap = bitmap_create(mddev, -1);
6168 if (!IS_ERR(bitmap)) {
6169 mddev->bitmap = bitmap;
6170 err = bitmap_load(mddev);
6171 } else
6172 err = PTR_ERR(bitmap);
6173 }
6174 if (fd < 0 || err) {
6175 bitmap_destroy(mddev);
6176 fd = -1; /* make sure to put the file */
6177 }
6178 mddev->pers->quiesce(mddev, 0);
6179 }
6180 if (fd < 0) {
6181 struct file *f = mddev->bitmap_info.file;
6182 if (f) {
6183 spin_lock(&mddev->lock);
6184 mddev->bitmap_info.file = NULL;
6185 spin_unlock(&mddev->lock);
6186 fput(f);
6187 }
6188 }
6189
6190 return err;
6191 }
6192
6193 /*
6194 * set_array_info is used two different ways
6195 * The original usage is when creating a new array.
6196 * In this usage, raid_disks is > 0 and it together with
6197 * level, size, not_persistent,layout,chunksize determine the
6198 * shape of the array.
6199 * This will always create an array with a type-0.90.0 superblock.
6200 * The newer usage is when assembling an array.
6201 * In this case raid_disks will be 0, and the major_version field is
6202 * use to determine which style super-blocks are to be found on the devices.
6203 * The minor and patch _version numbers are also kept incase the
6204 * super_block handler wishes to interpret them.
6205 */
6206 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6207 {
6208
6209 if (info->raid_disks == 0) {
6210 /* just setting version number for superblock loading */
6211 if (info->major_version < 0 ||
6212 info->major_version >= ARRAY_SIZE(super_types) ||
6213 super_types[info->major_version].name == NULL) {
6214 /* maybe try to auto-load a module? */
6215 printk(KERN_INFO
6216 "md: superblock version %d not known\n",
6217 info->major_version);
6218 return -EINVAL;
6219 }
6220 mddev->major_version = info->major_version;
6221 mddev->minor_version = info->minor_version;
6222 mddev->patch_version = info->patch_version;
6223 mddev->persistent = !info->not_persistent;
6224 /* ensure mddev_put doesn't delete this now that there
6225 * is some minimal configuration.
6226 */
6227 mddev->ctime = get_seconds();
6228 return 0;
6229 }
6230 mddev->major_version = MD_MAJOR_VERSION;
6231 mddev->minor_version = MD_MINOR_VERSION;
6232 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6233 mddev->ctime = get_seconds();
6234
6235 mddev->level = info->level;
6236 mddev->clevel[0] = 0;
6237 mddev->dev_sectors = 2 * (sector_t)info->size;
6238 mddev->raid_disks = info->raid_disks;
6239 /* don't set md_minor, it is determined by which /dev/md* was
6240 * openned
6241 */
6242 if (info->state & (1<<MD_SB_CLEAN))
6243 mddev->recovery_cp = MaxSector;
6244 else
6245 mddev->recovery_cp = 0;
6246 mddev->persistent = ! info->not_persistent;
6247 mddev->external = 0;
6248
6249 mddev->layout = info->layout;
6250 mddev->chunk_sectors = info->chunk_size >> 9;
6251
6252 mddev->max_disks = MD_SB_DISKS;
6253
6254 if (mddev->persistent)
6255 mddev->flags = 0;
6256 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6257
6258 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6259 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6260 mddev->bitmap_info.offset = 0;
6261
6262 mddev->reshape_position = MaxSector;
6263
6264 /*
6265 * Generate a 128 bit UUID
6266 */
6267 get_random_bytes(mddev->uuid, 16);
6268
6269 mddev->new_level = mddev->level;
6270 mddev->new_chunk_sectors = mddev->chunk_sectors;
6271 mddev->new_layout = mddev->layout;
6272 mddev->delta_disks = 0;
6273 mddev->reshape_backwards = 0;
6274
6275 return 0;
6276 }
6277
6278 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6279 {
6280 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6281
6282 if (mddev->external_size)
6283 return;
6284
6285 mddev->array_sectors = array_sectors;
6286 }
6287 EXPORT_SYMBOL(md_set_array_sectors);
6288
6289 static int update_size(struct mddev *mddev, sector_t num_sectors)
6290 {
6291 struct md_rdev *rdev;
6292 int rv;
6293 int fit = (num_sectors == 0);
6294
6295 if (mddev->pers->resize == NULL)
6296 return -EINVAL;
6297 /* The "num_sectors" is the number of sectors of each device that
6298 * is used. This can only make sense for arrays with redundancy.
6299 * linear and raid0 always use whatever space is available. We can only
6300 * consider changing this number if no resync or reconstruction is
6301 * happening, and if the new size is acceptable. It must fit before the
6302 * sb_start or, if that is <data_offset, it must fit before the size
6303 * of each device. If num_sectors is zero, we find the largest size
6304 * that fits.
6305 */
6306 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6307 mddev->sync_thread)
6308 return -EBUSY;
6309 if (mddev->ro)
6310 return -EROFS;
6311
6312 rdev_for_each(rdev, mddev) {
6313 sector_t avail = rdev->sectors;
6314
6315 if (fit && (num_sectors == 0 || num_sectors > avail))
6316 num_sectors = avail;
6317 if (avail < num_sectors)
6318 return -ENOSPC;
6319 }
6320 rv = mddev->pers->resize(mddev, num_sectors);
6321 if (!rv)
6322 revalidate_disk(mddev->gendisk);
6323 return rv;
6324 }
6325
6326 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6327 {
6328 int rv;
6329 struct md_rdev *rdev;
6330 /* change the number of raid disks */
6331 if (mddev->pers->check_reshape == NULL)
6332 return -EINVAL;
6333 if (mddev->ro)
6334 return -EROFS;
6335 if (raid_disks <= 0 ||
6336 (mddev->max_disks && raid_disks >= mddev->max_disks))
6337 return -EINVAL;
6338 if (mddev->sync_thread ||
6339 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6340 mddev->reshape_position != MaxSector)
6341 return -EBUSY;
6342
6343 rdev_for_each(rdev, mddev) {
6344 if (mddev->raid_disks < raid_disks &&
6345 rdev->data_offset < rdev->new_data_offset)
6346 return -EINVAL;
6347 if (mddev->raid_disks > raid_disks &&
6348 rdev->data_offset > rdev->new_data_offset)
6349 return -EINVAL;
6350 }
6351
6352 mddev->delta_disks = raid_disks - mddev->raid_disks;
6353 if (mddev->delta_disks < 0)
6354 mddev->reshape_backwards = 1;
6355 else if (mddev->delta_disks > 0)
6356 mddev->reshape_backwards = 0;
6357
6358 rv = mddev->pers->check_reshape(mddev);
6359 if (rv < 0) {
6360 mddev->delta_disks = 0;
6361 mddev->reshape_backwards = 0;
6362 }
6363 return rv;
6364 }
6365
6366 /*
6367 * update_array_info is used to change the configuration of an
6368 * on-line array.
6369 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6370 * fields in the info are checked against the array.
6371 * Any differences that cannot be handled will cause an error.
6372 * Normally, only one change can be managed at a time.
6373 */
6374 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6375 {
6376 int rv = 0;
6377 int cnt = 0;
6378 int state = 0;
6379
6380 /* calculate expected state,ignoring low bits */
6381 if (mddev->bitmap && mddev->bitmap_info.offset)
6382 state |= (1 << MD_SB_BITMAP_PRESENT);
6383
6384 if (mddev->major_version != info->major_version ||
6385 mddev->minor_version != info->minor_version ||
6386 /* mddev->patch_version != info->patch_version || */
6387 mddev->ctime != info->ctime ||
6388 mddev->level != info->level ||
6389 /* mddev->layout != info->layout || */
6390 mddev->persistent != !info->not_persistent ||
6391 mddev->chunk_sectors != info->chunk_size >> 9 ||
6392 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6393 ((state^info->state) & 0xfffffe00)
6394 )
6395 return -EINVAL;
6396 /* Check there is only one change */
6397 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6398 cnt++;
6399 if (mddev->raid_disks != info->raid_disks)
6400 cnt++;
6401 if (mddev->layout != info->layout)
6402 cnt++;
6403 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6404 cnt++;
6405 if (cnt == 0)
6406 return 0;
6407 if (cnt > 1)
6408 return -EINVAL;
6409
6410 if (mddev->layout != info->layout) {
6411 /* Change layout
6412 * we don't need to do anything at the md level, the
6413 * personality will take care of it all.
6414 */
6415 if (mddev->pers->check_reshape == NULL)
6416 return -EINVAL;
6417 else {
6418 mddev->new_layout = info->layout;
6419 rv = mddev->pers->check_reshape(mddev);
6420 if (rv)
6421 mddev->new_layout = mddev->layout;
6422 return rv;
6423 }
6424 }
6425 if (mddev_is_clustered(mddev))
6426 md_cluster_ops->metadata_update_start(mddev);
6427 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6428 rv = update_size(mddev, (sector_t)info->size * 2);
6429
6430 if (mddev->raid_disks != info->raid_disks)
6431 rv = update_raid_disks(mddev, info->raid_disks);
6432
6433 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6434 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6435 rv = -EINVAL;
6436 goto err;
6437 }
6438 if (mddev->recovery || mddev->sync_thread) {
6439 rv = -EBUSY;
6440 goto err;
6441 }
6442 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6443 struct bitmap *bitmap;
6444 /* add the bitmap */
6445 if (mddev->bitmap) {
6446 rv = -EEXIST;
6447 goto err;
6448 }
6449 if (mddev->bitmap_info.default_offset == 0) {
6450 rv = -EINVAL;
6451 goto err;
6452 }
6453 mddev->bitmap_info.offset =
6454 mddev->bitmap_info.default_offset;
6455 mddev->bitmap_info.space =
6456 mddev->bitmap_info.default_space;
6457 mddev->pers->quiesce(mddev, 1);
6458 bitmap = bitmap_create(mddev, -1);
6459 if (!IS_ERR(bitmap)) {
6460 mddev->bitmap = bitmap;
6461 rv = bitmap_load(mddev);
6462 } else
6463 rv = PTR_ERR(bitmap);
6464 if (rv)
6465 bitmap_destroy(mddev);
6466 mddev->pers->quiesce(mddev, 0);
6467 } else {
6468 /* remove the bitmap */
6469 if (!mddev->bitmap) {
6470 rv = -ENOENT;
6471 goto err;
6472 }
6473 if (mddev->bitmap->storage.file) {
6474 rv = -EINVAL;
6475 goto err;
6476 }
6477 mddev->pers->quiesce(mddev, 1);
6478 bitmap_destroy(mddev);
6479 mddev->pers->quiesce(mddev, 0);
6480 mddev->bitmap_info.offset = 0;
6481 }
6482 }
6483 md_update_sb(mddev, 1);
6484 if (mddev_is_clustered(mddev))
6485 md_cluster_ops->metadata_update_finish(mddev);
6486 return rv;
6487 err:
6488 if (mddev_is_clustered(mddev))
6489 md_cluster_ops->metadata_update_cancel(mddev);
6490 return rv;
6491 }
6492
6493 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6494 {
6495 struct md_rdev *rdev;
6496 int err = 0;
6497
6498 if (mddev->pers == NULL)
6499 return -ENODEV;
6500
6501 rcu_read_lock();
6502 rdev = find_rdev_rcu(mddev, dev);
6503 if (!rdev)
6504 err = -ENODEV;
6505 else {
6506 md_error(mddev, rdev);
6507 if (!test_bit(Faulty, &rdev->flags))
6508 err = -EBUSY;
6509 }
6510 rcu_read_unlock();
6511 return err;
6512 }
6513
6514 /*
6515 * We have a problem here : there is no easy way to give a CHS
6516 * virtual geometry. We currently pretend that we have a 2 heads
6517 * 4 sectors (with a BIG number of cylinders...). This drives
6518 * dosfs just mad... ;-)
6519 */
6520 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6521 {
6522 struct mddev *mddev = bdev->bd_disk->private_data;
6523
6524 geo->heads = 2;
6525 geo->sectors = 4;
6526 geo->cylinders = mddev->array_sectors / 8;
6527 return 0;
6528 }
6529
6530 static inline bool md_ioctl_valid(unsigned int cmd)
6531 {
6532 switch (cmd) {
6533 case ADD_NEW_DISK:
6534 case BLKROSET:
6535 case GET_ARRAY_INFO:
6536 case GET_BITMAP_FILE:
6537 case GET_DISK_INFO:
6538 case HOT_ADD_DISK:
6539 case HOT_REMOVE_DISK:
6540 case RAID_AUTORUN:
6541 case RAID_VERSION:
6542 case RESTART_ARRAY_RW:
6543 case RUN_ARRAY:
6544 case SET_ARRAY_INFO:
6545 case SET_BITMAP_FILE:
6546 case SET_DISK_FAULTY:
6547 case STOP_ARRAY:
6548 case STOP_ARRAY_RO:
6549 case CLUSTERED_DISK_NACK:
6550 return true;
6551 default:
6552 return false;
6553 }
6554 }
6555
6556 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6557 unsigned int cmd, unsigned long arg)
6558 {
6559 int err = 0;
6560 void __user *argp = (void __user *)arg;
6561 struct mddev *mddev = NULL;
6562 int ro;
6563
6564 if (!md_ioctl_valid(cmd))
6565 return -ENOTTY;
6566
6567 switch (cmd) {
6568 case RAID_VERSION:
6569 case GET_ARRAY_INFO:
6570 case GET_DISK_INFO:
6571 break;
6572 default:
6573 if (!capable(CAP_SYS_ADMIN))
6574 return -EACCES;
6575 }
6576
6577 /*
6578 * Commands dealing with the RAID driver but not any
6579 * particular array:
6580 */
6581 switch (cmd) {
6582 case RAID_VERSION:
6583 err = get_version(argp);
6584 goto out;
6585
6586 #ifndef MODULE
6587 case RAID_AUTORUN:
6588 err = 0;
6589 autostart_arrays(arg);
6590 goto out;
6591 #endif
6592 default:;
6593 }
6594
6595 /*
6596 * Commands creating/starting a new array:
6597 */
6598
6599 mddev = bdev->bd_disk->private_data;
6600
6601 if (!mddev) {
6602 BUG();
6603 goto out;
6604 }
6605
6606 /* Some actions do not requires the mutex */
6607 switch (cmd) {
6608 case GET_ARRAY_INFO:
6609 if (!mddev->raid_disks && !mddev->external)
6610 err = -ENODEV;
6611 else
6612 err = get_array_info(mddev, argp);
6613 goto out;
6614
6615 case GET_DISK_INFO:
6616 if (!mddev->raid_disks && !mddev->external)
6617 err = -ENODEV;
6618 else
6619 err = get_disk_info(mddev, argp);
6620 goto out;
6621
6622 case SET_DISK_FAULTY:
6623 err = set_disk_faulty(mddev, new_decode_dev(arg));
6624 goto out;
6625
6626 case GET_BITMAP_FILE:
6627 err = get_bitmap_file(mddev, argp);
6628 goto out;
6629
6630 }
6631
6632 if (cmd == ADD_NEW_DISK)
6633 /* need to ensure md_delayed_delete() has completed */
6634 flush_workqueue(md_misc_wq);
6635
6636 if (cmd == HOT_REMOVE_DISK)
6637 /* need to ensure recovery thread has run */
6638 wait_event_interruptible_timeout(mddev->sb_wait,
6639 !test_bit(MD_RECOVERY_NEEDED,
6640 &mddev->flags),
6641 msecs_to_jiffies(5000));
6642 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6643 /* Need to flush page cache, and ensure no-one else opens
6644 * and writes
6645 */
6646 mutex_lock(&mddev->open_mutex);
6647 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6648 mutex_unlock(&mddev->open_mutex);
6649 err = -EBUSY;
6650 goto out;
6651 }
6652 set_bit(MD_STILL_CLOSED, &mddev->flags);
6653 mutex_unlock(&mddev->open_mutex);
6654 sync_blockdev(bdev);
6655 }
6656 err = mddev_lock(mddev);
6657 if (err) {
6658 printk(KERN_INFO
6659 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6660 err, cmd);
6661 goto out;
6662 }
6663
6664 if (cmd == SET_ARRAY_INFO) {
6665 mdu_array_info_t info;
6666 if (!arg)
6667 memset(&info, 0, sizeof(info));
6668 else if (copy_from_user(&info, argp, sizeof(info))) {
6669 err = -EFAULT;
6670 goto unlock;
6671 }
6672 if (mddev->pers) {
6673 err = update_array_info(mddev, &info);
6674 if (err) {
6675 printk(KERN_WARNING "md: couldn't update"
6676 " array info. %d\n", err);
6677 goto unlock;
6678 }
6679 goto unlock;
6680 }
6681 if (!list_empty(&mddev->disks)) {
6682 printk(KERN_WARNING
6683 "md: array %s already has disks!\n",
6684 mdname(mddev));
6685 err = -EBUSY;
6686 goto unlock;
6687 }
6688 if (mddev->raid_disks) {
6689 printk(KERN_WARNING
6690 "md: array %s already initialised!\n",
6691 mdname(mddev));
6692 err = -EBUSY;
6693 goto unlock;
6694 }
6695 err = set_array_info(mddev, &info);
6696 if (err) {
6697 printk(KERN_WARNING "md: couldn't set"
6698 " array info. %d\n", err);
6699 goto unlock;
6700 }
6701 goto unlock;
6702 }
6703
6704 /*
6705 * Commands querying/configuring an existing array:
6706 */
6707 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6708 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6709 if ((!mddev->raid_disks && !mddev->external)
6710 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6711 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6712 && cmd != GET_BITMAP_FILE) {
6713 err = -ENODEV;
6714 goto unlock;
6715 }
6716
6717 /*
6718 * Commands even a read-only array can execute:
6719 */
6720 switch (cmd) {
6721 case RESTART_ARRAY_RW:
6722 err = restart_array(mddev);
6723 goto unlock;
6724
6725 case STOP_ARRAY:
6726 err = do_md_stop(mddev, 0, bdev);
6727 goto unlock;
6728
6729 case STOP_ARRAY_RO:
6730 err = md_set_readonly(mddev, bdev);
6731 goto unlock;
6732
6733 case HOT_REMOVE_DISK:
6734 err = hot_remove_disk(mddev, new_decode_dev(arg));
6735 goto unlock;
6736
6737 case ADD_NEW_DISK:
6738 /* We can support ADD_NEW_DISK on read-only arrays
6739 * on if we are re-adding a preexisting device.
6740 * So require mddev->pers and MD_DISK_SYNC.
6741 */
6742 if (mddev->pers) {
6743 mdu_disk_info_t info;
6744 if (copy_from_user(&info, argp, sizeof(info)))
6745 err = -EFAULT;
6746 else if (!(info.state & (1<<MD_DISK_SYNC)))
6747 /* Need to clear read-only for this */
6748 break;
6749 else
6750 err = add_new_disk(mddev, &info);
6751 goto unlock;
6752 }
6753 break;
6754
6755 case BLKROSET:
6756 if (get_user(ro, (int __user *)(arg))) {
6757 err = -EFAULT;
6758 goto unlock;
6759 }
6760 err = -EINVAL;
6761
6762 /* if the bdev is going readonly the value of mddev->ro
6763 * does not matter, no writes are coming
6764 */
6765 if (ro)
6766 goto unlock;
6767
6768 /* are we are already prepared for writes? */
6769 if (mddev->ro != 1)
6770 goto unlock;
6771
6772 /* transitioning to readauto need only happen for
6773 * arrays that call md_write_start
6774 */
6775 if (mddev->pers) {
6776 err = restart_array(mddev);
6777 if (err == 0) {
6778 mddev->ro = 2;
6779 set_disk_ro(mddev->gendisk, 0);
6780 }
6781 }
6782 goto unlock;
6783 }
6784
6785 /*
6786 * The remaining ioctls are changing the state of the
6787 * superblock, so we do not allow them on read-only arrays.
6788 */
6789 if (mddev->ro && mddev->pers) {
6790 if (mddev->ro == 2) {
6791 mddev->ro = 0;
6792 sysfs_notify_dirent_safe(mddev->sysfs_state);
6793 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6794 /* mddev_unlock will wake thread */
6795 /* If a device failed while we were read-only, we
6796 * need to make sure the metadata is updated now.
6797 */
6798 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6799 mddev_unlock(mddev);
6800 wait_event(mddev->sb_wait,
6801 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6802 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6803 mddev_lock_nointr(mddev);
6804 }
6805 } else {
6806 err = -EROFS;
6807 goto unlock;
6808 }
6809 }
6810
6811 switch (cmd) {
6812 case ADD_NEW_DISK:
6813 {
6814 mdu_disk_info_t info;
6815 if (copy_from_user(&info, argp, sizeof(info)))
6816 err = -EFAULT;
6817 else
6818 err = add_new_disk(mddev, &info);
6819 goto unlock;
6820 }
6821
6822 case CLUSTERED_DISK_NACK:
6823 if (mddev_is_clustered(mddev))
6824 md_cluster_ops->new_disk_ack(mddev, false);
6825 else
6826 err = -EINVAL;
6827 goto unlock;
6828
6829 case HOT_ADD_DISK:
6830 err = hot_add_disk(mddev, new_decode_dev(arg));
6831 goto unlock;
6832
6833 case RUN_ARRAY:
6834 err = do_md_run(mddev);
6835 goto unlock;
6836
6837 case SET_BITMAP_FILE:
6838 err = set_bitmap_file(mddev, (int)arg);
6839 goto unlock;
6840
6841 default:
6842 err = -EINVAL;
6843 goto unlock;
6844 }
6845
6846 unlock:
6847 if (mddev->hold_active == UNTIL_IOCTL &&
6848 err != -EINVAL)
6849 mddev->hold_active = 0;
6850 mddev_unlock(mddev);
6851 out:
6852 return err;
6853 }
6854 #ifdef CONFIG_COMPAT
6855 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6856 unsigned int cmd, unsigned long arg)
6857 {
6858 switch (cmd) {
6859 case HOT_REMOVE_DISK:
6860 case HOT_ADD_DISK:
6861 case SET_DISK_FAULTY:
6862 case SET_BITMAP_FILE:
6863 /* These take in integer arg, do not convert */
6864 break;
6865 default:
6866 arg = (unsigned long)compat_ptr(arg);
6867 break;
6868 }
6869
6870 return md_ioctl(bdev, mode, cmd, arg);
6871 }
6872 #endif /* CONFIG_COMPAT */
6873
6874 static int md_open(struct block_device *bdev, fmode_t mode)
6875 {
6876 /*
6877 * Succeed if we can lock the mddev, which confirms that
6878 * it isn't being stopped right now.
6879 */
6880 struct mddev *mddev = mddev_find(bdev->bd_dev);
6881 int err;
6882
6883 if (!mddev)
6884 return -ENODEV;
6885
6886 if (mddev->gendisk != bdev->bd_disk) {
6887 /* we are racing with mddev_put which is discarding this
6888 * bd_disk.
6889 */
6890 mddev_put(mddev);
6891 /* Wait until bdev->bd_disk is definitely gone */
6892 flush_workqueue(md_misc_wq);
6893 /* Then retry the open from the top */
6894 return -ERESTARTSYS;
6895 }
6896 BUG_ON(mddev != bdev->bd_disk->private_data);
6897
6898 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6899 goto out;
6900
6901 err = 0;
6902 atomic_inc(&mddev->openers);
6903 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6904 mutex_unlock(&mddev->open_mutex);
6905
6906 check_disk_change(bdev);
6907 out:
6908 return err;
6909 }
6910
6911 static void md_release(struct gendisk *disk, fmode_t mode)
6912 {
6913 struct mddev *mddev = disk->private_data;
6914
6915 BUG_ON(!mddev);
6916 atomic_dec(&mddev->openers);
6917 mddev_put(mddev);
6918 }
6919
6920 static int md_media_changed(struct gendisk *disk)
6921 {
6922 struct mddev *mddev = disk->private_data;
6923
6924 return mddev->changed;
6925 }
6926
6927 static int md_revalidate(struct gendisk *disk)
6928 {
6929 struct mddev *mddev = disk->private_data;
6930
6931 mddev->changed = 0;
6932 return 0;
6933 }
6934 static const struct block_device_operations md_fops =
6935 {
6936 .owner = THIS_MODULE,
6937 .open = md_open,
6938 .release = md_release,
6939 .ioctl = md_ioctl,
6940 #ifdef CONFIG_COMPAT
6941 .compat_ioctl = md_compat_ioctl,
6942 #endif
6943 .getgeo = md_getgeo,
6944 .media_changed = md_media_changed,
6945 .revalidate_disk= md_revalidate,
6946 };
6947
6948 static int md_thread(void *arg)
6949 {
6950 struct md_thread *thread = arg;
6951
6952 /*
6953 * md_thread is a 'system-thread', it's priority should be very
6954 * high. We avoid resource deadlocks individually in each
6955 * raid personality. (RAID5 does preallocation) We also use RR and
6956 * the very same RT priority as kswapd, thus we will never get
6957 * into a priority inversion deadlock.
6958 *
6959 * we definitely have to have equal or higher priority than
6960 * bdflush, otherwise bdflush will deadlock if there are too
6961 * many dirty RAID5 blocks.
6962 */
6963
6964 allow_signal(SIGKILL);
6965 while (!kthread_should_stop()) {
6966
6967 /* We need to wait INTERRUPTIBLE so that
6968 * we don't add to the load-average.
6969 * That means we need to be sure no signals are
6970 * pending
6971 */
6972 if (signal_pending(current))
6973 flush_signals(current);
6974
6975 wait_event_interruptible_timeout
6976 (thread->wqueue,
6977 test_bit(THREAD_WAKEUP, &thread->flags)
6978 || kthread_should_stop(),
6979 thread->timeout);
6980
6981 clear_bit(THREAD_WAKEUP, &thread->flags);
6982 if (!kthread_should_stop())
6983 thread->run(thread);
6984 }
6985
6986 return 0;
6987 }
6988
6989 void md_wakeup_thread(struct md_thread *thread)
6990 {
6991 if (thread) {
6992 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6993 set_bit(THREAD_WAKEUP, &thread->flags);
6994 wake_up(&thread->wqueue);
6995 }
6996 }
6997 EXPORT_SYMBOL(md_wakeup_thread);
6998
6999 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7000 struct mddev *mddev, const char *name)
7001 {
7002 struct md_thread *thread;
7003
7004 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7005 if (!thread)
7006 return NULL;
7007
7008 init_waitqueue_head(&thread->wqueue);
7009
7010 thread->run = run;
7011 thread->mddev = mddev;
7012 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7013 thread->tsk = kthread_run(md_thread, thread,
7014 "%s_%s",
7015 mdname(thread->mddev),
7016 name);
7017 if (IS_ERR(thread->tsk)) {
7018 kfree(thread);
7019 return NULL;
7020 }
7021 return thread;
7022 }
7023 EXPORT_SYMBOL(md_register_thread);
7024
7025 void md_unregister_thread(struct md_thread **threadp)
7026 {
7027 struct md_thread *thread = *threadp;
7028 if (!thread)
7029 return;
7030 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7031 /* Locking ensures that mddev_unlock does not wake_up a
7032 * non-existent thread
7033 */
7034 spin_lock(&pers_lock);
7035 *threadp = NULL;
7036 spin_unlock(&pers_lock);
7037
7038 kthread_stop(thread->tsk);
7039 kfree(thread);
7040 }
7041 EXPORT_SYMBOL(md_unregister_thread);
7042
7043 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7044 {
7045 if (!rdev || test_bit(Faulty, &rdev->flags))
7046 return;
7047
7048 if (!mddev->pers || !mddev->pers->error_handler)
7049 return;
7050 mddev->pers->error_handler(mddev,rdev);
7051 if (mddev->degraded)
7052 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7053 sysfs_notify_dirent_safe(rdev->sysfs_state);
7054 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7055 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7056 md_wakeup_thread(mddev->thread);
7057 if (mddev->event_work.func)
7058 queue_work(md_misc_wq, &mddev->event_work);
7059 md_new_event_inintr(mddev);
7060 }
7061 EXPORT_SYMBOL(md_error);
7062
7063 /* seq_file implementation /proc/mdstat */
7064
7065 static void status_unused(struct seq_file *seq)
7066 {
7067 int i = 0;
7068 struct md_rdev *rdev;
7069
7070 seq_printf(seq, "unused devices: ");
7071
7072 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7073 char b[BDEVNAME_SIZE];
7074 i++;
7075 seq_printf(seq, "%s ",
7076 bdevname(rdev->bdev,b));
7077 }
7078 if (!i)
7079 seq_printf(seq, "<none>");
7080
7081 seq_printf(seq, "\n");
7082 }
7083
7084 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7085 {
7086 sector_t max_sectors, resync, res;
7087 unsigned long dt, db;
7088 sector_t rt;
7089 int scale;
7090 unsigned int per_milli;
7091
7092 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7093 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7094 max_sectors = mddev->resync_max_sectors;
7095 else
7096 max_sectors = mddev->dev_sectors;
7097
7098 resync = mddev->curr_resync;
7099 if (resync <= 3) {
7100 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7101 /* Still cleaning up */
7102 resync = max_sectors;
7103 } else
7104 resync -= atomic_read(&mddev->recovery_active);
7105
7106 if (resync == 0) {
7107 if (mddev->recovery_cp < MaxSector) {
7108 seq_printf(seq, "\tresync=PENDING");
7109 return 1;
7110 }
7111 return 0;
7112 }
7113 if (resync < 3) {
7114 seq_printf(seq, "\tresync=DELAYED");
7115 return 1;
7116 }
7117
7118 WARN_ON(max_sectors == 0);
7119 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7120 * in a sector_t, and (max_sectors>>scale) will fit in a
7121 * u32, as those are the requirements for sector_div.
7122 * Thus 'scale' must be at least 10
7123 */
7124 scale = 10;
7125 if (sizeof(sector_t) > sizeof(unsigned long)) {
7126 while ( max_sectors/2 > (1ULL<<(scale+32)))
7127 scale++;
7128 }
7129 res = (resync>>scale)*1000;
7130 sector_div(res, (u32)((max_sectors>>scale)+1));
7131
7132 per_milli = res;
7133 {
7134 int i, x = per_milli/50, y = 20-x;
7135 seq_printf(seq, "[");
7136 for (i = 0; i < x; i++)
7137 seq_printf(seq, "=");
7138 seq_printf(seq, ">");
7139 for (i = 0; i < y; i++)
7140 seq_printf(seq, ".");
7141 seq_printf(seq, "] ");
7142 }
7143 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7144 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7145 "reshape" :
7146 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7147 "check" :
7148 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7149 "resync" : "recovery"))),
7150 per_milli/10, per_milli % 10,
7151 (unsigned long long) resync/2,
7152 (unsigned long long) max_sectors/2);
7153
7154 /*
7155 * dt: time from mark until now
7156 * db: blocks written from mark until now
7157 * rt: remaining time
7158 *
7159 * rt is a sector_t, so could be 32bit or 64bit.
7160 * So we divide before multiply in case it is 32bit and close
7161 * to the limit.
7162 * We scale the divisor (db) by 32 to avoid losing precision
7163 * near the end of resync when the number of remaining sectors
7164 * is close to 'db'.
7165 * We then divide rt by 32 after multiplying by db to compensate.
7166 * The '+1' avoids division by zero if db is very small.
7167 */
7168 dt = ((jiffies - mddev->resync_mark) / HZ);
7169 if (!dt) dt++;
7170 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7171 - mddev->resync_mark_cnt;
7172
7173 rt = max_sectors - resync; /* number of remaining sectors */
7174 sector_div(rt, db/32+1);
7175 rt *= dt;
7176 rt >>= 5;
7177
7178 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7179 ((unsigned long)rt % 60)/6);
7180
7181 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7182 return 1;
7183 }
7184
7185 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7186 {
7187 struct list_head *tmp;
7188 loff_t l = *pos;
7189 struct mddev *mddev;
7190
7191 if (l >= 0x10000)
7192 return NULL;
7193 if (!l--)
7194 /* header */
7195 return (void*)1;
7196
7197 spin_lock(&all_mddevs_lock);
7198 list_for_each(tmp,&all_mddevs)
7199 if (!l--) {
7200 mddev = list_entry(tmp, struct mddev, all_mddevs);
7201 mddev_get(mddev);
7202 spin_unlock(&all_mddevs_lock);
7203 return mddev;
7204 }
7205 spin_unlock(&all_mddevs_lock);
7206 if (!l--)
7207 return (void*)2;/* tail */
7208 return NULL;
7209 }
7210
7211 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7212 {
7213 struct list_head *tmp;
7214 struct mddev *next_mddev, *mddev = v;
7215
7216 ++*pos;
7217 if (v == (void*)2)
7218 return NULL;
7219
7220 spin_lock(&all_mddevs_lock);
7221 if (v == (void*)1)
7222 tmp = all_mddevs.next;
7223 else
7224 tmp = mddev->all_mddevs.next;
7225 if (tmp != &all_mddevs)
7226 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7227 else {
7228 next_mddev = (void*)2;
7229 *pos = 0x10000;
7230 }
7231 spin_unlock(&all_mddevs_lock);
7232
7233 if (v != (void*)1)
7234 mddev_put(mddev);
7235 return next_mddev;
7236
7237 }
7238
7239 static void md_seq_stop(struct seq_file *seq, void *v)
7240 {
7241 struct mddev *mddev = v;
7242
7243 if (mddev && v != (void*)1 && v != (void*)2)
7244 mddev_put(mddev);
7245 }
7246
7247 static int md_seq_show(struct seq_file *seq, void *v)
7248 {
7249 struct mddev *mddev = v;
7250 sector_t sectors;
7251 struct md_rdev *rdev;
7252
7253 if (v == (void*)1) {
7254 struct md_personality *pers;
7255 seq_printf(seq, "Personalities : ");
7256 spin_lock(&pers_lock);
7257 list_for_each_entry(pers, &pers_list, list)
7258 seq_printf(seq, "[%s] ", pers->name);
7259
7260 spin_unlock(&pers_lock);
7261 seq_printf(seq, "\n");
7262 seq->poll_event = atomic_read(&md_event_count);
7263 return 0;
7264 }
7265 if (v == (void*)2) {
7266 status_unused(seq);
7267 return 0;
7268 }
7269
7270 spin_lock(&mddev->lock);
7271 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7272 seq_printf(seq, "%s : %sactive", mdname(mddev),
7273 mddev->pers ? "" : "in");
7274 if (mddev->pers) {
7275 if (mddev->ro==1)
7276 seq_printf(seq, " (read-only)");
7277 if (mddev->ro==2)
7278 seq_printf(seq, " (auto-read-only)");
7279 seq_printf(seq, " %s", mddev->pers->name);
7280 }
7281
7282 sectors = 0;
7283 rcu_read_lock();
7284 rdev_for_each_rcu(rdev, mddev) {
7285 char b[BDEVNAME_SIZE];
7286 seq_printf(seq, " %s[%d]",
7287 bdevname(rdev->bdev,b), rdev->desc_nr);
7288 if (test_bit(WriteMostly, &rdev->flags))
7289 seq_printf(seq, "(W)");
7290 if (test_bit(Faulty, &rdev->flags)) {
7291 seq_printf(seq, "(F)");
7292 continue;
7293 }
7294 if (rdev->raid_disk < 0)
7295 seq_printf(seq, "(S)"); /* spare */
7296 if (test_bit(Replacement, &rdev->flags))
7297 seq_printf(seq, "(R)");
7298 sectors += rdev->sectors;
7299 }
7300 rcu_read_unlock();
7301
7302 if (!list_empty(&mddev->disks)) {
7303 if (mddev->pers)
7304 seq_printf(seq, "\n %llu blocks",
7305 (unsigned long long)
7306 mddev->array_sectors / 2);
7307 else
7308 seq_printf(seq, "\n %llu blocks",
7309 (unsigned long long)sectors / 2);
7310 }
7311 if (mddev->persistent) {
7312 if (mddev->major_version != 0 ||
7313 mddev->minor_version != 90) {
7314 seq_printf(seq," super %d.%d",
7315 mddev->major_version,
7316 mddev->minor_version);
7317 }
7318 } else if (mddev->external)
7319 seq_printf(seq, " super external:%s",
7320 mddev->metadata_type);
7321 else
7322 seq_printf(seq, " super non-persistent");
7323
7324 if (mddev->pers) {
7325 mddev->pers->status(seq, mddev);
7326 seq_printf(seq, "\n ");
7327 if (mddev->pers->sync_request) {
7328 if (status_resync(seq, mddev))
7329 seq_printf(seq, "\n ");
7330 }
7331 } else
7332 seq_printf(seq, "\n ");
7333
7334 bitmap_status(seq, mddev->bitmap);
7335
7336 seq_printf(seq, "\n");
7337 }
7338 spin_unlock(&mddev->lock);
7339
7340 return 0;
7341 }
7342
7343 static const struct seq_operations md_seq_ops = {
7344 .start = md_seq_start,
7345 .next = md_seq_next,
7346 .stop = md_seq_stop,
7347 .show = md_seq_show,
7348 };
7349
7350 static int md_seq_open(struct inode *inode, struct file *file)
7351 {
7352 struct seq_file *seq;
7353 int error;
7354
7355 error = seq_open(file, &md_seq_ops);
7356 if (error)
7357 return error;
7358
7359 seq = file->private_data;
7360 seq->poll_event = atomic_read(&md_event_count);
7361 return error;
7362 }
7363
7364 static int md_unloading;
7365 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7366 {
7367 struct seq_file *seq = filp->private_data;
7368 int mask;
7369
7370 if (md_unloading)
7371 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7372 poll_wait(filp, &md_event_waiters, wait);
7373
7374 /* always allow read */
7375 mask = POLLIN | POLLRDNORM;
7376
7377 if (seq->poll_event != atomic_read(&md_event_count))
7378 mask |= POLLERR | POLLPRI;
7379 return mask;
7380 }
7381
7382 static const struct file_operations md_seq_fops = {
7383 .owner = THIS_MODULE,
7384 .open = md_seq_open,
7385 .read = seq_read,
7386 .llseek = seq_lseek,
7387 .release = seq_release_private,
7388 .poll = mdstat_poll,
7389 };
7390
7391 int register_md_personality(struct md_personality *p)
7392 {
7393 printk(KERN_INFO "md: %s personality registered for level %d\n",
7394 p->name, p->level);
7395 spin_lock(&pers_lock);
7396 list_add_tail(&p->list, &pers_list);
7397 spin_unlock(&pers_lock);
7398 return 0;
7399 }
7400 EXPORT_SYMBOL(register_md_personality);
7401
7402 int unregister_md_personality(struct md_personality *p)
7403 {
7404 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7405 spin_lock(&pers_lock);
7406 list_del_init(&p->list);
7407 spin_unlock(&pers_lock);
7408 return 0;
7409 }
7410 EXPORT_SYMBOL(unregister_md_personality);
7411
7412 int register_md_cluster_operations(struct md_cluster_operations *ops,
7413 struct module *module)
7414 {
7415 int ret = 0;
7416 spin_lock(&pers_lock);
7417 if (md_cluster_ops != NULL)
7418 ret = -EALREADY;
7419 else {
7420 md_cluster_ops = ops;
7421 md_cluster_mod = module;
7422 }
7423 spin_unlock(&pers_lock);
7424 return ret;
7425 }
7426 EXPORT_SYMBOL(register_md_cluster_operations);
7427
7428 int unregister_md_cluster_operations(void)
7429 {
7430 spin_lock(&pers_lock);
7431 md_cluster_ops = NULL;
7432 spin_unlock(&pers_lock);
7433 return 0;
7434 }
7435 EXPORT_SYMBOL(unregister_md_cluster_operations);
7436
7437 int md_setup_cluster(struct mddev *mddev, int nodes)
7438 {
7439 int err;
7440
7441 err = request_module("md-cluster");
7442 if (err) {
7443 pr_err("md-cluster module not found.\n");
7444 return -ENOENT;
7445 }
7446
7447 spin_lock(&pers_lock);
7448 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7449 spin_unlock(&pers_lock);
7450 return -ENOENT;
7451 }
7452 spin_unlock(&pers_lock);
7453
7454 return md_cluster_ops->join(mddev, nodes);
7455 }
7456
7457 void md_cluster_stop(struct mddev *mddev)
7458 {
7459 if (!md_cluster_ops)
7460 return;
7461 md_cluster_ops->leave(mddev);
7462 module_put(md_cluster_mod);
7463 }
7464
7465 static int is_mddev_idle(struct mddev *mddev, int init)
7466 {
7467 struct md_rdev *rdev;
7468 int idle;
7469 int curr_events;
7470
7471 idle = 1;
7472 rcu_read_lock();
7473 rdev_for_each_rcu(rdev, mddev) {
7474 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7475 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7476 (int)part_stat_read(&disk->part0, sectors[1]) -
7477 atomic_read(&disk->sync_io);
7478 /* sync IO will cause sync_io to increase before the disk_stats
7479 * as sync_io is counted when a request starts, and
7480 * disk_stats is counted when it completes.
7481 * So resync activity will cause curr_events to be smaller than
7482 * when there was no such activity.
7483 * non-sync IO will cause disk_stat to increase without
7484 * increasing sync_io so curr_events will (eventually)
7485 * be larger than it was before. Once it becomes
7486 * substantially larger, the test below will cause
7487 * the array to appear non-idle, and resync will slow
7488 * down.
7489 * If there is a lot of outstanding resync activity when
7490 * we set last_event to curr_events, then all that activity
7491 * completing might cause the array to appear non-idle
7492 * and resync will be slowed down even though there might
7493 * not have been non-resync activity. This will only
7494 * happen once though. 'last_events' will soon reflect
7495 * the state where there is little or no outstanding
7496 * resync requests, and further resync activity will
7497 * always make curr_events less than last_events.
7498 *
7499 */
7500 if (init || curr_events - rdev->last_events > 64) {
7501 rdev->last_events = curr_events;
7502 idle = 0;
7503 }
7504 }
7505 rcu_read_unlock();
7506 return idle;
7507 }
7508
7509 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7510 {
7511 /* another "blocks" (512byte) blocks have been synced */
7512 atomic_sub(blocks, &mddev->recovery_active);
7513 wake_up(&mddev->recovery_wait);
7514 if (!ok) {
7515 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7516 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7517 md_wakeup_thread(mddev->thread);
7518 // stop recovery, signal do_sync ....
7519 }
7520 }
7521 EXPORT_SYMBOL(md_done_sync);
7522
7523 /* md_write_start(mddev, bi)
7524 * If we need to update some array metadata (e.g. 'active' flag
7525 * in superblock) before writing, schedule a superblock update
7526 * and wait for it to complete.
7527 */
7528 void md_write_start(struct mddev *mddev, struct bio *bi)
7529 {
7530 int did_change = 0;
7531 if (bio_data_dir(bi) != WRITE)
7532 return;
7533
7534 BUG_ON(mddev->ro == 1);
7535 if (mddev->ro == 2) {
7536 /* need to switch to read/write */
7537 mddev->ro = 0;
7538 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7539 md_wakeup_thread(mddev->thread);
7540 md_wakeup_thread(mddev->sync_thread);
7541 did_change = 1;
7542 }
7543 atomic_inc(&mddev->writes_pending);
7544 if (mddev->safemode == 1)
7545 mddev->safemode = 0;
7546 if (mddev->in_sync) {
7547 spin_lock(&mddev->lock);
7548 if (mddev->in_sync) {
7549 mddev->in_sync = 0;
7550 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7551 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7552 md_wakeup_thread(mddev->thread);
7553 did_change = 1;
7554 }
7555 spin_unlock(&mddev->lock);
7556 }
7557 if (did_change)
7558 sysfs_notify_dirent_safe(mddev->sysfs_state);
7559 wait_event(mddev->sb_wait,
7560 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7561 }
7562 EXPORT_SYMBOL(md_write_start);
7563
7564 void md_write_end(struct mddev *mddev)
7565 {
7566 if (atomic_dec_and_test(&mddev->writes_pending)) {
7567 if (mddev->safemode == 2)
7568 md_wakeup_thread(mddev->thread);
7569 else if (mddev->safemode_delay)
7570 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7571 }
7572 }
7573 EXPORT_SYMBOL(md_write_end);
7574
7575 /* md_allow_write(mddev)
7576 * Calling this ensures that the array is marked 'active' so that writes
7577 * may proceed without blocking. It is important to call this before
7578 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7579 * Must be called with mddev_lock held.
7580 *
7581 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7582 * is dropped, so return -EAGAIN after notifying userspace.
7583 */
7584 int md_allow_write(struct mddev *mddev)
7585 {
7586 if (!mddev->pers)
7587 return 0;
7588 if (mddev->ro)
7589 return 0;
7590 if (!mddev->pers->sync_request)
7591 return 0;
7592
7593 spin_lock(&mddev->lock);
7594 if (mddev->in_sync) {
7595 mddev->in_sync = 0;
7596 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7597 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7598 if (mddev->safemode_delay &&
7599 mddev->safemode == 0)
7600 mddev->safemode = 1;
7601 spin_unlock(&mddev->lock);
7602 if (mddev_is_clustered(mddev))
7603 md_cluster_ops->metadata_update_start(mddev);
7604 md_update_sb(mddev, 0);
7605 if (mddev_is_clustered(mddev))
7606 md_cluster_ops->metadata_update_finish(mddev);
7607 sysfs_notify_dirent_safe(mddev->sysfs_state);
7608 } else
7609 spin_unlock(&mddev->lock);
7610
7611 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7612 return -EAGAIN;
7613 else
7614 return 0;
7615 }
7616 EXPORT_SYMBOL_GPL(md_allow_write);
7617
7618 #define SYNC_MARKS 10
7619 #define SYNC_MARK_STEP (3*HZ)
7620 #define UPDATE_FREQUENCY (5*60*HZ)
7621 void md_do_sync(struct md_thread *thread)
7622 {
7623 struct mddev *mddev = thread->mddev;
7624 struct mddev *mddev2;
7625 unsigned int currspeed = 0,
7626 window;
7627 sector_t max_sectors,j, io_sectors, recovery_done;
7628 unsigned long mark[SYNC_MARKS];
7629 unsigned long update_time;
7630 sector_t mark_cnt[SYNC_MARKS];
7631 int last_mark,m;
7632 struct list_head *tmp;
7633 sector_t last_check;
7634 int skipped = 0;
7635 struct md_rdev *rdev;
7636 char *desc, *action = NULL;
7637 struct blk_plug plug;
7638
7639 /* just incase thread restarts... */
7640 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7641 return;
7642 if (mddev->ro) {/* never try to sync a read-only array */
7643 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7644 return;
7645 }
7646
7647 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7648 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7649 desc = "data-check";
7650 action = "check";
7651 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7652 desc = "requested-resync";
7653 action = "repair";
7654 } else
7655 desc = "resync";
7656 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7657 desc = "reshape";
7658 else
7659 desc = "recovery";
7660
7661 mddev->last_sync_action = action ?: desc;
7662
7663 /* we overload curr_resync somewhat here.
7664 * 0 == not engaged in resync at all
7665 * 2 == checking that there is no conflict with another sync
7666 * 1 == like 2, but have yielded to allow conflicting resync to
7667 * commense
7668 * other == active in resync - this many blocks
7669 *
7670 * Before starting a resync we must have set curr_resync to
7671 * 2, and then checked that every "conflicting" array has curr_resync
7672 * less than ours. When we find one that is the same or higher
7673 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7674 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7675 * This will mean we have to start checking from the beginning again.
7676 *
7677 */
7678
7679 do {
7680 mddev->curr_resync = 2;
7681
7682 try_again:
7683 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7684 goto skip;
7685 for_each_mddev(mddev2, tmp) {
7686 if (mddev2 == mddev)
7687 continue;
7688 if (!mddev->parallel_resync
7689 && mddev2->curr_resync
7690 && match_mddev_units(mddev, mddev2)) {
7691 DEFINE_WAIT(wq);
7692 if (mddev < mddev2 && mddev->curr_resync == 2) {
7693 /* arbitrarily yield */
7694 mddev->curr_resync = 1;
7695 wake_up(&resync_wait);
7696 }
7697 if (mddev > mddev2 && mddev->curr_resync == 1)
7698 /* no need to wait here, we can wait the next
7699 * time 'round when curr_resync == 2
7700 */
7701 continue;
7702 /* We need to wait 'interruptible' so as not to
7703 * contribute to the load average, and not to
7704 * be caught by 'softlockup'
7705 */
7706 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7707 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7708 mddev2->curr_resync >= mddev->curr_resync) {
7709 printk(KERN_INFO "md: delaying %s of %s"
7710 " until %s has finished (they"
7711 " share one or more physical units)\n",
7712 desc, mdname(mddev), mdname(mddev2));
7713 mddev_put(mddev2);
7714 if (signal_pending(current))
7715 flush_signals(current);
7716 schedule();
7717 finish_wait(&resync_wait, &wq);
7718 goto try_again;
7719 }
7720 finish_wait(&resync_wait, &wq);
7721 }
7722 }
7723 } while (mddev->curr_resync < 2);
7724
7725 j = 0;
7726 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7727 /* resync follows the size requested by the personality,
7728 * which defaults to physical size, but can be virtual size
7729 */
7730 max_sectors = mddev->resync_max_sectors;
7731 atomic64_set(&mddev->resync_mismatches, 0);
7732 /* we don't use the checkpoint if there's a bitmap */
7733 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7734 j = mddev->resync_min;
7735 else if (!mddev->bitmap)
7736 j = mddev->recovery_cp;
7737
7738 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7739 max_sectors = mddev->resync_max_sectors;
7740 else {
7741 /* recovery follows the physical size of devices */
7742 max_sectors = mddev->dev_sectors;
7743 j = MaxSector;
7744 rcu_read_lock();
7745 rdev_for_each_rcu(rdev, mddev)
7746 if (rdev->raid_disk >= 0 &&
7747 !test_bit(Faulty, &rdev->flags) &&
7748 !test_bit(In_sync, &rdev->flags) &&
7749 rdev->recovery_offset < j)
7750 j = rdev->recovery_offset;
7751 rcu_read_unlock();
7752
7753 /* If there is a bitmap, we need to make sure all
7754 * writes that started before we added a spare
7755 * complete before we start doing a recovery.
7756 * Otherwise the write might complete and (via
7757 * bitmap_endwrite) set a bit in the bitmap after the
7758 * recovery has checked that bit and skipped that
7759 * region.
7760 */
7761 if (mddev->bitmap) {
7762 mddev->pers->quiesce(mddev, 1);
7763 mddev->pers->quiesce(mddev, 0);
7764 }
7765 }
7766
7767 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7768 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7769 " %d KB/sec/disk.\n", speed_min(mddev));
7770 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7771 "(but not more than %d KB/sec) for %s.\n",
7772 speed_max(mddev), desc);
7773
7774 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7775
7776 io_sectors = 0;
7777 for (m = 0; m < SYNC_MARKS; m++) {
7778 mark[m] = jiffies;
7779 mark_cnt[m] = io_sectors;
7780 }
7781 last_mark = 0;
7782 mddev->resync_mark = mark[last_mark];
7783 mddev->resync_mark_cnt = mark_cnt[last_mark];
7784
7785 /*
7786 * Tune reconstruction:
7787 */
7788 window = 32*(PAGE_SIZE/512);
7789 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7790 window/2, (unsigned long long)max_sectors/2);
7791
7792 atomic_set(&mddev->recovery_active, 0);
7793 last_check = 0;
7794
7795 if (j>2) {
7796 printk(KERN_INFO
7797 "md: resuming %s of %s from checkpoint.\n",
7798 desc, mdname(mddev));
7799 mddev->curr_resync = j;
7800 } else
7801 mddev->curr_resync = 3; /* no longer delayed */
7802 mddev->curr_resync_completed = j;
7803 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7804 md_new_event(mddev);
7805 update_time = jiffies;
7806
7807 blk_start_plug(&plug);
7808 while (j < max_sectors) {
7809 sector_t sectors;
7810
7811 skipped = 0;
7812
7813 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7814 ((mddev->curr_resync > mddev->curr_resync_completed &&
7815 (mddev->curr_resync - mddev->curr_resync_completed)
7816 > (max_sectors >> 4)) ||
7817 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7818 (j - mddev->curr_resync_completed)*2
7819 >= mddev->resync_max - mddev->curr_resync_completed ||
7820 mddev->curr_resync_completed > mddev->resync_max
7821 )) {
7822 /* time to update curr_resync_completed */
7823 wait_event(mddev->recovery_wait,
7824 atomic_read(&mddev->recovery_active) == 0);
7825 mddev->curr_resync_completed = j;
7826 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7827 j > mddev->recovery_cp)
7828 mddev->recovery_cp = j;
7829 update_time = jiffies;
7830 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7831 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7832 }
7833
7834 while (j >= mddev->resync_max &&
7835 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7836 /* As this condition is controlled by user-space,
7837 * we can block indefinitely, so use '_interruptible'
7838 * to avoid triggering warnings.
7839 */
7840 flush_signals(current); /* just in case */
7841 wait_event_interruptible(mddev->recovery_wait,
7842 mddev->resync_max > j
7843 || test_bit(MD_RECOVERY_INTR,
7844 &mddev->recovery));
7845 }
7846
7847 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7848 break;
7849
7850 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7851 if (sectors == 0) {
7852 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7853 break;
7854 }
7855
7856 if (!skipped) { /* actual IO requested */
7857 io_sectors += sectors;
7858 atomic_add(sectors, &mddev->recovery_active);
7859 }
7860
7861 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7862 break;
7863
7864 j += sectors;
7865 if (j > max_sectors)
7866 /* when skipping, extra large numbers can be returned. */
7867 j = max_sectors;
7868 if (j > 2)
7869 mddev->curr_resync = j;
7870 mddev->curr_mark_cnt = io_sectors;
7871 if (last_check == 0)
7872 /* this is the earliest that rebuild will be
7873 * visible in /proc/mdstat
7874 */
7875 md_new_event(mddev);
7876
7877 if (last_check + window > io_sectors || j == max_sectors)
7878 continue;
7879
7880 last_check = io_sectors;
7881 repeat:
7882 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7883 /* step marks */
7884 int next = (last_mark+1) % SYNC_MARKS;
7885
7886 mddev->resync_mark = mark[next];
7887 mddev->resync_mark_cnt = mark_cnt[next];
7888 mark[next] = jiffies;
7889 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7890 last_mark = next;
7891 }
7892
7893 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7894 break;
7895
7896 /*
7897 * this loop exits only if either when we are slower than
7898 * the 'hard' speed limit, or the system was IO-idle for
7899 * a jiffy.
7900 * the system might be non-idle CPU-wise, but we only care
7901 * about not overloading the IO subsystem. (things like an
7902 * e2fsck being done on the RAID array should execute fast)
7903 */
7904 cond_resched();
7905
7906 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7907 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7908 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7909
7910 if (currspeed > speed_min(mddev)) {
7911 if (currspeed > speed_max(mddev)) {
7912 msleep(500);
7913 goto repeat;
7914 }
7915 if (!is_mddev_idle(mddev, 0)) {
7916 /*
7917 * Give other IO more of a chance.
7918 * The faster the devices, the less we wait.
7919 */
7920 wait_event(mddev->recovery_wait,
7921 !atomic_read(&mddev->recovery_active));
7922 }
7923 }
7924 }
7925 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7926 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7927 ? "interrupted" : "done");
7928 /*
7929 * this also signals 'finished resyncing' to md_stop
7930 */
7931 blk_finish_plug(&plug);
7932 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7933
7934 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7935 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7936 mddev->curr_resync > 2) {
7937 mddev->curr_resync_completed = mddev->curr_resync;
7938 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7939 }
7940 /* tell personality that we are finished */
7941 mddev->pers->sync_request(mddev, max_sectors, &skipped);
7942
7943 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7944 mddev->curr_resync > 2) {
7945 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7946 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7947 if (mddev->curr_resync >= mddev->recovery_cp) {
7948 printk(KERN_INFO
7949 "md: checkpointing %s of %s.\n",
7950 desc, mdname(mddev));
7951 if (test_bit(MD_RECOVERY_ERROR,
7952 &mddev->recovery))
7953 mddev->recovery_cp =
7954 mddev->curr_resync_completed;
7955 else
7956 mddev->recovery_cp =
7957 mddev->curr_resync;
7958 }
7959 } else
7960 mddev->recovery_cp = MaxSector;
7961 } else {
7962 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7963 mddev->curr_resync = MaxSector;
7964 rcu_read_lock();
7965 rdev_for_each_rcu(rdev, mddev)
7966 if (rdev->raid_disk >= 0 &&
7967 mddev->delta_disks >= 0 &&
7968 !test_bit(Faulty, &rdev->flags) &&
7969 !test_bit(In_sync, &rdev->flags) &&
7970 rdev->recovery_offset < mddev->curr_resync)
7971 rdev->recovery_offset = mddev->curr_resync;
7972 rcu_read_unlock();
7973 }
7974 }
7975 skip:
7976 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7977
7978 spin_lock(&mddev->lock);
7979 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7980 /* We completed so min/max setting can be forgotten if used. */
7981 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7982 mddev->resync_min = 0;
7983 mddev->resync_max = MaxSector;
7984 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7985 mddev->resync_min = mddev->curr_resync_completed;
7986 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7987 mddev->curr_resync = 0;
7988 spin_unlock(&mddev->lock);
7989
7990 wake_up(&resync_wait);
7991 md_wakeup_thread(mddev->thread);
7992 return;
7993 }
7994 EXPORT_SYMBOL_GPL(md_do_sync);
7995
7996 static int remove_and_add_spares(struct mddev *mddev,
7997 struct md_rdev *this)
7998 {
7999 struct md_rdev *rdev;
8000 int spares = 0;
8001 int removed = 0;
8002
8003 rdev_for_each(rdev, mddev)
8004 if ((this == NULL || rdev == this) &&
8005 rdev->raid_disk >= 0 &&
8006 !test_bit(Blocked, &rdev->flags) &&
8007 (test_bit(Faulty, &rdev->flags) ||
8008 ! test_bit(In_sync, &rdev->flags)) &&
8009 atomic_read(&rdev->nr_pending)==0) {
8010 if (mddev->pers->hot_remove_disk(
8011 mddev, rdev) == 0) {
8012 sysfs_unlink_rdev(mddev, rdev);
8013 rdev->raid_disk = -1;
8014 removed++;
8015 }
8016 }
8017 if (removed && mddev->kobj.sd)
8018 sysfs_notify(&mddev->kobj, NULL, "degraded");
8019
8020 if (this && removed)
8021 goto no_add;
8022
8023 rdev_for_each(rdev, mddev) {
8024 if (this && this != rdev)
8025 continue;
8026 if (rdev->raid_disk >= 0 &&
8027 !test_bit(In_sync, &rdev->flags) &&
8028 !test_bit(Faulty, &rdev->flags))
8029 spares++;
8030 if (rdev->raid_disk >= 0)
8031 continue;
8032 if (test_bit(Faulty, &rdev->flags))
8033 continue;
8034 if (mddev->ro &&
8035 ! (rdev->saved_raid_disk >= 0 &&
8036 !test_bit(Bitmap_sync, &rdev->flags)))
8037 continue;
8038
8039 if (rdev->saved_raid_disk < 0)
8040 rdev->recovery_offset = 0;
8041 if (mddev->pers->
8042 hot_add_disk(mddev, rdev) == 0) {
8043 if (sysfs_link_rdev(mddev, rdev))
8044 /* failure here is OK */;
8045 spares++;
8046 md_new_event(mddev);
8047 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8048 }
8049 }
8050 no_add:
8051 if (removed)
8052 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8053 return spares;
8054 }
8055
8056 static void md_start_sync(struct work_struct *ws)
8057 {
8058 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8059
8060 mddev->sync_thread = md_register_thread(md_do_sync,
8061 mddev,
8062 "resync");
8063 if (!mddev->sync_thread) {
8064 printk(KERN_ERR "%s: could not start resync"
8065 " thread...\n",
8066 mdname(mddev));
8067 /* leave the spares where they are, it shouldn't hurt */
8068 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8069 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8070 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8071 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8072 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8073 wake_up(&resync_wait);
8074 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8075 &mddev->recovery))
8076 if (mddev->sysfs_action)
8077 sysfs_notify_dirent_safe(mddev->sysfs_action);
8078 } else
8079 md_wakeup_thread(mddev->sync_thread);
8080 sysfs_notify_dirent_safe(mddev->sysfs_action);
8081 md_new_event(mddev);
8082 }
8083
8084 /*
8085 * This routine is regularly called by all per-raid-array threads to
8086 * deal with generic issues like resync and super-block update.
8087 * Raid personalities that don't have a thread (linear/raid0) do not
8088 * need this as they never do any recovery or update the superblock.
8089 *
8090 * It does not do any resync itself, but rather "forks" off other threads
8091 * to do that as needed.
8092 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8093 * "->recovery" and create a thread at ->sync_thread.
8094 * When the thread finishes it sets MD_RECOVERY_DONE
8095 * and wakeups up this thread which will reap the thread and finish up.
8096 * This thread also removes any faulty devices (with nr_pending == 0).
8097 *
8098 * The overall approach is:
8099 * 1/ if the superblock needs updating, update it.
8100 * 2/ If a recovery thread is running, don't do anything else.
8101 * 3/ If recovery has finished, clean up, possibly marking spares active.
8102 * 4/ If there are any faulty devices, remove them.
8103 * 5/ If array is degraded, try to add spares devices
8104 * 6/ If array has spares or is not in-sync, start a resync thread.
8105 */
8106 void md_check_recovery(struct mddev *mddev)
8107 {
8108 if (mddev->suspended)
8109 return;
8110
8111 if (mddev->bitmap)
8112 bitmap_daemon_work(mddev);
8113
8114 if (signal_pending(current)) {
8115 if (mddev->pers->sync_request && !mddev->external) {
8116 printk(KERN_INFO "md: %s in immediate safe mode\n",
8117 mdname(mddev));
8118 mddev->safemode = 2;
8119 }
8120 flush_signals(current);
8121 }
8122
8123 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8124 return;
8125 if ( ! (
8126 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8127 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8128 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8129 (mddev->external == 0 && mddev->safemode == 1) ||
8130 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8131 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8132 ))
8133 return;
8134
8135 if (mddev_trylock(mddev)) {
8136 int spares = 0;
8137
8138 if (mddev->ro) {
8139 struct md_rdev *rdev;
8140 if (!mddev->external && mddev->in_sync)
8141 /* 'Blocked' flag not needed as failed devices
8142 * will be recorded if array switched to read/write.
8143 * Leaving it set will prevent the device
8144 * from being removed.
8145 */
8146 rdev_for_each(rdev, mddev)
8147 clear_bit(Blocked, &rdev->flags);
8148 /* On a read-only array we can:
8149 * - remove failed devices
8150 * - add already-in_sync devices if the array itself
8151 * is in-sync.
8152 * As we only add devices that are already in-sync,
8153 * we can activate the spares immediately.
8154 */
8155 remove_and_add_spares(mddev, NULL);
8156 /* There is no thread, but we need to call
8157 * ->spare_active and clear saved_raid_disk
8158 */
8159 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8160 md_reap_sync_thread(mddev);
8161 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8162 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8163 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8164 goto unlock;
8165 }
8166
8167 if (!mddev->external) {
8168 int did_change = 0;
8169 spin_lock(&mddev->lock);
8170 if (mddev->safemode &&
8171 !atomic_read(&mddev->writes_pending) &&
8172 !mddev->in_sync &&
8173 mddev->recovery_cp == MaxSector) {
8174 mddev->in_sync = 1;
8175 did_change = 1;
8176 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8177 }
8178 if (mddev->safemode == 1)
8179 mddev->safemode = 0;
8180 spin_unlock(&mddev->lock);
8181 if (did_change)
8182 sysfs_notify_dirent_safe(mddev->sysfs_state);
8183 }
8184
8185 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8186 if (mddev_is_clustered(mddev))
8187 md_cluster_ops->metadata_update_start(mddev);
8188 md_update_sb(mddev, 0);
8189 if (mddev_is_clustered(mddev))
8190 md_cluster_ops->metadata_update_finish(mddev);
8191 }
8192
8193 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8194 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8195 /* resync/recovery still happening */
8196 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8197 goto unlock;
8198 }
8199 if (mddev->sync_thread) {
8200 md_reap_sync_thread(mddev);
8201 goto unlock;
8202 }
8203 /* Set RUNNING before clearing NEEDED to avoid
8204 * any transients in the value of "sync_action".
8205 */
8206 mddev->curr_resync_completed = 0;
8207 spin_lock(&mddev->lock);
8208 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8209 spin_unlock(&mddev->lock);
8210 /* Clear some bits that don't mean anything, but
8211 * might be left set
8212 */
8213 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8214 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8215
8216 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8217 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8218 goto not_running;
8219 /* no recovery is running.
8220 * remove any failed drives, then
8221 * add spares if possible.
8222 * Spares are also removed and re-added, to allow
8223 * the personality to fail the re-add.
8224 */
8225
8226 if (mddev->reshape_position != MaxSector) {
8227 if (mddev->pers->check_reshape == NULL ||
8228 mddev->pers->check_reshape(mddev) != 0)
8229 /* Cannot proceed */
8230 goto not_running;
8231 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8232 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8233 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8234 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8235 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8236 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8237 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8238 } else if (mddev->recovery_cp < MaxSector) {
8239 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8240 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8241 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8242 /* nothing to be done ... */
8243 goto not_running;
8244
8245 if (mddev->pers->sync_request) {
8246 if (spares) {
8247 /* We are adding a device or devices to an array
8248 * which has the bitmap stored on all devices.
8249 * So make sure all bitmap pages get written
8250 */
8251 bitmap_write_all(mddev->bitmap);
8252 }
8253 INIT_WORK(&mddev->del_work, md_start_sync);
8254 queue_work(md_misc_wq, &mddev->del_work);
8255 goto unlock;
8256 }
8257 not_running:
8258 if (!mddev->sync_thread) {
8259 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8260 wake_up(&resync_wait);
8261 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8262 &mddev->recovery))
8263 if (mddev->sysfs_action)
8264 sysfs_notify_dirent_safe(mddev->sysfs_action);
8265 }
8266 unlock:
8267 wake_up(&mddev->sb_wait);
8268 mddev_unlock(mddev);
8269 }
8270 }
8271 EXPORT_SYMBOL(md_check_recovery);
8272
8273 void md_reap_sync_thread(struct mddev *mddev)
8274 {
8275 struct md_rdev *rdev;
8276
8277 /* resync has finished, collect result */
8278 md_unregister_thread(&mddev->sync_thread);
8279 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8280 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8281 /* success...*/
8282 /* activate any spares */
8283 if (mddev->pers->spare_active(mddev)) {
8284 sysfs_notify(&mddev->kobj, NULL,
8285 "degraded");
8286 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8287 }
8288 }
8289 if (mddev_is_clustered(mddev))
8290 md_cluster_ops->metadata_update_start(mddev);
8291 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8292 mddev->pers->finish_reshape)
8293 mddev->pers->finish_reshape(mddev);
8294
8295 /* If array is no-longer degraded, then any saved_raid_disk
8296 * information must be scrapped.
8297 */
8298 if (!mddev->degraded)
8299 rdev_for_each(rdev, mddev)
8300 rdev->saved_raid_disk = -1;
8301
8302 md_update_sb(mddev, 1);
8303 if (mddev_is_clustered(mddev))
8304 md_cluster_ops->metadata_update_finish(mddev);
8305 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8306 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8307 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8308 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8309 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8310 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8311 wake_up(&resync_wait);
8312 /* flag recovery needed just to double check */
8313 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8314 sysfs_notify_dirent_safe(mddev->sysfs_action);
8315 md_new_event(mddev);
8316 if (mddev->event_work.func)
8317 queue_work(md_misc_wq, &mddev->event_work);
8318 }
8319 EXPORT_SYMBOL(md_reap_sync_thread);
8320
8321 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8322 {
8323 sysfs_notify_dirent_safe(rdev->sysfs_state);
8324 wait_event_timeout(rdev->blocked_wait,
8325 !test_bit(Blocked, &rdev->flags) &&
8326 !test_bit(BlockedBadBlocks, &rdev->flags),
8327 msecs_to_jiffies(5000));
8328 rdev_dec_pending(rdev, mddev);
8329 }
8330 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8331
8332 void md_finish_reshape(struct mddev *mddev)
8333 {
8334 /* called be personality module when reshape completes. */
8335 struct md_rdev *rdev;
8336
8337 rdev_for_each(rdev, mddev) {
8338 if (rdev->data_offset > rdev->new_data_offset)
8339 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8340 else
8341 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8342 rdev->data_offset = rdev->new_data_offset;
8343 }
8344 }
8345 EXPORT_SYMBOL(md_finish_reshape);
8346
8347 /* Bad block management.
8348 * We can record which blocks on each device are 'bad' and so just
8349 * fail those blocks, or that stripe, rather than the whole device.
8350 * Entries in the bad-block table are 64bits wide. This comprises:
8351 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8352 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8353 * A 'shift' can be set so that larger blocks are tracked and
8354 * consequently larger devices can be covered.
8355 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8356 *
8357 * Locking of the bad-block table uses a seqlock so md_is_badblock
8358 * might need to retry if it is very unlucky.
8359 * We will sometimes want to check for bad blocks in a bi_end_io function,
8360 * so we use the write_seqlock_irq variant.
8361 *
8362 * When looking for a bad block we specify a range and want to
8363 * know if any block in the range is bad. So we binary-search
8364 * to the last range that starts at-or-before the given endpoint,
8365 * (or "before the sector after the target range")
8366 * then see if it ends after the given start.
8367 * We return
8368 * 0 if there are no known bad blocks in the range
8369 * 1 if there are known bad block which are all acknowledged
8370 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8371 * plus the start/length of the first bad section we overlap.
8372 */
8373 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8374 sector_t *first_bad, int *bad_sectors)
8375 {
8376 int hi;
8377 int lo;
8378 u64 *p = bb->page;
8379 int rv;
8380 sector_t target = s + sectors;
8381 unsigned seq;
8382
8383 if (bb->shift > 0) {
8384 /* round the start down, and the end up */
8385 s >>= bb->shift;
8386 target += (1<<bb->shift) - 1;
8387 target >>= bb->shift;
8388 sectors = target - s;
8389 }
8390 /* 'target' is now the first block after the bad range */
8391
8392 retry:
8393 seq = read_seqbegin(&bb->lock);
8394 lo = 0;
8395 rv = 0;
8396 hi = bb->count;
8397
8398 /* Binary search between lo and hi for 'target'
8399 * i.e. for the last range that starts before 'target'
8400 */
8401 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8402 * are known not to be the last range before target.
8403 * VARIANT: hi-lo is the number of possible
8404 * ranges, and decreases until it reaches 1
8405 */
8406 while (hi - lo > 1) {
8407 int mid = (lo + hi) / 2;
8408 sector_t a = BB_OFFSET(p[mid]);
8409 if (a < target)
8410 /* This could still be the one, earlier ranges
8411 * could not. */
8412 lo = mid;
8413 else
8414 /* This and later ranges are definitely out. */
8415 hi = mid;
8416 }
8417 /* 'lo' might be the last that started before target, but 'hi' isn't */
8418 if (hi > lo) {
8419 /* need to check all range that end after 's' to see if
8420 * any are unacknowledged.
8421 */
8422 while (lo >= 0 &&
8423 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8424 if (BB_OFFSET(p[lo]) < target) {
8425 /* starts before the end, and finishes after
8426 * the start, so they must overlap
8427 */
8428 if (rv != -1 && BB_ACK(p[lo]))
8429 rv = 1;
8430 else
8431 rv = -1;
8432 *first_bad = BB_OFFSET(p[lo]);
8433 *bad_sectors = BB_LEN(p[lo]);
8434 }
8435 lo--;
8436 }
8437 }
8438
8439 if (read_seqretry(&bb->lock, seq))
8440 goto retry;
8441
8442 return rv;
8443 }
8444 EXPORT_SYMBOL_GPL(md_is_badblock);
8445
8446 /*
8447 * Add a range of bad blocks to the table.
8448 * This might extend the table, or might contract it
8449 * if two adjacent ranges can be merged.
8450 * We binary-search to find the 'insertion' point, then
8451 * decide how best to handle it.
8452 */
8453 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8454 int acknowledged)
8455 {
8456 u64 *p;
8457 int lo, hi;
8458 int rv = 1;
8459 unsigned long flags;
8460
8461 if (bb->shift < 0)
8462 /* badblocks are disabled */
8463 return 0;
8464
8465 if (bb->shift) {
8466 /* round the start down, and the end up */
8467 sector_t next = s + sectors;
8468 s >>= bb->shift;
8469 next += (1<<bb->shift) - 1;
8470 next >>= bb->shift;
8471 sectors = next - s;
8472 }
8473
8474 write_seqlock_irqsave(&bb->lock, flags);
8475
8476 p = bb->page;
8477 lo = 0;
8478 hi = bb->count;
8479 /* Find the last range that starts at-or-before 's' */
8480 while (hi - lo > 1) {
8481 int mid = (lo + hi) / 2;
8482 sector_t a = BB_OFFSET(p[mid]);
8483 if (a <= s)
8484 lo = mid;
8485 else
8486 hi = mid;
8487 }
8488 if (hi > lo && BB_OFFSET(p[lo]) > s)
8489 hi = lo;
8490
8491 if (hi > lo) {
8492 /* we found a range that might merge with the start
8493 * of our new range
8494 */
8495 sector_t a = BB_OFFSET(p[lo]);
8496 sector_t e = a + BB_LEN(p[lo]);
8497 int ack = BB_ACK(p[lo]);
8498 if (e >= s) {
8499 /* Yes, we can merge with a previous range */
8500 if (s == a && s + sectors >= e)
8501 /* new range covers old */
8502 ack = acknowledged;
8503 else
8504 ack = ack && acknowledged;
8505
8506 if (e < s + sectors)
8507 e = s + sectors;
8508 if (e - a <= BB_MAX_LEN) {
8509 p[lo] = BB_MAKE(a, e-a, ack);
8510 s = e;
8511 } else {
8512 /* does not all fit in one range,
8513 * make p[lo] maximal
8514 */
8515 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8516 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8517 s = a + BB_MAX_LEN;
8518 }
8519 sectors = e - s;
8520 }
8521 }
8522 if (sectors && hi < bb->count) {
8523 /* 'hi' points to the first range that starts after 's'.
8524 * Maybe we can merge with the start of that range */
8525 sector_t a = BB_OFFSET(p[hi]);
8526 sector_t e = a + BB_LEN(p[hi]);
8527 int ack = BB_ACK(p[hi]);
8528 if (a <= s + sectors) {
8529 /* merging is possible */
8530 if (e <= s + sectors) {
8531 /* full overlap */
8532 e = s + sectors;
8533 ack = acknowledged;
8534 } else
8535 ack = ack && acknowledged;
8536
8537 a = s;
8538 if (e - a <= BB_MAX_LEN) {
8539 p[hi] = BB_MAKE(a, e-a, ack);
8540 s = e;
8541 } else {
8542 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8543 s = a + BB_MAX_LEN;
8544 }
8545 sectors = e - s;
8546 lo = hi;
8547 hi++;
8548 }
8549 }
8550 if (sectors == 0 && hi < bb->count) {
8551 /* we might be able to combine lo and hi */
8552 /* Note: 's' is at the end of 'lo' */
8553 sector_t a = BB_OFFSET(p[hi]);
8554 int lolen = BB_LEN(p[lo]);
8555 int hilen = BB_LEN(p[hi]);
8556 int newlen = lolen + hilen - (s - a);
8557 if (s >= a && newlen < BB_MAX_LEN) {
8558 /* yes, we can combine them */
8559 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8560 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8561 memmove(p + hi, p + hi + 1,
8562 (bb->count - hi - 1) * 8);
8563 bb->count--;
8564 }
8565 }
8566 while (sectors) {
8567 /* didn't merge (it all).
8568 * Need to add a range just before 'hi' */
8569 if (bb->count >= MD_MAX_BADBLOCKS) {
8570 /* No room for more */
8571 rv = 0;
8572 break;
8573 } else {
8574 int this_sectors = sectors;
8575 memmove(p + hi + 1, p + hi,
8576 (bb->count - hi) * 8);
8577 bb->count++;
8578
8579 if (this_sectors > BB_MAX_LEN)
8580 this_sectors = BB_MAX_LEN;
8581 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8582 sectors -= this_sectors;
8583 s += this_sectors;
8584 }
8585 }
8586
8587 bb->changed = 1;
8588 if (!acknowledged)
8589 bb->unacked_exist = 1;
8590 write_sequnlock_irqrestore(&bb->lock, flags);
8591
8592 return rv;
8593 }
8594
8595 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8596 int is_new)
8597 {
8598 int rv;
8599 if (is_new)
8600 s += rdev->new_data_offset;
8601 else
8602 s += rdev->data_offset;
8603 rv = md_set_badblocks(&rdev->badblocks,
8604 s, sectors, 0);
8605 if (rv) {
8606 /* Make sure they get written out promptly */
8607 sysfs_notify_dirent_safe(rdev->sysfs_state);
8608 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8609 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8610 md_wakeup_thread(rdev->mddev->thread);
8611 }
8612 return rv;
8613 }
8614 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8615
8616 /*
8617 * Remove a range of bad blocks from the table.
8618 * This may involve extending the table if we spilt a region,
8619 * but it must not fail. So if the table becomes full, we just
8620 * drop the remove request.
8621 */
8622 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8623 {
8624 u64 *p;
8625 int lo, hi;
8626 sector_t target = s + sectors;
8627 int rv = 0;
8628
8629 if (bb->shift > 0) {
8630 /* When clearing we round the start up and the end down.
8631 * This should not matter as the shift should align with
8632 * the block size and no rounding should ever be needed.
8633 * However it is better the think a block is bad when it
8634 * isn't than to think a block is not bad when it is.
8635 */
8636 s += (1<<bb->shift) - 1;
8637 s >>= bb->shift;
8638 target >>= bb->shift;
8639 sectors = target - s;
8640 }
8641
8642 write_seqlock_irq(&bb->lock);
8643
8644 p = bb->page;
8645 lo = 0;
8646 hi = bb->count;
8647 /* Find the last range that starts before 'target' */
8648 while (hi - lo > 1) {
8649 int mid = (lo + hi) / 2;
8650 sector_t a = BB_OFFSET(p[mid]);
8651 if (a < target)
8652 lo = mid;
8653 else
8654 hi = mid;
8655 }
8656 if (hi > lo) {
8657 /* p[lo] is the last range that could overlap the
8658 * current range. Earlier ranges could also overlap,
8659 * but only this one can overlap the end of the range.
8660 */
8661 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8662 /* Partial overlap, leave the tail of this range */
8663 int ack = BB_ACK(p[lo]);
8664 sector_t a = BB_OFFSET(p[lo]);
8665 sector_t end = a + BB_LEN(p[lo]);
8666
8667 if (a < s) {
8668 /* we need to split this range */
8669 if (bb->count >= MD_MAX_BADBLOCKS) {
8670 rv = -ENOSPC;
8671 goto out;
8672 }
8673 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8674 bb->count++;
8675 p[lo] = BB_MAKE(a, s-a, ack);
8676 lo++;
8677 }
8678 p[lo] = BB_MAKE(target, end - target, ack);
8679 /* there is no longer an overlap */
8680 hi = lo;
8681 lo--;
8682 }
8683 while (lo >= 0 &&
8684 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8685 /* This range does overlap */
8686 if (BB_OFFSET(p[lo]) < s) {
8687 /* Keep the early parts of this range. */
8688 int ack = BB_ACK(p[lo]);
8689 sector_t start = BB_OFFSET(p[lo]);
8690 p[lo] = BB_MAKE(start, s - start, ack);
8691 /* now low doesn't overlap, so.. */
8692 break;
8693 }
8694 lo--;
8695 }
8696 /* 'lo' is strictly before, 'hi' is strictly after,
8697 * anything between needs to be discarded
8698 */
8699 if (hi - lo > 1) {
8700 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8701 bb->count -= (hi - lo - 1);
8702 }
8703 }
8704
8705 bb->changed = 1;
8706 out:
8707 write_sequnlock_irq(&bb->lock);
8708 return rv;
8709 }
8710
8711 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8712 int is_new)
8713 {
8714 if (is_new)
8715 s += rdev->new_data_offset;
8716 else
8717 s += rdev->data_offset;
8718 return md_clear_badblocks(&rdev->badblocks,
8719 s, sectors);
8720 }
8721 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8722
8723 /*
8724 * Acknowledge all bad blocks in a list.
8725 * This only succeeds if ->changed is clear. It is used by
8726 * in-kernel metadata updates
8727 */
8728 void md_ack_all_badblocks(struct badblocks *bb)
8729 {
8730 if (bb->page == NULL || bb->changed)
8731 /* no point even trying */
8732 return;
8733 write_seqlock_irq(&bb->lock);
8734
8735 if (bb->changed == 0 && bb->unacked_exist) {
8736 u64 *p = bb->page;
8737 int i;
8738 for (i = 0; i < bb->count ; i++) {
8739 if (!BB_ACK(p[i])) {
8740 sector_t start = BB_OFFSET(p[i]);
8741 int len = BB_LEN(p[i]);
8742 p[i] = BB_MAKE(start, len, 1);
8743 }
8744 }
8745 bb->unacked_exist = 0;
8746 }
8747 write_sequnlock_irq(&bb->lock);
8748 }
8749 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8750
8751 /* sysfs access to bad-blocks list.
8752 * We present two files.
8753 * 'bad-blocks' lists sector numbers and lengths of ranges that
8754 * are recorded as bad. The list is truncated to fit within
8755 * the one-page limit of sysfs.
8756 * Writing "sector length" to this file adds an acknowledged
8757 * bad block list.
8758 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8759 * been acknowledged. Writing to this file adds bad blocks
8760 * without acknowledging them. This is largely for testing.
8761 */
8762
8763 static ssize_t
8764 badblocks_show(struct badblocks *bb, char *page, int unack)
8765 {
8766 size_t len;
8767 int i;
8768 u64 *p = bb->page;
8769 unsigned seq;
8770
8771 if (bb->shift < 0)
8772 return 0;
8773
8774 retry:
8775 seq = read_seqbegin(&bb->lock);
8776
8777 len = 0;
8778 i = 0;
8779
8780 while (len < PAGE_SIZE && i < bb->count) {
8781 sector_t s = BB_OFFSET(p[i]);
8782 unsigned int length = BB_LEN(p[i]);
8783 int ack = BB_ACK(p[i]);
8784 i++;
8785
8786 if (unack && ack)
8787 continue;
8788
8789 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8790 (unsigned long long)s << bb->shift,
8791 length << bb->shift);
8792 }
8793 if (unack && len == 0)
8794 bb->unacked_exist = 0;
8795
8796 if (read_seqretry(&bb->lock, seq))
8797 goto retry;
8798
8799 return len;
8800 }
8801
8802 #define DO_DEBUG 1
8803
8804 static ssize_t
8805 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8806 {
8807 unsigned long long sector;
8808 int length;
8809 char newline;
8810 #ifdef DO_DEBUG
8811 /* Allow clearing via sysfs *only* for testing/debugging.
8812 * Normally only a successful write may clear a badblock
8813 */
8814 int clear = 0;
8815 if (page[0] == '-') {
8816 clear = 1;
8817 page++;
8818 }
8819 #endif /* DO_DEBUG */
8820
8821 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8822 case 3:
8823 if (newline != '\n')
8824 return -EINVAL;
8825 case 2:
8826 if (length <= 0)
8827 return -EINVAL;
8828 break;
8829 default:
8830 return -EINVAL;
8831 }
8832
8833 #ifdef DO_DEBUG
8834 if (clear) {
8835 md_clear_badblocks(bb, sector, length);
8836 return len;
8837 }
8838 #endif /* DO_DEBUG */
8839 if (md_set_badblocks(bb, sector, length, !unack))
8840 return len;
8841 else
8842 return -ENOSPC;
8843 }
8844
8845 static int md_notify_reboot(struct notifier_block *this,
8846 unsigned long code, void *x)
8847 {
8848 struct list_head *tmp;
8849 struct mddev *mddev;
8850 int need_delay = 0;
8851
8852 for_each_mddev(mddev, tmp) {
8853 if (mddev_trylock(mddev)) {
8854 if (mddev->pers)
8855 __md_stop_writes(mddev);
8856 if (mddev->persistent)
8857 mddev->safemode = 2;
8858 mddev_unlock(mddev);
8859 }
8860 need_delay = 1;
8861 }
8862 /*
8863 * certain more exotic SCSI devices are known to be
8864 * volatile wrt too early system reboots. While the
8865 * right place to handle this issue is the given
8866 * driver, we do want to have a safe RAID driver ...
8867 */
8868 if (need_delay)
8869 mdelay(1000*1);
8870
8871 return NOTIFY_DONE;
8872 }
8873
8874 static struct notifier_block md_notifier = {
8875 .notifier_call = md_notify_reboot,
8876 .next = NULL,
8877 .priority = INT_MAX, /* before any real devices */
8878 };
8879
8880 static void md_geninit(void)
8881 {
8882 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8883
8884 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8885 }
8886
8887 static int __init md_init(void)
8888 {
8889 int ret = -ENOMEM;
8890
8891 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8892 if (!md_wq)
8893 goto err_wq;
8894
8895 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8896 if (!md_misc_wq)
8897 goto err_misc_wq;
8898
8899 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8900 goto err_md;
8901
8902 if ((ret = register_blkdev(0, "mdp")) < 0)
8903 goto err_mdp;
8904 mdp_major = ret;
8905
8906 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8907 md_probe, NULL, NULL);
8908 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8909 md_probe, NULL, NULL);
8910
8911 register_reboot_notifier(&md_notifier);
8912 raid_table_header = register_sysctl_table(raid_root_table);
8913
8914 md_geninit();
8915 return 0;
8916
8917 err_mdp:
8918 unregister_blkdev(MD_MAJOR, "md");
8919 err_md:
8920 destroy_workqueue(md_misc_wq);
8921 err_misc_wq:
8922 destroy_workqueue(md_wq);
8923 err_wq:
8924 return ret;
8925 }
8926
8927 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8928 {
8929 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8930 struct md_rdev *rdev2;
8931 int role, ret;
8932 char b[BDEVNAME_SIZE];
8933
8934 /* Check for change of roles in the active devices */
8935 rdev_for_each(rdev2, mddev) {
8936 if (test_bit(Faulty, &rdev2->flags))
8937 continue;
8938
8939 /* Check if the roles changed */
8940 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8941 if (role != rdev2->raid_disk) {
8942 /* got activated */
8943 if (rdev2->raid_disk == -1 && role != 0xffff) {
8944 rdev2->saved_raid_disk = role;
8945 ret = remove_and_add_spares(mddev, rdev2);
8946 pr_info("Activated spare: %s\n",
8947 bdevname(rdev2->bdev,b));
8948 continue;
8949 }
8950 /* device faulty
8951 * We just want to do the minimum to mark the disk
8952 * as faulty. The recovery is performed by the
8953 * one who initiated the error.
8954 */
8955 if ((role == 0xfffe) || (role == 0xfffd)) {
8956 md_error(mddev, rdev2);
8957 clear_bit(Blocked, &rdev2->flags);
8958 }
8959 }
8960 }
8961
8962 /* recovery_cp changed */
8963 if (le64_to_cpu(sb->resync_offset) != mddev->recovery_cp)
8964 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
8965
8966 /* Finally set the event to be up to date */
8967 mddev->events = le64_to_cpu(sb->events);
8968 }
8969
8970 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8971 {
8972 int err;
8973 struct page *swapout = rdev->sb_page;
8974 struct mdp_superblock_1 *sb;
8975
8976 /* Store the sb page of the rdev in the swapout temporary
8977 * variable in case we err in the future
8978 */
8979 rdev->sb_page = NULL;
8980 alloc_disk_sb(rdev);
8981 ClearPageUptodate(rdev->sb_page);
8982 rdev->sb_loaded = 0;
8983 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8984
8985 if (err < 0) {
8986 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8987 __func__, __LINE__, rdev->desc_nr, err);
8988 put_page(rdev->sb_page);
8989 rdev->sb_page = swapout;
8990 rdev->sb_loaded = 1;
8991 return err;
8992 }
8993
8994 sb = page_address(rdev->sb_page);
8995 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8996 * is not set
8997 */
8998
8999 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9000 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9001
9002 /* The other node finished recovery, call spare_active to set
9003 * device In_sync and mddev->degraded
9004 */
9005 if (rdev->recovery_offset == MaxSector &&
9006 !test_bit(In_sync, &rdev->flags) &&
9007 mddev->pers->spare_active(mddev))
9008 sysfs_notify(&mddev->kobj, NULL, "degraded");
9009
9010 put_page(swapout);
9011 return 0;
9012 }
9013
9014 void md_reload_sb(struct mddev *mddev, int nr)
9015 {
9016 struct md_rdev *rdev;
9017 int err;
9018
9019 /* Find the rdev */
9020 rdev_for_each_rcu(rdev, mddev) {
9021 if (rdev->desc_nr == nr)
9022 break;
9023 }
9024
9025 if (!rdev || rdev->desc_nr != nr) {
9026 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9027 return;
9028 }
9029
9030 err = read_rdev(mddev, rdev);
9031 if (err < 0)
9032 return;
9033
9034 check_sb_changes(mddev, rdev);
9035
9036 /* Read all rdev's to update recovery_offset */
9037 rdev_for_each_rcu(rdev, mddev)
9038 read_rdev(mddev, rdev);
9039 }
9040 EXPORT_SYMBOL(md_reload_sb);
9041
9042 #ifndef MODULE
9043
9044 /*
9045 * Searches all registered partitions for autorun RAID arrays
9046 * at boot time.
9047 */
9048
9049 static LIST_HEAD(all_detected_devices);
9050 struct detected_devices_node {
9051 struct list_head list;
9052 dev_t dev;
9053 };
9054
9055 void md_autodetect_dev(dev_t dev)
9056 {
9057 struct detected_devices_node *node_detected_dev;
9058
9059 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9060 if (node_detected_dev) {
9061 node_detected_dev->dev = dev;
9062 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9063 } else {
9064 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9065 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9066 }
9067 }
9068
9069 static void autostart_arrays(int part)
9070 {
9071 struct md_rdev *rdev;
9072 struct detected_devices_node *node_detected_dev;
9073 dev_t dev;
9074 int i_scanned, i_passed;
9075
9076 i_scanned = 0;
9077 i_passed = 0;
9078
9079 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9080
9081 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9082 i_scanned++;
9083 node_detected_dev = list_entry(all_detected_devices.next,
9084 struct detected_devices_node, list);
9085 list_del(&node_detected_dev->list);
9086 dev = node_detected_dev->dev;
9087 kfree(node_detected_dev);
9088 rdev = md_import_device(dev,0, 90);
9089 if (IS_ERR(rdev))
9090 continue;
9091
9092 if (test_bit(Faulty, &rdev->flags))
9093 continue;
9094
9095 set_bit(AutoDetected, &rdev->flags);
9096 list_add(&rdev->same_set, &pending_raid_disks);
9097 i_passed++;
9098 }
9099
9100 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9101 i_scanned, i_passed);
9102
9103 autorun_devices(part);
9104 }
9105
9106 #endif /* !MODULE */
9107
9108 static __exit void md_exit(void)
9109 {
9110 struct mddev *mddev;
9111 struct list_head *tmp;
9112 int delay = 1;
9113
9114 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9115 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9116
9117 unregister_blkdev(MD_MAJOR,"md");
9118 unregister_blkdev(mdp_major, "mdp");
9119 unregister_reboot_notifier(&md_notifier);
9120 unregister_sysctl_table(raid_table_header);
9121
9122 /* We cannot unload the modules while some process is
9123 * waiting for us in select() or poll() - wake them up
9124 */
9125 md_unloading = 1;
9126 while (waitqueue_active(&md_event_waiters)) {
9127 /* not safe to leave yet */
9128 wake_up(&md_event_waiters);
9129 msleep(delay);
9130 delay += delay;
9131 }
9132 remove_proc_entry("mdstat", NULL);
9133
9134 for_each_mddev(mddev, tmp) {
9135 export_array(mddev);
9136 mddev->hold_active = 0;
9137 }
9138 destroy_workqueue(md_misc_wq);
9139 destroy_workqueue(md_wq);
9140 }
9141
9142 subsys_initcall(md_init);
9143 module_exit(md_exit)
9144
9145 static int get_ro(char *buffer, struct kernel_param *kp)
9146 {
9147 return sprintf(buffer, "%d", start_readonly);
9148 }
9149 static int set_ro(const char *val, struct kernel_param *kp)
9150 {
9151 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9152 }
9153
9154 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9155 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9156 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9157
9158 MODULE_LICENSE("GPL");
9159 MODULE_DESCRIPTION("MD RAID framework");
9160 MODULE_ALIAS("md");
9161 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.770289 seconds and 5 git commands to generate.