drivers/rtc/rtc-mc13xxx.c: move probe and remove callbacks to .init.text and .exit...
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 struct mddev *mddev, **mddevp;
161
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
164
165 bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
170 {
171 struct bio *b;
172 struct mddev **mddevp;
173
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
176
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
190 {
191 struct bio *b;
192 struct mddev **mddevp;
193
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
196
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
207
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
213 }
214 }
215
216 return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 */
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
229
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
233
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
244 }
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 }
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
255 }
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
263 }
264 sofar += bvec->bv_len;
265 }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
274 *
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
278 */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
290 */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
295 }
296
297 /*
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
300 */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
311 */
312 #define for_each_mddev(_mddev,_tmp) \
313 \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
325 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
334 */
335 static int md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int rv;
340 int cpu;
341 unsigned int sectors;
342
343 if (mddev == NULL || mddev->pers == NULL
344 || !mddev->ready) {
345 bio_io_error(bio);
346 return 0;
347 }
348 smp_rmb(); /* Ensure implications of 'active' are visible */
349 rcu_read_lock();
350 if (mddev->suspended) {
351 DEFINE_WAIT(__wait);
352 for (;;) {
353 prepare_to_wait(&mddev->sb_wait, &__wait,
354 TASK_UNINTERRUPTIBLE);
355 if (!mddev->suspended)
356 break;
357 rcu_read_unlock();
358 schedule();
359 rcu_read_lock();
360 }
361 finish_wait(&mddev->sb_wait, &__wait);
362 }
363 atomic_inc(&mddev->active_io);
364 rcu_read_unlock();
365
366 /*
367 * save the sectors now since our bio can
368 * go away inside make_request
369 */
370 sectors = bio_sectors(bio);
371 rv = mddev->pers->make_request(mddev, bio);
372
373 cpu = part_stat_lock();
374 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376 part_stat_unlock();
377
378 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379 wake_up(&mddev->sb_wait);
380
381 return rv;
382 }
383
384 /* mddev_suspend makes sure no new requests are submitted
385 * to the device, and that any requests that have been submitted
386 * are completely handled.
387 * Once ->stop is called and completes, the module will be completely
388 * unused.
389 */
390 void mddev_suspend(struct mddev *mddev)
391 {
392 BUG_ON(mddev->suspended);
393 mddev->suspended = 1;
394 synchronize_rcu();
395 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
396 mddev->pers->quiesce(mddev, 1);
397 }
398 EXPORT_SYMBOL_GPL(mddev_suspend);
399
400 void mddev_resume(struct mddev *mddev)
401 {
402 mddev->suspended = 0;
403 wake_up(&mddev->sb_wait);
404 mddev->pers->quiesce(mddev, 0);
405
406 md_wakeup_thread(mddev->thread);
407 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413 return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418 * Generic flush handling for md
419 */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423 struct md_rdev *rdev = bio->bi_private;
424 struct mddev *mddev = rdev->mddev;
425
426 rdev_dec_pending(rdev, mddev);
427
428 if (atomic_dec_and_test(&mddev->flush_pending)) {
429 /* The pre-request flush has finished */
430 queue_work(md_wq, &mddev->flush_work);
431 }
432 bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440 struct md_rdev *rdev;
441
442 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443 atomic_set(&mddev->flush_pending, 1);
444 rcu_read_lock();
445 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
446 if (rdev->raid_disk >= 0 &&
447 !test_bit(Faulty, &rdev->flags)) {
448 /* Take two references, one is dropped
449 * when request finishes, one after
450 * we reclaim rcu_read_lock
451 */
452 struct bio *bi;
453 atomic_inc(&rdev->nr_pending);
454 atomic_inc(&rdev->nr_pending);
455 rcu_read_unlock();
456 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
457 bi->bi_end_io = md_end_flush;
458 bi->bi_private = rdev;
459 bi->bi_bdev = rdev->bdev;
460 atomic_inc(&mddev->flush_pending);
461 submit_bio(WRITE_FLUSH, bi);
462 rcu_read_lock();
463 rdev_dec_pending(rdev, mddev);
464 }
465 rcu_read_unlock();
466 if (atomic_dec_and_test(&mddev->flush_pending))
467 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473 struct bio *bio = mddev->flush_bio;
474
475 if (bio->bi_size == 0)
476 /* an empty barrier - all done */
477 bio_endio(bio, 0);
478 else {
479 bio->bi_rw &= ~REQ_FLUSH;
480 if (mddev->pers->make_request(mddev, bio))
481 generic_make_request(bio);
482 }
483
484 mddev->flush_bio = NULL;
485 wake_up(&mddev->sb_wait);
486 }
487
488 void md_flush_request(struct mddev *mddev, struct bio *bio)
489 {
490 spin_lock_irq(&mddev->write_lock);
491 wait_event_lock_irq(mddev->sb_wait,
492 !mddev->flush_bio,
493 mddev->write_lock, /*nothing*/);
494 mddev->flush_bio = bio;
495 spin_unlock_irq(&mddev->write_lock);
496
497 INIT_WORK(&mddev->flush_work, submit_flushes);
498 queue_work(md_wq, &mddev->flush_work);
499 }
500 EXPORT_SYMBOL(md_flush_request);
501
502 /* Support for plugging.
503 * This mirrors the plugging support in request_queue, but does not
504 * require having a whole queue or request structures.
505 * We allocate an md_plug_cb for each md device and each thread it gets
506 * plugged on. This links tot the private plug_handle structure in the
507 * personality data where we keep a count of the number of outstanding
508 * plugs so other code can see if a plug is active.
509 */
510 struct md_plug_cb {
511 struct blk_plug_cb cb;
512 struct mddev *mddev;
513 };
514
515 static void plugger_unplug(struct blk_plug_cb *cb)
516 {
517 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
518 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
519 md_wakeup_thread(mdcb->mddev->thread);
520 kfree(mdcb);
521 }
522
523 /* Check that an unplug wakeup will come shortly.
524 * If not, wakeup the md thread immediately
525 */
526 int mddev_check_plugged(struct mddev *mddev)
527 {
528 struct blk_plug *plug = current->plug;
529 struct md_plug_cb *mdcb;
530
531 if (!plug)
532 return 0;
533
534 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
535 if (mdcb->cb.callback == plugger_unplug &&
536 mdcb->mddev == mddev) {
537 /* Already on the list, move to top */
538 if (mdcb != list_first_entry(&plug->cb_list,
539 struct md_plug_cb,
540 cb.list))
541 list_move(&mdcb->cb.list, &plug->cb_list);
542 return 1;
543 }
544 }
545 /* Not currently on the callback list */
546 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
547 if (!mdcb)
548 return 0;
549
550 mdcb->mddev = mddev;
551 mdcb->cb.callback = plugger_unplug;
552 atomic_inc(&mddev->plug_cnt);
553 list_add(&mdcb->cb.list, &plug->cb_list);
554 return 1;
555 }
556 EXPORT_SYMBOL_GPL(mddev_check_plugged);
557
558 static inline struct mddev *mddev_get(struct mddev *mddev)
559 {
560 atomic_inc(&mddev->active);
561 return mddev;
562 }
563
564 static void mddev_delayed_delete(struct work_struct *ws);
565
566 static void mddev_put(struct mddev *mddev)
567 {
568 struct bio_set *bs = NULL;
569
570 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
571 return;
572 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
573 mddev->ctime == 0 && !mddev->hold_active) {
574 /* Array is not configured at all, and not held active,
575 * so destroy it */
576 list_del(&mddev->all_mddevs);
577 bs = mddev->bio_set;
578 mddev->bio_set = NULL;
579 if (mddev->gendisk) {
580 /* We did a probe so need to clean up. Call
581 * queue_work inside the spinlock so that
582 * flush_workqueue() after mddev_find will
583 * succeed in waiting for the work to be done.
584 */
585 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
586 queue_work(md_misc_wq, &mddev->del_work);
587 } else
588 kfree(mddev);
589 }
590 spin_unlock(&all_mddevs_lock);
591 if (bs)
592 bioset_free(bs);
593 }
594
595 void mddev_init(struct mddev *mddev)
596 {
597 mutex_init(&mddev->open_mutex);
598 mutex_init(&mddev->reconfig_mutex);
599 mutex_init(&mddev->bitmap_info.mutex);
600 INIT_LIST_HEAD(&mddev->disks);
601 INIT_LIST_HEAD(&mddev->all_mddevs);
602 init_timer(&mddev->safemode_timer);
603 atomic_set(&mddev->active, 1);
604 atomic_set(&mddev->openers, 0);
605 atomic_set(&mddev->active_io, 0);
606 atomic_set(&mddev->plug_cnt, 0);
607 spin_lock_init(&mddev->write_lock);
608 atomic_set(&mddev->flush_pending, 0);
609 init_waitqueue_head(&mddev->sb_wait);
610 init_waitqueue_head(&mddev->recovery_wait);
611 mddev->reshape_position = MaxSector;
612 mddev->resync_min = 0;
613 mddev->resync_max = MaxSector;
614 mddev->level = LEVEL_NONE;
615 }
616 EXPORT_SYMBOL_GPL(mddev_init);
617
618 static struct mddev * mddev_find(dev_t unit)
619 {
620 struct mddev *mddev, *new = NULL;
621
622 if (unit && MAJOR(unit) != MD_MAJOR)
623 unit &= ~((1<<MdpMinorShift)-1);
624
625 retry:
626 spin_lock(&all_mddevs_lock);
627
628 if (unit) {
629 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
630 if (mddev->unit == unit) {
631 mddev_get(mddev);
632 spin_unlock(&all_mddevs_lock);
633 kfree(new);
634 return mddev;
635 }
636
637 if (new) {
638 list_add(&new->all_mddevs, &all_mddevs);
639 spin_unlock(&all_mddevs_lock);
640 new->hold_active = UNTIL_IOCTL;
641 return new;
642 }
643 } else if (new) {
644 /* find an unused unit number */
645 static int next_minor = 512;
646 int start = next_minor;
647 int is_free = 0;
648 int dev = 0;
649 while (!is_free) {
650 dev = MKDEV(MD_MAJOR, next_minor);
651 next_minor++;
652 if (next_minor > MINORMASK)
653 next_minor = 0;
654 if (next_minor == start) {
655 /* Oh dear, all in use. */
656 spin_unlock(&all_mddevs_lock);
657 kfree(new);
658 return NULL;
659 }
660
661 is_free = 1;
662 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
663 if (mddev->unit == dev) {
664 is_free = 0;
665 break;
666 }
667 }
668 new->unit = dev;
669 new->md_minor = MINOR(dev);
670 new->hold_active = UNTIL_STOP;
671 list_add(&new->all_mddevs, &all_mddevs);
672 spin_unlock(&all_mddevs_lock);
673 return new;
674 }
675 spin_unlock(&all_mddevs_lock);
676
677 new = kzalloc(sizeof(*new), GFP_KERNEL);
678 if (!new)
679 return NULL;
680
681 new->unit = unit;
682 if (MAJOR(unit) == MD_MAJOR)
683 new->md_minor = MINOR(unit);
684 else
685 new->md_minor = MINOR(unit) >> MdpMinorShift;
686
687 mddev_init(new);
688
689 goto retry;
690 }
691
692 static inline int mddev_lock(struct mddev * mddev)
693 {
694 return mutex_lock_interruptible(&mddev->reconfig_mutex);
695 }
696
697 static inline int mddev_is_locked(struct mddev *mddev)
698 {
699 return mutex_is_locked(&mddev->reconfig_mutex);
700 }
701
702 static inline int mddev_trylock(struct mddev * mddev)
703 {
704 return mutex_trylock(&mddev->reconfig_mutex);
705 }
706
707 static struct attribute_group md_redundancy_group;
708
709 static void mddev_unlock(struct mddev * mddev)
710 {
711 if (mddev->to_remove) {
712 /* These cannot be removed under reconfig_mutex as
713 * an access to the files will try to take reconfig_mutex
714 * while holding the file unremovable, which leads to
715 * a deadlock.
716 * So hold set sysfs_active while the remove in happeing,
717 * and anything else which might set ->to_remove or my
718 * otherwise change the sysfs namespace will fail with
719 * -EBUSY if sysfs_active is still set.
720 * We set sysfs_active under reconfig_mutex and elsewhere
721 * test it under the same mutex to ensure its correct value
722 * is seen.
723 */
724 struct attribute_group *to_remove = mddev->to_remove;
725 mddev->to_remove = NULL;
726 mddev->sysfs_active = 1;
727 mutex_unlock(&mddev->reconfig_mutex);
728
729 if (mddev->kobj.sd) {
730 if (to_remove != &md_redundancy_group)
731 sysfs_remove_group(&mddev->kobj, to_remove);
732 if (mddev->pers == NULL ||
733 mddev->pers->sync_request == NULL) {
734 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
735 if (mddev->sysfs_action)
736 sysfs_put(mddev->sysfs_action);
737 mddev->sysfs_action = NULL;
738 }
739 }
740 mddev->sysfs_active = 0;
741 } else
742 mutex_unlock(&mddev->reconfig_mutex);
743
744 /* As we've dropped the mutex we need a spinlock to
745 * make sure the thread doesn't disappear
746 */
747 spin_lock(&pers_lock);
748 md_wakeup_thread(mddev->thread);
749 spin_unlock(&pers_lock);
750 }
751
752 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
753 {
754 struct md_rdev *rdev;
755
756 list_for_each_entry(rdev, &mddev->disks, same_set)
757 if (rdev->desc_nr == nr)
758 return rdev;
759
760 return NULL;
761 }
762
763 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
764 {
765 struct md_rdev *rdev;
766
767 list_for_each_entry(rdev, &mddev->disks, same_set)
768 if (rdev->bdev->bd_dev == dev)
769 return rdev;
770
771 return NULL;
772 }
773
774 static struct md_personality *find_pers(int level, char *clevel)
775 {
776 struct md_personality *pers;
777 list_for_each_entry(pers, &pers_list, list) {
778 if (level != LEVEL_NONE && pers->level == level)
779 return pers;
780 if (strcmp(pers->name, clevel)==0)
781 return pers;
782 }
783 return NULL;
784 }
785
786 /* return the offset of the super block in 512byte sectors */
787 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
788 {
789 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
790 return MD_NEW_SIZE_SECTORS(num_sectors);
791 }
792
793 static int alloc_disk_sb(struct md_rdev * rdev)
794 {
795 if (rdev->sb_page)
796 MD_BUG();
797
798 rdev->sb_page = alloc_page(GFP_KERNEL);
799 if (!rdev->sb_page) {
800 printk(KERN_ALERT "md: out of memory.\n");
801 return -ENOMEM;
802 }
803
804 return 0;
805 }
806
807 static void free_disk_sb(struct md_rdev * rdev)
808 {
809 if (rdev->sb_page) {
810 put_page(rdev->sb_page);
811 rdev->sb_loaded = 0;
812 rdev->sb_page = NULL;
813 rdev->sb_start = 0;
814 rdev->sectors = 0;
815 }
816 if (rdev->bb_page) {
817 put_page(rdev->bb_page);
818 rdev->bb_page = NULL;
819 }
820 }
821
822
823 static void super_written(struct bio *bio, int error)
824 {
825 struct md_rdev *rdev = bio->bi_private;
826 struct mddev *mddev = rdev->mddev;
827
828 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
829 printk("md: super_written gets error=%d, uptodate=%d\n",
830 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
831 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
832 md_error(mddev, rdev);
833 }
834
835 if (atomic_dec_and_test(&mddev->pending_writes))
836 wake_up(&mddev->sb_wait);
837 bio_put(bio);
838 }
839
840 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
841 sector_t sector, int size, struct page *page)
842 {
843 /* write first size bytes of page to sector of rdev
844 * Increment mddev->pending_writes before returning
845 * and decrement it on completion, waking up sb_wait
846 * if zero is reached.
847 * If an error occurred, call md_error
848 */
849 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
850
851 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
852 bio->bi_sector = sector;
853 bio_add_page(bio, page, size, 0);
854 bio->bi_private = rdev;
855 bio->bi_end_io = super_written;
856
857 atomic_inc(&mddev->pending_writes);
858 submit_bio(WRITE_FLUSH_FUA, bio);
859 }
860
861 void md_super_wait(struct mddev *mddev)
862 {
863 /* wait for all superblock writes that were scheduled to complete */
864 DEFINE_WAIT(wq);
865 for(;;) {
866 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
867 if (atomic_read(&mddev->pending_writes)==0)
868 break;
869 schedule();
870 }
871 finish_wait(&mddev->sb_wait, &wq);
872 }
873
874 static void bi_complete(struct bio *bio, int error)
875 {
876 complete((struct completion*)bio->bi_private);
877 }
878
879 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
880 struct page *page, int rw, bool metadata_op)
881 {
882 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
883 struct completion event;
884 int ret;
885
886 rw |= REQ_SYNC;
887
888 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
889 rdev->meta_bdev : rdev->bdev;
890 if (metadata_op)
891 bio->bi_sector = sector + rdev->sb_start;
892 else
893 bio->bi_sector = sector + rdev->data_offset;
894 bio_add_page(bio, page, size, 0);
895 init_completion(&event);
896 bio->bi_private = &event;
897 bio->bi_end_io = bi_complete;
898 submit_bio(rw, bio);
899 wait_for_completion(&event);
900
901 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
902 bio_put(bio);
903 return ret;
904 }
905 EXPORT_SYMBOL_GPL(sync_page_io);
906
907 static int read_disk_sb(struct md_rdev * rdev, int size)
908 {
909 char b[BDEVNAME_SIZE];
910 if (!rdev->sb_page) {
911 MD_BUG();
912 return -EINVAL;
913 }
914 if (rdev->sb_loaded)
915 return 0;
916
917
918 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
919 goto fail;
920 rdev->sb_loaded = 1;
921 return 0;
922
923 fail:
924 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
925 bdevname(rdev->bdev,b));
926 return -EINVAL;
927 }
928
929 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
930 {
931 return sb1->set_uuid0 == sb2->set_uuid0 &&
932 sb1->set_uuid1 == sb2->set_uuid1 &&
933 sb1->set_uuid2 == sb2->set_uuid2 &&
934 sb1->set_uuid3 == sb2->set_uuid3;
935 }
936
937 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
938 {
939 int ret;
940 mdp_super_t *tmp1, *tmp2;
941
942 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
943 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
944
945 if (!tmp1 || !tmp2) {
946 ret = 0;
947 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
948 goto abort;
949 }
950
951 *tmp1 = *sb1;
952 *tmp2 = *sb2;
953
954 /*
955 * nr_disks is not constant
956 */
957 tmp1->nr_disks = 0;
958 tmp2->nr_disks = 0;
959
960 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
961 abort:
962 kfree(tmp1);
963 kfree(tmp2);
964 return ret;
965 }
966
967
968 static u32 md_csum_fold(u32 csum)
969 {
970 csum = (csum & 0xffff) + (csum >> 16);
971 return (csum & 0xffff) + (csum >> 16);
972 }
973
974 static unsigned int calc_sb_csum(mdp_super_t * sb)
975 {
976 u64 newcsum = 0;
977 u32 *sb32 = (u32*)sb;
978 int i;
979 unsigned int disk_csum, csum;
980
981 disk_csum = sb->sb_csum;
982 sb->sb_csum = 0;
983
984 for (i = 0; i < MD_SB_BYTES/4 ; i++)
985 newcsum += sb32[i];
986 csum = (newcsum & 0xffffffff) + (newcsum>>32);
987
988
989 #ifdef CONFIG_ALPHA
990 /* This used to use csum_partial, which was wrong for several
991 * reasons including that different results are returned on
992 * different architectures. It isn't critical that we get exactly
993 * the same return value as before (we always csum_fold before
994 * testing, and that removes any differences). However as we
995 * know that csum_partial always returned a 16bit value on
996 * alphas, do a fold to maximise conformity to previous behaviour.
997 */
998 sb->sb_csum = md_csum_fold(disk_csum);
999 #else
1000 sb->sb_csum = disk_csum;
1001 #endif
1002 return csum;
1003 }
1004
1005
1006 /*
1007 * Handle superblock details.
1008 * We want to be able to handle multiple superblock formats
1009 * so we have a common interface to them all, and an array of
1010 * different handlers.
1011 * We rely on user-space to write the initial superblock, and support
1012 * reading and updating of superblocks.
1013 * Interface methods are:
1014 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1015 * loads and validates a superblock on dev.
1016 * if refdev != NULL, compare superblocks on both devices
1017 * Return:
1018 * 0 - dev has a superblock that is compatible with refdev
1019 * 1 - dev has a superblock that is compatible and newer than refdev
1020 * so dev should be used as the refdev in future
1021 * -EINVAL superblock incompatible or invalid
1022 * -othererror e.g. -EIO
1023 *
1024 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1025 * Verify that dev is acceptable into mddev.
1026 * The first time, mddev->raid_disks will be 0, and data from
1027 * dev should be merged in. Subsequent calls check that dev
1028 * is new enough. Return 0 or -EINVAL
1029 *
1030 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1031 * Update the superblock for rdev with data in mddev
1032 * This does not write to disc.
1033 *
1034 */
1035
1036 struct super_type {
1037 char *name;
1038 struct module *owner;
1039 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1040 int minor_version);
1041 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1042 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1043 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1044 sector_t num_sectors);
1045 };
1046
1047 /*
1048 * Check that the given mddev has no bitmap.
1049 *
1050 * This function is called from the run method of all personalities that do not
1051 * support bitmaps. It prints an error message and returns non-zero if mddev
1052 * has a bitmap. Otherwise, it returns 0.
1053 *
1054 */
1055 int md_check_no_bitmap(struct mddev *mddev)
1056 {
1057 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1058 return 0;
1059 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1060 mdname(mddev), mddev->pers->name);
1061 return 1;
1062 }
1063 EXPORT_SYMBOL(md_check_no_bitmap);
1064
1065 /*
1066 * load_super for 0.90.0
1067 */
1068 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1069 {
1070 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1071 mdp_super_t *sb;
1072 int ret;
1073
1074 /*
1075 * Calculate the position of the superblock (512byte sectors),
1076 * it's at the end of the disk.
1077 *
1078 * It also happens to be a multiple of 4Kb.
1079 */
1080 rdev->sb_start = calc_dev_sboffset(rdev);
1081
1082 ret = read_disk_sb(rdev, MD_SB_BYTES);
1083 if (ret) return ret;
1084
1085 ret = -EINVAL;
1086
1087 bdevname(rdev->bdev, b);
1088 sb = page_address(rdev->sb_page);
1089
1090 if (sb->md_magic != MD_SB_MAGIC) {
1091 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1092 b);
1093 goto abort;
1094 }
1095
1096 if (sb->major_version != 0 ||
1097 sb->minor_version < 90 ||
1098 sb->minor_version > 91) {
1099 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1100 sb->major_version, sb->minor_version,
1101 b);
1102 goto abort;
1103 }
1104
1105 if (sb->raid_disks <= 0)
1106 goto abort;
1107
1108 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1109 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1110 b);
1111 goto abort;
1112 }
1113
1114 rdev->preferred_minor = sb->md_minor;
1115 rdev->data_offset = 0;
1116 rdev->sb_size = MD_SB_BYTES;
1117 rdev->badblocks.shift = -1;
1118
1119 if (sb->level == LEVEL_MULTIPATH)
1120 rdev->desc_nr = -1;
1121 else
1122 rdev->desc_nr = sb->this_disk.number;
1123
1124 if (!refdev) {
1125 ret = 1;
1126 } else {
1127 __u64 ev1, ev2;
1128 mdp_super_t *refsb = page_address(refdev->sb_page);
1129 if (!uuid_equal(refsb, sb)) {
1130 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1131 b, bdevname(refdev->bdev,b2));
1132 goto abort;
1133 }
1134 if (!sb_equal(refsb, sb)) {
1135 printk(KERN_WARNING "md: %s has same UUID"
1136 " but different superblock to %s\n",
1137 b, bdevname(refdev->bdev, b2));
1138 goto abort;
1139 }
1140 ev1 = md_event(sb);
1141 ev2 = md_event(refsb);
1142 if (ev1 > ev2)
1143 ret = 1;
1144 else
1145 ret = 0;
1146 }
1147 rdev->sectors = rdev->sb_start;
1148 /* Limit to 4TB as metadata cannot record more than that */
1149 if (rdev->sectors >= (2ULL << 32))
1150 rdev->sectors = (2ULL << 32) - 2;
1151
1152 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1153 /* "this cannot possibly happen" ... */
1154 ret = -EINVAL;
1155
1156 abort:
1157 return ret;
1158 }
1159
1160 /*
1161 * validate_super for 0.90.0
1162 */
1163 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1164 {
1165 mdp_disk_t *desc;
1166 mdp_super_t *sb = page_address(rdev->sb_page);
1167 __u64 ev1 = md_event(sb);
1168
1169 rdev->raid_disk = -1;
1170 clear_bit(Faulty, &rdev->flags);
1171 clear_bit(In_sync, &rdev->flags);
1172 clear_bit(WriteMostly, &rdev->flags);
1173
1174 if (mddev->raid_disks == 0) {
1175 mddev->major_version = 0;
1176 mddev->minor_version = sb->minor_version;
1177 mddev->patch_version = sb->patch_version;
1178 mddev->external = 0;
1179 mddev->chunk_sectors = sb->chunk_size >> 9;
1180 mddev->ctime = sb->ctime;
1181 mddev->utime = sb->utime;
1182 mddev->level = sb->level;
1183 mddev->clevel[0] = 0;
1184 mddev->layout = sb->layout;
1185 mddev->raid_disks = sb->raid_disks;
1186 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1187 mddev->events = ev1;
1188 mddev->bitmap_info.offset = 0;
1189 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1190
1191 if (mddev->minor_version >= 91) {
1192 mddev->reshape_position = sb->reshape_position;
1193 mddev->delta_disks = sb->delta_disks;
1194 mddev->new_level = sb->new_level;
1195 mddev->new_layout = sb->new_layout;
1196 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1197 } else {
1198 mddev->reshape_position = MaxSector;
1199 mddev->delta_disks = 0;
1200 mddev->new_level = mddev->level;
1201 mddev->new_layout = mddev->layout;
1202 mddev->new_chunk_sectors = mddev->chunk_sectors;
1203 }
1204
1205 if (sb->state & (1<<MD_SB_CLEAN))
1206 mddev->recovery_cp = MaxSector;
1207 else {
1208 if (sb->events_hi == sb->cp_events_hi &&
1209 sb->events_lo == sb->cp_events_lo) {
1210 mddev->recovery_cp = sb->recovery_cp;
1211 } else
1212 mddev->recovery_cp = 0;
1213 }
1214
1215 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1216 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1217 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1218 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1219
1220 mddev->max_disks = MD_SB_DISKS;
1221
1222 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1223 mddev->bitmap_info.file == NULL)
1224 mddev->bitmap_info.offset =
1225 mddev->bitmap_info.default_offset;
1226
1227 } else if (mddev->pers == NULL) {
1228 /* Insist on good event counter while assembling, except
1229 * for spares (which don't need an event count) */
1230 ++ev1;
1231 if (sb->disks[rdev->desc_nr].state & (
1232 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1233 if (ev1 < mddev->events)
1234 return -EINVAL;
1235 } else if (mddev->bitmap) {
1236 /* if adding to array with a bitmap, then we can accept an
1237 * older device ... but not too old.
1238 */
1239 if (ev1 < mddev->bitmap->events_cleared)
1240 return 0;
1241 } else {
1242 if (ev1 < mddev->events)
1243 /* just a hot-add of a new device, leave raid_disk at -1 */
1244 return 0;
1245 }
1246
1247 if (mddev->level != LEVEL_MULTIPATH) {
1248 desc = sb->disks + rdev->desc_nr;
1249
1250 if (desc->state & (1<<MD_DISK_FAULTY))
1251 set_bit(Faulty, &rdev->flags);
1252 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1253 desc->raid_disk < mddev->raid_disks */) {
1254 set_bit(In_sync, &rdev->flags);
1255 rdev->raid_disk = desc->raid_disk;
1256 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1257 /* active but not in sync implies recovery up to
1258 * reshape position. We don't know exactly where
1259 * that is, so set to zero for now */
1260 if (mddev->minor_version >= 91) {
1261 rdev->recovery_offset = 0;
1262 rdev->raid_disk = desc->raid_disk;
1263 }
1264 }
1265 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1266 set_bit(WriteMostly, &rdev->flags);
1267 } else /* MULTIPATH are always insync */
1268 set_bit(In_sync, &rdev->flags);
1269 return 0;
1270 }
1271
1272 /*
1273 * sync_super for 0.90.0
1274 */
1275 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1276 {
1277 mdp_super_t *sb;
1278 struct md_rdev *rdev2;
1279 int next_spare = mddev->raid_disks;
1280
1281
1282 /* make rdev->sb match mddev data..
1283 *
1284 * 1/ zero out disks
1285 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1286 * 3/ any empty disks < next_spare become removed
1287 *
1288 * disks[0] gets initialised to REMOVED because
1289 * we cannot be sure from other fields if it has
1290 * been initialised or not.
1291 */
1292 int i;
1293 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1294
1295 rdev->sb_size = MD_SB_BYTES;
1296
1297 sb = page_address(rdev->sb_page);
1298
1299 memset(sb, 0, sizeof(*sb));
1300
1301 sb->md_magic = MD_SB_MAGIC;
1302 sb->major_version = mddev->major_version;
1303 sb->patch_version = mddev->patch_version;
1304 sb->gvalid_words = 0; /* ignored */
1305 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1306 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1307 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1308 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1309
1310 sb->ctime = mddev->ctime;
1311 sb->level = mddev->level;
1312 sb->size = mddev->dev_sectors / 2;
1313 sb->raid_disks = mddev->raid_disks;
1314 sb->md_minor = mddev->md_minor;
1315 sb->not_persistent = 0;
1316 sb->utime = mddev->utime;
1317 sb->state = 0;
1318 sb->events_hi = (mddev->events>>32);
1319 sb->events_lo = (u32)mddev->events;
1320
1321 if (mddev->reshape_position == MaxSector)
1322 sb->minor_version = 90;
1323 else {
1324 sb->minor_version = 91;
1325 sb->reshape_position = mddev->reshape_position;
1326 sb->new_level = mddev->new_level;
1327 sb->delta_disks = mddev->delta_disks;
1328 sb->new_layout = mddev->new_layout;
1329 sb->new_chunk = mddev->new_chunk_sectors << 9;
1330 }
1331 mddev->minor_version = sb->minor_version;
1332 if (mddev->in_sync)
1333 {
1334 sb->recovery_cp = mddev->recovery_cp;
1335 sb->cp_events_hi = (mddev->events>>32);
1336 sb->cp_events_lo = (u32)mddev->events;
1337 if (mddev->recovery_cp == MaxSector)
1338 sb->state = (1<< MD_SB_CLEAN);
1339 } else
1340 sb->recovery_cp = 0;
1341
1342 sb->layout = mddev->layout;
1343 sb->chunk_size = mddev->chunk_sectors << 9;
1344
1345 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1346 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1347
1348 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1349 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1350 mdp_disk_t *d;
1351 int desc_nr;
1352 int is_active = test_bit(In_sync, &rdev2->flags);
1353
1354 if (rdev2->raid_disk >= 0 &&
1355 sb->minor_version >= 91)
1356 /* we have nowhere to store the recovery_offset,
1357 * but if it is not below the reshape_position,
1358 * we can piggy-back on that.
1359 */
1360 is_active = 1;
1361 if (rdev2->raid_disk < 0 ||
1362 test_bit(Faulty, &rdev2->flags))
1363 is_active = 0;
1364 if (is_active)
1365 desc_nr = rdev2->raid_disk;
1366 else
1367 desc_nr = next_spare++;
1368 rdev2->desc_nr = desc_nr;
1369 d = &sb->disks[rdev2->desc_nr];
1370 nr_disks++;
1371 d->number = rdev2->desc_nr;
1372 d->major = MAJOR(rdev2->bdev->bd_dev);
1373 d->minor = MINOR(rdev2->bdev->bd_dev);
1374 if (is_active)
1375 d->raid_disk = rdev2->raid_disk;
1376 else
1377 d->raid_disk = rdev2->desc_nr; /* compatibility */
1378 if (test_bit(Faulty, &rdev2->flags))
1379 d->state = (1<<MD_DISK_FAULTY);
1380 else if (is_active) {
1381 d->state = (1<<MD_DISK_ACTIVE);
1382 if (test_bit(In_sync, &rdev2->flags))
1383 d->state |= (1<<MD_DISK_SYNC);
1384 active++;
1385 working++;
1386 } else {
1387 d->state = 0;
1388 spare++;
1389 working++;
1390 }
1391 if (test_bit(WriteMostly, &rdev2->flags))
1392 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1393 }
1394 /* now set the "removed" and "faulty" bits on any missing devices */
1395 for (i=0 ; i < mddev->raid_disks ; i++) {
1396 mdp_disk_t *d = &sb->disks[i];
1397 if (d->state == 0 && d->number == 0) {
1398 d->number = i;
1399 d->raid_disk = i;
1400 d->state = (1<<MD_DISK_REMOVED);
1401 d->state |= (1<<MD_DISK_FAULTY);
1402 failed++;
1403 }
1404 }
1405 sb->nr_disks = nr_disks;
1406 sb->active_disks = active;
1407 sb->working_disks = working;
1408 sb->failed_disks = failed;
1409 sb->spare_disks = spare;
1410
1411 sb->this_disk = sb->disks[rdev->desc_nr];
1412 sb->sb_csum = calc_sb_csum(sb);
1413 }
1414
1415 /*
1416 * rdev_size_change for 0.90.0
1417 */
1418 static unsigned long long
1419 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1420 {
1421 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1422 return 0; /* component must fit device */
1423 if (rdev->mddev->bitmap_info.offset)
1424 return 0; /* can't move bitmap */
1425 rdev->sb_start = calc_dev_sboffset(rdev);
1426 if (!num_sectors || num_sectors > rdev->sb_start)
1427 num_sectors = rdev->sb_start;
1428 /* Limit to 4TB as metadata cannot record more than that.
1429 * 4TB == 2^32 KB, or 2*2^32 sectors.
1430 */
1431 if (num_sectors >= (2ULL << 32))
1432 num_sectors = (2ULL << 32) - 2;
1433 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1434 rdev->sb_page);
1435 md_super_wait(rdev->mddev);
1436 return num_sectors;
1437 }
1438
1439
1440 /*
1441 * version 1 superblock
1442 */
1443
1444 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1445 {
1446 __le32 disk_csum;
1447 u32 csum;
1448 unsigned long long newcsum;
1449 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1450 __le32 *isuper = (__le32*)sb;
1451 int i;
1452
1453 disk_csum = sb->sb_csum;
1454 sb->sb_csum = 0;
1455 newcsum = 0;
1456 for (i=0; size>=4; size -= 4 )
1457 newcsum += le32_to_cpu(*isuper++);
1458
1459 if (size == 2)
1460 newcsum += le16_to_cpu(*(__le16*) isuper);
1461
1462 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1463 sb->sb_csum = disk_csum;
1464 return cpu_to_le32(csum);
1465 }
1466
1467 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1468 int acknowledged);
1469 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1470 {
1471 struct mdp_superblock_1 *sb;
1472 int ret;
1473 sector_t sb_start;
1474 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1475 int bmask;
1476
1477 /*
1478 * Calculate the position of the superblock in 512byte sectors.
1479 * It is always aligned to a 4K boundary and
1480 * depeding on minor_version, it can be:
1481 * 0: At least 8K, but less than 12K, from end of device
1482 * 1: At start of device
1483 * 2: 4K from start of device.
1484 */
1485 switch(minor_version) {
1486 case 0:
1487 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1488 sb_start -= 8*2;
1489 sb_start &= ~(sector_t)(4*2-1);
1490 break;
1491 case 1:
1492 sb_start = 0;
1493 break;
1494 case 2:
1495 sb_start = 8;
1496 break;
1497 default:
1498 return -EINVAL;
1499 }
1500 rdev->sb_start = sb_start;
1501
1502 /* superblock is rarely larger than 1K, but it can be larger,
1503 * and it is safe to read 4k, so we do that
1504 */
1505 ret = read_disk_sb(rdev, 4096);
1506 if (ret) return ret;
1507
1508
1509 sb = page_address(rdev->sb_page);
1510
1511 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1512 sb->major_version != cpu_to_le32(1) ||
1513 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1514 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1515 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1516 return -EINVAL;
1517
1518 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1519 printk("md: invalid superblock checksum on %s\n",
1520 bdevname(rdev->bdev,b));
1521 return -EINVAL;
1522 }
1523 if (le64_to_cpu(sb->data_size) < 10) {
1524 printk("md: data_size too small on %s\n",
1525 bdevname(rdev->bdev,b));
1526 return -EINVAL;
1527 }
1528
1529 rdev->preferred_minor = 0xffff;
1530 rdev->data_offset = le64_to_cpu(sb->data_offset);
1531 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1532
1533 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1534 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1535 if (rdev->sb_size & bmask)
1536 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1537
1538 if (minor_version
1539 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1540 return -EINVAL;
1541
1542 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1543 rdev->desc_nr = -1;
1544 else
1545 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1546
1547 if (!rdev->bb_page) {
1548 rdev->bb_page = alloc_page(GFP_KERNEL);
1549 if (!rdev->bb_page)
1550 return -ENOMEM;
1551 }
1552 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1553 rdev->badblocks.count == 0) {
1554 /* need to load the bad block list.
1555 * Currently we limit it to one page.
1556 */
1557 s32 offset;
1558 sector_t bb_sector;
1559 u64 *bbp;
1560 int i;
1561 int sectors = le16_to_cpu(sb->bblog_size);
1562 if (sectors > (PAGE_SIZE / 512))
1563 return -EINVAL;
1564 offset = le32_to_cpu(sb->bblog_offset);
1565 if (offset == 0)
1566 return -EINVAL;
1567 bb_sector = (long long)offset;
1568 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1569 rdev->bb_page, READ, true))
1570 return -EIO;
1571 bbp = (u64 *)page_address(rdev->bb_page);
1572 rdev->badblocks.shift = sb->bblog_shift;
1573 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1574 u64 bb = le64_to_cpu(*bbp);
1575 int count = bb & (0x3ff);
1576 u64 sector = bb >> 10;
1577 sector <<= sb->bblog_shift;
1578 count <<= sb->bblog_shift;
1579 if (bb + 1 == 0)
1580 break;
1581 if (md_set_badblocks(&rdev->badblocks,
1582 sector, count, 1) == 0)
1583 return -EINVAL;
1584 }
1585 } else if (sb->bblog_offset == 0)
1586 rdev->badblocks.shift = -1;
1587
1588 if (!refdev) {
1589 ret = 1;
1590 } else {
1591 __u64 ev1, ev2;
1592 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1593
1594 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1595 sb->level != refsb->level ||
1596 sb->layout != refsb->layout ||
1597 sb->chunksize != refsb->chunksize) {
1598 printk(KERN_WARNING "md: %s has strangely different"
1599 " superblock to %s\n",
1600 bdevname(rdev->bdev,b),
1601 bdevname(refdev->bdev,b2));
1602 return -EINVAL;
1603 }
1604 ev1 = le64_to_cpu(sb->events);
1605 ev2 = le64_to_cpu(refsb->events);
1606
1607 if (ev1 > ev2)
1608 ret = 1;
1609 else
1610 ret = 0;
1611 }
1612 if (minor_version)
1613 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1614 le64_to_cpu(sb->data_offset);
1615 else
1616 rdev->sectors = rdev->sb_start;
1617 if (rdev->sectors < le64_to_cpu(sb->data_size))
1618 return -EINVAL;
1619 rdev->sectors = le64_to_cpu(sb->data_size);
1620 if (le64_to_cpu(sb->size) > rdev->sectors)
1621 return -EINVAL;
1622 return ret;
1623 }
1624
1625 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1626 {
1627 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1628 __u64 ev1 = le64_to_cpu(sb->events);
1629
1630 rdev->raid_disk = -1;
1631 clear_bit(Faulty, &rdev->flags);
1632 clear_bit(In_sync, &rdev->flags);
1633 clear_bit(WriteMostly, &rdev->flags);
1634
1635 if (mddev->raid_disks == 0) {
1636 mddev->major_version = 1;
1637 mddev->patch_version = 0;
1638 mddev->external = 0;
1639 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1640 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1641 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1642 mddev->level = le32_to_cpu(sb->level);
1643 mddev->clevel[0] = 0;
1644 mddev->layout = le32_to_cpu(sb->layout);
1645 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1646 mddev->dev_sectors = le64_to_cpu(sb->size);
1647 mddev->events = ev1;
1648 mddev->bitmap_info.offset = 0;
1649 mddev->bitmap_info.default_offset = 1024 >> 9;
1650
1651 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1652 memcpy(mddev->uuid, sb->set_uuid, 16);
1653
1654 mddev->max_disks = (4096-256)/2;
1655
1656 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1657 mddev->bitmap_info.file == NULL )
1658 mddev->bitmap_info.offset =
1659 (__s32)le32_to_cpu(sb->bitmap_offset);
1660
1661 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1662 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1663 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1664 mddev->new_level = le32_to_cpu(sb->new_level);
1665 mddev->new_layout = le32_to_cpu(sb->new_layout);
1666 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1667 } else {
1668 mddev->reshape_position = MaxSector;
1669 mddev->delta_disks = 0;
1670 mddev->new_level = mddev->level;
1671 mddev->new_layout = mddev->layout;
1672 mddev->new_chunk_sectors = mddev->chunk_sectors;
1673 }
1674
1675 } else if (mddev->pers == NULL) {
1676 /* Insist of good event counter while assembling, except for
1677 * spares (which don't need an event count) */
1678 ++ev1;
1679 if (rdev->desc_nr >= 0 &&
1680 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1681 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1682 if (ev1 < mddev->events)
1683 return -EINVAL;
1684 } else if (mddev->bitmap) {
1685 /* If adding to array with a bitmap, then we can accept an
1686 * older device, but not too old.
1687 */
1688 if (ev1 < mddev->bitmap->events_cleared)
1689 return 0;
1690 } else {
1691 if (ev1 < mddev->events)
1692 /* just a hot-add of a new device, leave raid_disk at -1 */
1693 return 0;
1694 }
1695 if (mddev->level != LEVEL_MULTIPATH) {
1696 int role;
1697 if (rdev->desc_nr < 0 ||
1698 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1699 role = 0xffff;
1700 rdev->desc_nr = -1;
1701 } else
1702 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1703 switch(role) {
1704 case 0xffff: /* spare */
1705 break;
1706 case 0xfffe: /* faulty */
1707 set_bit(Faulty, &rdev->flags);
1708 break;
1709 default:
1710 if ((le32_to_cpu(sb->feature_map) &
1711 MD_FEATURE_RECOVERY_OFFSET))
1712 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1713 else
1714 set_bit(In_sync, &rdev->flags);
1715 rdev->raid_disk = role;
1716 break;
1717 }
1718 if (sb->devflags & WriteMostly1)
1719 set_bit(WriteMostly, &rdev->flags);
1720 } else /* MULTIPATH are always insync */
1721 set_bit(In_sync, &rdev->flags);
1722
1723 return 0;
1724 }
1725
1726 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728 struct mdp_superblock_1 *sb;
1729 struct md_rdev *rdev2;
1730 int max_dev, i;
1731 /* make rdev->sb match mddev and rdev data. */
1732
1733 sb = page_address(rdev->sb_page);
1734
1735 sb->feature_map = 0;
1736 sb->pad0 = 0;
1737 sb->recovery_offset = cpu_to_le64(0);
1738 memset(sb->pad1, 0, sizeof(sb->pad1));
1739 memset(sb->pad3, 0, sizeof(sb->pad3));
1740
1741 sb->utime = cpu_to_le64((__u64)mddev->utime);
1742 sb->events = cpu_to_le64(mddev->events);
1743 if (mddev->in_sync)
1744 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745 else
1746 sb->resync_offset = cpu_to_le64(0);
1747
1748 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1749
1750 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751 sb->size = cpu_to_le64(mddev->dev_sectors);
1752 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753 sb->level = cpu_to_le32(mddev->level);
1754 sb->layout = cpu_to_le32(mddev->layout);
1755
1756 if (test_bit(WriteMostly, &rdev->flags))
1757 sb->devflags |= WriteMostly1;
1758 else
1759 sb->devflags &= ~WriteMostly1;
1760
1761 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1762 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1763 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1764 }
1765
1766 if (rdev->raid_disk >= 0 &&
1767 !test_bit(In_sync, &rdev->flags)) {
1768 sb->feature_map |=
1769 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1770 sb->recovery_offset =
1771 cpu_to_le64(rdev->recovery_offset);
1772 }
1773
1774 if (mddev->reshape_position != MaxSector) {
1775 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1776 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1777 sb->new_layout = cpu_to_le32(mddev->new_layout);
1778 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1779 sb->new_level = cpu_to_le32(mddev->new_level);
1780 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1781 }
1782
1783 if (rdev->badblocks.count == 0)
1784 /* Nothing to do for bad blocks*/ ;
1785 else if (sb->bblog_offset == 0)
1786 /* Cannot record bad blocks on this device */
1787 md_error(mddev, rdev);
1788 else {
1789 struct badblocks *bb = &rdev->badblocks;
1790 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1791 u64 *p = bb->page;
1792 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1793 if (bb->changed) {
1794 unsigned seq;
1795
1796 retry:
1797 seq = read_seqbegin(&bb->lock);
1798
1799 memset(bbp, 0xff, PAGE_SIZE);
1800
1801 for (i = 0 ; i < bb->count ; i++) {
1802 u64 internal_bb = *p++;
1803 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1804 | BB_LEN(internal_bb));
1805 *bbp++ = cpu_to_le64(store_bb);
1806 }
1807 if (read_seqretry(&bb->lock, seq))
1808 goto retry;
1809
1810 bb->sector = (rdev->sb_start +
1811 (int)le32_to_cpu(sb->bblog_offset));
1812 bb->size = le16_to_cpu(sb->bblog_size);
1813 bb->changed = 0;
1814 }
1815 }
1816
1817 max_dev = 0;
1818 list_for_each_entry(rdev2, &mddev->disks, same_set)
1819 if (rdev2->desc_nr+1 > max_dev)
1820 max_dev = rdev2->desc_nr+1;
1821
1822 if (max_dev > le32_to_cpu(sb->max_dev)) {
1823 int bmask;
1824 sb->max_dev = cpu_to_le32(max_dev);
1825 rdev->sb_size = max_dev * 2 + 256;
1826 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1827 if (rdev->sb_size & bmask)
1828 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1829 } else
1830 max_dev = le32_to_cpu(sb->max_dev);
1831
1832 for (i=0; i<max_dev;i++)
1833 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1834
1835 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1836 i = rdev2->desc_nr;
1837 if (test_bit(Faulty, &rdev2->flags))
1838 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1839 else if (test_bit(In_sync, &rdev2->flags))
1840 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1841 else if (rdev2->raid_disk >= 0)
1842 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843 else
1844 sb->dev_roles[i] = cpu_to_le16(0xffff);
1845 }
1846
1847 sb->sb_csum = calc_sb_1_csum(sb);
1848 }
1849
1850 static unsigned long long
1851 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1852 {
1853 struct mdp_superblock_1 *sb;
1854 sector_t max_sectors;
1855 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1856 return 0; /* component must fit device */
1857 if (rdev->sb_start < rdev->data_offset) {
1858 /* minor versions 1 and 2; superblock before data */
1859 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1860 max_sectors -= rdev->data_offset;
1861 if (!num_sectors || num_sectors > max_sectors)
1862 num_sectors = max_sectors;
1863 } else if (rdev->mddev->bitmap_info.offset) {
1864 /* minor version 0 with bitmap we can't move */
1865 return 0;
1866 } else {
1867 /* minor version 0; superblock after data */
1868 sector_t sb_start;
1869 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1870 sb_start &= ~(sector_t)(4*2 - 1);
1871 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1872 if (!num_sectors || num_sectors > max_sectors)
1873 num_sectors = max_sectors;
1874 rdev->sb_start = sb_start;
1875 }
1876 sb = page_address(rdev->sb_page);
1877 sb->data_size = cpu_to_le64(num_sectors);
1878 sb->super_offset = rdev->sb_start;
1879 sb->sb_csum = calc_sb_1_csum(sb);
1880 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1881 rdev->sb_page);
1882 md_super_wait(rdev->mddev);
1883 return num_sectors;
1884 }
1885
1886 static struct super_type super_types[] = {
1887 [0] = {
1888 .name = "0.90.0",
1889 .owner = THIS_MODULE,
1890 .load_super = super_90_load,
1891 .validate_super = super_90_validate,
1892 .sync_super = super_90_sync,
1893 .rdev_size_change = super_90_rdev_size_change,
1894 },
1895 [1] = {
1896 .name = "md-1",
1897 .owner = THIS_MODULE,
1898 .load_super = super_1_load,
1899 .validate_super = super_1_validate,
1900 .sync_super = super_1_sync,
1901 .rdev_size_change = super_1_rdev_size_change,
1902 },
1903 };
1904
1905 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1906 {
1907 if (mddev->sync_super) {
1908 mddev->sync_super(mddev, rdev);
1909 return;
1910 }
1911
1912 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1913
1914 super_types[mddev->major_version].sync_super(mddev, rdev);
1915 }
1916
1917 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1918 {
1919 struct md_rdev *rdev, *rdev2;
1920
1921 rcu_read_lock();
1922 rdev_for_each_rcu(rdev, mddev1)
1923 rdev_for_each_rcu(rdev2, mddev2)
1924 if (rdev->bdev->bd_contains ==
1925 rdev2->bdev->bd_contains) {
1926 rcu_read_unlock();
1927 return 1;
1928 }
1929 rcu_read_unlock();
1930 return 0;
1931 }
1932
1933 static LIST_HEAD(pending_raid_disks);
1934
1935 /*
1936 * Try to register data integrity profile for an mddev
1937 *
1938 * This is called when an array is started and after a disk has been kicked
1939 * from the array. It only succeeds if all working and active component devices
1940 * are integrity capable with matching profiles.
1941 */
1942 int md_integrity_register(struct mddev *mddev)
1943 {
1944 struct md_rdev *rdev, *reference = NULL;
1945
1946 if (list_empty(&mddev->disks))
1947 return 0; /* nothing to do */
1948 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1949 return 0; /* shouldn't register, or already is */
1950 list_for_each_entry(rdev, &mddev->disks, same_set) {
1951 /* skip spares and non-functional disks */
1952 if (test_bit(Faulty, &rdev->flags))
1953 continue;
1954 if (rdev->raid_disk < 0)
1955 continue;
1956 if (!reference) {
1957 /* Use the first rdev as the reference */
1958 reference = rdev;
1959 continue;
1960 }
1961 /* does this rdev's profile match the reference profile? */
1962 if (blk_integrity_compare(reference->bdev->bd_disk,
1963 rdev->bdev->bd_disk) < 0)
1964 return -EINVAL;
1965 }
1966 if (!reference || !bdev_get_integrity(reference->bdev))
1967 return 0;
1968 /*
1969 * All component devices are integrity capable and have matching
1970 * profiles, register the common profile for the md device.
1971 */
1972 if (blk_integrity_register(mddev->gendisk,
1973 bdev_get_integrity(reference->bdev)) != 0) {
1974 printk(KERN_ERR "md: failed to register integrity for %s\n",
1975 mdname(mddev));
1976 return -EINVAL;
1977 }
1978 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1979 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1980 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1981 mdname(mddev));
1982 return -EINVAL;
1983 }
1984 return 0;
1985 }
1986 EXPORT_SYMBOL(md_integrity_register);
1987
1988 /* Disable data integrity if non-capable/non-matching disk is being added */
1989 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1990 {
1991 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1992 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1993
1994 if (!bi_mddev) /* nothing to do */
1995 return;
1996 if (rdev->raid_disk < 0) /* skip spares */
1997 return;
1998 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1999 rdev->bdev->bd_disk) >= 0)
2000 return;
2001 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2002 blk_integrity_unregister(mddev->gendisk);
2003 }
2004 EXPORT_SYMBOL(md_integrity_add_rdev);
2005
2006 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2007 {
2008 char b[BDEVNAME_SIZE];
2009 struct kobject *ko;
2010 char *s;
2011 int err;
2012
2013 if (rdev->mddev) {
2014 MD_BUG();
2015 return -EINVAL;
2016 }
2017
2018 /* prevent duplicates */
2019 if (find_rdev(mddev, rdev->bdev->bd_dev))
2020 return -EEXIST;
2021
2022 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2023 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2024 rdev->sectors < mddev->dev_sectors)) {
2025 if (mddev->pers) {
2026 /* Cannot change size, so fail
2027 * If mddev->level <= 0, then we don't care
2028 * about aligning sizes (e.g. linear)
2029 */
2030 if (mddev->level > 0)
2031 return -ENOSPC;
2032 } else
2033 mddev->dev_sectors = rdev->sectors;
2034 }
2035
2036 /* Verify rdev->desc_nr is unique.
2037 * If it is -1, assign a free number, else
2038 * check number is not in use
2039 */
2040 if (rdev->desc_nr < 0) {
2041 int choice = 0;
2042 if (mddev->pers) choice = mddev->raid_disks;
2043 while (find_rdev_nr(mddev, choice))
2044 choice++;
2045 rdev->desc_nr = choice;
2046 } else {
2047 if (find_rdev_nr(mddev, rdev->desc_nr))
2048 return -EBUSY;
2049 }
2050 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2051 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2052 mdname(mddev), mddev->max_disks);
2053 return -EBUSY;
2054 }
2055 bdevname(rdev->bdev,b);
2056 while ( (s=strchr(b, '/')) != NULL)
2057 *s = '!';
2058
2059 rdev->mddev = mddev;
2060 printk(KERN_INFO "md: bind<%s>\n", b);
2061
2062 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2063 goto fail;
2064
2065 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2066 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2067 /* failure here is OK */;
2068 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2069
2070 list_add_rcu(&rdev->same_set, &mddev->disks);
2071 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2072
2073 /* May as well allow recovery to be retried once */
2074 mddev->recovery_disabled++;
2075
2076 return 0;
2077
2078 fail:
2079 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2080 b, mdname(mddev));
2081 return err;
2082 }
2083
2084 static void md_delayed_delete(struct work_struct *ws)
2085 {
2086 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2087 kobject_del(&rdev->kobj);
2088 kobject_put(&rdev->kobj);
2089 }
2090
2091 static void unbind_rdev_from_array(struct md_rdev * rdev)
2092 {
2093 char b[BDEVNAME_SIZE];
2094 if (!rdev->mddev) {
2095 MD_BUG();
2096 return;
2097 }
2098 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2099 list_del_rcu(&rdev->same_set);
2100 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2101 rdev->mddev = NULL;
2102 sysfs_remove_link(&rdev->kobj, "block");
2103 sysfs_put(rdev->sysfs_state);
2104 rdev->sysfs_state = NULL;
2105 kfree(rdev->badblocks.page);
2106 rdev->badblocks.count = 0;
2107 rdev->badblocks.page = NULL;
2108 /* We need to delay this, otherwise we can deadlock when
2109 * writing to 'remove' to "dev/state". We also need
2110 * to delay it due to rcu usage.
2111 */
2112 synchronize_rcu();
2113 INIT_WORK(&rdev->del_work, md_delayed_delete);
2114 kobject_get(&rdev->kobj);
2115 queue_work(md_misc_wq, &rdev->del_work);
2116 }
2117
2118 /*
2119 * prevent the device from being mounted, repartitioned or
2120 * otherwise reused by a RAID array (or any other kernel
2121 * subsystem), by bd_claiming the device.
2122 */
2123 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2124 {
2125 int err = 0;
2126 struct block_device *bdev;
2127 char b[BDEVNAME_SIZE];
2128
2129 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2130 shared ? (struct md_rdev *)lock_rdev : rdev);
2131 if (IS_ERR(bdev)) {
2132 printk(KERN_ERR "md: could not open %s.\n",
2133 __bdevname(dev, b));
2134 return PTR_ERR(bdev);
2135 }
2136 rdev->bdev = bdev;
2137 return err;
2138 }
2139
2140 static void unlock_rdev(struct md_rdev *rdev)
2141 {
2142 struct block_device *bdev = rdev->bdev;
2143 rdev->bdev = NULL;
2144 if (!bdev)
2145 MD_BUG();
2146 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2147 }
2148
2149 void md_autodetect_dev(dev_t dev);
2150
2151 static void export_rdev(struct md_rdev * rdev)
2152 {
2153 char b[BDEVNAME_SIZE];
2154 printk(KERN_INFO "md: export_rdev(%s)\n",
2155 bdevname(rdev->bdev,b));
2156 if (rdev->mddev)
2157 MD_BUG();
2158 free_disk_sb(rdev);
2159 #ifndef MODULE
2160 if (test_bit(AutoDetected, &rdev->flags))
2161 md_autodetect_dev(rdev->bdev->bd_dev);
2162 #endif
2163 unlock_rdev(rdev);
2164 kobject_put(&rdev->kobj);
2165 }
2166
2167 static void kick_rdev_from_array(struct md_rdev * rdev)
2168 {
2169 unbind_rdev_from_array(rdev);
2170 export_rdev(rdev);
2171 }
2172
2173 static void export_array(struct mddev *mddev)
2174 {
2175 struct md_rdev *rdev, *tmp;
2176
2177 rdev_for_each(rdev, tmp, mddev) {
2178 if (!rdev->mddev) {
2179 MD_BUG();
2180 continue;
2181 }
2182 kick_rdev_from_array(rdev);
2183 }
2184 if (!list_empty(&mddev->disks))
2185 MD_BUG();
2186 mddev->raid_disks = 0;
2187 mddev->major_version = 0;
2188 }
2189
2190 static void print_desc(mdp_disk_t *desc)
2191 {
2192 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2193 desc->major,desc->minor,desc->raid_disk,desc->state);
2194 }
2195
2196 static void print_sb_90(mdp_super_t *sb)
2197 {
2198 int i;
2199
2200 printk(KERN_INFO
2201 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2202 sb->major_version, sb->minor_version, sb->patch_version,
2203 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2204 sb->ctime);
2205 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2206 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2207 sb->md_minor, sb->layout, sb->chunk_size);
2208 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2209 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2210 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2211 sb->failed_disks, sb->spare_disks,
2212 sb->sb_csum, (unsigned long)sb->events_lo);
2213
2214 printk(KERN_INFO);
2215 for (i = 0; i < MD_SB_DISKS; i++) {
2216 mdp_disk_t *desc;
2217
2218 desc = sb->disks + i;
2219 if (desc->number || desc->major || desc->minor ||
2220 desc->raid_disk || (desc->state && (desc->state != 4))) {
2221 printk(" D %2d: ", i);
2222 print_desc(desc);
2223 }
2224 }
2225 printk(KERN_INFO "md: THIS: ");
2226 print_desc(&sb->this_disk);
2227 }
2228
2229 static void print_sb_1(struct mdp_superblock_1 *sb)
2230 {
2231 __u8 *uuid;
2232
2233 uuid = sb->set_uuid;
2234 printk(KERN_INFO
2235 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2236 "md: Name: \"%s\" CT:%llu\n",
2237 le32_to_cpu(sb->major_version),
2238 le32_to_cpu(sb->feature_map),
2239 uuid,
2240 sb->set_name,
2241 (unsigned long long)le64_to_cpu(sb->ctime)
2242 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2243
2244 uuid = sb->device_uuid;
2245 printk(KERN_INFO
2246 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2247 " RO:%llu\n"
2248 "md: Dev:%08x UUID: %pU\n"
2249 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2250 "md: (MaxDev:%u) \n",
2251 le32_to_cpu(sb->level),
2252 (unsigned long long)le64_to_cpu(sb->size),
2253 le32_to_cpu(sb->raid_disks),
2254 le32_to_cpu(sb->layout),
2255 le32_to_cpu(sb->chunksize),
2256 (unsigned long long)le64_to_cpu(sb->data_offset),
2257 (unsigned long long)le64_to_cpu(sb->data_size),
2258 (unsigned long long)le64_to_cpu(sb->super_offset),
2259 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2260 le32_to_cpu(sb->dev_number),
2261 uuid,
2262 sb->devflags,
2263 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2264 (unsigned long long)le64_to_cpu(sb->events),
2265 (unsigned long long)le64_to_cpu(sb->resync_offset),
2266 le32_to_cpu(sb->sb_csum),
2267 le32_to_cpu(sb->max_dev)
2268 );
2269 }
2270
2271 static void print_rdev(struct md_rdev *rdev, int major_version)
2272 {
2273 char b[BDEVNAME_SIZE];
2274 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2275 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2276 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2277 rdev->desc_nr);
2278 if (rdev->sb_loaded) {
2279 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2280 switch (major_version) {
2281 case 0:
2282 print_sb_90(page_address(rdev->sb_page));
2283 break;
2284 case 1:
2285 print_sb_1(page_address(rdev->sb_page));
2286 break;
2287 }
2288 } else
2289 printk(KERN_INFO "md: no rdev superblock!\n");
2290 }
2291
2292 static void md_print_devices(void)
2293 {
2294 struct list_head *tmp;
2295 struct md_rdev *rdev;
2296 struct mddev *mddev;
2297 char b[BDEVNAME_SIZE];
2298
2299 printk("\n");
2300 printk("md: **********************************\n");
2301 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2302 printk("md: **********************************\n");
2303 for_each_mddev(mddev, tmp) {
2304
2305 if (mddev->bitmap)
2306 bitmap_print_sb(mddev->bitmap);
2307 else
2308 printk("%s: ", mdname(mddev));
2309 list_for_each_entry(rdev, &mddev->disks, same_set)
2310 printk("<%s>", bdevname(rdev->bdev,b));
2311 printk("\n");
2312
2313 list_for_each_entry(rdev, &mddev->disks, same_set)
2314 print_rdev(rdev, mddev->major_version);
2315 }
2316 printk("md: **********************************\n");
2317 printk("\n");
2318 }
2319
2320
2321 static void sync_sbs(struct mddev * mddev, int nospares)
2322 {
2323 /* Update each superblock (in-memory image), but
2324 * if we are allowed to, skip spares which already
2325 * have the right event counter, or have one earlier
2326 * (which would mean they aren't being marked as dirty
2327 * with the rest of the array)
2328 */
2329 struct md_rdev *rdev;
2330 list_for_each_entry(rdev, &mddev->disks, same_set) {
2331 if (rdev->sb_events == mddev->events ||
2332 (nospares &&
2333 rdev->raid_disk < 0 &&
2334 rdev->sb_events+1 == mddev->events)) {
2335 /* Don't update this superblock */
2336 rdev->sb_loaded = 2;
2337 } else {
2338 sync_super(mddev, rdev);
2339 rdev->sb_loaded = 1;
2340 }
2341 }
2342 }
2343
2344 static void md_update_sb(struct mddev * mddev, int force_change)
2345 {
2346 struct md_rdev *rdev;
2347 int sync_req;
2348 int nospares = 0;
2349 int any_badblocks_changed = 0;
2350
2351 repeat:
2352 /* First make sure individual recovery_offsets are correct */
2353 list_for_each_entry(rdev, &mddev->disks, same_set) {
2354 if (rdev->raid_disk >= 0 &&
2355 mddev->delta_disks >= 0 &&
2356 !test_bit(In_sync, &rdev->flags) &&
2357 mddev->curr_resync_completed > rdev->recovery_offset)
2358 rdev->recovery_offset = mddev->curr_resync_completed;
2359
2360 }
2361 if (!mddev->persistent) {
2362 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2363 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2364 if (!mddev->external) {
2365 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2366 list_for_each_entry(rdev, &mddev->disks, same_set) {
2367 if (rdev->badblocks.changed) {
2368 md_ack_all_badblocks(&rdev->badblocks);
2369 md_error(mddev, rdev);
2370 }
2371 clear_bit(Blocked, &rdev->flags);
2372 clear_bit(BlockedBadBlocks, &rdev->flags);
2373 wake_up(&rdev->blocked_wait);
2374 }
2375 }
2376 wake_up(&mddev->sb_wait);
2377 return;
2378 }
2379
2380 spin_lock_irq(&mddev->write_lock);
2381
2382 mddev->utime = get_seconds();
2383
2384 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2385 force_change = 1;
2386 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2387 /* just a clean<-> dirty transition, possibly leave spares alone,
2388 * though if events isn't the right even/odd, we will have to do
2389 * spares after all
2390 */
2391 nospares = 1;
2392 if (force_change)
2393 nospares = 0;
2394 if (mddev->degraded)
2395 /* If the array is degraded, then skipping spares is both
2396 * dangerous and fairly pointless.
2397 * Dangerous because a device that was removed from the array
2398 * might have a event_count that still looks up-to-date,
2399 * so it can be re-added without a resync.
2400 * Pointless because if there are any spares to skip,
2401 * then a recovery will happen and soon that array won't
2402 * be degraded any more and the spare can go back to sleep then.
2403 */
2404 nospares = 0;
2405
2406 sync_req = mddev->in_sync;
2407
2408 /* If this is just a dirty<->clean transition, and the array is clean
2409 * and 'events' is odd, we can roll back to the previous clean state */
2410 if (nospares
2411 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2412 && mddev->can_decrease_events
2413 && mddev->events != 1) {
2414 mddev->events--;
2415 mddev->can_decrease_events = 0;
2416 } else {
2417 /* otherwise we have to go forward and ... */
2418 mddev->events ++;
2419 mddev->can_decrease_events = nospares;
2420 }
2421
2422 if (!mddev->events) {
2423 /*
2424 * oops, this 64-bit counter should never wrap.
2425 * Either we are in around ~1 trillion A.C., assuming
2426 * 1 reboot per second, or we have a bug:
2427 */
2428 MD_BUG();
2429 mddev->events --;
2430 }
2431
2432 list_for_each_entry(rdev, &mddev->disks, same_set) {
2433 if (rdev->badblocks.changed)
2434 any_badblocks_changed++;
2435 if (test_bit(Faulty, &rdev->flags))
2436 set_bit(FaultRecorded, &rdev->flags);
2437 }
2438
2439 sync_sbs(mddev, nospares);
2440 spin_unlock_irq(&mddev->write_lock);
2441
2442 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2443 mdname(mddev), mddev->in_sync);
2444
2445 bitmap_update_sb(mddev->bitmap);
2446 list_for_each_entry(rdev, &mddev->disks, same_set) {
2447 char b[BDEVNAME_SIZE];
2448
2449 if (rdev->sb_loaded != 1)
2450 continue; /* no noise on spare devices */
2451
2452 if (!test_bit(Faulty, &rdev->flags) &&
2453 rdev->saved_raid_disk == -1) {
2454 md_super_write(mddev,rdev,
2455 rdev->sb_start, rdev->sb_size,
2456 rdev->sb_page);
2457 pr_debug("md: (write) %s's sb offset: %llu\n",
2458 bdevname(rdev->bdev, b),
2459 (unsigned long long)rdev->sb_start);
2460 rdev->sb_events = mddev->events;
2461 if (rdev->badblocks.size) {
2462 md_super_write(mddev, rdev,
2463 rdev->badblocks.sector,
2464 rdev->badblocks.size << 9,
2465 rdev->bb_page);
2466 rdev->badblocks.size = 0;
2467 }
2468
2469 } else if (test_bit(Faulty, &rdev->flags))
2470 pr_debug("md: %s (skipping faulty)\n",
2471 bdevname(rdev->bdev, b));
2472 else
2473 pr_debug("(skipping incremental s/r ");
2474
2475 if (mddev->level == LEVEL_MULTIPATH)
2476 /* only need to write one superblock... */
2477 break;
2478 }
2479 md_super_wait(mddev);
2480 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2481
2482 spin_lock_irq(&mddev->write_lock);
2483 if (mddev->in_sync != sync_req ||
2484 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2485 /* have to write it out again */
2486 spin_unlock_irq(&mddev->write_lock);
2487 goto repeat;
2488 }
2489 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2490 spin_unlock_irq(&mddev->write_lock);
2491 wake_up(&mddev->sb_wait);
2492 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2493 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2494
2495 list_for_each_entry(rdev, &mddev->disks, same_set) {
2496 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2497 clear_bit(Blocked, &rdev->flags);
2498
2499 if (any_badblocks_changed)
2500 md_ack_all_badblocks(&rdev->badblocks);
2501 clear_bit(BlockedBadBlocks, &rdev->flags);
2502 wake_up(&rdev->blocked_wait);
2503 }
2504 }
2505
2506 /* words written to sysfs files may, or may not, be \n terminated.
2507 * We want to accept with case. For this we use cmd_match.
2508 */
2509 static int cmd_match(const char *cmd, const char *str)
2510 {
2511 /* See if cmd, written into a sysfs file, matches
2512 * str. They must either be the same, or cmd can
2513 * have a trailing newline
2514 */
2515 while (*cmd && *str && *cmd == *str) {
2516 cmd++;
2517 str++;
2518 }
2519 if (*cmd == '\n')
2520 cmd++;
2521 if (*str || *cmd)
2522 return 0;
2523 return 1;
2524 }
2525
2526 struct rdev_sysfs_entry {
2527 struct attribute attr;
2528 ssize_t (*show)(struct md_rdev *, char *);
2529 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2530 };
2531
2532 static ssize_t
2533 state_show(struct md_rdev *rdev, char *page)
2534 {
2535 char *sep = "";
2536 size_t len = 0;
2537
2538 if (test_bit(Faulty, &rdev->flags) ||
2539 rdev->badblocks.unacked_exist) {
2540 len+= sprintf(page+len, "%sfaulty",sep);
2541 sep = ",";
2542 }
2543 if (test_bit(In_sync, &rdev->flags)) {
2544 len += sprintf(page+len, "%sin_sync",sep);
2545 sep = ",";
2546 }
2547 if (test_bit(WriteMostly, &rdev->flags)) {
2548 len += sprintf(page+len, "%swrite_mostly",sep);
2549 sep = ",";
2550 }
2551 if (test_bit(Blocked, &rdev->flags) ||
2552 rdev->badblocks.unacked_exist) {
2553 len += sprintf(page+len, "%sblocked", sep);
2554 sep = ",";
2555 }
2556 if (!test_bit(Faulty, &rdev->flags) &&
2557 !test_bit(In_sync, &rdev->flags)) {
2558 len += sprintf(page+len, "%sspare", sep);
2559 sep = ",";
2560 }
2561 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2562 len += sprintf(page+len, "%swrite_error", sep);
2563 sep = ",";
2564 }
2565 return len+sprintf(page+len, "\n");
2566 }
2567
2568 static ssize_t
2569 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2570 {
2571 /* can write
2572 * faulty - simulates an error
2573 * remove - disconnects the device
2574 * writemostly - sets write_mostly
2575 * -writemostly - clears write_mostly
2576 * blocked - sets the Blocked flags
2577 * -blocked - clears the Blocked and possibly simulates an error
2578 * insync - sets Insync providing device isn't active
2579 * write_error - sets WriteErrorSeen
2580 * -write_error - clears WriteErrorSeen
2581 */
2582 int err = -EINVAL;
2583 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2584 md_error(rdev->mddev, rdev);
2585 if (test_bit(Faulty, &rdev->flags))
2586 err = 0;
2587 else
2588 err = -EBUSY;
2589 } else if (cmd_match(buf, "remove")) {
2590 if (rdev->raid_disk >= 0)
2591 err = -EBUSY;
2592 else {
2593 struct mddev *mddev = rdev->mddev;
2594 kick_rdev_from_array(rdev);
2595 if (mddev->pers)
2596 md_update_sb(mddev, 1);
2597 md_new_event(mddev);
2598 err = 0;
2599 }
2600 } else if (cmd_match(buf, "writemostly")) {
2601 set_bit(WriteMostly, &rdev->flags);
2602 err = 0;
2603 } else if (cmd_match(buf, "-writemostly")) {
2604 clear_bit(WriteMostly, &rdev->flags);
2605 err = 0;
2606 } else if (cmd_match(buf, "blocked")) {
2607 set_bit(Blocked, &rdev->flags);
2608 err = 0;
2609 } else if (cmd_match(buf, "-blocked")) {
2610 if (!test_bit(Faulty, &rdev->flags) &&
2611 rdev->badblocks.unacked_exist) {
2612 /* metadata handler doesn't understand badblocks,
2613 * so we need to fail the device
2614 */
2615 md_error(rdev->mddev, rdev);
2616 }
2617 clear_bit(Blocked, &rdev->flags);
2618 clear_bit(BlockedBadBlocks, &rdev->flags);
2619 wake_up(&rdev->blocked_wait);
2620 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2621 md_wakeup_thread(rdev->mddev->thread);
2622
2623 err = 0;
2624 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2625 set_bit(In_sync, &rdev->flags);
2626 err = 0;
2627 } else if (cmd_match(buf, "write_error")) {
2628 set_bit(WriteErrorSeen, &rdev->flags);
2629 err = 0;
2630 } else if (cmd_match(buf, "-write_error")) {
2631 clear_bit(WriteErrorSeen, &rdev->flags);
2632 err = 0;
2633 }
2634 if (!err)
2635 sysfs_notify_dirent_safe(rdev->sysfs_state);
2636 return err ? err : len;
2637 }
2638 static struct rdev_sysfs_entry rdev_state =
2639 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2640
2641 static ssize_t
2642 errors_show(struct md_rdev *rdev, char *page)
2643 {
2644 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2645 }
2646
2647 static ssize_t
2648 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2649 {
2650 char *e;
2651 unsigned long n = simple_strtoul(buf, &e, 10);
2652 if (*buf && (*e == 0 || *e == '\n')) {
2653 atomic_set(&rdev->corrected_errors, n);
2654 return len;
2655 }
2656 return -EINVAL;
2657 }
2658 static struct rdev_sysfs_entry rdev_errors =
2659 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2660
2661 static ssize_t
2662 slot_show(struct md_rdev *rdev, char *page)
2663 {
2664 if (rdev->raid_disk < 0)
2665 return sprintf(page, "none\n");
2666 else
2667 return sprintf(page, "%d\n", rdev->raid_disk);
2668 }
2669
2670 static ssize_t
2671 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2672 {
2673 char *e;
2674 int err;
2675 int slot = simple_strtoul(buf, &e, 10);
2676 if (strncmp(buf, "none", 4)==0)
2677 slot = -1;
2678 else if (e==buf || (*e && *e!= '\n'))
2679 return -EINVAL;
2680 if (rdev->mddev->pers && slot == -1) {
2681 /* Setting 'slot' on an active array requires also
2682 * updating the 'rd%d' link, and communicating
2683 * with the personality with ->hot_*_disk.
2684 * For now we only support removing
2685 * failed/spare devices. This normally happens automatically,
2686 * but not when the metadata is externally managed.
2687 */
2688 if (rdev->raid_disk == -1)
2689 return -EEXIST;
2690 /* personality does all needed checks */
2691 if (rdev->mddev->pers->hot_remove_disk == NULL)
2692 return -EINVAL;
2693 err = rdev->mddev->pers->
2694 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2695 if (err)
2696 return err;
2697 sysfs_unlink_rdev(rdev->mddev, rdev);
2698 rdev->raid_disk = -1;
2699 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2700 md_wakeup_thread(rdev->mddev->thread);
2701 } else if (rdev->mddev->pers) {
2702 struct md_rdev *rdev2;
2703 /* Activating a spare .. or possibly reactivating
2704 * if we ever get bitmaps working here.
2705 */
2706
2707 if (rdev->raid_disk != -1)
2708 return -EBUSY;
2709
2710 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2711 return -EBUSY;
2712
2713 if (rdev->mddev->pers->hot_add_disk == NULL)
2714 return -EINVAL;
2715
2716 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2717 if (rdev2->raid_disk == slot)
2718 return -EEXIST;
2719
2720 if (slot >= rdev->mddev->raid_disks &&
2721 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2722 return -ENOSPC;
2723
2724 rdev->raid_disk = slot;
2725 if (test_bit(In_sync, &rdev->flags))
2726 rdev->saved_raid_disk = slot;
2727 else
2728 rdev->saved_raid_disk = -1;
2729 clear_bit(In_sync, &rdev->flags);
2730 err = rdev->mddev->pers->
2731 hot_add_disk(rdev->mddev, rdev);
2732 if (err) {
2733 rdev->raid_disk = -1;
2734 return err;
2735 } else
2736 sysfs_notify_dirent_safe(rdev->sysfs_state);
2737 if (sysfs_link_rdev(rdev->mddev, rdev))
2738 /* failure here is OK */;
2739 /* don't wakeup anyone, leave that to userspace. */
2740 } else {
2741 if (slot >= rdev->mddev->raid_disks &&
2742 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2743 return -ENOSPC;
2744 rdev->raid_disk = slot;
2745 /* assume it is working */
2746 clear_bit(Faulty, &rdev->flags);
2747 clear_bit(WriteMostly, &rdev->flags);
2748 set_bit(In_sync, &rdev->flags);
2749 sysfs_notify_dirent_safe(rdev->sysfs_state);
2750 }
2751 return len;
2752 }
2753
2754
2755 static struct rdev_sysfs_entry rdev_slot =
2756 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2757
2758 static ssize_t
2759 offset_show(struct md_rdev *rdev, char *page)
2760 {
2761 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2762 }
2763
2764 static ssize_t
2765 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2766 {
2767 char *e;
2768 unsigned long long offset = simple_strtoull(buf, &e, 10);
2769 if (e==buf || (*e && *e != '\n'))
2770 return -EINVAL;
2771 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2772 return -EBUSY;
2773 if (rdev->sectors && rdev->mddev->external)
2774 /* Must set offset before size, so overlap checks
2775 * can be sane */
2776 return -EBUSY;
2777 rdev->data_offset = offset;
2778 return len;
2779 }
2780
2781 static struct rdev_sysfs_entry rdev_offset =
2782 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2783
2784 static ssize_t
2785 rdev_size_show(struct md_rdev *rdev, char *page)
2786 {
2787 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2788 }
2789
2790 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2791 {
2792 /* check if two start/length pairs overlap */
2793 if (s1+l1 <= s2)
2794 return 0;
2795 if (s2+l2 <= s1)
2796 return 0;
2797 return 1;
2798 }
2799
2800 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2801 {
2802 unsigned long long blocks;
2803 sector_t new;
2804
2805 if (strict_strtoull(buf, 10, &blocks) < 0)
2806 return -EINVAL;
2807
2808 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2809 return -EINVAL; /* sector conversion overflow */
2810
2811 new = blocks * 2;
2812 if (new != blocks * 2)
2813 return -EINVAL; /* unsigned long long to sector_t overflow */
2814
2815 *sectors = new;
2816 return 0;
2817 }
2818
2819 static ssize_t
2820 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2821 {
2822 struct mddev *my_mddev = rdev->mddev;
2823 sector_t oldsectors = rdev->sectors;
2824 sector_t sectors;
2825
2826 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2827 return -EINVAL;
2828 if (my_mddev->pers && rdev->raid_disk >= 0) {
2829 if (my_mddev->persistent) {
2830 sectors = super_types[my_mddev->major_version].
2831 rdev_size_change(rdev, sectors);
2832 if (!sectors)
2833 return -EBUSY;
2834 } else if (!sectors)
2835 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2836 rdev->data_offset;
2837 }
2838 if (sectors < my_mddev->dev_sectors)
2839 return -EINVAL; /* component must fit device */
2840
2841 rdev->sectors = sectors;
2842 if (sectors > oldsectors && my_mddev->external) {
2843 /* need to check that all other rdevs with the same ->bdev
2844 * do not overlap. We need to unlock the mddev to avoid
2845 * a deadlock. We have already changed rdev->sectors, and if
2846 * we have to change it back, we will have the lock again.
2847 */
2848 struct mddev *mddev;
2849 int overlap = 0;
2850 struct list_head *tmp;
2851
2852 mddev_unlock(my_mddev);
2853 for_each_mddev(mddev, tmp) {
2854 struct md_rdev *rdev2;
2855
2856 mddev_lock(mddev);
2857 list_for_each_entry(rdev2, &mddev->disks, same_set)
2858 if (rdev->bdev == rdev2->bdev &&
2859 rdev != rdev2 &&
2860 overlaps(rdev->data_offset, rdev->sectors,
2861 rdev2->data_offset,
2862 rdev2->sectors)) {
2863 overlap = 1;
2864 break;
2865 }
2866 mddev_unlock(mddev);
2867 if (overlap) {
2868 mddev_put(mddev);
2869 break;
2870 }
2871 }
2872 mddev_lock(my_mddev);
2873 if (overlap) {
2874 /* Someone else could have slipped in a size
2875 * change here, but doing so is just silly.
2876 * We put oldsectors back because we *know* it is
2877 * safe, and trust userspace not to race with
2878 * itself
2879 */
2880 rdev->sectors = oldsectors;
2881 return -EBUSY;
2882 }
2883 }
2884 return len;
2885 }
2886
2887 static struct rdev_sysfs_entry rdev_size =
2888 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2889
2890
2891 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2892 {
2893 unsigned long long recovery_start = rdev->recovery_offset;
2894
2895 if (test_bit(In_sync, &rdev->flags) ||
2896 recovery_start == MaxSector)
2897 return sprintf(page, "none\n");
2898
2899 return sprintf(page, "%llu\n", recovery_start);
2900 }
2901
2902 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2903 {
2904 unsigned long long recovery_start;
2905
2906 if (cmd_match(buf, "none"))
2907 recovery_start = MaxSector;
2908 else if (strict_strtoull(buf, 10, &recovery_start))
2909 return -EINVAL;
2910
2911 if (rdev->mddev->pers &&
2912 rdev->raid_disk >= 0)
2913 return -EBUSY;
2914
2915 rdev->recovery_offset = recovery_start;
2916 if (recovery_start == MaxSector)
2917 set_bit(In_sync, &rdev->flags);
2918 else
2919 clear_bit(In_sync, &rdev->flags);
2920 return len;
2921 }
2922
2923 static struct rdev_sysfs_entry rdev_recovery_start =
2924 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2925
2926
2927 static ssize_t
2928 badblocks_show(struct badblocks *bb, char *page, int unack);
2929 static ssize_t
2930 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2931
2932 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2933 {
2934 return badblocks_show(&rdev->badblocks, page, 0);
2935 }
2936 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2937 {
2938 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2939 /* Maybe that ack was all we needed */
2940 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2941 wake_up(&rdev->blocked_wait);
2942 return rv;
2943 }
2944 static struct rdev_sysfs_entry rdev_bad_blocks =
2945 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2946
2947
2948 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2949 {
2950 return badblocks_show(&rdev->badblocks, page, 1);
2951 }
2952 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2953 {
2954 return badblocks_store(&rdev->badblocks, page, len, 1);
2955 }
2956 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2957 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2958
2959 static struct attribute *rdev_default_attrs[] = {
2960 &rdev_state.attr,
2961 &rdev_errors.attr,
2962 &rdev_slot.attr,
2963 &rdev_offset.attr,
2964 &rdev_size.attr,
2965 &rdev_recovery_start.attr,
2966 &rdev_bad_blocks.attr,
2967 &rdev_unack_bad_blocks.attr,
2968 NULL,
2969 };
2970 static ssize_t
2971 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2972 {
2973 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2974 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2975 struct mddev *mddev = rdev->mddev;
2976 ssize_t rv;
2977
2978 if (!entry->show)
2979 return -EIO;
2980
2981 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2982 if (!rv) {
2983 if (rdev->mddev == NULL)
2984 rv = -EBUSY;
2985 else
2986 rv = entry->show(rdev, page);
2987 mddev_unlock(mddev);
2988 }
2989 return rv;
2990 }
2991
2992 static ssize_t
2993 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2994 const char *page, size_t length)
2995 {
2996 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2997 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2998 ssize_t rv;
2999 struct mddev *mddev = rdev->mddev;
3000
3001 if (!entry->store)
3002 return -EIO;
3003 if (!capable(CAP_SYS_ADMIN))
3004 return -EACCES;
3005 rv = mddev ? mddev_lock(mddev): -EBUSY;
3006 if (!rv) {
3007 if (rdev->mddev == NULL)
3008 rv = -EBUSY;
3009 else
3010 rv = entry->store(rdev, page, length);
3011 mddev_unlock(mddev);
3012 }
3013 return rv;
3014 }
3015
3016 static void rdev_free(struct kobject *ko)
3017 {
3018 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3019 kfree(rdev);
3020 }
3021 static const struct sysfs_ops rdev_sysfs_ops = {
3022 .show = rdev_attr_show,
3023 .store = rdev_attr_store,
3024 };
3025 static struct kobj_type rdev_ktype = {
3026 .release = rdev_free,
3027 .sysfs_ops = &rdev_sysfs_ops,
3028 .default_attrs = rdev_default_attrs,
3029 };
3030
3031 int md_rdev_init(struct md_rdev *rdev)
3032 {
3033 rdev->desc_nr = -1;
3034 rdev->saved_raid_disk = -1;
3035 rdev->raid_disk = -1;
3036 rdev->flags = 0;
3037 rdev->data_offset = 0;
3038 rdev->sb_events = 0;
3039 rdev->last_read_error.tv_sec = 0;
3040 rdev->last_read_error.tv_nsec = 0;
3041 rdev->sb_loaded = 0;
3042 rdev->bb_page = NULL;
3043 atomic_set(&rdev->nr_pending, 0);
3044 atomic_set(&rdev->read_errors, 0);
3045 atomic_set(&rdev->corrected_errors, 0);
3046
3047 INIT_LIST_HEAD(&rdev->same_set);
3048 init_waitqueue_head(&rdev->blocked_wait);
3049
3050 /* Add space to store bad block list.
3051 * This reserves the space even on arrays where it cannot
3052 * be used - I wonder if that matters
3053 */
3054 rdev->badblocks.count = 0;
3055 rdev->badblocks.shift = 0;
3056 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3057 seqlock_init(&rdev->badblocks.lock);
3058 if (rdev->badblocks.page == NULL)
3059 return -ENOMEM;
3060
3061 return 0;
3062 }
3063 EXPORT_SYMBOL_GPL(md_rdev_init);
3064 /*
3065 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3066 *
3067 * mark the device faulty if:
3068 *
3069 * - the device is nonexistent (zero size)
3070 * - the device has no valid superblock
3071 *
3072 * a faulty rdev _never_ has rdev->sb set.
3073 */
3074 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3075 {
3076 char b[BDEVNAME_SIZE];
3077 int err;
3078 struct md_rdev *rdev;
3079 sector_t size;
3080
3081 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3082 if (!rdev) {
3083 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3084 return ERR_PTR(-ENOMEM);
3085 }
3086
3087 err = md_rdev_init(rdev);
3088 if (err)
3089 goto abort_free;
3090 err = alloc_disk_sb(rdev);
3091 if (err)
3092 goto abort_free;
3093
3094 err = lock_rdev(rdev, newdev, super_format == -2);
3095 if (err)
3096 goto abort_free;
3097
3098 kobject_init(&rdev->kobj, &rdev_ktype);
3099
3100 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3101 if (!size) {
3102 printk(KERN_WARNING
3103 "md: %s has zero or unknown size, marking faulty!\n",
3104 bdevname(rdev->bdev,b));
3105 err = -EINVAL;
3106 goto abort_free;
3107 }
3108
3109 if (super_format >= 0) {
3110 err = super_types[super_format].
3111 load_super(rdev, NULL, super_minor);
3112 if (err == -EINVAL) {
3113 printk(KERN_WARNING
3114 "md: %s does not have a valid v%d.%d "
3115 "superblock, not importing!\n",
3116 bdevname(rdev->bdev,b),
3117 super_format, super_minor);
3118 goto abort_free;
3119 }
3120 if (err < 0) {
3121 printk(KERN_WARNING
3122 "md: could not read %s's sb, not importing!\n",
3123 bdevname(rdev->bdev,b));
3124 goto abort_free;
3125 }
3126 }
3127 if (super_format == -1)
3128 /* hot-add for 0.90, or non-persistent: so no badblocks */
3129 rdev->badblocks.shift = -1;
3130
3131 return rdev;
3132
3133 abort_free:
3134 if (rdev->bdev)
3135 unlock_rdev(rdev);
3136 free_disk_sb(rdev);
3137 kfree(rdev->badblocks.page);
3138 kfree(rdev);
3139 return ERR_PTR(err);
3140 }
3141
3142 /*
3143 * Check a full RAID array for plausibility
3144 */
3145
3146
3147 static void analyze_sbs(struct mddev * mddev)
3148 {
3149 int i;
3150 struct md_rdev *rdev, *freshest, *tmp;
3151 char b[BDEVNAME_SIZE];
3152
3153 freshest = NULL;
3154 rdev_for_each(rdev, tmp, mddev)
3155 switch (super_types[mddev->major_version].
3156 load_super(rdev, freshest, mddev->minor_version)) {
3157 case 1:
3158 freshest = rdev;
3159 break;
3160 case 0:
3161 break;
3162 default:
3163 printk( KERN_ERR \
3164 "md: fatal superblock inconsistency in %s"
3165 " -- removing from array\n",
3166 bdevname(rdev->bdev,b));
3167 kick_rdev_from_array(rdev);
3168 }
3169
3170
3171 super_types[mddev->major_version].
3172 validate_super(mddev, freshest);
3173
3174 i = 0;
3175 rdev_for_each(rdev, tmp, mddev) {
3176 if (mddev->max_disks &&
3177 (rdev->desc_nr >= mddev->max_disks ||
3178 i > mddev->max_disks)) {
3179 printk(KERN_WARNING
3180 "md: %s: %s: only %d devices permitted\n",
3181 mdname(mddev), bdevname(rdev->bdev, b),
3182 mddev->max_disks);
3183 kick_rdev_from_array(rdev);
3184 continue;
3185 }
3186 if (rdev != freshest)
3187 if (super_types[mddev->major_version].
3188 validate_super(mddev, rdev)) {
3189 printk(KERN_WARNING "md: kicking non-fresh %s"
3190 " from array!\n",
3191 bdevname(rdev->bdev,b));
3192 kick_rdev_from_array(rdev);
3193 continue;
3194 }
3195 if (mddev->level == LEVEL_MULTIPATH) {
3196 rdev->desc_nr = i++;
3197 rdev->raid_disk = rdev->desc_nr;
3198 set_bit(In_sync, &rdev->flags);
3199 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3200 rdev->raid_disk = -1;
3201 clear_bit(In_sync, &rdev->flags);
3202 }
3203 }
3204 }
3205
3206 /* Read a fixed-point number.
3207 * Numbers in sysfs attributes should be in "standard" units where
3208 * possible, so time should be in seconds.
3209 * However we internally use a a much smaller unit such as
3210 * milliseconds or jiffies.
3211 * This function takes a decimal number with a possible fractional
3212 * component, and produces an integer which is the result of
3213 * multiplying that number by 10^'scale'.
3214 * all without any floating-point arithmetic.
3215 */
3216 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3217 {
3218 unsigned long result = 0;
3219 long decimals = -1;
3220 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3221 if (*cp == '.')
3222 decimals = 0;
3223 else if (decimals < scale) {
3224 unsigned int value;
3225 value = *cp - '0';
3226 result = result * 10 + value;
3227 if (decimals >= 0)
3228 decimals++;
3229 }
3230 cp++;
3231 }
3232 if (*cp == '\n')
3233 cp++;
3234 if (*cp)
3235 return -EINVAL;
3236 if (decimals < 0)
3237 decimals = 0;
3238 while (decimals < scale) {
3239 result *= 10;
3240 decimals ++;
3241 }
3242 *res = result;
3243 return 0;
3244 }
3245
3246
3247 static void md_safemode_timeout(unsigned long data);
3248
3249 static ssize_t
3250 safe_delay_show(struct mddev *mddev, char *page)
3251 {
3252 int msec = (mddev->safemode_delay*1000)/HZ;
3253 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3254 }
3255 static ssize_t
3256 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3257 {
3258 unsigned long msec;
3259
3260 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3261 return -EINVAL;
3262 if (msec == 0)
3263 mddev->safemode_delay = 0;
3264 else {
3265 unsigned long old_delay = mddev->safemode_delay;
3266 mddev->safemode_delay = (msec*HZ)/1000;
3267 if (mddev->safemode_delay == 0)
3268 mddev->safemode_delay = 1;
3269 if (mddev->safemode_delay < old_delay)
3270 md_safemode_timeout((unsigned long)mddev);
3271 }
3272 return len;
3273 }
3274 static struct md_sysfs_entry md_safe_delay =
3275 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3276
3277 static ssize_t
3278 level_show(struct mddev *mddev, char *page)
3279 {
3280 struct md_personality *p = mddev->pers;
3281 if (p)
3282 return sprintf(page, "%s\n", p->name);
3283 else if (mddev->clevel[0])
3284 return sprintf(page, "%s\n", mddev->clevel);
3285 else if (mddev->level != LEVEL_NONE)
3286 return sprintf(page, "%d\n", mddev->level);
3287 else
3288 return 0;
3289 }
3290
3291 static ssize_t
3292 level_store(struct mddev *mddev, const char *buf, size_t len)
3293 {
3294 char clevel[16];
3295 ssize_t rv = len;
3296 struct md_personality *pers;
3297 long level;
3298 void *priv;
3299 struct md_rdev *rdev;
3300
3301 if (mddev->pers == NULL) {
3302 if (len == 0)
3303 return 0;
3304 if (len >= sizeof(mddev->clevel))
3305 return -ENOSPC;
3306 strncpy(mddev->clevel, buf, len);
3307 if (mddev->clevel[len-1] == '\n')
3308 len--;
3309 mddev->clevel[len] = 0;
3310 mddev->level = LEVEL_NONE;
3311 return rv;
3312 }
3313
3314 /* request to change the personality. Need to ensure:
3315 * - array is not engaged in resync/recovery/reshape
3316 * - old personality can be suspended
3317 * - new personality will access other array.
3318 */
3319
3320 if (mddev->sync_thread ||
3321 mddev->reshape_position != MaxSector ||
3322 mddev->sysfs_active)
3323 return -EBUSY;
3324
3325 if (!mddev->pers->quiesce) {
3326 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3327 mdname(mddev), mddev->pers->name);
3328 return -EINVAL;
3329 }
3330
3331 /* Now find the new personality */
3332 if (len == 0 || len >= sizeof(clevel))
3333 return -EINVAL;
3334 strncpy(clevel, buf, len);
3335 if (clevel[len-1] == '\n')
3336 len--;
3337 clevel[len] = 0;
3338 if (strict_strtol(clevel, 10, &level))
3339 level = LEVEL_NONE;
3340
3341 if (request_module("md-%s", clevel) != 0)
3342 request_module("md-level-%s", clevel);
3343 spin_lock(&pers_lock);
3344 pers = find_pers(level, clevel);
3345 if (!pers || !try_module_get(pers->owner)) {
3346 spin_unlock(&pers_lock);
3347 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3348 return -EINVAL;
3349 }
3350 spin_unlock(&pers_lock);
3351
3352 if (pers == mddev->pers) {
3353 /* Nothing to do! */
3354 module_put(pers->owner);
3355 return rv;
3356 }
3357 if (!pers->takeover) {
3358 module_put(pers->owner);
3359 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3360 mdname(mddev), clevel);
3361 return -EINVAL;
3362 }
3363
3364 list_for_each_entry(rdev, &mddev->disks, same_set)
3365 rdev->new_raid_disk = rdev->raid_disk;
3366
3367 /* ->takeover must set new_* and/or delta_disks
3368 * if it succeeds, and may set them when it fails.
3369 */
3370 priv = pers->takeover(mddev);
3371 if (IS_ERR(priv)) {
3372 mddev->new_level = mddev->level;
3373 mddev->new_layout = mddev->layout;
3374 mddev->new_chunk_sectors = mddev->chunk_sectors;
3375 mddev->raid_disks -= mddev->delta_disks;
3376 mddev->delta_disks = 0;
3377 module_put(pers->owner);
3378 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3379 mdname(mddev), clevel);
3380 return PTR_ERR(priv);
3381 }
3382
3383 /* Looks like we have a winner */
3384 mddev_suspend(mddev);
3385 mddev->pers->stop(mddev);
3386
3387 if (mddev->pers->sync_request == NULL &&
3388 pers->sync_request != NULL) {
3389 /* need to add the md_redundancy_group */
3390 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3391 printk(KERN_WARNING
3392 "md: cannot register extra attributes for %s\n",
3393 mdname(mddev));
3394 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3395 }
3396 if (mddev->pers->sync_request != NULL &&
3397 pers->sync_request == NULL) {
3398 /* need to remove the md_redundancy_group */
3399 if (mddev->to_remove == NULL)
3400 mddev->to_remove = &md_redundancy_group;
3401 }
3402
3403 if (mddev->pers->sync_request == NULL &&
3404 mddev->external) {
3405 /* We are converting from a no-redundancy array
3406 * to a redundancy array and metadata is managed
3407 * externally so we need to be sure that writes
3408 * won't block due to a need to transition
3409 * clean->dirty
3410 * until external management is started.
3411 */
3412 mddev->in_sync = 0;
3413 mddev->safemode_delay = 0;
3414 mddev->safemode = 0;
3415 }
3416
3417 list_for_each_entry(rdev, &mddev->disks, same_set) {
3418 if (rdev->raid_disk < 0)
3419 continue;
3420 if (rdev->new_raid_disk >= mddev->raid_disks)
3421 rdev->new_raid_disk = -1;
3422 if (rdev->new_raid_disk == rdev->raid_disk)
3423 continue;
3424 sysfs_unlink_rdev(mddev, rdev);
3425 }
3426 list_for_each_entry(rdev, &mddev->disks, same_set) {
3427 if (rdev->raid_disk < 0)
3428 continue;
3429 if (rdev->new_raid_disk == rdev->raid_disk)
3430 continue;
3431 rdev->raid_disk = rdev->new_raid_disk;
3432 if (rdev->raid_disk < 0)
3433 clear_bit(In_sync, &rdev->flags);
3434 else {
3435 if (sysfs_link_rdev(mddev, rdev))
3436 printk(KERN_WARNING "md: cannot register rd%d"
3437 " for %s after level change\n",
3438 rdev->raid_disk, mdname(mddev));
3439 }
3440 }
3441
3442 module_put(mddev->pers->owner);
3443 mddev->pers = pers;
3444 mddev->private = priv;
3445 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3446 mddev->level = mddev->new_level;
3447 mddev->layout = mddev->new_layout;
3448 mddev->chunk_sectors = mddev->new_chunk_sectors;
3449 mddev->delta_disks = 0;
3450 mddev->degraded = 0;
3451 if (mddev->pers->sync_request == NULL) {
3452 /* this is now an array without redundancy, so
3453 * it must always be in_sync
3454 */
3455 mddev->in_sync = 1;
3456 del_timer_sync(&mddev->safemode_timer);
3457 }
3458 pers->run(mddev);
3459 mddev_resume(mddev);
3460 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3461 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3462 md_wakeup_thread(mddev->thread);
3463 sysfs_notify(&mddev->kobj, NULL, "level");
3464 md_new_event(mddev);
3465 return rv;
3466 }
3467
3468 static struct md_sysfs_entry md_level =
3469 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3470
3471
3472 static ssize_t
3473 layout_show(struct mddev *mddev, char *page)
3474 {
3475 /* just a number, not meaningful for all levels */
3476 if (mddev->reshape_position != MaxSector &&
3477 mddev->layout != mddev->new_layout)
3478 return sprintf(page, "%d (%d)\n",
3479 mddev->new_layout, mddev->layout);
3480 return sprintf(page, "%d\n", mddev->layout);
3481 }
3482
3483 static ssize_t
3484 layout_store(struct mddev *mddev, const char *buf, size_t len)
3485 {
3486 char *e;
3487 unsigned long n = simple_strtoul(buf, &e, 10);
3488
3489 if (!*buf || (*e && *e != '\n'))
3490 return -EINVAL;
3491
3492 if (mddev->pers) {
3493 int err;
3494 if (mddev->pers->check_reshape == NULL)
3495 return -EBUSY;
3496 mddev->new_layout = n;
3497 err = mddev->pers->check_reshape(mddev);
3498 if (err) {
3499 mddev->new_layout = mddev->layout;
3500 return err;
3501 }
3502 } else {
3503 mddev->new_layout = n;
3504 if (mddev->reshape_position == MaxSector)
3505 mddev->layout = n;
3506 }
3507 return len;
3508 }
3509 static struct md_sysfs_entry md_layout =
3510 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3511
3512
3513 static ssize_t
3514 raid_disks_show(struct mddev *mddev, char *page)
3515 {
3516 if (mddev->raid_disks == 0)
3517 return 0;
3518 if (mddev->reshape_position != MaxSector &&
3519 mddev->delta_disks != 0)
3520 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3521 mddev->raid_disks - mddev->delta_disks);
3522 return sprintf(page, "%d\n", mddev->raid_disks);
3523 }
3524
3525 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3526
3527 static ssize_t
3528 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3529 {
3530 char *e;
3531 int rv = 0;
3532 unsigned long n = simple_strtoul(buf, &e, 10);
3533
3534 if (!*buf || (*e && *e != '\n'))
3535 return -EINVAL;
3536
3537 if (mddev->pers)
3538 rv = update_raid_disks(mddev, n);
3539 else if (mddev->reshape_position != MaxSector) {
3540 int olddisks = mddev->raid_disks - mddev->delta_disks;
3541 mddev->delta_disks = n - olddisks;
3542 mddev->raid_disks = n;
3543 } else
3544 mddev->raid_disks = n;
3545 return rv ? rv : len;
3546 }
3547 static struct md_sysfs_entry md_raid_disks =
3548 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3549
3550 static ssize_t
3551 chunk_size_show(struct mddev *mddev, char *page)
3552 {
3553 if (mddev->reshape_position != MaxSector &&
3554 mddev->chunk_sectors != mddev->new_chunk_sectors)
3555 return sprintf(page, "%d (%d)\n",
3556 mddev->new_chunk_sectors << 9,
3557 mddev->chunk_sectors << 9);
3558 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3559 }
3560
3561 static ssize_t
3562 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3563 {
3564 char *e;
3565 unsigned long n = simple_strtoul(buf, &e, 10);
3566
3567 if (!*buf || (*e && *e != '\n'))
3568 return -EINVAL;
3569
3570 if (mddev->pers) {
3571 int err;
3572 if (mddev->pers->check_reshape == NULL)
3573 return -EBUSY;
3574 mddev->new_chunk_sectors = n >> 9;
3575 err = mddev->pers->check_reshape(mddev);
3576 if (err) {
3577 mddev->new_chunk_sectors = mddev->chunk_sectors;
3578 return err;
3579 }
3580 } else {
3581 mddev->new_chunk_sectors = n >> 9;
3582 if (mddev->reshape_position == MaxSector)
3583 mddev->chunk_sectors = n >> 9;
3584 }
3585 return len;
3586 }
3587 static struct md_sysfs_entry md_chunk_size =
3588 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3589
3590 static ssize_t
3591 resync_start_show(struct mddev *mddev, char *page)
3592 {
3593 if (mddev->recovery_cp == MaxSector)
3594 return sprintf(page, "none\n");
3595 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3596 }
3597
3598 static ssize_t
3599 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3600 {
3601 char *e;
3602 unsigned long long n = simple_strtoull(buf, &e, 10);
3603
3604 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3605 return -EBUSY;
3606 if (cmd_match(buf, "none"))
3607 n = MaxSector;
3608 else if (!*buf || (*e && *e != '\n'))
3609 return -EINVAL;
3610
3611 mddev->recovery_cp = n;
3612 return len;
3613 }
3614 static struct md_sysfs_entry md_resync_start =
3615 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3616
3617 /*
3618 * The array state can be:
3619 *
3620 * clear
3621 * No devices, no size, no level
3622 * Equivalent to STOP_ARRAY ioctl
3623 * inactive
3624 * May have some settings, but array is not active
3625 * all IO results in error
3626 * When written, doesn't tear down array, but just stops it
3627 * suspended (not supported yet)
3628 * All IO requests will block. The array can be reconfigured.
3629 * Writing this, if accepted, will block until array is quiescent
3630 * readonly
3631 * no resync can happen. no superblocks get written.
3632 * write requests fail
3633 * read-auto
3634 * like readonly, but behaves like 'clean' on a write request.
3635 *
3636 * clean - no pending writes, but otherwise active.
3637 * When written to inactive array, starts without resync
3638 * If a write request arrives then
3639 * if metadata is known, mark 'dirty' and switch to 'active'.
3640 * if not known, block and switch to write-pending
3641 * If written to an active array that has pending writes, then fails.
3642 * active
3643 * fully active: IO and resync can be happening.
3644 * When written to inactive array, starts with resync
3645 *
3646 * write-pending
3647 * clean, but writes are blocked waiting for 'active' to be written.
3648 *
3649 * active-idle
3650 * like active, but no writes have been seen for a while (100msec).
3651 *
3652 */
3653 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3654 write_pending, active_idle, bad_word};
3655 static char *array_states[] = {
3656 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3657 "write-pending", "active-idle", NULL };
3658
3659 static int match_word(const char *word, char **list)
3660 {
3661 int n;
3662 for (n=0; list[n]; n++)
3663 if (cmd_match(word, list[n]))
3664 break;
3665 return n;
3666 }
3667
3668 static ssize_t
3669 array_state_show(struct mddev *mddev, char *page)
3670 {
3671 enum array_state st = inactive;
3672
3673 if (mddev->pers)
3674 switch(mddev->ro) {
3675 case 1:
3676 st = readonly;
3677 break;
3678 case 2:
3679 st = read_auto;
3680 break;
3681 case 0:
3682 if (mddev->in_sync)
3683 st = clean;
3684 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3685 st = write_pending;
3686 else if (mddev->safemode)
3687 st = active_idle;
3688 else
3689 st = active;
3690 }
3691 else {
3692 if (list_empty(&mddev->disks) &&
3693 mddev->raid_disks == 0 &&
3694 mddev->dev_sectors == 0)
3695 st = clear;
3696 else
3697 st = inactive;
3698 }
3699 return sprintf(page, "%s\n", array_states[st]);
3700 }
3701
3702 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3703 static int md_set_readonly(struct mddev * mddev, int is_open);
3704 static int do_md_run(struct mddev * mddev);
3705 static int restart_array(struct mddev *mddev);
3706
3707 static ssize_t
3708 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3709 {
3710 int err = -EINVAL;
3711 enum array_state st = match_word(buf, array_states);
3712 switch(st) {
3713 case bad_word:
3714 break;
3715 case clear:
3716 /* stopping an active array */
3717 if (atomic_read(&mddev->openers) > 0)
3718 return -EBUSY;
3719 err = do_md_stop(mddev, 0, 0);
3720 break;
3721 case inactive:
3722 /* stopping an active array */
3723 if (mddev->pers) {
3724 if (atomic_read(&mddev->openers) > 0)
3725 return -EBUSY;
3726 err = do_md_stop(mddev, 2, 0);
3727 } else
3728 err = 0; /* already inactive */
3729 break;
3730 case suspended:
3731 break; /* not supported yet */
3732 case readonly:
3733 if (mddev->pers)
3734 err = md_set_readonly(mddev, 0);
3735 else {
3736 mddev->ro = 1;
3737 set_disk_ro(mddev->gendisk, 1);
3738 err = do_md_run(mddev);
3739 }
3740 break;
3741 case read_auto:
3742 if (mddev->pers) {
3743 if (mddev->ro == 0)
3744 err = md_set_readonly(mddev, 0);
3745 else if (mddev->ro == 1)
3746 err = restart_array(mddev);
3747 if (err == 0) {
3748 mddev->ro = 2;
3749 set_disk_ro(mddev->gendisk, 0);
3750 }
3751 } else {
3752 mddev->ro = 2;
3753 err = do_md_run(mddev);
3754 }
3755 break;
3756 case clean:
3757 if (mddev->pers) {
3758 restart_array(mddev);
3759 spin_lock_irq(&mddev->write_lock);
3760 if (atomic_read(&mddev->writes_pending) == 0) {
3761 if (mddev->in_sync == 0) {
3762 mddev->in_sync = 1;
3763 if (mddev->safemode == 1)
3764 mddev->safemode = 0;
3765 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3766 }
3767 err = 0;
3768 } else
3769 err = -EBUSY;
3770 spin_unlock_irq(&mddev->write_lock);
3771 } else
3772 err = -EINVAL;
3773 break;
3774 case active:
3775 if (mddev->pers) {
3776 restart_array(mddev);
3777 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3778 wake_up(&mddev->sb_wait);
3779 err = 0;
3780 } else {
3781 mddev->ro = 0;
3782 set_disk_ro(mddev->gendisk, 0);
3783 err = do_md_run(mddev);
3784 }
3785 break;
3786 case write_pending:
3787 case active_idle:
3788 /* these cannot be set */
3789 break;
3790 }
3791 if (err)
3792 return err;
3793 else {
3794 sysfs_notify_dirent_safe(mddev->sysfs_state);
3795 return len;
3796 }
3797 }
3798 static struct md_sysfs_entry md_array_state =
3799 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3800
3801 static ssize_t
3802 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3803 return sprintf(page, "%d\n",
3804 atomic_read(&mddev->max_corr_read_errors));
3805 }
3806
3807 static ssize_t
3808 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3809 {
3810 char *e;
3811 unsigned long n = simple_strtoul(buf, &e, 10);
3812
3813 if (*buf && (*e == 0 || *e == '\n')) {
3814 atomic_set(&mddev->max_corr_read_errors, n);
3815 return len;
3816 }
3817 return -EINVAL;
3818 }
3819
3820 static struct md_sysfs_entry max_corr_read_errors =
3821 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3822 max_corrected_read_errors_store);
3823
3824 static ssize_t
3825 null_show(struct mddev *mddev, char *page)
3826 {
3827 return -EINVAL;
3828 }
3829
3830 static ssize_t
3831 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3832 {
3833 /* buf must be %d:%d\n? giving major and minor numbers */
3834 /* The new device is added to the array.
3835 * If the array has a persistent superblock, we read the
3836 * superblock to initialise info and check validity.
3837 * Otherwise, only checking done is that in bind_rdev_to_array,
3838 * which mainly checks size.
3839 */
3840 char *e;
3841 int major = simple_strtoul(buf, &e, 10);
3842 int minor;
3843 dev_t dev;
3844 struct md_rdev *rdev;
3845 int err;
3846
3847 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3848 return -EINVAL;
3849 minor = simple_strtoul(e+1, &e, 10);
3850 if (*e && *e != '\n')
3851 return -EINVAL;
3852 dev = MKDEV(major, minor);
3853 if (major != MAJOR(dev) ||
3854 minor != MINOR(dev))
3855 return -EOVERFLOW;
3856
3857
3858 if (mddev->persistent) {
3859 rdev = md_import_device(dev, mddev->major_version,
3860 mddev->minor_version);
3861 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3862 struct md_rdev *rdev0
3863 = list_entry(mddev->disks.next,
3864 struct md_rdev, same_set);
3865 err = super_types[mddev->major_version]
3866 .load_super(rdev, rdev0, mddev->minor_version);
3867 if (err < 0)
3868 goto out;
3869 }
3870 } else if (mddev->external)
3871 rdev = md_import_device(dev, -2, -1);
3872 else
3873 rdev = md_import_device(dev, -1, -1);
3874
3875 if (IS_ERR(rdev))
3876 return PTR_ERR(rdev);
3877 err = bind_rdev_to_array(rdev, mddev);
3878 out:
3879 if (err)
3880 export_rdev(rdev);
3881 return err ? err : len;
3882 }
3883
3884 static struct md_sysfs_entry md_new_device =
3885 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3886
3887 static ssize_t
3888 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3889 {
3890 char *end;
3891 unsigned long chunk, end_chunk;
3892
3893 if (!mddev->bitmap)
3894 goto out;
3895 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3896 while (*buf) {
3897 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3898 if (buf == end) break;
3899 if (*end == '-') { /* range */
3900 buf = end + 1;
3901 end_chunk = simple_strtoul(buf, &end, 0);
3902 if (buf == end) break;
3903 }
3904 if (*end && !isspace(*end)) break;
3905 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3906 buf = skip_spaces(end);
3907 }
3908 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3909 out:
3910 return len;
3911 }
3912
3913 static struct md_sysfs_entry md_bitmap =
3914 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3915
3916 static ssize_t
3917 size_show(struct mddev *mddev, char *page)
3918 {
3919 return sprintf(page, "%llu\n",
3920 (unsigned long long)mddev->dev_sectors / 2);
3921 }
3922
3923 static int update_size(struct mddev *mddev, sector_t num_sectors);
3924
3925 static ssize_t
3926 size_store(struct mddev *mddev, const char *buf, size_t len)
3927 {
3928 /* If array is inactive, we can reduce the component size, but
3929 * not increase it (except from 0).
3930 * If array is active, we can try an on-line resize
3931 */
3932 sector_t sectors;
3933 int err = strict_blocks_to_sectors(buf, &sectors);
3934
3935 if (err < 0)
3936 return err;
3937 if (mddev->pers) {
3938 err = update_size(mddev, sectors);
3939 md_update_sb(mddev, 1);
3940 } else {
3941 if (mddev->dev_sectors == 0 ||
3942 mddev->dev_sectors > sectors)
3943 mddev->dev_sectors = sectors;
3944 else
3945 err = -ENOSPC;
3946 }
3947 return err ? err : len;
3948 }
3949
3950 static struct md_sysfs_entry md_size =
3951 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3952
3953
3954 /* Metdata version.
3955 * This is one of
3956 * 'none' for arrays with no metadata (good luck...)
3957 * 'external' for arrays with externally managed metadata,
3958 * or N.M for internally known formats
3959 */
3960 static ssize_t
3961 metadata_show(struct mddev *mddev, char *page)
3962 {
3963 if (mddev->persistent)
3964 return sprintf(page, "%d.%d\n",
3965 mddev->major_version, mddev->minor_version);
3966 else if (mddev->external)
3967 return sprintf(page, "external:%s\n", mddev->metadata_type);
3968 else
3969 return sprintf(page, "none\n");
3970 }
3971
3972 static ssize_t
3973 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3974 {
3975 int major, minor;
3976 char *e;
3977 /* Changing the details of 'external' metadata is
3978 * always permitted. Otherwise there must be
3979 * no devices attached to the array.
3980 */
3981 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3982 ;
3983 else if (!list_empty(&mddev->disks))
3984 return -EBUSY;
3985
3986 if (cmd_match(buf, "none")) {
3987 mddev->persistent = 0;
3988 mddev->external = 0;
3989 mddev->major_version = 0;
3990 mddev->minor_version = 90;
3991 return len;
3992 }
3993 if (strncmp(buf, "external:", 9) == 0) {
3994 size_t namelen = len-9;
3995 if (namelen >= sizeof(mddev->metadata_type))
3996 namelen = sizeof(mddev->metadata_type)-1;
3997 strncpy(mddev->metadata_type, buf+9, namelen);
3998 mddev->metadata_type[namelen] = 0;
3999 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4000 mddev->metadata_type[--namelen] = 0;
4001 mddev->persistent = 0;
4002 mddev->external = 1;
4003 mddev->major_version = 0;
4004 mddev->minor_version = 90;
4005 return len;
4006 }
4007 major = simple_strtoul(buf, &e, 10);
4008 if (e==buf || *e != '.')
4009 return -EINVAL;
4010 buf = e+1;
4011 minor = simple_strtoul(buf, &e, 10);
4012 if (e==buf || (*e && *e != '\n') )
4013 return -EINVAL;
4014 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4015 return -ENOENT;
4016 mddev->major_version = major;
4017 mddev->minor_version = minor;
4018 mddev->persistent = 1;
4019 mddev->external = 0;
4020 return len;
4021 }
4022
4023 static struct md_sysfs_entry md_metadata =
4024 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4025
4026 static ssize_t
4027 action_show(struct mddev *mddev, char *page)
4028 {
4029 char *type = "idle";
4030 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4031 type = "frozen";
4032 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4033 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4034 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4035 type = "reshape";
4036 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4037 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4038 type = "resync";
4039 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4040 type = "check";
4041 else
4042 type = "repair";
4043 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4044 type = "recover";
4045 }
4046 return sprintf(page, "%s\n", type);
4047 }
4048
4049 static void reap_sync_thread(struct mddev *mddev);
4050
4051 static ssize_t
4052 action_store(struct mddev *mddev, const char *page, size_t len)
4053 {
4054 if (!mddev->pers || !mddev->pers->sync_request)
4055 return -EINVAL;
4056
4057 if (cmd_match(page, "frozen"))
4058 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4059 else
4060 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4061
4062 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4063 if (mddev->sync_thread) {
4064 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4065 reap_sync_thread(mddev);
4066 }
4067 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4068 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4069 return -EBUSY;
4070 else if (cmd_match(page, "resync"))
4071 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4072 else if (cmd_match(page, "recover")) {
4073 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4074 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4075 } else if (cmd_match(page, "reshape")) {
4076 int err;
4077 if (mddev->pers->start_reshape == NULL)
4078 return -EINVAL;
4079 err = mddev->pers->start_reshape(mddev);
4080 if (err)
4081 return err;
4082 sysfs_notify(&mddev->kobj, NULL, "degraded");
4083 } else {
4084 if (cmd_match(page, "check"))
4085 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4086 else if (!cmd_match(page, "repair"))
4087 return -EINVAL;
4088 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4089 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4090 }
4091 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4092 md_wakeup_thread(mddev->thread);
4093 sysfs_notify_dirent_safe(mddev->sysfs_action);
4094 return len;
4095 }
4096
4097 static ssize_t
4098 mismatch_cnt_show(struct mddev *mddev, char *page)
4099 {
4100 return sprintf(page, "%llu\n",
4101 (unsigned long long) mddev->resync_mismatches);
4102 }
4103
4104 static struct md_sysfs_entry md_scan_mode =
4105 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4106
4107
4108 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4109
4110 static ssize_t
4111 sync_min_show(struct mddev *mddev, char *page)
4112 {
4113 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4114 mddev->sync_speed_min ? "local": "system");
4115 }
4116
4117 static ssize_t
4118 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4119 {
4120 int min;
4121 char *e;
4122 if (strncmp(buf, "system", 6)==0) {
4123 mddev->sync_speed_min = 0;
4124 return len;
4125 }
4126 min = simple_strtoul(buf, &e, 10);
4127 if (buf == e || (*e && *e != '\n') || min <= 0)
4128 return -EINVAL;
4129 mddev->sync_speed_min = min;
4130 return len;
4131 }
4132
4133 static struct md_sysfs_entry md_sync_min =
4134 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4135
4136 static ssize_t
4137 sync_max_show(struct mddev *mddev, char *page)
4138 {
4139 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4140 mddev->sync_speed_max ? "local": "system");
4141 }
4142
4143 static ssize_t
4144 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4145 {
4146 int max;
4147 char *e;
4148 if (strncmp(buf, "system", 6)==0) {
4149 mddev->sync_speed_max = 0;
4150 return len;
4151 }
4152 max = simple_strtoul(buf, &e, 10);
4153 if (buf == e || (*e && *e != '\n') || max <= 0)
4154 return -EINVAL;
4155 mddev->sync_speed_max = max;
4156 return len;
4157 }
4158
4159 static struct md_sysfs_entry md_sync_max =
4160 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4161
4162 static ssize_t
4163 degraded_show(struct mddev *mddev, char *page)
4164 {
4165 return sprintf(page, "%d\n", mddev->degraded);
4166 }
4167 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4168
4169 static ssize_t
4170 sync_force_parallel_show(struct mddev *mddev, char *page)
4171 {
4172 return sprintf(page, "%d\n", mddev->parallel_resync);
4173 }
4174
4175 static ssize_t
4176 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4177 {
4178 long n;
4179
4180 if (strict_strtol(buf, 10, &n))
4181 return -EINVAL;
4182
4183 if (n != 0 && n != 1)
4184 return -EINVAL;
4185
4186 mddev->parallel_resync = n;
4187
4188 if (mddev->sync_thread)
4189 wake_up(&resync_wait);
4190
4191 return len;
4192 }
4193
4194 /* force parallel resync, even with shared block devices */
4195 static struct md_sysfs_entry md_sync_force_parallel =
4196 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4197 sync_force_parallel_show, sync_force_parallel_store);
4198
4199 static ssize_t
4200 sync_speed_show(struct mddev *mddev, char *page)
4201 {
4202 unsigned long resync, dt, db;
4203 if (mddev->curr_resync == 0)
4204 return sprintf(page, "none\n");
4205 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4206 dt = (jiffies - mddev->resync_mark) / HZ;
4207 if (!dt) dt++;
4208 db = resync - mddev->resync_mark_cnt;
4209 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4210 }
4211
4212 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4213
4214 static ssize_t
4215 sync_completed_show(struct mddev *mddev, char *page)
4216 {
4217 unsigned long long max_sectors, resync;
4218
4219 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4220 return sprintf(page, "none\n");
4221
4222 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4223 max_sectors = mddev->resync_max_sectors;
4224 else
4225 max_sectors = mddev->dev_sectors;
4226
4227 resync = mddev->curr_resync_completed;
4228 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4229 }
4230
4231 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4232
4233 static ssize_t
4234 min_sync_show(struct mddev *mddev, char *page)
4235 {
4236 return sprintf(page, "%llu\n",
4237 (unsigned long long)mddev->resync_min);
4238 }
4239 static ssize_t
4240 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4241 {
4242 unsigned long long min;
4243 if (strict_strtoull(buf, 10, &min))
4244 return -EINVAL;
4245 if (min > mddev->resync_max)
4246 return -EINVAL;
4247 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4248 return -EBUSY;
4249
4250 /* Must be a multiple of chunk_size */
4251 if (mddev->chunk_sectors) {
4252 sector_t temp = min;
4253 if (sector_div(temp, mddev->chunk_sectors))
4254 return -EINVAL;
4255 }
4256 mddev->resync_min = min;
4257
4258 return len;
4259 }
4260
4261 static struct md_sysfs_entry md_min_sync =
4262 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4263
4264 static ssize_t
4265 max_sync_show(struct mddev *mddev, char *page)
4266 {
4267 if (mddev->resync_max == MaxSector)
4268 return sprintf(page, "max\n");
4269 else
4270 return sprintf(page, "%llu\n",
4271 (unsigned long long)mddev->resync_max);
4272 }
4273 static ssize_t
4274 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4275 {
4276 if (strncmp(buf, "max", 3) == 0)
4277 mddev->resync_max = MaxSector;
4278 else {
4279 unsigned long long max;
4280 if (strict_strtoull(buf, 10, &max))
4281 return -EINVAL;
4282 if (max < mddev->resync_min)
4283 return -EINVAL;
4284 if (max < mddev->resync_max &&
4285 mddev->ro == 0 &&
4286 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4287 return -EBUSY;
4288
4289 /* Must be a multiple of chunk_size */
4290 if (mddev->chunk_sectors) {
4291 sector_t temp = max;
4292 if (sector_div(temp, mddev->chunk_sectors))
4293 return -EINVAL;
4294 }
4295 mddev->resync_max = max;
4296 }
4297 wake_up(&mddev->recovery_wait);
4298 return len;
4299 }
4300
4301 static struct md_sysfs_entry md_max_sync =
4302 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4303
4304 static ssize_t
4305 suspend_lo_show(struct mddev *mddev, char *page)
4306 {
4307 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4308 }
4309
4310 static ssize_t
4311 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4312 {
4313 char *e;
4314 unsigned long long new = simple_strtoull(buf, &e, 10);
4315 unsigned long long old = mddev->suspend_lo;
4316
4317 if (mddev->pers == NULL ||
4318 mddev->pers->quiesce == NULL)
4319 return -EINVAL;
4320 if (buf == e || (*e && *e != '\n'))
4321 return -EINVAL;
4322
4323 mddev->suspend_lo = new;
4324 if (new >= old)
4325 /* Shrinking suspended region */
4326 mddev->pers->quiesce(mddev, 2);
4327 else {
4328 /* Expanding suspended region - need to wait */
4329 mddev->pers->quiesce(mddev, 1);
4330 mddev->pers->quiesce(mddev, 0);
4331 }
4332 return len;
4333 }
4334 static struct md_sysfs_entry md_suspend_lo =
4335 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4336
4337
4338 static ssize_t
4339 suspend_hi_show(struct mddev *mddev, char *page)
4340 {
4341 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4342 }
4343
4344 static ssize_t
4345 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4346 {
4347 char *e;
4348 unsigned long long new = simple_strtoull(buf, &e, 10);
4349 unsigned long long old = mddev->suspend_hi;
4350
4351 if (mddev->pers == NULL ||
4352 mddev->pers->quiesce == NULL)
4353 return -EINVAL;
4354 if (buf == e || (*e && *e != '\n'))
4355 return -EINVAL;
4356
4357 mddev->suspend_hi = new;
4358 if (new <= old)
4359 /* Shrinking suspended region */
4360 mddev->pers->quiesce(mddev, 2);
4361 else {
4362 /* Expanding suspended region - need to wait */
4363 mddev->pers->quiesce(mddev, 1);
4364 mddev->pers->quiesce(mddev, 0);
4365 }
4366 return len;
4367 }
4368 static struct md_sysfs_entry md_suspend_hi =
4369 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4370
4371 static ssize_t
4372 reshape_position_show(struct mddev *mddev, char *page)
4373 {
4374 if (mddev->reshape_position != MaxSector)
4375 return sprintf(page, "%llu\n",
4376 (unsigned long long)mddev->reshape_position);
4377 strcpy(page, "none\n");
4378 return 5;
4379 }
4380
4381 static ssize_t
4382 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4383 {
4384 char *e;
4385 unsigned long long new = simple_strtoull(buf, &e, 10);
4386 if (mddev->pers)
4387 return -EBUSY;
4388 if (buf == e || (*e && *e != '\n'))
4389 return -EINVAL;
4390 mddev->reshape_position = new;
4391 mddev->delta_disks = 0;
4392 mddev->new_level = mddev->level;
4393 mddev->new_layout = mddev->layout;
4394 mddev->new_chunk_sectors = mddev->chunk_sectors;
4395 return len;
4396 }
4397
4398 static struct md_sysfs_entry md_reshape_position =
4399 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4400 reshape_position_store);
4401
4402 static ssize_t
4403 array_size_show(struct mddev *mddev, char *page)
4404 {
4405 if (mddev->external_size)
4406 return sprintf(page, "%llu\n",
4407 (unsigned long long)mddev->array_sectors/2);
4408 else
4409 return sprintf(page, "default\n");
4410 }
4411
4412 static ssize_t
4413 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4414 {
4415 sector_t sectors;
4416
4417 if (strncmp(buf, "default", 7) == 0) {
4418 if (mddev->pers)
4419 sectors = mddev->pers->size(mddev, 0, 0);
4420 else
4421 sectors = mddev->array_sectors;
4422
4423 mddev->external_size = 0;
4424 } else {
4425 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4426 return -EINVAL;
4427 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4428 return -E2BIG;
4429
4430 mddev->external_size = 1;
4431 }
4432
4433 mddev->array_sectors = sectors;
4434 if (mddev->pers) {
4435 set_capacity(mddev->gendisk, mddev->array_sectors);
4436 revalidate_disk(mddev->gendisk);
4437 }
4438 return len;
4439 }
4440
4441 static struct md_sysfs_entry md_array_size =
4442 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4443 array_size_store);
4444
4445 static struct attribute *md_default_attrs[] = {
4446 &md_level.attr,
4447 &md_layout.attr,
4448 &md_raid_disks.attr,
4449 &md_chunk_size.attr,
4450 &md_size.attr,
4451 &md_resync_start.attr,
4452 &md_metadata.attr,
4453 &md_new_device.attr,
4454 &md_safe_delay.attr,
4455 &md_array_state.attr,
4456 &md_reshape_position.attr,
4457 &md_array_size.attr,
4458 &max_corr_read_errors.attr,
4459 NULL,
4460 };
4461
4462 static struct attribute *md_redundancy_attrs[] = {
4463 &md_scan_mode.attr,
4464 &md_mismatches.attr,
4465 &md_sync_min.attr,
4466 &md_sync_max.attr,
4467 &md_sync_speed.attr,
4468 &md_sync_force_parallel.attr,
4469 &md_sync_completed.attr,
4470 &md_min_sync.attr,
4471 &md_max_sync.attr,
4472 &md_suspend_lo.attr,
4473 &md_suspend_hi.attr,
4474 &md_bitmap.attr,
4475 &md_degraded.attr,
4476 NULL,
4477 };
4478 static struct attribute_group md_redundancy_group = {
4479 .name = NULL,
4480 .attrs = md_redundancy_attrs,
4481 };
4482
4483
4484 static ssize_t
4485 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4486 {
4487 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4488 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4489 ssize_t rv;
4490
4491 if (!entry->show)
4492 return -EIO;
4493 rv = mddev_lock(mddev);
4494 if (!rv) {
4495 rv = entry->show(mddev, page);
4496 mddev_unlock(mddev);
4497 }
4498 return rv;
4499 }
4500
4501 static ssize_t
4502 md_attr_store(struct kobject *kobj, struct attribute *attr,
4503 const char *page, size_t length)
4504 {
4505 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4506 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4507 ssize_t rv;
4508
4509 if (!entry->store)
4510 return -EIO;
4511 if (!capable(CAP_SYS_ADMIN))
4512 return -EACCES;
4513 rv = mddev_lock(mddev);
4514 if (mddev->hold_active == UNTIL_IOCTL)
4515 mddev->hold_active = 0;
4516 if (!rv) {
4517 rv = entry->store(mddev, page, length);
4518 mddev_unlock(mddev);
4519 }
4520 return rv;
4521 }
4522
4523 static void md_free(struct kobject *ko)
4524 {
4525 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4526
4527 if (mddev->sysfs_state)
4528 sysfs_put(mddev->sysfs_state);
4529
4530 if (mddev->gendisk) {
4531 del_gendisk(mddev->gendisk);
4532 put_disk(mddev->gendisk);
4533 }
4534 if (mddev->queue)
4535 blk_cleanup_queue(mddev->queue);
4536
4537 kfree(mddev);
4538 }
4539
4540 static const struct sysfs_ops md_sysfs_ops = {
4541 .show = md_attr_show,
4542 .store = md_attr_store,
4543 };
4544 static struct kobj_type md_ktype = {
4545 .release = md_free,
4546 .sysfs_ops = &md_sysfs_ops,
4547 .default_attrs = md_default_attrs,
4548 };
4549
4550 int mdp_major = 0;
4551
4552 static void mddev_delayed_delete(struct work_struct *ws)
4553 {
4554 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4555
4556 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4557 kobject_del(&mddev->kobj);
4558 kobject_put(&mddev->kobj);
4559 }
4560
4561 static int md_alloc(dev_t dev, char *name)
4562 {
4563 static DEFINE_MUTEX(disks_mutex);
4564 struct mddev *mddev = mddev_find(dev);
4565 struct gendisk *disk;
4566 int partitioned;
4567 int shift;
4568 int unit;
4569 int error;
4570
4571 if (!mddev)
4572 return -ENODEV;
4573
4574 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4575 shift = partitioned ? MdpMinorShift : 0;
4576 unit = MINOR(mddev->unit) >> shift;
4577
4578 /* wait for any previous instance of this device to be
4579 * completely removed (mddev_delayed_delete).
4580 */
4581 flush_workqueue(md_misc_wq);
4582
4583 mutex_lock(&disks_mutex);
4584 error = -EEXIST;
4585 if (mddev->gendisk)
4586 goto abort;
4587
4588 if (name) {
4589 /* Need to ensure that 'name' is not a duplicate.
4590 */
4591 struct mddev *mddev2;
4592 spin_lock(&all_mddevs_lock);
4593
4594 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4595 if (mddev2->gendisk &&
4596 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4597 spin_unlock(&all_mddevs_lock);
4598 goto abort;
4599 }
4600 spin_unlock(&all_mddevs_lock);
4601 }
4602
4603 error = -ENOMEM;
4604 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4605 if (!mddev->queue)
4606 goto abort;
4607 mddev->queue->queuedata = mddev;
4608
4609 blk_queue_make_request(mddev->queue, md_make_request);
4610
4611 disk = alloc_disk(1 << shift);
4612 if (!disk) {
4613 blk_cleanup_queue(mddev->queue);
4614 mddev->queue = NULL;
4615 goto abort;
4616 }
4617 disk->major = MAJOR(mddev->unit);
4618 disk->first_minor = unit << shift;
4619 if (name)
4620 strcpy(disk->disk_name, name);
4621 else if (partitioned)
4622 sprintf(disk->disk_name, "md_d%d", unit);
4623 else
4624 sprintf(disk->disk_name, "md%d", unit);
4625 disk->fops = &md_fops;
4626 disk->private_data = mddev;
4627 disk->queue = mddev->queue;
4628 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4629 /* Allow extended partitions. This makes the
4630 * 'mdp' device redundant, but we can't really
4631 * remove it now.
4632 */
4633 disk->flags |= GENHD_FL_EXT_DEVT;
4634 mddev->gendisk = disk;
4635 /* As soon as we call add_disk(), another thread could get
4636 * through to md_open, so make sure it doesn't get too far
4637 */
4638 mutex_lock(&mddev->open_mutex);
4639 add_disk(disk);
4640
4641 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4642 &disk_to_dev(disk)->kobj, "%s", "md");
4643 if (error) {
4644 /* This isn't possible, but as kobject_init_and_add is marked
4645 * __must_check, we must do something with the result
4646 */
4647 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4648 disk->disk_name);
4649 error = 0;
4650 }
4651 if (mddev->kobj.sd &&
4652 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4653 printk(KERN_DEBUG "pointless warning\n");
4654 mutex_unlock(&mddev->open_mutex);
4655 abort:
4656 mutex_unlock(&disks_mutex);
4657 if (!error && mddev->kobj.sd) {
4658 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4659 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4660 }
4661 mddev_put(mddev);
4662 return error;
4663 }
4664
4665 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4666 {
4667 md_alloc(dev, NULL);
4668 return NULL;
4669 }
4670
4671 static int add_named_array(const char *val, struct kernel_param *kp)
4672 {
4673 /* val must be "md_*" where * is not all digits.
4674 * We allocate an array with a large free minor number, and
4675 * set the name to val. val must not already be an active name.
4676 */
4677 int len = strlen(val);
4678 char buf[DISK_NAME_LEN];
4679
4680 while (len && val[len-1] == '\n')
4681 len--;
4682 if (len >= DISK_NAME_LEN)
4683 return -E2BIG;
4684 strlcpy(buf, val, len+1);
4685 if (strncmp(buf, "md_", 3) != 0)
4686 return -EINVAL;
4687 return md_alloc(0, buf);
4688 }
4689
4690 static void md_safemode_timeout(unsigned long data)
4691 {
4692 struct mddev *mddev = (struct mddev *) data;
4693
4694 if (!atomic_read(&mddev->writes_pending)) {
4695 mddev->safemode = 1;
4696 if (mddev->external)
4697 sysfs_notify_dirent_safe(mddev->sysfs_state);
4698 }
4699 md_wakeup_thread(mddev->thread);
4700 }
4701
4702 static int start_dirty_degraded;
4703
4704 int md_run(struct mddev *mddev)
4705 {
4706 int err;
4707 struct md_rdev *rdev;
4708 struct md_personality *pers;
4709
4710 if (list_empty(&mddev->disks))
4711 /* cannot run an array with no devices.. */
4712 return -EINVAL;
4713
4714 if (mddev->pers)
4715 return -EBUSY;
4716 /* Cannot run until previous stop completes properly */
4717 if (mddev->sysfs_active)
4718 return -EBUSY;
4719
4720 /*
4721 * Analyze all RAID superblock(s)
4722 */
4723 if (!mddev->raid_disks) {
4724 if (!mddev->persistent)
4725 return -EINVAL;
4726 analyze_sbs(mddev);
4727 }
4728
4729 if (mddev->level != LEVEL_NONE)
4730 request_module("md-level-%d", mddev->level);
4731 else if (mddev->clevel[0])
4732 request_module("md-%s", mddev->clevel);
4733
4734 /*
4735 * Drop all container device buffers, from now on
4736 * the only valid external interface is through the md
4737 * device.
4738 */
4739 list_for_each_entry(rdev, &mddev->disks, same_set) {
4740 if (test_bit(Faulty, &rdev->flags))
4741 continue;
4742 sync_blockdev(rdev->bdev);
4743 invalidate_bdev(rdev->bdev);
4744
4745 /* perform some consistency tests on the device.
4746 * We don't want the data to overlap the metadata,
4747 * Internal Bitmap issues have been handled elsewhere.
4748 */
4749 if (rdev->meta_bdev) {
4750 /* Nothing to check */;
4751 } else if (rdev->data_offset < rdev->sb_start) {
4752 if (mddev->dev_sectors &&
4753 rdev->data_offset + mddev->dev_sectors
4754 > rdev->sb_start) {
4755 printk("md: %s: data overlaps metadata\n",
4756 mdname(mddev));
4757 return -EINVAL;
4758 }
4759 } else {
4760 if (rdev->sb_start + rdev->sb_size/512
4761 > rdev->data_offset) {
4762 printk("md: %s: metadata overlaps data\n",
4763 mdname(mddev));
4764 return -EINVAL;
4765 }
4766 }
4767 sysfs_notify_dirent_safe(rdev->sysfs_state);
4768 }
4769
4770 if (mddev->bio_set == NULL)
4771 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4772 sizeof(struct mddev *));
4773
4774 spin_lock(&pers_lock);
4775 pers = find_pers(mddev->level, mddev->clevel);
4776 if (!pers || !try_module_get(pers->owner)) {
4777 spin_unlock(&pers_lock);
4778 if (mddev->level != LEVEL_NONE)
4779 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4780 mddev->level);
4781 else
4782 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4783 mddev->clevel);
4784 return -EINVAL;
4785 }
4786 mddev->pers = pers;
4787 spin_unlock(&pers_lock);
4788 if (mddev->level != pers->level) {
4789 mddev->level = pers->level;
4790 mddev->new_level = pers->level;
4791 }
4792 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4793
4794 if (mddev->reshape_position != MaxSector &&
4795 pers->start_reshape == NULL) {
4796 /* This personality cannot handle reshaping... */
4797 mddev->pers = NULL;
4798 module_put(pers->owner);
4799 return -EINVAL;
4800 }
4801
4802 if (pers->sync_request) {
4803 /* Warn if this is a potentially silly
4804 * configuration.
4805 */
4806 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4807 struct md_rdev *rdev2;
4808 int warned = 0;
4809
4810 list_for_each_entry(rdev, &mddev->disks, same_set)
4811 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4812 if (rdev < rdev2 &&
4813 rdev->bdev->bd_contains ==
4814 rdev2->bdev->bd_contains) {
4815 printk(KERN_WARNING
4816 "%s: WARNING: %s appears to be"
4817 " on the same physical disk as"
4818 " %s.\n",
4819 mdname(mddev),
4820 bdevname(rdev->bdev,b),
4821 bdevname(rdev2->bdev,b2));
4822 warned = 1;
4823 }
4824 }
4825
4826 if (warned)
4827 printk(KERN_WARNING
4828 "True protection against single-disk"
4829 " failure might be compromised.\n");
4830 }
4831
4832 mddev->recovery = 0;
4833 /* may be over-ridden by personality */
4834 mddev->resync_max_sectors = mddev->dev_sectors;
4835
4836 mddev->ok_start_degraded = start_dirty_degraded;
4837
4838 if (start_readonly && mddev->ro == 0)
4839 mddev->ro = 2; /* read-only, but switch on first write */
4840
4841 err = mddev->pers->run(mddev);
4842 if (err)
4843 printk(KERN_ERR "md: pers->run() failed ...\n");
4844 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4845 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4846 " but 'external_size' not in effect?\n", __func__);
4847 printk(KERN_ERR
4848 "md: invalid array_size %llu > default size %llu\n",
4849 (unsigned long long)mddev->array_sectors / 2,
4850 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4851 err = -EINVAL;
4852 mddev->pers->stop(mddev);
4853 }
4854 if (err == 0 && mddev->pers->sync_request) {
4855 err = bitmap_create(mddev);
4856 if (err) {
4857 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4858 mdname(mddev), err);
4859 mddev->pers->stop(mddev);
4860 }
4861 }
4862 if (err) {
4863 module_put(mddev->pers->owner);
4864 mddev->pers = NULL;
4865 bitmap_destroy(mddev);
4866 return err;
4867 }
4868 if (mddev->pers->sync_request) {
4869 if (mddev->kobj.sd &&
4870 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4871 printk(KERN_WARNING
4872 "md: cannot register extra attributes for %s\n",
4873 mdname(mddev));
4874 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4875 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4876 mddev->ro = 0;
4877
4878 atomic_set(&mddev->writes_pending,0);
4879 atomic_set(&mddev->max_corr_read_errors,
4880 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4881 mddev->safemode = 0;
4882 mddev->safemode_timer.function = md_safemode_timeout;
4883 mddev->safemode_timer.data = (unsigned long) mddev;
4884 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4885 mddev->in_sync = 1;
4886 smp_wmb();
4887 mddev->ready = 1;
4888 list_for_each_entry(rdev, &mddev->disks, same_set)
4889 if (rdev->raid_disk >= 0)
4890 if (sysfs_link_rdev(mddev, rdev))
4891 /* failure here is OK */;
4892
4893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4894
4895 if (mddev->flags)
4896 md_update_sb(mddev, 0);
4897
4898 md_new_event(mddev);
4899 sysfs_notify_dirent_safe(mddev->sysfs_state);
4900 sysfs_notify_dirent_safe(mddev->sysfs_action);
4901 sysfs_notify(&mddev->kobj, NULL, "degraded");
4902 return 0;
4903 }
4904 EXPORT_SYMBOL_GPL(md_run);
4905
4906 static int do_md_run(struct mddev *mddev)
4907 {
4908 int err;
4909
4910 err = md_run(mddev);
4911 if (err)
4912 goto out;
4913 err = bitmap_load(mddev);
4914 if (err) {
4915 bitmap_destroy(mddev);
4916 goto out;
4917 }
4918
4919 md_wakeup_thread(mddev->thread);
4920 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4921
4922 set_capacity(mddev->gendisk, mddev->array_sectors);
4923 revalidate_disk(mddev->gendisk);
4924 mddev->changed = 1;
4925 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4926 out:
4927 return err;
4928 }
4929
4930 static int restart_array(struct mddev *mddev)
4931 {
4932 struct gendisk *disk = mddev->gendisk;
4933
4934 /* Complain if it has no devices */
4935 if (list_empty(&mddev->disks))
4936 return -ENXIO;
4937 if (!mddev->pers)
4938 return -EINVAL;
4939 if (!mddev->ro)
4940 return -EBUSY;
4941 mddev->safemode = 0;
4942 mddev->ro = 0;
4943 set_disk_ro(disk, 0);
4944 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4945 mdname(mddev));
4946 /* Kick recovery or resync if necessary */
4947 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4948 md_wakeup_thread(mddev->thread);
4949 md_wakeup_thread(mddev->sync_thread);
4950 sysfs_notify_dirent_safe(mddev->sysfs_state);
4951 return 0;
4952 }
4953
4954 /* similar to deny_write_access, but accounts for our holding a reference
4955 * to the file ourselves */
4956 static int deny_bitmap_write_access(struct file * file)
4957 {
4958 struct inode *inode = file->f_mapping->host;
4959
4960 spin_lock(&inode->i_lock);
4961 if (atomic_read(&inode->i_writecount) > 1) {
4962 spin_unlock(&inode->i_lock);
4963 return -ETXTBSY;
4964 }
4965 atomic_set(&inode->i_writecount, -1);
4966 spin_unlock(&inode->i_lock);
4967
4968 return 0;
4969 }
4970
4971 void restore_bitmap_write_access(struct file *file)
4972 {
4973 struct inode *inode = file->f_mapping->host;
4974
4975 spin_lock(&inode->i_lock);
4976 atomic_set(&inode->i_writecount, 1);
4977 spin_unlock(&inode->i_lock);
4978 }
4979
4980 static void md_clean(struct mddev *mddev)
4981 {
4982 mddev->array_sectors = 0;
4983 mddev->external_size = 0;
4984 mddev->dev_sectors = 0;
4985 mddev->raid_disks = 0;
4986 mddev->recovery_cp = 0;
4987 mddev->resync_min = 0;
4988 mddev->resync_max = MaxSector;
4989 mddev->reshape_position = MaxSector;
4990 mddev->external = 0;
4991 mddev->persistent = 0;
4992 mddev->level = LEVEL_NONE;
4993 mddev->clevel[0] = 0;
4994 mddev->flags = 0;
4995 mddev->ro = 0;
4996 mddev->metadata_type[0] = 0;
4997 mddev->chunk_sectors = 0;
4998 mddev->ctime = mddev->utime = 0;
4999 mddev->layout = 0;
5000 mddev->max_disks = 0;
5001 mddev->events = 0;
5002 mddev->can_decrease_events = 0;
5003 mddev->delta_disks = 0;
5004 mddev->new_level = LEVEL_NONE;
5005 mddev->new_layout = 0;
5006 mddev->new_chunk_sectors = 0;
5007 mddev->curr_resync = 0;
5008 mddev->resync_mismatches = 0;
5009 mddev->suspend_lo = mddev->suspend_hi = 0;
5010 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5011 mddev->recovery = 0;
5012 mddev->in_sync = 0;
5013 mddev->changed = 0;
5014 mddev->degraded = 0;
5015 mddev->safemode = 0;
5016 mddev->bitmap_info.offset = 0;
5017 mddev->bitmap_info.default_offset = 0;
5018 mddev->bitmap_info.chunksize = 0;
5019 mddev->bitmap_info.daemon_sleep = 0;
5020 mddev->bitmap_info.max_write_behind = 0;
5021 }
5022
5023 static void __md_stop_writes(struct mddev *mddev)
5024 {
5025 if (mddev->sync_thread) {
5026 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5027 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5028 reap_sync_thread(mddev);
5029 }
5030
5031 del_timer_sync(&mddev->safemode_timer);
5032
5033 bitmap_flush(mddev);
5034 md_super_wait(mddev);
5035
5036 if (!mddev->in_sync || mddev->flags) {
5037 /* mark array as shutdown cleanly */
5038 mddev->in_sync = 1;
5039 md_update_sb(mddev, 1);
5040 }
5041 }
5042
5043 void md_stop_writes(struct mddev *mddev)
5044 {
5045 mddev_lock(mddev);
5046 __md_stop_writes(mddev);
5047 mddev_unlock(mddev);
5048 }
5049 EXPORT_SYMBOL_GPL(md_stop_writes);
5050
5051 void md_stop(struct mddev *mddev)
5052 {
5053 mddev->ready = 0;
5054 mddev->pers->stop(mddev);
5055 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5056 mddev->to_remove = &md_redundancy_group;
5057 module_put(mddev->pers->owner);
5058 mddev->pers = NULL;
5059 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5060 }
5061 EXPORT_SYMBOL_GPL(md_stop);
5062
5063 static int md_set_readonly(struct mddev *mddev, int is_open)
5064 {
5065 int err = 0;
5066 mutex_lock(&mddev->open_mutex);
5067 if (atomic_read(&mddev->openers) > is_open) {
5068 printk("md: %s still in use.\n",mdname(mddev));
5069 err = -EBUSY;
5070 goto out;
5071 }
5072 if (mddev->pers) {
5073 __md_stop_writes(mddev);
5074
5075 err = -ENXIO;
5076 if (mddev->ro==1)
5077 goto out;
5078 mddev->ro = 1;
5079 set_disk_ro(mddev->gendisk, 1);
5080 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5081 sysfs_notify_dirent_safe(mddev->sysfs_state);
5082 err = 0;
5083 }
5084 out:
5085 mutex_unlock(&mddev->open_mutex);
5086 return err;
5087 }
5088
5089 /* mode:
5090 * 0 - completely stop and dis-assemble array
5091 * 2 - stop but do not disassemble array
5092 */
5093 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5094 {
5095 struct gendisk *disk = mddev->gendisk;
5096 struct md_rdev *rdev;
5097
5098 mutex_lock(&mddev->open_mutex);
5099 if (atomic_read(&mddev->openers) > is_open ||
5100 mddev->sysfs_active) {
5101 printk("md: %s still in use.\n",mdname(mddev));
5102 mutex_unlock(&mddev->open_mutex);
5103 return -EBUSY;
5104 }
5105
5106 if (mddev->pers) {
5107 if (mddev->ro)
5108 set_disk_ro(disk, 0);
5109
5110 __md_stop_writes(mddev);
5111 md_stop(mddev);
5112 mddev->queue->merge_bvec_fn = NULL;
5113 mddev->queue->backing_dev_info.congested_fn = NULL;
5114
5115 /* tell userspace to handle 'inactive' */
5116 sysfs_notify_dirent_safe(mddev->sysfs_state);
5117
5118 list_for_each_entry(rdev, &mddev->disks, same_set)
5119 if (rdev->raid_disk >= 0)
5120 sysfs_unlink_rdev(mddev, rdev);
5121
5122 set_capacity(disk, 0);
5123 mutex_unlock(&mddev->open_mutex);
5124 mddev->changed = 1;
5125 revalidate_disk(disk);
5126
5127 if (mddev->ro)
5128 mddev->ro = 0;
5129 } else
5130 mutex_unlock(&mddev->open_mutex);
5131 /*
5132 * Free resources if final stop
5133 */
5134 if (mode == 0) {
5135 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5136
5137 bitmap_destroy(mddev);
5138 if (mddev->bitmap_info.file) {
5139 restore_bitmap_write_access(mddev->bitmap_info.file);
5140 fput(mddev->bitmap_info.file);
5141 mddev->bitmap_info.file = NULL;
5142 }
5143 mddev->bitmap_info.offset = 0;
5144
5145 export_array(mddev);
5146
5147 md_clean(mddev);
5148 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5149 if (mddev->hold_active == UNTIL_STOP)
5150 mddev->hold_active = 0;
5151 }
5152 blk_integrity_unregister(disk);
5153 md_new_event(mddev);
5154 sysfs_notify_dirent_safe(mddev->sysfs_state);
5155 return 0;
5156 }
5157
5158 #ifndef MODULE
5159 static void autorun_array(struct mddev *mddev)
5160 {
5161 struct md_rdev *rdev;
5162 int err;
5163
5164 if (list_empty(&mddev->disks))
5165 return;
5166
5167 printk(KERN_INFO "md: running: ");
5168
5169 list_for_each_entry(rdev, &mddev->disks, same_set) {
5170 char b[BDEVNAME_SIZE];
5171 printk("<%s>", bdevname(rdev->bdev,b));
5172 }
5173 printk("\n");
5174
5175 err = do_md_run(mddev);
5176 if (err) {
5177 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5178 do_md_stop(mddev, 0, 0);
5179 }
5180 }
5181
5182 /*
5183 * lets try to run arrays based on all disks that have arrived
5184 * until now. (those are in pending_raid_disks)
5185 *
5186 * the method: pick the first pending disk, collect all disks with
5187 * the same UUID, remove all from the pending list and put them into
5188 * the 'same_array' list. Then order this list based on superblock
5189 * update time (freshest comes first), kick out 'old' disks and
5190 * compare superblocks. If everything's fine then run it.
5191 *
5192 * If "unit" is allocated, then bump its reference count
5193 */
5194 static void autorun_devices(int part)
5195 {
5196 struct md_rdev *rdev0, *rdev, *tmp;
5197 struct mddev *mddev;
5198 char b[BDEVNAME_SIZE];
5199
5200 printk(KERN_INFO "md: autorun ...\n");
5201 while (!list_empty(&pending_raid_disks)) {
5202 int unit;
5203 dev_t dev;
5204 LIST_HEAD(candidates);
5205 rdev0 = list_entry(pending_raid_disks.next,
5206 struct md_rdev, same_set);
5207
5208 printk(KERN_INFO "md: considering %s ...\n",
5209 bdevname(rdev0->bdev,b));
5210 INIT_LIST_HEAD(&candidates);
5211 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5212 if (super_90_load(rdev, rdev0, 0) >= 0) {
5213 printk(KERN_INFO "md: adding %s ...\n",
5214 bdevname(rdev->bdev,b));
5215 list_move(&rdev->same_set, &candidates);
5216 }
5217 /*
5218 * now we have a set of devices, with all of them having
5219 * mostly sane superblocks. It's time to allocate the
5220 * mddev.
5221 */
5222 if (part) {
5223 dev = MKDEV(mdp_major,
5224 rdev0->preferred_minor << MdpMinorShift);
5225 unit = MINOR(dev) >> MdpMinorShift;
5226 } else {
5227 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5228 unit = MINOR(dev);
5229 }
5230 if (rdev0->preferred_minor != unit) {
5231 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5232 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5233 break;
5234 }
5235
5236 md_probe(dev, NULL, NULL);
5237 mddev = mddev_find(dev);
5238 if (!mddev || !mddev->gendisk) {
5239 if (mddev)
5240 mddev_put(mddev);
5241 printk(KERN_ERR
5242 "md: cannot allocate memory for md drive.\n");
5243 break;
5244 }
5245 if (mddev_lock(mddev))
5246 printk(KERN_WARNING "md: %s locked, cannot run\n",
5247 mdname(mddev));
5248 else if (mddev->raid_disks || mddev->major_version
5249 || !list_empty(&mddev->disks)) {
5250 printk(KERN_WARNING
5251 "md: %s already running, cannot run %s\n",
5252 mdname(mddev), bdevname(rdev0->bdev,b));
5253 mddev_unlock(mddev);
5254 } else {
5255 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5256 mddev->persistent = 1;
5257 rdev_for_each_list(rdev, tmp, &candidates) {
5258 list_del_init(&rdev->same_set);
5259 if (bind_rdev_to_array(rdev, mddev))
5260 export_rdev(rdev);
5261 }
5262 autorun_array(mddev);
5263 mddev_unlock(mddev);
5264 }
5265 /* on success, candidates will be empty, on error
5266 * it won't...
5267 */
5268 rdev_for_each_list(rdev, tmp, &candidates) {
5269 list_del_init(&rdev->same_set);
5270 export_rdev(rdev);
5271 }
5272 mddev_put(mddev);
5273 }
5274 printk(KERN_INFO "md: ... autorun DONE.\n");
5275 }
5276 #endif /* !MODULE */
5277
5278 static int get_version(void __user * arg)
5279 {
5280 mdu_version_t ver;
5281
5282 ver.major = MD_MAJOR_VERSION;
5283 ver.minor = MD_MINOR_VERSION;
5284 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5285
5286 if (copy_to_user(arg, &ver, sizeof(ver)))
5287 return -EFAULT;
5288
5289 return 0;
5290 }
5291
5292 static int get_array_info(struct mddev * mddev, void __user * arg)
5293 {
5294 mdu_array_info_t info;
5295 int nr,working,insync,failed,spare;
5296 struct md_rdev *rdev;
5297
5298 nr=working=insync=failed=spare=0;
5299 list_for_each_entry(rdev, &mddev->disks, same_set) {
5300 nr++;
5301 if (test_bit(Faulty, &rdev->flags))
5302 failed++;
5303 else {
5304 working++;
5305 if (test_bit(In_sync, &rdev->flags))
5306 insync++;
5307 else
5308 spare++;
5309 }
5310 }
5311
5312 info.major_version = mddev->major_version;
5313 info.minor_version = mddev->minor_version;
5314 info.patch_version = MD_PATCHLEVEL_VERSION;
5315 info.ctime = mddev->ctime;
5316 info.level = mddev->level;
5317 info.size = mddev->dev_sectors / 2;
5318 if (info.size != mddev->dev_sectors / 2) /* overflow */
5319 info.size = -1;
5320 info.nr_disks = nr;
5321 info.raid_disks = mddev->raid_disks;
5322 info.md_minor = mddev->md_minor;
5323 info.not_persistent= !mddev->persistent;
5324
5325 info.utime = mddev->utime;
5326 info.state = 0;
5327 if (mddev->in_sync)
5328 info.state = (1<<MD_SB_CLEAN);
5329 if (mddev->bitmap && mddev->bitmap_info.offset)
5330 info.state = (1<<MD_SB_BITMAP_PRESENT);
5331 info.active_disks = insync;
5332 info.working_disks = working;
5333 info.failed_disks = failed;
5334 info.spare_disks = spare;
5335
5336 info.layout = mddev->layout;
5337 info.chunk_size = mddev->chunk_sectors << 9;
5338
5339 if (copy_to_user(arg, &info, sizeof(info)))
5340 return -EFAULT;
5341
5342 return 0;
5343 }
5344
5345 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5346 {
5347 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5348 char *ptr, *buf = NULL;
5349 int err = -ENOMEM;
5350
5351 if (md_allow_write(mddev))
5352 file = kmalloc(sizeof(*file), GFP_NOIO);
5353 else
5354 file = kmalloc(sizeof(*file), GFP_KERNEL);
5355
5356 if (!file)
5357 goto out;
5358
5359 /* bitmap disabled, zero the first byte and copy out */
5360 if (!mddev->bitmap || !mddev->bitmap->file) {
5361 file->pathname[0] = '\0';
5362 goto copy_out;
5363 }
5364
5365 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5366 if (!buf)
5367 goto out;
5368
5369 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5370 if (IS_ERR(ptr))
5371 goto out;
5372
5373 strcpy(file->pathname, ptr);
5374
5375 copy_out:
5376 err = 0;
5377 if (copy_to_user(arg, file, sizeof(*file)))
5378 err = -EFAULT;
5379 out:
5380 kfree(buf);
5381 kfree(file);
5382 return err;
5383 }
5384
5385 static int get_disk_info(struct mddev * mddev, void __user * arg)
5386 {
5387 mdu_disk_info_t info;
5388 struct md_rdev *rdev;
5389
5390 if (copy_from_user(&info, arg, sizeof(info)))
5391 return -EFAULT;
5392
5393 rdev = find_rdev_nr(mddev, info.number);
5394 if (rdev) {
5395 info.major = MAJOR(rdev->bdev->bd_dev);
5396 info.minor = MINOR(rdev->bdev->bd_dev);
5397 info.raid_disk = rdev->raid_disk;
5398 info.state = 0;
5399 if (test_bit(Faulty, &rdev->flags))
5400 info.state |= (1<<MD_DISK_FAULTY);
5401 else if (test_bit(In_sync, &rdev->flags)) {
5402 info.state |= (1<<MD_DISK_ACTIVE);
5403 info.state |= (1<<MD_DISK_SYNC);
5404 }
5405 if (test_bit(WriteMostly, &rdev->flags))
5406 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5407 } else {
5408 info.major = info.minor = 0;
5409 info.raid_disk = -1;
5410 info.state = (1<<MD_DISK_REMOVED);
5411 }
5412
5413 if (copy_to_user(arg, &info, sizeof(info)))
5414 return -EFAULT;
5415
5416 return 0;
5417 }
5418
5419 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5420 {
5421 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5422 struct md_rdev *rdev;
5423 dev_t dev = MKDEV(info->major,info->minor);
5424
5425 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5426 return -EOVERFLOW;
5427
5428 if (!mddev->raid_disks) {
5429 int err;
5430 /* expecting a device which has a superblock */
5431 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5432 if (IS_ERR(rdev)) {
5433 printk(KERN_WARNING
5434 "md: md_import_device returned %ld\n",
5435 PTR_ERR(rdev));
5436 return PTR_ERR(rdev);
5437 }
5438 if (!list_empty(&mddev->disks)) {
5439 struct md_rdev *rdev0
5440 = list_entry(mddev->disks.next,
5441 struct md_rdev, same_set);
5442 err = super_types[mddev->major_version]
5443 .load_super(rdev, rdev0, mddev->minor_version);
5444 if (err < 0) {
5445 printk(KERN_WARNING
5446 "md: %s has different UUID to %s\n",
5447 bdevname(rdev->bdev,b),
5448 bdevname(rdev0->bdev,b2));
5449 export_rdev(rdev);
5450 return -EINVAL;
5451 }
5452 }
5453 err = bind_rdev_to_array(rdev, mddev);
5454 if (err)
5455 export_rdev(rdev);
5456 return err;
5457 }
5458
5459 /*
5460 * add_new_disk can be used once the array is assembled
5461 * to add "hot spares". They must already have a superblock
5462 * written
5463 */
5464 if (mddev->pers) {
5465 int err;
5466 if (!mddev->pers->hot_add_disk) {
5467 printk(KERN_WARNING
5468 "%s: personality does not support diskops!\n",
5469 mdname(mddev));
5470 return -EINVAL;
5471 }
5472 if (mddev->persistent)
5473 rdev = md_import_device(dev, mddev->major_version,
5474 mddev->minor_version);
5475 else
5476 rdev = md_import_device(dev, -1, -1);
5477 if (IS_ERR(rdev)) {
5478 printk(KERN_WARNING
5479 "md: md_import_device returned %ld\n",
5480 PTR_ERR(rdev));
5481 return PTR_ERR(rdev);
5482 }
5483 /* set saved_raid_disk if appropriate */
5484 if (!mddev->persistent) {
5485 if (info->state & (1<<MD_DISK_SYNC) &&
5486 info->raid_disk < mddev->raid_disks) {
5487 rdev->raid_disk = info->raid_disk;
5488 set_bit(In_sync, &rdev->flags);
5489 } else
5490 rdev->raid_disk = -1;
5491 } else
5492 super_types[mddev->major_version].
5493 validate_super(mddev, rdev);
5494 if ((info->state & (1<<MD_DISK_SYNC)) &&
5495 (!test_bit(In_sync, &rdev->flags) ||
5496 rdev->raid_disk != info->raid_disk)) {
5497 /* This was a hot-add request, but events doesn't
5498 * match, so reject it.
5499 */
5500 export_rdev(rdev);
5501 return -EINVAL;
5502 }
5503
5504 if (test_bit(In_sync, &rdev->flags))
5505 rdev->saved_raid_disk = rdev->raid_disk;
5506 else
5507 rdev->saved_raid_disk = -1;
5508
5509 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5510 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5511 set_bit(WriteMostly, &rdev->flags);
5512 else
5513 clear_bit(WriteMostly, &rdev->flags);
5514
5515 rdev->raid_disk = -1;
5516 err = bind_rdev_to_array(rdev, mddev);
5517 if (!err && !mddev->pers->hot_remove_disk) {
5518 /* If there is hot_add_disk but no hot_remove_disk
5519 * then added disks for geometry changes,
5520 * and should be added immediately.
5521 */
5522 super_types[mddev->major_version].
5523 validate_super(mddev, rdev);
5524 err = mddev->pers->hot_add_disk(mddev, rdev);
5525 if (err)
5526 unbind_rdev_from_array(rdev);
5527 }
5528 if (err)
5529 export_rdev(rdev);
5530 else
5531 sysfs_notify_dirent_safe(rdev->sysfs_state);
5532
5533 md_update_sb(mddev, 1);
5534 if (mddev->degraded)
5535 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5536 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5537 if (!err)
5538 md_new_event(mddev);
5539 md_wakeup_thread(mddev->thread);
5540 return err;
5541 }
5542
5543 /* otherwise, add_new_disk is only allowed
5544 * for major_version==0 superblocks
5545 */
5546 if (mddev->major_version != 0) {
5547 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5548 mdname(mddev));
5549 return -EINVAL;
5550 }
5551
5552 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5553 int err;
5554 rdev = md_import_device(dev, -1, 0);
5555 if (IS_ERR(rdev)) {
5556 printk(KERN_WARNING
5557 "md: error, md_import_device() returned %ld\n",
5558 PTR_ERR(rdev));
5559 return PTR_ERR(rdev);
5560 }
5561 rdev->desc_nr = info->number;
5562 if (info->raid_disk < mddev->raid_disks)
5563 rdev->raid_disk = info->raid_disk;
5564 else
5565 rdev->raid_disk = -1;
5566
5567 if (rdev->raid_disk < mddev->raid_disks)
5568 if (info->state & (1<<MD_DISK_SYNC))
5569 set_bit(In_sync, &rdev->flags);
5570
5571 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5572 set_bit(WriteMostly, &rdev->flags);
5573
5574 if (!mddev->persistent) {
5575 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5576 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5577 } else
5578 rdev->sb_start = calc_dev_sboffset(rdev);
5579 rdev->sectors = rdev->sb_start;
5580
5581 err = bind_rdev_to_array(rdev, mddev);
5582 if (err) {
5583 export_rdev(rdev);
5584 return err;
5585 }
5586 }
5587
5588 return 0;
5589 }
5590
5591 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5592 {
5593 char b[BDEVNAME_SIZE];
5594 struct md_rdev *rdev;
5595
5596 rdev = find_rdev(mddev, dev);
5597 if (!rdev)
5598 return -ENXIO;
5599
5600 if (rdev->raid_disk >= 0)
5601 goto busy;
5602
5603 kick_rdev_from_array(rdev);
5604 md_update_sb(mddev, 1);
5605 md_new_event(mddev);
5606
5607 return 0;
5608 busy:
5609 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5610 bdevname(rdev->bdev,b), mdname(mddev));
5611 return -EBUSY;
5612 }
5613
5614 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5615 {
5616 char b[BDEVNAME_SIZE];
5617 int err;
5618 struct md_rdev *rdev;
5619
5620 if (!mddev->pers)
5621 return -ENODEV;
5622
5623 if (mddev->major_version != 0) {
5624 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5625 " version-0 superblocks.\n",
5626 mdname(mddev));
5627 return -EINVAL;
5628 }
5629 if (!mddev->pers->hot_add_disk) {
5630 printk(KERN_WARNING
5631 "%s: personality does not support diskops!\n",
5632 mdname(mddev));
5633 return -EINVAL;
5634 }
5635
5636 rdev = md_import_device(dev, -1, 0);
5637 if (IS_ERR(rdev)) {
5638 printk(KERN_WARNING
5639 "md: error, md_import_device() returned %ld\n",
5640 PTR_ERR(rdev));
5641 return -EINVAL;
5642 }
5643
5644 if (mddev->persistent)
5645 rdev->sb_start = calc_dev_sboffset(rdev);
5646 else
5647 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5648
5649 rdev->sectors = rdev->sb_start;
5650
5651 if (test_bit(Faulty, &rdev->flags)) {
5652 printk(KERN_WARNING
5653 "md: can not hot-add faulty %s disk to %s!\n",
5654 bdevname(rdev->bdev,b), mdname(mddev));
5655 err = -EINVAL;
5656 goto abort_export;
5657 }
5658 clear_bit(In_sync, &rdev->flags);
5659 rdev->desc_nr = -1;
5660 rdev->saved_raid_disk = -1;
5661 err = bind_rdev_to_array(rdev, mddev);
5662 if (err)
5663 goto abort_export;
5664
5665 /*
5666 * The rest should better be atomic, we can have disk failures
5667 * noticed in interrupt contexts ...
5668 */
5669
5670 rdev->raid_disk = -1;
5671
5672 md_update_sb(mddev, 1);
5673
5674 /*
5675 * Kick recovery, maybe this spare has to be added to the
5676 * array immediately.
5677 */
5678 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5679 md_wakeup_thread(mddev->thread);
5680 md_new_event(mddev);
5681 return 0;
5682
5683 abort_export:
5684 export_rdev(rdev);
5685 return err;
5686 }
5687
5688 static int set_bitmap_file(struct mddev *mddev, int fd)
5689 {
5690 int err;
5691
5692 if (mddev->pers) {
5693 if (!mddev->pers->quiesce)
5694 return -EBUSY;
5695 if (mddev->recovery || mddev->sync_thread)
5696 return -EBUSY;
5697 /* we should be able to change the bitmap.. */
5698 }
5699
5700
5701 if (fd >= 0) {
5702 if (mddev->bitmap)
5703 return -EEXIST; /* cannot add when bitmap is present */
5704 mddev->bitmap_info.file = fget(fd);
5705
5706 if (mddev->bitmap_info.file == NULL) {
5707 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5708 mdname(mddev));
5709 return -EBADF;
5710 }
5711
5712 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5713 if (err) {
5714 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5715 mdname(mddev));
5716 fput(mddev->bitmap_info.file);
5717 mddev->bitmap_info.file = NULL;
5718 return err;
5719 }
5720 mddev->bitmap_info.offset = 0; /* file overrides offset */
5721 } else if (mddev->bitmap == NULL)
5722 return -ENOENT; /* cannot remove what isn't there */
5723 err = 0;
5724 if (mddev->pers) {
5725 mddev->pers->quiesce(mddev, 1);
5726 if (fd >= 0) {
5727 err = bitmap_create(mddev);
5728 if (!err)
5729 err = bitmap_load(mddev);
5730 }
5731 if (fd < 0 || err) {
5732 bitmap_destroy(mddev);
5733 fd = -1; /* make sure to put the file */
5734 }
5735 mddev->pers->quiesce(mddev, 0);
5736 }
5737 if (fd < 0) {
5738 if (mddev->bitmap_info.file) {
5739 restore_bitmap_write_access(mddev->bitmap_info.file);
5740 fput(mddev->bitmap_info.file);
5741 }
5742 mddev->bitmap_info.file = NULL;
5743 }
5744
5745 return err;
5746 }
5747
5748 /*
5749 * set_array_info is used two different ways
5750 * The original usage is when creating a new array.
5751 * In this usage, raid_disks is > 0 and it together with
5752 * level, size, not_persistent,layout,chunksize determine the
5753 * shape of the array.
5754 * This will always create an array with a type-0.90.0 superblock.
5755 * The newer usage is when assembling an array.
5756 * In this case raid_disks will be 0, and the major_version field is
5757 * use to determine which style super-blocks are to be found on the devices.
5758 * The minor and patch _version numbers are also kept incase the
5759 * super_block handler wishes to interpret them.
5760 */
5761 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5762 {
5763
5764 if (info->raid_disks == 0) {
5765 /* just setting version number for superblock loading */
5766 if (info->major_version < 0 ||
5767 info->major_version >= ARRAY_SIZE(super_types) ||
5768 super_types[info->major_version].name == NULL) {
5769 /* maybe try to auto-load a module? */
5770 printk(KERN_INFO
5771 "md: superblock version %d not known\n",
5772 info->major_version);
5773 return -EINVAL;
5774 }
5775 mddev->major_version = info->major_version;
5776 mddev->minor_version = info->minor_version;
5777 mddev->patch_version = info->patch_version;
5778 mddev->persistent = !info->not_persistent;
5779 /* ensure mddev_put doesn't delete this now that there
5780 * is some minimal configuration.
5781 */
5782 mddev->ctime = get_seconds();
5783 return 0;
5784 }
5785 mddev->major_version = MD_MAJOR_VERSION;
5786 mddev->minor_version = MD_MINOR_VERSION;
5787 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5788 mddev->ctime = get_seconds();
5789
5790 mddev->level = info->level;
5791 mddev->clevel[0] = 0;
5792 mddev->dev_sectors = 2 * (sector_t)info->size;
5793 mddev->raid_disks = info->raid_disks;
5794 /* don't set md_minor, it is determined by which /dev/md* was
5795 * openned
5796 */
5797 if (info->state & (1<<MD_SB_CLEAN))
5798 mddev->recovery_cp = MaxSector;
5799 else
5800 mddev->recovery_cp = 0;
5801 mddev->persistent = ! info->not_persistent;
5802 mddev->external = 0;
5803
5804 mddev->layout = info->layout;
5805 mddev->chunk_sectors = info->chunk_size >> 9;
5806
5807 mddev->max_disks = MD_SB_DISKS;
5808
5809 if (mddev->persistent)
5810 mddev->flags = 0;
5811 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5812
5813 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5814 mddev->bitmap_info.offset = 0;
5815
5816 mddev->reshape_position = MaxSector;
5817
5818 /*
5819 * Generate a 128 bit UUID
5820 */
5821 get_random_bytes(mddev->uuid, 16);
5822
5823 mddev->new_level = mddev->level;
5824 mddev->new_chunk_sectors = mddev->chunk_sectors;
5825 mddev->new_layout = mddev->layout;
5826 mddev->delta_disks = 0;
5827
5828 return 0;
5829 }
5830
5831 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5832 {
5833 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5834
5835 if (mddev->external_size)
5836 return;
5837
5838 mddev->array_sectors = array_sectors;
5839 }
5840 EXPORT_SYMBOL(md_set_array_sectors);
5841
5842 static int update_size(struct mddev *mddev, sector_t num_sectors)
5843 {
5844 struct md_rdev *rdev;
5845 int rv;
5846 int fit = (num_sectors == 0);
5847
5848 if (mddev->pers->resize == NULL)
5849 return -EINVAL;
5850 /* The "num_sectors" is the number of sectors of each device that
5851 * is used. This can only make sense for arrays with redundancy.
5852 * linear and raid0 always use whatever space is available. We can only
5853 * consider changing this number if no resync or reconstruction is
5854 * happening, and if the new size is acceptable. It must fit before the
5855 * sb_start or, if that is <data_offset, it must fit before the size
5856 * of each device. If num_sectors is zero, we find the largest size
5857 * that fits.
5858 */
5859 if (mddev->sync_thread)
5860 return -EBUSY;
5861 if (mddev->bitmap)
5862 /* Sorry, cannot grow a bitmap yet, just remove it,
5863 * grow, and re-add.
5864 */
5865 return -EBUSY;
5866 list_for_each_entry(rdev, &mddev->disks, same_set) {
5867 sector_t avail = rdev->sectors;
5868
5869 if (fit && (num_sectors == 0 || num_sectors > avail))
5870 num_sectors = avail;
5871 if (avail < num_sectors)
5872 return -ENOSPC;
5873 }
5874 rv = mddev->pers->resize(mddev, num_sectors);
5875 if (!rv)
5876 revalidate_disk(mddev->gendisk);
5877 return rv;
5878 }
5879
5880 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5881 {
5882 int rv;
5883 /* change the number of raid disks */
5884 if (mddev->pers->check_reshape == NULL)
5885 return -EINVAL;
5886 if (raid_disks <= 0 ||
5887 (mddev->max_disks && raid_disks >= mddev->max_disks))
5888 return -EINVAL;
5889 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5890 return -EBUSY;
5891 mddev->delta_disks = raid_disks - mddev->raid_disks;
5892
5893 rv = mddev->pers->check_reshape(mddev);
5894 if (rv < 0)
5895 mddev->delta_disks = 0;
5896 return rv;
5897 }
5898
5899
5900 /*
5901 * update_array_info is used to change the configuration of an
5902 * on-line array.
5903 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5904 * fields in the info are checked against the array.
5905 * Any differences that cannot be handled will cause an error.
5906 * Normally, only one change can be managed at a time.
5907 */
5908 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5909 {
5910 int rv = 0;
5911 int cnt = 0;
5912 int state = 0;
5913
5914 /* calculate expected state,ignoring low bits */
5915 if (mddev->bitmap && mddev->bitmap_info.offset)
5916 state |= (1 << MD_SB_BITMAP_PRESENT);
5917
5918 if (mddev->major_version != info->major_version ||
5919 mddev->minor_version != info->minor_version ||
5920 /* mddev->patch_version != info->patch_version || */
5921 mddev->ctime != info->ctime ||
5922 mddev->level != info->level ||
5923 /* mddev->layout != info->layout || */
5924 !mddev->persistent != info->not_persistent||
5925 mddev->chunk_sectors != info->chunk_size >> 9 ||
5926 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5927 ((state^info->state) & 0xfffffe00)
5928 )
5929 return -EINVAL;
5930 /* Check there is only one change */
5931 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5932 cnt++;
5933 if (mddev->raid_disks != info->raid_disks)
5934 cnt++;
5935 if (mddev->layout != info->layout)
5936 cnt++;
5937 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5938 cnt++;
5939 if (cnt == 0)
5940 return 0;
5941 if (cnt > 1)
5942 return -EINVAL;
5943
5944 if (mddev->layout != info->layout) {
5945 /* Change layout
5946 * we don't need to do anything at the md level, the
5947 * personality will take care of it all.
5948 */
5949 if (mddev->pers->check_reshape == NULL)
5950 return -EINVAL;
5951 else {
5952 mddev->new_layout = info->layout;
5953 rv = mddev->pers->check_reshape(mddev);
5954 if (rv)
5955 mddev->new_layout = mddev->layout;
5956 return rv;
5957 }
5958 }
5959 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5960 rv = update_size(mddev, (sector_t)info->size * 2);
5961
5962 if (mddev->raid_disks != info->raid_disks)
5963 rv = update_raid_disks(mddev, info->raid_disks);
5964
5965 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5966 if (mddev->pers->quiesce == NULL)
5967 return -EINVAL;
5968 if (mddev->recovery || mddev->sync_thread)
5969 return -EBUSY;
5970 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5971 /* add the bitmap */
5972 if (mddev->bitmap)
5973 return -EEXIST;
5974 if (mddev->bitmap_info.default_offset == 0)
5975 return -EINVAL;
5976 mddev->bitmap_info.offset =
5977 mddev->bitmap_info.default_offset;
5978 mddev->pers->quiesce(mddev, 1);
5979 rv = bitmap_create(mddev);
5980 if (!rv)
5981 rv = bitmap_load(mddev);
5982 if (rv)
5983 bitmap_destroy(mddev);
5984 mddev->pers->quiesce(mddev, 0);
5985 } else {
5986 /* remove the bitmap */
5987 if (!mddev->bitmap)
5988 return -ENOENT;
5989 if (mddev->bitmap->file)
5990 return -EINVAL;
5991 mddev->pers->quiesce(mddev, 1);
5992 bitmap_destroy(mddev);
5993 mddev->pers->quiesce(mddev, 0);
5994 mddev->bitmap_info.offset = 0;
5995 }
5996 }
5997 md_update_sb(mddev, 1);
5998 return rv;
5999 }
6000
6001 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6002 {
6003 struct md_rdev *rdev;
6004
6005 if (mddev->pers == NULL)
6006 return -ENODEV;
6007
6008 rdev = find_rdev(mddev, dev);
6009 if (!rdev)
6010 return -ENODEV;
6011
6012 md_error(mddev, rdev);
6013 if (!test_bit(Faulty, &rdev->flags))
6014 return -EBUSY;
6015 return 0;
6016 }
6017
6018 /*
6019 * We have a problem here : there is no easy way to give a CHS
6020 * virtual geometry. We currently pretend that we have a 2 heads
6021 * 4 sectors (with a BIG number of cylinders...). This drives
6022 * dosfs just mad... ;-)
6023 */
6024 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6025 {
6026 struct mddev *mddev = bdev->bd_disk->private_data;
6027
6028 geo->heads = 2;
6029 geo->sectors = 4;
6030 geo->cylinders = mddev->array_sectors / 8;
6031 return 0;
6032 }
6033
6034 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6035 unsigned int cmd, unsigned long arg)
6036 {
6037 int err = 0;
6038 void __user *argp = (void __user *)arg;
6039 struct mddev *mddev = NULL;
6040 int ro;
6041
6042 if (!capable(CAP_SYS_ADMIN))
6043 return -EACCES;
6044
6045 /*
6046 * Commands dealing with the RAID driver but not any
6047 * particular array:
6048 */
6049 switch (cmd)
6050 {
6051 case RAID_VERSION:
6052 err = get_version(argp);
6053 goto done;
6054
6055 case PRINT_RAID_DEBUG:
6056 err = 0;
6057 md_print_devices();
6058 goto done;
6059
6060 #ifndef MODULE
6061 case RAID_AUTORUN:
6062 err = 0;
6063 autostart_arrays(arg);
6064 goto done;
6065 #endif
6066 default:;
6067 }
6068
6069 /*
6070 * Commands creating/starting a new array:
6071 */
6072
6073 mddev = bdev->bd_disk->private_data;
6074
6075 if (!mddev) {
6076 BUG();
6077 goto abort;
6078 }
6079
6080 err = mddev_lock(mddev);
6081 if (err) {
6082 printk(KERN_INFO
6083 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6084 err, cmd);
6085 goto abort;
6086 }
6087
6088 switch (cmd)
6089 {
6090 case SET_ARRAY_INFO:
6091 {
6092 mdu_array_info_t info;
6093 if (!arg)
6094 memset(&info, 0, sizeof(info));
6095 else if (copy_from_user(&info, argp, sizeof(info))) {
6096 err = -EFAULT;
6097 goto abort_unlock;
6098 }
6099 if (mddev->pers) {
6100 err = update_array_info(mddev, &info);
6101 if (err) {
6102 printk(KERN_WARNING "md: couldn't update"
6103 " array info. %d\n", err);
6104 goto abort_unlock;
6105 }
6106 goto done_unlock;
6107 }
6108 if (!list_empty(&mddev->disks)) {
6109 printk(KERN_WARNING
6110 "md: array %s already has disks!\n",
6111 mdname(mddev));
6112 err = -EBUSY;
6113 goto abort_unlock;
6114 }
6115 if (mddev->raid_disks) {
6116 printk(KERN_WARNING
6117 "md: array %s already initialised!\n",
6118 mdname(mddev));
6119 err = -EBUSY;
6120 goto abort_unlock;
6121 }
6122 err = set_array_info(mddev, &info);
6123 if (err) {
6124 printk(KERN_WARNING "md: couldn't set"
6125 " array info. %d\n", err);
6126 goto abort_unlock;
6127 }
6128 }
6129 goto done_unlock;
6130
6131 default:;
6132 }
6133
6134 /*
6135 * Commands querying/configuring an existing array:
6136 */
6137 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6138 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6139 if ((!mddev->raid_disks && !mddev->external)
6140 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6141 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6142 && cmd != GET_BITMAP_FILE) {
6143 err = -ENODEV;
6144 goto abort_unlock;
6145 }
6146
6147 /*
6148 * Commands even a read-only array can execute:
6149 */
6150 switch (cmd)
6151 {
6152 case GET_ARRAY_INFO:
6153 err = get_array_info(mddev, argp);
6154 goto done_unlock;
6155
6156 case GET_BITMAP_FILE:
6157 err = get_bitmap_file(mddev, argp);
6158 goto done_unlock;
6159
6160 case GET_DISK_INFO:
6161 err = get_disk_info(mddev, argp);
6162 goto done_unlock;
6163
6164 case RESTART_ARRAY_RW:
6165 err = restart_array(mddev);
6166 goto done_unlock;
6167
6168 case STOP_ARRAY:
6169 err = do_md_stop(mddev, 0, 1);
6170 goto done_unlock;
6171
6172 case STOP_ARRAY_RO:
6173 err = md_set_readonly(mddev, 1);
6174 goto done_unlock;
6175
6176 case BLKROSET:
6177 if (get_user(ro, (int __user *)(arg))) {
6178 err = -EFAULT;
6179 goto done_unlock;
6180 }
6181 err = -EINVAL;
6182
6183 /* if the bdev is going readonly the value of mddev->ro
6184 * does not matter, no writes are coming
6185 */
6186 if (ro)
6187 goto done_unlock;
6188
6189 /* are we are already prepared for writes? */
6190 if (mddev->ro != 1)
6191 goto done_unlock;
6192
6193 /* transitioning to readauto need only happen for
6194 * arrays that call md_write_start
6195 */
6196 if (mddev->pers) {
6197 err = restart_array(mddev);
6198 if (err == 0) {
6199 mddev->ro = 2;
6200 set_disk_ro(mddev->gendisk, 0);
6201 }
6202 }
6203 goto done_unlock;
6204 }
6205
6206 /*
6207 * The remaining ioctls are changing the state of the
6208 * superblock, so we do not allow them on read-only arrays.
6209 * However non-MD ioctls (e.g. get-size) will still come through
6210 * here and hit the 'default' below, so only disallow
6211 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6212 */
6213 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6214 if (mddev->ro == 2) {
6215 mddev->ro = 0;
6216 sysfs_notify_dirent_safe(mddev->sysfs_state);
6217 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6218 md_wakeup_thread(mddev->thread);
6219 } else {
6220 err = -EROFS;
6221 goto abort_unlock;
6222 }
6223 }
6224
6225 switch (cmd)
6226 {
6227 case ADD_NEW_DISK:
6228 {
6229 mdu_disk_info_t info;
6230 if (copy_from_user(&info, argp, sizeof(info)))
6231 err = -EFAULT;
6232 else
6233 err = add_new_disk(mddev, &info);
6234 goto done_unlock;
6235 }
6236
6237 case HOT_REMOVE_DISK:
6238 err = hot_remove_disk(mddev, new_decode_dev(arg));
6239 goto done_unlock;
6240
6241 case HOT_ADD_DISK:
6242 err = hot_add_disk(mddev, new_decode_dev(arg));
6243 goto done_unlock;
6244
6245 case SET_DISK_FAULTY:
6246 err = set_disk_faulty(mddev, new_decode_dev(arg));
6247 goto done_unlock;
6248
6249 case RUN_ARRAY:
6250 err = do_md_run(mddev);
6251 goto done_unlock;
6252
6253 case SET_BITMAP_FILE:
6254 err = set_bitmap_file(mddev, (int)arg);
6255 goto done_unlock;
6256
6257 default:
6258 err = -EINVAL;
6259 goto abort_unlock;
6260 }
6261
6262 done_unlock:
6263 abort_unlock:
6264 if (mddev->hold_active == UNTIL_IOCTL &&
6265 err != -EINVAL)
6266 mddev->hold_active = 0;
6267 mddev_unlock(mddev);
6268
6269 return err;
6270 done:
6271 if (err)
6272 MD_BUG();
6273 abort:
6274 return err;
6275 }
6276 #ifdef CONFIG_COMPAT
6277 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6278 unsigned int cmd, unsigned long arg)
6279 {
6280 switch (cmd) {
6281 case HOT_REMOVE_DISK:
6282 case HOT_ADD_DISK:
6283 case SET_DISK_FAULTY:
6284 case SET_BITMAP_FILE:
6285 /* These take in integer arg, do not convert */
6286 break;
6287 default:
6288 arg = (unsigned long)compat_ptr(arg);
6289 break;
6290 }
6291
6292 return md_ioctl(bdev, mode, cmd, arg);
6293 }
6294 #endif /* CONFIG_COMPAT */
6295
6296 static int md_open(struct block_device *bdev, fmode_t mode)
6297 {
6298 /*
6299 * Succeed if we can lock the mddev, which confirms that
6300 * it isn't being stopped right now.
6301 */
6302 struct mddev *mddev = mddev_find(bdev->bd_dev);
6303 int err;
6304
6305 if (mddev->gendisk != bdev->bd_disk) {
6306 /* we are racing with mddev_put which is discarding this
6307 * bd_disk.
6308 */
6309 mddev_put(mddev);
6310 /* Wait until bdev->bd_disk is definitely gone */
6311 flush_workqueue(md_misc_wq);
6312 /* Then retry the open from the top */
6313 return -ERESTARTSYS;
6314 }
6315 BUG_ON(mddev != bdev->bd_disk->private_data);
6316
6317 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6318 goto out;
6319
6320 err = 0;
6321 atomic_inc(&mddev->openers);
6322 mutex_unlock(&mddev->open_mutex);
6323
6324 check_disk_change(bdev);
6325 out:
6326 return err;
6327 }
6328
6329 static int md_release(struct gendisk *disk, fmode_t mode)
6330 {
6331 struct mddev *mddev = disk->private_data;
6332
6333 BUG_ON(!mddev);
6334 atomic_dec(&mddev->openers);
6335 mddev_put(mddev);
6336
6337 return 0;
6338 }
6339
6340 static int md_media_changed(struct gendisk *disk)
6341 {
6342 struct mddev *mddev = disk->private_data;
6343
6344 return mddev->changed;
6345 }
6346
6347 static int md_revalidate(struct gendisk *disk)
6348 {
6349 struct mddev *mddev = disk->private_data;
6350
6351 mddev->changed = 0;
6352 return 0;
6353 }
6354 static const struct block_device_operations md_fops =
6355 {
6356 .owner = THIS_MODULE,
6357 .open = md_open,
6358 .release = md_release,
6359 .ioctl = md_ioctl,
6360 #ifdef CONFIG_COMPAT
6361 .compat_ioctl = md_compat_ioctl,
6362 #endif
6363 .getgeo = md_getgeo,
6364 .media_changed = md_media_changed,
6365 .revalidate_disk= md_revalidate,
6366 };
6367
6368 static int md_thread(void * arg)
6369 {
6370 struct md_thread *thread = arg;
6371
6372 /*
6373 * md_thread is a 'system-thread', it's priority should be very
6374 * high. We avoid resource deadlocks individually in each
6375 * raid personality. (RAID5 does preallocation) We also use RR and
6376 * the very same RT priority as kswapd, thus we will never get
6377 * into a priority inversion deadlock.
6378 *
6379 * we definitely have to have equal or higher priority than
6380 * bdflush, otherwise bdflush will deadlock if there are too
6381 * many dirty RAID5 blocks.
6382 */
6383
6384 allow_signal(SIGKILL);
6385 while (!kthread_should_stop()) {
6386
6387 /* We need to wait INTERRUPTIBLE so that
6388 * we don't add to the load-average.
6389 * That means we need to be sure no signals are
6390 * pending
6391 */
6392 if (signal_pending(current))
6393 flush_signals(current);
6394
6395 wait_event_interruptible_timeout
6396 (thread->wqueue,
6397 test_bit(THREAD_WAKEUP, &thread->flags)
6398 || kthread_should_stop(),
6399 thread->timeout);
6400
6401 clear_bit(THREAD_WAKEUP, &thread->flags);
6402 if (!kthread_should_stop())
6403 thread->run(thread->mddev);
6404 }
6405
6406 return 0;
6407 }
6408
6409 void md_wakeup_thread(struct md_thread *thread)
6410 {
6411 if (thread) {
6412 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6413 set_bit(THREAD_WAKEUP, &thread->flags);
6414 wake_up(&thread->wqueue);
6415 }
6416 }
6417
6418 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6419 const char *name)
6420 {
6421 struct md_thread *thread;
6422
6423 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6424 if (!thread)
6425 return NULL;
6426
6427 init_waitqueue_head(&thread->wqueue);
6428
6429 thread->run = run;
6430 thread->mddev = mddev;
6431 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6432 thread->tsk = kthread_run(md_thread, thread,
6433 "%s_%s",
6434 mdname(thread->mddev),
6435 name ?: mddev->pers->name);
6436 if (IS_ERR(thread->tsk)) {
6437 kfree(thread);
6438 return NULL;
6439 }
6440 return thread;
6441 }
6442
6443 void md_unregister_thread(struct md_thread **threadp)
6444 {
6445 struct md_thread *thread = *threadp;
6446 if (!thread)
6447 return;
6448 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6449 /* Locking ensures that mddev_unlock does not wake_up a
6450 * non-existent thread
6451 */
6452 spin_lock(&pers_lock);
6453 *threadp = NULL;
6454 spin_unlock(&pers_lock);
6455
6456 kthread_stop(thread->tsk);
6457 kfree(thread);
6458 }
6459
6460 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6461 {
6462 if (!mddev) {
6463 MD_BUG();
6464 return;
6465 }
6466
6467 if (!rdev || test_bit(Faulty, &rdev->flags))
6468 return;
6469
6470 if (!mddev->pers || !mddev->pers->error_handler)
6471 return;
6472 mddev->pers->error_handler(mddev,rdev);
6473 if (mddev->degraded)
6474 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6475 sysfs_notify_dirent_safe(rdev->sysfs_state);
6476 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6478 md_wakeup_thread(mddev->thread);
6479 if (mddev->event_work.func)
6480 queue_work(md_misc_wq, &mddev->event_work);
6481 md_new_event_inintr(mddev);
6482 }
6483
6484 /* seq_file implementation /proc/mdstat */
6485
6486 static void status_unused(struct seq_file *seq)
6487 {
6488 int i = 0;
6489 struct md_rdev *rdev;
6490
6491 seq_printf(seq, "unused devices: ");
6492
6493 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6494 char b[BDEVNAME_SIZE];
6495 i++;
6496 seq_printf(seq, "%s ",
6497 bdevname(rdev->bdev,b));
6498 }
6499 if (!i)
6500 seq_printf(seq, "<none>");
6501
6502 seq_printf(seq, "\n");
6503 }
6504
6505
6506 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6507 {
6508 sector_t max_sectors, resync, res;
6509 unsigned long dt, db;
6510 sector_t rt;
6511 int scale;
6512 unsigned int per_milli;
6513
6514 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6515
6516 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6517 max_sectors = mddev->resync_max_sectors;
6518 else
6519 max_sectors = mddev->dev_sectors;
6520
6521 /*
6522 * Should not happen.
6523 */
6524 if (!max_sectors) {
6525 MD_BUG();
6526 return;
6527 }
6528 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6529 * in a sector_t, and (max_sectors>>scale) will fit in a
6530 * u32, as those are the requirements for sector_div.
6531 * Thus 'scale' must be at least 10
6532 */
6533 scale = 10;
6534 if (sizeof(sector_t) > sizeof(unsigned long)) {
6535 while ( max_sectors/2 > (1ULL<<(scale+32)))
6536 scale++;
6537 }
6538 res = (resync>>scale)*1000;
6539 sector_div(res, (u32)((max_sectors>>scale)+1));
6540
6541 per_milli = res;
6542 {
6543 int i, x = per_milli/50, y = 20-x;
6544 seq_printf(seq, "[");
6545 for (i = 0; i < x; i++)
6546 seq_printf(seq, "=");
6547 seq_printf(seq, ">");
6548 for (i = 0; i < y; i++)
6549 seq_printf(seq, ".");
6550 seq_printf(seq, "] ");
6551 }
6552 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6553 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6554 "reshape" :
6555 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6556 "check" :
6557 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6558 "resync" : "recovery"))),
6559 per_milli/10, per_milli % 10,
6560 (unsigned long long) resync/2,
6561 (unsigned long long) max_sectors/2);
6562
6563 /*
6564 * dt: time from mark until now
6565 * db: blocks written from mark until now
6566 * rt: remaining time
6567 *
6568 * rt is a sector_t, so could be 32bit or 64bit.
6569 * So we divide before multiply in case it is 32bit and close
6570 * to the limit.
6571 * We scale the divisor (db) by 32 to avoid losing precision
6572 * near the end of resync when the number of remaining sectors
6573 * is close to 'db'.
6574 * We then divide rt by 32 after multiplying by db to compensate.
6575 * The '+1' avoids division by zero if db is very small.
6576 */
6577 dt = ((jiffies - mddev->resync_mark) / HZ);
6578 if (!dt) dt++;
6579 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6580 - mddev->resync_mark_cnt;
6581
6582 rt = max_sectors - resync; /* number of remaining sectors */
6583 sector_div(rt, db/32+1);
6584 rt *= dt;
6585 rt >>= 5;
6586
6587 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6588 ((unsigned long)rt % 60)/6);
6589
6590 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6591 }
6592
6593 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6594 {
6595 struct list_head *tmp;
6596 loff_t l = *pos;
6597 struct mddev *mddev;
6598
6599 if (l >= 0x10000)
6600 return NULL;
6601 if (!l--)
6602 /* header */
6603 return (void*)1;
6604
6605 spin_lock(&all_mddevs_lock);
6606 list_for_each(tmp,&all_mddevs)
6607 if (!l--) {
6608 mddev = list_entry(tmp, struct mddev, all_mddevs);
6609 mddev_get(mddev);
6610 spin_unlock(&all_mddevs_lock);
6611 return mddev;
6612 }
6613 spin_unlock(&all_mddevs_lock);
6614 if (!l--)
6615 return (void*)2;/* tail */
6616 return NULL;
6617 }
6618
6619 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6620 {
6621 struct list_head *tmp;
6622 struct mddev *next_mddev, *mddev = v;
6623
6624 ++*pos;
6625 if (v == (void*)2)
6626 return NULL;
6627
6628 spin_lock(&all_mddevs_lock);
6629 if (v == (void*)1)
6630 tmp = all_mddevs.next;
6631 else
6632 tmp = mddev->all_mddevs.next;
6633 if (tmp != &all_mddevs)
6634 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6635 else {
6636 next_mddev = (void*)2;
6637 *pos = 0x10000;
6638 }
6639 spin_unlock(&all_mddevs_lock);
6640
6641 if (v != (void*)1)
6642 mddev_put(mddev);
6643 return next_mddev;
6644
6645 }
6646
6647 static void md_seq_stop(struct seq_file *seq, void *v)
6648 {
6649 struct mddev *mddev = v;
6650
6651 if (mddev && v != (void*)1 && v != (void*)2)
6652 mddev_put(mddev);
6653 }
6654
6655 static int md_seq_show(struct seq_file *seq, void *v)
6656 {
6657 struct mddev *mddev = v;
6658 sector_t sectors;
6659 struct md_rdev *rdev;
6660 struct bitmap *bitmap;
6661
6662 if (v == (void*)1) {
6663 struct md_personality *pers;
6664 seq_printf(seq, "Personalities : ");
6665 spin_lock(&pers_lock);
6666 list_for_each_entry(pers, &pers_list, list)
6667 seq_printf(seq, "[%s] ", pers->name);
6668
6669 spin_unlock(&pers_lock);
6670 seq_printf(seq, "\n");
6671 seq->poll_event = atomic_read(&md_event_count);
6672 return 0;
6673 }
6674 if (v == (void*)2) {
6675 status_unused(seq);
6676 return 0;
6677 }
6678
6679 if (mddev_lock(mddev) < 0)
6680 return -EINTR;
6681
6682 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6683 seq_printf(seq, "%s : %sactive", mdname(mddev),
6684 mddev->pers ? "" : "in");
6685 if (mddev->pers) {
6686 if (mddev->ro==1)
6687 seq_printf(seq, " (read-only)");
6688 if (mddev->ro==2)
6689 seq_printf(seq, " (auto-read-only)");
6690 seq_printf(seq, " %s", mddev->pers->name);
6691 }
6692
6693 sectors = 0;
6694 list_for_each_entry(rdev, &mddev->disks, same_set) {
6695 char b[BDEVNAME_SIZE];
6696 seq_printf(seq, " %s[%d]",
6697 bdevname(rdev->bdev,b), rdev->desc_nr);
6698 if (test_bit(WriteMostly, &rdev->flags))
6699 seq_printf(seq, "(W)");
6700 if (test_bit(Faulty, &rdev->flags)) {
6701 seq_printf(seq, "(F)");
6702 continue;
6703 } else if (rdev->raid_disk < 0)
6704 seq_printf(seq, "(S)"); /* spare */
6705 sectors += rdev->sectors;
6706 }
6707
6708 if (!list_empty(&mddev->disks)) {
6709 if (mddev->pers)
6710 seq_printf(seq, "\n %llu blocks",
6711 (unsigned long long)
6712 mddev->array_sectors / 2);
6713 else
6714 seq_printf(seq, "\n %llu blocks",
6715 (unsigned long long)sectors / 2);
6716 }
6717 if (mddev->persistent) {
6718 if (mddev->major_version != 0 ||
6719 mddev->minor_version != 90) {
6720 seq_printf(seq," super %d.%d",
6721 mddev->major_version,
6722 mddev->minor_version);
6723 }
6724 } else if (mddev->external)
6725 seq_printf(seq, " super external:%s",
6726 mddev->metadata_type);
6727 else
6728 seq_printf(seq, " super non-persistent");
6729
6730 if (mddev->pers) {
6731 mddev->pers->status(seq, mddev);
6732 seq_printf(seq, "\n ");
6733 if (mddev->pers->sync_request) {
6734 if (mddev->curr_resync > 2) {
6735 status_resync(seq, mddev);
6736 seq_printf(seq, "\n ");
6737 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6738 seq_printf(seq, "\tresync=DELAYED\n ");
6739 else if (mddev->recovery_cp < MaxSector)
6740 seq_printf(seq, "\tresync=PENDING\n ");
6741 }
6742 } else
6743 seq_printf(seq, "\n ");
6744
6745 if ((bitmap = mddev->bitmap)) {
6746 unsigned long chunk_kb;
6747 unsigned long flags;
6748 spin_lock_irqsave(&bitmap->lock, flags);
6749 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6750 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6751 "%lu%s chunk",
6752 bitmap->pages - bitmap->missing_pages,
6753 bitmap->pages,
6754 (bitmap->pages - bitmap->missing_pages)
6755 << (PAGE_SHIFT - 10),
6756 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6757 chunk_kb ? "KB" : "B");
6758 if (bitmap->file) {
6759 seq_printf(seq, ", file: ");
6760 seq_path(seq, &bitmap->file->f_path, " \t\n");
6761 }
6762
6763 seq_printf(seq, "\n");
6764 spin_unlock_irqrestore(&bitmap->lock, flags);
6765 }
6766
6767 seq_printf(seq, "\n");
6768 }
6769 mddev_unlock(mddev);
6770
6771 return 0;
6772 }
6773
6774 static const struct seq_operations md_seq_ops = {
6775 .start = md_seq_start,
6776 .next = md_seq_next,
6777 .stop = md_seq_stop,
6778 .show = md_seq_show,
6779 };
6780
6781 static int md_seq_open(struct inode *inode, struct file *file)
6782 {
6783 struct seq_file *seq;
6784 int error;
6785
6786 error = seq_open(file, &md_seq_ops);
6787 if (error)
6788 return error;
6789
6790 seq = file->private_data;
6791 seq->poll_event = atomic_read(&md_event_count);
6792 return error;
6793 }
6794
6795 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6796 {
6797 struct seq_file *seq = filp->private_data;
6798 int mask;
6799
6800 poll_wait(filp, &md_event_waiters, wait);
6801
6802 /* always allow read */
6803 mask = POLLIN | POLLRDNORM;
6804
6805 if (seq->poll_event != atomic_read(&md_event_count))
6806 mask |= POLLERR | POLLPRI;
6807 return mask;
6808 }
6809
6810 static const struct file_operations md_seq_fops = {
6811 .owner = THIS_MODULE,
6812 .open = md_seq_open,
6813 .read = seq_read,
6814 .llseek = seq_lseek,
6815 .release = seq_release_private,
6816 .poll = mdstat_poll,
6817 };
6818
6819 int register_md_personality(struct md_personality *p)
6820 {
6821 spin_lock(&pers_lock);
6822 list_add_tail(&p->list, &pers_list);
6823 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6824 spin_unlock(&pers_lock);
6825 return 0;
6826 }
6827
6828 int unregister_md_personality(struct md_personality *p)
6829 {
6830 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6831 spin_lock(&pers_lock);
6832 list_del_init(&p->list);
6833 spin_unlock(&pers_lock);
6834 return 0;
6835 }
6836
6837 static int is_mddev_idle(struct mddev *mddev, int init)
6838 {
6839 struct md_rdev * rdev;
6840 int idle;
6841 int curr_events;
6842
6843 idle = 1;
6844 rcu_read_lock();
6845 rdev_for_each_rcu(rdev, mddev) {
6846 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6847 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6848 (int)part_stat_read(&disk->part0, sectors[1]) -
6849 atomic_read(&disk->sync_io);
6850 /* sync IO will cause sync_io to increase before the disk_stats
6851 * as sync_io is counted when a request starts, and
6852 * disk_stats is counted when it completes.
6853 * So resync activity will cause curr_events to be smaller than
6854 * when there was no such activity.
6855 * non-sync IO will cause disk_stat to increase without
6856 * increasing sync_io so curr_events will (eventually)
6857 * be larger than it was before. Once it becomes
6858 * substantially larger, the test below will cause
6859 * the array to appear non-idle, and resync will slow
6860 * down.
6861 * If there is a lot of outstanding resync activity when
6862 * we set last_event to curr_events, then all that activity
6863 * completing might cause the array to appear non-idle
6864 * and resync will be slowed down even though there might
6865 * not have been non-resync activity. This will only
6866 * happen once though. 'last_events' will soon reflect
6867 * the state where there is little or no outstanding
6868 * resync requests, and further resync activity will
6869 * always make curr_events less than last_events.
6870 *
6871 */
6872 if (init || curr_events - rdev->last_events > 64) {
6873 rdev->last_events = curr_events;
6874 idle = 0;
6875 }
6876 }
6877 rcu_read_unlock();
6878 return idle;
6879 }
6880
6881 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6882 {
6883 /* another "blocks" (512byte) blocks have been synced */
6884 atomic_sub(blocks, &mddev->recovery_active);
6885 wake_up(&mddev->recovery_wait);
6886 if (!ok) {
6887 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6888 md_wakeup_thread(mddev->thread);
6889 // stop recovery, signal do_sync ....
6890 }
6891 }
6892
6893
6894 /* md_write_start(mddev, bi)
6895 * If we need to update some array metadata (e.g. 'active' flag
6896 * in superblock) before writing, schedule a superblock update
6897 * and wait for it to complete.
6898 */
6899 void md_write_start(struct mddev *mddev, struct bio *bi)
6900 {
6901 int did_change = 0;
6902 if (bio_data_dir(bi) != WRITE)
6903 return;
6904
6905 BUG_ON(mddev->ro == 1);
6906 if (mddev->ro == 2) {
6907 /* need to switch to read/write */
6908 mddev->ro = 0;
6909 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6910 md_wakeup_thread(mddev->thread);
6911 md_wakeup_thread(mddev->sync_thread);
6912 did_change = 1;
6913 }
6914 atomic_inc(&mddev->writes_pending);
6915 if (mddev->safemode == 1)
6916 mddev->safemode = 0;
6917 if (mddev->in_sync) {
6918 spin_lock_irq(&mddev->write_lock);
6919 if (mddev->in_sync) {
6920 mddev->in_sync = 0;
6921 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6922 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6923 md_wakeup_thread(mddev->thread);
6924 did_change = 1;
6925 }
6926 spin_unlock_irq(&mddev->write_lock);
6927 }
6928 if (did_change)
6929 sysfs_notify_dirent_safe(mddev->sysfs_state);
6930 wait_event(mddev->sb_wait,
6931 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6932 }
6933
6934 void md_write_end(struct mddev *mddev)
6935 {
6936 if (atomic_dec_and_test(&mddev->writes_pending)) {
6937 if (mddev->safemode == 2)
6938 md_wakeup_thread(mddev->thread);
6939 else if (mddev->safemode_delay)
6940 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6941 }
6942 }
6943
6944 /* md_allow_write(mddev)
6945 * Calling this ensures that the array is marked 'active' so that writes
6946 * may proceed without blocking. It is important to call this before
6947 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6948 * Must be called with mddev_lock held.
6949 *
6950 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6951 * is dropped, so return -EAGAIN after notifying userspace.
6952 */
6953 int md_allow_write(struct mddev *mddev)
6954 {
6955 if (!mddev->pers)
6956 return 0;
6957 if (mddev->ro)
6958 return 0;
6959 if (!mddev->pers->sync_request)
6960 return 0;
6961
6962 spin_lock_irq(&mddev->write_lock);
6963 if (mddev->in_sync) {
6964 mddev->in_sync = 0;
6965 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6966 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6967 if (mddev->safemode_delay &&
6968 mddev->safemode == 0)
6969 mddev->safemode = 1;
6970 spin_unlock_irq(&mddev->write_lock);
6971 md_update_sb(mddev, 0);
6972 sysfs_notify_dirent_safe(mddev->sysfs_state);
6973 } else
6974 spin_unlock_irq(&mddev->write_lock);
6975
6976 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6977 return -EAGAIN;
6978 else
6979 return 0;
6980 }
6981 EXPORT_SYMBOL_GPL(md_allow_write);
6982
6983 #define SYNC_MARKS 10
6984 #define SYNC_MARK_STEP (3*HZ)
6985 void md_do_sync(struct mddev *mddev)
6986 {
6987 struct mddev *mddev2;
6988 unsigned int currspeed = 0,
6989 window;
6990 sector_t max_sectors,j, io_sectors;
6991 unsigned long mark[SYNC_MARKS];
6992 sector_t mark_cnt[SYNC_MARKS];
6993 int last_mark,m;
6994 struct list_head *tmp;
6995 sector_t last_check;
6996 int skipped = 0;
6997 struct md_rdev *rdev;
6998 char *desc;
6999
7000 /* just incase thread restarts... */
7001 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7002 return;
7003 if (mddev->ro) /* never try to sync a read-only array */
7004 return;
7005
7006 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7007 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7008 desc = "data-check";
7009 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7010 desc = "requested-resync";
7011 else
7012 desc = "resync";
7013 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7014 desc = "reshape";
7015 else
7016 desc = "recovery";
7017
7018 /* we overload curr_resync somewhat here.
7019 * 0 == not engaged in resync at all
7020 * 2 == checking that there is no conflict with another sync
7021 * 1 == like 2, but have yielded to allow conflicting resync to
7022 * commense
7023 * other == active in resync - this many blocks
7024 *
7025 * Before starting a resync we must have set curr_resync to
7026 * 2, and then checked that every "conflicting" array has curr_resync
7027 * less than ours. When we find one that is the same or higher
7028 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7029 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7030 * This will mean we have to start checking from the beginning again.
7031 *
7032 */
7033
7034 do {
7035 mddev->curr_resync = 2;
7036
7037 try_again:
7038 if (kthread_should_stop())
7039 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7040
7041 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7042 goto skip;
7043 for_each_mddev(mddev2, tmp) {
7044 if (mddev2 == mddev)
7045 continue;
7046 if (!mddev->parallel_resync
7047 && mddev2->curr_resync
7048 && match_mddev_units(mddev, mddev2)) {
7049 DEFINE_WAIT(wq);
7050 if (mddev < mddev2 && mddev->curr_resync == 2) {
7051 /* arbitrarily yield */
7052 mddev->curr_resync = 1;
7053 wake_up(&resync_wait);
7054 }
7055 if (mddev > mddev2 && mddev->curr_resync == 1)
7056 /* no need to wait here, we can wait the next
7057 * time 'round when curr_resync == 2
7058 */
7059 continue;
7060 /* We need to wait 'interruptible' so as not to
7061 * contribute to the load average, and not to
7062 * be caught by 'softlockup'
7063 */
7064 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7065 if (!kthread_should_stop() &&
7066 mddev2->curr_resync >= mddev->curr_resync) {
7067 printk(KERN_INFO "md: delaying %s of %s"
7068 " until %s has finished (they"
7069 " share one or more physical units)\n",
7070 desc, mdname(mddev), mdname(mddev2));
7071 mddev_put(mddev2);
7072 if (signal_pending(current))
7073 flush_signals(current);
7074 schedule();
7075 finish_wait(&resync_wait, &wq);
7076 goto try_again;
7077 }
7078 finish_wait(&resync_wait, &wq);
7079 }
7080 }
7081 } while (mddev->curr_resync < 2);
7082
7083 j = 0;
7084 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7085 /* resync follows the size requested by the personality,
7086 * which defaults to physical size, but can be virtual size
7087 */
7088 max_sectors = mddev->resync_max_sectors;
7089 mddev->resync_mismatches = 0;
7090 /* we don't use the checkpoint if there's a bitmap */
7091 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7092 j = mddev->resync_min;
7093 else if (!mddev->bitmap)
7094 j = mddev->recovery_cp;
7095
7096 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7097 max_sectors = mddev->dev_sectors;
7098 else {
7099 /* recovery follows the physical size of devices */
7100 max_sectors = mddev->dev_sectors;
7101 j = MaxSector;
7102 rcu_read_lock();
7103 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7104 if (rdev->raid_disk >= 0 &&
7105 !test_bit(Faulty, &rdev->flags) &&
7106 !test_bit(In_sync, &rdev->flags) &&
7107 rdev->recovery_offset < j)
7108 j = rdev->recovery_offset;
7109 rcu_read_unlock();
7110 }
7111
7112 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7113 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7114 " %d KB/sec/disk.\n", speed_min(mddev));
7115 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7116 "(but not more than %d KB/sec) for %s.\n",
7117 speed_max(mddev), desc);
7118
7119 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7120
7121 io_sectors = 0;
7122 for (m = 0; m < SYNC_MARKS; m++) {
7123 mark[m] = jiffies;
7124 mark_cnt[m] = io_sectors;
7125 }
7126 last_mark = 0;
7127 mddev->resync_mark = mark[last_mark];
7128 mddev->resync_mark_cnt = mark_cnt[last_mark];
7129
7130 /*
7131 * Tune reconstruction:
7132 */
7133 window = 32*(PAGE_SIZE/512);
7134 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7135 window/2, (unsigned long long)max_sectors/2);
7136
7137 atomic_set(&mddev->recovery_active, 0);
7138 last_check = 0;
7139
7140 if (j>2) {
7141 printk(KERN_INFO
7142 "md: resuming %s of %s from checkpoint.\n",
7143 desc, mdname(mddev));
7144 mddev->curr_resync = j;
7145 }
7146 mddev->curr_resync_completed = j;
7147
7148 while (j < max_sectors) {
7149 sector_t sectors;
7150
7151 skipped = 0;
7152
7153 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7154 ((mddev->curr_resync > mddev->curr_resync_completed &&
7155 (mddev->curr_resync - mddev->curr_resync_completed)
7156 > (max_sectors >> 4)) ||
7157 (j - mddev->curr_resync_completed)*2
7158 >= mddev->resync_max - mddev->curr_resync_completed
7159 )) {
7160 /* time to update curr_resync_completed */
7161 wait_event(mddev->recovery_wait,
7162 atomic_read(&mddev->recovery_active) == 0);
7163 mddev->curr_resync_completed = j;
7164 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7165 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7166 }
7167
7168 while (j >= mddev->resync_max && !kthread_should_stop()) {
7169 /* As this condition is controlled by user-space,
7170 * we can block indefinitely, so use '_interruptible'
7171 * to avoid triggering warnings.
7172 */
7173 flush_signals(current); /* just in case */
7174 wait_event_interruptible(mddev->recovery_wait,
7175 mddev->resync_max > j
7176 || kthread_should_stop());
7177 }
7178
7179 if (kthread_should_stop())
7180 goto interrupted;
7181
7182 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7183 currspeed < speed_min(mddev));
7184 if (sectors == 0) {
7185 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7186 goto out;
7187 }
7188
7189 if (!skipped) { /* actual IO requested */
7190 io_sectors += sectors;
7191 atomic_add(sectors, &mddev->recovery_active);
7192 }
7193
7194 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7195 break;
7196
7197 j += sectors;
7198 if (j>1) mddev->curr_resync = j;
7199 mddev->curr_mark_cnt = io_sectors;
7200 if (last_check == 0)
7201 /* this is the earliest that rebuild will be
7202 * visible in /proc/mdstat
7203 */
7204 md_new_event(mddev);
7205
7206 if (last_check + window > io_sectors || j == max_sectors)
7207 continue;
7208
7209 last_check = io_sectors;
7210 repeat:
7211 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7212 /* step marks */
7213 int next = (last_mark+1) % SYNC_MARKS;
7214
7215 mddev->resync_mark = mark[next];
7216 mddev->resync_mark_cnt = mark_cnt[next];
7217 mark[next] = jiffies;
7218 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7219 last_mark = next;
7220 }
7221
7222
7223 if (kthread_should_stop())
7224 goto interrupted;
7225
7226
7227 /*
7228 * this loop exits only if either when we are slower than
7229 * the 'hard' speed limit, or the system was IO-idle for
7230 * a jiffy.
7231 * the system might be non-idle CPU-wise, but we only care
7232 * about not overloading the IO subsystem. (things like an
7233 * e2fsck being done on the RAID array should execute fast)
7234 */
7235 cond_resched();
7236
7237 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7238 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7239
7240 if (currspeed > speed_min(mddev)) {
7241 if ((currspeed > speed_max(mddev)) ||
7242 !is_mddev_idle(mddev, 0)) {
7243 msleep(500);
7244 goto repeat;
7245 }
7246 }
7247 }
7248 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7249 /*
7250 * this also signals 'finished resyncing' to md_stop
7251 */
7252 out:
7253 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7254
7255 /* tell personality that we are finished */
7256 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7257
7258 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7259 mddev->curr_resync > 2) {
7260 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7261 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7262 if (mddev->curr_resync >= mddev->recovery_cp) {
7263 printk(KERN_INFO
7264 "md: checkpointing %s of %s.\n",
7265 desc, mdname(mddev));
7266 mddev->recovery_cp = mddev->curr_resync;
7267 }
7268 } else
7269 mddev->recovery_cp = MaxSector;
7270 } else {
7271 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7272 mddev->curr_resync = MaxSector;
7273 rcu_read_lock();
7274 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7275 if (rdev->raid_disk >= 0 &&
7276 mddev->delta_disks >= 0 &&
7277 !test_bit(Faulty, &rdev->flags) &&
7278 !test_bit(In_sync, &rdev->flags) &&
7279 rdev->recovery_offset < mddev->curr_resync)
7280 rdev->recovery_offset = mddev->curr_resync;
7281 rcu_read_unlock();
7282 }
7283 }
7284 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7285
7286 skip:
7287 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7288 /* We completed so min/max setting can be forgotten if used. */
7289 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7290 mddev->resync_min = 0;
7291 mddev->resync_max = MaxSector;
7292 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7293 mddev->resync_min = mddev->curr_resync_completed;
7294 mddev->curr_resync = 0;
7295 wake_up(&resync_wait);
7296 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7297 md_wakeup_thread(mddev->thread);
7298 return;
7299
7300 interrupted:
7301 /*
7302 * got a signal, exit.
7303 */
7304 printk(KERN_INFO
7305 "md: md_do_sync() got signal ... exiting\n");
7306 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7307 goto out;
7308
7309 }
7310 EXPORT_SYMBOL_GPL(md_do_sync);
7311
7312 static int remove_and_add_spares(struct mddev *mddev)
7313 {
7314 struct md_rdev *rdev;
7315 int spares = 0;
7316
7317 mddev->curr_resync_completed = 0;
7318
7319 list_for_each_entry(rdev, &mddev->disks, same_set)
7320 if (rdev->raid_disk >= 0 &&
7321 !test_bit(Blocked, &rdev->flags) &&
7322 (test_bit(Faulty, &rdev->flags) ||
7323 ! test_bit(In_sync, &rdev->flags)) &&
7324 atomic_read(&rdev->nr_pending)==0) {
7325 if (mddev->pers->hot_remove_disk(
7326 mddev, rdev->raid_disk)==0) {
7327 sysfs_unlink_rdev(mddev, rdev);
7328 rdev->raid_disk = -1;
7329 }
7330 }
7331
7332 if (mddev->degraded) {
7333 list_for_each_entry(rdev, &mddev->disks, same_set) {
7334 if (rdev->raid_disk >= 0 &&
7335 !test_bit(In_sync, &rdev->flags) &&
7336 !test_bit(Faulty, &rdev->flags))
7337 spares++;
7338 if (rdev->raid_disk < 0
7339 && !test_bit(Faulty, &rdev->flags)) {
7340 rdev->recovery_offset = 0;
7341 if (mddev->pers->
7342 hot_add_disk(mddev, rdev) == 0) {
7343 if (sysfs_link_rdev(mddev, rdev))
7344 /* failure here is OK */;
7345 spares++;
7346 md_new_event(mddev);
7347 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7348 } else
7349 break;
7350 }
7351 }
7352 }
7353 return spares;
7354 }
7355
7356 static void reap_sync_thread(struct mddev *mddev)
7357 {
7358 struct md_rdev *rdev;
7359
7360 /* resync has finished, collect result */
7361 md_unregister_thread(&mddev->sync_thread);
7362 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7363 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7364 /* success...*/
7365 /* activate any spares */
7366 if (mddev->pers->spare_active(mddev))
7367 sysfs_notify(&mddev->kobj, NULL,
7368 "degraded");
7369 }
7370 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7371 mddev->pers->finish_reshape)
7372 mddev->pers->finish_reshape(mddev);
7373
7374 /* If array is no-longer degraded, then any saved_raid_disk
7375 * information must be scrapped. Also if any device is now
7376 * In_sync we must scrape the saved_raid_disk for that device
7377 * do the superblock for an incrementally recovered device
7378 * written out.
7379 */
7380 list_for_each_entry(rdev, &mddev->disks, same_set)
7381 if (!mddev->degraded ||
7382 test_bit(In_sync, &rdev->flags))
7383 rdev->saved_raid_disk = -1;
7384
7385 md_update_sb(mddev, 1);
7386 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7387 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7388 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7389 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7390 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7391 /* flag recovery needed just to double check */
7392 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7393 sysfs_notify_dirent_safe(mddev->sysfs_action);
7394 md_new_event(mddev);
7395 if (mddev->event_work.func)
7396 queue_work(md_misc_wq, &mddev->event_work);
7397 }
7398
7399 /*
7400 * This routine is regularly called by all per-raid-array threads to
7401 * deal with generic issues like resync and super-block update.
7402 * Raid personalities that don't have a thread (linear/raid0) do not
7403 * need this as they never do any recovery or update the superblock.
7404 *
7405 * It does not do any resync itself, but rather "forks" off other threads
7406 * to do that as needed.
7407 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7408 * "->recovery" and create a thread at ->sync_thread.
7409 * When the thread finishes it sets MD_RECOVERY_DONE
7410 * and wakeups up this thread which will reap the thread and finish up.
7411 * This thread also removes any faulty devices (with nr_pending == 0).
7412 *
7413 * The overall approach is:
7414 * 1/ if the superblock needs updating, update it.
7415 * 2/ If a recovery thread is running, don't do anything else.
7416 * 3/ If recovery has finished, clean up, possibly marking spares active.
7417 * 4/ If there are any faulty devices, remove them.
7418 * 5/ If array is degraded, try to add spares devices
7419 * 6/ If array has spares or is not in-sync, start a resync thread.
7420 */
7421 void md_check_recovery(struct mddev *mddev)
7422 {
7423 if (mddev->suspended)
7424 return;
7425
7426 if (mddev->bitmap)
7427 bitmap_daemon_work(mddev);
7428
7429 if (signal_pending(current)) {
7430 if (mddev->pers->sync_request && !mddev->external) {
7431 printk(KERN_INFO "md: %s in immediate safe mode\n",
7432 mdname(mddev));
7433 mddev->safemode = 2;
7434 }
7435 flush_signals(current);
7436 }
7437
7438 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7439 return;
7440 if ( ! (
7441 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7442 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7443 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7444 (mddev->external == 0 && mddev->safemode == 1) ||
7445 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7446 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7447 ))
7448 return;
7449
7450 if (mddev_trylock(mddev)) {
7451 int spares = 0;
7452
7453 if (mddev->ro) {
7454 /* Only thing we do on a ro array is remove
7455 * failed devices.
7456 */
7457 struct md_rdev *rdev;
7458 list_for_each_entry(rdev, &mddev->disks, same_set)
7459 if (rdev->raid_disk >= 0 &&
7460 !test_bit(Blocked, &rdev->flags) &&
7461 test_bit(Faulty, &rdev->flags) &&
7462 atomic_read(&rdev->nr_pending)==0) {
7463 if (mddev->pers->hot_remove_disk(
7464 mddev, rdev->raid_disk)==0) {
7465 sysfs_unlink_rdev(mddev, rdev);
7466 rdev->raid_disk = -1;
7467 }
7468 }
7469 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7470 goto unlock;
7471 }
7472
7473 if (!mddev->external) {
7474 int did_change = 0;
7475 spin_lock_irq(&mddev->write_lock);
7476 if (mddev->safemode &&
7477 !atomic_read(&mddev->writes_pending) &&
7478 !mddev->in_sync &&
7479 mddev->recovery_cp == MaxSector) {
7480 mddev->in_sync = 1;
7481 did_change = 1;
7482 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7483 }
7484 if (mddev->safemode == 1)
7485 mddev->safemode = 0;
7486 spin_unlock_irq(&mddev->write_lock);
7487 if (did_change)
7488 sysfs_notify_dirent_safe(mddev->sysfs_state);
7489 }
7490
7491 if (mddev->flags)
7492 md_update_sb(mddev, 0);
7493
7494 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7495 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7496 /* resync/recovery still happening */
7497 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7498 goto unlock;
7499 }
7500 if (mddev->sync_thread) {
7501 reap_sync_thread(mddev);
7502 goto unlock;
7503 }
7504 /* Set RUNNING before clearing NEEDED to avoid
7505 * any transients in the value of "sync_action".
7506 */
7507 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7508 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7509 /* Clear some bits that don't mean anything, but
7510 * might be left set
7511 */
7512 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7513 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7514
7515 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7516 goto unlock;
7517 /* no recovery is running.
7518 * remove any failed drives, then
7519 * add spares if possible.
7520 * Spare are also removed and re-added, to allow
7521 * the personality to fail the re-add.
7522 */
7523
7524 if (mddev->reshape_position != MaxSector) {
7525 if (mddev->pers->check_reshape == NULL ||
7526 mddev->pers->check_reshape(mddev) != 0)
7527 /* Cannot proceed */
7528 goto unlock;
7529 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7530 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7531 } else if ((spares = remove_and_add_spares(mddev))) {
7532 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7533 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7534 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7535 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7536 } else if (mddev->recovery_cp < MaxSector) {
7537 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7538 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7539 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7540 /* nothing to be done ... */
7541 goto unlock;
7542
7543 if (mddev->pers->sync_request) {
7544 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7545 /* We are adding a device or devices to an array
7546 * which has the bitmap stored on all devices.
7547 * So make sure all bitmap pages get written
7548 */
7549 bitmap_write_all(mddev->bitmap);
7550 }
7551 mddev->sync_thread = md_register_thread(md_do_sync,
7552 mddev,
7553 "resync");
7554 if (!mddev->sync_thread) {
7555 printk(KERN_ERR "%s: could not start resync"
7556 " thread...\n",
7557 mdname(mddev));
7558 /* leave the spares where they are, it shouldn't hurt */
7559 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7560 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7561 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7562 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7563 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7564 } else
7565 md_wakeup_thread(mddev->sync_thread);
7566 sysfs_notify_dirent_safe(mddev->sysfs_action);
7567 md_new_event(mddev);
7568 }
7569 unlock:
7570 if (!mddev->sync_thread) {
7571 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7572 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7573 &mddev->recovery))
7574 if (mddev->sysfs_action)
7575 sysfs_notify_dirent_safe(mddev->sysfs_action);
7576 }
7577 mddev_unlock(mddev);
7578 }
7579 }
7580
7581 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7582 {
7583 sysfs_notify_dirent_safe(rdev->sysfs_state);
7584 wait_event_timeout(rdev->blocked_wait,
7585 !test_bit(Blocked, &rdev->flags) &&
7586 !test_bit(BlockedBadBlocks, &rdev->flags),
7587 msecs_to_jiffies(5000));
7588 rdev_dec_pending(rdev, mddev);
7589 }
7590 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7591
7592
7593 /* Bad block management.
7594 * We can record which blocks on each device are 'bad' and so just
7595 * fail those blocks, or that stripe, rather than the whole device.
7596 * Entries in the bad-block table are 64bits wide. This comprises:
7597 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7598 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7599 * A 'shift' can be set so that larger blocks are tracked and
7600 * consequently larger devices can be covered.
7601 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7602 *
7603 * Locking of the bad-block table uses a seqlock so md_is_badblock
7604 * might need to retry if it is very unlucky.
7605 * We will sometimes want to check for bad blocks in a bi_end_io function,
7606 * so we use the write_seqlock_irq variant.
7607 *
7608 * When looking for a bad block we specify a range and want to
7609 * know if any block in the range is bad. So we binary-search
7610 * to the last range that starts at-or-before the given endpoint,
7611 * (or "before the sector after the target range")
7612 * then see if it ends after the given start.
7613 * We return
7614 * 0 if there are no known bad blocks in the range
7615 * 1 if there are known bad block which are all acknowledged
7616 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7617 * plus the start/length of the first bad section we overlap.
7618 */
7619 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7620 sector_t *first_bad, int *bad_sectors)
7621 {
7622 int hi;
7623 int lo = 0;
7624 u64 *p = bb->page;
7625 int rv = 0;
7626 sector_t target = s + sectors;
7627 unsigned seq;
7628
7629 if (bb->shift > 0) {
7630 /* round the start down, and the end up */
7631 s >>= bb->shift;
7632 target += (1<<bb->shift) - 1;
7633 target >>= bb->shift;
7634 sectors = target - s;
7635 }
7636 /* 'target' is now the first block after the bad range */
7637
7638 retry:
7639 seq = read_seqbegin(&bb->lock);
7640
7641 hi = bb->count;
7642
7643 /* Binary search between lo and hi for 'target'
7644 * i.e. for the last range that starts before 'target'
7645 */
7646 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7647 * are known not to be the last range before target.
7648 * VARIANT: hi-lo is the number of possible
7649 * ranges, and decreases until it reaches 1
7650 */
7651 while (hi - lo > 1) {
7652 int mid = (lo + hi) / 2;
7653 sector_t a = BB_OFFSET(p[mid]);
7654 if (a < target)
7655 /* This could still be the one, earlier ranges
7656 * could not. */
7657 lo = mid;
7658 else
7659 /* This and later ranges are definitely out. */
7660 hi = mid;
7661 }
7662 /* 'lo' might be the last that started before target, but 'hi' isn't */
7663 if (hi > lo) {
7664 /* need to check all range that end after 's' to see if
7665 * any are unacknowledged.
7666 */
7667 while (lo >= 0 &&
7668 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7669 if (BB_OFFSET(p[lo]) < target) {
7670 /* starts before the end, and finishes after
7671 * the start, so they must overlap
7672 */
7673 if (rv != -1 && BB_ACK(p[lo]))
7674 rv = 1;
7675 else
7676 rv = -1;
7677 *first_bad = BB_OFFSET(p[lo]);
7678 *bad_sectors = BB_LEN(p[lo]);
7679 }
7680 lo--;
7681 }
7682 }
7683
7684 if (read_seqretry(&bb->lock, seq))
7685 goto retry;
7686
7687 return rv;
7688 }
7689 EXPORT_SYMBOL_GPL(md_is_badblock);
7690
7691 /*
7692 * Add a range of bad blocks to the table.
7693 * This might extend the table, or might contract it
7694 * if two adjacent ranges can be merged.
7695 * We binary-search to find the 'insertion' point, then
7696 * decide how best to handle it.
7697 */
7698 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7699 int acknowledged)
7700 {
7701 u64 *p;
7702 int lo, hi;
7703 int rv = 1;
7704
7705 if (bb->shift < 0)
7706 /* badblocks are disabled */
7707 return 0;
7708
7709 if (bb->shift) {
7710 /* round the start down, and the end up */
7711 sector_t next = s + sectors;
7712 s >>= bb->shift;
7713 next += (1<<bb->shift) - 1;
7714 next >>= bb->shift;
7715 sectors = next - s;
7716 }
7717
7718 write_seqlock_irq(&bb->lock);
7719
7720 p = bb->page;
7721 lo = 0;
7722 hi = bb->count;
7723 /* Find the last range that starts at-or-before 's' */
7724 while (hi - lo > 1) {
7725 int mid = (lo + hi) / 2;
7726 sector_t a = BB_OFFSET(p[mid]);
7727 if (a <= s)
7728 lo = mid;
7729 else
7730 hi = mid;
7731 }
7732 if (hi > lo && BB_OFFSET(p[lo]) > s)
7733 hi = lo;
7734
7735 if (hi > lo) {
7736 /* we found a range that might merge with the start
7737 * of our new range
7738 */
7739 sector_t a = BB_OFFSET(p[lo]);
7740 sector_t e = a + BB_LEN(p[lo]);
7741 int ack = BB_ACK(p[lo]);
7742 if (e >= s) {
7743 /* Yes, we can merge with a previous range */
7744 if (s == a && s + sectors >= e)
7745 /* new range covers old */
7746 ack = acknowledged;
7747 else
7748 ack = ack && acknowledged;
7749
7750 if (e < s + sectors)
7751 e = s + sectors;
7752 if (e - a <= BB_MAX_LEN) {
7753 p[lo] = BB_MAKE(a, e-a, ack);
7754 s = e;
7755 } else {
7756 /* does not all fit in one range,
7757 * make p[lo] maximal
7758 */
7759 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7760 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7761 s = a + BB_MAX_LEN;
7762 }
7763 sectors = e - s;
7764 }
7765 }
7766 if (sectors && hi < bb->count) {
7767 /* 'hi' points to the first range that starts after 's'.
7768 * Maybe we can merge with the start of that range */
7769 sector_t a = BB_OFFSET(p[hi]);
7770 sector_t e = a + BB_LEN(p[hi]);
7771 int ack = BB_ACK(p[hi]);
7772 if (a <= s + sectors) {
7773 /* merging is possible */
7774 if (e <= s + sectors) {
7775 /* full overlap */
7776 e = s + sectors;
7777 ack = acknowledged;
7778 } else
7779 ack = ack && acknowledged;
7780
7781 a = s;
7782 if (e - a <= BB_MAX_LEN) {
7783 p[hi] = BB_MAKE(a, e-a, ack);
7784 s = e;
7785 } else {
7786 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7787 s = a + BB_MAX_LEN;
7788 }
7789 sectors = e - s;
7790 lo = hi;
7791 hi++;
7792 }
7793 }
7794 if (sectors == 0 && hi < bb->count) {
7795 /* we might be able to combine lo and hi */
7796 /* Note: 's' is at the end of 'lo' */
7797 sector_t a = BB_OFFSET(p[hi]);
7798 int lolen = BB_LEN(p[lo]);
7799 int hilen = BB_LEN(p[hi]);
7800 int newlen = lolen + hilen - (s - a);
7801 if (s >= a && newlen < BB_MAX_LEN) {
7802 /* yes, we can combine them */
7803 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7804 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7805 memmove(p + hi, p + hi + 1,
7806 (bb->count - hi - 1) * 8);
7807 bb->count--;
7808 }
7809 }
7810 while (sectors) {
7811 /* didn't merge (it all).
7812 * Need to add a range just before 'hi' */
7813 if (bb->count >= MD_MAX_BADBLOCKS) {
7814 /* No room for more */
7815 rv = 0;
7816 break;
7817 } else {
7818 int this_sectors = sectors;
7819 memmove(p + hi + 1, p + hi,
7820 (bb->count - hi) * 8);
7821 bb->count++;
7822
7823 if (this_sectors > BB_MAX_LEN)
7824 this_sectors = BB_MAX_LEN;
7825 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7826 sectors -= this_sectors;
7827 s += this_sectors;
7828 }
7829 }
7830
7831 bb->changed = 1;
7832 if (!acknowledged)
7833 bb->unacked_exist = 1;
7834 write_sequnlock_irq(&bb->lock);
7835
7836 return rv;
7837 }
7838
7839 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7840 int acknowledged)
7841 {
7842 int rv = md_set_badblocks(&rdev->badblocks,
7843 s + rdev->data_offset, sectors, acknowledged);
7844 if (rv) {
7845 /* Make sure they get written out promptly */
7846 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7847 md_wakeup_thread(rdev->mddev->thread);
7848 }
7849 return rv;
7850 }
7851 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7852
7853 /*
7854 * Remove a range of bad blocks from the table.
7855 * This may involve extending the table if we spilt a region,
7856 * but it must not fail. So if the table becomes full, we just
7857 * drop the remove request.
7858 */
7859 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7860 {
7861 u64 *p;
7862 int lo, hi;
7863 sector_t target = s + sectors;
7864 int rv = 0;
7865
7866 if (bb->shift > 0) {
7867 /* When clearing we round the start up and the end down.
7868 * This should not matter as the shift should align with
7869 * the block size and no rounding should ever be needed.
7870 * However it is better the think a block is bad when it
7871 * isn't than to think a block is not bad when it is.
7872 */
7873 s += (1<<bb->shift) - 1;
7874 s >>= bb->shift;
7875 target >>= bb->shift;
7876 sectors = target - s;
7877 }
7878
7879 write_seqlock_irq(&bb->lock);
7880
7881 p = bb->page;
7882 lo = 0;
7883 hi = bb->count;
7884 /* Find the last range that starts before 'target' */
7885 while (hi - lo > 1) {
7886 int mid = (lo + hi) / 2;
7887 sector_t a = BB_OFFSET(p[mid]);
7888 if (a < target)
7889 lo = mid;
7890 else
7891 hi = mid;
7892 }
7893 if (hi > lo) {
7894 /* p[lo] is the last range that could overlap the
7895 * current range. Earlier ranges could also overlap,
7896 * but only this one can overlap the end of the range.
7897 */
7898 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7899 /* Partial overlap, leave the tail of this range */
7900 int ack = BB_ACK(p[lo]);
7901 sector_t a = BB_OFFSET(p[lo]);
7902 sector_t end = a + BB_LEN(p[lo]);
7903
7904 if (a < s) {
7905 /* we need to split this range */
7906 if (bb->count >= MD_MAX_BADBLOCKS) {
7907 rv = 0;
7908 goto out;
7909 }
7910 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7911 bb->count++;
7912 p[lo] = BB_MAKE(a, s-a, ack);
7913 lo++;
7914 }
7915 p[lo] = BB_MAKE(target, end - target, ack);
7916 /* there is no longer an overlap */
7917 hi = lo;
7918 lo--;
7919 }
7920 while (lo >= 0 &&
7921 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7922 /* This range does overlap */
7923 if (BB_OFFSET(p[lo]) < s) {
7924 /* Keep the early parts of this range. */
7925 int ack = BB_ACK(p[lo]);
7926 sector_t start = BB_OFFSET(p[lo]);
7927 p[lo] = BB_MAKE(start, s - start, ack);
7928 /* now low doesn't overlap, so.. */
7929 break;
7930 }
7931 lo--;
7932 }
7933 /* 'lo' is strictly before, 'hi' is strictly after,
7934 * anything between needs to be discarded
7935 */
7936 if (hi - lo > 1) {
7937 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7938 bb->count -= (hi - lo - 1);
7939 }
7940 }
7941
7942 bb->changed = 1;
7943 out:
7944 write_sequnlock_irq(&bb->lock);
7945 return rv;
7946 }
7947
7948 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7949 {
7950 return md_clear_badblocks(&rdev->badblocks,
7951 s + rdev->data_offset,
7952 sectors);
7953 }
7954 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7955
7956 /*
7957 * Acknowledge all bad blocks in a list.
7958 * This only succeeds if ->changed is clear. It is used by
7959 * in-kernel metadata updates
7960 */
7961 void md_ack_all_badblocks(struct badblocks *bb)
7962 {
7963 if (bb->page == NULL || bb->changed)
7964 /* no point even trying */
7965 return;
7966 write_seqlock_irq(&bb->lock);
7967
7968 if (bb->changed == 0) {
7969 u64 *p = bb->page;
7970 int i;
7971 for (i = 0; i < bb->count ; i++) {
7972 if (!BB_ACK(p[i])) {
7973 sector_t start = BB_OFFSET(p[i]);
7974 int len = BB_LEN(p[i]);
7975 p[i] = BB_MAKE(start, len, 1);
7976 }
7977 }
7978 bb->unacked_exist = 0;
7979 }
7980 write_sequnlock_irq(&bb->lock);
7981 }
7982 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7983
7984 /* sysfs access to bad-blocks list.
7985 * We present two files.
7986 * 'bad-blocks' lists sector numbers and lengths of ranges that
7987 * are recorded as bad. The list is truncated to fit within
7988 * the one-page limit of sysfs.
7989 * Writing "sector length" to this file adds an acknowledged
7990 * bad block list.
7991 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7992 * been acknowledged. Writing to this file adds bad blocks
7993 * without acknowledging them. This is largely for testing.
7994 */
7995
7996 static ssize_t
7997 badblocks_show(struct badblocks *bb, char *page, int unack)
7998 {
7999 size_t len;
8000 int i;
8001 u64 *p = bb->page;
8002 unsigned seq;
8003
8004 if (bb->shift < 0)
8005 return 0;
8006
8007 retry:
8008 seq = read_seqbegin(&bb->lock);
8009
8010 len = 0;
8011 i = 0;
8012
8013 while (len < PAGE_SIZE && i < bb->count) {
8014 sector_t s = BB_OFFSET(p[i]);
8015 unsigned int length = BB_LEN(p[i]);
8016 int ack = BB_ACK(p[i]);
8017 i++;
8018
8019 if (unack && ack)
8020 continue;
8021
8022 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8023 (unsigned long long)s << bb->shift,
8024 length << bb->shift);
8025 }
8026 if (unack && len == 0)
8027 bb->unacked_exist = 0;
8028
8029 if (read_seqretry(&bb->lock, seq))
8030 goto retry;
8031
8032 return len;
8033 }
8034
8035 #define DO_DEBUG 1
8036
8037 static ssize_t
8038 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8039 {
8040 unsigned long long sector;
8041 int length;
8042 char newline;
8043 #ifdef DO_DEBUG
8044 /* Allow clearing via sysfs *only* for testing/debugging.
8045 * Normally only a successful write may clear a badblock
8046 */
8047 int clear = 0;
8048 if (page[0] == '-') {
8049 clear = 1;
8050 page++;
8051 }
8052 #endif /* DO_DEBUG */
8053
8054 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8055 case 3:
8056 if (newline != '\n')
8057 return -EINVAL;
8058 case 2:
8059 if (length <= 0)
8060 return -EINVAL;
8061 break;
8062 default:
8063 return -EINVAL;
8064 }
8065
8066 #ifdef DO_DEBUG
8067 if (clear) {
8068 md_clear_badblocks(bb, sector, length);
8069 return len;
8070 }
8071 #endif /* DO_DEBUG */
8072 if (md_set_badblocks(bb, sector, length, !unack))
8073 return len;
8074 else
8075 return -ENOSPC;
8076 }
8077
8078 static int md_notify_reboot(struct notifier_block *this,
8079 unsigned long code, void *x)
8080 {
8081 struct list_head *tmp;
8082 struct mddev *mddev;
8083 int need_delay = 0;
8084
8085 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8086
8087 printk(KERN_INFO "md: stopping all md devices.\n");
8088
8089 for_each_mddev(mddev, tmp) {
8090 if (mddev_trylock(mddev)) {
8091 /* Force a switch to readonly even array
8092 * appears to still be in use. Hence
8093 * the '100'.
8094 */
8095 md_set_readonly(mddev, 100);
8096 mddev_unlock(mddev);
8097 }
8098 need_delay = 1;
8099 }
8100 /*
8101 * certain more exotic SCSI devices are known to be
8102 * volatile wrt too early system reboots. While the
8103 * right place to handle this issue is the given
8104 * driver, we do want to have a safe RAID driver ...
8105 */
8106 if (need_delay)
8107 mdelay(1000*1);
8108 }
8109 return NOTIFY_DONE;
8110 }
8111
8112 static struct notifier_block md_notifier = {
8113 .notifier_call = md_notify_reboot,
8114 .next = NULL,
8115 .priority = INT_MAX, /* before any real devices */
8116 };
8117
8118 static void md_geninit(void)
8119 {
8120 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8121
8122 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8123 }
8124
8125 static int __init md_init(void)
8126 {
8127 int ret = -ENOMEM;
8128
8129 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8130 if (!md_wq)
8131 goto err_wq;
8132
8133 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8134 if (!md_misc_wq)
8135 goto err_misc_wq;
8136
8137 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8138 goto err_md;
8139
8140 if ((ret = register_blkdev(0, "mdp")) < 0)
8141 goto err_mdp;
8142 mdp_major = ret;
8143
8144 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8145 md_probe, NULL, NULL);
8146 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8147 md_probe, NULL, NULL);
8148
8149 register_reboot_notifier(&md_notifier);
8150 raid_table_header = register_sysctl_table(raid_root_table);
8151
8152 md_geninit();
8153 return 0;
8154
8155 err_mdp:
8156 unregister_blkdev(MD_MAJOR, "md");
8157 err_md:
8158 destroy_workqueue(md_misc_wq);
8159 err_misc_wq:
8160 destroy_workqueue(md_wq);
8161 err_wq:
8162 return ret;
8163 }
8164
8165 #ifndef MODULE
8166
8167 /*
8168 * Searches all registered partitions for autorun RAID arrays
8169 * at boot time.
8170 */
8171
8172 static LIST_HEAD(all_detected_devices);
8173 struct detected_devices_node {
8174 struct list_head list;
8175 dev_t dev;
8176 };
8177
8178 void md_autodetect_dev(dev_t dev)
8179 {
8180 struct detected_devices_node *node_detected_dev;
8181
8182 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8183 if (node_detected_dev) {
8184 node_detected_dev->dev = dev;
8185 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8186 } else {
8187 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8188 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8189 }
8190 }
8191
8192
8193 static void autostart_arrays(int part)
8194 {
8195 struct md_rdev *rdev;
8196 struct detected_devices_node *node_detected_dev;
8197 dev_t dev;
8198 int i_scanned, i_passed;
8199
8200 i_scanned = 0;
8201 i_passed = 0;
8202
8203 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8204
8205 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8206 i_scanned++;
8207 node_detected_dev = list_entry(all_detected_devices.next,
8208 struct detected_devices_node, list);
8209 list_del(&node_detected_dev->list);
8210 dev = node_detected_dev->dev;
8211 kfree(node_detected_dev);
8212 rdev = md_import_device(dev,0, 90);
8213 if (IS_ERR(rdev))
8214 continue;
8215
8216 if (test_bit(Faulty, &rdev->flags)) {
8217 MD_BUG();
8218 continue;
8219 }
8220 set_bit(AutoDetected, &rdev->flags);
8221 list_add(&rdev->same_set, &pending_raid_disks);
8222 i_passed++;
8223 }
8224
8225 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8226 i_scanned, i_passed);
8227
8228 autorun_devices(part);
8229 }
8230
8231 #endif /* !MODULE */
8232
8233 static __exit void md_exit(void)
8234 {
8235 struct mddev *mddev;
8236 struct list_head *tmp;
8237
8238 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8239 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8240
8241 unregister_blkdev(MD_MAJOR,"md");
8242 unregister_blkdev(mdp_major, "mdp");
8243 unregister_reboot_notifier(&md_notifier);
8244 unregister_sysctl_table(raid_table_header);
8245 remove_proc_entry("mdstat", NULL);
8246 for_each_mddev(mddev, tmp) {
8247 export_array(mddev);
8248 mddev->hold_active = 0;
8249 }
8250 destroy_workqueue(md_misc_wq);
8251 destroy_workqueue(md_wq);
8252 }
8253
8254 subsys_initcall(md_init);
8255 module_exit(md_exit)
8256
8257 static int get_ro(char *buffer, struct kernel_param *kp)
8258 {
8259 return sprintf(buffer, "%d", start_readonly);
8260 }
8261 static int set_ro(const char *val, struct kernel_param *kp)
8262 {
8263 char *e;
8264 int num = simple_strtoul(val, &e, 10);
8265 if (*val && (*e == '\0' || *e == '\n')) {
8266 start_readonly = num;
8267 return 0;
8268 }
8269 return -EINVAL;
8270 }
8271
8272 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8273 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8274
8275 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8276
8277 EXPORT_SYMBOL(register_md_personality);
8278 EXPORT_SYMBOL(unregister_md_personality);
8279 EXPORT_SYMBOL(md_error);
8280 EXPORT_SYMBOL(md_done_sync);
8281 EXPORT_SYMBOL(md_write_start);
8282 EXPORT_SYMBOL(md_write_end);
8283 EXPORT_SYMBOL(md_register_thread);
8284 EXPORT_SYMBOL(md_unregister_thread);
8285 EXPORT_SYMBOL(md_wakeup_thread);
8286 EXPORT_SYMBOL(md_check_recovery);
8287 MODULE_LICENSE("GPL");
8288 MODULE_DESCRIPTION("MD RAID framework");
8289 MODULE_ALIAS("md");
8290 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.384209 seconds and 5 git commands to generate.