md: avoid dereferencing NULL pointer when accessing suspend_* sysfs attributes.
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63
64 static void md_print_devices(void);
65
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69
70 /*
71 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72 * is 1000 KB/sec, so the extra system load does not show up that much.
73 * Increase it if you want to have more _guaranteed_ speed. Note that
74 * the RAID driver will use the maximum available bandwidth if the IO
75 * subsystem is idle. There is also an 'absolute maximum' reconstruction
76 * speed limit - in case reconstruction slows down your system despite
77 * idle IO detection.
78 *
79 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80 * or /sys/block/mdX/md/sync_speed_{min,max}
81 */
82
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 return mddev->sync_speed_min ?
88 mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90
91 static inline int speed_max(mddev_t *mddev)
92 {
93 return mddev->sync_speed_max ?
94 mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96
97 static struct ctl_table_header *raid_table_header;
98
99 static ctl_table raid_table[] = {
100 {
101 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
102 .procname = "speed_limit_min",
103 .data = &sysctl_speed_limit_min,
104 .maxlen = sizeof(int),
105 .mode = S_IRUGO|S_IWUSR,
106 .proc_handler = &proc_dointvec,
107 },
108 {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
110 .procname = "speed_limit_max",
111 .data = &sysctl_speed_limit_max,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
115 },
116 { .ctl_name = 0 }
117 };
118
119 static ctl_table raid_dir_table[] = {
120 {
121 .ctl_name = DEV_RAID,
122 .procname = "raid",
123 .maxlen = 0,
124 .mode = S_IRUGO|S_IXUGO,
125 .child = raid_table,
126 },
127 { .ctl_name = 0 }
128 };
129
130 static ctl_table raid_root_table[] = {
131 {
132 .ctl_name = CTL_DEV,
133 .procname = "dev",
134 .maxlen = 0,
135 .mode = 0555,
136 .child = raid_dir_table,
137 },
138 { .ctl_name = 0 }
139 };
140
141 static struct block_device_operations md_fops;
142
143 static int start_readonly;
144
145 /*
146 * We have a system wide 'event count' that is incremented
147 * on any 'interesting' event, and readers of /proc/mdstat
148 * can use 'poll' or 'select' to find out when the event
149 * count increases.
150 *
151 * Events are:
152 * start array, stop array, error, add device, remove device,
153 * start build, activate spare
154 */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 atomic_inc(&md_event_count);
160 wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163
164 /* Alternate version that can be called from interrupts
165 * when calling sysfs_notify isn't needed.
166 */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 atomic_inc(&md_event_count);
170 wake_up(&md_event_waiters);
171 }
172
173 /*
174 * Enables to iterate over all existing md arrays
175 * all_mddevs_lock protects this list.
176 */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179
180
181 /*
182 * iterates through all used mddevs in the system.
183 * We take care to grab the all_mddevs_lock whenever navigating
184 * the list, and to always hold a refcount when unlocked.
185 * Any code which breaks out of this loop while own
186 * a reference to the current mddev and must mddev_put it.
187 */
188 #define for_each_mddev(mddev,tmp) \
189 \
190 for (({ spin_lock(&all_mddevs_lock); \
191 tmp = all_mddevs.next; \
192 mddev = NULL;}); \
193 ({ if (tmp != &all_mddevs) \
194 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 spin_unlock(&all_mddevs_lock); \
196 if (mddev) mddev_put(mddev); \
197 mddev = list_entry(tmp, mddev_t, all_mddevs); \
198 tmp != &all_mddevs;}); \
199 ({ spin_lock(&all_mddevs_lock); \
200 tmp = tmp->next;}) \
201 )
202
203
204 /* Rather than calling directly into the personality make_request function,
205 * IO requests come here first so that we can check if the device is
206 * being suspended pending a reconfiguration.
207 * We hold a refcount over the call to ->make_request. By the time that
208 * call has finished, the bio has been linked into some internal structure
209 * and so is visible to ->quiesce(), so we don't need the refcount any more.
210 */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 mddev_t *mddev = q->queuedata;
214 int rv;
215 if (mddev == NULL || mddev->pers == NULL) {
216 bio_io_error(bio);
217 return 0;
218 }
219 rcu_read_lock();
220 if (mddev->suspended) {
221 DEFINE_WAIT(__wait);
222 for (;;) {
223 prepare_to_wait(&mddev->sb_wait, &__wait,
224 TASK_UNINTERRUPTIBLE);
225 if (!mddev->suspended)
226 break;
227 rcu_read_unlock();
228 schedule();
229 rcu_read_lock();
230 }
231 finish_wait(&mddev->sb_wait, &__wait);
232 }
233 atomic_inc(&mddev->active_io);
234 rcu_read_unlock();
235 rv = mddev->pers->make_request(q, bio);
236 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 wake_up(&mddev->sb_wait);
238
239 return rv;
240 }
241
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 BUG_ON(mddev->suspended);
245 mddev->suspended = 1;
246 synchronize_rcu();
247 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 mddev->pers->quiesce(mddev, 1);
249 md_unregister_thread(mddev->thread);
250 mddev->thread = NULL;
251 /* we now know that no code is executing in the personality module,
252 * except possibly the tail end of a ->bi_end_io function, but that
253 * is certain to complete before the module has a chance to get
254 * unloaded
255 */
256 }
257
258 static void mddev_resume(mddev_t *mddev)
259 {
260 mddev->suspended = 0;
261 wake_up(&mddev->sb_wait);
262 mddev->pers->quiesce(mddev, 0);
263 }
264
265
266 static inline mddev_t *mddev_get(mddev_t *mddev)
267 {
268 atomic_inc(&mddev->active);
269 return mddev;
270 }
271
272 static void mddev_delayed_delete(struct work_struct *ws);
273
274 static void mddev_put(mddev_t *mddev)
275 {
276 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
277 return;
278 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
279 !mddev->hold_active) {
280 list_del(&mddev->all_mddevs);
281 if (mddev->gendisk) {
282 /* we did a probe so need to clean up.
283 * Call schedule_work inside the spinlock
284 * so that flush_scheduled_work() after
285 * mddev_find will succeed in waiting for the
286 * work to be done.
287 */
288 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
289 schedule_work(&mddev->del_work);
290 } else
291 kfree(mddev);
292 }
293 spin_unlock(&all_mddevs_lock);
294 }
295
296 static mddev_t * mddev_find(dev_t unit)
297 {
298 mddev_t *mddev, *new = NULL;
299
300 retry:
301 spin_lock(&all_mddevs_lock);
302
303 if (unit) {
304 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
305 if (mddev->unit == unit) {
306 mddev_get(mddev);
307 spin_unlock(&all_mddevs_lock);
308 kfree(new);
309 return mddev;
310 }
311
312 if (new) {
313 list_add(&new->all_mddevs, &all_mddevs);
314 spin_unlock(&all_mddevs_lock);
315 new->hold_active = UNTIL_IOCTL;
316 return new;
317 }
318 } else if (new) {
319 /* find an unused unit number */
320 static int next_minor = 512;
321 int start = next_minor;
322 int is_free = 0;
323 int dev = 0;
324 while (!is_free) {
325 dev = MKDEV(MD_MAJOR, next_minor);
326 next_minor++;
327 if (next_minor > MINORMASK)
328 next_minor = 0;
329 if (next_minor == start) {
330 /* Oh dear, all in use. */
331 spin_unlock(&all_mddevs_lock);
332 kfree(new);
333 return NULL;
334 }
335
336 is_free = 1;
337 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
338 if (mddev->unit == dev) {
339 is_free = 0;
340 break;
341 }
342 }
343 new->unit = dev;
344 new->md_minor = MINOR(dev);
345 new->hold_active = UNTIL_STOP;
346 list_add(&new->all_mddevs, &all_mddevs);
347 spin_unlock(&all_mddevs_lock);
348 return new;
349 }
350 spin_unlock(&all_mddevs_lock);
351
352 new = kzalloc(sizeof(*new), GFP_KERNEL);
353 if (!new)
354 return NULL;
355
356 new->unit = unit;
357 if (MAJOR(unit) == MD_MAJOR)
358 new->md_minor = MINOR(unit);
359 else
360 new->md_minor = MINOR(unit) >> MdpMinorShift;
361
362 mutex_init(&new->reconfig_mutex);
363 INIT_LIST_HEAD(&new->disks);
364 INIT_LIST_HEAD(&new->all_mddevs);
365 init_timer(&new->safemode_timer);
366 atomic_set(&new->active, 1);
367 atomic_set(&new->openers, 0);
368 atomic_set(&new->active_io, 0);
369 spin_lock_init(&new->write_lock);
370 init_waitqueue_head(&new->sb_wait);
371 init_waitqueue_head(&new->recovery_wait);
372 new->reshape_position = MaxSector;
373 new->resync_min = 0;
374 new->resync_max = MaxSector;
375 new->level = LEVEL_NONE;
376
377 goto retry;
378 }
379
380 static inline int mddev_lock(mddev_t * mddev)
381 {
382 return mutex_lock_interruptible(&mddev->reconfig_mutex);
383 }
384
385 static inline int mddev_is_locked(mddev_t *mddev)
386 {
387 return mutex_is_locked(&mddev->reconfig_mutex);
388 }
389
390 static inline int mddev_trylock(mddev_t * mddev)
391 {
392 return mutex_trylock(&mddev->reconfig_mutex);
393 }
394
395 static inline void mddev_unlock(mddev_t * mddev)
396 {
397 mutex_unlock(&mddev->reconfig_mutex);
398
399 md_wakeup_thread(mddev->thread);
400 }
401
402 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
403 {
404 mdk_rdev_t *rdev;
405
406 list_for_each_entry(rdev, &mddev->disks, same_set)
407 if (rdev->desc_nr == nr)
408 return rdev;
409
410 return NULL;
411 }
412
413 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
414 {
415 mdk_rdev_t *rdev;
416
417 list_for_each_entry(rdev, &mddev->disks, same_set)
418 if (rdev->bdev->bd_dev == dev)
419 return rdev;
420
421 return NULL;
422 }
423
424 static struct mdk_personality *find_pers(int level, char *clevel)
425 {
426 struct mdk_personality *pers;
427 list_for_each_entry(pers, &pers_list, list) {
428 if (level != LEVEL_NONE && pers->level == level)
429 return pers;
430 if (strcmp(pers->name, clevel)==0)
431 return pers;
432 }
433 return NULL;
434 }
435
436 /* return the offset of the super block in 512byte sectors */
437 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
438 {
439 sector_t num_sectors = bdev->bd_inode->i_size / 512;
440 return MD_NEW_SIZE_SECTORS(num_sectors);
441 }
442
443 static int alloc_disk_sb(mdk_rdev_t * rdev)
444 {
445 if (rdev->sb_page)
446 MD_BUG();
447
448 rdev->sb_page = alloc_page(GFP_KERNEL);
449 if (!rdev->sb_page) {
450 printk(KERN_ALERT "md: out of memory.\n");
451 return -ENOMEM;
452 }
453
454 return 0;
455 }
456
457 static void free_disk_sb(mdk_rdev_t * rdev)
458 {
459 if (rdev->sb_page) {
460 put_page(rdev->sb_page);
461 rdev->sb_loaded = 0;
462 rdev->sb_page = NULL;
463 rdev->sb_start = 0;
464 rdev->sectors = 0;
465 }
466 }
467
468
469 static void super_written(struct bio *bio, int error)
470 {
471 mdk_rdev_t *rdev = bio->bi_private;
472 mddev_t *mddev = rdev->mddev;
473
474 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
475 printk("md: super_written gets error=%d, uptodate=%d\n",
476 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
477 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
478 md_error(mddev, rdev);
479 }
480
481 if (atomic_dec_and_test(&mddev->pending_writes))
482 wake_up(&mddev->sb_wait);
483 bio_put(bio);
484 }
485
486 static void super_written_barrier(struct bio *bio, int error)
487 {
488 struct bio *bio2 = bio->bi_private;
489 mdk_rdev_t *rdev = bio2->bi_private;
490 mddev_t *mddev = rdev->mddev;
491
492 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
493 error == -EOPNOTSUPP) {
494 unsigned long flags;
495 /* barriers don't appear to be supported :-( */
496 set_bit(BarriersNotsupp, &rdev->flags);
497 mddev->barriers_work = 0;
498 spin_lock_irqsave(&mddev->write_lock, flags);
499 bio2->bi_next = mddev->biolist;
500 mddev->biolist = bio2;
501 spin_unlock_irqrestore(&mddev->write_lock, flags);
502 wake_up(&mddev->sb_wait);
503 bio_put(bio);
504 } else {
505 bio_put(bio2);
506 bio->bi_private = rdev;
507 super_written(bio, error);
508 }
509 }
510
511 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
512 sector_t sector, int size, struct page *page)
513 {
514 /* write first size bytes of page to sector of rdev
515 * Increment mddev->pending_writes before returning
516 * and decrement it on completion, waking up sb_wait
517 * if zero is reached.
518 * If an error occurred, call md_error
519 *
520 * As we might need to resubmit the request if BIO_RW_BARRIER
521 * causes ENOTSUPP, we allocate a spare bio...
522 */
523 struct bio *bio = bio_alloc(GFP_NOIO, 1);
524 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
525
526 bio->bi_bdev = rdev->bdev;
527 bio->bi_sector = sector;
528 bio_add_page(bio, page, size, 0);
529 bio->bi_private = rdev;
530 bio->bi_end_io = super_written;
531 bio->bi_rw = rw;
532
533 atomic_inc(&mddev->pending_writes);
534 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
535 struct bio *rbio;
536 rw |= (1<<BIO_RW_BARRIER);
537 rbio = bio_clone(bio, GFP_NOIO);
538 rbio->bi_private = bio;
539 rbio->bi_end_io = super_written_barrier;
540 submit_bio(rw, rbio);
541 } else
542 submit_bio(rw, bio);
543 }
544
545 void md_super_wait(mddev_t *mddev)
546 {
547 /* wait for all superblock writes that were scheduled to complete.
548 * if any had to be retried (due to BARRIER problems), retry them
549 */
550 DEFINE_WAIT(wq);
551 for(;;) {
552 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
553 if (atomic_read(&mddev->pending_writes)==0)
554 break;
555 while (mddev->biolist) {
556 struct bio *bio;
557 spin_lock_irq(&mddev->write_lock);
558 bio = mddev->biolist;
559 mddev->biolist = bio->bi_next ;
560 bio->bi_next = NULL;
561 spin_unlock_irq(&mddev->write_lock);
562 submit_bio(bio->bi_rw, bio);
563 }
564 schedule();
565 }
566 finish_wait(&mddev->sb_wait, &wq);
567 }
568
569 static void bi_complete(struct bio *bio, int error)
570 {
571 complete((struct completion*)bio->bi_private);
572 }
573
574 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
575 struct page *page, int rw)
576 {
577 struct bio *bio = bio_alloc(GFP_NOIO, 1);
578 struct completion event;
579 int ret;
580
581 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
582
583 bio->bi_bdev = bdev;
584 bio->bi_sector = sector;
585 bio_add_page(bio, page, size, 0);
586 init_completion(&event);
587 bio->bi_private = &event;
588 bio->bi_end_io = bi_complete;
589 submit_bio(rw, bio);
590 wait_for_completion(&event);
591
592 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
593 bio_put(bio);
594 return ret;
595 }
596 EXPORT_SYMBOL_GPL(sync_page_io);
597
598 static int read_disk_sb(mdk_rdev_t * rdev, int size)
599 {
600 char b[BDEVNAME_SIZE];
601 if (!rdev->sb_page) {
602 MD_BUG();
603 return -EINVAL;
604 }
605 if (rdev->sb_loaded)
606 return 0;
607
608
609 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
610 goto fail;
611 rdev->sb_loaded = 1;
612 return 0;
613
614 fail:
615 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
616 bdevname(rdev->bdev,b));
617 return -EINVAL;
618 }
619
620 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
621 {
622 return sb1->set_uuid0 == sb2->set_uuid0 &&
623 sb1->set_uuid1 == sb2->set_uuid1 &&
624 sb1->set_uuid2 == sb2->set_uuid2 &&
625 sb1->set_uuid3 == sb2->set_uuid3;
626 }
627
628 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
629 {
630 int ret;
631 mdp_super_t *tmp1, *tmp2;
632
633 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
634 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
635
636 if (!tmp1 || !tmp2) {
637 ret = 0;
638 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
639 goto abort;
640 }
641
642 *tmp1 = *sb1;
643 *tmp2 = *sb2;
644
645 /*
646 * nr_disks is not constant
647 */
648 tmp1->nr_disks = 0;
649 tmp2->nr_disks = 0;
650
651 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
652 abort:
653 kfree(tmp1);
654 kfree(tmp2);
655 return ret;
656 }
657
658
659 static u32 md_csum_fold(u32 csum)
660 {
661 csum = (csum & 0xffff) + (csum >> 16);
662 return (csum & 0xffff) + (csum >> 16);
663 }
664
665 static unsigned int calc_sb_csum(mdp_super_t * sb)
666 {
667 u64 newcsum = 0;
668 u32 *sb32 = (u32*)sb;
669 int i;
670 unsigned int disk_csum, csum;
671
672 disk_csum = sb->sb_csum;
673 sb->sb_csum = 0;
674
675 for (i = 0; i < MD_SB_BYTES/4 ; i++)
676 newcsum += sb32[i];
677 csum = (newcsum & 0xffffffff) + (newcsum>>32);
678
679
680 #ifdef CONFIG_ALPHA
681 /* This used to use csum_partial, which was wrong for several
682 * reasons including that different results are returned on
683 * different architectures. It isn't critical that we get exactly
684 * the same return value as before (we always csum_fold before
685 * testing, and that removes any differences). However as we
686 * know that csum_partial always returned a 16bit value on
687 * alphas, do a fold to maximise conformity to previous behaviour.
688 */
689 sb->sb_csum = md_csum_fold(disk_csum);
690 #else
691 sb->sb_csum = disk_csum;
692 #endif
693 return csum;
694 }
695
696
697 /*
698 * Handle superblock details.
699 * We want to be able to handle multiple superblock formats
700 * so we have a common interface to them all, and an array of
701 * different handlers.
702 * We rely on user-space to write the initial superblock, and support
703 * reading and updating of superblocks.
704 * Interface methods are:
705 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
706 * loads and validates a superblock on dev.
707 * if refdev != NULL, compare superblocks on both devices
708 * Return:
709 * 0 - dev has a superblock that is compatible with refdev
710 * 1 - dev has a superblock that is compatible and newer than refdev
711 * so dev should be used as the refdev in future
712 * -EINVAL superblock incompatible or invalid
713 * -othererror e.g. -EIO
714 *
715 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
716 * Verify that dev is acceptable into mddev.
717 * The first time, mddev->raid_disks will be 0, and data from
718 * dev should be merged in. Subsequent calls check that dev
719 * is new enough. Return 0 or -EINVAL
720 *
721 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
722 * Update the superblock for rdev with data in mddev
723 * This does not write to disc.
724 *
725 */
726
727 struct super_type {
728 char *name;
729 struct module *owner;
730 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
731 int minor_version);
732 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
733 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
734 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
735 sector_t num_sectors);
736 };
737
738 /*
739 * Check that the given mddev has no bitmap.
740 *
741 * This function is called from the run method of all personalities that do not
742 * support bitmaps. It prints an error message and returns non-zero if mddev
743 * has a bitmap. Otherwise, it returns 0.
744 *
745 */
746 int md_check_no_bitmap(mddev_t *mddev)
747 {
748 if (!mddev->bitmap_file && !mddev->bitmap_offset)
749 return 0;
750 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
751 mdname(mddev), mddev->pers->name);
752 return 1;
753 }
754 EXPORT_SYMBOL(md_check_no_bitmap);
755
756 /*
757 * load_super for 0.90.0
758 */
759 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
760 {
761 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
762 mdp_super_t *sb;
763 int ret;
764
765 /*
766 * Calculate the position of the superblock (512byte sectors),
767 * it's at the end of the disk.
768 *
769 * It also happens to be a multiple of 4Kb.
770 */
771 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
772
773 ret = read_disk_sb(rdev, MD_SB_BYTES);
774 if (ret) return ret;
775
776 ret = -EINVAL;
777
778 bdevname(rdev->bdev, b);
779 sb = (mdp_super_t*)page_address(rdev->sb_page);
780
781 if (sb->md_magic != MD_SB_MAGIC) {
782 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
783 b);
784 goto abort;
785 }
786
787 if (sb->major_version != 0 ||
788 sb->minor_version < 90 ||
789 sb->minor_version > 91) {
790 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
791 sb->major_version, sb->minor_version,
792 b);
793 goto abort;
794 }
795
796 if (sb->raid_disks <= 0)
797 goto abort;
798
799 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
800 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
801 b);
802 goto abort;
803 }
804
805 rdev->preferred_minor = sb->md_minor;
806 rdev->data_offset = 0;
807 rdev->sb_size = MD_SB_BYTES;
808
809 if (sb->level == LEVEL_MULTIPATH)
810 rdev->desc_nr = -1;
811 else
812 rdev->desc_nr = sb->this_disk.number;
813
814 if (!refdev) {
815 ret = 1;
816 } else {
817 __u64 ev1, ev2;
818 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
819 if (!uuid_equal(refsb, sb)) {
820 printk(KERN_WARNING "md: %s has different UUID to %s\n",
821 b, bdevname(refdev->bdev,b2));
822 goto abort;
823 }
824 if (!sb_equal(refsb, sb)) {
825 printk(KERN_WARNING "md: %s has same UUID"
826 " but different superblock to %s\n",
827 b, bdevname(refdev->bdev, b2));
828 goto abort;
829 }
830 ev1 = md_event(sb);
831 ev2 = md_event(refsb);
832 if (ev1 > ev2)
833 ret = 1;
834 else
835 ret = 0;
836 }
837 rdev->sectors = rdev->sb_start;
838
839 if (rdev->sectors < sb->size * 2 && sb->level > 1)
840 /* "this cannot possibly happen" ... */
841 ret = -EINVAL;
842
843 abort:
844 return ret;
845 }
846
847 /*
848 * validate_super for 0.90.0
849 */
850 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
851 {
852 mdp_disk_t *desc;
853 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
854 __u64 ev1 = md_event(sb);
855
856 rdev->raid_disk = -1;
857 clear_bit(Faulty, &rdev->flags);
858 clear_bit(In_sync, &rdev->flags);
859 clear_bit(WriteMostly, &rdev->flags);
860 clear_bit(BarriersNotsupp, &rdev->flags);
861
862 if (mddev->raid_disks == 0) {
863 mddev->major_version = 0;
864 mddev->minor_version = sb->minor_version;
865 mddev->patch_version = sb->patch_version;
866 mddev->external = 0;
867 mddev->chunk_sectors = sb->chunk_size >> 9;
868 mddev->ctime = sb->ctime;
869 mddev->utime = sb->utime;
870 mddev->level = sb->level;
871 mddev->clevel[0] = 0;
872 mddev->layout = sb->layout;
873 mddev->raid_disks = sb->raid_disks;
874 mddev->dev_sectors = sb->size * 2;
875 mddev->events = ev1;
876 mddev->bitmap_offset = 0;
877 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
878
879 if (mddev->minor_version >= 91) {
880 mddev->reshape_position = sb->reshape_position;
881 mddev->delta_disks = sb->delta_disks;
882 mddev->new_level = sb->new_level;
883 mddev->new_layout = sb->new_layout;
884 mddev->new_chunk_sectors = sb->new_chunk >> 9;
885 } else {
886 mddev->reshape_position = MaxSector;
887 mddev->delta_disks = 0;
888 mddev->new_level = mddev->level;
889 mddev->new_layout = mddev->layout;
890 mddev->new_chunk_sectors = mddev->chunk_sectors;
891 }
892
893 if (sb->state & (1<<MD_SB_CLEAN))
894 mddev->recovery_cp = MaxSector;
895 else {
896 if (sb->events_hi == sb->cp_events_hi &&
897 sb->events_lo == sb->cp_events_lo) {
898 mddev->recovery_cp = sb->recovery_cp;
899 } else
900 mddev->recovery_cp = 0;
901 }
902
903 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
904 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
905 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
906 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
907
908 mddev->max_disks = MD_SB_DISKS;
909
910 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
911 mddev->bitmap_file == NULL)
912 mddev->bitmap_offset = mddev->default_bitmap_offset;
913
914 } else if (mddev->pers == NULL) {
915 /* Insist on good event counter while assembling */
916 ++ev1;
917 if (ev1 < mddev->events)
918 return -EINVAL;
919 } else if (mddev->bitmap) {
920 /* if adding to array with a bitmap, then we can accept an
921 * older device ... but not too old.
922 */
923 if (ev1 < mddev->bitmap->events_cleared)
924 return 0;
925 } else {
926 if (ev1 < mddev->events)
927 /* just a hot-add of a new device, leave raid_disk at -1 */
928 return 0;
929 }
930
931 if (mddev->level != LEVEL_MULTIPATH) {
932 desc = sb->disks + rdev->desc_nr;
933
934 if (desc->state & (1<<MD_DISK_FAULTY))
935 set_bit(Faulty, &rdev->flags);
936 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
937 desc->raid_disk < mddev->raid_disks */) {
938 set_bit(In_sync, &rdev->flags);
939 rdev->raid_disk = desc->raid_disk;
940 }
941 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
942 set_bit(WriteMostly, &rdev->flags);
943 } else /* MULTIPATH are always insync */
944 set_bit(In_sync, &rdev->flags);
945 return 0;
946 }
947
948 /*
949 * sync_super for 0.90.0
950 */
951 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
952 {
953 mdp_super_t *sb;
954 mdk_rdev_t *rdev2;
955 int next_spare = mddev->raid_disks;
956
957
958 /* make rdev->sb match mddev data..
959 *
960 * 1/ zero out disks
961 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
962 * 3/ any empty disks < next_spare become removed
963 *
964 * disks[0] gets initialised to REMOVED because
965 * we cannot be sure from other fields if it has
966 * been initialised or not.
967 */
968 int i;
969 int active=0, working=0,failed=0,spare=0,nr_disks=0;
970
971 rdev->sb_size = MD_SB_BYTES;
972
973 sb = (mdp_super_t*)page_address(rdev->sb_page);
974
975 memset(sb, 0, sizeof(*sb));
976
977 sb->md_magic = MD_SB_MAGIC;
978 sb->major_version = mddev->major_version;
979 sb->patch_version = mddev->patch_version;
980 sb->gvalid_words = 0; /* ignored */
981 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
982 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
983 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
984 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
985
986 sb->ctime = mddev->ctime;
987 sb->level = mddev->level;
988 sb->size = mddev->dev_sectors / 2;
989 sb->raid_disks = mddev->raid_disks;
990 sb->md_minor = mddev->md_minor;
991 sb->not_persistent = 0;
992 sb->utime = mddev->utime;
993 sb->state = 0;
994 sb->events_hi = (mddev->events>>32);
995 sb->events_lo = (u32)mddev->events;
996
997 if (mddev->reshape_position == MaxSector)
998 sb->minor_version = 90;
999 else {
1000 sb->minor_version = 91;
1001 sb->reshape_position = mddev->reshape_position;
1002 sb->new_level = mddev->new_level;
1003 sb->delta_disks = mddev->delta_disks;
1004 sb->new_layout = mddev->new_layout;
1005 sb->new_chunk = mddev->new_chunk_sectors << 9;
1006 }
1007 mddev->minor_version = sb->minor_version;
1008 if (mddev->in_sync)
1009 {
1010 sb->recovery_cp = mddev->recovery_cp;
1011 sb->cp_events_hi = (mddev->events>>32);
1012 sb->cp_events_lo = (u32)mddev->events;
1013 if (mddev->recovery_cp == MaxSector)
1014 sb->state = (1<< MD_SB_CLEAN);
1015 } else
1016 sb->recovery_cp = 0;
1017
1018 sb->layout = mddev->layout;
1019 sb->chunk_size = mddev->chunk_sectors << 9;
1020
1021 if (mddev->bitmap && mddev->bitmap_file == NULL)
1022 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1023
1024 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1025 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1026 mdp_disk_t *d;
1027 int desc_nr;
1028 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1029 && !test_bit(Faulty, &rdev2->flags))
1030 desc_nr = rdev2->raid_disk;
1031 else
1032 desc_nr = next_spare++;
1033 rdev2->desc_nr = desc_nr;
1034 d = &sb->disks[rdev2->desc_nr];
1035 nr_disks++;
1036 d->number = rdev2->desc_nr;
1037 d->major = MAJOR(rdev2->bdev->bd_dev);
1038 d->minor = MINOR(rdev2->bdev->bd_dev);
1039 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1040 && !test_bit(Faulty, &rdev2->flags))
1041 d->raid_disk = rdev2->raid_disk;
1042 else
1043 d->raid_disk = rdev2->desc_nr; /* compatibility */
1044 if (test_bit(Faulty, &rdev2->flags))
1045 d->state = (1<<MD_DISK_FAULTY);
1046 else if (test_bit(In_sync, &rdev2->flags)) {
1047 d->state = (1<<MD_DISK_ACTIVE);
1048 d->state |= (1<<MD_DISK_SYNC);
1049 active++;
1050 working++;
1051 } else {
1052 d->state = 0;
1053 spare++;
1054 working++;
1055 }
1056 if (test_bit(WriteMostly, &rdev2->flags))
1057 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1058 }
1059 /* now set the "removed" and "faulty" bits on any missing devices */
1060 for (i=0 ; i < mddev->raid_disks ; i++) {
1061 mdp_disk_t *d = &sb->disks[i];
1062 if (d->state == 0 && d->number == 0) {
1063 d->number = i;
1064 d->raid_disk = i;
1065 d->state = (1<<MD_DISK_REMOVED);
1066 d->state |= (1<<MD_DISK_FAULTY);
1067 failed++;
1068 }
1069 }
1070 sb->nr_disks = nr_disks;
1071 sb->active_disks = active;
1072 sb->working_disks = working;
1073 sb->failed_disks = failed;
1074 sb->spare_disks = spare;
1075
1076 sb->this_disk = sb->disks[rdev->desc_nr];
1077 sb->sb_csum = calc_sb_csum(sb);
1078 }
1079
1080 /*
1081 * rdev_size_change for 0.90.0
1082 */
1083 static unsigned long long
1084 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1085 {
1086 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1087 return 0; /* component must fit device */
1088 if (rdev->mddev->bitmap_offset)
1089 return 0; /* can't move bitmap */
1090 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1091 if (!num_sectors || num_sectors > rdev->sb_start)
1092 num_sectors = rdev->sb_start;
1093 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1094 rdev->sb_page);
1095 md_super_wait(rdev->mddev);
1096 return num_sectors / 2; /* kB for sysfs */
1097 }
1098
1099
1100 /*
1101 * version 1 superblock
1102 */
1103
1104 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1105 {
1106 __le32 disk_csum;
1107 u32 csum;
1108 unsigned long long newcsum;
1109 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1110 __le32 *isuper = (__le32*)sb;
1111 int i;
1112
1113 disk_csum = sb->sb_csum;
1114 sb->sb_csum = 0;
1115 newcsum = 0;
1116 for (i=0; size>=4; size -= 4 )
1117 newcsum += le32_to_cpu(*isuper++);
1118
1119 if (size == 2)
1120 newcsum += le16_to_cpu(*(__le16*) isuper);
1121
1122 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1123 sb->sb_csum = disk_csum;
1124 return cpu_to_le32(csum);
1125 }
1126
1127 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1128 {
1129 struct mdp_superblock_1 *sb;
1130 int ret;
1131 sector_t sb_start;
1132 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1133 int bmask;
1134
1135 /*
1136 * Calculate the position of the superblock in 512byte sectors.
1137 * It is always aligned to a 4K boundary and
1138 * depeding on minor_version, it can be:
1139 * 0: At least 8K, but less than 12K, from end of device
1140 * 1: At start of device
1141 * 2: 4K from start of device.
1142 */
1143 switch(minor_version) {
1144 case 0:
1145 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1146 sb_start -= 8*2;
1147 sb_start &= ~(sector_t)(4*2-1);
1148 break;
1149 case 1:
1150 sb_start = 0;
1151 break;
1152 case 2:
1153 sb_start = 8;
1154 break;
1155 default:
1156 return -EINVAL;
1157 }
1158 rdev->sb_start = sb_start;
1159
1160 /* superblock is rarely larger than 1K, but it can be larger,
1161 * and it is safe to read 4k, so we do that
1162 */
1163 ret = read_disk_sb(rdev, 4096);
1164 if (ret) return ret;
1165
1166
1167 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1168
1169 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1170 sb->major_version != cpu_to_le32(1) ||
1171 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1172 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1173 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1174 return -EINVAL;
1175
1176 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1177 printk("md: invalid superblock checksum on %s\n",
1178 bdevname(rdev->bdev,b));
1179 return -EINVAL;
1180 }
1181 if (le64_to_cpu(sb->data_size) < 10) {
1182 printk("md: data_size too small on %s\n",
1183 bdevname(rdev->bdev,b));
1184 return -EINVAL;
1185 }
1186
1187 rdev->preferred_minor = 0xffff;
1188 rdev->data_offset = le64_to_cpu(sb->data_offset);
1189 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1190
1191 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1192 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1193 if (rdev->sb_size & bmask)
1194 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1195
1196 if (minor_version
1197 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1198 return -EINVAL;
1199
1200 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1201 rdev->desc_nr = -1;
1202 else
1203 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1204
1205 if (!refdev) {
1206 ret = 1;
1207 } else {
1208 __u64 ev1, ev2;
1209 struct mdp_superblock_1 *refsb =
1210 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1211
1212 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1213 sb->level != refsb->level ||
1214 sb->layout != refsb->layout ||
1215 sb->chunksize != refsb->chunksize) {
1216 printk(KERN_WARNING "md: %s has strangely different"
1217 " superblock to %s\n",
1218 bdevname(rdev->bdev,b),
1219 bdevname(refdev->bdev,b2));
1220 return -EINVAL;
1221 }
1222 ev1 = le64_to_cpu(sb->events);
1223 ev2 = le64_to_cpu(refsb->events);
1224
1225 if (ev1 > ev2)
1226 ret = 1;
1227 else
1228 ret = 0;
1229 }
1230 if (minor_version)
1231 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1232 le64_to_cpu(sb->data_offset);
1233 else
1234 rdev->sectors = rdev->sb_start;
1235 if (rdev->sectors < le64_to_cpu(sb->data_size))
1236 return -EINVAL;
1237 rdev->sectors = le64_to_cpu(sb->data_size);
1238 if (le64_to_cpu(sb->size) > rdev->sectors)
1239 return -EINVAL;
1240 return ret;
1241 }
1242
1243 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1244 {
1245 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1246 __u64 ev1 = le64_to_cpu(sb->events);
1247
1248 rdev->raid_disk = -1;
1249 clear_bit(Faulty, &rdev->flags);
1250 clear_bit(In_sync, &rdev->flags);
1251 clear_bit(WriteMostly, &rdev->flags);
1252 clear_bit(BarriersNotsupp, &rdev->flags);
1253
1254 if (mddev->raid_disks == 0) {
1255 mddev->major_version = 1;
1256 mddev->patch_version = 0;
1257 mddev->external = 0;
1258 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1259 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1260 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1261 mddev->level = le32_to_cpu(sb->level);
1262 mddev->clevel[0] = 0;
1263 mddev->layout = le32_to_cpu(sb->layout);
1264 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1265 mddev->dev_sectors = le64_to_cpu(sb->size);
1266 mddev->events = ev1;
1267 mddev->bitmap_offset = 0;
1268 mddev->default_bitmap_offset = 1024 >> 9;
1269
1270 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1271 memcpy(mddev->uuid, sb->set_uuid, 16);
1272
1273 mddev->max_disks = (4096-256)/2;
1274
1275 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1276 mddev->bitmap_file == NULL )
1277 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1278
1279 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1280 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1281 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1282 mddev->new_level = le32_to_cpu(sb->new_level);
1283 mddev->new_layout = le32_to_cpu(sb->new_layout);
1284 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1285 } else {
1286 mddev->reshape_position = MaxSector;
1287 mddev->delta_disks = 0;
1288 mddev->new_level = mddev->level;
1289 mddev->new_layout = mddev->layout;
1290 mddev->new_chunk_sectors = mddev->chunk_sectors;
1291 }
1292
1293 } else if (mddev->pers == NULL) {
1294 /* Insist of good event counter while assembling */
1295 ++ev1;
1296 if (ev1 < mddev->events)
1297 return -EINVAL;
1298 } else if (mddev->bitmap) {
1299 /* If adding to array with a bitmap, then we can accept an
1300 * older device, but not too old.
1301 */
1302 if (ev1 < mddev->bitmap->events_cleared)
1303 return 0;
1304 } else {
1305 if (ev1 < mddev->events)
1306 /* just a hot-add of a new device, leave raid_disk at -1 */
1307 return 0;
1308 }
1309 if (mddev->level != LEVEL_MULTIPATH) {
1310 int role;
1311 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1312 switch(role) {
1313 case 0xffff: /* spare */
1314 break;
1315 case 0xfffe: /* faulty */
1316 set_bit(Faulty, &rdev->flags);
1317 break;
1318 default:
1319 if ((le32_to_cpu(sb->feature_map) &
1320 MD_FEATURE_RECOVERY_OFFSET))
1321 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1322 else
1323 set_bit(In_sync, &rdev->flags);
1324 rdev->raid_disk = role;
1325 break;
1326 }
1327 if (sb->devflags & WriteMostly1)
1328 set_bit(WriteMostly, &rdev->flags);
1329 } else /* MULTIPATH are always insync */
1330 set_bit(In_sync, &rdev->flags);
1331
1332 return 0;
1333 }
1334
1335 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1336 {
1337 struct mdp_superblock_1 *sb;
1338 mdk_rdev_t *rdev2;
1339 int max_dev, i;
1340 /* make rdev->sb match mddev and rdev data. */
1341
1342 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1343
1344 sb->feature_map = 0;
1345 sb->pad0 = 0;
1346 sb->recovery_offset = cpu_to_le64(0);
1347 memset(sb->pad1, 0, sizeof(sb->pad1));
1348 memset(sb->pad2, 0, sizeof(sb->pad2));
1349 memset(sb->pad3, 0, sizeof(sb->pad3));
1350
1351 sb->utime = cpu_to_le64((__u64)mddev->utime);
1352 sb->events = cpu_to_le64(mddev->events);
1353 if (mddev->in_sync)
1354 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1355 else
1356 sb->resync_offset = cpu_to_le64(0);
1357
1358 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1359
1360 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1361 sb->size = cpu_to_le64(mddev->dev_sectors);
1362 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1363 sb->level = cpu_to_le32(mddev->level);
1364 sb->layout = cpu_to_le32(mddev->layout);
1365
1366 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1367 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1368 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1369 }
1370
1371 if (rdev->raid_disk >= 0 &&
1372 !test_bit(In_sync, &rdev->flags)) {
1373 if (mddev->curr_resync_completed > rdev->recovery_offset)
1374 rdev->recovery_offset = mddev->curr_resync_completed;
1375 if (rdev->recovery_offset > 0) {
1376 sb->feature_map |=
1377 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1378 sb->recovery_offset =
1379 cpu_to_le64(rdev->recovery_offset);
1380 }
1381 }
1382
1383 if (mddev->reshape_position != MaxSector) {
1384 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1385 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1386 sb->new_layout = cpu_to_le32(mddev->new_layout);
1387 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1388 sb->new_level = cpu_to_le32(mddev->new_level);
1389 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1390 }
1391
1392 max_dev = 0;
1393 list_for_each_entry(rdev2, &mddev->disks, same_set)
1394 if (rdev2->desc_nr+1 > max_dev)
1395 max_dev = rdev2->desc_nr+1;
1396
1397 if (max_dev > le32_to_cpu(sb->max_dev))
1398 sb->max_dev = cpu_to_le32(max_dev);
1399 for (i=0; i<max_dev;i++)
1400 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1401
1402 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1403 i = rdev2->desc_nr;
1404 if (test_bit(Faulty, &rdev2->flags))
1405 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1406 else if (test_bit(In_sync, &rdev2->flags))
1407 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1408 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1409 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1410 else
1411 sb->dev_roles[i] = cpu_to_le16(0xffff);
1412 }
1413
1414 sb->sb_csum = calc_sb_1_csum(sb);
1415 }
1416
1417 static unsigned long long
1418 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1419 {
1420 struct mdp_superblock_1 *sb;
1421 sector_t max_sectors;
1422 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1423 return 0; /* component must fit device */
1424 if (rdev->sb_start < rdev->data_offset) {
1425 /* minor versions 1 and 2; superblock before data */
1426 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1427 max_sectors -= rdev->data_offset;
1428 if (!num_sectors || num_sectors > max_sectors)
1429 num_sectors = max_sectors;
1430 } else if (rdev->mddev->bitmap_offset) {
1431 /* minor version 0 with bitmap we can't move */
1432 return 0;
1433 } else {
1434 /* minor version 0; superblock after data */
1435 sector_t sb_start;
1436 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1437 sb_start &= ~(sector_t)(4*2 - 1);
1438 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1439 if (!num_sectors || num_sectors > max_sectors)
1440 num_sectors = max_sectors;
1441 rdev->sb_start = sb_start;
1442 }
1443 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1444 sb->data_size = cpu_to_le64(num_sectors);
1445 sb->super_offset = rdev->sb_start;
1446 sb->sb_csum = calc_sb_1_csum(sb);
1447 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1448 rdev->sb_page);
1449 md_super_wait(rdev->mddev);
1450 return num_sectors / 2; /* kB for sysfs */
1451 }
1452
1453 static struct super_type super_types[] = {
1454 [0] = {
1455 .name = "0.90.0",
1456 .owner = THIS_MODULE,
1457 .load_super = super_90_load,
1458 .validate_super = super_90_validate,
1459 .sync_super = super_90_sync,
1460 .rdev_size_change = super_90_rdev_size_change,
1461 },
1462 [1] = {
1463 .name = "md-1",
1464 .owner = THIS_MODULE,
1465 .load_super = super_1_load,
1466 .validate_super = super_1_validate,
1467 .sync_super = super_1_sync,
1468 .rdev_size_change = super_1_rdev_size_change,
1469 },
1470 };
1471
1472 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1473 {
1474 mdk_rdev_t *rdev, *rdev2;
1475
1476 rcu_read_lock();
1477 rdev_for_each_rcu(rdev, mddev1)
1478 rdev_for_each_rcu(rdev2, mddev2)
1479 if (rdev->bdev->bd_contains ==
1480 rdev2->bdev->bd_contains) {
1481 rcu_read_unlock();
1482 return 1;
1483 }
1484 rcu_read_unlock();
1485 return 0;
1486 }
1487
1488 static LIST_HEAD(pending_raid_disks);
1489
1490 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
1491 {
1492 struct mdk_personality *pers = mddev->pers;
1493 struct gendisk *disk = mddev->gendisk;
1494 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1495 struct blk_integrity *bi_mddev = blk_get_integrity(disk);
1496
1497 /* Data integrity passthrough not supported on RAID 4, 5 and 6 */
1498 if (pers && pers->level >= 4 && pers->level <= 6)
1499 return;
1500
1501 /* If rdev is integrity capable, register profile for mddev */
1502 if (!bi_mddev && bi_rdev) {
1503 if (blk_integrity_register(disk, bi_rdev))
1504 printk(KERN_ERR "%s: %s Could not register integrity!\n",
1505 __func__, disk->disk_name);
1506 else
1507 printk(KERN_NOTICE "Enabling data integrity on %s\n",
1508 disk->disk_name);
1509 return;
1510 }
1511
1512 /* Check that mddev and rdev have matching profiles */
1513 if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
1514 printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
1515 disk->disk_name, rdev->bdev->bd_disk->disk_name);
1516 printk(KERN_NOTICE "Disabling data integrity on %s\n",
1517 disk->disk_name);
1518 blk_integrity_unregister(disk);
1519 }
1520 }
1521
1522 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1523 {
1524 char b[BDEVNAME_SIZE];
1525 struct kobject *ko;
1526 char *s;
1527 int err;
1528
1529 if (rdev->mddev) {
1530 MD_BUG();
1531 return -EINVAL;
1532 }
1533
1534 /* prevent duplicates */
1535 if (find_rdev(mddev, rdev->bdev->bd_dev))
1536 return -EEXIST;
1537
1538 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1539 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1540 rdev->sectors < mddev->dev_sectors)) {
1541 if (mddev->pers) {
1542 /* Cannot change size, so fail
1543 * If mddev->level <= 0, then we don't care
1544 * about aligning sizes (e.g. linear)
1545 */
1546 if (mddev->level > 0)
1547 return -ENOSPC;
1548 } else
1549 mddev->dev_sectors = rdev->sectors;
1550 }
1551
1552 /* Verify rdev->desc_nr is unique.
1553 * If it is -1, assign a free number, else
1554 * check number is not in use
1555 */
1556 if (rdev->desc_nr < 0) {
1557 int choice = 0;
1558 if (mddev->pers) choice = mddev->raid_disks;
1559 while (find_rdev_nr(mddev, choice))
1560 choice++;
1561 rdev->desc_nr = choice;
1562 } else {
1563 if (find_rdev_nr(mddev, rdev->desc_nr))
1564 return -EBUSY;
1565 }
1566 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1567 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1568 mdname(mddev), mddev->max_disks);
1569 return -EBUSY;
1570 }
1571 bdevname(rdev->bdev,b);
1572 while ( (s=strchr(b, '/')) != NULL)
1573 *s = '!';
1574
1575 rdev->mddev = mddev;
1576 printk(KERN_INFO "md: bind<%s>\n", b);
1577
1578 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1579 goto fail;
1580
1581 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1582 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1583 kobject_del(&rdev->kobj);
1584 goto fail;
1585 }
1586 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1587
1588 list_add_rcu(&rdev->same_set, &mddev->disks);
1589 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1590
1591 /* May as well allow recovery to be retried once */
1592 mddev->recovery_disabled = 0;
1593
1594 md_integrity_check(rdev, mddev);
1595 return 0;
1596
1597 fail:
1598 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1599 b, mdname(mddev));
1600 return err;
1601 }
1602
1603 static void md_delayed_delete(struct work_struct *ws)
1604 {
1605 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1606 kobject_del(&rdev->kobj);
1607 kobject_put(&rdev->kobj);
1608 }
1609
1610 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1611 {
1612 char b[BDEVNAME_SIZE];
1613 if (!rdev->mddev) {
1614 MD_BUG();
1615 return;
1616 }
1617 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1618 list_del_rcu(&rdev->same_set);
1619 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1620 rdev->mddev = NULL;
1621 sysfs_remove_link(&rdev->kobj, "block");
1622 sysfs_put(rdev->sysfs_state);
1623 rdev->sysfs_state = NULL;
1624 /* We need to delay this, otherwise we can deadlock when
1625 * writing to 'remove' to "dev/state". We also need
1626 * to delay it due to rcu usage.
1627 */
1628 synchronize_rcu();
1629 INIT_WORK(&rdev->del_work, md_delayed_delete);
1630 kobject_get(&rdev->kobj);
1631 schedule_work(&rdev->del_work);
1632 }
1633
1634 /*
1635 * prevent the device from being mounted, repartitioned or
1636 * otherwise reused by a RAID array (or any other kernel
1637 * subsystem), by bd_claiming the device.
1638 */
1639 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1640 {
1641 int err = 0;
1642 struct block_device *bdev;
1643 char b[BDEVNAME_SIZE];
1644
1645 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1646 if (IS_ERR(bdev)) {
1647 printk(KERN_ERR "md: could not open %s.\n",
1648 __bdevname(dev, b));
1649 return PTR_ERR(bdev);
1650 }
1651 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1652 if (err) {
1653 printk(KERN_ERR "md: could not bd_claim %s.\n",
1654 bdevname(bdev, b));
1655 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1656 return err;
1657 }
1658 if (!shared)
1659 set_bit(AllReserved, &rdev->flags);
1660 rdev->bdev = bdev;
1661 return err;
1662 }
1663
1664 static void unlock_rdev(mdk_rdev_t *rdev)
1665 {
1666 struct block_device *bdev = rdev->bdev;
1667 rdev->bdev = NULL;
1668 if (!bdev)
1669 MD_BUG();
1670 bd_release(bdev);
1671 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1672 }
1673
1674 void md_autodetect_dev(dev_t dev);
1675
1676 static void export_rdev(mdk_rdev_t * rdev)
1677 {
1678 char b[BDEVNAME_SIZE];
1679 printk(KERN_INFO "md: export_rdev(%s)\n",
1680 bdevname(rdev->bdev,b));
1681 if (rdev->mddev)
1682 MD_BUG();
1683 free_disk_sb(rdev);
1684 #ifndef MODULE
1685 if (test_bit(AutoDetected, &rdev->flags))
1686 md_autodetect_dev(rdev->bdev->bd_dev);
1687 #endif
1688 unlock_rdev(rdev);
1689 kobject_put(&rdev->kobj);
1690 }
1691
1692 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1693 {
1694 unbind_rdev_from_array(rdev);
1695 export_rdev(rdev);
1696 }
1697
1698 static void export_array(mddev_t *mddev)
1699 {
1700 mdk_rdev_t *rdev, *tmp;
1701
1702 rdev_for_each(rdev, tmp, mddev) {
1703 if (!rdev->mddev) {
1704 MD_BUG();
1705 continue;
1706 }
1707 kick_rdev_from_array(rdev);
1708 }
1709 if (!list_empty(&mddev->disks))
1710 MD_BUG();
1711 mddev->raid_disks = 0;
1712 mddev->major_version = 0;
1713 }
1714
1715 static void print_desc(mdp_disk_t *desc)
1716 {
1717 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1718 desc->major,desc->minor,desc->raid_disk,desc->state);
1719 }
1720
1721 static void print_sb_90(mdp_super_t *sb)
1722 {
1723 int i;
1724
1725 printk(KERN_INFO
1726 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1727 sb->major_version, sb->minor_version, sb->patch_version,
1728 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1729 sb->ctime);
1730 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1731 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1732 sb->md_minor, sb->layout, sb->chunk_size);
1733 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1734 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1735 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1736 sb->failed_disks, sb->spare_disks,
1737 sb->sb_csum, (unsigned long)sb->events_lo);
1738
1739 printk(KERN_INFO);
1740 for (i = 0; i < MD_SB_DISKS; i++) {
1741 mdp_disk_t *desc;
1742
1743 desc = sb->disks + i;
1744 if (desc->number || desc->major || desc->minor ||
1745 desc->raid_disk || (desc->state && (desc->state != 4))) {
1746 printk(" D %2d: ", i);
1747 print_desc(desc);
1748 }
1749 }
1750 printk(KERN_INFO "md: THIS: ");
1751 print_desc(&sb->this_disk);
1752 }
1753
1754 static void print_sb_1(struct mdp_superblock_1 *sb)
1755 {
1756 __u8 *uuid;
1757
1758 uuid = sb->set_uuid;
1759 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1760 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1761 KERN_INFO "md: Name: \"%s\" CT:%llu\n",
1762 le32_to_cpu(sb->major_version),
1763 le32_to_cpu(sb->feature_map),
1764 uuid[0], uuid[1], uuid[2], uuid[3],
1765 uuid[4], uuid[5], uuid[6], uuid[7],
1766 uuid[8], uuid[9], uuid[10], uuid[11],
1767 uuid[12], uuid[13], uuid[14], uuid[15],
1768 sb->set_name,
1769 (unsigned long long)le64_to_cpu(sb->ctime)
1770 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1771
1772 uuid = sb->device_uuid;
1773 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1774 " RO:%llu\n"
1775 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1776 ":%02x%02x%02x%02x%02x%02x\n"
1777 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1778 KERN_INFO "md: (MaxDev:%u) \n",
1779 le32_to_cpu(sb->level),
1780 (unsigned long long)le64_to_cpu(sb->size),
1781 le32_to_cpu(sb->raid_disks),
1782 le32_to_cpu(sb->layout),
1783 le32_to_cpu(sb->chunksize),
1784 (unsigned long long)le64_to_cpu(sb->data_offset),
1785 (unsigned long long)le64_to_cpu(sb->data_size),
1786 (unsigned long long)le64_to_cpu(sb->super_offset),
1787 (unsigned long long)le64_to_cpu(sb->recovery_offset),
1788 le32_to_cpu(sb->dev_number),
1789 uuid[0], uuid[1], uuid[2], uuid[3],
1790 uuid[4], uuid[5], uuid[6], uuid[7],
1791 uuid[8], uuid[9], uuid[10], uuid[11],
1792 uuid[12], uuid[13], uuid[14], uuid[15],
1793 sb->devflags,
1794 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1795 (unsigned long long)le64_to_cpu(sb->events),
1796 (unsigned long long)le64_to_cpu(sb->resync_offset),
1797 le32_to_cpu(sb->sb_csum),
1798 le32_to_cpu(sb->max_dev)
1799 );
1800 }
1801
1802 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1803 {
1804 char b[BDEVNAME_SIZE];
1805 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1806 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1807 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1808 rdev->desc_nr);
1809 if (rdev->sb_loaded) {
1810 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1811 switch (major_version) {
1812 case 0:
1813 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1814 break;
1815 case 1:
1816 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1817 break;
1818 }
1819 } else
1820 printk(KERN_INFO "md: no rdev superblock!\n");
1821 }
1822
1823 static void md_print_devices(void)
1824 {
1825 struct list_head *tmp;
1826 mdk_rdev_t *rdev;
1827 mddev_t *mddev;
1828 char b[BDEVNAME_SIZE];
1829
1830 printk("\n");
1831 printk("md: **********************************\n");
1832 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1833 printk("md: **********************************\n");
1834 for_each_mddev(mddev, tmp) {
1835
1836 if (mddev->bitmap)
1837 bitmap_print_sb(mddev->bitmap);
1838 else
1839 printk("%s: ", mdname(mddev));
1840 list_for_each_entry(rdev, &mddev->disks, same_set)
1841 printk("<%s>", bdevname(rdev->bdev,b));
1842 printk("\n");
1843
1844 list_for_each_entry(rdev, &mddev->disks, same_set)
1845 print_rdev(rdev, mddev->major_version);
1846 }
1847 printk("md: **********************************\n");
1848 printk("\n");
1849 }
1850
1851
1852 static void sync_sbs(mddev_t * mddev, int nospares)
1853 {
1854 /* Update each superblock (in-memory image), but
1855 * if we are allowed to, skip spares which already
1856 * have the right event counter, or have one earlier
1857 * (which would mean they aren't being marked as dirty
1858 * with the rest of the array)
1859 */
1860 mdk_rdev_t *rdev;
1861
1862 list_for_each_entry(rdev, &mddev->disks, same_set) {
1863 if (rdev->sb_events == mddev->events ||
1864 (nospares &&
1865 rdev->raid_disk < 0 &&
1866 (rdev->sb_events&1)==0 &&
1867 rdev->sb_events+1 == mddev->events)) {
1868 /* Don't update this superblock */
1869 rdev->sb_loaded = 2;
1870 } else {
1871 super_types[mddev->major_version].
1872 sync_super(mddev, rdev);
1873 rdev->sb_loaded = 1;
1874 }
1875 }
1876 }
1877
1878 static void md_update_sb(mddev_t * mddev, int force_change)
1879 {
1880 mdk_rdev_t *rdev;
1881 int sync_req;
1882 int nospares = 0;
1883
1884 mddev->utime = get_seconds();
1885 if (mddev->external)
1886 return;
1887 repeat:
1888 spin_lock_irq(&mddev->write_lock);
1889
1890 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1891 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1892 force_change = 1;
1893 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1894 /* just a clean<-> dirty transition, possibly leave spares alone,
1895 * though if events isn't the right even/odd, we will have to do
1896 * spares after all
1897 */
1898 nospares = 1;
1899 if (force_change)
1900 nospares = 0;
1901 if (mddev->degraded)
1902 /* If the array is degraded, then skipping spares is both
1903 * dangerous and fairly pointless.
1904 * Dangerous because a device that was removed from the array
1905 * might have a event_count that still looks up-to-date,
1906 * so it can be re-added without a resync.
1907 * Pointless because if there are any spares to skip,
1908 * then a recovery will happen and soon that array won't
1909 * be degraded any more and the spare can go back to sleep then.
1910 */
1911 nospares = 0;
1912
1913 sync_req = mddev->in_sync;
1914
1915 /* If this is just a dirty<->clean transition, and the array is clean
1916 * and 'events' is odd, we can roll back to the previous clean state */
1917 if (nospares
1918 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1919 && (mddev->events & 1)
1920 && mddev->events != 1)
1921 mddev->events--;
1922 else {
1923 /* otherwise we have to go forward and ... */
1924 mddev->events ++;
1925 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1926 /* .. if the array isn't clean, insist on an odd 'events' */
1927 if ((mddev->events&1)==0) {
1928 mddev->events++;
1929 nospares = 0;
1930 }
1931 } else {
1932 /* otherwise insist on an even 'events' (for clean states) */
1933 if ((mddev->events&1)) {
1934 mddev->events++;
1935 nospares = 0;
1936 }
1937 }
1938 }
1939
1940 if (!mddev->events) {
1941 /*
1942 * oops, this 64-bit counter should never wrap.
1943 * Either we are in around ~1 trillion A.C., assuming
1944 * 1 reboot per second, or we have a bug:
1945 */
1946 MD_BUG();
1947 mddev->events --;
1948 }
1949
1950 /*
1951 * do not write anything to disk if using
1952 * nonpersistent superblocks
1953 */
1954 if (!mddev->persistent) {
1955 if (!mddev->external)
1956 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1957
1958 spin_unlock_irq(&mddev->write_lock);
1959 wake_up(&mddev->sb_wait);
1960 return;
1961 }
1962 sync_sbs(mddev, nospares);
1963 spin_unlock_irq(&mddev->write_lock);
1964
1965 dprintk(KERN_INFO
1966 "md: updating %s RAID superblock on device (in sync %d)\n",
1967 mdname(mddev),mddev->in_sync);
1968
1969 bitmap_update_sb(mddev->bitmap);
1970 list_for_each_entry(rdev, &mddev->disks, same_set) {
1971 char b[BDEVNAME_SIZE];
1972 dprintk(KERN_INFO "md: ");
1973 if (rdev->sb_loaded != 1)
1974 continue; /* no noise on spare devices */
1975 if (test_bit(Faulty, &rdev->flags))
1976 dprintk("(skipping faulty ");
1977
1978 dprintk("%s ", bdevname(rdev->bdev,b));
1979 if (!test_bit(Faulty, &rdev->flags)) {
1980 md_super_write(mddev,rdev,
1981 rdev->sb_start, rdev->sb_size,
1982 rdev->sb_page);
1983 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1984 bdevname(rdev->bdev,b),
1985 (unsigned long long)rdev->sb_start);
1986 rdev->sb_events = mddev->events;
1987
1988 } else
1989 dprintk(")\n");
1990 if (mddev->level == LEVEL_MULTIPATH)
1991 /* only need to write one superblock... */
1992 break;
1993 }
1994 md_super_wait(mddev);
1995 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1996
1997 spin_lock_irq(&mddev->write_lock);
1998 if (mddev->in_sync != sync_req ||
1999 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2000 /* have to write it out again */
2001 spin_unlock_irq(&mddev->write_lock);
2002 goto repeat;
2003 }
2004 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2005 spin_unlock_irq(&mddev->write_lock);
2006 wake_up(&mddev->sb_wait);
2007 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2008 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2009
2010 }
2011
2012 /* words written to sysfs files may, or may not, be \n terminated.
2013 * We want to accept with case. For this we use cmd_match.
2014 */
2015 static int cmd_match(const char *cmd, const char *str)
2016 {
2017 /* See if cmd, written into a sysfs file, matches
2018 * str. They must either be the same, or cmd can
2019 * have a trailing newline
2020 */
2021 while (*cmd && *str && *cmd == *str) {
2022 cmd++;
2023 str++;
2024 }
2025 if (*cmd == '\n')
2026 cmd++;
2027 if (*str || *cmd)
2028 return 0;
2029 return 1;
2030 }
2031
2032 struct rdev_sysfs_entry {
2033 struct attribute attr;
2034 ssize_t (*show)(mdk_rdev_t *, char *);
2035 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2036 };
2037
2038 static ssize_t
2039 state_show(mdk_rdev_t *rdev, char *page)
2040 {
2041 char *sep = "";
2042 size_t len = 0;
2043
2044 if (test_bit(Faulty, &rdev->flags)) {
2045 len+= sprintf(page+len, "%sfaulty",sep);
2046 sep = ",";
2047 }
2048 if (test_bit(In_sync, &rdev->flags)) {
2049 len += sprintf(page+len, "%sin_sync",sep);
2050 sep = ",";
2051 }
2052 if (test_bit(WriteMostly, &rdev->flags)) {
2053 len += sprintf(page+len, "%swrite_mostly",sep);
2054 sep = ",";
2055 }
2056 if (test_bit(Blocked, &rdev->flags)) {
2057 len += sprintf(page+len, "%sblocked", sep);
2058 sep = ",";
2059 }
2060 if (!test_bit(Faulty, &rdev->flags) &&
2061 !test_bit(In_sync, &rdev->flags)) {
2062 len += sprintf(page+len, "%sspare", sep);
2063 sep = ",";
2064 }
2065 return len+sprintf(page+len, "\n");
2066 }
2067
2068 static ssize_t
2069 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2070 {
2071 /* can write
2072 * faulty - simulates and error
2073 * remove - disconnects the device
2074 * writemostly - sets write_mostly
2075 * -writemostly - clears write_mostly
2076 * blocked - sets the Blocked flag
2077 * -blocked - clears the Blocked flag
2078 * insync - sets Insync providing device isn't active
2079 */
2080 int err = -EINVAL;
2081 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2082 md_error(rdev->mddev, rdev);
2083 err = 0;
2084 } else if (cmd_match(buf, "remove")) {
2085 if (rdev->raid_disk >= 0)
2086 err = -EBUSY;
2087 else {
2088 mddev_t *mddev = rdev->mddev;
2089 kick_rdev_from_array(rdev);
2090 if (mddev->pers)
2091 md_update_sb(mddev, 1);
2092 md_new_event(mddev);
2093 err = 0;
2094 }
2095 } else if (cmd_match(buf, "writemostly")) {
2096 set_bit(WriteMostly, &rdev->flags);
2097 err = 0;
2098 } else if (cmd_match(buf, "-writemostly")) {
2099 clear_bit(WriteMostly, &rdev->flags);
2100 err = 0;
2101 } else if (cmd_match(buf, "blocked")) {
2102 set_bit(Blocked, &rdev->flags);
2103 err = 0;
2104 } else if (cmd_match(buf, "-blocked")) {
2105 clear_bit(Blocked, &rdev->flags);
2106 wake_up(&rdev->blocked_wait);
2107 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2108 md_wakeup_thread(rdev->mddev->thread);
2109
2110 err = 0;
2111 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2112 set_bit(In_sync, &rdev->flags);
2113 err = 0;
2114 }
2115 if (!err && rdev->sysfs_state)
2116 sysfs_notify_dirent(rdev->sysfs_state);
2117 return err ? err : len;
2118 }
2119 static struct rdev_sysfs_entry rdev_state =
2120 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2121
2122 static ssize_t
2123 errors_show(mdk_rdev_t *rdev, char *page)
2124 {
2125 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2126 }
2127
2128 static ssize_t
2129 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2130 {
2131 char *e;
2132 unsigned long n = simple_strtoul(buf, &e, 10);
2133 if (*buf && (*e == 0 || *e == '\n')) {
2134 atomic_set(&rdev->corrected_errors, n);
2135 return len;
2136 }
2137 return -EINVAL;
2138 }
2139 static struct rdev_sysfs_entry rdev_errors =
2140 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2141
2142 static ssize_t
2143 slot_show(mdk_rdev_t *rdev, char *page)
2144 {
2145 if (rdev->raid_disk < 0)
2146 return sprintf(page, "none\n");
2147 else
2148 return sprintf(page, "%d\n", rdev->raid_disk);
2149 }
2150
2151 static ssize_t
2152 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2153 {
2154 char *e;
2155 int err;
2156 char nm[20];
2157 int slot = simple_strtoul(buf, &e, 10);
2158 if (strncmp(buf, "none", 4)==0)
2159 slot = -1;
2160 else if (e==buf || (*e && *e!= '\n'))
2161 return -EINVAL;
2162 if (rdev->mddev->pers && slot == -1) {
2163 /* Setting 'slot' on an active array requires also
2164 * updating the 'rd%d' link, and communicating
2165 * with the personality with ->hot_*_disk.
2166 * For now we only support removing
2167 * failed/spare devices. This normally happens automatically,
2168 * but not when the metadata is externally managed.
2169 */
2170 if (rdev->raid_disk == -1)
2171 return -EEXIST;
2172 /* personality does all needed checks */
2173 if (rdev->mddev->pers->hot_add_disk == NULL)
2174 return -EINVAL;
2175 err = rdev->mddev->pers->
2176 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2177 if (err)
2178 return err;
2179 sprintf(nm, "rd%d", rdev->raid_disk);
2180 sysfs_remove_link(&rdev->mddev->kobj, nm);
2181 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2182 md_wakeup_thread(rdev->mddev->thread);
2183 } else if (rdev->mddev->pers) {
2184 mdk_rdev_t *rdev2;
2185 /* Activating a spare .. or possibly reactivating
2186 * if we ever get bitmaps working here.
2187 */
2188
2189 if (rdev->raid_disk != -1)
2190 return -EBUSY;
2191
2192 if (rdev->mddev->pers->hot_add_disk == NULL)
2193 return -EINVAL;
2194
2195 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2196 if (rdev2->raid_disk == slot)
2197 return -EEXIST;
2198
2199 rdev->raid_disk = slot;
2200 if (test_bit(In_sync, &rdev->flags))
2201 rdev->saved_raid_disk = slot;
2202 else
2203 rdev->saved_raid_disk = -1;
2204 err = rdev->mddev->pers->
2205 hot_add_disk(rdev->mddev, rdev);
2206 if (err) {
2207 rdev->raid_disk = -1;
2208 return err;
2209 } else
2210 sysfs_notify_dirent(rdev->sysfs_state);
2211 sprintf(nm, "rd%d", rdev->raid_disk);
2212 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2213 printk(KERN_WARNING
2214 "md: cannot register "
2215 "%s for %s\n",
2216 nm, mdname(rdev->mddev));
2217
2218 /* don't wakeup anyone, leave that to userspace. */
2219 } else {
2220 if (slot >= rdev->mddev->raid_disks)
2221 return -ENOSPC;
2222 rdev->raid_disk = slot;
2223 /* assume it is working */
2224 clear_bit(Faulty, &rdev->flags);
2225 clear_bit(WriteMostly, &rdev->flags);
2226 set_bit(In_sync, &rdev->flags);
2227 sysfs_notify_dirent(rdev->sysfs_state);
2228 }
2229 return len;
2230 }
2231
2232
2233 static struct rdev_sysfs_entry rdev_slot =
2234 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2235
2236 static ssize_t
2237 offset_show(mdk_rdev_t *rdev, char *page)
2238 {
2239 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2240 }
2241
2242 static ssize_t
2243 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2244 {
2245 char *e;
2246 unsigned long long offset = simple_strtoull(buf, &e, 10);
2247 if (e==buf || (*e && *e != '\n'))
2248 return -EINVAL;
2249 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2250 return -EBUSY;
2251 if (rdev->sectors && rdev->mddev->external)
2252 /* Must set offset before size, so overlap checks
2253 * can be sane */
2254 return -EBUSY;
2255 rdev->data_offset = offset;
2256 return len;
2257 }
2258
2259 static struct rdev_sysfs_entry rdev_offset =
2260 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2261
2262 static ssize_t
2263 rdev_size_show(mdk_rdev_t *rdev, char *page)
2264 {
2265 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2266 }
2267
2268 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2269 {
2270 /* check if two start/length pairs overlap */
2271 if (s1+l1 <= s2)
2272 return 0;
2273 if (s2+l2 <= s1)
2274 return 0;
2275 return 1;
2276 }
2277
2278 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2279 {
2280 unsigned long long blocks;
2281 sector_t new;
2282
2283 if (strict_strtoull(buf, 10, &blocks) < 0)
2284 return -EINVAL;
2285
2286 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2287 return -EINVAL; /* sector conversion overflow */
2288
2289 new = blocks * 2;
2290 if (new != blocks * 2)
2291 return -EINVAL; /* unsigned long long to sector_t overflow */
2292
2293 *sectors = new;
2294 return 0;
2295 }
2296
2297 static ssize_t
2298 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2299 {
2300 mddev_t *my_mddev = rdev->mddev;
2301 sector_t oldsectors = rdev->sectors;
2302 sector_t sectors;
2303
2304 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2305 return -EINVAL;
2306 if (my_mddev->pers && rdev->raid_disk >= 0) {
2307 if (my_mddev->persistent) {
2308 sectors = super_types[my_mddev->major_version].
2309 rdev_size_change(rdev, sectors);
2310 if (!sectors)
2311 return -EBUSY;
2312 } else if (!sectors)
2313 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2314 rdev->data_offset;
2315 }
2316 if (sectors < my_mddev->dev_sectors)
2317 return -EINVAL; /* component must fit device */
2318
2319 rdev->sectors = sectors;
2320 if (sectors > oldsectors && my_mddev->external) {
2321 /* need to check that all other rdevs with the same ->bdev
2322 * do not overlap. We need to unlock the mddev to avoid
2323 * a deadlock. We have already changed rdev->sectors, and if
2324 * we have to change it back, we will have the lock again.
2325 */
2326 mddev_t *mddev;
2327 int overlap = 0;
2328 struct list_head *tmp;
2329
2330 mddev_unlock(my_mddev);
2331 for_each_mddev(mddev, tmp) {
2332 mdk_rdev_t *rdev2;
2333
2334 mddev_lock(mddev);
2335 list_for_each_entry(rdev2, &mddev->disks, same_set)
2336 if (test_bit(AllReserved, &rdev2->flags) ||
2337 (rdev->bdev == rdev2->bdev &&
2338 rdev != rdev2 &&
2339 overlaps(rdev->data_offset, rdev->sectors,
2340 rdev2->data_offset,
2341 rdev2->sectors))) {
2342 overlap = 1;
2343 break;
2344 }
2345 mddev_unlock(mddev);
2346 if (overlap) {
2347 mddev_put(mddev);
2348 break;
2349 }
2350 }
2351 mddev_lock(my_mddev);
2352 if (overlap) {
2353 /* Someone else could have slipped in a size
2354 * change here, but doing so is just silly.
2355 * We put oldsectors back because we *know* it is
2356 * safe, and trust userspace not to race with
2357 * itself
2358 */
2359 rdev->sectors = oldsectors;
2360 return -EBUSY;
2361 }
2362 }
2363 return len;
2364 }
2365
2366 static struct rdev_sysfs_entry rdev_size =
2367 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2368
2369 static struct attribute *rdev_default_attrs[] = {
2370 &rdev_state.attr,
2371 &rdev_errors.attr,
2372 &rdev_slot.attr,
2373 &rdev_offset.attr,
2374 &rdev_size.attr,
2375 NULL,
2376 };
2377 static ssize_t
2378 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2379 {
2380 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2381 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2382 mddev_t *mddev = rdev->mddev;
2383 ssize_t rv;
2384
2385 if (!entry->show)
2386 return -EIO;
2387
2388 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2389 if (!rv) {
2390 if (rdev->mddev == NULL)
2391 rv = -EBUSY;
2392 else
2393 rv = entry->show(rdev, page);
2394 mddev_unlock(mddev);
2395 }
2396 return rv;
2397 }
2398
2399 static ssize_t
2400 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2401 const char *page, size_t length)
2402 {
2403 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2404 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2405 ssize_t rv;
2406 mddev_t *mddev = rdev->mddev;
2407
2408 if (!entry->store)
2409 return -EIO;
2410 if (!capable(CAP_SYS_ADMIN))
2411 return -EACCES;
2412 rv = mddev ? mddev_lock(mddev): -EBUSY;
2413 if (!rv) {
2414 if (rdev->mddev == NULL)
2415 rv = -EBUSY;
2416 else
2417 rv = entry->store(rdev, page, length);
2418 mddev_unlock(mddev);
2419 }
2420 return rv;
2421 }
2422
2423 static void rdev_free(struct kobject *ko)
2424 {
2425 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2426 kfree(rdev);
2427 }
2428 static struct sysfs_ops rdev_sysfs_ops = {
2429 .show = rdev_attr_show,
2430 .store = rdev_attr_store,
2431 };
2432 static struct kobj_type rdev_ktype = {
2433 .release = rdev_free,
2434 .sysfs_ops = &rdev_sysfs_ops,
2435 .default_attrs = rdev_default_attrs,
2436 };
2437
2438 /*
2439 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2440 *
2441 * mark the device faulty if:
2442 *
2443 * - the device is nonexistent (zero size)
2444 * - the device has no valid superblock
2445 *
2446 * a faulty rdev _never_ has rdev->sb set.
2447 */
2448 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2449 {
2450 char b[BDEVNAME_SIZE];
2451 int err;
2452 mdk_rdev_t *rdev;
2453 sector_t size;
2454
2455 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2456 if (!rdev) {
2457 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2458 return ERR_PTR(-ENOMEM);
2459 }
2460
2461 if ((err = alloc_disk_sb(rdev)))
2462 goto abort_free;
2463
2464 err = lock_rdev(rdev, newdev, super_format == -2);
2465 if (err)
2466 goto abort_free;
2467
2468 kobject_init(&rdev->kobj, &rdev_ktype);
2469
2470 rdev->desc_nr = -1;
2471 rdev->saved_raid_disk = -1;
2472 rdev->raid_disk = -1;
2473 rdev->flags = 0;
2474 rdev->data_offset = 0;
2475 rdev->sb_events = 0;
2476 atomic_set(&rdev->nr_pending, 0);
2477 atomic_set(&rdev->read_errors, 0);
2478 atomic_set(&rdev->corrected_errors, 0);
2479
2480 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2481 if (!size) {
2482 printk(KERN_WARNING
2483 "md: %s has zero or unknown size, marking faulty!\n",
2484 bdevname(rdev->bdev,b));
2485 err = -EINVAL;
2486 goto abort_free;
2487 }
2488
2489 if (super_format >= 0) {
2490 err = super_types[super_format].
2491 load_super(rdev, NULL, super_minor);
2492 if (err == -EINVAL) {
2493 printk(KERN_WARNING
2494 "md: %s does not have a valid v%d.%d "
2495 "superblock, not importing!\n",
2496 bdevname(rdev->bdev,b),
2497 super_format, super_minor);
2498 goto abort_free;
2499 }
2500 if (err < 0) {
2501 printk(KERN_WARNING
2502 "md: could not read %s's sb, not importing!\n",
2503 bdevname(rdev->bdev,b));
2504 goto abort_free;
2505 }
2506 }
2507
2508 INIT_LIST_HEAD(&rdev->same_set);
2509 init_waitqueue_head(&rdev->blocked_wait);
2510
2511 return rdev;
2512
2513 abort_free:
2514 if (rdev->sb_page) {
2515 if (rdev->bdev)
2516 unlock_rdev(rdev);
2517 free_disk_sb(rdev);
2518 }
2519 kfree(rdev);
2520 return ERR_PTR(err);
2521 }
2522
2523 /*
2524 * Check a full RAID array for plausibility
2525 */
2526
2527
2528 static void analyze_sbs(mddev_t * mddev)
2529 {
2530 int i;
2531 mdk_rdev_t *rdev, *freshest, *tmp;
2532 char b[BDEVNAME_SIZE];
2533
2534 freshest = NULL;
2535 rdev_for_each(rdev, tmp, mddev)
2536 switch (super_types[mddev->major_version].
2537 load_super(rdev, freshest, mddev->minor_version)) {
2538 case 1:
2539 freshest = rdev;
2540 break;
2541 case 0:
2542 break;
2543 default:
2544 printk( KERN_ERR \
2545 "md: fatal superblock inconsistency in %s"
2546 " -- removing from array\n",
2547 bdevname(rdev->bdev,b));
2548 kick_rdev_from_array(rdev);
2549 }
2550
2551
2552 super_types[mddev->major_version].
2553 validate_super(mddev, freshest);
2554
2555 i = 0;
2556 rdev_for_each(rdev, tmp, mddev) {
2557 if (rdev->desc_nr >= mddev->max_disks ||
2558 i > mddev->max_disks) {
2559 printk(KERN_WARNING
2560 "md: %s: %s: only %d devices permitted\n",
2561 mdname(mddev), bdevname(rdev->bdev, b),
2562 mddev->max_disks);
2563 kick_rdev_from_array(rdev);
2564 continue;
2565 }
2566 if (rdev != freshest)
2567 if (super_types[mddev->major_version].
2568 validate_super(mddev, rdev)) {
2569 printk(KERN_WARNING "md: kicking non-fresh %s"
2570 " from array!\n",
2571 bdevname(rdev->bdev,b));
2572 kick_rdev_from_array(rdev);
2573 continue;
2574 }
2575 if (mddev->level == LEVEL_MULTIPATH) {
2576 rdev->desc_nr = i++;
2577 rdev->raid_disk = rdev->desc_nr;
2578 set_bit(In_sync, &rdev->flags);
2579 } else if (rdev->raid_disk >= mddev->raid_disks) {
2580 rdev->raid_disk = -1;
2581 clear_bit(In_sync, &rdev->flags);
2582 }
2583 }
2584 }
2585
2586 static void md_safemode_timeout(unsigned long data);
2587
2588 static ssize_t
2589 safe_delay_show(mddev_t *mddev, char *page)
2590 {
2591 int msec = (mddev->safemode_delay*1000)/HZ;
2592 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2593 }
2594 static ssize_t
2595 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2596 {
2597 int scale=1;
2598 int dot=0;
2599 int i;
2600 unsigned long msec;
2601 char buf[30];
2602
2603 /* remove a period, and count digits after it */
2604 if (len >= sizeof(buf))
2605 return -EINVAL;
2606 strlcpy(buf, cbuf, sizeof(buf));
2607 for (i=0; i<len; i++) {
2608 if (dot) {
2609 if (isdigit(buf[i])) {
2610 buf[i-1] = buf[i];
2611 scale *= 10;
2612 }
2613 buf[i] = 0;
2614 } else if (buf[i] == '.') {
2615 dot=1;
2616 buf[i] = 0;
2617 }
2618 }
2619 if (strict_strtoul(buf, 10, &msec) < 0)
2620 return -EINVAL;
2621 msec = (msec * 1000) / scale;
2622 if (msec == 0)
2623 mddev->safemode_delay = 0;
2624 else {
2625 unsigned long old_delay = mddev->safemode_delay;
2626 mddev->safemode_delay = (msec*HZ)/1000;
2627 if (mddev->safemode_delay == 0)
2628 mddev->safemode_delay = 1;
2629 if (mddev->safemode_delay < old_delay)
2630 md_safemode_timeout((unsigned long)mddev);
2631 }
2632 return len;
2633 }
2634 static struct md_sysfs_entry md_safe_delay =
2635 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2636
2637 static ssize_t
2638 level_show(mddev_t *mddev, char *page)
2639 {
2640 struct mdk_personality *p = mddev->pers;
2641 if (p)
2642 return sprintf(page, "%s\n", p->name);
2643 else if (mddev->clevel[0])
2644 return sprintf(page, "%s\n", mddev->clevel);
2645 else if (mddev->level != LEVEL_NONE)
2646 return sprintf(page, "%d\n", mddev->level);
2647 else
2648 return 0;
2649 }
2650
2651 static ssize_t
2652 level_store(mddev_t *mddev, const char *buf, size_t len)
2653 {
2654 char level[16];
2655 ssize_t rv = len;
2656 struct mdk_personality *pers;
2657 void *priv;
2658
2659 if (mddev->pers == NULL) {
2660 if (len == 0)
2661 return 0;
2662 if (len >= sizeof(mddev->clevel))
2663 return -ENOSPC;
2664 strncpy(mddev->clevel, buf, len);
2665 if (mddev->clevel[len-1] == '\n')
2666 len--;
2667 mddev->clevel[len] = 0;
2668 mddev->level = LEVEL_NONE;
2669 return rv;
2670 }
2671
2672 /* request to change the personality. Need to ensure:
2673 * - array is not engaged in resync/recovery/reshape
2674 * - old personality can be suspended
2675 * - new personality will access other array.
2676 */
2677
2678 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2679 return -EBUSY;
2680
2681 if (!mddev->pers->quiesce) {
2682 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2683 mdname(mddev), mddev->pers->name);
2684 return -EINVAL;
2685 }
2686
2687 /* Now find the new personality */
2688 if (len == 0 || len >= sizeof(level))
2689 return -EINVAL;
2690 strncpy(level, buf, len);
2691 if (level[len-1] == '\n')
2692 len--;
2693 level[len] = 0;
2694
2695 request_module("md-%s", level);
2696 spin_lock(&pers_lock);
2697 pers = find_pers(LEVEL_NONE, level);
2698 if (!pers || !try_module_get(pers->owner)) {
2699 spin_unlock(&pers_lock);
2700 printk(KERN_WARNING "md: personality %s not loaded\n", level);
2701 return -EINVAL;
2702 }
2703 spin_unlock(&pers_lock);
2704
2705 if (pers == mddev->pers) {
2706 /* Nothing to do! */
2707 module_put(pers->owner);
2708 return rv;
2709 }
2710 if (!pers->takeover) {
2711 module_put(pers->owner);
2712 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2713 mdname(mddev), level);
2714 return -EINVAL;
2715 }
2716
2717 /* ->takeover must set new_* and/or delta_disks
2718 * if it succeeds, and may set them when it fails.
2719 */
2720 priv = pers->takeover(mddev);
2721 if (IS_ERR(priv)) {
2722 mddev->new_level = mddev->level;
2723 mddev->new_layout = mddev->layout;
2724 mddev->new_chunk_sectors = mddev->chunk_sectors;
2725 mddev->raid_disks -= mddev->delta_disks;
2726 mddev->delta_disks = 0;
2727 module_put(pers->owner);
2728 printk(KERN_WARNING "md: %s: %s would not accept array\n",
2729 mdname(mddev), level);
2730 return PTR_ERR(priv);
2731 }
2732
2733 /* Looks like we have a winner */
2734 mddev_suspend(mddev);
2735 mddev->pers->stop(mddev);
2736 module_put(mddev->pers->owner);
2737 mddev->pers = pers;
2738 mddev->private = priv;
2739 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2740 mddev->level = mddev->new_level;
2741 mddev->layout = mddev->new_layout;
2742 mddev->chunk_sectors = mddev->new_chunk_sectors;
2743 mddev->delta_disks = 0;
2744 pers->run(mddev);
2745 mddev_resume(mddev);
2746 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2747 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2748 md_wakeup_thread(mddev->thread);
2749 return rv;
2750 }
2751
2752 static struct md_sysfs_entry md_level =
2753 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2754
2755
2756 static ssize_t
2757 layout_show(mddev_t *mddev, char *page)
2758 {
2759 /* just a number, not meaningful for all levels */
2760 if (mddev->reshape_position != MaxSector &&
2761 mddev->layout != mddev->new_layout)
2762 return sprintf(page, "%d (%d)\n",
2763 mddev->new_layout, mddev->layout);
2764 return sprintf(page, "%d\n", mddev->layout);
2765 }
2766
2767 static ssize_t
2768 layout_store(mddev_t *mddev, const char *buf, size_t len)
2769 {
2770 char *e;
2771 unsigned long n = simple_strtoul(buf, &e, 10);
2772
2773 if (!*buf || (*e && *e != '\n'))
2774 return -EINVAL;
2775
2776 if (mddev->pers) {
2777 int err;
2778 if (mddev->pers->check_reshape == NULL)
2779 return -EBUSY;
2780 mddev->new_layout = n;
2781 err = mddev->pers->check_reshape(mddev);
2782 if (err) {
2783 mddev->new_layout = mddev->layout;
2784 return err;
2785 }
2786 } else {
2787 mddev->new_layout = n;
2788 if (mddev->reshape_position == MaxSector)
2789 mddev->layout = n;
2790 }
2791 return len;
2792 }
2793 static struct md_sysfs_entry md_layout =
2794 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2795
2796
2797 static ssize_t
2798 raid_disks_show(mddev_t *mddev, char *page)
2799 {
2800 if (mddev->raid_disks == 0)
2801 return 0;
2802 if (mddev->reshape_position != MaxSector &&
2803 mddev->delta_disks != 0)
2804 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2805 mddev->raid_disks - mddev->delta_disks);
2806 return sprintf(page, "%d\n", mddev->raid_disks);
2807 }
2808
2809 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2810
2811 static ssize_t
2812 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2813 {
2814 char *e;
2815 int rv = 0;
2816 unsigned long n = simple_strtoul(buf, &e, 10);
2817
2818 if (!*buf || (*e && *e != '\n'))
2819 return -EINVAL;
2820
2821 if (mddev->pers)
2822 rv = update_raid_disks(mddev, n);
2823 else if (mddev->reshape_position != MaxSector) {
2824 int olddisks = mddev->raid_disks - mddev->delta_disks;
2825 mddev->delta_disks = n - olddisks;
2826 mddev->raid_disks = n;
2827 } else
2828 mddev->raid_disks = n;
2829 return rv ? rv : len;
2830 }
2831 static struct md_sysfs_entry md_raid_disks =
2832 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2833
2834 static ssize_t
2835 chunk_size_show(mddev_t *mddev, char *page)
2836 {
2837 if (mddev->reshape_position != MaxSector &&
2838 mddev->chunk_sectors != mddev->new_chunk_sectors)
2839 return sprintf(page, "%d (%d)\n",
2840 mddev->new_chunk_sectors << 9,
2841 mddev->chunk_sectors << 9);
2842 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
2843 }
2844
2845 static ssize_t
2846 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2847 {
2848 char *e;
2849 unsigned long n = simple_strtoul(buf, &e, 10);
2850
2851 if (!*buf || (*e && *e != '\n'))
2852 return -EINVAL;
2853
2854 if (mddev->pers) {
2855 int err;
2856 if (mddev->pers->check_reshape == NULL)
2857 return -EBUSY;
2858 mddev->new_chunk_sectors = n >> 9;
2859 err = mddev->pers->check_reshape(mddev);
2860 if (err) {
2861 mddev->new_chunk_sectors = mddev->chunk_sectors;
2862 return err;
2863 }
2864 } else {
2865 mddev->new_chunk_sectors = n >> 9;
2866 if (mddev->reshape_position == MaxSector)
2867 mddev->chunk_sectors = n >> 9;
2868 }
2869 return len;
2870 }
2871 static struct md_sysfs_entry md_chunk_size =
2872 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2873
2874 static ssize_t
2875 resync_start_show(mddev_t *mddev, char *page)
2876 {
2877 if (mddev->recovery_cp == MaxSector)
2878 return sprintf(page, "none\n");
2879 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2880 }
2881
2882 static ssize_t
2883 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2884 {
2885 char *e;
2886 unsigned long long n = simple_strtoull(buf, &e, 10);
2887
2888 if (mddev->pers)
2889 return -EBUSY;
2890 if (!*buf || (*e && *e != '\n'))
2891 return -EINVAL;
2892
2893 mddev->recovery_cp = n;
2894 return len;
2895 }
2896 static struct md_sysfs_entry md_resync_start =
2897 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2898
2899 /*
2900 * The array state can be:
2901 *
2902 * clear
2903 * No devices, no size, no level
2904 * Equivalent to STOP_ARRAY ioctl
2905 * inactive
2906 * May have some settings, but array is not active
2907 * all IO results in error
2908 * When written, doesn't tear down array, but just stops it
2909 * suspended (not supported yet)
2910 * All IO requests will block. The array can be reconfigured.
2911 * Writing this, if accepted, will block until array is quiescent
2912 * readonly
2913 * no resync can happen. no superblocks get written.
2914 * write requests fail
2915 * read-auto
2916 * like readonly, but behaves like 'clean' on a write request.
2917 *
2918 * clean - no pending writes, but otherwise active.
2919 * When written to inactive array, starts without resync
2920 * If a write request arrives then
2921 * if metadata is known, mark 'dirty' and switch to 'active'.
2922 * if not known, block and switch to write-pending
2923 * If written to an active array that has pending writes, then fails.
2924 * active
2925 * fully active: IO and resync can be happening.
2926 * When written to inactive array, starts with resync
2927 *
2928 * write-pending
2929 * clean, but writes are blocked waiting for 'active' to be written.
2930 *
2931 * active-idle
2932 * like active, but no writes have been seen for a while (100msec).
2933 *
2934 */
2935 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2936 write_pending, active_idle, bad_word};
2937 static char *array_states[] = {
2938 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2939 "write-pending", "active-idle", NULL };
2940
2941 static int match_word(const char *word, char **list)
2942 {
2943 int n;
2944 for (n=0; list[n]; n++)
2945 if (cmd_match(word, list[n]))
2946 break;
2947 return n;
2948 }
2949
2950 static ssize_t
2951 array_state_show(mddev_t *mddev, char *page)
2952 {
2953 enum array_state st = inactive;
2954
2955 if (mddev->pers)
2956 switch(mddev->ro) {
2957 case 1:
2958 st = readonly;
2959 break;
2960 case 2:
2961 st = read_auto;
2962 break;
2963 case 0:
2964 if (mddev->in_sync)
2965 st = clean;
2966 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2967 st = write_pending;
2968 else if (mddev->safemode)
2969 st = active_idle;
2970 else
2971 st = active;
2972 }
2973 else {
2974 if (list_empty(&mddev->disks) &&
2975 mddev->raid_disks == 0 &&
2976 mddev->dev_sectors == 0)
2977 st = clear;
2978 else
2979 st = inactive;
2980 }
2981 return sprintf(page, "%s\n", array_states[st]);
2982 }
2983
2984 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2985 static int do_md_run(mddev_t * mddev);
2986 static int restart_array(mddev_t *mddev);
2987
2988 static ssize_t
2989 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2990 {
2991 int err = -EINVAL;
2992 enum array_state st = match_word(buf, array_states);
2993 switch(st) {
2994 case bad_word:
2995 break;
2996 case clear:
2997 /* stopping an active array */
2998 if (atomic_read(&mddev->openers) > 0)
2999 return -EBUSY;
3000 err = do_md_stop(mddev, 0, 0);
3001 break;
3002 case inactive:
3003 /* stopping an active array */
3004 if (mddev->pers) {
3005 if (atomic_read(&mddev->openers) > 0)
3006 return -EBUSY;
3007 err = do_md_stop(mddev, 2, 0);
3008 } else
3009 err = 0; /* already inactive */
3010 break;
3011 case suspended:
3012 break; /* not supported yet */
3013 case readonly:
3014 if (mddev->pers)
3015 err = do_md_stop(mddev, 1, 0);
3016 else {
3017 mddev->ro = 1;
3018 set_disk_ro(mddev->gendisk, 1);
3019 err = do_md_run(mddev);
3020 }
3021 break;
3022 case read_auto:
3023 if (mddev->pers) {
3024 if (mddev->ro == 0)
3025 err = do_md_stop(mddev, 1, 0);
3026 else if (mddev->ro == 1)
3027 err = restart_array(mddev);
3028 if (err == 0) {
3029 mddev->ro = 2;
3030 set_disk_ro(mddev->gendisk, 0);
3031 }
3032 } else {
3033 mddev->ro = 2;
3034 err = do_md_run(mddev);
3035 }
3036 break;
3037 case clean:
3038 if (mddev->pers) {
3039 restart_array(mddev);
3040 spin_lock_irq(&mddev->write_lock);
3041 if (atomic_read(&mddev->writes_pending) == 0) {
3042 if (mddev->in_sync == 0) {
3043 mddev->in_sync = 1;
3044 if (mddev->safemode == 1)
3045 mddev->safemode = 0;
3046 if (mddev->persistent)
3047 set_bit(MD_CHANGE_CLEAN,
3048 &mddev->flags);
3049 }
3050 err = 0;
3051 } else
3052 err = -EBUSY;
3053 spin_unlock_irq(&mddev->write_lock);
3054 } else
3055 err = -EINVAL;
3056 break;
3057 case active:
3058 if (mddev->pers) {
3059 restart_array(mddev);
3060 if (mddev->external)
3061 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3062 wake_up(&mddev->sb_wait);
3063 err = 0;
3064 } else {
3065 mddev->ro = 0;
3066 set_disk_ro(mddev->gendisk, 0);
3067 err = do_md_run(mddev);
3068 }
3069 break;
3070 case write_pending:
3071 case active_idle:
3072 /* these cannot be set */
3073 break;
3074 }
3075 if (err)
3076 return err;
3077 else {
3078 sysfs_notify_dirent(mddev->sysfs_state);
3079 return len;
3080 }
3081 }
3082 static struct md_sysfs_entry md_array_state =
3083 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3084
3085 static ssize_t
3086 null_show(mddev_t *mddev, char *page)
3087 {
3088 return -EINVAL;
3089 }
3090
3091 static ssize_t
3092 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3093 {
3094 /* buf must be %d:%d\n? giving major and minor numbers */
3095 /* The new device is added to the array.
3096 * If the array has a persistent superblock, we read the
3097 * superblock to initialise info and check validity.
3098 * Otherwise, only checking done is that in bind_rdev_to_array,
3099 * which mainly checks size.
3100 */
3101 char *e;
3102 int major = simple_strtoul(buf, &e, 10);
3103 int minor;
3104 dev_t dev;
3105 mdk_rdev_t *rdev;
3106 int err;
3107
3108 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3109 return -EINVAL;
3110 minor = simple_strtoul(e+1, &e, 10);
3111 if (*e && *e != '\n')
3112 return -EINVAL;
3113 dev = MKDEV(major, minor);
3114 if (major != MAJOR(dev) ||
3115 minor != MINOR(dev))
3116 return -EOVERFLOW;
3117
3118
3119 if (mddev->persistent) {
3120 rdev = md_import_device(dev, mddev->major_version,
3121 mddev->minor_version);
3122 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3123 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3124 mdk_rdev_t, same_set);
3125 err = super_types[mddev->major_version]
3126 .load_super(rdev, rdev0, mddev->minor_version);
3127 if (err < 0)
3128 goto out;
3129 }
3130 } else if (mddev->external)
3131 rdev = md_import_device(dev, -2, -1);
3132 else
3133 rdev = md_import_device(dev, -1, -1);
3134
3135 if (IS_ERR(rdev))
3136 return PTR_ERR(rdev);
3137 err = bind_rdev_to_array(rdev, mddev);
3138 out:
3139 if (err)
3140 export_rdev(rdev);
3141 return err ? err : len;
3142 }
3143
3144 static struct md_sysfs_entry md_new_device =
3145 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3146
3147 static ssize_t
3148 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3149 {
3150 char *end;
3151 unsigned long chunk, end_chunk;
3152
3153 if (!mddev->bitmap)
3154 goto out;
3155 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3156 while (*buf) {
3157 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3158 if (buf == end) break;
3159 if (*end == '-') { /* range */
3160 buf = end + 1;
3161 end_chunk = simple_strtoul(buf, &end, 0);
3162 if (buf == end) break;
3163 }
3164 if (*end && !isspace(*end)) break;
3165 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3166 buf = end;
3167 while (isspace(*buf)) buf++;
3168 }
3169 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3170 out:
3171 return len;
3172 }
3173
3174 static struct md_sysfs_entry md_bitmap =
3175 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3176
3177 static ssize_t
3178 size_show(mddev_t *mddev, char *page)
3179 {
3180 return sprintf(page, "%llu\n",
3181 (unsigned long long)mddev->dev_sectors / 2);
3182 }
3183
3184 static int update_size(mddev_t *mddev, sector_t num_sectors);
3185
3186 static ssize_t
3187 size_store(mddev_t *mddev, const char *buf, size_t len)
3188 {
3189 /* If array is inactive, we can reduce the component size, but
3190 * not increase it (except from 0).
3191 * If array is active, we can try an on-line resize
3192 */
3193 sector_t sectors;
3194 int err = strict_blocks_to_sectors(buf, &sectors);
3195
3196 if (err < 0)
3197 return err;
3198 if (mddev->pers) {
3199 err = update_size(mddev, sectors);
3200 md_update_sb(mddev, 1);
3201 } else {
3202 if (mddev->dev_sectors == 0 ||
3203 mddev->dev_sectors > sectors)
3204 mddev->dev_sectors = sectors;
3205 else
3206 err = -ENOSPC;
3207 }
3208 return err ? err : len;
3209 }
3210
3211 static struct md_sysfs_entry md_size =
3212 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3213
3214
3215 /* Metdata version.
3216 * This is one of
3217 * 'none' for arrays with no metadata (good luck...)
3218 * 'external' for arrays with externally managed metadata,
3219 * or N.M for internally known formats
3220 */
3221 static ssize_t
3222 metadata_show(mddev_t *mddev, char *page)
3223 {
3224 if (mddev->persistent)
3225 return sprintf(page, "%d.%d\n",
3226 mddev->major_version, mddev->minor_version);
3227 else if (mddev->external)
3228 return sprintf(page, "external:%s\n", mddev->metadata_type);
3229 else
3230 return sprintf(page, "none\n");
3231 }
3232
3233 static ssize_t
3234 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3235 {
3236 int major, minor;
3237 char *e;
3238 /* Changing the details of 'external' metadata is
3239 * always permitted. Otherwise there must be
3240 * no devices attached to the array.
3241 */
3242 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3243 ;
3244 else if (!list_empty(&mddev->disks))
3245 return -EBUSY;
3246
3247 if (cmd_match(buf, "none")) {
3248 mddev->persistent = 0;
3249 mddev->external = 0;
3250 mddev->major_version = 0;
3251 mddev->minor_version = 90;
3252 return len;
3253 }
3254 if (strncmp(buf, "external:", 9) == 0) {
3255 size_t namelen = len-9;
3256 if (namelen >= sizeof(mddev->metadata_type))
3257 namelen = sizeof(mddev->metadata_type)-1;
3258 strncpy(mddev->metadata_type, buf+9, namelen);
3259 mddev->metadata_type[namelen] = 0;
3260 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3261 mddev->metadata_type[--namelen] = 0;
3262 mddev->persistent = 0;
3263 mddev->external = 1;
3264 mddev->major_version = 0;
3265 mddev->minor_version = 90;
3266 return len;
3267 }
3268 major = simple_strtoul(buf, &e, 10);
3269 if (e==buf || *e != '.')
3270 return -EINVAL;
3271 buf = e+1;
3272 minor = simple_strtoul(buf, &e, 10);
3273 if (e==buf || (*e && *e != '\n') )
3274 return -EINVAL;
3275 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3276 return -ENOENT;
3277 mddev->major_version = major;
3278 mddev->minor_version = minor;
3279 mddev->persistent = 1;
3280 mddev->external = 0;
3281 return len;
3282 }
3283
3284 static struct md_sysfs_entry md_metadata =
3285 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3286
3287 static ssize_t
3288 action_show(mddev_t *mddev, char *page)
3289 {
3290 char *type = "idle";
3291 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3292 type = "frozen";
3293 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3294 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3295 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3296 type = "reshape";
3297 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3298 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3299 type = "resync";
3300 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3301 type = "check";
3302 else
3303 type = "repair";
3304 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3305 type = "recover";
3306 }
3307 return sprintf(page, "%s\n", type);
3308 }
3309
3310 static ssize_t
3311 action_store(mddev_t *mddev, const char *page, size_t len)
3312 {
3313 if (!mddev->pers || !mddev->pers->sync_request)
3314 return -EINVAL;
3315
3316 if (cmd_match(page, "frozen"))
3317 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3318 else
3319 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3320
3321 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3322 if (mddev->sync_thread) {
3323 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3324 md_unregister_thread(mddev->sync_thread);
3325 mddev->sync_thread = NULL;
3326 mddev->recovery = 0;
3327 }
3328 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3329 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3330 return -EBUSY;
3331 else if (cmd_match(page, "resync"))
3332 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3333 else if (cmd_match(page, "recover")) {
3334 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3335 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3336 } else if (cmd_match(page, "reshape")) {
3337 int err;
3338 if (mddev->pers->start_reshape == NULL)
3339 return -EINVAL;
3340 err = mddev->pers->start_reshape(mddev);
3341 if (err)
3342 return err;
3343 sysfs_notify(&mddev->kobj, NULL, "degraded");
3344 } else {
3345 if (cmd_match(page, "check"))
3346 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3347 else if (!cmd_match(page, "repair"))
3348 return -EINVAL;
3349 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3350 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3351 }
3352 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3353 md_wakeup_thread(mddev->thread);
3354 sysfs_notify_dirent(mddev->sysfs_action);
3355 return len;
3356 }
3357
3358 static ssize_t
3359 mismatch_cnt_show(mddev_t *mddev, char *page)
3360 {
3361 return sprintf(page, "%llu\n",
3362 (unsigned long long) mddev->resync_mismatches);
3363 }
3364
3365 static struct md_sysfs_entry md_scan_mode =
3366 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3367
3368
3369 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3370
3371 static ssize_t
3372 sync_min_show(mddev_t *mddev, char *page)
3373 {
3374 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3375 mddev->sync_speed_min ? "local": "system");
3376 }
3377
3378 static ssize_t
3379 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3380 {
3381 int min;
3382 char *e;
3383 if (strncmp(buf, "system", 6)==0) {
3384 mddev->sync_speed_min = 0;
3385 return len;
3386 }
3387 min = simple_strtoul(buf, &e, 10);
3388 if (buf == e || (*e && *e != '\n') || min <= 0)
3389 return -EINVAL;
3390 mddev->sync_speed_min = min;
3391 return len;
3392 }
3393
3394 static struct md_sysfs_entry md_sync_min =
3395 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3396
3397 static ssize_t
3398 sync_max_show(mddev_t *mddev, char *page)
3399 {
3400 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3401 mddev->sync_speed_max ? "local": "system");
3402 }
3403
3404 static ssize_t
3405 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3406 {
3407 int max;
3408 char *e;
3409 if (strncmp(buf, "system", 6)==0) {
3410 mddev->sync_speed_max = 0;
3411 return len;
3412 }
3413 max = simple_strtoul(buf, &e, 10);
3414 if (buf == e || (*e && *e != '\n') || max <= 0)
3415 return -EINVAL;
3416 mddev->sync_speed_max = max;
3417 return len;
3418 }
3419
3420 static struct md_sysfs_entry md_sync_max =
3421 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3422
3423 static ssize_t
3424 degraded_show(mddev_t *mddev, char *page)
3425 {
3426 return sprintf(page, "%d\n", mddev->degraded);
3427 }
3428 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3429
3430 static ssize_t
3431 sync_force_parallel_show(mddev_t *mddev, char *page)
3432 {
3433 return sprintf(page, "%d\n", mddev->parallel_resync);
3434 }
3435
3436 static ssize_t
3437 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3438 {
3439 long n;
3440
3441 if (strict_strtol(buf, 10, &n))
3442 return -EINVAL;
3443
3444 if (n != 0 && n != 1)
3445 return -EINVAL;
3446
3447 mddev->parallel_resync = n;
3448
3449 if (mddev->sync_thread)
3450 wake_up(&resync_wait);
3451
3452 return len;
3453 }
3454
3455 /* force parallel resync, even with shared block devices */
3456 static struct md_sysfs_entry md_sync_force_parallel =
3457 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3458 sync_force_parallel_show, sync_force_parallel_store);
3459
3460 static ssize_t
3461 sync_speed_show(mddev_t *mddev, char *page)
3462 {
3463 unsigned long resync, dt, db;
3464 if (mddev->curr_resync == 0)
3465 return sprintf(page, "none\n");
3466 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3467 dt = (jiffies - mddev->resync_mark) / HZ;
3468 if (!dt) dt++;
3469 db = resync - mddev->resync_mark_cnt;
3470 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3471 }
3472
3473 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3474
3475 static ssize_t
3476 sync_completed_show(mddev_t *mddev, char *page)
3477 {
3478 unsigned long max_sectors, resync;
3479
3480 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3481 return sprintf(page, "none\n");
3482
3483 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3484 max_sectors = mddev->resync_max_sectors;
3485 else
3486 max_sectors = mddev->dev_sectors;
3487
3488 resync = mddev->curr_resync_completed;
3489 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3490 }
3491
3492 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3493
3494 static ssize_t
3495 min_sync_show(mddev_t *mddev, char *page)
3496 {
3497 return sprintf(page, "%llu\n",
3498 (unsigned long long)mddev->resync_min);
3499 }
3500 static ssize_t
3501 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3502 {
3503 unsigned long long min;
3504 if (strict_strtoull(buf, 10, &min))
3505 return -EINVAL;
3506 if (min > mddev->resync_max)
3507 return -EINVAL;
3508 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3509 return -EBUSY;
3510
3511 /* Must be a multiple of chunk_size */
3512 if (mddev->chunk_sectors) {
3513 sector_t temp = min;
3514 if (sector_div(temp, mddev->chunk_sectors))
3515 return -EINVAL;
3516 }
3517 mddev->resync_min = min;
3518
3519 return len;
3520 }
3521
3522 static struct md_sysfs_entry md_min_sync =
3523 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3524
3525 static ssize_t
3526 max_sync_show(mddev_t *mddev, char *page)
3527 {
3528 if (mddev->resync_max == MaxSector)
3529 return sprintf(page, "max\n");
3530 else
3531 return sprintf(page, "%llu\n",
3532 (unsigned long long)mddev->resync_max);
3533 }
3534 static ssize_t
3535 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3536 {
3537 if (strncmp(buf, "max", 3) == 0)
3538 mddev->resync_max = MaxSector;
3539 else {
3540 unsigned long long max;
3541 if (strict_strtoull(buf, 10, &max))
3542 return -EINVAL;
3543 if (max < mddev->resync_min)
3544 return -EINVAL;
3545 if (max < mddev->resync_max &&
3546 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3547 return -EBUSY;
3548
3549 /* Must be a multiple of chunk_size */
3550 if (mddev->chunk_sectors) {
3551 sector_t temp = max;
3552 if (sector_div(temp, mddev->chunk_sectors))
3553 return -EINVAL;
3554 }
3555 mddev->resync_max = max;
3556 }
3557 wake_up(&mddev->recovery_wait);
3558 return len;
3559 }
3560
3561 static struct md_sysfs_entry md_max_sync =
3562 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3563
3564 static ssize_t
3565 suspend_lo_show(mddev_t *mddev, char *page)
3566 {
3567 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3568 }
3569
3570 static ssize_t
3571 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3572 {
3573 char *e;
3574 unsigned long long new = simple_strtoull(buf, &e, 10);
3575
3576 if (mddev->pers == NULL ||
3577 mddev->pers->quiesce == NULL)
3578 return -EINVAL;
3579 if (buf == e || (*e && *e != '\n'))
3580 return -EINVAL;
3581 if (new >= mddev->suspend_hi ||
3582 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3583 mddev->suspend_lo = new;
3584 mddev->pers->quiesce(mddev, 2);
3585 return len;
3586 } else
3587 return -EINVAL;
3588 }
3589 static struct md_sysfs_entry md_suspend_lo =
3590 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3591
3592
3593 static ssize_t
3594 suspend_hi_show(mddev_t *mddev, char *page)
3595 {
3596 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3597 }
3598
3599 static ssize_t
3600 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3601 {
3602 char *e;
3603 unsigned long long new = simple_strtoull(buf, &e, 10);
3604
3605 if (mddev->pers == NULL ||
3606 mddev->pers->quiesce == NULL)
3607 return -EINVAL;
3608 if (buf == e || (*e && *e != '\n'))
3609 return -EINVAL;
3610 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3611 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3612 mddev->suspend_hi = new;
3613 mddev->pers->quiesce(mddev, 1);
3614 mddev->pers->quiesce(mddev, 0);
3615 return len;
3616 } else
3617 return -EINVAL;
3618 }
3619 static struct md_sysfs_entry md_suspend_hi =
3620 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3621
3622 static ssize_t
3623 reshape_position_show(mddev_t *mddev, char *page)
3624 {
3625 if (mddev->reshape_position != MaxSector)
3626 return sprintf(page, "%llu\n",
3627 (unsigned long long)mddev->reshape_position);
3628 strcpy(page, "none\n");
3629 return 5;
3630 }
3631
3632 static ssize_t
3633 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3634 {
3635 char *e;
3636 unsigned long long new = simple_strtoull(buf, &e, 10);
3637 if (mddev->pers)
3638 return -EBUSY;
3639 if (buf == e || (*e && *e != '\n'))
3640 return -EINVAL;
3641 mddev->reshape_position = new;
3642 mddev->delta_disks = 0;
3643 mddev->new_level = mddev->level;
3644 mddev->new_layout = mddev->layout;
3645 mddev->new_chunk_sectors = mddev->chunk_sectors;
3646 return len;
3647 }
3648
3649 static struct md_sysfs_entry md_reshape_position =
3650 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3651 reshape_position_store);
3652
3653 static ssize_t
3654 array_size_show(mddev_t *mddev, char *page)
3655 {
3656 if (mddev->external_size)
3657 return sprintf(page, "%llu\n",
3658 (unsigned long long)mddev->array_sectors/2);
3659 else
3660 return sprintf(page, "default\n");
3661 }
3662
3663 static ssize_t
3664 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3665 {
3666 sector_t sectors;
3667
3668 if (strncmp(buf, "default", 7) == 0) {
3669 if (mddev->pers)
3670 sectors = mddev->pers->size(mddev, 0, 0);
3671 else
3672 sectors = mddev->array_sectors;
3673
3674 mddev->external_size = 0;
3675 } else {
3676 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3677 return -EINVAL;
3678 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3679 return -E2BIG;
3680
3681 mddev->external_size = 1;
3682 }
3683
3684 mddev->array_sectors = sectors;
3685 set_capacity(mddev->gendisk, mddev->array_sectors);
3686 if (mddev->pers) {
3687 struct block_device *bdev = bdget_disk(mddev->gendisk, 0);
3688
3689 if (bdev) {
3690 mutex_lock(&bdev->bd_inode->i_mutex);
3691 i_size_write(bdev->bd_inode,
3692 (loff_t)mddev->array_sectors << 9);
3693 mutex_unlock(&bdev->bd_inode->i_mutex);
3694 bdput(bdev);
3695 }
3696 }
3697
3698 return len;
3699 }
3700
3701 static struct md_sysfs_entry md_array_size =
3702 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3703 array_size_store);
3704
3705 static struct attribute *md_default_attrs[] = {
3706 &md_level.attr,
3707 &md_layout.attr,
3708 &md_raid_disks.attr,
3709 &md_chunk_size.attr,
3710 &md_size.attr,
3711 &md_resync_start.attr,
3712 &md_metadata.attr,
3713 &md_new_device.attr,
3714 &md_safe_delay.attr,
3715 &md_array_state.attr,
3716 &md_reshape_position.attr,
3717 &md_array_size.attr,
3718 NULL,
3719 };
3720
3721 static struct attribute *md_redundancy_attrs[] = {
3722 &md_scan_mode.attr,
3723 &md_mismatches.attr,
3724 &md_sync_min.attr,
3725 &md_sync_max.attr,
3726 &md_sync_speed.attr,
3727 &md_sync_force_parallel.attr,
3728 &md_sync_completed.attr,
3729 &md_min_sync.attr,
3730 &md_max_sync.attr,
3731 &md_suspend_lo.attr,
3732 &md_suspend_hi.attr,
3733 &md_bitmap.attr,
3734 &md_degraded.attr,
3735 NULL,
3736 };
3737 static struct attribute_group md_redundancy_group = {
3738 .name = NULL,
3739 .attrs = md_redundancy_attrs,
3740 };
3741
3742
3743 static ssize_t
3744 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3745 {
3746 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3747 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3748 ssize_t rv;
3749
3750 if (!entry->show)
3751 return -EIO;
3752 rv = mddev_lock(mddev);
3753 if (!rv) {
3754 rv = entry->show(mddev, page);
3755 mddev_unlock(mddev);
3756 }
3757 return rv;
3758 }
3759
3760 static ssize_t
3761 md_attr_store(struct kobject *kobj, struct attribute *attr,
3762 const char *page, size_t length)
3763 {
3764 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3765 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3766 ssize_t rv;
3767
3768 if (!entry->store)
3769 return -EIO;
3770 if (!capable(CAP_SYS_ADMIN))
3771 return -EACCES;
3772 rv = mddev_lock(mddev);
3773 if (mddev->hold_active == UNTIL_IOCTL)
3774 mddev->hold_active = 0;
3775 if (!rv) {
3776 rv = entry->store(mddev, page, length);
3777 mddev_unlock(mddev);
3778 }
3779 return rv;
3780 }
3781
3782 static void md_free(struct kobject *ko)
3783 {
3784 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3785
3786 if (mddev->sysfs_state)
3787 sysfs_put(mddev->sysfs_state);
3788
3789 if (mddev->gendisk) {
3790 del_gendisk(mddev->gendisk);
3791 put_disk(mddev->gendisk);
3792 }
3793 if (mddev->queue)
3794 blk_cleanup_queue(mddev->queue);
3795
3796 kfree(mddev);
3797 }
3798
3799 static struct sysfs_ops md_sysfs_ops = {
3800 .show = md_attr_show,
3801 .store = md_attr_store,
3802 };
3803 static struct kobj_type md_ktype = {
3804 .release = md_free,
3805 .sysfs_ops = &md_sysfs_ops,
3806 .default_attrs = md_default_attrs,
3807 };
3808
3809 int mdp_major = 0;
3810
3811 static void mddev_delayed_delete(struct work_struct *ws)
3812 {
3813 mddev_t *mddev = container_of(ws, mddev_t, del_work);
3814
3815 if (mddev->private == &md_redundancy_group) {
3816 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3817 if (mddev->sysfs_action)
3818 sysfs_put(mddev->sysfs_action);
3819 mddev->sysfs_action = NULL;
3820 mddev->private = NULL;
3821 }
3822 kobject_del(&mddev->kobj);
3823 kobject_put(&mddev->kobj);
3824 }
3825
3826 static int md_alloc(dev_t dev, char *name)
3827 {
3828 static DEFINE_MUTEX(disks_mutex);
3829 mddev_t *mddev = mddev_find(dev);
3830 struct gendisk *disk;
3831 int partitioned;
3832 int shift;
3833 int unit;
3834 int error;
3835
3836 if (!mddev)
3837 return -ENODEV;
3838
3839 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3840 shift = partitioned ? MdpMinorShift : 0;
3841 unit = MINOR(mddev->unit) >> shift;
3842
3843 /* wait for any previous instance if this device
3844 * to be completed removed (mddev_delayed_delete).
3845 */
3846 flush_scheduled_work();
3847
3848 mutex_lock(&disks_mutex);
3849 if (mddev->gendisk) {
3850 mutex_unlock(&disks_mutex);
3851 mddev_put(mddev);
3852 return -EEXIST;
3853 }
3854
3855 if (name) {
3856 /* Need to ensure that 'name' is not a duplicate.
3857 */
3858 mddev_t *mddev2;
3859 spin_lock(&all_mddevs_lock);
3860
3861 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3862 if (mddev2->gendisk &&
3863 strcmp(mddev2->gendisk->disk_name, name) == 0) {
3864 spin_unlock(&all_mddevs_lock);
3865 return -EEXIST;
3866 }
3867 spin_unlock(&all_mddevs_lock);
3868 }
3869
3870 mddev->queue = blk_alloc_queue(GFP_KERNEL);
3871 if (!mddev->queue) {
3872 mutex_unlock(&disks_mutex);
3873 mddev_put(mddev);
3874 return -ENOMEM;
3875 }
3876 mddev->queue->queuedata = mddev;
3877
3878 /* Can be unlocked because the queue is new: no concurrency */
3879 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3880
3881 blk_queue_make_request(mddev->queue, md_make_request);
3882
3883 disk = alloc_disk(1 << shift);
3884 if (!disk) {
3885 mutex_unlock(&disks_mutex);
3886 blk_cleanup_queue(mddev->queue);
3887 mddev->queue = NULL;
3888 mddev_put(mddev);
3889 return -ENOMEM;
3890 }
3891 disk->major = MAJOR(mddev->unit);
3892 disk->first_minor = unit << shift;
3893 if (name)
3894 strcpy(disk->disk_name, name);
3895 else if (partitioned)
3896 sprintf(disk->disk_name, "md_d%d", unit);
3897 else
3898 sprintf(disk->disk_name, "md%d", unit);
3899 disk->fops = &md_fops;
3900 disk->private_data = mddev;
3901 disk->queue = mddev->queue;
3902 /* Allow extended partitions. This makes the
3903 * 'mdp' device redundant, but we can't really
3904 * remove it now.
3905 */
3906 disk->flags |= GENHD_FL_EXT_DEVT;
3907 add_disk(disk);
3908 mddev->gendisk = disk;
3909 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3910 &disk_to_dev(disk)->kobj, "%s", "md");
3911 mutex_unlock(&disks_mutex);
3912 if (error)
3913 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3914 disk->disk_name);
3915 else {
3916 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3917 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3918 }
3919 mddev_put(mddev);
3920 return 0;
3921 }
3922
3923 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3924 {
3925 md_alloc(dev, NULL);
3926 return NULL;
3927 }
3928
3929 static int add_named_array(const char *val, struct kernel_param *kp)
3930 {
3931 /* val must be "md_*" where * is not all digits.
3932 * We allocate an array with a large free minor number, and
3933 * set the name to val. val must not already be an active name.
3934 */
3935 int len = strlen(val);
3936 char buf[DISK_NAME_LEN];
3937
3938 while (len && val[len-1] == '\n')
3939 len--;
3940 if (len >= DISK_NAME_LEN)
3941 return -E2BIG;
3942 strlcpy(buf, val, len+1);
3943 if (strncmp(buf, "md_", 3) != 0)
3944 return -EINVAL;
3945 return md_alloc(0, buf);
3946 }
3947
3948 static void md_safemode_timeout(unsigned long data)
3949 {
3950 mddev_t *mddev = (mddev_t *) data;
3951
3952 if (!atomic_read(&mddev->writes_pending)) {
3953 mddev->safemode = 1;
3954 if (mddev->external)
3955 sysfs_notify_dirent(mddev->sysfs_state);
3956 }
3957 md_wakeup_thread(mddev->thread);
3958 }
3959
3960 static int start_dirty_degraded;
3961
3962 static int do_md_run(mddev_t * mddev)
3963 {
3964 int err;
3965 mdk_rdev_t *rdev;
3966 struct gendisk *disk;
3967 struct mdk_personality *pers;
3968
3969 if (list_empty(&mddev->disks))
3970 /* cannot run an array with no devices.. */
3971 return -EINVAL;
3972
3973 if (mddev->pers)
3974 return -EBUSY;
3975
3976 /*
3977 * Analyze all RAID superblock(s)
3978 */
3979 if (!mddev->raid_disks) {
3980 if (!mddev->persistent)
3981 return -EINVAL;
3982 analyze_sbs(mddev);
3983 }
3984
3985 if (mddev->level != LEVEL_NONE)
3986 request_module("md-level-%d", mddev->level);
3987 else if (mddev->clevel[0])
3988 request_module("md-%s", mddev->clevel);
3989
3990 /*
3991 * Drop all container device buffers, from now on
3992 * the only valid external interface is through the md
3993 * device.
3994 */
3995 list_for_each_entry(rdev, &mddev->disks, same_set) {
3996 if (test_bit(Faulty, &rdev->flags))
3997 continue;
3998 sync_blockdev(rdev->bdev);
3999 invalidate_bdev(rdev->bdev);
4000
4001 /* perform some consistency tests on the device.
4002 * We don't want the data to overlap the metadata,
4003 * Internal Bitmap issues have been handled elsewhere.
4004 */
4005 if (rdev->data_offset < rdev->sb_start) {
4006 if (mddev->dev_sectors &&
4007 rdev->data_offset + mddev->dev_sectors
4008 > rdev->sb_start) {
4009 printk("md: %s: data overlaps metadata\n",
4010 mdname(mddev));
4011 return -EINVAL;
4012 }
4013 } else {
4014 if (rdev->sb_start + rdev->sb_size/512
4015 > rdev->data_offset) {
4016 printk("md: %s: metadata overlaps data\n",
4017 mdname(mddev));
4018 return -EINVAL;
4019 }
4020 }
4021 sysfs_notify_dirent(rdev->sysfs_state);
4022 }
4023
4024 md_probe(mddev->unit, NULL, NULL);
4025 disk = mddev->gendisk;
4026 if (!disk)
4027 return -ENOMEM;
4028
4029 spin_lock(&pers_lock);
4030 pers = find_pers(mddev->level, mddev->clevel);
4031 if (!pers || !try_module_get(pers->owner)) {
4032 spin_unlock(&pers_lock);
4033 if (mddev->level != LEVEL_NONE)
4034 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4035 mddev->level);
4036 else
4037 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4038 mddev->clevel);
4039 return -EINVAL;
4040 }
4041 mddev->pers = pers;
4042 spin_unlock(&pers_lock);
4043 if (mddev->level != pers->level) {
4044 mddev->level = pers->level;
4045 mddev->new_level = pers->level;
4046 }
4047 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4048
4049 if (pers->level >= 4 && pers->level <= 6)
4050 /* Cannot support integrity (yet) */
4051 blk_integrity_unregister(mddev->gendisk);
4052
4053 if (mddev->reshape_position != MaxSector &&
4054 pers->start_reshape == NULL) {
4055 /* This personality cannot handle reshaping... */
4056 mddev->pers = NULL;
4057 module_put(pers->owner);
4058 return -EINVAL;
4059 }
4060
4061 if (pers->sync_request) {
4062 /* Warn if this is a potentially silly
4063 * configuration.
4064 */
4065 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4066 mdk_rdev_t *rdev2;
4067 int warned = 0;
4068
4069 list_for_each_entry(rdev, &mddev->disks, same_set)
4070 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4071 if (rdev < rdev2 &&
4072 rdev->bdev->bd_contains ==
4073 rdev2->bdev->bd_contains) {
4074 printk(KERN_WARNING
4075 "%s: WARNING: %s appears to be"
4076 " on the same physical disk as"
4077 " %s.\n",
4078 mdname(mddev),
4079 bdevname(rdev->bdev,b),
4080 bdevname(rdev2->bdev,b2));
4081 warned = 1;
4082 }
4083 }
4084
4085 if (warned)
4086 printk(KERN_WARNING
4087 "True protection against single-disk"
4088 " failure might be compromised.\n");
4089 }
4090
4091 mddev->recovery = 0;
4092 /* may be over-ridden by personality */
4093 mddev->resync_max_sectors = mddev->dev_sectors;
4094
4095 mddev->barriers_work = 1;
4096 mddev->ok_start_degraded = start_dirty_degraded;
4097
4098 if (start_readonly)
4099 mddev->ro = 2; /* read-only, but switch on first write */
4100
4101 err = mddev->pers->run(mddev);
4102 if (err)
4103 printk(KERN_ERR "md: pers->run() failed ...\n");
4104 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4105 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4106 " but 'external_size' not in effect?\n", __func__);
4107 printk(KERN_ERR
4108 "md: invalid array_size %llu > default size %llu\n",
4109 (unsigned long long)mddev->array_sectors / 2,
4110 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4111 err = -EINVAL;
4112 mddev->pers->stop(mddev);
4113 }
4114 if (err == 0 && mddev->pers->sync_request) {
4115 err = bitmap_create(mddev);
4116 if (err) {
4117 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4118 mdname(mddev), err);
4119 mddev->pers->stop(mddev);
4120 }
4121 }
4122 if (err) {
4123 module_put(mddev->pers->owner);
4124 mddev->pers = NULL;
4125 bitmap_destroy(mddev);
4126 return err;
4127 }
4128 if (mddev->pers->sync_request) {
4129 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4130 printk(KERN_WARNING
4131 "md: cannot register extra attributes for %s\n",
4132 mdname(mddev));
4133 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4134 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4135 mddev->ro = 0;
4136
4137 atomic_set(&mddev->writes_pending,0);
4138 mddev->safemode = 0;
4139 mddev->safemode_timer.function = md_safemode_timeout;
4140 mddev->safemode_timer.data = (unsigned long) mddev;
4141 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4142 mddev->in_sync = 1;
4143
4144 list_for_each_entry(rdev, &mddev->disks, same_set)
4145 if (rdev->raid_disk >= 0) {
4146 char nm[20];
4147 sprintf(nm, "rd%d", rdev->raid_disk);
4148 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4149 printk("md: cannot register %s for %s\n",
4150 nm, mdname(mddev));
4151 }
4152
4153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4154
4155 if (mddev->flags)
4156 md_update_sb(mddev, 0);
4157
4158 set_capacity(disk, mddev->array_sectors);
4159
4160 /* If there is a partially-recovered drive we need to
4161 * start recovery here. If we leave it to md_check_recovery,
4162 * it will remove the drives and not do the right thing
4163 */
4164 if (mddev->degraded && !mddev->sync_thread) {
4165 int spares = 0;
4166 list_for_each_entry(rdev, &mddev->disks, same_set)
4167 if (rdev->raid_disk >= 0 &&
4168 !test_bit(In_sync, &rdev->flags) &&
4169 !test_bit(Faulty, &rdev->flags))
4170 /* complete an interrupted recovery */
4171 spares++;
4172 if (spares && mddev->pers->sync_request) {
4173 mddev->recovery = 0;
4174 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4175 mddev->sync_thread = md_register_thread(md_do_sync,
4176 mddev,
4177 "%s_resync");
4178 if (!mddev->sync_thread) {
4179 printk(KERN_ERR "%s: could not start resync"
4180 " thread...\n",
4181 mdname(mddev));
4182 /* leave the spares where they are, it shouldn't hurt */
4183 mddev->recovery = 0;
4184 }
4185 }
4186 }
4187 md_wakeup_thread(mddev->thread);
4188 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4189
4190 mddev->changed = 1;
4191 md_new_event(mddev);
4192 sysfs_notify_dirent(mddev->sysfs_state);
4193 if (mddev->sysfs_action)
4194 sysfs_notify_dirent(mddev->sysfs_action);
4195 sysfs_notify(&mddev->kobj, NULL, "degraded");
4196 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4197 return 0;
4198 }
4199
4200 static int restart_array(mddev_t *mddev)
4201 {
4202 struct gendisk *disk = mddev->gendisk;
4203
4204 /* Complain if it has no devices */
4205 if (list_empty(&mddev->disks))
4206 return -ENXIO;
4207 if (!mddev->pers)
4208 return -EINVAL;
4209 if (!mddev->ro)
4210 return -EBUSY;
4211 mddev->safemode = 0;
4212 mddev->ro = 0;
4213 set_disk_ro(disk, 0);
4214 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4215 mdname(mddev));
4216 /* Kick recovery or resync if necessary */
4217 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4218 md_wakeup_thread(mddev->thread);
4219 md_wakeup_thread(mddev->sync_thread);
4220 sysfs_notify_dirent(mddev->sysfs_state);
4221 return 0;
4222 }
4223
4224 /* similar to deny_write_access, but accounts for our holding a reference
4225 * to the file ourselves */
4226 static int deny_bitmap_write_access(struct file * file)
4227 {
4228 struct inode *inode = file->f_mapping->host;
4229
4230 spin_lock(&inode->i_lock);
4231 if (atomic_read(&inode->i_writecount) > 1) {
4232 spin_unlock(&inode->i_lock);
4233 return -ETXTBSY;
4234 }
4235 atomic_set(&inode->i_writecount, -1);
4236 spin_unlock(&inode->i_lock);
4237
4238 return 0;
4239 }
4240
4241 static void restore_bitmap_write_access(struct file *file)
4242 {
4243 struct inode *inode = file->f_mapping->host;
4244
4245 spin_lock(&inode->i_lock);
4246 atomic_set(&inode->i_writecount, 1);
4247 spin_unlock(&inode->i_lock);
4248 }
4249
4250 /* mode:
4251 * 0 - completely stop and dis-assemble array
4252 * 1 - switch to readonly
4253 * 2 - stop but do not disassemble array
4254 */
4255 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4256 {
4257 int err = 0;
4258 struct gendisk *disk = mddev->gendisk;
4259 mdk_rdev_t *rdev;
4260
4261 if (atomic_read(&mddev->openers) > is_open) {
4262 printk("md: %s still in use.\n",mdname(mddev));
4263 return -EBUSY;
4264 }
4265
4266 if (mddev->pers) {
4267
4268 if (mddev->sync_thread) {
4269 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4270 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4271 md_unregister_thread(mddev->sync_thread);
4272 mddev->sync_thread = NULL;
4273 }
4274
4275 del_timer_sync(&mddev->safemode_timer);
4276
4277 switch(mode) {
4278 case 1: /* readonly */
4279 err = -ENXIO;
4280 if (mddev->ro==1)
4281 goto out;
4282 mddev->ro = 1;
4283 break;
4284 case 0: /* disassemble */
4285 case 2: /* stop */
4286 bitmap_flush(mddev);
4287 md_super_wait(mddev);
4288 if (mddev->ro)
4289 set_disk_ro(disk, 0);
4290
4291 mddev->pers->stop(mddev);
4292 mddev->queue->merge_bvec_fn = NULL;
4293 mddev->queue->unplug_fn = NULL;
4294 mddev->queue->backing_dev_info.congested_fn = NULL;
4295 module_put(mddev->pers->owner);
4296 if (mddev->pers->sync_request)
4297 mddev->private = &md_redundancy_group;
4298 mddev->pers = NULL;
4299 /* tell userspace to handle 'inactive' */
4300 sysfs_notify_dirent(mddev->sysfs_state);
4301
4302 list_for_each_entry(rdev, &mddev->disks, same_set)
4303 if (rdev->raid_disk >= 0) {
4304 char nm[20];
4305 sprintf(nm, "rd%d", rdev->raid_disk);
4306 sysfs_remove_link(&mddev->kobj, nm);
4307 }
4308
4309 set_capacity(disk, 0);
4310 mddev->changed = 1;
4311
4312 if (mddev->ro)
4313 mddev->ro = 0;
4314 }
4315 if (!mddev->in_sync || mddev->flags) {
4316 /* mark array as shutdown cleanly */
4317 mddev->in_sync = 1;
4318 md_update_sb(mddev, 1);
4319 }
4320 if (mode == 1)
4321 set_disk_ro(disk, 1);
4322 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4323 }
4324
4325 /*
4326 * Free resources if final stop
4327 */
4328 if (mode == 0) {
4329
4330 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4331
4332 bitmap_destroy(mddev);
4333 if (mddev->bitmap_file) {
4334 restore_bitmap_write_access(mddev->bitmap_file);
4335 fput(mddev->bitmap_file);
4336 mddev->bitmap_file = NULL;
4337 }
4338 mddev->bitmap_offset = 0;
4339
4340 /* make sure all md_delayed_delete calls have finished */
4341 flush_scheduled_work();
4342
4343 export_array(mddev);
4344
4345 mddev->array_sectors = 0;
4346 mddev->external_size = 0;
4347 mddev->dev_sectors = 0;
4348 mddev->raid_disks = 0;
4349 mddev->recovery_cp = 0;
4350 mddev->resync_min = 0;
4351 mddev->resync_max = MaxSector;
4352 mddev->reshape_position = MaxSector;
4353 mddev->external = 0;
4354 mddev->persistent = 0;
4355 mddev->level = LEVEL_NONE;
4356 mddev->clevel[0] = 0;
4357 mddev->flags = 0;
4358 mddev->ro = 0;
4359 mddev->metadata_type[0] = 0;
4360 mddev->chunk_sectors = 0;
4361 mddev->ctime = mddev->utime = 0;
4362 mddev->layout = 0;
4363 mddev->max_disks = 0;
4364 mddev->events = 0;
4365 mddev->delta_disks = 0;
4366 mddev->new_level = LEVEL_NONE;
4367 mddev->new_layout = 0;
4368 mddev->new_chunk_sectors = 0;
4369 mddev->curr_resync = 0;
4370 mddev->resync_mismatches = 0;
4371 mddev->suspend_lo = mddev->suspend_hi = 0;
4372 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4373 mddev->recovery = 0;
4374 mddev->in_sync = 0;
4375 mddev->changed = 0;
4376 mddev->degraded = 0;
4377 mddev->barriers_work = 0;
4378 mddev->safemode = 0;
4379 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4380 if (mddev->hold_active == UNTIL_STOP)
4381 mddev->hold_active = 0;
4382
4383 } else if (mddev->pers)
4384 printk(KERN_INFO "md: %s switched to read-only mode.\n",
4385 mdname(mddev));
4386 err = 0;
4387 blk_integrity_unregister(disk);
4388 md_new_event(mddev);
4389 sysfs_notify_dirent(mddev->sysfs_state);
4390 out:
4391 return err;
4392 }
4393
4394 #ifndef MODULE
4395 static void autorun_array(mddev_t *mddev)
4396 {
4397 mdk_rdev_t *rdev;
4398 int err;
4399
4400 if (list_empty(&mddev->disks))
4401 return;
4402
4403 printk(KERN_INFO "md: running: ");
4404
4405 list_for_each_entry(rdev, &mddev->disks, same_set) {
4406 char b[BDEVNAME_SIZE];
4407 printk("<%s>", bdevname(rdev->bdev,b));
4408 }
4409 printk("\n");
4410
4411 err = do_md_run(mddev);
4412 if (err) {
4413 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4414 do_md_stop(mddev, 0, 0);
4415 }
4416 }
4417
4418 /*
4419 * lets try to run arrays based on all disks that have arrived
4420 * until now. (those are in pending_raid_disks)
4421 *
4422 * the method: pick the first pending disk, collect all disks with
4423 * the same UUID, remove all from the pending list and put them into
4424 * the 'same_array' list. Then order this list based on superblock
4425 * update time (freshest comes first), kick out 'old' disks and
4426 * compare superblocks. If everything's fine then run it.
4427 *
4428 * If "unit" is allocated, then bump its reference count
4429 */
4430 static void autorun_devices(int part)
4431 {
4432 mdk_rdev_t *rdev0, *rdev, *tmp;
4433 mddev_t *mddev;
4434 char b[BDEVNAME_SIZE];
4435
4436 printk(KERN_INFO "md: autorun ...\n");
4437 while (!list_empty(&pending_raid_disks)) {
4438 int unit;
4439 dev_t dev;
4440 LIST_HEAD(candidates);
4441 rdev0 = list_entry(pending_raid_disks.next,
4442 mdk_rdev_t, same_set);
4443
4444 printk(KERN_INFO "md: considering %s ...\n",
4445 bdevname(rdev0->bdev,b));
4446 INIT_LIST_HEAD(&candidates);
4447 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4448 if (super_90_load(rdev, rdev0, 0) >= 0) {
4449 printk(KERN_INFO "md: adding %s ...\n",
4450 bdevname(rdev->bdev,b));
4451 list_move(&rdev->same_set, &candidates);
4452 }
4453 /*
4454 * now we have a set of devices, with all of them having
4455 * mostly sane superblocks. It's time to allocate the
4456 * mddev.
4457 */
4458 if (part) {
4459 dev = MKDEV(mdp_major,
4460 rdev0->preferred_minor << MdpMinorShift);
4461 unit = MINOR(dev) >> MdpMinorShift;
4462 } else {
4463 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4464 unit = MINOR(dev);
4465 }
4466 if (rdev0->preferred_minor != unit) {
4467 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4468 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4469 break;
4470 }
4471
4472 md_probe(dev, NULL, NULL);
4473 mddev = mddev_find(dev);
4474 if (!mddev || !mddev->gendisk) {
4475 if (mddev)
4476 mddev_put(mddev);
4477 printk(KERN_ERR
4478 "md: cannot allocate memory for md drive.\n");
4479 break;
4480 }
4481 if (mddev_lock(mddev))
4482 printk(KERN_WARNING "md: %s locked, cannot run\n",
4483 mdname(mddev));
4484 else if (mddev->raid_disks || mddev->major_version
4485 || !list_empty(&mddev->disks)) {
4486 printk(KERN_WARNING
4487 "md: %s already running, cannot run %s\n",
4488 mdname(mddev), bdevname(rdev0->bdev,b));
4489 mddev_unlock(mddev);
4490 } else {
4491 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4492 mddev->persistent = 1;
4493 rdev_for_each_list(rdev, tmp, &candidates) {
4494 list_del_init(&rdev->same_set);
4495 if (bind_rdev_to_array(rdev, mddev))
4496 export_rdev(rdev);
4497 }
4498 autorun_array(mddev);
4499 mddev_unlock(mddev);
4500 }
4501 /* on success, candidates will be empty, on error
4502 * it won't...
4503 */
4504 rdev_for_each_list(rdev, tmp, &candidates) {
4505 list_del_init(&rdev->same_set);
4506 export_rdev(rdev);
4507 }
4508 mddev_put(mddev);
4509 }
4510 printk(KERN_INFO "md: ... autorun DONE.\n");
4511 }
4512 #endif /* !MODULE */
4513
4514 static int get_version(void __user * arg)
4515 {
4516 mdu_version_t ver;
4517
4518 ver.major = MD_MAJOR_VERSION;
4519 ver.minor = MD_MINOR_VERSION;
4520 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4521
4522 if (copy_to_user(arg, &ver, sizeof(ver)))
4523 return -EFAULT;
4524
4525 return 0;
4526 }
4527
4528 static int get_array_info(mddev_t * mddev, void __user * arg)
4529 {
4530 mdu_array_info_t info;
4531 int nr,working,active,failed,spare;
4532 mdk_rdev_t *rdev;
4533
4534 nr=working=active=failed=spare=0;
4535 list_for_each_entry(rdev, &mddev->disks, same_set) {
4536 nr++;
4537 if (test_bit(Faulty, &rdev->flags))
4538 failed++;
4539 else {
4540 working++;
4541 if (test_bit(In_sync, &rdev->flags))
4542 active++;
4543 else
4544 spare++;
4545 }
4546 }
4547
4548 info.major_version = mddev->major_version;
4549 info.minor_version = mddev->minor_version;
4550 info.patch_version = MD_PATCHLEVEL_VERSION;
4551 info.ctime = mddev->ctime;
4552 info.level = mddev->level;
4553 info.size = mddev->dev_sectors / 2;
4554 if (info.size != mddev->dev_sectors / 2) /* overflow */
4555 info.size = -1;
4556 info.nr_disks = nr;
4557 info.raid_disks = mddev->raid_disks;
4558 info.md_minor = mddev->md_minor;
4559 info.not_persistent= !mddev->persistent;
4560
4561 info.utime = mddev->utime;
4562 info.state = 0;
4563 if (mddev->in_sync)
4564 info.state = (1<<MD_SB_CLEAN);
4565 if (mddev->bitmap && mddev->bitmap_offset)
4566 info.state = (1<<MD_SB_BITMAP_PRESENT);
4567 info.active_disks = active;
4568 info.working_disks = working;
4569 info.failed_disks = failed;
4570 info.spare_disks = spare;
4571
4572 info.layout = mddev->layout;
4573 info.chunk_size = mddev->chunk_sectors << 9;
4574
4575 if (copy_to_user(arg, &info, sizeof(info)))
4576 return -EFAULT;
4577
4578 return 0;
4579 }
4580
4581 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4582 {
4583 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4584 char *ptr, *buf = NULL;
4585 int err = -ENOMEM;
4586
4587 if (md_allow_write(mddev))
4588 file = kmalloc(sizeof(*file), GFP_NOIO);
4589 else
4590 file = kmalloc(sizeof(*file), GFP_KERNEL);
4591
4592 if (!file)
4593 goto out;
4594
4595 /* bitmap disabled, zero the first byte and copy out */
4596 if (!mddev->bitmap || !mddev->bitmap->file) {
4597 file->pathname[0] = '\0';
4598 goto copy_out;
4599 }
4600
4601 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4602 if (!buf)
4603 goto out;
4604
4605 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4606 if (IS_ERR(ptr))
4607 goto out;
4608
4609 strcpy(file->pathname, ptr);
4610
4611 copy_out:
4612 err = 0;
4613 if (copy_to_user(arg, file, sizeof(*file)))
4614 err = -EFAULT;
4615 out:
4616 kfree(buf);
4617 kfree(file);
4618 return err;
4619 }
4620
4621 static int get_disk_info(mddev_t * mddev, void __user * arg)
4622 {
4623 mdu_disk_info_t info;
4624 mdk_rdev_t *rdev;
4625
4626 if (copy_from_user(&info, arg, sizeof(info)))
4627 return -EFAULT;
4628
4629 rdev = find_rdev_nr(mddev, info.number);
4630 if (rdev) {
4631 info.major = MAJOR(rdev->bdev->bd_dev);
4632 info.minor = MINOR(rdev->bdev->bd_dev);
4633 info.raid_disk = rdev->raid_disk;
4634 info.state = 0;
4635 if (test_bit(Faulty, &rdev->flags))
4636 info.state |= (1<<MD_DISK_FAULTY);
4637 else if (test_bit(In_sync, &rdev->flags)) {
4638 info.state |= (1<<MD_DISK_ACTIVE);
4639 info.state |= (1<<MD_DISK_SYNC);
4640 }
4641 if (test_bit(WriteMostly, &rdev->flags))
4642 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4643 } else {
4644 info.major = info.minor = 0;
4645 info.raid_disk = -1;
4646 info.state = (1<<MD_DISK_REMOVED);
4647 }
4648
4649 if (copy_to_user(arg, &info, sizeof(info)))
4650 return -EFAULT;
4651
4652 return 0;
4653 }
4654
4655 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4656 {
4657 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4658 mdk_rdev_t *rdev;
4659 dev_t dev = MKDEV(info->major,info->minor);
4660
4661 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4662 return -EOVERFLOW;
4663
4664 if (!mddev->raid_disks) {
4665 int err;
4666 /* expecting a device which has a superblock */
4667 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4668 if (IS_ERR(rdev)) {
4669 printk(KERN_WARNING
4670 "md: md_import_device returned %ld\n",
4671 PTR_ERR(rdev));
4672 return PTR_ERR(rdev);
4673 }
4674 if (!list_empty(&mddev->disks)) {
4675 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4676 mdk_rdev_t, same_set);
4677 int err = super_types[mddev->major_version]
4678 .load_super(rdev, rdev0, mddev->minor_version);
4679 if (err < 0) {
4680 printk(KERN_WARNING
4681 "md: %s has different UUID to %s\n",
4682 bdevname(rdev->bdev,b),
4683 bdevname(rdev0->bdev,b2));
4684 export_rdev(rdev);
4685 return -EINVAL;
4686 }
4687 }
4688 err = bind_rdev_to_array(rdev, mddev);
4689 if (err)
4690 export_rdev(rdev);
4691 return err;
4692 }
4693
4694 /*
4695 * add_new_disk can be used once the array is assembled
4696 * to add "hot spares". They must already have a superblock
4697 * written
4698 */
4699 if (mddev->pers) {
4700 int err;
4701 if (!mddev->pers->hot_add_disk) {
4702 printk(KERN_WARNING
4703 "%s: personality does not support diskops!\n",
4704 mdname(mddev));
4705 return -EINVAL;
4706 }
4707 if (mddev->persistent)
4708 rdev = md_import_device(dev, mddev->major_version,
4709 mddev->minor_version);
4710 else
4711 rdev = md_import_device(dev, -1, -1);
4712 if (IS_ERR(rdev)) {
4713 printk(KERN_WARNING
4714 "md: md_import_device returned %ld\n",
4715 PTR_ERR(rdev));
4716 return PTR_ERR(rdev);
4717 }
4718 /* set save_raid_disk if appropriate */
4719 if (!mddev->persistent) {
4720 if (info->state & (1<<MD_DISK_SYNC) &&
4721 info->raid_disk < mddev->raid_disks)
4722 rdev->raid_disk = info->raid_disk;
4723 else
4724 rdev->raid_disk = -1;
4725 } else
4726 super_types[mddev->major_version].
4727 validate_super(mddev, rdev);
4728 rdev->saved_raid_disk = rdev->raid_disk;
4729
4730 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4731 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4732 set_bit(WriteMostly, &rdev->flags);
4733 else
4734 clear_bit(WriteMostly, &rdev->flags);
4735
4736 rdev->raid_disk = -1;
4737 err = bind_rdev_to_array(rdev, mddev);
4738 if (!err && !mddev->pers->hot_remove_disk) {
4739 /* If there is hot_add_disk but no hot_remove_disk
4740 * then added disks for geometry changes,
4741 * and should be added immediately.
4742 */
4743 super_types[mddev->major_version].
4744 validate_super(mddev, rdev);
4745 err = mddev->pers->hot_add_disk(mddev, rdev);
4746 if (err)
4747 unbind_rdev_from_array(rdev);
4748 }
4749 if (err)
4750 export_rdev(rdev);
4751 else
4752 sysfs_notify_dirent(rdev->sysfs_state);
4753
4754 md_update_sb(mddev, 1);
4755 if (mddev->degraded)
4756 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4757 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4758 md_wakeup_thread(mddev->thread);
4759 return err;
4760 }
4761
4762 /* otherwise, add_new_disk is only allowed
4763 * for major_version==0 superblocks
4764 */
4765 if (mddev->major_version != 0) {
4766 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4767 mdname(mddev));
4768 return -EINVAL;
4769 }
4770
4771 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4772 int err;
4773 rdev = md_import_device(dev, -1, 0);
4774 if (IS_ERR(rdev)) {
4775 printk(KERN_WARNING
4776 "md: error, md_import_device() returned %ld\n",
4777 PTR_ERR(rdev));
4778 return PTR_ERR(rdev);
4779 }
4780 rdev->desc_nr = info->number;
4781 if (info->raid_disk < mddev->raid_disks)
4782 rdev->raid_disk = info->raid_disk;
4783 else
4784 rdev->raid_disk = -1;
4785
4786 if (rdev->raid_disk < mddev->raid_disks)
4787 if (info->state & (1<<MD_DISK_SYNC))
4788 set_bit(In_sync, &rdev->flags);
4789
4790 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4791 set_bit(WriteMostly, &rdev->flags);
4792
4793 if (!mddev->persistent) {
4794 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4795 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4796 } else
4797 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4798 rdev->sectors = rdev->sb_start;
4799
4800 err = bind_rdev_to_array(rdev, mddev);
4801 if (err) {
4802 export_rdev(rdev);
4803 return err;
4804 }
4805 }
4806
4807 return 0;
4808 }
4809
4810 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4811 {
4812 char b[BDEVNAME_SIZE];
4813 mdk_rdev_t *rdev;
4814
4815 rdev = find_rdev(mddev, dev);
4816 if (!rdev)
4817 return -ENXIO;
4818
4819 if (rdev->raid_disk >= 0)
4820 goto busy;
4821
4822 kick_rdev_from_array(rdev);
4823 md_update_sb(mddev, 1);
4824 md_new_event(mddev);
4825
4826 return 0;
4827 busy:
4828 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4829 bdevname(rdev->bdev,b), mdname(mddev));
4830 return -EBUSY;
4831 }
4832
4833 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4834 {
4835 char b[BDEVNAME_SIZE];
4836 int err;
4837 mdk_rdev_t *rdev;
4838
4839 if (!mddev->pers)
4840 return -ENODEV;
4841
4842 if (mddev->major_version != 0) {
4843 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4844 " version-0 superblocks.\n",
4845 mdname(mddev));
4846 return -EINVAL;
4847 }
4848 if (!mddev->pers->hot_add_disk) {
4849 printk(KERN_WARNING
4850 "%s: personality does not support diskops!\n",
4851 mdname(mddev));
4852 return -EINVAL;
4853 }
4854
4855 rdev = md_import_device(dev, -1, 0);
4856 if (IS_ERR(rdev)) {
4857 printk(KERN_WARNING
4858 "md: error, md_import_device() returned %ld\n",
4859 PTR_ERR(rdev));
4860 return -EINVAL;
4861 }
4862
4863 if (mddev->persistent)
4864 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4865 else
4866 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4867
4868 rdev->sectors = rdev->sb_start;
4869
4870 if (test_bit(Faulty, &rdev->flags)) {
4871 printk(KERN_WARNING
4872 "md: can not hot-add faulty %s disk to %s!\n",
4873 bdevname(rdev->bdev,b), mdname(mddev));
4874 err = -EINVAL;
4875 goto abort_export;
4876 }
4877 clear_bit(In_sync, &rdev->flags);
4878 rdev->desc_nr = -1;
4879 rdev->saved_raid_disk = -1;
4880 err = bind_rdev_to_array(rdev, mddev);
4881 if (err)
4882 goto abort_export;
4883
4884 /*
4885 * The rest should better be atomic, we can have disk failures
4886 * noticed in interrupt contexts ...
4887 */
4888
4889 rdev->raid_disk = -1;
4890
4891 md_update_sb(mddev, 1);
4892
4893 /*
4894 * Kick recovery, maybe this spare has to be added to the
4895 * array immediately.
4896 */
4897 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4898 md_wakeup_thread(mddev->thread);
4899 md_new_event(mddev);
4900 return 0;
4901
4902 abort_export:
4903 export_rdev(rdev);
4904 return err;
4905 }
4906
4907 static int set_bitmap_file(mddev_t *mddev, int fd)
4908 {
4909 int err;
4910
4911 if (mddev->pers) {
4912 if (!mddev->pers->quiesce)
4913 return -EBUSY;
4914 if (mddev->recovery || mddev->sync_thread)
4915 return -EBUSY;
4916 /* we should be able to change the bitmap.. */
4917 }
4918
4919
4920 if (fd >= 0) {
4921 if (mddev->bitmap)
4922 return -EEXIST; /* cannot add when bitmap is present */
4923 mddev->bitmap_file = fget(fd);
4924
4925 if (mddev->bitmap_file == NULL) {
4926 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4927 mdname(mddev));
4928 return -EBADF;
4929 }
4930
4931 err = deny_bitmap_write_access(mddev->bitmap_file);
4932 if (err) {
4933 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4934 mdname(mddev));
4935 fput(mddev->bitmap_file);
4936 mddev->bitmap_file = NULL;
4937 return err;
4938 }
4939 mddev->bitmap_offset = 0; /* file overrides offset */
4940 } else if (mddev->bitmap == NULL)
4941 return -ENOENT; /* cannot remove what isn't there */
4942 err = 0;
4943 if (mddev->pers) {
4944 mddev->pers->quiesce(mddev, 1);
4945 if (fd >= 0)
4946 err = bitmap_create(mddev);
4947 if (fd < 0 || err) {
4948 bitmap_destroy(mddev);
4949 fd = -1; /* make sure to put the file */
4950 }
4951 mddev->pers->quiesce(mddev, 0);
4952 }
4953 if (fd < 0) {
4954 if (mddev->bitmap_file) {
4955 restore_bitmap_write_access(mddev->bitmap_file);
4956 fput(mddev->bitmap_file);
4957 }
4958 mddev->bitmap_file = NULL;
4959 }
4960
4961 return err;
4962 }
4963
4964 /*
4965 * set_array_info is used two different ways
4966 * The original usage is when creating a new array.
4967 * In this usage, raid_disks is > 0 and it together with
4968 * level, size, not_persistent,layout,chunksize determine the
4969 * shape of the array.
4970 * This will always create an array with a type-0.90.0 superblock.
4971 * The newer usage is when assembling an array.
4972 * In this case raid_disks will be 0, and the major_version field is
4973 * use to determine which style super-blocks are to be found on the devices.
4974 * The minor and patch _version numbers are also kept incase the
4975 * super_block handler wishes to interpret them.
4976 */
4977 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4978 {
4979
4980 if (info->raid_disks == 0) {
4981 /* just setting version number for superblock loading */
4982 if (info->major_version < 0 ||
4983 info->major_version >= ARRAY_SIZE(super_types) ||
4984 super_types[info->major_version].name == NULL) {
4985 /* maybe try to auto-load a module? */
4986 printk(KERN_INFO
4987 "md: superblock version %d not known\n",
4988 info->major_version);
4989 return -EINVAL;
4990 }
4991 mddev->major_version = info->major_version;
4992 mddev->minor_version = info->minor_version;
4993 mddev->patch_version = info->patch_version;
4994 mddev->persistent = !info->not_persistent;
4995 return 0;
4996 }
4997 mddev->major_version = MD_MAJOR_VERSION;
4998 mddev->minor_version = MD_MINOR_VERSION;
4999 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5000 mddev->ctime = get_seconds();
5001
5002 mddev->level = info->level;
5003 mddev->clevel[0] = 0;
5004 mddev->dev_sectors = 2 * (sector_t)info->size;
5005 mddev->raid_disks = info->raid_disks;
5006 /* don't set md_minor, it is determined by which /dev/md* was
5007 * openned
5008 */
5009 if (info->state & (1<<MD_SB_CLEAN))
5010 mddev->recovery_cp = MaxSector;
5011 else
5012 mddev->recovery_cp = 0;
5013 mddev->persistent = ! info->not_persistent;
5014 mddev->external = 0;
5015
5016 mddev->layout = info->layout;
5017 mddev->chunk_sectors = info->chunk_size >> 9;
5018
5019 mddev->max_disks = MD_SB_DISKS;
5020
5021 if (mddev->persistent)
5022 mddev->flags = 0;
5023 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5024
5025 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
5026 mddev->bitmap_offset = 0;
5027
5028 mddev->reshape_position = MaxSector;
5029
5030 /*
5031 * Generate a 128 bit UUID
5032 */
5033 get_random_bytes(mddev->uuid, 16);
5034
5035 mddev->new_level = mddev->level;
5036 mddev->new_chunk_sectors = mddev->chunk_sectors;
5037 mddev->new_layout = mddev->layout;
5038 mddev->delta_disks = 0;
5039
5040 return 0;
5041 }
5042
5043 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5044 {
5045 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5046
5047 if (mddev->external_size)
5048 return;
5049
5050 mddev->array_sectors = array_sectors;
5051 }
5052 EXPORT_SYMBOL(md_set_array_sectors);
5053
5054 static int update_size(mddev_t *mddev, sector_t num_sectors)
5055 {
5056 mdk_rdev_t *rdev;
5057 int rv;
5058 int fit = (num_sectors == 0);
5059
5060 if (mddev->pers->resize == NULL)
5061 return -EINVAL;
5062 /* The "num_sectors" is the number of sectors of each device that
5063 * is used. This can only make sense for arrays with redundancy.
5064 * linear and raid0 always use whatever space is available. We can only
5065 * consider changing this number if no resync or reconstruction is
5066 * happening, and if the new size is acceptable. It must fit before the
5067 * sb_start or, if that is <data_offset, it must fit before the size
5068 * of each device. If num_sectors is zero, we find the largest size
5069 * that fits.
5070
5071 */
5072 if (mddev->sync_thread)
5073 return -EBUSY;
5074 if (mddev->bitmap)
5075 /* Sorry, cannot grow a bitmap yet, just remove it,
5076 * grow, and re-add.
5077 */
5078 return -EBUSY;
5079 list_for_each_entry(rdev, &mddev->disks, same_set) {
5080 sector_t avail = rdev->sectors;
5081
5082 if (fit && (num_sectors == 0 || num_sectors > avail))
5083 num_sectors = avail;
5084 if (avail < num_sectors)
5085 return -ENOSPC;
5086 }
5087 rv = mddev->pers->resize(mddev, num_sectors);
5088 if (!rv) {
5089 struct block_device *bdev;
5090
5091 bdev = bdget_disk(mddev->gendisk, 0);
5092 if (bdev) {
5093 mutex_lock(&bdev->bd_inode->i_mutex);
5094 i_size_write(bdev->bd_inode,
5095 (loff_t)mddev->array_sectors << 9);
5096 mutex_unlock(&bdev->bd_inode->i_mutex);
5097 bdput(bdev);
5098 }
5099 }
5100 return rv;
5101 }
5102
5103 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5104 {
5105 int rv;
5106 /* change the number of raid disks */
5107 if (mddev->pers->check_reshape == NULL)
5108 return -EINVAL;
5109 if (raid_disks <= 0 ||
5110 raid_disks >= mddev->max_disks)
5111 return -EINVAL;
5112 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5113 return -EBUSY;
5114 mddev->delta_disks = raid_disks - mddev->raid_disks;
5115
5116 rv = mddev->pers->check_reshape(mddev);
5117 return rv;
5118 }
5119
5120
5121 /*
5122 * update_array_info is used to change the configuration of an
5123 * on-line array.
5124 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5125 * fields in the info are checked against the array.
5126 * Any differences that cannot be handled will cause an error.
5127 * Normally, only one change can be managed at a time.
5128 */
5129 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5130 {
5131 int rv = 0;
5132 int cnt = 0;
5133 int state = 0;
5134
5135 /* calculate expected state,ignoring low bits */
5136 if (mddev->bitmap && mddev->bitmap_offset)
5137 state |= (1 << MD_SB_BITMAP_PRESENT);
5138
5139 if (mddev->major_version != info->major_version ||
5140 mddev->minor_version != info->minor_version ||
5141 /* mddev->patch_version != info->patch_version || */
5142 mddev->ctime != info->ctime ||
5143 mddev->level != info->level ||
5144 /* mddev->layout != info->layout || */
5145 !mddev->persistent != info->not_persistent||
5146 mddev->chunk_sectors != info->chunk_size >> 9 ||
5147 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5148 ((state^info->state) & 0xfffffe00)
5149 )
5150 return -EINVAL;
5151 /* Check there is only one change */
5152 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5153 cnt++;
5154 if (mddev->raid_disks != info->raid_disks)
5155 cnt++;
5156 if (mddev->layout != info->layout)
5157 cnt++;
5158 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5159 cnt++;
5160 if (cnt == 0)
5161 return 0;
5162 if (cnt > 1)
5163 return -EINVAL;
5164
5165 if (mddev->layout != info->layout) {
5166 /* Change layout
5167 * we don't need to do anything at the md level, the
5168 * personality will take care of it all.
5169 */
5170 if (mddev->pers->check_reshape == NULL)
5171 return -EINVAL;
5172 else {
5173 mddev->new_layout = info->layout;
5174 rv = mddev->pers->check_reshape(mddev);
5175 if (rv)
5176 mddev->new_layout = mddev->layout;
5177 return rv;
5178 }
5179 }
5180 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5181 rv = update_size(mddev, (sector_t)info->size * 2);
5182
5183 if (mddev->raid_disks != info->raid_disks)
5184 rv = update_raid_disks(mddev, info->raid_disks);
5185
5186 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5187 if (mddev->pers->quiesce == NULL)
5188 return -EINVAL;
5189 if (mddev->recovery || mddev->sync_thread)
5190 return -EBUSY;
5191 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5192 /* add the bitmap */
5193 if (mddev->bitmap)
5194 return -EEXIST;
5195 if (mddev->default_bitmap_offset == 0)
5196 return -EINVAL;
5197 mddev->bitmap_offset = mddev->default_bitmap_offset;
5198 mddev->pers->quiesce(mddev, 1);
5199 rv = bitmap_create(mddev);
5200 if (rv)
5201 bitmap_destroy(mddev);
5202 mddev->pers->quiesce(mddev, 0);
5203 } else {
5204 /* remove the bitmap */
5205 if (!mddev->bitmap)
5206 return -ENOENT;
5207 if (mddev->bitmap->file)
5208 return -EINVAL;
5209 mddev->pers->quiesce(mddev, 1);
5210 bitmap_destroy(mddev);
5211 mddev->pers->quiesce(mddev, 0);
5212 mddev->bitmap_offset = 0;
5213 }
5214 }
5215 md_update_sb(mddev, 1);
5216 return rv;
5217 }
5218
5219 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5220 {
5221 mdk_rdev_t *rdev;
5222
5223 if (mddev->pers == NULL)
5224 return -ENODEV;
5225
5226 rdev = find_rdev(mddev, dev);
5227 if (!rdev)
5228 return -ENODEV;
5229
5230 md_error(mddev, rdev);
5231 return 0;
5232 }
5233
5234 /*
5235 * We have a problem here : there is no easy way to give a CHS
5236 * virtual geometry. We currently pretend that we have a 2 heads
5237 * 4 sectors (with a BIG number of cylinders...). This drives
5238 * dosfs just mad... ;-)
5239 */
5240 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5241 {
5242 mddev_t *mddev = bdev->bd_disk->private_data;
5243
5244 geo->heads = 2;
5245 geo->sectors = 4;
5246 geo->cylinders = get_capacity(mddev->gendisk) / 8;
5247 return 0;
5248 }
5249
5250 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5251 unsigned int cmd, unsigned long arg)
5252 {
5253 int err = 0;
5254 void __user *argp = (void __user *)arg;
5255 mddev_t *mddev = NULL;
5256
5257 if (!capable(CAP_SYS_ADMIN))
5258 return -EACCES;
5259
5260 /*
5261 * Commands dealing with the RAID driver but not any
5262 * particular array:
5263 */
5264 switch (cmd)
5265 {
5266 case RAID_VERSION:
5267 err = get_version(argp);
5268 goto done;
5269
5270 case PRINT_RAID_DEBUG:
5271 err = 0;
5272 md_print_devices();
5273 goto done;
5274
5275 #ifndef MODULE
5276 case RAID_AUTORUN:
5277 err = 0;
5278 autostart_arrays(arg);
5279 goto done;
5280 #endif
5281 default:;
5282 }
5283
5284 /*
5285 * Commands creating/starting a new array:
5286 */
5287
5288 mddev = bdev->bd_disk->private_data;
5289
5290 if (!mddev) {
5291 BUG();
5292 goto abort;
5293 }
5294
5295 err = mddev_lock(mddev);
5296 if (err) {
5297 printk(KERN_INFO
5298 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5299 err, cmd);
5300 goto abort;
5301 }
5302
5303 switch (cmd)
5304 {
5305 case SET_ARRAY_INFO:
5306 {
5307 mdu_array_info_t info;
5308 if (!arg)
5309 memset(&info, 0, sizeof(info));
5310 else if (copy_from_user(&info, argp, sizeof(info))) {
5311 err = -EFAULT;
5312 goto abort_unlock;
5313 }
5314 if (mddev->pers) {
5315 err = update_array_info(mddev, &info);
5316 if (err) {
5317 printk(KERN_WARNING "md: couldn't update"
5318 " array info. %d\n", err);
5319 goto abort_unlock;
5320 }
5321 goto done_unlock;
5322 }
5323 if (!list_empty(&mddev->disks)) {
5324 printk(KERN_WARNING
5325 "md: array %s already has disks!\n",
5326 mdname(mddev));
5327 err = -EBUSY;
5328 goto abort_unlock;
5329 }
5330 if (mddev->raid_disks) {
5331 printk(KERN_WARNING
5332 "md: array %s already initialised!\n",
5333 mdname(mddev));
5334 err = -EBUSY;
5335 goto abort_unlock;
5336 }
5337 err = set_array_info(mddev, &info);
5338 if (err) {
5339 printk(KERN_WARNING "md: couldn't set"
5340 " array info. %d\n", err);
5341 goto abort_unlock;
5342 }
5343 }
5344 goto done_unlock;
5345
5346 default:;
5347 }
5348
5349 /*
5350 * Commands querying/configuring an existing array:
5351 */
5352 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5353 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5354 if ((!mddev->raid_disks && !mddev->external)
5355 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5356 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5357 && cmd != GET_BITMAP_FILE) {
5358 err = -ENODEV;
5359 goto abort_unlock;
5360 }
5361
5362 /*
5363 * Commands even a read-only array can execute:
5364 */
5365 switch (cmd)
5366 {
5367 case GET_ARRAY_INFO:
5368 err = get_array_info(mddev, argp);
5369 goto done_unlock;
5370
5371 case GET_BITMAP_FILE:
5372 err = get_bitmap_file(mddev, argp);
5373 goto done_unlock;
5374
5375 case GET_DISK_INFO:
5376 err = get_disk_info(mddev, argp);
5377 goto done_unlock;
5378
5379 case RESTART_ARRAY_RW:
5380 err = restart_array(mddev);
5381 goto done_unlock;
5382
5383 case STOP_ARRAY:
5384 err = do_md_stop(mddev, 0, 1);
5385 goto done_unlock;
5386
5387 case STOP_ARRAY_RO:
5388 err = do_md_stop(mddev, 1, 1);
5389 goto done_unlock;
5390
5391 }
5392
5393 /*
5394 * The remaining ioctls are changing the state of the
5395 * superblock, so we do not allow them on read-only arrays.
5396 * However non-MD ioctls (e.g. get-size) will still come through
5397 * here and hit the 'default' below, so only disallow
5398 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5399 */
5400 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5401 if (mddev->ro == 2) {
5402 mddev->ro = 0;
5403 sysfs_notify_dirent(mddev->sysfs_state);
5404 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5405 md_wakeup_thread(mddev->thread);
5406 } else {
5407 err = -EROFS;
5408 goto abort_unlock;
5409 }
5410 }
5411
5412 switch (cmd)
5413 {
5414 case ADD_NEW_DISK:
5415 {
5416 mdu_disk_info_t info;
5417 if (copy_from_user(&info, argp, sizeof(info)))
5418 err = -EFAULT;
5419 else
5420 err = add_new_disk(mddev, &info);
5421 goto done_unlock;
5422 }
5423
5424 case HOT_REMOVE_DISK:
5425 err = hot_remove_disk(mddev, new_decode_dev(arg));
5426 goto done_unlock;
5427
5428 case HOT_ADD_DISK:
5429 err = hot_add_disk(mddev, new_decode_dev(arg));
5430 goto done_unlock;
5431
5432 case SET_DISK_FAULTY:
5433 err = set_disk_faulty(mddev, new_decode_dev(arg));
5434 goto done_unlock;
5435
5436 case RUN_ARRAY:
5437 err = do_md_run(mddev);
5438 goto done_unlock;
5439
5440 case SET_BITMAP_FILE:
5441 err = set_bitmap_file(mddev, (int)arg);
5442 goto done_unlock;
5443
5444 default:
5445 err = -EINVAL;
5446 goto abort_unlock;
5447 }
5448
5449 done_unlock:
5450 abort_unlock:
5451 if (mddev->hold_active == UNTIL_IOCTL &&
5452 err != -EINVAL)
5453 mddev->hold_active = 0;
5454 mddev_unlock(mddev);
5455
5456 return err;
5457 done:
5458 if (err)
5459 MD_BUG();
5460 abort:
5461 return err;
5462 }
5463
5464 static int md_open(struct block_device *bdev, fmode_t mode)
5465 {
5466 /*
5467 * Succeed if we can lock the mddev, which confirms that
5468 * it isn't being stopped right now.
5469 */
5470 mddev_t *mddev = mddev_find(bdev->bd_dev);
5471 int err;
5472
5473 if (mddev->gendisk != bdev->bd_disk) {
5474 /* we are racing with mddev_put which is discarding this
5475 * bd_disk.
5476 */
5477 mddev_put(mddev);
5478 /* Wait until bdev->bd_disk is definitely gone */
5479 flush_scheduled_work();
5480 /* Then retry the open from the top */
5481 return -ERESTARTSYS;
5482 }
5483 BUG_ON(mddev != bdev->bd_disk->private_data);
5484
5485 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5486 goto out;
5487
5488 err = 0;
5489 atomic_inc(&mddev->openers);
5490 mddev_unlock(mddev);
5491
5492 check_disk_change(bdev);
5493 out:
5494 return err;
5495 }
5496
5497 static int md_release(struct gendisk *disk, fmode_t mode)
5498 {
5499 mddev_t *mddev = disk->private_data;
5500
5501 BUG_ON(!mddev);
5502 atomic_dec(&mddev->openers);
5503 mddev_put(mddev);
5504
5505 return 0;
5506 }
5507
5508 static int md_media_changed(struct gendisk *disk)
5509 {
5510 mddev_t *mddev = disk->private_data;
5511
5512 return mddev->changed;
5513 }
5514
5515 static int md_revalidate(struct gendisk *disk)
5516 {
5517 mddev_t *mddev = disk->private_data;
5518
5519 mddev->changed = 0;
5520 return 0;
5521 }
5522 static struct block_device_operations md_fops =
5523 {
5524 .owner = THIS_MODULE,
5525 .open = md_open,
5526 .release = md_release,
5527 .ioctl = md_ioctl,
5528 .getgeo = md_getgeo,
5529 .media_changed = md_media_changed,
5530 .revalidate_disk= md_revalidate,
5531 };
5532
5533 static int md_thread(void * arg)
5534 {
5535 mdk_thread_t *thread = arg;
5536
5537 /*
5538 * md_thread is a 'system-thread', it's priority should be very
5539 * high. We avoid resource deadlocks individually in each
5540 * raid personality. (RAID5 does preallocation) We also use RR and
5541 * the very same RT priority as kswapd, thus we will never get
5542 * into a priority inversion deadlock.
5543 *
5544 * we definitely have to have equal or higher priority than
5545 * bdflush, otherwise bdflush will deadlock if there are too
5546 * many dirty RAID5 blocks.
5547 */
5548
5549 allow_signal(SIGKILL);
5550 while (!kthread_should_stop()) {
5551
5552 /* We need to wait INTERRUPTIBLE so that
5553 * we don't add to the load-average.
5554 * That means we need to be sure no signals are
5555 * pending
5556 */
5557 if (signal_pending(current))
5558 flush_signals(current);
5559
5560 wait_event_interruptible_timeout
5561 (thread->wqueue,
5562 test_bit(THREAD_WAKEUP, &thread->flags)
5563 || kthread_should_stop(),
5564 thread->timeout);
5565
5566 clear_bit(THREAD_WAKEUP, &thread->flags);
5567
5568 thread->run(thread->mddev);
5569 }
5570
5571 return 0;
5572 }
5573
5574 void md_wakeup_thread(mdk_thread_t *thread)
5575 {
5576 if (thread) {
5577 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5578 set_bit(THREAD_WAKEUP, &thread->flags);
5579 wake_up(&thread->wqueue);
5580 }
5581 }
5582
5583 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5584 const char *name)
5585 {
5586 mdk_thread_t *thread;
5587
5588 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5589 if (!thread)
5590 return NULL;
5591
5592 init_waitqueue_head(&thread->wqueue);
5593
5594 thread->run = run;
5595 thread->mddev = mddev;
5596 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5597 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5598 if (IS_ERR(thread->tsk)) {
5599 kfree(thread);
5600 return NULL;
5601 }
5602 return thread;
5603 }
5604
5605 void md_unregister_thread(mdk_thread_t *thread)
5606 {
5607 if (!thread)
5608 return;
5609 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5610
5611 kthread_stop(thread->tsk);
5612 kfree(thread);
5613 }
5614
5615 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5616 {
5617 if (!mddev) {
5618 MD_BUG();
5619 return;
5620 }
5621
5622 if (!rdev || test_bit(Faulty, &rdev->flags))
5623 return;
5624
5625 if (mddev->external)
5626 set_bit(Blocked, &rdev->flags);
5627 /*
5628 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5629 mdname(mddev),
5630 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5631 __builtin_return_address(0),__builtin_return_address(1),
5632 __builtin_return_address(2),__builtin_return_address(3));
5633 */
5634 if (!mddev->pers)
5635 return;
5636 if (!mddev->pers->error_handler)
5637 return;
5638 mddev->pers->error_handler(mddev,rdev);
5639 if (mddev->degraded)
5640 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5641 set_bit(StateChanged, &rdev->flags);
5642 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5643 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5644 md_wakeup_thread(mddev->thread);
5645 md_new_event_inintr(mddev);
5646 }
5647
5648 /* seq_file implementation /proc/mdstat */
5649
5650 static void status_unused(struct seq_file *seq)
5651 {
5652 int i = 0;
5653 mdk_rdev_t *rdev;
5654
5655 seq_printf(seq, "unused devices: ");
5656
5657 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5658 char b[BDEVNAME_SIZE];
5659 i++;
5660 seq_printf(seq, "%s ",
5661 bdevname(rdev->bdev,b));
5662 }
5663 if (!i)
5664 seq_printf(seq, "<none>");
5665
5666 seq_printf(seq, "\n");
5667 }
5668
5669
5670 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5671 {
5672 sector_t max_sectors, resync, res;
5673 unsigned long dt, db;
5674 sector_t rt;
5675 int scale;
5676 unsigned int per_milli;
5677
5678 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
5679
5680 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5681 max_sectors = mddev->resync_max_sectors;
5682 else
5683 max_sectors = mddev->dev_sectors;
5684
5685 /*
5686 * Should not happen.
5687 */
5688 if (!max_sectors) {
5689 MD_BUG();
5690 return;
5691 }
5692 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5693 * in a sector_t, and (max_sectors>>scale) will fit in a
5694 * u32, as those are the requirements for sector_div.
5695 * Thus 'scale' must be at least 10
5696 */
5697 scale = 10;
5698 if (sizeof(sector_t) > sizeof(unsigned long)) {
5699 while ( max_sectors/2 > (1ULL<<(scale+32)))
5700 scale++;
5701 }
5702 res = (resync>>scale)*1000;
5703 sector_div(res, (u32)((max_sectors>>scale)+1));
5704
5705 per_milli = res;
5706 {
5707 int i, x = per_milli/50, y = 20-x;
5708 seq_printf(seq, "[");
5709 for (i = 0; i < x; i++)
5710 seq_printf(seq, "=");
5711 seq_printf(seq, ">");
5712 for (i = 0; i < y; i++)
5713 seq_printf(seq, ".");
5714 seq_printf(seq, "] ");
5715 }
5716 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5717 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5718 "reshape" :
5719 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5720 "check" :
5721 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5722 "resync" : "recovery"))),
5723 per_milli/10, per_milli % 10,
5724 (unsigned long long) resync/2,
5725 (unsigned long long) max_sectors/2);
5726
5727 /*
5728 * dt: time from mark until now
5729 * db: blocks written from mark until now
5730 * rt: remaining time
5731 *
5732 * rt is a sector_t, so could be 32bit or 64bit.
5733 * So we divide before multiply in case it is 32bit and close
5734 * to the limit.
5735 * We scale the divisor (db) by 32 to avoid loosing precision
5736 * near the end of resync when the number of remaining sectors
5737 * is close to 'db'.
5738 * We then divide rt by 32 after multiplying by db to compensate.
5739 * The '+1' avoids division by zero if db is very small.
5740 */
5741 dt = ((jiffies - mddev->resync_mark) / HZ);
5742 if (!dt) dt++;
5743 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5744 - mddev->resync_mark_cnt;
5745
5746 rt = max_sectors - resync; /* number of remaining sectors */
5747 sector_div(rt, db/32+1);
5748 rt *= dt;
5749 rt >>= 5;
5750
5751 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
5752 ((unsigned long)rt % 60)/6);
5753
5754 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5755 }
5756
5757 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5758 {
5759 struct list_head *tmp;
5760 loff_t l = *pos;
5761 mddev_t *mddev;
5762
5763 if (l >= 0x10000)
5764 return NULL;
5765 if (!l--)
5766 /* header */
5767 return (void*)1;
5768
5769 spin_lock(&all_mddevs_lock);
5770 list_for_each(tmp,&all_mddevs)
5771 if (!l--) {
5772 mddev = list_entry(tmp, mddev_t, all_mddevs);
5773 mddev_get(mddev);
5774 spin_unlock(&all_mddevs_lock);
5775 return mddev;
5776 }
5777 spin_unlock(&all_mddevs_lock);
5778 if (!l--)
5779 return (void*)2;/* tail */
5780 return NULL;
5781 }
5782
5783 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5784 {
5785 struct list_head *tmp;
5786 mddev_t *next_mddev, *mddev = v;
5787
5788 ++*pos;
5789 if (v == (void*)2)
5790 return NULL;
5791
5792 spin_lock(&all_mddevs_lock);
5793 if (v == (void*)1)
5794 tmp = all_mddevs.next;
5795 else
5796 tmp = mddev->all_mddevs.next;
5797 if (tmp != &all_mddevs)
5798 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5799 else {
5800 next_mddev = (void*)2;
5801 *pos = 0x10000;
5802 }
5803 spin_unlock(&all_mddevs_lock);
5804
5805 if (v != (void*)1)
5806 mddev_put(mddev);
5807 return next_mddev;
5808
5809 }
5810
5811 static void md_seq_stop(struct seq_file *seq, void *v)
5812 {
5813 mddev_t *mddev = v;
5814
5815 if (mddev && v != (void*)1 && v != (void*)2)
5816 mddev_put(mddev);
5817 }
5818
5819 struct mdstat_info {
5820 int event;
5821 };
5822
5823 static int md_seq_show(struct seq_file *seq, void *v)
5824 {
5825 mddev_t *mddev = v;
5826 sector_t sectors;
5827 mdk_rdev_t *rdev;
5828 struct mdstat_info *mi = seq->private;
5829 struct bitmap *bitmap;
5830
5831 if (v == (void*)1) {
5832 struct mdk_personality *pers;
5833 seq_printf(seq, "Personalities : ");
5834 spin_lock(&pers_lock);
5835 list_for_each_entry(pers, &pers_list, list)
5836 seq_printf(seq, "[%s] ", pers->name);
5837
5838 spin_unlock(&pers_lock);
5839 seq_printf(seq, "\n");
5840 mi->event = atomic_read(&md_event_count);
5841 return 0;
5842 }
5843 if (v == (void*)2) {
5844 status_unused(seq);
5845 return 0;
5846 }
5847
5848 if (mddev_lock(mddev) < 0)
5849 return -EINTR;
5850
5851 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5852 seq_printf(seq, "%s : %sactive", mdname(mddev),
5853 mddev->pers ? "" : "in");
5854 if (mddev->pers) {
5855 if (mddev->ro==1)
5856 seq_printf(seq, " (read-only)");
5857 if (mddev->ro==2)
5858 seq_printf(seq, " (auto-read-only)");
5859 seq_printf(seq, " %s", mddev->pers->name);
5860 }
5861
5862 sectors = 0;
5863 list_for_each_entry(rdev, &mddev->disks, same_set) {
5864 char b[BDEVNAME_SIZE];
5865 seq_printf(seq, " %s[%d]",
5866 bdevname(rdev->bdev,b), rdev->desc_nr);
5867 if (test_bit(WriteMostly, &rdev->flags))
5868 seq_printf(seq, "(W)");
5869 if (test_bit(Faulty, &rdev->flags)) {
5870 seq_printf(seq, "(F)");
5871 continue;
5872 } else if (rdev->raid_disk < 0)
5873 seq_printf(seq, "(S)"); /* spare */
5874 sectors += rdev->sectors;
5875 }
5876
5877 if (!list_empty(&mddev->disks)) {
5878 if (mddev->pers)
5879 seq_printf(seq, "\n %llu blocks",
5880 (unsigned long long)
5881 mddev->array_sectors / 2);
5882 else
5883 seq_printf(seq, "\n %llu blocks",
5884 (unsigned long long)sectors / 2);
5885 }
5886 if (mddev->persistent) {
5887 if (mddev->major_version != 0 ||
5888 mddev->minor_version != 90) {
5889 seq_printf(seq," super %d.%d",
5890 mddev->major_version,
5891 mddev->minor_version);
5892 }
5893 } else if (mddev->external)
5894 seq_printf(seq, " super external:%s",
5895 mddev->metadata_type);
5896 else
5897 seq_printf(seq, " super non-persistent");
5898
5899 if (mddev->pers) {
5900 mddev->pers->status(seq, mddev);
5901 seq_printf(seq, "\n ");
5902 if (mddev->pers->sync_request) {
5903 if (mddev->curr_resync > 2) {
5904 status_resync(seq, mddev);
5905 seq_printf(seq, "\n ");
5906 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5907 seq_printf(seq, "\tresync=DELAYED\n ");
5908 else if (mddev->recovery_cp < MaxSector)
5909 seq_printf(seq, "\tresync=PENDING\n ");
5910 }
5911 } else
5912 seq_printf(seq, "\n ");
5913
5914 if ((bitmap = mddev->bitmap)) {
5915 unsigned long chunk_kb;
5916 unsigned long flags;
5917 spin_lock_irqsave(&bitmap->lock, flags);
5918 chunk_kb = bitmap->chunksize >> 10;
5919 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5920 "%lu%s chunk",
5921 bitmap->pages - bitmap->missing_pages,
5922 bitmap->pages,
5923 (bitmap->pages - bitmap->missing_pages)
5924 << (PAGE_SHIFT - 10),
5925 chunk_kb ? chunk_kb : bitmap->chunksize,
5926 chunk_kb ? "KB" : "B");
5927 if (bitmap->file) {
5928 seq_printf(seq, ", file: ");
5929 seq_path(seq, &bitmap->file->f_path, " \t\n");
5930 }
5931
5932 seq_printf(seq, "\n");
5933 spin_unlock_irqrestore(&bitmap->lock, flags);
5934 }
5935
5936 seq_printf(seq, "\n");
5937 }
5938 mddev_unlock(mddev);
5939
5940 return 0;
5941 }
5942
5943 static const struct seq_operations md_seq_ops = {
5944 .start = md_seq_start,
5945 .next = md_seq_next,
5946 .stop = md_seq_stop,
5947 .show = md_seq_show,
5948 };
5949
5950 static int md_seq_open(struct inode *inode, struct file *file)
5951 {
5952 int error;
5953 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5954 if (mi == NULL)
5955 return -ENOMEM;
5956
5957 error = seq_open(file, &md_seq_ops);
5958 if (error)
5959 kfree(mi);
5960 else {
5961 struct seq_file *p = file->private_data;
5962 p->private = mi;
5963 mi->event = atomic_read(&md_event_count);
5964 }
5965 return error;
5966 }
5967
5968 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5969 {
5970 struct seq_file *m = filp->private_data;
5971 struct mdstat_info *mi = m->private;
5972 int mask;
5973
5974 poll_wait(filp, &md_event_waiters, wait);
5975
5976 /* always allow read */
5977 mask = POLLIN | POLLRDNORM;
5978
5979 if (mi->event != atomic_read(&md_event_count))
5980 mask |= POLLERR | POLLPRI;
5981 return mask;
5982 }
5983
5984 static const struct file_operations md_seq_fops = {
5985 .owner = THIS_MODULE,
5986 .open = md_seq_open,
5987 .read = seq_read,
5988 .llseek = seq_lseek,
5989 .release = seq_release_private,
5990 .poll = mdstat_poll,
5991 };
5992
5993 int register_md_personality(struct mdk_personality *p)
5994 {
5995 spin_lock(&pers_lock);
5996 list_add_tail(&p->list, &pers_list);
5997 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5998 spin_unlock(&pers_lock);
5999 return 0;
6000 }
6001
6002 int unregister_md_personality(struct mdk_personality *p)
6003 {
6004 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6005 spin_lock(&pers_lock);
6006 list_del_init(&p->list);
6007 spin_unlock(&pers_lock);
6008 return 0;
6009 }
6010
6011 static int is_mddev_idle(mddev_t *mddev, int init)
6012 {
6013 mdk_rdev_t * rdev;
6014 int idle;
6015 int curr_events;
6016
6017 idle = 1;
6018 rcu_read_lock();
6019 rdev_for_each_rcu(rdev, mddev) {
6020 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6021 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6022 (int)part_stat_read(&disk->part0, sectors[1]) -
6023 atomic_read(&disk->sync_io);
6024 /* sync IO will cause sync_io to increase before the disk_stats
6025 * as sync_io is counted when a request starts, and
6026 * disk_stats is counted when it completes.
6027 * So resync activity will cause curr_events to be smaller than
6028 * when there was no such activity.
6029 * non-sync IO will cause disk_stat to increase without
6030 * increasing sync_io so curr_events will (eventually)
6031 * be larger than it was before. Once it becomes
6032 * substantially larger, the test below will cause
6033 * the array to appear non-idle, and resync will slow
6034 * down.
6035 * If there is a lot of outstanding resync activity when
6036 * we set last_event to curr_events, then all that activity
6037 * completing might cause the array to appear non-idle
6038 * and resync will be slowed down even though there might
6039 * not have been non-resync activity. This will only
6040 * happen once though. 'last_events' will soon reflect
6041 * the state where there is little or no outstanding
6042 * resync requests, and further resync activity will
6043 * always make curr_events less than last_events.
6044 *
6045 */
6046 if (init || curr_events - rdev->last_events > 64) {
6047 rdev->last_events = curr_events;
6048 idle = 0;
6049 }
6050 }
6051 rcu_read_unlock();
6052 return idle;
6053 }
6054
6055 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6056 {
6057 /* another "blocks" (512byte) blocks have been synced */
6058 atomic_sub(blocks, &mddev->recovery_active);
6059 wake_up(&mddev->recovery_wait);
6060 if (!ok) {
6061 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6062 md_wakeup_thread(mddev->thread);
6063 // stop recovery, signal do_sync ....
6064 }
6065 }
6066
6067
6068 /* md_write_start(mddev, bi)
6069 * If we need to update some array metadata (e.g. 'active' flag
6070 * in superblock) before writing, schedule a superblock update
6071 * and wait for it to complete.
6072 */
6073 void md_write_start(mddev_t *mddev, struct bio *bi)
6074 {
6075 int did_change = 0;
6076 if (bio_data_dir(bi) != WRITE)
6077 return;
6078
6079 BUG_ON(mddev->ro == 1);
6080 if (mddev->ro == 2) {
6081 /* need to switch to read/write */
6082 mddev->ro = 0;
6083 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6084 md_wakeup_thread(mddev->thread);
6085 md_wakeup_thread(mddev->sync_thread);
6086 did_change = 1;
6087 }
6088 atomic_inc(&mddev->writes_pending);
6089 if (mddev->safemode == 1)
6090 mddev->safemode = 0;
6091 if (mddev->in_sync) {
6092 spin_lock_irq(&mddev->write_lock);
6093 if (mddev->in_sync) {
6094 mddev->in_sync = 0;
6095 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6096 md_wakeup_thread(mddev->thread);
6097 did_change = 1;
6098 }
6099 spin_unlock_irq(&mddev->write_lock);
6100 }
6101 if (did_change)
6102 sysfs_notify_dirent(mddev->sysfs_state);
6103 wait_event(mddev->sb_wait,
6104 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6105 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6106 }
6107
6108 void md_write_end(mddev_t *mddev)
6109 {
6110 if (atomic_dec_and_test(&mddev->writes_pending)) {
6111 if (mddev->safemode == 2)
6112 md_wakeup_thread(mddev->thread);
6113 else if (mddev->safemode_delay)
6114 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6115 }
6116 }
6117
6118 /* md_allow_write(mddev)
6119 * Calling this ensures that the array is marked 'active' so that writes
6120 * may proceed without blocking. It is important to call this before
6121 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6122 * Must be called with mddev_lock held.
6123 *
6124 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6125 * is dropped, so return -EAGAIN after notifying userspace.
6126 */
6127 int md_allow_write(mddev_t *mddev)
6128 {
6129 if (!mddev->pers)
6130 return 0;
6131 if (mddev->ro)
6132 return 0;
6133 if (!mddev->pers->sync_request)
6134 return 0;
6135
6136 spin_lock_irq(&mddev->write_lock);
6137 if (mddev->in_sync) {
6138 mddev->in_sync = 0;
6139 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6140 if (mddev->safemode_delay &&
6141 mddev->safemode == 0)
6142 mddev->safemode = 1;
6143 spin_unlock_irq(&mddev->write_lock);
6144 md_update_sb(mddev, 0);
6145 sysfs_notify_dirent(mddev->sysfs_state);
6146 } else
6147 spin_unlock_irq(&mddev->write_lock);
6148
6149 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6150 return -EAGAIN;
6151 else
6152 return 0;
6153 }
6154 EXPORT_SYMBOL_GPL(md_allow_write);
6155
6156 #define SYNC_MARKS 10
6157 #define SYNC_MARK_STEP (3*HZ)
6158 void md_do_sync(mddev_t *mddev)
6159 {
6160 mddev_t *mddev2;
6161 unsigned int currspeed = 0,
6162 window;
6163 sector_t max_sectors,j, io_sectors;
6164 unsigned long mark[SYNC_MARKS];
6165 sector_t mark_cnt[SYNC_MARKS];
6166 int last_mark,m;
6167 struct list_head *tmp;
6168 sector_t last_check;
6169 int skipped = 0;
6170 mdk_rdev_t *rdev;
6171 char *desc;
6172
6173 /* just incase thread restarts... */
6174 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6175 return;
6176 if (mddev->ro) /* never try to sync a read-only array */
6177 return;
6178
6179 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6180 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6181 desc = "data-check";
6182 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6183 desc = "requested-resync";
6184 else
6185 desc = "resync";
6186 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6187 desc = "reshape";
6188 else
6189 desc = "recovery";
6190
6191 /* we overload curr_resync somewhat here.
6192 * 0 == not engaged in resync at all
6193 * 2 == checking that there is no conflict with another sync
6194 * 1 == like 2, but have yielded to allow conflicting resync to
6195 * commense
6196 * other == active in resync - this many blocks
6197 *
6198 * Before starting a resync we must have set curr_resync to
6199 * 2, and then checked that every "conflicting" array has curr_resync
6200 * less than ours. When we find one that is the same or higher
6201 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6202 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6203 * This will mean we have to start checking from the beginning again.
6204 *
6205 */
6206
6207 do {
6208 mddev->curr_resync = 2;
6209
6210 try_again:
6211 if (kthread_should_stop()) {
6212 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6213 goto skip;
6214 }
6215 for_each_mddev(mddev2, tmp) {
6216 if (mddev2 == mddev)
6217 continue;
6218 if (!mddev->parallel_resync
6219 && mddev2->curr_resync
6220 && match_mddev_units(mddev, mddev2)) {
6221 DEFINE_WAIT(wq);
6222 if (mddev < mddev2 && mddev->curr_resync == 2) {
6223 /* arbitrarily yield */
6224 mddev->curr_resync = 1;
6225 wake_up(&resync_wait);
6226 }
6227 if (mddev > mddev2 && mddev->curr_resync == 1)
6228 /* no need to wait here, we can wait the next
6229 * time 'round when curr_resync == 2
6230 */
6231 continue;
6232 /* We need to wait 'interruptible' so as not to
6233 * contribute to the load average, and not to
6234 * be caught by 'softlockup'
6235 */
6236 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6237 if (!kthread_should_stop() &&
6238 mddev2->curr_resync >= mddev->curr_resync) {
6239 printk(KERN_INFO "md: delaying %s of %s"
6240 " until %s has finished (they"
6241 " share one or more physical units)\n",
6242 desc, mdname(mddev), mdname(mddev2));
6243 mddev_put(mddev2);
6244 if (signal_pending(current))
6245 flush_signals(current);
6246 schedule();
6247 finish_wait(&resync_wait, &wq);
6248 goto try_again;
6249 }
6250 finish_wait(&resync_wait, &wq);
6251 }
6252 }
6253 } while (mddev->curr_resync < 2);
6254
6255 j = 0;
6256 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6257 /* resync follows the size requested by the personality,
6258 * which defaults to physical size, but can be virtual size
6259 */
6260 max_sectors = mddev->resync_max_sectors;
6261 mddev->resync_mismatches = 0;
6262 /* we don't use the checkpoint if there's a bitmap */
6263 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6264 j = mddev->resync_min;
6265 else if (!mddev->bitmap)
6266 j = mddev->recovery_cp;
6267
6268 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6269 max_sectors = mddev->dev_sectors;
6270 else {
6271 /* recovery follows the physical size of devices */
6272 max_sectors = mddev->dev_sectors;
6273 j = MaxSector;
6274 list_for_each_entry(rdev, &mddev->disks, same_set)
6275 if (rdev->raid_disk >= 0 &&
6276 !test_bit(Faulty, &rdev->flags) &&
6277 !test_bit(In_sync, &rdev->flags) &&
6278 rdev->recovery_offset < j)
6279 j = rdev->recovery_offset;
6280 }
6281
6282 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6283 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6284 " %d KB/sec/disk.\n", speed_min(mddev));
6285 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6286 "(but not more than %d KB/sec) for %s.\n",
6287 speed_max(mddev), desc);
6288
6289 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6290
6291 io_sectors = 0;
6292 for (m = 0; m < SYNC_MARKS; m++) {
6293 mark[m] = jiffies;
6294 mark_cnt[m] = io_sectors;
6295 }
6296 last_mark = 0;
6297 mddev->resync_mark = mark[last_mark];
6298 mddev->resync_mark_cnt = mark_cnt[last_mark];
6299
6300 /*
6301 * Tune reconstruction:
6302 */
6303 window = 32*(PAGE_SIZE/512);
6304 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6305 window/2,(unsigned long long) max_sectors/2);
6306
6307 atomic_set(&mddev->recovery_active, 0);
6308 last_check = 0;
6309
6310 if (j>2) {
6311 printk(KERN_INFO
6312 "md: resuming %s of %s from checkpoint.\n",
6313 desc, mdname(mddev));
6314 mddev->curr_resync = j;
6315 }
6316
6317 while (j < max_sectors) {
6318 sector_t sectors;
6319
6320 skipped = 0;
6321
6322 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6323 ((mddev->curr_resync > mddev->curr_resync_completed &&
6324 (mddev->curr_resync - mddev->curr_resync_completed)
6325 > (max_sectors >> 4)) ||
6326 (j - mddev->curr_resync_completed)*2
6327 >= mddev->resync_max - mddev->curr_resync_completed
6328 )) {
6329 /* time to update curr_resync_completed */
6330 blk_unplug(mddev->queue);
6331 wait_event(mddev->recovery_wait,
6332 atomic_read(&mddev->recovery_active) == 0);
6333 mddev->curr_resync_completed =
6334 mddev->curr_resync;
6335 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6336 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6337 }
6338
6339 if (j >= mddev->resync_max)
6340 wait_event(mddev->recovery_wait,
6341 mddev->resync_max > j
6342 || kthread_should_stop());
6343
6344 if (kthread_should_stop())
6345 goto interrupted;
6346
6347 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6348 currspeed < speed_min(mddev));
6349 if (sectors == 0) {
6350 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6351 goto out;
6352 }
6353
6354 if (!skipped) { /* actual IO requested */
6355 io_sectors += sectors;
6356 atomic_add(sectors, &mddev->recovery_active);
6357 }
6358
6359 j += sectors;
6360 if (j>1) mddev->curr_resync = j;
6361 mddev->curr_mark_cnt = io_sectors;
6362 if (last_check == 0)
6363 /* this is the earliers that rebuilt will be
6364 * visible in /proc/mdstat
6365 */
6366 md_new_event(mddev);
6367
6368 if (last_check + window > io_sectors || j == max_sectors)
6369 continue;
6370
6371 last_check = io_sectors;
6372
6373 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6374 break;
6375
6376 repeat:
6377 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6378 /* step marks */
6379 int next = (last_mark+1) % SYNC_MARKS;
6380
6381 mddev->resync_mark = mark[next];
6382 mddev->resync_mark_cnt = mark_cnt[next];
6383 mark[next] = jiffies;
6384 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6385 last_mark = next;
6386 }
6387
6388
6389 if (kthread_should_stop())
6390 goto interrupted;
6391
6392
6393 /*
6394 * this loop exits only if either when we are slower than
6395 * the 'hard' speed limit, or the system was IO-idle for
6396 * a jiffy.
6397 * the system might be non-idle CPU-wise, but we only care
6398 * about not overloading the IO subsystem. (things like an
6399 * e2fsck being done on the RAID array should execute fast)
6400 */
6401 blk_unplug(mddev->queue);
6402 cond_resched();
6403
6404 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6405 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6406
6407 if (currspeed > speed_min(mddev)) {
6408 if ((currspeed > speed_max(mddev)) ||
6409 !is_mddev_idle(mddev, 0)) {
6410 msleep(500);
6411 goto repeat;
6412 }
6413 }
6414 }
6415 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6416 /*
6417 * this also signals 'finished resyncing' to md_stop
6418 */
6419 out:
6420 blk_unplug(mddev->queue);
6421
6422 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6423
6424 /* tell personality that we are finished */
6425 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6426
6427 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6428 mddev->curr_resync > 2) {
6429 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6430 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6431 if (mddev->curr_resync >= mddev->recovery_cp) {
6432 printk(KERN_INFO
6433 "md: checkpointing %s of %s.\n",
6434 desc, mdname(mddev));
6435 mddev->recovery_cp = mddev->curr_resync;
6436 }
6437 } else
6438 mddev->recovery_cp = MaxSector;
6439 } else {
6440 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6441 mddev->curr_resync = MaxSector;
6442 list_for_each_entry(rdev, &mddev->disks, same_set)
6443 if (rdev->raid_disk >= 0 &&
6444 !test_bit(Faulty, &rdev->flags) &&
6445 !test_bit(In_sync, &rdev->flags) &&
6446 rdev->recovery_offset < mddev->curr_resync)
6447 rdev->recovery_offset = mddev->curr_resync;
6448 }
6449 }
6450 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6451
6452 skip:
6453 mddev->curr_resync = 0;
6454 mddev->curr_resync_completed = 0;
6455 mddev->resync_min = 0;
6456 mddev->resync_max = MaxSector;
6457 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6458 wake_up(&resync_wait);
6459 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6460 md_wakeup_thread(mddev->thread);
6461 return;
6462
6463 interrupted:
6464 /*
6465 * got a signal, exit.
6466 */
6467 printk(KERN_INFO
6468 "md: md_do_sync() got signal ... exiting\n");
6469 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6470 goto out;
6471
6472 }
6473 EXPORT_SYMBOL_GPL(md_do_sync);
6474
6475
6476 static int remove_and_add_spares(mddev_t *mddev)
6477 {
6478 mdk_rdev_t *rdev;
6479 int spares = 0;
6480
6481 mddev->curr_resync_completed = 0;
6482
6483 list_for_each_entry(rdev, &mddev->disks, same_set)
6484 if (rdev->raid_disk >= 0 &&
6485 !test_bit(Blocked, &rdev->flags) &&
6486 (test_bit(Faulty, &rdev->flags) ||
6487 ! test_bit(In_sync, &rdev->flags)) &&
6488 atomic_read(&rdev->nr_pending)==0) {
6489 if (mddev->pers->hot_remove_disk(
6490 mddev, rdev->raid_disk)==0) {
6491 char nm[20];
6492 sprintf(nm,"rd%d", rdev->raid_disk);
6493 sysfs_remove_link(&mddev->kobj, nm);
6494 rdev->raid_disk = -1;
6495 }
6496 }
6497
6498 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6499 list_for_each_entry(rdev, &mddev->disks, same_set) {
6500 if (rdev->raid_disk >= 0 &&
6501 !test_bit(In_sync, &rdev->flags) &&
6502 !test_bit(Blocked, &rdev->flags))
6503 spares++;
6504 if (rdev->raid_disk < 0
6505 && !test_bit(Faulty, &rdev->flags)) {
6506 rdev->recovery_offset = 0;
6507 if (mddev->pers->
6508 hot_add_disk(mddev, rdev) == 0) {
6509 char nm[20];
6510 sprintf(nm, "rd%d", rdev->raid_disk);
6511 if (sysfs_create_link(&mddev->kobj,
6512 &rdev->kobj, nm))
6513 printk(KERN_WARNING
6514 "md: cannot register "
6515 "%s for %s\n",
6516 nm, mdname(mddev));
6517 spares++;
6518 md_new_event(mddev);
6519 } else
6520 break;
6521 }
6522 }
6523 }
6524 return spares;
6525 }
6526 /*
6527 * This routine is regularly called by all per-raid-array threads to
6528 * deal with generic issues like resync and super-block update.
6529 * Raid personalities that don't have a thread (linear/raid0) do not
6530 * need this as they never do any recovery or update the superblock.
6531 *
6532 * It does not do any resync itself, but rather "forks" off other threads
6533 * to do that as needed.
6534 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6535 * "->recovery" and create a thread at ->sync_thread.
6536 * When the thread finishes it sets MD_RECOVERY_DONE
6537 * and wakeups up this thread which will reap the thread and finish up.
6538 * This thread also removes any faulty devices (with nr_pending == 0).
6539 *
6540 * The overall approach is:
6541 * 1/ if the superblock needs updating, update it.
6542 * 2/ If a recovery thread is running, don't do anything else.
6543 * 3/ If recovery has finished, clean up, possibly marking spares active.
6544 * 4/ If there are any faulty devices, remove them.
6545 * 5/ If array is degraded, try to add spares devices
6546 * 6/ If array has spares or is not in-sync, start a resync thread.
6547 */
6548 void md_check_recovery(mddev_t *mddev)
6549 {
6550 mdk_rdev_t *rdev;
6551
6552
6553 if (mddev->bitmap)
6554 bitmap_daemon_work(mddev->bitmap);
6555
6556 if (mddev->ro)
6557 return;
6558
6559 if (signal_pending(current)) {
6560 if (mddev->pers->sync_request && !mddev->external) {
6561 printk(KERN_INFO "md: %s in immediate safe mode\n",
6562 mdname(mddev));
6563 mddev->safemode = 2;
6564 }
6565 flush_signals(current);
6566 }
6567
6568 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6569 return;
6570 if ( ! (
6571 (mddev->flags && !mddev->external) ||
6572 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6573 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6574 (mddev->external == 0 && mddev->safemode == 1) ||
6575 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6576 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6577 ))
6578 return;
6579
6580 if (mddev_trylock(mddev)) {
6581 int spares = 0;
6582
6583 if (mddev->ro) {
6584 /* Only thing we do on a ro array is remove
6585 * failed devices.
6586 */
6587 remove_and_add_spares(mddev);
6588 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6589 goto unlock;
6590 }
6591
6592 if (!mddev->external) {
6593 int did_change = 0;
6594 spin_lock_irq(&mddev->write_lock);
6595 if (mddev->safemode &&
6596 !atomic_read(&mddev->writes_pending) &&
6597 !mddev->in_sync &&
6598 mddev->recovery_cp == MaxSector) {
6599 mddev->in_sync = 1;
6600 did_change = 1;
6601 if (mddev->persistent)
6602 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6603 }
6604 if (mddev->safemode == 1)
6605 mddev->safemode = 0;
6606 spin_unlock_irq(&mddev->write_lock);
6607 if (did_change)
6608 sysfs_notify_dirent(mddev->sysfs_state);
6609 }
6610
6611 if (mddev->flags)
6612 md_update_sb(mddev, 0);
6613
6614 list_for_each_entry(rdev, &mddev->disks, same_set)
6615 if (test_and_clear_bit(StateChanged, &rdev->flags))
6616 sysfs_notify_dirent(rdev->sysfs_state);
6617
6618
6619 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6620 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6621 /* resync/recovery still happening */
6622 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6623 goto unlock;
6624 }
6625 if (mddev->sync_thread) {
6626 /* resync has finished, collect result */
6627 md_unregister_thread(mddev->sync_thread);
6628 mddev->sync_thread = NULL;
6629 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6630 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6631 /* success...*/
6632 /* activate any spares */
6633 if (mddev->pers->spare_active(mddev))
6634 sysfs_notify(&mddev->kobj, NULL,
6635 "degraded");
6636 }
6637 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6638 mddev->pers->finish_reshape)
6639 mddev->pers->finish_reshape(mddev);
6640 md_update_sb(mddev, 1);
6641
6642 /* if array is no-longer degraded, then any saved_raid_disk
6643 * information must be scrapped
6644 */
6645 if (!mddev->degraded)
6646 list_for_each_entry(rdev, &mddev->disks, same_set)
6647 rdev->saved_raid_disk = -1;
6648
6649 mddev->recovery = 0;
6650 /* flag recovery needed just to double check */
6651 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6652 sysfs_notify_dirent(mddev->sysfs_action);
6653 md_new_event(mddev);
6654 goto unlock;
6655 }
6656 /* Set RUNNING before clearing NEEDED to avoid
6657 * any transients in the value of "sync_action".
6658 */
6659 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6660 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6661 /* Clear some bits that don't mean anything, but
6662 * might be left set
6663 */
6664 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6665 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6666
6667 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6668 goto unlock;
6669 /* no recovery is running.
6670 * remove any failed drives, then
6671 * add spares if possible.
6672 * Spare are also removed and re-added, to allow
6673 * the personality to fail the re-add.
6674 */
6675
6676 if (mddev->reshape_position != MaxSector) {
6677 if (mddev->pers->check_reshape == NULL ||
6678 mddev->pers->check_reshape(mddev) != 0)
6679 /* Cannot proceed */
6680 goto unlock;
6681 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6682 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6683 } else if ((spares = remove_and_add_spares(mddev))) {
6684 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6685 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6686 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6687 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6688 } else if (mddev->recovery_cp < MaxSector) {
6689 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6690 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6691 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6692 /* nothing to be done ... */
6693 goto unlock;
6694
6695 if (mddev->pers->sync_request) {
6696 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6697 /* We are adding a device or devices to an array
6698 * which has the bitmap stored on all devices.
6699 * So make sure all bitmap pages get written
6700 */
6701 bitmap_write_all(mddev->bitmap);
6702 }
6703 mddev->sync_thread = md_register_thread(md_do_sync,
6704 mddev,
6705 "%s_resync");
6706 if (!mddev->sync_thread) {
6707 printk(KERN_ERR "%s: could not start resync"
6708 " thread...\n",
6709 mdname(mddev));
6710 /* leave the spares where they are, it shouldn't hurt */
6711 mddev->recovery = 0;
6712 } else
6713 md_wakeup_thread(mddev->sync_thread);
6714 sysfs_notify_dirent(mddev->sysfs_action);
6715 md_new_event(mddev);
6716 }
6717 unlock:
6718 if (!mddev->sync_thread) {
6719 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6720 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6721 &mddev->recovery))
6722 if (mddev->sysfs_action)
6723 sysfs_notify_dirent(mddev->sysfs_action);
6724 }
6725 mddev_unlock(mddev);
6726 }
6727 }
6728
6729 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6730 {
6731 sysfs_notify_dirent(rdev->sysfs_state);
6732 wait_event_timeout(rdev->blocked_wait,
6733 !test_bit(Blocked, &rdev->flags),
6734 msecs_to_jiffies(5000));
6735 rdev_dec_pending(rdev, mddev);
6736 }
6737 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6738
6739 static int md_notify_reboot(struct notifier_block *this,
6740 unsigned long code, void *x)
6741 {
6742 struct list_head *tmp;
6743 mddev_t *mddev;
6744
6745 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6746
6747 printk(KERN_INFO "md: stopping all md devices.\n");
6748
6749 for_each_mddev(mddev, tmp)
6750 if (mddev_trylock(mddev)) {
6751 /* Force a switch to readonly even array
6752 * appears to still be in use. Hence
6753 * the '100'.
6754 */
6755 do_md_stop(mddev, 1, 100);
6756 mddev_unlock(mddev);
6757 }
6758 /*
6759 * certain more exotic SCSI devices are known to be
6760 * volatile wrt too early system reboots. While the
6761 * right place to handle this issue is the given
6762 * driver, we do want to have a safe RAID driver ...
6763 */
6764 mdelay(1000*1);
6765 }
6766 return NOTIFY_DONE;
6767 }
6768
6769 static struct notifier_block md_notifier = {
6770 .notifier_call = md_notify_reboot,
6771 .next = NULL,
6772 .priority = INT_MAX, /* before any real devices */
6773 };
6774
6775 static void md_geninit(void)
6776 {
6777 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6778
6779 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6780 }
6781
6782 static int __init md_init(void)
6783 {
6784 if (register_blkdev(MD_MAJOR, "md"))
6785 return -1;
6786 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6787 unregister_blkdev(MD_MAJOR, "md");
6788 return -1;
6789 }
6790 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6791 md_probe, NULL, NULL);
6792 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6793 md_probe, NULL, NULL);
6794
6795 register_reboot_notifier(&md_notifier);
6796 raid_table_header = register_sysctl_table(raid_root_table);
6797
6798 md_geninit();
6799 return 0;
6800 }
6801
6802
6803 #ifndef MODULE
6804
6805 /*
6806 * Searches all registered partitions for autorun RAID arrays
6807 * at boot time.
6808 */
6809
6810 static LIST_HEAD(all_detected_devices);
6811 struct detected_devices_node {
6812 struct list_head list;
6813 dev_t dev;
6814 };
6815
6816 void md_autodetect_dev(dev_t dev)
6817 {
6818 struct detected_devices_node *node_detected_dev;
6819
6820 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6821 if (node_detected_dev) {
6822 node_detected_dev->dev = dev;
6823 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6824 } else {
6825 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6826 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6827 }
6828 }
6829
6830
6831 static void autostart_arrays(int part)
6832 {
6833 mdk_rdev_t *rdev;
6834 struct detected_devices_node *node_detected_dev;
6835 dev_t dev;
6836 int i_scanned, i_passed;
6837
6838 i_scanned = 0;
6839 i_passed = 0;
6840
6841 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6842
6843 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6844 i_scanned++;
6845 node_detected_dev = list_entry(all_detected_devices.next,
6846 struct detected_devices_node, list);
6847 list_del(&node_detected_dev->list);
6848 dev = node_detected_dev->dev;
6849 kfree(node_detected_dev);
6850 rdev = md_import_device(dev,0, 90);
6851 if (IS_ERR(rdev))
6852 continue;
6853
6854 if (test_bit(Faulty, &rdev->flags)) {
6855 MD_BUG();
6856 continue;
6857 }
6858 set_bit(AutoDetected, &rdev->flags);
6859 list_add(&rdev->same_set, &pending_raid_disks);
6860 i_passed++;
6861 }
6862
6863 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6864 i_scanned, i_passed);
6865
6866 autorun_devices(part);
6867 }
6868
6869 #endif /* !MODULE */
6870
6871 static __exit void md_exit(void)
6872 {
6873 mddev_t *mddev;
6874 struct list_head *tmp;
6875
6876 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6877 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6878
6879 unregister_blkdev(MD_MAJOR,"md");
6880 unregister_blkdev(mdp_major, "mdp");
6881 unregister_reboot_notifier(&md_notifier);
6882 unregister_sysctl_table(raid_table_header);
6883 remove_proc_entry("mdstat", NULL);
6884 for_each_mddev(mddev, tmp) {
6885 export_array(mddev);
6886 mddev->hold_active = 0;
6887 }
6888 }
6889
6890 subsys_initcall(md_init);
6891 module_exit(md_exit)
6892
6893 static int get_ro(char *buffer, struct kernel_param *kp)
6894 {
6895 return sprintf(buffer, "%d", start_readonly);
6896 }
6897 static int set_ro(const char *val, struct kernel_param *kp)
6898 {
6899 char *e;
6900 int num = simple_strtoul(val, &e, 10);
6901 if (*val && (*e == '\0' || *e == '\n')) {
6902 start_readonly = num;
6903 return 0;
6904 }
6905 return -EINVAL;
6906 }
6907
6908 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6909 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6910
6911 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6912
6913 EXPORT_SYMBOL(register_md_personality);
6914 EXPORT_SYMBOL(unregister_md_personality);
6915 EXPORT_SYMBOL(md_error);
6916 EXPORT_SYMBOL(md_done_sync);
6917 EXPORT_SYMBOL(md_write_start);
6918 EXPORT_SYMBOL(md_write_end);
6919 EXPORT_SYMBOL(md_register_thread);
6920 EXPORT_SYMBOL(md_unregister_thread);
6921 EXPORT_SYMBOL(md_wakeup_thread);
6922 EXPORT_SYMBOL(md_check_recovery);
6923 MODULE_LICENSE("GPL");
6924 MODULE_ALIAS("md");
6925 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.174276 seconds and 5 git commands to generate.