md: make sure metadata is updated when spares are activated or removed.
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 struct mddev *mddev, **mddevp;
161
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
164
165 bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
170 {
171 struct bio *b;
172 struct mddev **mddevp;
173
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
176
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
190 {
191 struct bio *b;
192 struct mddev **mddevp;
193
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
196
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
207
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
213 }
214 }
215
216 return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 */
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
229
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
233
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
244 }
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 }
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
255 }
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
263 }
264 sofar += bvec->bv_len;
265 }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
274 *
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
278 */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
290 */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
295 }
296
297 /*
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
300 */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
311 */
312 #define for_each_mddev(_mddev,_tmp) \
313 \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
325 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
334 */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int cpu;
340 unsigned int sectors;
341
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return;
346 }
347 smp_rmb(); /* Ensure implications of 'active' are visible */
348 rcu_read_lock();
349 if (mddev->suspended) {
350 DEFINE_WAIT(__wait);
351 for (;;) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
355 break;
356 rcu_read_unlock();
357 schedule();
358 rcu_read_lock();
359 }
360 finish_wait(&mddev->sb_wait, &__wait);
361 }
362 atomic_inc(&mddev->active_io);
363 rcu_read_unlock();
364
365 /*
366 * save the sectors now since our bio can
367 * go away inside make_request
368 */
369 sectors = bio_sectors(bio);
370 mddev->pers->make_request(mddev, bio);
371
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 part_stat_unlock();
376
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
385 * unused.
386 */
387 void mddev_suspend(struct mddev *mddev)
388 {
389 BUG_ON(mddev->suspended);
390 mddev->suspended = 1;
391 synchronize_rcu();
392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 mddev->pers->quiesce(mddev, 1);
394
395 del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398
399 void mddev_resume(struct mddev *mddev)
400 {
401 mddev->suspended = 0;
402 wake_up(&mddev->sb_wait);
403 mddev->pers->quiesce(mddev, 0);
404
405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
406 md_wakeup_thread(mddev->thread);
407 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413 return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418 * Generic flush handling for md
419 */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423 struct md_rdev *rdev = bio->bi_private;
424 struct mddev *mddev = rdev->mddev;
425
426 rdev_dec_pending(rdev, mddev);
427
428 if (atomic_dec_and_test(&mddev->flush_pending)) {
429 /* The pre-request flush has finished */
430 queue_work(md_wq, &mddev->flush_work);
431 }
432 bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440 struct md_rdev *rdev;
441
442 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443 atomic_set(&mddev->flush_pending, 1);
444 rcu_read_lock();
445 rdev_for_each_rcu(rdev, mddev)
446 if (rdev->raid_disk >= 0 &&
447 !test_bit(Faulty, &rdev->flags)) {
448 /* Take two references, one is dropped
449 * when request finishes, one after
450 * we reclaim rcu_read_lock
451 */
452 struct bio *bi;
453 atomic_inc(&rdev->nr_pending);
454 atomic_inc(&rdev->nr_pending);
455 rcu_read_unlock();
456 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
457 bi->bi_end_io = md_end_flush;
458 bi->bi_private = rdev;
459 bi->bi_bdev = rdev->bdev;
460 atomic_inc(&mddev->flush_pending);
461 submit_bio(WRITE_FLUSH, bi);
462 rcu_read_lock();
463 rdev_dec_pending(rdev, mddev);
464 }
465 rcu_read_unlock();
466 if (atomic_dec_and_test(&mddev->flush_pending))
467 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473 struct bio *bio = mddev->flush_bio;
474
475 if (bio->bi_size == 0)
476 /* an empty barrier - all done */
477 bio_endio(bio, 0);
478 else {
479 bio->bi_rw &= ~REQ_FLUSH;
480 mddev->pers->make_request(mddev, bio);
481 }
482
483 mddev->flush_bio = NULL;
484 wake_up(&mddev->sb_wait);
485 }
486
487 void md_flush_request(struct mddev *mddev, struct bio *bio)
488 {
489 spin_lock_irq(&mddev->write_lock);
490 wait_event_lock_irq(mddev->sb_wait,
491 !mddev->flush_bio,
492 mddev->write_lock, /*nothing*/);
493 mddev->flush_bio = bio;
494 spin_unlock_irq(&mddev->write_lock);
495
496 INIT_WORK(&mddev->flush_work, submit_flushes);
497 queue_work(md_wq, &mddev->flush_work);
498 }
499 EXPORT_SYMBOL(md_flush_request);
500
501 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
502 {
503 struct mddev *mddev = cb->data;
504 md_wakeup_thread(mddev->thread);
505 kfree(cb);
506 }
507 EXPORT_SYMBOL(md_unplug);
508
509 static inline struct mddev *mddev_get(struct mddev *mddev)
510 {
511 atomic_inc(&mddev->active);
512 return mddev;
513 }
514
515 static void mddev_delayed_delete(struct work_struct *ws);
516
517 static void mddev_put(struct mddev *mddev)
518 {
519 struct bio_set *bs = NULL;
520
521 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
522 return;
523 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
524 mddev->ctime == 0 && !mddev->hold_active) {
525 /* Array is not configured at all, and not held active,
526 * so destroy it */
527 list_del_init(&mddev->all_mddevs);
528 bs = mddev->bio_set;
529 mddev->bio_set = NULL;
530 if (mddev->gendisk) {
531 /* We did a probe so need to clean up. Call
532 * queue_work inside the spinlock so that
533 * flush_workqueue() after mddev_find will
534 * succeed in waiting for the work to be done.
535 */
536 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
537 queue_work(md_misc_wq, &mddev->del_work);
538 } else
539 kfree(mddev);
540 }
541 spin_unlock(&all_mddevs_lock);
542 if (bs)
543 bioset_free(bs);
544 }
545
546 void mddev_init(struct mddev *mddev)
547 {
548 mutex_init(&mddev->open_mutex);
549 mutex_init(&mddev->reconfig_mutex);
550 mutex_init(&mddev->bitmap_info.mutex);
551 INIT_LIST_HEAD(&mddev->disks);
552 INIT_LIST_HEAD(&mddev->all_mddevs);
553 init_timer(&mddev->safemode_timer);
554 atomic_set(&mddev->active, 1);
555 atomic_set(&mddev->openers, 0);
556 atomic_set(&mddev->active_io, 0);
557 spin_lock_init(&mddev->write_lock);
558 atomic_set(&mddev->flush_pending, 0);
559 init_waitqueue_head(&mddev->sb_wait);
560 init_waitqueue_head(&mddev->recovery_wait);
561 mddev->reshape_position = MaxSector;
562 mddev->reshape_backwards = 0;
563 mddev->resync_min = 0;
564 mddev->resync_max = MaxSector;
565 mddev->level = LEVEL_NONE;
566 }
567 EXPORT_SYMBOL_GPL(mddev_init);
568
569 static struct mddev * mddev_find(dev_t unit)
570 {
571 struct mddev *mddev, *new = NULL;
572
573 if (unit && MAJOR(unit) != MD_MAJOR)
574 unit &= ~((1<<MdpMinorShift)-1);
575
576 retry:
577 spin_lock(&all_mddevs_lock);
578
579 if (unit) {
580 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581 if (mddev->unit == unit) {
582 mddev_get(mddev);
583 spin_unlock(&all_mddevs_lock);
584 kfree(new);
585 return mddev;
586 }
587
588 if (new) {
589 list_add(&new->all_mddevs, &all_mddevs);
590 spin_unlock(&all_mddevs_lock);
591 new->hold_active = UNTIL_IOCTL;
592 return new;
593 }
594 } else if (new) {
595 /* find an unused unit number */
596 static int next_minor = 512;
597 int start = next_minor;
598 int is_free = 0;
599 int dev = 0;
600 while (!is_free) {
601 dev = MKDEV(MD_MAJOR, next_minor);
602 next_minor++;
603 if (next_minor > MINORMASK)
604 next_minor = 0;
605 if (next_minor == start) {
606 /* Oh dear, all in use. */
607 spin_unlock(&all_mddevs_lock);
608 kfree(new);
609 return NULL;
610 }
611
612 is_free = 1;
613 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
614 if (mddev->unit == dev) {
615 is_free = 0;
616 break;
617 }
618 }
619 new->unit = dev;
620 new->md_minor = MINOR(dev);
621 new->hold_active = UNTIL_STOP;
622 list_add(&new->all_mddevs, &all_mddevs);
623 spin_unlock(&all_mddevs_lock);
624 return new;
625 }
626 spin_unlock(&all_mddevs_lock);
627
628 new = kzalloc(sizeof(*new), GFP_KERNEL);
629 if (!new)
630 return NULL;
631
632 new->unit = unit;
633 if (MAJOR(unit) == MD_MAJOR)
634 new->md_minor = MINOR(unit);
635 else
636 new->md_minor = MINOR(unit) >> MdpMinorShift;
637
638 mddev_init(new);
639
640 goto retry;
641 }
642
643 static inline int mddev_lock(struct mddev * mddev)
644 {
645 return mutex_lock_interruptible(&mddev->reconfig_mutex);
646 }
647
648 static inline int mddev_is_locked(struct mddev *mddev)
649 {
650 return mutex_is_locked(&mddev->reconfig_mutex);
651 }
652
653 static inline int mddev_trylock(struct mddev * mddev)
654 {
655 return mutex_trylock(&mddev->reconfig_mutex);
656 }
657
658 static struct attribute_group md_redundancy_group;
659
660 static void mddev_unlock(struct mddev * mddev)
661 {
662 if (mddev->to_remove) {
663 /* These cannot be removed under reconfig_mutex as
664 * an access to the files will try to take reconfig_mutex
665 * while holding the file unremovable, which leads to
666 * a deadlock.
667 * So hold set sysfs_active while the remove in happeing,
668 * and anything else which might set ->to_remove or my
669 * otherwise change the sysfs namespace will fail with
670 * -EBUSY if sysfs_active is still set.
671 * We set sysfs_active under reconfig_mutex and elsewhere
672 * test it under the same mutex to ensure its correct value
673 * is seen.
674 */
675 struct attribute_group *to_remove = mddev->to_remove;
676 mddev->to_remove = NULL;
677 mddev->sysfs_active = 1;
678 mutex_unlock(&mddev->reconfig_mutex);
679
680 if (mddev->kobj.sd) {
681 if (to_remove != &md_redundancy_group)
682 sysfs_remove_group(&mddev->kobj, to_remove);
683 if (mddev->pers == NULL ||
684 mddev->pers->sync_request == NULL) {
685 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
686 if (mddev->sysfs_action)
687 sysfs_put(mddev->sysfs_action);
688 mddev->sysfs_action = NULL;
689 }
690 }
691 mddev->sysfs_active = 0;
692 } else
693 mutex_unlock(&mddev->reconfig_mutex);
694
695 /* As we've dropped the mutex we need a spinlock to
696 * make sure the thread doesn't disappear
697 */
698 spin_lock(&pers_lock);
699 md_wakeup_thread(mddev->thread);
700 spin_unlock(&pers_lock);
701 }
702
703 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
704 {
705 struct md_rdev *rdev;
706
707 rdev_for_each(rdev, mddev)
708 if (rdev->desc_nr == nr)
709 return rdev;
710
711 return NULL;
712 }
713
714 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
715 {
716 struct md_rdev *rdev;
717
718 rdev_for_each(rdev, mddev)
719 if (rdev->bdev->bd_dev == dev)
720 return rdev;
721
722 return NULL;
723 }
724
725 static struct md_personality *find_pers(int level, char *clevel)
726 {
727 struct md_personality *pers;
728 list_for_each_entry(pers, &pers_list, list) {
729 if (level != LEVEL_NONE && pers->level == level)
730 return pers;
731 if (strcmp(pers->name, clevel)==0)
732 return pers;
733 }
734 return NULL;
735 }
736
737 /* return the offset of the super block in 512byte sectors */
738 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
739 {
740 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
741 return MD_NEW_SIZE_SECTORS(num_sectors);
742 }
743
744 static int alloc_disk_sb(struct md_rdev * rdev)
745 {
746 if (rdev->sb_page)
747 MD_BUG();
748
749 rdev->sb_page = alloc_page(GFP_KERNEL);
750 if (!rdev->sb_page) {
751 printk(KERN_ALERT "md: out of memory.\n");
752 return -ENOMEM;
753 }
754
755 return 0;
756 }
757
758 void md_rdev_clear(struct md_rdev *rdev)
759 {
760 if (rdev->sb_page) {
761 put_page(rdev->sb_page);
762 rdev->sb_loaded = 0;
763 rdev->sb_page = NULL;
764 rdev->sb_start = 0;
765 rdev->sectors = 0;
766 }
767 if (rdev->bb_page) {
768 put_page(rdev->bb_page);
769 rdev->bb_page = NULL;
770 }
771 kfree(rdev->badblocks.page);
772 rdev->badblocks.page = NULL;
773 }
774 EXPORT_SYMBOL_GPL(md_rdev_clear);
775
776 static void super_written(struct bio *bio, int error)
777 {
778 struct md_rdev *rdev = bio->bi_private;
779 struct mddev *mddev = rdev->mddev;
780
781 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
782 printk("md: super_written gets error=%d, uptodate=%d\n",
783 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
784 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
785 md_error(mddev, rdev);
786 }
787
788 if (atomic_dec_and_test(&mddev->pending_writes))
789 wake_up(&mddev->sb_wait);
790 bio_put(bio);
791 }
792
793 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
794 sector_t sector, int size, struct page *page)
795 {
796 /* write first size bytes of page to sector of rdev
797 * Increment mddev->pending_writes before returning
798 * and decrement it on completion, waking up sb_wait
799 * if zero is reached.
800 * If an error occurred, call md_error
801 */
802 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
803
804 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
805 bio->bi_sector = sector;
806 bio_add_page(bio, page, size, 0);
807 bio->bi_private = rdev;
808 bio->bi_end_io = super_written;
809
810 atomic_inc(&mddev->pending_writes);
811 submit_bio(WRITE_FLUSH_FUA, bio);
812 }
813
814 void md_super_wait(struct mddev *mddev)
815 {
816 /* wait for all superblock writes that were scheduled to complete */
817 DEFINE_WAIT(wq);
818 for(;;) {
819 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
820 if (atomic_read(&mddev->pending_writes)==0)
821 break;
822 schedule();
823 }
824 finish_wait(&mddev->sb_wait, &wq);
825 }
826
827 static void bi_complete(struct bio *bio, int error)
828 {
829 complete((struct completion*)bio->bi_private);
830 }
831
832 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
833 struct page *page, int rw, bool metadata_op)
834 {
835 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
836 struct completion event;
837 int ret;
838
839 rw |= REQ_SYNC;
840
841 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
842 rdev->meta_bdev : rdev->bdev;
843 if (metadata_op)
844 bio->bi_sector = sector + rdev->sb_start;
845 else if (rdev->mddev->reshape_position != MaxSector &&
846 (rdev->mddev->reshape_backwards ==
847 (sector >= rdev->mddev->reshape_position)))
848 bio->bi_sector = sector + rdev->new_data_offset;
849 else
850 bio->bi_sector = sector + rdev->data_offset;
851 bio_add_page(bio, page, size, 0);
852 init_completion(&event);
853 bio->bi_private = &event;
854 bio->bi_end_io = bi_complete;
855 submit_bio(rw, bio);
856 wait_for_completion(&event);
857
858 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
859 bio_put(bio);
860 return ret;
861 }
862 EXPORT_SYMBOL_GPL(sync_page_io);
863
864 static int read_disk_sb(struct md_rdev * rdev, int size)
865 {
866 char b[BDEVNAME_SIZE];
867 if (!rdev->sb_page) {
868 MD_BUG();
869 return -EINVAL;
870 }
871 if (rdev->sb_loaded)
872 return 0;
873
874
875 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
876 goto fail;
877 rdev->sb_loaded = 1;
878 return 0;
879
880 fail:
881 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
882 bdevname(rdev->bdev,b));
883 return -EINVAL;
884 }
885
886 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
887 {
888 return sb1->set_uuid0 == sb2->set_uuid0 &&
889 sb1->set_uuid1 == sb2->set_uuid1 &&
890 sb1->set_uuid2 == sb2->set_uuid2 &&
891 sb1->set_uuid3 == sb2->set_uuid3;
892 }
893
894 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
895 {
896 int ret;
897 mdp_super_t *tmp1, *tmp2;
898
899 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
900 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
901
902 if (!tmp1 || !tmp2) {
903 ret = 0;
904 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
905 goto abort;
906 }
907
908 *tmp1 = *sb1;
909 *tmp2 = *sb2;
910
911 /*
912 * nr_disks is not constant
913 */
914 tmp1->nr_disks = 0;
915 tmp2->nr_disks = 0;
916
917 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
918 abort:
919 kfree(tmp1);
920 kfree(tmp2);
921 return ret;
922 }
923
924
925 static u32 md_csum_fold(u32 csum)
926 {
927 csum = (csum & 0xffff) + (csum >> 16);
928 return (csum & 0xffff) + (csum >> 16);
929 }
930
931 static unsigned int calc_sb_csum(mdp_super_t * sb)
932 {
933 u64 newcsum = 0;
934 u32 *sb32 = (u32*)sb;
935 int i;
936 unsigned int disk_csum, csum;
937
938 disk_csum = sb->sb_csum;
939 sb->sb_csum = 0;
940
941 for (i = 0; i < MD_SB_BYTES/4 ; i++)
942 newcsum += sb32[i];
943 csum = (newcsum & 0xffffffff) + (newcsum>>32);
944
945
946 #ifdef CONFIG_ALPHA
947 /* This used to use csum_partial, which was wrong for several
948 * reasons including that different results are returned on
949 * different architectures. It isn't critical that we get exactly
950 * the same return value as before (we always csum_fold before
951 * testing, and that removes any differences). However as we
952 * know that csum_partial always returned a 16bit value on
953 * alphas, do a fold to maximise conformity to previous behaviour.
954 */
955 sb->sb_csum = md_csum_fold(disk_csum);
956 #else
957 sb->sb_csum = disk_csum;
958 #endif
959 return csum;
960 }
961
962
963 /*
964 * Handle superblock details.
965 * We want to be able to handle multiple superblock formats
966 * so we have a common interface to them all, and an array of
967 * different handlers.
968 * We rely on user-space to write the initial superblock, and support
969 * reading and updating of superblocks.
970 * Interface methods are:
971 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
972 * loads and validates a superblock on dev.
973 * if refdev != NULL, compare superblocks on both devices
974 * Return:
975 * 0 - dev has a superblock that is compatible with refdev
976 * 1 - dev has a superblock that is compatible and newer than refdev
977 * so dev should be used as the refdev in future
978 * -EINVAL superblock incompatible or invalid
979 * -othererror e.g. -EIO
980 *
981 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
982 * Verify that dev is acceptable into mddev.
983 * The first time, mddev->raid_disks will be 0, and data from
984 * dev should be merged in. Subsequent calls check that dev
985 * is new enough. Return 0 or -EINVAL
986 *
987 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
988 * Update the superblock for rdev with data in mddev
989 * This does not write to disc.
990 *
991 */
992
993 struct super_type {
994 char *name;
995 struct module *owner;
996 int (*load_super)(struct md_rdev *rdev,
997 struct md_rdev *refdev,
998 int minor_version);
999 int (*validate_super)(struct mddev *mddev,
1000 struct md_rdev *rdev);
1001 void (*sync_super)(struct mddev *mddev,
1002 struct md_rdev *rdev);
1003 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1004 sector_t num_sectors);
1005 int (*allow_new_offset)(struct md_rdev *rdev,
1006 unsigned long long new_offset);
1007 };
1008
1009 /*
1010 * Check that the given mddev has no bitmap.
1011 *
1012 * This function is called from the run method of all personalities that do not
1013 * support bitmaps. It prints an error message and returns non-zero if mddev
1014 * has a bitmap. Otherwise, it returns 0.
1015 *
1016 */
1017 int md_check_no_bitmap(struct mddev *mddev)
1018 {
1019 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1020 return 0;
1021 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1022 mdname(mddev), mddev->pers->name);
1023 return 1;
1024 }
1025 EXPORT_SYMBOL(md_check_no_bitmap);
1026
1027 /*
1028 * load_super for 0.90.0
1029 */
1030 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1031 {
1032 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1033 mdp_super_t *sb;
1034 int ret;
1035
1036 /*
1037 * Calculate the position of the superblock (512byte sectors),
1038 * it's at the end of the disk.
1039 *
1040 * It also happens to be a multiple of 4Kb.
1041 */
1042 rdev->sb_start = calc_dev_sboffset(rdev);
1043
1044 ret = read_disk_sb(rdev, MD_SB_BYTES);
1045 if (ret) return ret;
1046
1047 ret = -EINVAL;
1048
1049 bdevname(rdev->bdev, b);
1050 sb = page_address(rdev->sb_page);
1051
1052 if (sb->md_magic != MD_SB_MAGIC) {
1053 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1054 b);
1055 goto abort;
1056 }
1057
1058 if (sb->major_version != 0 ||
1059 sb->minor_version < 90 ||
1060 sb->minor_version > 91) {
1061 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1062 sb->major_version, sb->minor_version,
1063 b);
1064 goto abort;
1065 }
1066
1067 if (sb->raid_disks <= 0)
1068 goto abort;
1069
1070 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1071 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1072 b);
1073 goto abort;
1074 }
1075
1076 rdev->preferred_minor = sb->md_minor;
1077 rdev->data_offset = 0;
1078 rdev->new_data_offset = 0;
1079 rdev->sb_size = MD_SB_BYTES;
1080 rdev->badblocks.shift = -1;
1081
1082 if (sb->level == LEVEL_MULTIPATH)
1083 rdev->desc_nr = -1;
1084 else
1085 rdev->desc_nr = sb->this_disk.number;
1086
1087 if (!refdev) {
1088 ret = 1;
1089 } else {
1090 __u64 ev1, ev2;
1091 mdp_super_t *refsb = page_address(refdev->sb_page);
1092 if (!uuid_equal(refsb, sb)) {
1093 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1094 b, bdevname(refdev->bdev,b2));
1095 goto abort;
1096 }
1097 if (!sb_equal(refsb, sb)) {
1098 printk(KERN_WARNING "md: %s has same UUID"
1099 " but different superblock to %s\n",
1100 b, bdevname(refdev->bdev, b2));
1101 goto abort;
1102 }
1103 ev1 = md_event(sb);
1104 ev2 = md_event(refsb);
1105 if (ev1 > ev2)
1106 ret = 1;
1107 else
1108 ret = 0;
1109 }
1110 rdev->sectors = rdev->sb_start;
1111 /* Limit to 4TB as metadata cannot record more than that.
1112 * (not needed for Linear and RAID0 as metadata doesn't
1113 * record this size)
1114 */
1115 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1116 rdev->sectors = (2ULL << 32) - 2;
1117
1118 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1119 /* "this cannot possibly happen" ... */
1120 ret = -EINVAL;
1121
1122 abort:
1123 return ret;
1124 }
1125
1126 /*
1127 * validate_super for 0.90.0
1128 */
1129 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1130 {
1131 mdp_disk_t *desc;
1132 mdp_super_t *sb = page_address(rdev->sb_page);
1133 __u64 ev1 = md_event(sb);
1134
1135 rdev->raid_disk = -1;
1136 clear_bit(Faulty, &rdev->flags);
1137 clear_bit(In_sync, &rdev->flags);
1138 clear_bit(WriteMostly, &rdev->flags);
1139
1140 if (mddev->raid_disks == 0) {
1141 mddev->major_version = 0;
1142 mddev->minor_version = sb->minor_version;
1143 mddev->patch_version = sb->patch_version;
1144 mddev->external = 0;
1145 mddev->chunk_sectors = sb->chunk_size >> 9;
1146 mddev->ctime = sb->ctime;
1147 mddev->utime = sb->utime;
1148 mddev->level = sb->level;
1149 mddev->clevel[0] = 0;
1150 mddev->layout = sb->layout;
1151 mddev->raid_disks = sb->raid_disks;
1152 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1153 mddev->events = ev1;
1154 mddev->bitmap_info.offset = 0;
1155 mddev->bitmap_info.space = 0;
1156 /* bitmap can use 60 K after the 4K superblocks */
1157 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1158 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1159 mddev->reshape_backwards = 0;
1160
1161 if (mddev->minor_version >= 91) {
1162 mddev->reshape_position = sb->reshape_position;
1163 mddev->delta_disks = sb->delta_disks;
1164 mddev->new_level = sb->new_level;
1165 mddev->new_layout = sb->new_layout;
1166 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1167 if (mddev->delta_disks < 0)
1168 mddev->reshape_backwards = 1;
1169 } else {
1170 mddev->reshape_position = MaxSector;
1171 mddev->delta_disks = 0;
1172 mddev->new_level = mddev->level;
1173 mddev->new_layout = mddev->layout;
1174 mddev->new_chunk_sectors = mddev->chunk_sectors;
1175 }
1176
1177 if (sb->state & (1<<MD_SB_CLEAN))
1178 mddev->recovery_cp = MaxSector;
1179 else {
1180 if (sb->events_hi == sb->cp_events_hi &&
1181 sb->events_lo == sb->cp_events_lo) {
1182 mddev->recovery_cp = sb->recovery_cp;
1183 } else
1184 mddev->recovery_cp = 0;
1185 }
1186
1187 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1188 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1189 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1190 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1191
1192 mddev->max_disks = MD_SB_DISKS;
1193
1194 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1195 mddev->bitmap_info.file == NULL) {
1196 mddev->bitmap_info.offset =
1197 mddev->bitmap_info.default_offset;
1198 mddev->bitmap_info.space =
1199 mddev->bitmap_info.space;
1200 }
1201
1202 } else if (mddev->pers == NULL) {
1203 /* Insist on good event counter while assembling, except
1204 * for spares (which don't need an event count) */
1205 ++ev1;
1206 if (sb->disks[rdev->desc_nr].state & (
1207 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1208 if (ev1 < mddev->events)
1209 return -EINVAL;
1210 } else if (mddev->bitmap) {
1211 /* if adding to array with a bitmap, then we can accept an
1212 * older device ... but not too old.
1213 */
1214 if (ev1 < mddev->bitmap->events_cleared)
1215 return 0;
1216 } else {
1217 if (ev1 < mddev->events)
1218 /* just a hot-add of a new device, leave raid_disk at -1 */
1219 return 0;
1220 }
1221
1222 if (mddev->level != LEVEL_MULTIPATH) {
1223 desc = sb->disks + rdev->desc_nr;
1224
1225 if (desc->state & (1<<MD_DISK_FAULTY))
1226 set_bit(Faulty, &rdev->flags);
1227 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1228 desc->raid_disk < mddev->raid_disks */) {
1229 set_bit(In_sync, &rdev->flags);
1230 rdev->raid_disk = desc->raid_disk;
1231 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1232 /* active but not in sync implies recovery up to
1233 * reshape position. We don't know exactly where
1234 * that is, so set to zero for now */
1235 if (mddev->minor_version >= 91) {
1236 rdev->recovery_offset = 0;
1237 rdev->raid_disk = desc->raid_disk;
1238 }
1239 }
1240 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1241 set_bit(WriteMostly, &rdev->flags);
1242 } else /* MULTIPATH are always insync */
1243 set_bit(In_sync, &rdev->flags);
1244 return 0;
1245 }
1246
1247 /*
1248 * sync_super for 0.90.0
1249 */
1250 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1251 {
1252 mdp_super_t *sb;
1253 struct md_rdev *rdev2;
1254 int next_spare = mddev->raid_disks;
1255
1256
1257 /* make rdev->sb match mddev data..
1258 *
1259 * 1/ zero out disks
1260 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1261 * 3/ any empty disks < next_spare become removed
1262 *
1263 * disks[0] gets initialised to REMOVED because
1264 * we cannot be sure from other fields if it has
1265 * been initialised or not.
1266 */
1267 int i;
1268 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1269
1270 rdev->sb_size = MD_SB_BYTES;
1271
1272 sb = page_address(rdev->sb_page);
1273
1274 memset(sb, 0, sizeof(*sb));
1275
1276 sb->md_magic = MD_SB_MAGIC;
1277 sb->major_version = mddev->major_version;
1278 sb->patch_version = mddev->patch_version;
1279 sb->gvalid_words = 0; /* ignored */
1280 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1281 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1282 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1283 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1284
1285 sb->ctime = mddev->ctime;
1286 sb->level = mddev->level;
1287 sb->size = mddev->dev_sectors / 2;
1288 sb->raid_disks = mddev->raid_disks;
1289 sb->md_minor = mddev->md_minor;
1290 sb->not_persistent = 0;
1291 sb->utime = mddev->utime;
1292 sb->state = 0;
1293 sb->events_hi = (mddev->events>>32);
1294 sb->events_lo = (u32)mddev->events;
1295
1296 if (mddev->reshape_position == MaxSector)
1297 sb->minor_version = 90;
1298 else {
1299 sb->minor_version = 91;
1300 sb->reshape_position = mddev->reshape_position;
1301 sb->new_level = mddev->new_level;
1302 sb->delta_disks = mddev->delta_disks;
1303 sb->new_layout = mddev->new_layout;
1304 sb->new_chunk = mddev->new_chunk_sectors << 9;
1305 }
1306 mddev->minor_version = sb->minor_version;
1307 if (mddev->in_sync)
1308 {
1309 sb->recovery_cp = mddev->recovery_cp;
1310 sb->cp_events_hi = (mddev->events>>32);
1311 sb->cp_events_lo = (u32)mddev->events;
1312 if (mddev->recovery_cp == MaxSector)
1313 sb->state = (1<< MD_SB_CLEAN);
1314 } else
1315 sb->recovery_cp = 0;
1316
1317 sb->layout = mddev->layout;
1318 sb->chunk_size = mddev->chunk_sectors << 9;
1319
1320 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1321 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1322
1323 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1324 rdev_for_each(rdev2, mddev) {
1325 mdp_disk_t *d;
1326 int desc_nr;
1327 int is_active = test_bit(In_sync, &rdev2->flags);
1328
1329 if (rdev2->raid_disk >= 0 &&
1330 sb->minor_version >= 91)
1331 /* we have nowhere to store the recovery_offset,
1332 * but if it is not below the reshape_position,
1333 * we can piggy-back on that.
1334 */
1335 is_active = 1;
1336 if (rdev2->raid_disk < 0 ||
1337 test_bit(Faulty, &rdev2->flags))
1338 is_active = 0;
1339 if (is_active)
1340 desc_nr = rdev2->raid_disk;
1341 else
1342 desc_nr = next_spare++;
1343 rdev2->desc_nr = desc_nr;
1344 d = &sb->disks[rdev2->desc_nr];
1345 nr_disks++;
1346 d->number = rdev2->desc_nr;
1347 d->major = MAJOR(rdev2->bdev->bd_dev);
1348 d->minor = MINOR(rdev2->bdev->bd_dev);
1349 if (is_active)
1350 d->raid_disk = rdev2->raid_disk;
1351 else
1352 d->raid_disk = rdev2->desc_nr; /* compatibility */
1353 if (test_bit(Faulty, &rdev2->flags))
1354 d->state = (1<<MD_DISK_FAULTY);
1355 else if (is_active) {
1356 d->state = (1<<MD_DISK_ACTIVE);
1357 if (test_bit(In_sync, &rdev2->flags))
1358 d->state |= (1<<MD_DISK_SYNC);
1359 active++;
1360 working++;
1361 } else {
1362 d->state = 0;
1363 spare++;
1364 working++;
1365 }
1366 if (test_bit(WriteMostly, &rdev2->flags))
1367 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1368 }
1369 /* now set the "removed" and "faulty" bits on any missing devices */
1370 for (i=0 ; i < mddev->raid_disks ; i++) {
1371 mdp_disk_t *d = &sb->disks[i];
1372 if (d->state == 0 && d->number == 0) {
1373 d->number = i;
1374 d->raid_disk = i;
1375 d->state = (1<<MD_DISK_REMOVED);
1376 d->state |= (1<<MD_DISK_FAULTY);
1377 failed++;
1378 }
1379 }
1380 sb->nr_disks = nr_disks;
1381 sb->active_disks = active;
1382 sb->working_disks = working;
1383 sb->failed_disks = failed;
1384 sb->spare_disks = spare;
1385
1386 sb->this_disk = sb->disks[rdev->desc_nr];
1387 sb->sb_csum = calc_sb_csum(sb);
1388 }
1389
1390 /*
1391 * rdev_size_change for 0.90.0
1392 */
1393 static unsigned long long
1394 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1395 {
1396 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1397 return 0; /* component must fit device */
1398 if (rdev->mddev->bitmap_info.offset)
1399 return 0; /* can't move bitmap */
1400 rdev->sb_start = calc_dev_sboffset(rdev);
1401 if (!num_sectors || num_sectors > rdev->sb_start)
1402 num_sectors = rdev->sb_start;
1403 /* Limit to 4TB as metadata cannot record more than that.
1404 * 4TB == 2^32 KB, or 2*2^32 sectors.
1405 */
1406 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1407 num_sectors = (2ULL << 32) - 2;
1408 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1409 rdev->sb_page);
1410 md_super_wait(rdev->mddev);
1411 return num_sectors;
1412 }
1413
1414 static int
1415 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1416 {
1417 /* non-zero offset changes not possible with v0.90 */
1418 return new_offset == 0;
1419 }
1420
1421 /*
1422 * version 1 superblock
1423 */
1424
1425 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1426 {
1427 __le32 disk_csum;
1428 u32 csum;
1429 unsigned long long newcsum;
1430 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1431 __le32 *isuper = (__le32*)sb;
1432 int i;
1433
1434 disk_csum = sb->sb_csum;
1435 sb->sb_csum = 0;
1436 newcsum = 0;
1437 for (i=0; size>=4; size -= 4 )
1438 newcsum += le32_to_cpu(*isuper++);
1439
1440 if (size == 2)
1441 newcsum += le16_to_cpu(*(__le16*) isuper);
1442
1443 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1444 sb->sb_csum = disk_csum;
1445 return cpu_to_le32(csum);
1446 }
1447
1448 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1449 int acknowledged);
1450 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1451 {
1452 struct mdp_superblock_1 *sb;
1453 int ret;
1454 sector_t sb_start;
1455 sector_t sectors;
1456 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1457 int bmask;
1458
1459 /*
1460 * Calculate the position of the superblock in 512byte sectors.
1461 * It is always aligned to a 4K boundary and
1462 * depeding on minor_version, it can be:
1463 * 0: At least 8K, but less than 12K, from end of device
1464 * 1: At start of device
1465 * 2: 4K from start of device.
1466 */
1467 switch(minor_version) {
1468 case 0:
1469 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1470 sb_start -= 8*2;
1471 sb_start &= ~(sector_t)(4*2-1);
1472 break;
1473 case 1:
1474 sb_start = 0;
1475 break;
1476 case 2:
1477 sb_start = 8;
1478 break;
1479 default:
1480 return -EINVAL;
1481 }
1482 rdev->sb_start = sb_start;
1483
1484 /* superblock is rarely larger than 1K, but it can be larger,
1485 * and it is safe to read 4k, so we do that
1486 */
1487 ret = read_disk_sb(rdev, 4096);
1488 if (ret) return ret;
1489
1490
1491 sb = page_address(rdev->sb_page);
1492
1493 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1494 sb->major_version != cpu_to_le32(1) ||
1495 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1496 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1497 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1498 return -EINVAL;
1499
1500 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1501 printk("md: invalid superblock checksum on %s\n",
1502 bdevname(rdev->bdev,b));
1503 return -EINVAL;
1504 }
1505 if (le64_to_cpu(sb->data_size) < 10) {
1506 printk("md: data_size too small on %s\n",
1507 bdevname(rdev->bdev,b));
1508 return -EINVAL;
1509 }
1510 if (sb->pad0 ||
1511 sb->pad3[0] ||
1512 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1513 /* Some padding is non-zero, might be a new feature */
1514 return -EINVAL;
1515
1516 rdev->preferred_minor = 0xffff;
1517 rdev->data_offset = le64_to_cpu(sb->data_offset);
1518 rdev->new_data_offset = rdev->data_offset;
1519 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1520 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1521 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1522 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1523
1524 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1525 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1526 if (rdev->sb_size & bmask)
1527 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1528
1529 if (minor_version
1530 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1531 return -EINVAL;
1532 if (minor_version
1533 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1534 return -EINVAL;
1535
1536 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1537 rdev->desc_nr = -1;
1538 else
1539 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1540
1541 if (!rdev->bb_page) {
1542 rdev->bb_page = alloc_page(GFP_KERNEL);
1543 if (!rdev->bb_page)
1544 return -ENOMEM;
1545 }
1546 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1547 rdev->badblocks.count == 0) {
1548 /* need to load the bad block list.
1549 * Currently we limit it to one page.
1550 */
1551 s32 offset;
1552 sector_t bb_sector;
1553 u64 *bbp;
1554 int i;
1555 int sectors = le16_to_cpu(sb->bblog_size);
1556 if (sectors > (PAGE_SIZE / 512))
1557 return -EINVAL;
1558 offset = le32_to_cpu(sb->bblog_offset);
1559 if (offset == 0)
1560 return -EINVAL;
1561 bb_sector = (long long)offset;
1562 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1563 rdev->bb_page, READ, true))
1564 return -EIO;
1565 bbp = (u64 *)page_address(rdev->bb_page);
1566 rdev->badblocks.shift = sb->bblog_shift;
1567 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1568 u64 bb = le64_to_cpu(*bbp);
1569 int count = bb & (0x3ff);
1570 u64 sector = bb >> 10;
1571 sector <<= sb->bblog_shift;
1572 count <<= sb->bblog_shift;
1573 if (bb + 1 == 0)
1574 break;
1575 if (md_set_badblocks(&rdev->badblocks,
1576 sector, count, 1) == 0)
1577 return -EINVAL;
1578 }
1579 } else if (sb->bblog_offset == 0)
1580 rdev->badblocks.shift = -1;
1581
1582 if (!refdev) {
1583 ret = 1;
1584 } else {
1585 __u64 ev1, ev2;
1586 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1587
1588 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1589 sb->level != refsb->level ||
1590 sb->layout != refsb->layout ||
1591 sb->chunksize != refsb->chunksize) {
1592 printk(KERN_WARNING "md: %s has strangely different"
1593 " superblock to %s\n",
1594 bdevname(rdev->bdev,b),
1595 bdevname(refdev->bdev,b2));
1596 return -EINVAL;
1597 }
1598 ev1 = le64_to_cpu(sb->events);
1599 ev2 = le64_to_cpu(refsb->events);
1600
1601 if (ev1 > ev2)
1602 ret = 1;
1603 else
1604 ret = 0;
1605 }
1606 if (minor_version) {
1607 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1608 sectors -= rdev->data_offset;
1609 } else
1610 sectors = rdev->sb_start;
1611 if (sectors < le64_to_cpu(sb->data_size))
1612 return -EINVAL;
1613 rdev->sectors = le64_to_cpu(sb->data_size);
1614 return ret;
1615 }
1616
1617 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1618 {
1619 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1620 __u64 ev1 = le64_to_cpu(sb->events);
1621
1622 rdev->raid_disk = -1;
1623 clear_bit(Faulty, &rdev->flags);
1624 clear_bit(In_sync, &rdev->flags);
1625 clear_bit(WriteMostly, &rdev->flags);
1626
1627 if (mddev->raid_disks == 0) {
1628 mddev->major_version = 1;
1629 mddev->patch_version = 0;
1630 mddev->external = 0;
1631 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1632 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1633 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1634 mddev->level = le32_to_cpu(sb->level);
1635 mddev->clevel[0] = 0;
1636 mddev->layout = le32_to_cpu(sb->layout);
1637 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1638 mddev->dev_sectors = le64_to_cpu(sb->size);
1639 mddev->events = ev1;
1640 mddev->bitmap_info.offset = 0;
1641 mddev->bitmap_info.space = 0;
1642 /* Default location for bitmap is 1K after superblock
1643 * using 3K - total of 4K
1644 */
1645 mddev->bitmap_info.default_offset = 1024 >> 9;
1646 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1647 mddev->reshape_backwards = 0;
1648
1649 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1650 memcpy(mddev->uuid, sb->set_uuid, 16);
1651
1652 mddev->max_disks = (4096-256)/2;
1653
1654 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1655 mddev->bitmap_info.file == NULL) {
1656 mddev->bitmap_info.offset =
1657 (__s32)le32_to_cpu(sb->bitmap_offset);
1658 /* Metadata doesn't record how much space is available.
1659 * For 1.0, we assume we can use up to the superblock
1660 * if before, else to 4K beyond superblock.
1661 * For others, assume no change is possible.
1662 */
1663 if (mddev->minor_version > 0)
1664 mddev->bitmap_info.space = 0;
1665 else if (mddev->bitmap_info.offset > 0)
1666 mddev->bitmap_info.space =
1667 8 - mddev->bitmap_info.offset;
1668 else
1669 mddev->bitmap_info.space =
1670 -mddev->bitmap_info.offset;
1671 }
1672
1673 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1674 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1675 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1676 mddev->new_level = le32_to_cpu(sb->new_level);
1677 mddev->new_layout = le32_to_cpu(sb->new_layout);
1678 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1679 if (mddev->delta_disks < 0 ||
1680 (mddev->delta_disks == 0 &&
1681 (le32_to_cpu(sb->feature_map)
1682 & MD_FEATURE_RESHAPE_BACKWARDS)))
1683 mddev->reshape_backwards = 1;
1684 } else {
1685 mddev->reshape_position = MaxSector;
1686 mddev->delta_disks = 0;
1687 mddev->new_level = mddev->level;
1688 mddev->new_layout = mddev->layout;
1689 mddev->new_chunk_sectors = mddev->chunk_sectors;
1690 }
1691
1692 } else if (mddev->pers == NULL) {
1693 /* Insist of good event counter while assembling, except for
1694 * spares (which don't need an event count) */
1695 ++ev1;
1696 if (rdev->desc_nr >= 0 &&
1697 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1698 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1699 if (ev1 < mddev->events)
1700 return -EINVAL;
1701 } else if (mddev->bitmap) {
1702 /* If adding to array with a bitmap, then we can accept an
1703 * older device, but not too old.
1704 */
1705 if (ev1 < mddev->bitmap->events_cleared)
1706 return 0;
1707 } else {
1708 if (ev1 < mddev->events)
1709 /* just a hot-add of a new device, leave raid_disk at -1 */
1710 return 0;
1711 }
1712 if (mddev->level != LEVEL_MULTIPATH) {
1713 int role;
1714 if (rdev->desc_nr < 0 ||
1715 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1716 role = 0xffff;
1717 rdev->desc_nr = -1;
1718 } else
1719 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1720 switch(role) {
1721 case 0xffff: /* spare */
1722 break;
1723 case 0xfffe: /* faulty */
1724 set_bit(Faulty, &rdev->flags);
1725 break;
1726 default:
1727 if ((le32_to_cpu(sb->feature_map) &
1728 MD_FEATURE_RECOVERY_OFFSET))
1729 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1730 else
1731 set_bit(In_sync, &rdev->flags);
1732 rdev->raid_disk = role;
1733 break;
1734 }
1735 if (sb->devflags & WriteMostly1)
1736 set_bit(WriteMostly, &rdev->flags);
1737 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1738 set_bit(Replacement, &rdev->flags);
1739 } else /* MULTIPATH are always insync */
1740 set_bit(In_sync, &rdev->flags);
1741
1742 return 0;
1743 }
1744
1745 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1746 {
1747 struct mdp_superblock_1 *sb;
1748 struct md_rdev *rdev2;
1749 int max_dev, i;
1750 /* make rdev->sb match mddev and rdev data. */
1751
1752 sb = page_address(rdev->sb_page);
1753
1754 sb->feature_map = 0;
1755 sb->pad0 = 0;
1756 sb->recovery_offset = cpu_to_le64(0);
1757 memset(sb->pad3, 0, sizeof(sb->pad3));
1758
1759 sb->utime = cpu_to_le64((__u64)mddev->utime);
1760 sb->events = cpu_to_le64(mddev->events);
1761 if (mddev->in_sync)
1762 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1763 else
1764 sb->resync_offset = cpu_to_le64(0);
1765
1766 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1767
1768 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1769 sb->size = cpu_to_le64(mddev->dev_sectors);
1770 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1771 sb->level = cpu_to_le32(mddev->level);
1772 sb->layout = cpu_to_le32(mddev->layout);
1773
1774 if (test_bit(WriteMostly, &rdev->flags))
1775 sb->devflags |= WriteMostly1;
1776 else
1777 sb->devflags &= ~WriteMostly1;
1778 sb->data_offset = cpu_to_le64(rdev->data_offset);
1779 sb->data_size = cpu_to_le64(rdev->sectors);
1780
1781 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1782 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1783 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1784 }
1785
1786 if (rdev->raid_disk >= 0 &&
1787 !test_bit(In_sync, &rdev->flags)) {
1788 sb->feature_map |=
1789 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1790 sb->recovery_offset =
1791 cpu_to_le64(rdev->recovery_offset);
1792 }
1793 if (test_bit(Replacement, &rdev->flags))
1794 sb->feature_map |=
1795 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1796
1797 if (mddev->reshape_position != MaxSector) {
1798 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1799 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1800 sb->new_layout = cpu_to_le32(mddev->new_layout);
1801 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1802 sb->new_level = cpu_to_le32(mddev->new_level);
1803 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1804 if (mddev->delta_disks == 0 &&
1805 mddev->reshape_backwards)
1806 sb->feature_map
1807 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1808 if (rdev->new_data_offset != rdev->data_offset) {
1809 sb->feature_map
1810 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1811 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1812 - rdev->data_offset));
1813 }
1814 }
1815
1816 if (rdev->badblocks.count == 0)
1817 /* Nothing to do for bad blocks*/ ;
1818 else if (sb->bblog_offset == 0)
1819 /* Cannot record bad blocks on this device */
1820 md_error(mddev, rdev);
1821 else {
1822 struct badblocks *bb = &rdev->badblocks;
1823 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1824 u64 *p = bb->page;
1825 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1826 if (bb->changed) {
1827 unsigned seq;
1828
1829 retry:
1830 seq = read_seqbegin(&bb->lock);
1831
1832 memset(bbp, 0xff, PAGE_SIZE);
1833
1834 for (i = 0 ; i < bb->count ; i++) {
1835 u64 internal_bb = *p++;
1836 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1837 | BB_LEN(internal_bb));
1838 *bbp++ = cpu_to_le64(store_bb);
1839 }
1840 bb->changed = 0;
1841 if (read_seqretry(&bb->lock, seq))
1842 goto retry;
1843
1844 bb->sector = (rdev->sb_start +
1845 (int)le32_to_cpu(sb->bblog_offset));
1846 bb->size = le16_to_cpu(sb->bblog_size);
1847 }
1848 }
1849
1850 max_dev = 0;
1851 rdev_for_each(rdev2, mddev)
1852 if (rdev2->desc_nr+1 > max_dev)
1853 max_dev = rdev2->desc_nr+1;
1854
1855 if (max_dev > le32_to_cpu(sb->max_dev)) {
1856 int bmask;
1857 sb->max_dev = cpu_to_le32(max_dev);
1858 rdev->sb_size = max_dev * 2 + 256;
1859 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1860 if (rdev->sb_size & bmask)
1861 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1862 } else
1863 max_dev = le32_to_cpu(sb->max_dev);
1864
1865 for (i=0; i<max_dev;i++)
1866 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1867
1868 rdev_for_each(rdev2, mddev) {
1869 i = rdev2->desc_nr;
1870 if (test_bit(Faulty, &rdev2->flags))
1871 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1872 else if (test_bit(In_sync, &rdev2->flags))
1873 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1874 else if (rdev2->raid_disk >= 0)
1875 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1876 else
1877 sb->dev_roles[i] = cpu_to_le16(0xffff);
1878 }
1879
1880 sb->sb_csum = calc_sb_1_csum(sb);
1881 }
1882
1883 static unsigned long long
1884 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1885 {
1886 struct mdp_superblock_1 *sb;
1887 sector_t max_sectors;
1888 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1889 return 0; /* component must fit device */
1890 if (rdev->data_offset != rdev->new_data_offset)
1891 return 0; /* too confusing */
1892 if (rdev->sb_start < rdev->data_offset) {
1893 /* minor versions 1 and 2; superblock before data */
1894 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1895 max_sectors -= rdev->data_offset;
1896 if (!num_sectors || num_sectors > max_sectors)
1897 num_sectors = max_sectors;
1898 } else if (rdev->mddev->bitmap_info.offset) {
1899 /* minor version 0 with bitmap we can't move */
1900 return 0;
1901 } else {
1902 /* minor version 0; superblock after data */
1903 sector_t sb_start;
1904 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1905 sb_start &= ~(sector_t)(4*2 - 1);
1906 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1907 if (!num_sectors || num_sectors > max_sectors)
1908 num_sectors = max_sectors;
1909 rdev->sb_start = sb_start;
1910 }
1911 sb = page_address(rdev->sb_page);
1912 sb->data_size = cpu_to_le64(num_sectors);
1913 sb->super_offset = rdev->sb_start;
1914 sb->sb_csum = calc_sb_1_csum(sb);
1915 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1916 rdev->sb_page);
1917 md_super_wait(rdev->mddev);
1918 return num_sectors;
1919
1920 }
1921
1922 static int
1923 super_1_allow_new_offset(struct md_rdev *rdev,
1924 unsigned long long new_offset)
1925 {
1926 /* All necessary checks on new >= old have been done */
1927 struct bitmap *bitmap;
1928 if (new_offset >= rdev->data_offset)
1929 return 1;
1930
1931 /* with 1.0 metadata, there is no metadata to tread on
1932 * so we can always move back */
1933 if (rdev->mddev->minor_version == 0)
1934 return 1;
1935
1936 /* otherwise we must be sure not to step on
1937 * any metadata, so stay:
1938 * 36K beyond start of superblock
1939 * beyond end of badblocks
1940 * beyond write-intent bitmap
1941 */
1942 if (rdev->sb_start + (32+4)*2 > new_offset)
1943 return 0;
1944 bitmap = rdev->mddev->bitmap;
1945 if (bitmap && !rdev->mddev->bitmap_info.file &&
1946 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1947 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1948 return 0;
1949 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1950 return 0;
1951
1952 return 1;
1953 }
1954
1955 static struct super_type super_types[] = {
1956 [0] = {
1957 .name = "0.90.0",
1958 .owner = THIS_MODULE,
1959 .load_super = super_90_load,
1960 .validate_super = super_90_validate,
1961 .sync_super = super_90_sync,
1962 .rdev_size_change = super_90_rdev_size_change,
1963 .allow_new_offset = super_90_allow_new_offset,
1964 },
1965 [1] = {
1966 .name = "md-1",
1967 .owner = THIS_MODULE,
1968 .load_super = super_1_load,
1969 .validate_super = super_1_validate,
1970 .sync_super = super_1_sync,
1971 .rdev_size_change = super_1_rdev_size_change,
1972 .allow_new_offset = super_1_allow_new_offset,
1973 },
1974 };
1975
1976 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1977 {
1978 if (mddev->sync_super) {
1979 mddev->sync_super(mddev, rdev);
1980 return;
1981 }
1982
1983 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1984
1985 super_types[mddev->major_version].sync_super(mddev, rdev);
1986 }
1987
1988 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1989 {
1990 struct md_rdev *rdev, *rdev2;
1991
1992 rcu_read_lock();
1993 rdev_for_each_rcu(rdev, mddev1)
1994 rdev_for_each_rcu(rdev2, mddev2)
1995 if (rdev->bdev->bd_contains ==
1996 rdev2->bdev->bd_contains) {
1997 rcu_read_unlock();
1998 return 1;
1999 }
2000 rcu_read_unlock();
2001 return 0;
2002 }
2003
2004 static LIST_HEAD(pending_raid_disks);
2005
2006 /*
2007 * Try to register data integrity profile for an mddev
2008 *
2009 * This is called when an array is started and after a disk has been kicked
2010 * from the array. It only succeeds if all working and active component devices
2011 * are integrity capable with matching profiles.
2012 */
2013 int md_integrity_register(struct mddev *mddev)
2014 {
2015 struct md_rdev *rdev, *reference = NULL;
2016
2017 if (list_empty(&mddev->disks))
2018 return 0; /* nothing to do */
2019 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2020 return 0; /* shouldn't register, or already is */
2021 rdev_for_each(rdev, mddev) {
2022 /* skip spares and non-functional disks */
2023 if (test_bit(Faulty, &rdev->flags))
2024 continue;
2025 if (rdev->raid_disk < 0)
2026 continue;
2027 if (!reference) {
2028 /* Use the first rdev as the reference */
2029 reference = rdev;
2030 continue;
2031 }
2032 /* does this rdev's profile match the reference profile? */
2033 if (blk_integrity_compare(reference->bdev->bd_disk,
2034 rdev->bdev->bd_disk) < 0)
2035 return -EINVAL;
2036 }
2037 if (!reference || !bdev_get_integrity(reference->bdev))
2038 return 0;
2039 /*
2040 * All component devices are integrity capable and have matching
2041 * profiles, register the common profile for the md device.
2042 */
2043 if (blk_integrity_register(mddev->gendisk,
2044 bdev_get_integrity(reference->bdev)) != 0) {
2045 printk(KERN_ERR "md: failed to register integrity for %s\n",
2046 mdname(mddev));
2047 return -EINVAL;
2048 }
2049 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2050 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2051 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2052 mdname(mddev));
2053 return -EINVAL;
2054 }
2055 return 0;
2056 }
2057 EXPORT_SYMBOL(md_integrity_register);
2058
2059 /* Disable data integrity if non-capable/non-matching disk is being added */
2060 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2061 {
2062 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2063 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2064
2065 if (!bi_mddev) /* nothing to do */
2066 return;
2067 if (rdev->raid_disk < 0) /* skip spares */
2068 return;
2069 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2070 rdev->bdev->bd_disk) >= 0)
2071 return;
2072 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2073 blk_integrity_unregister(mddev->gendisk);
2074 }
2075 EXPORT_SYMBOL(md_integrity_add_rdev);
2076
2077 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2078 {
2079 char b[BDEVNAME_SIZE];
2080 struct kobject *ko;
2081 char *s;
2082 int err;
2083
2084 if (rdev->mddev) {
2085 MD_BUG();
2086 return -EINVAL;
2087 }
2088
2089 /* prevent duplicates */
2090 if (find_rdev(mddev, rdev->bdev->bd_dev))
2091 return -EEXIST;
2092
2093 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2094 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2095 rdev->sectors < mddev->dev_sectors)) {
2096 if (mddev->pers) {
2097 /* Cannot change size, so fail
2098 * If mddev->level <= 0, then we don't care
2099 * about aligning sizes (e.g. linear)
2100 */
2101 if (mddev->level > 0)
2102 return -ENOSPC;
2103 } else
2104 mddev->dev_sectors = rdev->sectors;
2105 }
2106
2107 /* Verify rdev->desc_nr is unique.
2108 * If it is -1, assign a free number, else
2109 * check number is not in use
2110 */
2111 if (rdev->desc_nr < 0) {
2112 int choice = 0;
2113 if (mddev->pers) choice = mddev->raid_disks;
2114 while (find_rdev_nr(mddev, choice))
2115 choice++;
2116 rdev->desc_nr = choice;
2117 } else {
2118 if (find_rdev_nr(mddev, rdev->desc_nr))
2119 return -EBUSY;
2120 }
2121 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2122 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2123 mdname(mddev), mddev->max_disks);
2124 return -EBUSY;
2125 }
2126 bdevname(rdev->bdev,b);
2127 while ( (s=strchr(b, '/')) != NULL)
2128 *s = '!';
2129
2130 rdev->mddev = mddev;
2131 printk(KERN_INFO "md: bind<%s>\n", b);
2132
2133 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2134 goto fail;
2135
2136 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2137 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2138 /* failure here is OK */;
2139 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2140
2141 list_add_rcu(&rdev->same_set, &mddev->disks);
2142 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2143
2144 /* May as well allow recovery to be retried once */
2145 mddev->recovery_disabled++;
2146
2147 return 0;
2148
2149 fail:
2150 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2151 b, mdname(mddev));
2152 return err;
2153 }
2154
2155 static void md_delayed_delete(struct work_struct *ws)
2156 {
2157 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2158 kobject_del(&rdev->kobj);
2159 kobject_put(&rdev->kobj);
2160 }
2161
2162 static void unbind_rdev_from_array(struct md_rdev * rdev)
2163 {
2164 char b[BDEVNAME_SIZE];
2165 if (!rdev->mddev) {
2166 MD_BUG();
2167 return;
2168 }
2169 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2170 list_del_rcu(&rdev->same_set);
2171 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2172 rdev->mddev = NULL;
2173 sysfs_remove_link(&rdev->kobj, "block");
2174 sysfs_put(rdev->sysfs_state);
2175 rdev->sysfs_state = NULL;
2176 rdev->badblocks.count = 0;
2177 /* We need to delay this, otherwise we can deadlock when
2178 * writing to 'remove' to "dev/state". We also need
2179 * to delay it due to rcu usage.
2180 */
2181 synchronize_rcu();
2182 INIT_WORK(&rdev->del_work, md_delayed_delete);
2183 kobject_get(&rdev->kobj);
2184 queue_work(md_misc_wq, &rdev->del_work);
2185 }
2186
2187 /*
2188 * prevent the device from being mounted, repartitioned or
2189 * otherwise reused by a RAID array (or any other kernel
2190 * subsystem), by bd_claiming the device.
2191 */
2192 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2193 {
2194 int err = 0;
2195 struct block_device *bdev;
2196 char b[BDEVNAME_SIZE];
2197
2198 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2199 shared ? (struct md_rdev *)lock_rdev : rdev);
2200 if (IS_ERR(bdev)) {
2201 printk(KERN_ERR "md: could not open %s.\n",
2202 __bdevname(dev, b));
2203 return PTR_ERR(bdev);
2204 }
2205 rdev->bdev = bdev;
2206 return err;
2207 }
2208
2209 static void unlock_rdev(struct md_rdev *rdev)
2210 {
2211 struct block_device *bdev = rdev->bdev;
2212 rdev->bdev = NULL;
2213 if (!bdev)
2214 MD_BUG();
2215 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2216 }
2217
2218 void md_autodetect_dev(dev_t dev);
2219
2220 static void export_rdev(struct md_rdev * rdev)
2221 {
2222 char b[BDEVNAME_SIZE];
2223 printk(KERN_INFO "md: export_rdev(%s)\n",
2224 bdevname(rdev->bdev,b));
2225 if (rdev->mddev)
2226 MD_BUG();
2227 md_rdev_clear(rdev);
2228 #ifndef MODULE
2229 if (test_bit(AutoDetected, &rdev->flags))
2230 md_autodetect_dev(rdev->bdev->bd_dev);
2231 #endif
2232 unlock_rdev(rdev);
2233 kobject_put(&rdev->kobj);
2234 }
2235
2236 static void kick_rdev_from_array(struct md_rdev * rdev)
2237 {
2238 unbind_rdev_from_array(rdev);
2239 export_rdev(rdev);
2240 }
2241
2242 static void export_array(struct mddev *mddev)
2243 {
2244 struct md_rdev *rdev, *tmp;
2245
2246 rdev_for_each_safe(rdev, tmp, mddev) {
2247 if (!rdev->mddev) {
2248 MD_BUG();
2249 continue;
2250 }
2251 kick_rdev_from_array(rdev);
2252 }
2253 if (!list_empty(&mddev->disks))
2254 MD_BUG();
2255 mddev->raid_disks = 0;
2256 mddev->major_version = 0;
2257 }
2258
2259 static void print_desc(mdp_disk_t *desc)
2260 {
2261 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2262 desc->major,desc->minor,desc->raid_disk,desc->state);
2263 }
2264
2265 static void print_sb_90(mdp_super_t *sb)
2266 {
2267 int i;
2268
2269 printk(KERN_INFO
2270 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2271 sb->major_version, sb->minor_version, sb->patch_version,
2272 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2273 sb->ctime);
2274 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2275 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2276 sb->md_minor, sb->layout, sb->chunk_size);
2277 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2278 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2279 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2280 sb->failed_disks, sb->spare_disks,
2281 sb->sb_csum, (unsigned long)sb->events_lo);
2282
2283 printk(KERN_INFO);
2284 for (i = 0; i < MD_SB_DISKS; i++) {
2285 mdp_disk_t *desc;
2286
2287 desc = sb->disks + i;
2288 if (desc->number || desc->major || desc->minor ||
2289 desc->raid_disk || (desc->state && (desc->state != 4))) {
2290 printk(" D %2d: ", i);
2291 print_desc(desc);
2292 }
2293 }
2294 printk(KERN_INFO "md: THIS: ");
2295 print_desc(&sb->this_disk);
2296 }
2297
2298 static void print_sb_1(struct mdp_superblock_1 *sb)
2299 {
2300 __u8 *uuid;
2301
2302 uuid = sb->set_uuid;
2303 printk(KERN_INFO
2304 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2305 "md: Name: \"%s\" CT:%llu\n",
2306 le32_to_cpu(sb->major_version),
2307 le32_to_cpu(sb->feature_map),
2308 uuid,
2309 sb->set_name,
2310 (unsigned long long)le64_to_cpu(sb->ctime)
2311 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2312
2313 uuid = sb->device_uuid;
2314 printk(KERN_INFO
2315 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2316 " RO:%llu\n"
2317 "md: Dev:%08x UUID: %pU\n"
2318 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2319 "md: (MaxDev:%u) \n",
2320 le32_to_cpu(sb->level),
2321 (unsigned long long)le64_to_cpu(sb->size),
2322 le32_to_cpu(sb->raid_disks),
2323 le32_to_cpu(sb->layout),
2324 le32_to_cpu(sb->chunksize),
2325 (unsigned long long)le64_to_cpu(sb->data_offset),
2326 (unsigned long long)le64_to_cpu(sb->data_size),
2327 (unsigned long long)le64_to_cpu(sb->super_offset),
2328 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2329 le32_to_cpu(sb->dev_number),
2330 uuid,
2331 sb->devflags,
2332 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2333 (unsigned long long)le64_to_cpu(sb->events),
2334 (unsigned long long)le64_to_cpu(sb->resync_offset),
2335 le32_to_cpu(sb->sb_csum),
2336 le32_to_cpu(sb->max_dev)
2337 );
2338 }
2339
2340 static void print_rdev(struct md_rdev *rdev, int major_version)
2341 {
2342 char b[BDEVNAME_SIZE];
2343 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2344 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2345 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2346 rdev->desc_nr);
2347 if (rdev->sb_loaded) {
2348 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2349 switch (major_version) {
2350 case 0:
2351 print_sb_90(page_address(rdev->sb_page));
2352 break;
2353 case 1:
2354 print_sb_1(page_address(rdev->sb_page));
2355 break;
2356 }
2357 } else
2358 printk(KERN_INFO "md: no rdev superblock!\n");
2359 }
2360
2361 static void md_print_devices(void)
2362 {
2363 struct list_head *tmp;
2364 struct md_rdev *rdev;
2365 struct mddev *mddev;
2366 char b[BDEVNAME_SIZE];
2367
2368 printk("\n");
2369 printk("md: **********************************\n");
2370 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2371 printk("md: **********************************\n");
2372 for_each_mddev(mddev, tmp) {
2373
2374 if (mddev->bitmap)
2375 bitmap_print_sb(mddev->bitmap);
2376 else
2377 printk("%s: ", mdname(mddev));
2378 rdev_for_each(rdev, mddev)
2379 printk("<%s>", bdevname(rdev->bdev,b));
2380 printk("\n");
2381
2382 rdev_for_each(rdev, mddev)
2383 print_rdev(rdev, mddev->major_version);
2384 }
2385 printk("md: **********************************\n");
2386 printk("\n");
2387 }
2388
2389
2390 static void sync_sbs(struct mddev * mddev, int nospares)
2391 {
2392 /* Update each superblock (in-memory image), but
2393 * if we are allowed to, skip spares which already
2394 * have the right event counter, or have one earlier
2395 * (which would mean they aren't being marked as dirty
2396 * with the rest of the array)
2397 */
2398 struct md_rdev *rdev;
2399 rdev_for_each(rdev, mddev) {
2400 if (rdev->sb_events == mddev->events ||
2401 (nospares &&
2402 rdev->raid_disk < 0 &&
2403 rdev->sb_events+1 == mddev->events)) {
2404 /* Don't update this superblock */
2405 rdev->sb_loaded = 2;
2406 } else {
2407 sync_super(mddev, rdev);
2408 rdev->sb_loaded = 1;
2409 }
2410 }
2411 }
2412
2413 static void md_update_sb(struct mddev * mddev, int force_change)
2414 {
2415 struct md_rdev *rdev;
2416 int sync_req;
2417 int nospares = 0;
2418 int any_badblocks_changed = 0;
2419
2420 repeat:
2421 /* First make sure individual recovery_offsets are correct */
2422 rdev_for_each(rdev, mddev) {
2423 if (rdev->raid_disk >= 0 &&
2424 mddev->delta_disks >= 0 &&
2425 !test_bit(In_sync, &rdev->flags) &&
2426 mddev->curr_resync_completed > rdev->recovery_offset)
2427 rdev->recovery_offset = mddev->curr_resync_completed;
2428
2429 }
2430 if (!mddev->persistent) {
2431 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2432 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2433 if (!mddev->external) {
2434 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2435 rdev_for_each(rdev, mddev) {
2436 if (rdev->badblocks.changed) {
2437 rdev->badblocks.changed = 0;
2438 md_ack_all_badblocks(&rdev->badblocks);
2439 md_error(mddev, rdev);
2440 }
2441 clear_bit(Blocked, &rdev->flags);
2442 clear_bit(BlockedBadBlocks, &rdev->flags);
2443 wake_up(&rdev->blocked_wait);
2444 }
2445 }
2446 wake_up(&mddev->sb_wait);
2447 return;
2448 }
2449
2450 spin_lock_irq(&mddev->write_lock);
2451
2452 mddev->utime = get_seconds();
2453
2454 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2455 force_change = 1;
2456 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2457 /* just a clean<-> dirty transition, possibly leave spares alone,
2458 * though if events isn't the right even/odd, we will have to do
2459 * spares after all
2460 */
2461 nospares = 1;
2462 if (force_change)
2463 nospares = 0;
2464 if (mddev->degraded)
2465 /* If the array is degraded, then skipping spares is both
2466 * dangerous and fairly pointless.
2467 * Dangerous because a device that was removed from the array
2468 * might have a event_count that still looks up-to-date,
2469 * so it can be re-added without a resync.
2470 * Pointless because if there are any spares to skip,
2471 * then a recovery will happen and soon that array won't
2472 * be degraded any more and the spare can go back to sleep then.
2473 */
2474 nospares = 0;
2475
2476 sync_req = mddev->in_sync;
2477
2478 /* If this is just a dirty<->clean transition, and the array is clean
2479 * and 'events' is odd, we can roll back to the previous clean state */
2480 if (nospares
2481 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2482 && mddev->can_decrease_events
2483 && mddev->events != 1) {
2484 mddev->events--;
2485 mddev->can_decrease_events = 0;
2486 } else {
2487 /* otherwise we have to go forward and ... */
2488 mddev->events ++;
2489 mddev->can_decrease_events = nospares;
2490 }
2491
2492 if (!mddev->events) {
2493 /*
2494 * oops, this 64-bit counter should never wrap.
2495 * Either we are in around ~1 trillion A.C., assuming
2496 * 1 reboot per second, or we have a bug:
2497 */
2498 MD_BUG();
2499 mddev->events --;
2500 }
2501
2502 rdev_for_each(rdev, mddev) {
2503 if (rdev->badblocks.changed)
2504 any_badblocks_changed++;
2505 if (test_bit(Faulty, &rdev->flags))
2506 set_bit(FaultRecorded, &rdev->flags);
2507 }
2508
2509 sync_sbs(mddev, nospares);
2510 spin_unlock_irq(&mddev->write_lock);
2511
2512 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2513 mdname(mddev), mddev->in_sync);
2514
2515 bitmap_update_sb(mddev->bitmap);
2516 rdev_for_each(rdev, mddev) {
2517 char b[BDEVNAME_SIZE];
2518
2519 if (rdev->sb_loaded != 1)
2520 continue; /* no noise on spare devices */
2521
2522 if (!test_bit(Faulty, &rdev->flags) &&
2523 rdev->saved_raid_disk == -1) {
2524 md_super_write(mddev,rdev,
2525 rdev->sb_start, rdev->sb_size,
2526 rdev->sb_page);
2527 pr_debug("md: (write) %s's sb offset: %llu\n",
2528 bdevname(rdev->bdev, b),
2529 (unsigned long long)rdev->sb_start);
2530 rdev->sb_events = mddev->events;
2531 if (rdev->badblocks.size) {
2532 md_super_write(mddev, rdev,
2533 rdev->badblocks.sector,
2534 rdev->badblocks.size << 9,
2535 rdev->bb_page);
2536 rdev->badblocks.size = 0;
2537 }
2538
2539 } else if (test_bit(Faulty, &rdev->flags))
2540 pr_debug("md: %s (skipping faulty)\n",
2541 bdevname(rdev->bdev, b));
2542 else
2543 pr_debug("(skipping incremental s/r ");
2544
2545 if (mddev->level == LEVEL_MULTIPATH)
2546 /* only need to write one superblock... */
2547 break;
2548 }
2549 md_super_wait(mddev);
2550 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2551
2552 spin_lock_irq(&mddev->write_lock);
2553 if (mddev->in_sync != sync_req ||
2554 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2555 /* have to write it out again */
2556 spin_unlock_irq(&mddev->write_lock);
2557 goto repeat;
2558 }
2559 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2560 spin_unlock_irq(&mddev->write_lock);
2561 wake_up(&mddev->sb_wait);
2562 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2563 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2564
2565 rdev_for_each(rdev, mddev) {
2566 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2567 clear_bit(Blocked, &rdev->flags);
2568
2569 if (any_badblocks_changed)
2570 md_ack_all_badblocks(&rdev->badblocks);
2571 clear_bit(BlockedBadBlocks, &rdev->flags);
2572 wake_up(&rdev->blocked_wait);
2573 }
2574 }
2575
2576 /* words written to sysfs files may, or may not, be \n terminated.
2577 * We want to accept with case. For this we use cmd_match.
2578 */
2579 static int cmd_match(const char *cmd, const char *str)
2580 {
2581 /* See if cmd, written into a sysfs file, matches
2582 * str. They must either be the same, or cmd can
2583 * have a trailing newline
2584 */
2585 while (*cmd && *str && *cmd == *str) {
2586 cmd++;
2587 str++;
2588 }
2589 if (*cmd == '\n')
2590 cmd++;
2591 if (*str || *cmd)
2592 return 0;
2593 return 1;
2594 }
2595
2596 struct rdev_sysfs_entry {
2597 struct attribute attr;
2598 ssize_t (*show)(struct md_rdev *, char *);
2599 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2600 };
2601
2602 static ssize_t
2603 state_show(struct md_rdev *rdev, char *page)
2604 {
2605 char *sep = "";
2606 size_t len = 0;
2607
2608 if (test_bit(Faulty, &rdev->flags) ||
2609 rdev->badblocks.unacked_exist) {
2610 len+= sprintf(page+len, "%sfaulty",sep);
2611 sep = ",";
2612 }
2613 if (test_bit(In_sync, &rdev->flags)) {
2614 len += sprintf(page+len, "%sin_sync",sep);
2615 sep = ",";
2616 }
2617 if (test_bit(WriteMostly, &rdev->flags)) {
2618 len += sprintf(page+len, "%swrite_mostly",sep);
2619 sep = ",";
2620 }
2621 if (test_bit(Blocked, &rdev->flags) ||
2622 (rdev->badblocks.unacked_exist
2623 && !test_bit(Faulty, &rdev->flags))) {
2624 len += sprintf(page+len, "%sblocked", sep);
2625 sep = ",";
2626 }
2627 if (!test_bit(Faulty, &rdev->flags) &&
2628 !test_bit(In_sync, &rdev->flags)) {
2629 len += sprintf(page+len, "%sspare", sep);
2630 sep = ",";
2631 }
2632 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2633 len += sprintf(page+len, "%swrite_error", sep);
2634 sep = ",";
2635 }
2636 if (test_bit(WantReplacement, &rdev->flags)) {
2637 len += sprintf(page+len, "%swant_replacement", sep);
2638 sep = ",";
2639 }
2640 if (test_bit(Replacement, &rdev->flags)) {
2641 len += sprintf(page+len, "%sreplacement", sep);
2642 sep = ",";
2643 }
2644
2645 return len+sprintf(page+len, "\n");
2646 }
2647
2648 static ssize_t
2649 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2650 {
2651 /* can write
2652 * faulty - simulates an error
2653 * remove - disconnects the device
2654 * writemostly - sets write_mostly
2655 * -writemostly - clears write_mostly
2656 * blocked - sets the Blocked flags
2657 * -blocked - clears the Blocked and possibly simulates an error
2658 * insync - sets Insync providing device isn't active
2659 * write_error - sets WriteErrorSeen
2660 * -write_error - clears WriteErrorSeen
2661 */
2662 int err = -EINVAL;
2663 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2664 md_error(rdev->mddev, rdev);
2665 if (test_bit(Faulty, &rdev->flags))
2666 err = 0;
2667 else
2668 err = -EBUSY;
2669 } else if (cmd_match(buf, "remove")) {
2670 if (rdev->raid_disk >= 0)
2671 err = -EBUSY;
2672 else {
2673 struct mddev *mddev = rdev->mddev;
2674 kick_rdev_from_array(rdev);
2675 if (mddev->pers)
2676 md_update_sb(mddev, 1);
2677 md_new_event(mddev);
2678 err = 0;
2679 }
2680 } else if (cmd_match(buf, "writemostly")) {
2681 set_bit(WriteMostly, &rdev->flags);
2682 err = 0;
2683 } else if (cmd_match(buf, "-writemostly")) {
2684 clear_bit(WriteMostly, &rdev->flags);
2685 err = 0;
2686 } else if (cmd_match(buf, "blocked")) {
2687 set_bit(Blocked, &rdev->flags);
2688 err = 0;
2689 } else if (cmd_match(buf, "-blocked")) {
2690 if (!test_bit(Faulty, &rdev->flags) &&
2691 rdev->badblocks.unacked_exist) {
2692 /* metadata handler doesn't understand badblocks,
2693 * so we need to fail the device
2694 */
2695 md_error(rdev->mddev, rdev);
2696 }
2697 clear_bit(Blocked, &rdev->flags);
2698 clear_bit(BlockedBadBlocks, &rdev->flags);
2699 wake_up(&rdev->blocked_wait);
2700 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2701 md_wakeup_thread(rdev->mddev->thread);
2702
2703 err = 0;
2704 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2705 set_bit(In_sync, &rdev->flags);
2706 err = 0;
2707 } else if (cmd_match(buf, "write_error")) {
2708 set_bit(WriteErrorSeen, &rdev->flags);
2709 err = 0;
2710 } else if (cmd_match(buf, "-write_error")) {
2711 clear_bit(WriteErrorSeen, &rdev->flags);
2712 err = 0;
2713 } else if (cmd_match(buf, "want_replacement")) {
2714 /* Any non-spare device that is not a replacement can
2715 * become want_replacement at any time, but we then need to
2716 * check if recovery is needed.
2717 */
2718 if (rdev->raid_disk >= 0 &&
2719 !test_bit(Replacement, &rdev->flags))
2720 set_bit(WantReplacement, &rdev->flags);
2721 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2722 md_wakeup_thread(rdev->mddev->thread);
2723 err = 0;
2724 } else if (cmd_match(buf, "-want_replacement")) {
2725 /* Clearing 'want_replacement' is always allowed.
2726 * Once replacements starts it is too late though.
2727 */
2728 err = 0;
2729 clear_bit(WantReplacement, &rdev->flags);
2730 } else if (cmd_match(buf, "replacement")) {
2731 /* Can only set a device as a replacement when array has not
2732 * yet been started. Once running, replacement is automatic
2733 * from spares, or by assigning 'slot'.
2734 */
2735 if (rdev->mddev->pers)
2736 err = -EBUSY;
2737 else {
2738 set_bit(Replacement, &rdev->flags);
2739 err = 0;
2740 }
2741 } else if (cmd_match(buf, "-replacement")) {
2742 /* Similarly, can only clear Replacement before start */
2743 if (rdev->mddev->pers)
2744 err = -EBUSY;
2745 else {
2746 clear_bit(Replacement, &rdev->flags);
2747 err = 0;
2748 }
2749 }
2750 if (!err)
2751 sysfs_notify_dirent_safe(rdev->sysfs_state);
2752 return err ? err : len;
2753 }
2754 static struct rdev_sysfs_entry rdev_state =
2755 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2756
2757 static ssize_t
2758 errors_show(struct md_rdev *rdev, char *page)
2759 {
2760 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2761 }
2762
2763 static ssize_t
2764 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2765 {
2766 char *e;
2767 unsigned long n = simple_strtoul(buf, &e, 10);
2768 if (*buf && (*e == 0 || *e == '\n')) {
2769 atomic_set(&rdev->corrected_errors, n);
2770 return len;
2771 }
2772 return -EINVAL;
2773 }
2774 static struct rdev_sysfs_entry rdev_errors =
2775 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2776
2777 static ssize_t
2778 slot_show(struct md_rdev *rdev, char *page)
2779 {
2780 if (rdev->raid_disk < 0)
2781 return sprintf(page, "none\n");
2782 else
2783 return sprintf(page, "%d\n", rdev->raid_disk);
2784 }
2785
2786 static ssize_t
2787 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2788 {
2789 char *e;
2790 int err;
2791 int slot = simple_strtoul(buf, &e, 10);
2792 if (strncmp(buf, "none", 4)==0)
2793 slot = -1;
2794 else if (e==buf || (*e && *e!= '\n'))
2795 return -EINVAL;
2796 if (rdev->mddev->pers && slot == -1) {
2797 /* Setting 'slot' on an active array requires also
2798 * updating the 'rd%d' link, and communicating
2799 * with the personality with ->hot_*_disk.
2800 * For now we only support removing
2801 * failed/spare devices. This normally happens automatically,
2802 * but not when the metadata is externally managed.
2803 */
2804 if (rdev->raid_disk == -1)
2805 return -EEXIST;
2806 /* personality does all needed checks */
2807 if (rdev->mddev->pers->hot_remove_disk == NULL)
2808 return -EINVAL;
2809 err = rdev->mddev->pers->
2810 hot_remove_disk(rdev->mddev, rdev);
2811 if (err)
2812 return err;
2813 sysfs_unlink_rdev(rdev->mddev, rdev);
2814 rdev->raid_disk = -1;
2815 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2816 md_wakeup_thread(rdev->mddev->thread);
2817 } else if (rdev->mddev->pers) {
2818 /* Activating a spare .. or possibly reactivating
2819 * if we ever get bitmaps working here.
2820 */
2821
2822 if (rdev->raid_disk != -1)
2823 return -EBUSY;
2824
2825 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2826 return -EBUSY;
2827
2828 if (rdev->mddev->pers->hot_add_disk == NULL)
2829 return -EINVAL;
2830
2831 if (slot >= rdev->mddev->raid_disks &&
2832 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2833 return -ENOSPC;
2834
2835 rdev->raid_disk = slot;
2836 if (test_bit(In_sync, &rdev->flags))
2837 rdev->saved_raid_disk = slot;
2838 else
2839 rdev->saved_raid_disk = -1;
2840 clear_bit(In_sync, &rdev->flags);
2841 err = rdev->mddev->pers->
2842 hot_add_disk(rdev->mddev, rdev);
2843 if (err) {
2844 rdev->raid_disk = -1;
2845 return err;
2846 } else
2847 sysfs_notify_dirent_safe(rdev->sysfs_state);
2848 if (sysfs_link_rdev(rdev->mddev, rdev))
2849 /* failure here is OK */;
2850 /* don't wakeup anyone, leave that to userspace. */
2851 } else {
2852 if (slot >= rdev->mddev->raid_disks &&
2853 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2854 return -ENOSPC;
2855 rdev->raid_disk = slot;
2856 /* assume it is working */
2857 clear_bit(Faulty, &rdev->flags);
2858 clear_bit(WriteMostly, &rdev->flags);
2859 set_bit(In_sync, &rdev->flags);
2860 sysfs_notify_dirent_safe(rdev->sysfs_state);
2861 }
2862 return len;
2863 }
2864
2865
2866 static struct rdev_sysfs_entry rdev_slot =
2867 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2868
2869 static ssize_t
2870 offset_show(struct md_rdev *rdev, char *page)
2871 {
2872 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2873 }
2874
2875 static ssize_t
2876 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2877 {
2878 unsigned long long offset;
2879 if (strict_strtoull(buf, 10, &offset) < 0)
2880 return -EINVAL;
2881 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2882 return -EBUSY;
2883 if (rdev->sectors && rdev->mddev->external)
2884 /* Must set offset before size, so overlap checks
2885 * can be sane */
2886 return -EBUSY;
2887 rdev->data_offset = offset;
2888 rdev->new_data_offset = offset;
2889 return len;
2890 }
2891
2892 static struct rdev_sysfs_entry rdev_offset =
2893 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2894
2895 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2896 {
2897 return sprintf(page, "%llu\n",
2898 (unsigned long long)rdev->new_data_offset);
2899 }
2900
2901 static ssize_t new_offset_store(struct md_rdev *rdev,
2902 const char *buf, size_t len)
2903 {
2904 unsigned long long new_offset;
2905 struct mddev *mddev = rdev->mddev;
2906
2907 if (strict_strtoull(buf, 10, &new_offset) < 0)
2908 return -EINVAL;
2909
2910 if (mddev->sync_thread)
2911 return -EBUSY;
2912 if (new_offset == rdev->data_offset)
2913 /* reset is always permitted */
2914 ;
2915 else if (new_offset > rdev->data_offset) {
2916 /* must not push array size beyond rdev_sectors */
2917 if (new_offset - rdev->data_offset
2918 + mddev->dev_sectors > rdev->sectors)
2919 return -E2BIG;
2920 }
2921 /* Metadata worries about other space details. */
2922
2923 /* decreasing the offset is inconsistent with a backwards
2924 * reshape.
2925 */
2926 if (new_offset < rdev->data_offset &&
2927 mddev->reshape_backwards)
2928 return -EINVAL;
2929 /* Increasing offset is inconsistent with forwards
2930 * reshape. reshape_direction should be set to
2931 * 'backwards' first.
2932 */
2933 if (new_offset > rdev->data_offset &&
2934 !mddev->reshape_backwards)
2935 return -EINVAL;
2936
2937 if (mddev->pers && mddev->persistent &&
2938 !super_types[mddev->major_version]
2939 .allow_new_offset(rdev, new_offset))
2940 return -E2BIG;
2941 rdev->new_data_offset = new_offset;
2942 if (new_offset > rdev->data_offset)
2943 mddev->reshape_backwards = 1;
2944 else if (new_offset < rdev->data_offset)
2945 mddev->reshape_backwards = 0;
2946
2947 return len;
2948 }
2949 static struct rdev_sysfs_entry rdev_new_offset =
2950 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2951
2952 static ssize_t
2953 rdev_size_show(struct md_rdev *rdev, char *page)
2954 {
2955 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2956 }
2957
2958 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2959 {
2960 /* check if two start/length pairs overlap */
2961 if (s1+l1 <= s2)
2962 return 0;
2963 if (s2+l2 <= s1)
2964 return 0;
2965 return 1;
2966 }
2967
2968 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2969 {
2970 unsigned long long blocks;
2971 sector_t new;
2972
2973 if (strict_strtoull(buf, 10, &blocks) < 0)
2974 return -EINVAL;
2975
2976 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2977 return -EINVAL; /* sector conversion overflow */
2978
2979 new = blocks * 2;
2980 if (new != blocks * 2)
2981 return -EINVAL; /* unsigned long long to sector_t overflow */
2982
2983 *sectors = new;
2984 return 0;
2985 }
2986
2987 static ssize_t
2988 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2989 {
2990 struct mddev *my_mddev = rdev->mddev;
2991 sector_t oldsectors = rdev->sectors;
2992 sector_t sectors;
2993
2994 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2995 return -EINVAL;
2996 if (rdev->data_offset != rdev->new_data_offset)
2997 return -EINVAL; /* too confusing */
2998 if (my_mddev->pers && rdev->raid_disk >= 0) {
2999 if (my_mddev->persistent) {
3000 sectors = super_types[my_mddev->major_version].
3001 rdev_size_change(rdev, sectors);
3002 if (!sectors)
3003 return -EBUSY;
3004 } else if (!sectors)
3005 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3006 rdev->data_offset;
3007 }
3008 if (sectors < my_mddev->dev_sectors)
3009 return -EINVAL; /* component must fit device */
3010
3011 rdev->sectors = sectors;
3012 if (sectors > oldsectors && my_mddev->external) {
3013 /* need to check that all other rdevs with the same ->bdev
3014 * do not overlap. We need to unlock the mddev to avoid
3015 * a deadlock. We have already changed rdev->sectors, and if
3016 * we have to change it back, we will have the lock again.
3017 */
3018 struct mddev *mddev;
3019 int overlap = 0;
3020 struct list_head *tmp;
3021
3022 mddev_unlock(my_mddev);
3023 for_each_mddev(mddev, tmp) {
3024 struct md_rdev *rdev2;
3025
3026 mddev_lock(mddev);
3027 rdev_for_each(rdev2, mddev)
3028 if (rdev->bdev == rdev2->bdev &&
3029 rdev != rdev2 &&
3030 overlaps(rdev->data_offset, rdev->sectors,
3031 rdev2->data_offset,
3032 rdev2->sectors)) {
3033 overlap = 1;
3034 break;
3035 }
3036 mddev_unlock(mddev);
3037 if (overlap) {
3038 mddev_put(mddev);
3039 break;
3040 }
3041 }
3042 mddev_lock(my_mddev);
3043 if (overlap) {
3044 /* Someone else could have slipped in a size
3045 * change here, but doing so is just silly.
3046 * We put oldsectors back because we *know* it is
3047 * safe, and trust userspace not to race with
3048 * itself
3049 */
3050 rdev->sectors = oldsectors;
3051 return -EBUSY;
3052 }
3053 }
3054 return len;
3055 }
3056
3057 static struct rdev_sysfs_entry rdev_size =
3058 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3059
3060
3061 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3062 {
3063 unsigned long long recovery_start = rdev->recovery_offset;
3064
3065 if (test_bit(In_sync, &rdev->flags) ||
3066 recovery_start == MaxSector)
3067 return sprintf(page, "none\n");
3068
3069 return sprintf(page, "%llu\n", recovery_start);
3070 }
3071
3072 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3073 {
3074 unsigned long long recovery_start;
3075
3076 if (cmd_match(buf, "none"))
3077 recovery_start = MaxSector;
3078 else if (strict_strtoull(buf, 10, &recovery_start))
3079 return -EINVAL;
3080
3081 if (rdev->mddev->pers &&
3082 rdev->raid_disk >= 0)
3083 return -EBUSY;
3084
3085 rdev->recovery_offset = recovery_start;
3086 if (recovery_start == MaxSector)
3087 set_bit(In_sync, &rdev->flags);
3088 else
3089 clear_bit(In_sync, &rdev->flags);
3090 return len;
3091 }
3092
3093 static struct rdev_sysfs_entry rdev_recovery_start =
3094 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3095
3096
3097 static ssize_t
3098 badblocks_show(struct badblocks *bb, char *page, int unack);
3099 static ssize_t
3100 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3101
3102 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3103 {
3104 return badblocks_show(&rdev->badblocks, page, 0);
3105 }
3106 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3107 {
3108 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3109 /* Maybe that ack was all we needed */
3110 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3111 wake_up(&rdev->blocked_wait);
3112 return rv;
3113 }
3114 static struct rdev_sysfs_entry rdev_bad_blocks =
3115 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3116
3117
3118 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3119 {
3120 return badblocks_show(&rdev->badblocks, page, 1);
3121 }
3122 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3123 {
3124 return badblocks_store(&rdev->badblocks, page, len, 1);
3125 }
3126 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3127 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3128
3129 static struct attribute *rdev_default_attrs[] = {
3130 &rdev_state.attr,
3131 &rdev_errors.attr,
3132 &rdev_slot.attr,
3133 &rdev_offset.attr,
3134 &rdev_new_offset.attr,
3135 &rdev_size.attr,
3136 &rdev_recovery_start.attr,
3137 &rdev_bad_blocks.attr,
3138 &rdev_unack_bad_blocks.attr,
3139 NULL,
3140 };
3141 static ssize_t
3142 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3143 {
3144 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3145 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3146 struct mddev *mddev = rdev->mddev;
3147 ssize_t rv;
3148
3149 if (!entry->show)
3150 return -EIO;
3151
3152 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3153 if (!rv) {
3154 if (rdev->mddev == NULL)
3155 rv = -EBUSY;
3156 else
3157 rv = entry->show(rdev, page);
3158 mddev_unlock(mddev);
3159 }
3160 return rv;
3161 }
3162
3163 static ssize_t
3164 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3165 const char *page, size_t length)
3166 {
3167 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3168 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3169 ssize_t rv;
3170 struct mddev *mddev = rdev->mddev;
3171
3172 if (!entry->store)
3173 return -EIO;
3174 if (!capable(CAP_SYS_ADMIN))
3175 return -EACCES;
3176 rv = mddev ? mddev_lock(mddev): -EBUSY;
3177 if (!rv) {
3178 if (rdev->mddev == NULL)
3179 rv = -EBUSY;
3180 else
3181 rv = entry->store(rdev, page, length);
3182 mddev_unlock(mddev);
3183 }
3184 return rv;
3185 }
3186
3187 static void rdev_free(struct kobject *ko)
3188 {
3189 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3190 kfree(rdev);
3191 }
3192 static const struct sysfs_ops rdev_sysfs_ops = {
3193 .show = rdev_attr_show,
3194 .store = rdev_attr_store,
3195 };
3196 static struct kobj_type rdev_ktype = {
3197 .release = rdev_free,
3198 .sysfs_ops = &rdev_sysfs_ops,
3199 .default_attrs = rdev_default_attrs,
3200 };
3201
3202 int md_rdev_init(struct md_rdev *rdev)
3203 {
3204 rdev->desc_nr = -1;
3205 rdev->saved_raid_disk = -1;
3206 rdev->raid_disk = -1;
3207 rdev->flags = 0;
3208 rdev->data_offset = 0;
3209 rdev->new_data_offset = 0;
3210 rdev->sb_events = 0;
3211 rdev->last_read_error.tv_sec = 0;
3212 rdev->last_read_error.tv_nsec = 0;
3213 rdev->sb_loaded = 0;
3214 rdev->bb_page = NULL;
3215 atomic_set(&rdev->nr_pending, 0);
3216 atomic_set(&rdev->read_errors, 0);
3217 atomic_set(&rdev->corrected_errors, 0);
3218
3219 INIT_LIST_HEAD(&rdev->same_set);
3220 init_waitqueue_head(&rdev->blocked_wait);
3221
3222 /* Add space to store bad block list.
3223 * This reserves the space even on arrays where it cannot
3224 * be used - I wonder if that matters
3225 */
3226 rdev->badblocks.count = 0;
3227 rdev->badblocks.shift = 0;
3228 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3229 seqlock_init(&rdev->badblocks.lock);
3230 if (rdev->badblocks.page == NULL)
3231 return -ENOMEM;
3232
3233 return 0;
3234 }
3235 EXPORT_SYMBOL_GPL(md_rdev_init);
3236 /*
3237 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3238 *
3239 * mark the device faulty if:
3240 *
3241 * - the device is nonexistent (zero size)
3242 * - the device has no valid superblock
3243 *
3244 * a faulty rdev _never_ has rdev->sb set.
3245 */
3246 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3247 {
3248 char b[BDEVNAME_SIZE];
3249 int err;
3250 struct md_rdev *rdev;
3251 sector_t size;
3252
3253 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3254 if (!rdev) {
3255 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3256 return ERR_PTR(-ENOMEM);
3257 }
3258
3259 err = md_rdev_init(rdev);
3260 if (err)
3261 goto abort_free;
3262 err = alloc_disk_sb(rdev);
3263 if (err)
3264 goto abort_free;
3265
3266 err = lock_rdev(rdev, newdev, super_format == -2);
3267 if (err)
3268 goto abort_free;
3269
3270 kobject_init(&rdev->kobj, &rdev_ktype);
3271
3272 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3273 if (!size) {
3274 printk(KERN_WARNING
3275 "md: %s has zero or unknown size, marking faulty!\n",
3276 bdevname(rdev->bdev,b));
3277 err = -EINVAL;
3278 goto abort_free;
3279 }
3280
3281 if (super_format >= 0) {
3282 err = super_types[super_format].
3283 load_super(rdev, NULL, super_minor);
3284 if (err == -EINVAL) {
3285 printk(KERN_WARNING
3286 "md: %s does not have a valid v%d.%d "
3287 "superblock, not importing!\n",
3288 bdevname(rdev->bdev,b),
3289 super_format, super_minor);
3290 goto abort_free;
3291 }
3292 if (err < 0) {
3293 printk(KERN_WARNING
3294 "md: could not read %s's sb, not importing!\n",
3295 bdevname(rdev->bdev,b));
3296 goto abort_free;
3297 }
3298 }
3299 if (super_format == -1)
3300 /* hot-add for 0.90, or non-persistent: so no badblocks */
3301 rdev->badblocks.shift = -1;
3302
3303 return rdev;
3304
3305 abort_free:
3306 if (rdev->bdev)
3307 unlock_rdev(rdev);
3308 md_rdev_clear(rdev);
3309 kfree(rdev);
3310 return ERR_PTR(err);
3311 }
3312
3313 /*
3314 * Check a full RAID array for plausibility
3315 */
3316
3317
3318 static void analyze_sbs(struct mddev * mddev)
3319 {
3320 int i;
3321 struct md_rdev *rdev, *freshest, *tmp;
3322 char b[BDEVNAME_SIZE];
3323
3324 freshest = NULL;
3325 rdev_for_each_safe(rdev, tmp, mddev)
3326 switch (super_types[mddev->major_version].
3327 load_super(rdev, freshest, mddev->minor_version)) {
3328 case 1:
3329 freshest = rdev;
3330 break;
3331 case 0:
3332 break;
3333 default:
3334 printk( KERN_ERR \
3335 "md: fatal superblock inconsistency in %s"
3336 " -- removing from array\n",
3337 bdevname(rdev->bdev,b));
3338 kick_rdev_from_array(rdev);
3339 }
3340
3341
3342 super_types[mddev->major_version].
3343 validate_super(mddev, freshest);
3344
3345 i = 0;
3346 rdev_for_each_safe(rdev, tmp, mddev) {
3347 if (mddev->max_disks &&
3348 (rdev->desc_nr >= mddev->max_disks ||
3349 i > mddev->max_disks)) {
3350 printk(KERN_WARNING
3351 "md: %s: %s: only %d devices permitted\n",
3352 mdname(mddev), bdevname(rdev->bdev, b),
3353 mddev->max_disks);
3354 kick_rdev_from_array(rdev);
3355 continue;
3356 }
3357 if (rdev != freshest)
3358 if (super_types[mddev->major_version].
3359 validate_super(mddev, rdev)) {
3360 printk(KERN_WARNING "md: kicking non-fresh %s"
3361 " from array!\n",
3362 bdevname(rdev->bdev,b));
3363 kick_rdev_from_array(rdev);
3364 continue;
3365 }
3366 if (mddev->level == LEVEL_MULTIPATH) {
3367 rdev->desc_nr = i++;
3368 rdev->raid_disk = rdev->desc_nr;
3369 set_bit(In_sync, &rdev->flags);
3370 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3371 rdev->raid_disk = -1;
3372 clear_bit(In_sync, &rdev->flags);
3373 }
3374 }
3375 }
3376
3377 /* Read a fixed-point number.
3378 * Numbers in sysfs attributes should be in "standard" units where
3379 * possible, so time should be in seconds.
3380 * However we internally use a a much smaller unit such as
3381 * milliseconds or jiffies.
3382 * This function takes a decimal number with a possible fractional
3383 * component, and produces an integer which is the result of
3384 * multiplying that number by 10^'scale'.
3385 * all without any floating-point arithmetic.
3386 */
3387 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3388 {
3389 unsigned long result = 0;
3390 long decimals = -1;
3391 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3392 if (*cp == '.')
3393 decimals = 0;
3394 else if (decimals < scale) {
3395 unsigned int value;
3396 value = *cp - '0';
3397 result = result * 10 + value;
3398 if (decimals >= 0)
3399 decimals++;
3400 }
3401 cp++;
3402 }
3403 if (*cp == '\n')
3404 cp++;
3405 if (*cp)
3406 return -EINVAL;
3407 if (decimals < 0)
3408 decimals = 0;
3409 while (decimals < scale) {
3410 result *= 10;
3411 decimals ++;
3412 }
3413 *res = result;
3414 return 0;
3415 }
3416
3417
3418 static void md_safemode_timeout(unsigned long data);
3419
3420 static ssize_t
3421 safe_delay_show(struct mddev *mddev, char *page)
3422 {
3423 int msec = (mddev->safemode_delay*1000)/HZ;
3424 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3425 }
3426 static ssize_t
3427 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3428 {
3429 unsigned long msec;
3430
3431 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3432 return -EINVAL;
3433 if (msec == 0)
3434 mddev->safemode_delay = 0;
3435 else {
3436 unsigned long old_delay = mddev->safemode_delay;
3437 mddev->safemode_delay = (msec*HZ)/1000;
3438 if (mddev->safemode_delay == 0)
3439 mddev->safemode_delay = 1;
3440 if (mddev->safemode_delay < old_delay)
3441 md_safemode_timeout((unsigned long)mddev);
3442 }
3443 return len;
3444 }
3445 static struct md_sysfs_entry md_safe_delay =
3446 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3447
3448 static ssize_t
3449 level_show(struct mddev *mddev, char *page)
3450 {
3451 struct md_personality *p = mddev->pers;
3452 if (p)
3453 return sprintf(page, "%s\n", p->name);
3454 else if (mddev->clevel[0])
3455 return sprintf(page, "%s\n", mddev->clevel);
3456 else if (mddev->level != LEVEL_NONE)
3457 return sprintf(page, "%d\n", mddev->level);
3458 else
3459 return 0;
3460 }
3461
3462 static ssize_t
3463 level_store(struct mddev *mddev, const char *buf, size_t len)
3464 {
3465 char clevel[16];
3466 ssize_t rv = len;
3467 struct md_personality *pers;
3468 long level;
3469 void *priv;
3470 struct md_rdev *rdev;
3471
3472 if (mddev->pers == NULL) {
3473 if (len == 0)
3474 return 0;
3475 if (len >= sizeof(mddev->clevel))
3476 return -ENOSPC;
3477 strncpy(mddev->clevel, buf, len);
3478 if (mddev->clevel[len-1] == '\n')
3479 len--;
3480 mddev->clevel[len] = 0;
3481 mddev->level = LEVEL_NONE;
3482 return rv;
3483 }
3484
3485 /* request to change the personality. Need to ensure:
3486 * - array is not engaged in resync/recovery/reshape
3487 * - old personality can be suspended
3488 * - new personality will access other array.
3489 */
3490
3491 if (mddev->sync_thread ||
3492 mddev->reshape_position != MaxSector ||
3493 mddev->sysfs_active)
3494 return -EBUSY;
3495
3496 if (!mddev->pers->quiesce) {
3497 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3498 mdname(mddev), mddev->pers->name);
3499 return -EINVAL;
3500 }
3501
3502 /* Now find the new personality */
3503 if (len == 0 || len >= sizeof(clevel))
3504 return -EINVAL;
3505 strncpy(clevel, buf, len);
3506 if (clevel[len-1] == '\n')
3507 len--;
3508 clevel[len] = 0;
3509 if (strict_strtol(clevel, 10, &level))
3510 level = LEVEL_NONE;
3511
3512 if (request_module("md-%s", clevel) != 0)
3513 request_module("md-level-%s", clevel);
3514 spin_lock(&pers_lock);
3515 pers = find_pers(level, clevel);
3516 if (!pers || !try_module_get(pers->owner)) {
3517 spin_unlock(&pers_lock);
3518 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3519 return -EINVAL;
3520 }
3521 spin_unlock(&pers_lock);
3522
3523 if (pers == mddev->pers) {
3524 /* Nothing to do! */
3525 module_put(pers->owner);
3526 return rv;
3527 }
3528 if (!pers->takeover) {
3529 module_put(pers->owner);
3530 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3531 mdname(mddev), clevel);
3532 return -EINVAL;
3533 }
3534
3535 rdev_for_each(rdev, mddev)
3536 rdev->new_raid_disk = rdev->raid_disk;
3537
3538 /* ->takeover must set new_* and/or delta_disks
3539 * if it succeeds, and may set them when it fails.
3540 */
3541 priv = pers->takeover(mddev);
3542 if (IS_ERR(priv)) {
3543 mddev->new_level = mddev->level;
3544 mddev->new_layout = mddev->layout;
3545 mddev->new_chunk_sectors = mddev->chunk_sectors;
3546 mddev->raid_disks -= mddev->delta_disks;
3547 mddev->delta_disks = 0;
3548 mddev->reshape_backwards = 0;
3549 module_put(pers->owner);
3550 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3551 mdname(mddev), clevel);
3552 return PTR_ERR(priv);
3553 }
3554
3555 /* Looks like we have a winner */
3556 mddev_suspend(mddev);
3557 mddev->pers->stop(mddev);
3558
3559 if (mddev->pers->sync_request == NULL &&
3560 pers->sync_request != NULL) {
3561 /* need to add the md_redundancy_group */
3562 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3563 printk(KERN_WARNING
3564 "md: cannot register extra attributes for %s\n",
3565 mdname(mddev));
3566 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3567 }
3568 if (mddev->pers->sync_request != NULL &&
3569 pers->sync_request == NULL) {
3570 /* need to remove the md_redundancy_group */
3571 if (mddev->to_remove == NULL)
3572 mddev->to_remove = &md_redundancy_group;
3573 }
3574
3575 if (mddev->pers->sync_request == NULL &&
3576 mddev->external) {
3577 /* We are converting from a no-redundancy array
3578 * to a redundancy array and metadata is managed
3579 * externally so we need to be sure that writes
3580 * won't block due to a need to transition
3581 * clean->dirty
3582 * until external management is started.
3583 */
3584 mddev->in_sync = 0;
3585 mddev->safemode_delay = 0;
3586 mddev->safemode = 0;
3587 }
3588
3589 rdev_for_each(rdev, mddev) {
3590 if (rdev->raid_disk < 0)
3591 continue;
3592 if (rdev->new_raid_disk >= mddev->raid_disks)
3593 rdev->new_raid_disk = -1;
3594 if (rdev->new_raid_disk == rdev->raid_disk)
3595 continue;
3596 sysfs_unlink_rdev(mddev, rdev);
3597 }
3598 rdev_for_each(rdev, mddev) {
3599 if (rdev->raid_disk < 0)
3600 continue;
3601 if (rdev->new_raid_disk == rdev->raid_disk)
3602 continue;
3603 rdev->raid_disk = rdev->new_raid_disk;
3604 if (rdev->raid_disk < 0)
3605 clear_bit(In_sync, &rdev->flags);
3606 else {
3607 if (sysfs_link_rdev(mddev, rdev))
3608 printk(KERN_WARNING "md: cannot register rd%d"
3609 " for %s after level change\n",
3610 rdev->raid_disk, mdname(mddev));
3611 }
3612 }
3613
3614 module_put(mddev->pers->owner);
3615 mddev->pers = pers;
3616 mddev->private = priv;
3617 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3618 mddev->level = mddev->new_level;
3619 mddev->layout = mddev->new_layout;
3620 mddev->chunk_sectors = mddev->new_chunk_sectors;
3621 mddev->delta_disks = 0;
3622 mddev->reshape_backwards = 0;
3623 mddev->degraded = 0;
3624 if (mddev->pers->sync_request == NULL) {
3625 /* this is now an array without redundancy, so
3626 * it must always be in_sync
3627 */
3628 mddev->in_sync = 1;
3629 del_timer_sync(&mddev->safemode_timer);
3630 }
3631 pers->run(mddev);
3632 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3633 mddev_resume(mddev);
3634 sysfs_notify(&mddev->kobj, NULL, "level");
3635 md_new_event(mddev);
3636 return rv;
3637 }
3638
3639 static struct md_sysfs_entry md_level =
3640 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3641
3642
3643 static ssize_t
3644 layout_show(struct mddev *mddev, char *page)
3645 {
3646 /* just a number, not meaningful for all levels */
3647 if (mddev->reshape_position != MaxSector &&
3648 mddev->layout != mddev->new_layout)
3649 return sprintf(page, "%d (%d)\n",
3650 mddev->new_layout, mddev->layout);
3651 return sprintf(page, "%d\n", mddev->layout);
3652 }
3653
3654 static ssize_t
3655 layout_store(struct mddev *mddev, const char *buf, size_t len)
3656 {
3657 char *e;
3658 unsigned long n = simple_strtoul(buf, &e, 10);
3659
3660 if (!*buf || (*e && *e != '\n'))
3661 return -EINVAL;
3662
3663 if (mddev->pers) {
3664 int err;
3665 if (mddev->pers->check_reshape == NULL)
3666 return -EBUSY;
3667 mddev->new_layout = n;
3668 err = mddev->pers->check_reshape(mddev);
3669 if (err) {
3670 mddev->new_layout = mddev->layout;
3671 return err;
3672 }
3673 } else {
3674 mddev->new_layout = n;
3675 if (mddev->reshape_position == MaxSector)
3676 mddev->layout = n;
3677 }
3678 return len;
3679 }
3680 static struct md_sysfs_entry md_layout =
3681 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3682
3683
3684 static ssize_t
3685 raid_disks_show(struct mddev *mddev, char *page)
3686 {
3687 if (mddev->raid_disks == 0)
3688 return 0;
3689 if (mddev->reshape_position != MaxSector &&
3690 mddev->delta_disks != 0)
3691 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3692 mddev->raid_disks - mddev->delta_disks);
3693 return sprintf(page, "%d\n", mddev->raid_disks);
3694 }
3695
3696 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3697
3698 static ssize_t
3699 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3700 {
3701 char *e;
3702 int rv = 0;
3703 unsigned long n = simple_strtoul(buf, &e, 10);
3704
3705 if (!*buf || (*e && *e != '\n'))
3706 return -EINVAL;
3707
3708 if (mddev->pers)
3709 rv = update_raid_disks(mddev, n);
3710 else if (mddev->reshape_position != MaxSector) {
3711 struct md_rdev *rdev;
3712 int olddisks = mddev->raid_disks - mddev->delta_disks;
3713
3714 rdev_for_each(rdev, mddev) {
3715 if (olddisks < n &&
3716 rdev->data_offset < rdev->new_data_offset)
3717 return -EINVAL;
3718 if (olddisks > n &&
3719 rdev->data_offset > rdev->new_data_offset)
3720 return -EINVAL;
3721 }
3722 mddev->delta_disks = n - olddisks;
3723 mddev->raid_disks = n;
3724 mddev->reshape_backwards = (mddev->delta_disks < 0);
3725 } else
3726 mddev->raid_disks = n;
3727 return rv ? rv : len;
3728 }
3729 static struct md_sysfs_entry md_raid_disks =
3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3731
3732 static ssize_t
3733 chunk_size_show(struct mddev *mddev, char *page)
3734 {
3735 if (mddev->reshape_position != MaxSector &&
3736 mddev->chunk_sectors != mddev->new_chunk_sectors)
3737 return sprintf(page, "%d (%d)\n",
3738 mddev->new_chunk_sectors << 9,
3739 mddev->chunk_sectors << 9);
3740 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3741 }
3742
3743 static ssize_t
3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3745 {
3746 char *e;
3747 unsigned long n = simple_strtoul(buf, &e, 10);
3748
3749 if (!*buf || (*e && *e != '\n'))
3750 return -EINVAL;
3751
3752 if (mddev->pers) {
3753 int err;
3754 if (mddev->pers->check_reshape == NULL)
3755 return -EBUSY;
3756 mddev->new_chunk_sectors = n >> 9;
3757 err = mddev->pers->check_reshape(mddev);
3758 if (err) {
3759 mddev->new_chunk_sectors = mddev->chunk_sectors;
3760 return err;
3761 }
3762 } else {
3763 mddev->new_chunk_sectors = n >> 9;
3764 if (mddev->reshape_position == MaxSector)
3765 mddev->chunk_sectors = n >> 9;
3766 }
3767 return len;
3768 }
3769 static struct md_sysfs_entry md_chunk_size =
3770 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3771
3772 static ssize_t
3773 resync_start_show(struct mddev *mddev, char *page)
3774 {
3775 if (mddev->recovery_cp == MaxSector)
3776 return sprintf(page, "none\n");
3777 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3778 }
3779
3780 static ssize_t
3781 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3782 {
3783 char *e;
3784 unsigned long long n = simple_strtoull(buf, &e, 10);
3785
3786 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3787 return -EBUSY;
3788 if (cmd_match(buf, "none"))
3789 n = MaxSector;
3790 else if (!*buf || (*e && *e != '\n'))
3791 return -EINVAL;
3792
3793 mddev->recovery_cp = n;
3794 return len;
3795 }
3796 static struct md_sysfs_entry md_resync_start =
3797 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3798
3799 /*
3800 * The array state can be:
3801 *
3802 * clear
3803 * No devices, no size, no level
3804 * Equivalent to STOP_ARRAY ioctl
3805 * inactive
3806 * May have some settings, but array is not active
3807 * all IO results in error
3808 * When written, doesn't tear down array, but just stops it
3809 * suspended (not supported yet)
3810 * All IO requests will block. The array can be reconfigured.
3811 * Writing this, if accepted, will block until array is quiescent
3812 * readonly
3813 * no resync can happen. no superblocks get written.
3814 * write requests fail
3815 * read-auto
3816 * like readonly, but behaves like 'clean' on a write request.
3817 *
3818 * clean - no pending writes, but otherwise active.
3819 * When written to inactive array, starts without resync
3820 * If a write request arrives then
3821 * if metadata is known, mark 'dirty' and switch to 'active'.
3822 * if not known, block and switch to write-pending
3823 * If written to an active array that has pending writes, then fails.
3824 * active
3825 * fully active: IO and resync can be happening.
3826 * When written to inactive array, starts with resync
3827 *
3828 * write-pending
3829 * clean, but writes are blocked waiting for 'active' to be written.
3830 *
3831 * active-idle
3832 * like active, but no writes have been seen for a while (100msec).
3833 *
3834 */
3835 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3836 write_pending, active_idle, bad_word};
3837 static char *array_states[] = {
3838 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3839 "write-pending", "active-idle", NULL };
3840
3841 static int match_word(const char *word, char **list)
3842 {
3843 int n;
3844 for (n=0; list[n]; n++)
3845 if (cmd_match(word, list[n]))
3846 break;
3847 return n;
3848 }
3849
3850 static ssize_t
3851 array_state_show(struct mddev *mddev, char *page)
3852 {
3853 enum array_state st = inactive;
3854
3855 if (mddev->pers)
3856 switch(mddev->ro) {
3857 case 1:
3858 st = readonly;
3859 break;
3860 case 2:
3861 st = read_auto;
3862 break;
3863 case 0:
3864 if (mddev->in_sync)
3865 st = clean;
3866 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3867 st = write_pending;
3868 else if (mddev->safemode)
3869 st = active_idle;
3870 else
3871 st = active;
3872 }
3873 else {
3874 if (list_empty(&mddev->disks) &&
3875 mddev->raid_disks == 0 &&
3876 mddev->dev_sectors == 0)
3877 st = clear;
3878 else
3879 st = inactive;
3880 }
3881 return sprintf(page, "%s\n", array_states[st]);
3882 }
3883
3884 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3885 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3886 static int do_md_run(struct mddev * mddev);
3887 static int restart_array(struct mddev *mddev);
3888
3889 static ssize_t
3890 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3891 {
3892 int err = -EINVAL;
3893 enum array_state st = match_word(buf, array_states);
3894 switch(st) {
3895 case bad_word:
3896 break;
3897 case clear:
3898 /* stopping an active array */
3899 err = do_md_stop(mddev, 0, NULL);
3900 break;
3901 case inactive:
3902 /* stopping an active array */
3903 if (mddev->pers)
3904 err = do_md_stop(mddev, 2, NULL);
3905 else
3906 err = 0; /* already inactive */
3907 break;
3908 case suspended:
3909 break; /* not supported yet */
3910 case readonly:
3911 if (mddev->pers)
3912 err = md_set_readonly(mddev, NULL);
3913 else {
3914 mddev->ro = 1;
3915 set_disk_ro(mddev->gendisk, 1);
3916 err = do_md_run(mddev);
3917 }
3918 break;
3919 case read_auto:
3920 if (mddev->pers) {
3921 if (mddev->ro == 0)
3922 err = md_set_readonly(mddev, NULL);
3923 else if (mddev->ro == 1)
3924 err = restart_array(mddev);
3925 if (err == 0) {
3926 mddev->ro = 2;
3927 set_disk_ro(mddev->gendisk, 0);
3928 }
3929 } else {
3930 mddev->ro = 2;
3931 err = do_md_run(mddev);
3932 }
3933 break;
3934 case clean:
3935 if (mddev->pers) {
3936 restart_array(mddev);
3937 spin_lock_irq(&mddev->write_lock);
3938 if (atomic_read(&mddev->writes_pending) == 0) {
3939 if (mddev->in_sync == 0) {
3940 mddev->in_sync = 1;
3941 if (mddev->safemode == 1)
3942 mddev->safemode = 0;
3943 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3944 }
3945 err = 0;
3946 } else
3947 err = -EBUSY;
3948 spin_unlock_irq(&mddev->write_lock);
3949 } else
3950 err = -EINVAL;
3951 break;
3952 case active:
3953 if (mddev->pers) {
3954 restart_array(mddev);
3955 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3956 wake_up(&mddev->sb_wait);
3957 err = 0;
3958 } else {
3959 mddev->ro = 0;
3960 set_disk_ro(mddev->gendisk, 0);
3961 err = do_md_run(mddev);
3962 }
3963 break;
3964 case write_pending:
3965 case active_idle:
3966 /* these cannot be set */
3967 break;
3968 }
3969 if (err)
3970 return err;
3971 else {
3972 if (mddev->hold_active == UNTIL_IOCTL)
3973 mddev->hold_active = 0;
3974 sysfs_notify_dirent_safe(mddev->sysfs_state);
3975 return len;
3976 }
3977 }
3978 static struct md_sysfs_entry md_array_state =
3979 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3980
3981 static ssize_t
3982 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3983 return sprintf(page, "%d\n",
3984 atomic_read(&mddev->max_corr_read_errors));
3985 }
3986
3987 static ssize_t
3988 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3989 {
3990 char *e;
3991 unsigned long n = simple_strtoul(buf, &e, 10);
3992
3993 if (*buf && (*e == 0 || *e == '\n')) {
3994 atomic_set(&mddev->max_corr_read_errors, n);
3995 return len;
3996 }
3997 return -EINVAL;
3998 }
3999
4000 static struct md_sysfs_entry max_corr_read_errors =
4001 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4002 max_corrected_read_errors_store);
4003
4004 static ssize_t
4005 null_show(struct mddev *mddev, char *page)
4006 {
4007 return -EINVAL;
4008 }
4009
4010 static ssize_t
4011 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4012 {
4013 /* buf must be %d:%d\n? giving major and minor numbers */
4014 /* The new device is added to the array.
4015 * If the array has a persistent superblock, we read the
4016 * superblock to initialise info and check validity.
4017 * Otherwise, only checking done is that in bind_rdev_to_array,
4018 * which mainly checks size.
4019 */
4020 char *e;
4021 int major = simple_strtoul(buf, &e, 10);
4022 int minor;
4023 dev_t dev;
4024 struct md_rdev *rdev;
4025 int err;
4026
4027 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4028 return -EINVAL;
4029 minor = simple_strtoul(e+1, &e, 10);
4030 if (*e && *e != '\n')
4031 return -EINVAL;
4032 dev = MKDEV(major, minor);
4033 if (major != MAJOR(dev) ||
4034 minor != MINOR(dev))
4035 return -EOVERFLOW;
4036
4037
4038 if (mddev->persistent) {
4039 rdev = md_import_device(dev, mddev->major_version,
4040 mddev->minor_version);
4041 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4042 struct md_rdev *rdev0
4043 = list_entry(mddev->disks.next,
4044 struct md_rdev, same_set);
4045 err = super_types[mddev->major_version]
4046 .load_super(rdev, rdev0, mddev->minor_version);
4047 if (err < 0)
4048 goto out;
4049 }
4050 } else if (mddev->external)
4051 rdev = md_import_device(dev, -2, -1);
4052 else
4053 rdev = md_import_device(dev, -1, -1);
4054
4055 if (IS_ERR(rdev))
4056 return PTR_ERR(rdev);
4057 err = bind_rdev_to_array(rdev, mddev);
4058 out:
4059 if (err)
4060 export_rdev(rdev);
4061 return err ? err : len;
4062 }
4063
4064 static struct md_sysfs_entry md_new_device =
4065 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4066
4067 static ssize_t
4068 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4069 {
4070 char *end;
4071 unsigned long chunk, end_chunk;
4072
4073 if (!mddev->bitmap)
4074 goto out;
4075 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4076 while (*buf) {
4077 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4078 if (buf == end) break;
4079 if (*end == '-') { /* range */
4080 buf = end + 1;
4081 end_chunk = simple_strtoul(buf, &end, 0);
4082 if (buf == end) break;
4083 }
4084 if (*end && !isspace(*end)) break;
4085 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4086 buf = skip_spaces(end);
4087 }
4088 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4089 out:
4090 return len;
4091 }
4092
4093 static struct md_sysfs_entry md_bitmap =
4094 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4095
4096 static ssize_t
4097 size_show(struct mddev *mddev, char *page)
4098 {
4099 return sprintf(page, "%llu\n",
4100 (unsigned long long)mddev->dev_sectors / 2);
4101 }
4102
4103 static int update_size(struct mddev *mddev, sector_t num_sectors);
4104
4105 static ssize_t
4106 size_store(struct mddev *mddev, const char *buf, size_t len)
4107 {
4108 /* If array is inactive, we can reduce the component size, but
4109 * not increase it (except from 0).
4110 * If array is active, we can try an on-line resize
4111 */
4112 sector_t sectors;
4113 int err = strict_blocks_to_sectors(buf, &sectors);
4114
4115 if (err < 0)
4116 return err;
4117 if (mddev->pers) {
4118 err = update_size(mddev, sectors);
4119 md_update_sb(mddev, 1);
4120 } else {
4121 if (mddev->dev_sectors == 0 ||
4122 mddev->dev_sectors > sectors)
4123 mddev->dev_sectors = sectors;
4124 else
4125 err = -ENOSPC;
4126 }
4127 return err ? err : len;
4128 }
4129
4130 static struct md_sysfs_entry md_size =
4131 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4132
4133
4134 /* Metdata version.
4135 * This is one of
4136 * 'none' for arrays with no metadata (good luck...)
4137 * 'external' for arrays with externally managed metadata,
4138 * or N.M for internally known formats
4139 */
4140 static ssize_t
4141 metadata_show(struct mddev *mddev, char *page)
4142 {
4143 if (mddev->persistent)
4144 return sprintf(page, "%d.%d\n",
4145 mddev->major_version, mddev->minor_version);
4146 else if (mddev->external)
4147 return sprintf(page, "external:%s\n", mddev->metadata_type);
4148 else
4149 return sprintf(page, "none\n");
4150 }
4151
4152 static ssize_t
4153 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4154 {
4155 int major, minor;
4156 char *e;
4157 /* Changing the details of 'external' metadata is
4158 * always permitted. Otherwise there must be
4159 * no devices attached to the array.
4160 */
4161 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4162 ;
4163 else if (!list_empty(&mddev->disks))
4164 return -EBUSY;
4165
4166 if (cmd_match(buf, "none")) {
4167 mddev->persistent = 0;
4168 mddev->external = 0;
4169 mddev->major_version = 0;
4170 mddev->minor_version = 90;
4171 return len;
4172 }
4173 if (strncmp(buf, "external:", 9) == 0) {
4174 size_t namelen = len-9;
4175 if (namelen >= sizeof(mddev->metadata_type))
4176 namelen = sizeof(mddev->metadata_type)-1;
4177 strncpy(mddev->metadata_type, buf+9, namelen);
4178 mddev->metadata_type[namelen] = 0;
4179 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4180 mddev->metadata_type[--namelen] = 0;
4181 mddev->persistent = 0;
4182 mddev->external = 1;
4183 mddev->major_version = 0;
4184 mddev->minor_version = 90;
4185 return len;
4186 }
4187 major = simple_strtoul(buf, &e, 10);
4188 if (e==buf || *e != '.')
4189 return -EINVAL;
4190 buf = e+1;
4191 minor = simple_strtoul(buf, &e, 10);
4192 if (e==buf || (*e && *e != '\n') )
4193 return -EINVAL;
4194 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4195 return -ENOENT;
4196 mddev->major_version = major;
4197 mddev->minor_version = minor;
4198 mddev->persistent = 1;
4199 mddev->external = 0;
4200 return len;
4201 }
4202
4203 static struct md_sysfs_entry md_metadata =
4204 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4205
4206 static ssize_t
4207 action_show(struct mddev *mddev, char *page)
4208 {
4209 char *type = "idle";
4210 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4211 type = "frozen";
4212 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4213 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4214 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4215 type = "reshape";
4216 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4217 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4218 type = "resync";
4219 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4220 type = "check";
4221 else
4222 type = "repair";
4223 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4224 type = "recover";
4225 }
4226 return sprintf(page, "%s\n", type);
4227 }
4228
4229 static void reap_sync_thread(struct mddev *mddev);
4230
4231 static ssize_t
4232 action_store(struct mddev *mddev, const char *page, size_t len)
4233 {
4234 if (!mddev->pers || !mddev->pers->sync_request)
4235 return -EINVAL;
4236
4237 if (cmd_match(page, "frozen"))
4238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4239 else
4240 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4241
4242 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4243 if (mddev->sync_thread) {
4244 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4245 reap_sync_thread(mddev);
4246 }
4247 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4248 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4249 return -EBUSY;
4250 else if (cmd_match(page, "resync"))
4251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4252 else if (cmd_match(page, "recover")) {
4253 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4255 } else if (cmd_match(page, "reshape")) {
4256 int err;
4257 if (mddev->pers->start_reshape == NULL)
4258 return -EINVAL;
4259 err = mddev->pers->start_reshape(mddev);
4260 if (err)
4261 return err;
4262 sysfs_notify(&mddev->kobj, NULL, "degraded");
4263 } else {
4264 if (cmd_match(page, "check"))
4265 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4266 else if (!cmd_match(page, "repair"))
4267 return -EINVAL;
4268 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4269 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4270 }
4271 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4272 md_wakeup_thread(mddev->thread);
4273 sysfs_notify_dirent_safe(mddev->sysfs_action);
4274 return len;
4275 }
4276
4277 static ssize_t
4278 mismatch_cnt_show(struct mddev *mddev, char *page)
4279 {
4280 return sprintf(page, "%llu\n",
4281 (unsigned long long) mddev->resync_mismatches);
4282 }
4283
4284 static struct md_sysfs_entry md_scan_mode =
4285 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4286
4287
4288 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4289
4290 static ssize_t
4291 sync_min_show(struct mddev *mddev, char *page)
4292 {
4293 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4294 mddev->sync_speed_min ? "local": "system");
4295 }
4296
4297 static ssize_t
4298 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4299 {
4300 int min;
4301 char *e;
4302 if (strncmp(buf, "system", 6)==0) {
4303 mddev->sync_speed_min = 0;
4304 return len;
4305 }
4306 min = simple_strtoul(buf, &e, 10);
4307 if (buf == e || (*e && *e != '\n') || min <= 0)
4308 return -EINVAL;
4309 mddev->sync_speed_min = min;
4310 return len;
4311 }
4312
4313 static struct md_sysfs_entry md_sync_min =
4314 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4315
4316 static ssize_t
4317 sync_max_show(struct mddev *mddev, char *page)
4318 {
4319 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4320 mddev->sync_speed_max ? "local": "system");
4321 }
4322
4323 static ssize_t
4324 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4325 {
4326 int max;
4327 char *e;
4328 if (strncmp(buf, "system", 6)==0) {
4329 mddev->sync_speed_max = 0;
4330 return len;
4331 }
4332 max = simple_strtoul(buf, &e, 10);
4333 if (buf == e || (*e && *e != '\n') || max <= 0)
4334 return -EINVAL;
4335 mddev->sync_speed_max = max;
4336 return len;
4337 }
4338
4339 static struct md_sysfs_entry md_sync_max =
4340 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4341
4342 static ssize_t
4343 degraded_show(struct mddev *mddev, char *page)
4344 {
4345 return sprintf(page, "%d\n", mddev->degraded);
4346 }
4347 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4348
4349 static ssize_t
4350 sync_force_parallel_show(struct mddev *mddev, char *page)
4351 {
4352 return sprintf(page, "%d\n", mddev->parallel_resync);
4353 }
4354
4355 static ssize_t
4356 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358 long n;
4359
4360 if (strict_strtol(buf, 10, &n))
4361 return -EINVAL;
4362
4363 if (n != 0 && n != 1)
4364 return -EINVAL;
4365
4366 mddev->parallel_resync = n;
4367
4368 if (mddev->sync_thread)
4369 wake_up(&resync_wait);
4370
4371 return len;
4372 }
4373
4374 /* force parallel resync, even with shared block devices */
4375 static struct md_sysfs_entry md_sync_force_parallel =
4376 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4377 sync_force_parallel_show, sync_force_parallel_store);
4378
4379 static ssize_t
4380 sync_speed_show(struct mddev *mddev, char *page)
4381 {
4382 unsigned long resync, dt, db;
4383 if (mddev->curr_resync == 0)
4384 return sprintf(page, "none\n");
4385 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4386 dt = (jiffies - mddev->resync_mark) / HZ;
4387 if (!dt) dt++;
4388 db = resync - mddev->resync_mark_cnt;
4389 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4390 }
4391
4392 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4393
4394 static ssize_t
4395 sync_completed_show(struct mddev *mddev, char *page)
4396 {
4397 unsigned long long max_sectors, resync;
4398
4399 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4400 return sprintf(page, "none\n");
4401
4402 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4403 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4404 max_sectors = mddev->resync_max_sectors;
4405 else
4406 max_sectors = mddev->dev_sectors;
4407
4408 resync = mddev->curr_resync_completed;
4409 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4410 }
4411
4412 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4413
4414 static ssize_t
4415 min_sync_show(struct mddev *mddev, char *page)
4416 {
4417 return sprintf(page, "%llu\n",
4418 (unsigned long long)mddev->resync_min);
4419 }
4420 static ssize_t
4421 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4422 {
4423 unsigned long long min;
4424 if (strict_strtoull(buf, 10, &min))
4425 return -EINVAL;
4426 if (min > mddev->resync_max)
4427 return -EINVAL;
4428 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4429 return -EBUSY;
4430
4431 /* Must be a multiple of chunk_size */
4432 if (mddev->chunk_sectors) {
4433 sector_t temp = min;
4434 if (sector_div(temp, mddev->chunk_sectors))
4435 return -EINVAL;
4436 }
4437 mddev->resync_min = min;
4438
4439 return len;
4440 }
4441
4442 static struct md_sysfs_entry md_min_sync =
4443 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4444
4445 static ssize_t
4446 max_sync_show(struct mddev *mddev, char *page)
4447 {
4448 if (mddev->resync_max == MaxSector)
4449 return sprintf(page, "max\n");
4450 else
4451 return sprintf(page, "%llu\n",
4452 (unsigned long long)mddev->resync_max);
4453 }
4454 static ssize_t
4455 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4456 {
4457 if (strncmp(buf, "max", 3) == 0)
4458 mddev->resync_max = MaxSector;
4459 else {
4460 unsigned long long max;
4461 if (strict_strtoull(buf, 10, &max))
4462 return -EINVAL;
4463 if (max < mddev->resync_min)
4464 return -EINVAL;
4465 if (max < mddev->resync_max &&
4466 mddev->ro == 0 &&
4467 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4468 return -EBUSY;
4469
4470 /* Must be a multiple of chunk_size */
4471 if (mddev->chunk_sectors) {
4472 sector_t temp = max;
4473 if (sector_div(temp, mddev->chunk_sectors))
4474 return -EINVAL;
4475 }
4476 mddev->resync_max = max;
4477 }
4478 wake_up(&mddev->recovery_wait);
4479 return len;
4480 }
4481
4482 static struct md_sysfs_entry md_max_sync =
4483 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4484
4485 static ssize_t
4486 suspend_lo_show(struct mddev *mddev, char *page)
4487 {
4488 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4489 }
4490
4491 static ssize_t
4492 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4493 {
4494 char *e;
4495 unsigned long long new = simple_strtoull(buf, &e, 10);
4496 unsigned long long old = mddev->suspend_lo;
4497
4498 if (mddev->pers == NULL ||
4499 mddev->pers->quiesce == NULL)
4500 return -EINVAL;
4501 if (buf == e || (*e && *e != '\n'))
4502 return -EINVAL;
4503
4504 mddev->suspend_lo = new;
4505 if (new >= old)
4506 /* Shrinking suspended region */
4507 mddev->pers->quiesce(mddev, 2);
4508 else {
4509 /* Expanding suspended region - need to wait */
4510 mddev->pers->quiesce(mddev, 1);
4511 mddev->pers->quiesce(mddev, 0);
4512 }
4513 return len;
4514 }
4515 static struct md_sysfs_entry md_suspend_lo =
4516 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4517
4518
4519 static ssize_t
4520 suspend_hi_show(struct mddev *mddev, char *page)
4521 {
4522 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4523 }
4524
4525 static ssize_t
4526 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4527 {
4528 char *e;
4529 unsigned long long new = simple_strtoull(buf, &e, 10);
4530 unsigned long long old = mddev->suspend_hi;
4531
4532 if (mddev->pers == NULL ||
4533 mddev->pers->quiesce == NULL)
4534 return -EINVAL;
4535 if (buf == e || (*e && *e != '\n'))
4536 return -EINVAL;
4537
4538 mddev->suspend_hi = new;
4539 if (new <= old)
4540 /* Shrinking suspended region */
4541 mddev->pers->quiesce(mddev, 2);
4542 else {
4543 /* Expanding suspended region - need to wait */
4544 mddev->pers->quiesce(mddev, 1);
4545 mddev->pers->quiesce(mddev, 0);
4546 }
4547 return len;
4548 }
4549 static struct md_sysfs_entry md_suspend_hi =
4550 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4551
4552 static ssize_t
4553 reshape_position_show(struct mddev *mddev, char *page)
4554 {
4555 if (mddev->reshape_position != MaxSector)
4556 return sprintf(page, "%llu\n",
4557 (unsigned long long)mddev->reshape_position);
4558 strcpy(page, "none\n");
4559 return 5;
4560 }
4561
4562 static ssize_t
4563 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4564 {
4565 struct md_rdev *rdev;
4566 char *e;
4567 unsigned long long new = simple_strtoull(buf, &e, 10);
4568 if (mddev->pers)
4569 return -EBUSY;
4570 if (buf == e || (*e && *e != '\n'))
4571 return -EINVAL;
4572 mddev->reshape_position = new;
4573 mddev->delta_disks = 0;
4574 mddev->reshape_backwards = 0;
4575 mddev->new_level = mddev->level;
4576 mddev->new_layout = mddev->layout;
4577 mddev->new_chunk_sectors = mddev->chunk_sectors;
4578 rdev_for_each(rdev, mddev)
4579 rdev->new_data_offset = rdev->data_offset;
4580 return len;
4581 }
4582
4583 static struct md_sysfs_entry md_reshape_position =
4584 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4585 reshape_position_store);
4586
4587 static ssize_t
4588 reshape_direction_show(struct mddev *mddev, char *page)
4589 {
4590 return sprintf(page, "%s\n",
4591 mddev->reshape_backwards ? "backwards" : "forwards");
4592 }
4593
4594 static ssize_t
4595 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4596 {
4597 int backwards = 0;
4598 if (cmd_match(buf, "forwards"))
4599 backwards = 0;
4600 else if (cmd_match(buf, "backwards"))
4601 backwards = 1;
4602 else
4603 return -EINVAL;
4604 if (mddev->reshape_backwards == backwards)
4605 return len;
4606
4607 /* check if we are allowed to change */
4608 if (mddev->delta_disks)
4609 return -EBUSY;
4610
4611 if (mddev->persistent &&
4612 mddev->major_version == 0)
4613 return -EINVAL;
4614
4615 mddev->reshape_backwards = backwards;
4616 return len;
4617 }
4618
4619 static struct md_sysfs_entry md_reshape_direction =
4620 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4621 reshape_direction_store);
4622
4623 static ssize_t
4624 array_size_show(struct mddev *mddev, char *page)
4625 {
4626 if (mddev->external_size)
4627 return sprintf(page, "%llu\n",
4628 (unsigned long long)mddev->array_sectors/2);
4629 else
4630 return sprintf(page, "default\n");
4631 }
4632
4633 static ssize_t
4634 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4635 {
4636 sector_t sectors;
4637
4638 if (strncmp(buf, "default", 7) == 0) {
4639 if (mddev->pers)
4640 sectors = mddev->pers->size(mddev, 0, 0);
4641 else
4642 sectors = mddev->array_sectors;
4643
4644 mddev->external_size = 0;
4645 } else {
4646 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4647 return -EINVAL;
4648 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4649 return -E2BIG;
4650
4651 mddev->external_size = 1;
4652 }
4653
4654 mddev->array_sectors = sectors;
4655 if (mddev->pers) {
4656 set_capacity(mddev->gendisk, mddev->array_sectors);
4657 revalidate_disk(mddev->gendisk);
4658 }
4659 return len;
4660 }
4661
4662 static struct md_sysfs_entry md_array_size =
4663 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4664 array_size_store);
4665
4666 static struct attribute *md_default_attrs[] = {
4667 &md_level.attr,
4668 &md_layout.attr,
4669 &md_raid_disks.attr,
4670 &md_chunk_size.attr,
4671 &md_size.attr,
4672 &md_resync_start.attr,
4673 &md_metadata.attr,
4674 &md_new_device.attr,
4675 &md_safe_delay.attr,
4676 &md_array_state.attr,
4677 &md_reshape_position.attr,
4678 &md_reshape_direction.attr,
4679 &md_array_size.attr,
4680 &max_corr_read_errors.attr,
4681 NULL,
4682 };
4683
4684 static struct attribute *md_redundancy_attrs[] = {
4685 &md_scan_mode.attr,
4686 &md_mismatches.attr,
4687 &md_sync_min.attr,
4688 &md_sync_max.attr,
4689 &md_sync_speed.attr,
4690 &md_sync_force_parallel.attr,
4691 &md_sync_completed.attr,
4692 &md_min_sync.attr,
4693 &md_max_sync.attr,
4694 &md_suspend_lo.attr,
4695 &md_suspend_hi.attr,
4696 &md_bitmap.attr,
4697 &md_degraded.attr,
4698 NULL,
4699 };
4700 static struct attribute_group md_redundancy_group = {
4701 .name = NULL,
4702 .attrs = md_redundancy_attrs,
4703 };
4704
4705
4706 static ssize_t
4707 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4708 {
4709 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4710 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4711 ssize_t rv;
4712
4713 if (!entry->show)
4714 return -EIO;
4715 spin_lock(&all_mddevs_lock);
4716 if (list_empty(&mddev->all_mddevs)) {
4717 spin_unlock(&all_mddevs_lock);
4718 return -EBUSY;
4719 }
4720 mddev_get(mddev);
4721 spin_unlock(&all_mddevs_lock);
4722
4723 rv = mddev_lock(mddev);
4724 if (!rv) {
4725 rv = entry->show(mddev, page);
4726 mddev_unlock(mddev);
4727 }
4728 mddev_put(mddev);
4729 return rv;
4730 }
4731
4732 static ssize_t
4733 md_attr_store(struct kobject *kobj, struct attribute *attr,
4734 const char *page, size_t length)
4735 {
4736 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4737 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4738 ssize_t rv;
4739
4740 if (!entry->store)
4741 return -EIO;
4742 if (!capable(CAP_SYS_ADMIN))
4743 return -EACCES;
4744 spin_lock(&all_mddevs_lock);
4745 if (list_empty(&mddev->all_mddevs)) {
4746 spin_unlock(&all_mddevs_lock);
4747 return -EBUSY;
4748 }
4749 mddev_get(mddev);
4750 spin_unlock(&all_mddevs_lock);
4751 rv = mddev_lock(mddev);
4752 if (!rv) {
4753 rv = entry->store(mddev, page, length);
4754 mddev_unlock(mddev);
4755 }
4756 mddev_put(mddev);
4757 return rv;
4758 }
4759
4760 static void md_free(struct kobject *ko)
4761 {
4762 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4763
4764 if (mddev->sysfs_state)
4765 sysfs_put(mddev->sysfs_state);
4766
4767 if (mddev->gendisk) {
4768 del_gendisk(mddev->gendisk);
4769 put_disk(mddev->gendisk);
4770 }
4771 if (mddev->queue)
4772 blk_cleanup_queue(mddev->queue);
4773
4774 kfree(mddev);
4775 }
4776
4777 static const struct sysfs_ops md_sysfs_ops = {
4778 .show = md_attr_show,
4779 .store = md_attr_store,
4780 };
4781 static struct kobj_type md_ktype = {
4782 .release = md_free,
4783 .sysfs_ops = &md_sysfs_ops,
4784 .default_attrs = md_default_attrs,
4785 };
4786
4787 int mdp_major = 0;
4788
4789 static void mddev_delayed_delete(struct work_struct *ws)
4790 {
4791 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4792
4793 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4794 kobject_del(&mddev->kobj);
4795 kobject_put(&mddev->kobj);
4796 }
4797
4798 static int md_alloc(dev_t dev, char *name)
4799 {
4800 static DEFINE_MUTEX(disks_mutex);
4801 struct mddev *mddev = mddev_find(dev);
4802 struct gendisk *disk;
4803 int partitioned;
4804 int shift;
4805 int unit;
4806 int error;
4807
4808 if (!mddev)
4809 return -ENODEV;
4810
4811 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4812 shift = partitioned ? MdpMinorShift : 0;
4813 unit = MINOR(mddev->unit) >> shift;
4814
4815 /* wait for any previous instance of this device to be
4816 * completely removed (mddev_delayed_delete).
4817 */
4818 flush_workqueue(md_misc_wq);
4819
4820 mutex_lock(&disks_mutex);
4821 error = -EEXIST;
4822 if (mddev->gendisk)
4823 goto abort;
4824
4825 if (name) {
4826 /* Need to ensure that 'name' is not a duplicate.
4827 */
4828 struct mddev *mddev2;
4829 spin_lock(&all_mddevs_lock);
4830
4831 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4832 if (mddev2->gendisk &&
4833 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4834 spin_unlock(&all_mddevs_lock);
4835 goto abort;
4836 }
4837 spin_unlock(&all_mddevs_lock);
4838 }
4839
4840 error = -ENOMEM;
4841 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4842 if (!mddev->queue)
4843 goto abort;
4844 mddev->queue->queuedata = mddev;
4845
4846 blk_queue_make_request(mddev->queue, md_make_request);
4847 blk_set_stacking_limits(&mddev->queue->limits);
4848
4849 disk = alloc_disk(1 << shift);
4850 if (!disk) {
4851 blk_cleanup_queue(mddev->queue);
4852 mddev->queue = NULL;
4853 goto abort;
4854 }
4855 disk->major = MAJOR(mddev->unit);
4856 disk->first_minor = unit << shift;
4857 if (name)
4858 strcpy(disk->disk_name, name);
4859 else if (partitioned)
4860 sprintf(disk->disk_name, "md_d%d", unit);
4861 else
4862 sprintf(disk->disk_name, "md%d", unit);
4863 disk->fops = &md_fops;
4864 disk->private_data = mddev;
4865 disk->queue = mddev->queue;
4866 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4867 /* Allow extended partitions. This makes the
4868 * 'mdp' device redundant, but we can't really
4869 * remove it now.
4870 */
4871 disk->flags |= GENHD_FL_EXT_DEVT;
4872 mddev->gendisk = disk;
4873 /* As soon as we call add_disk(), another thread could get
4874 * through to md_open, so make sure it doesn't get too far
4875 */
4876 mutex_lock(&mddev->open_mutex);
4877 add_disk(disk);
4878
4879 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4880 &disk_to_dev(disk)->kobj, "%s", "md");
4881 if (error) {
4882 /* This isn't possible, but as kobject_init_and_add is marked
4883 * __must_check, we must do something with the result
4884 */
4885 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4886 disk->disk_name);
4887 error = 0;
4888 }
4889 if (mddev->kobj.sd &&
4890 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4891 printk(KERN_DEBUG "pointless warning\n");
4892 mutex_unlock(&mddev->open_mutex);
4893 abort:
4894 mutex_unlock(&disks_mutex);
4895 if (!error && mddev->kobj.sd) {
4896 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4897 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4898 }
4899 mddev_put(mddev);
4900 return error;
4901 }
4902
4903 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4904 {
4905 md_alloc(dev, NULL);
4906 return NULL;
4907 }
4908
4909 static int add_named_array(const char *val, struct kernel_param *kp)
4910 {
4911 /* val must be "md_*" where * is not all digits.
4912 * We allocate an array with a large free minor number, and
4913 * set the name to val. val must not already be an active name.
4914 */
4915 int len = strlen(val);
4916 char buf[DISK_NAME_LEN];
4917
4918 while (len && val[len-1] == '\n')
4919 len--;
4920 if (len >= DISK_NAME_LEN)
4921 return -E2BIG;
4922 strlcpy(buf, val, len+1);
4923 if (strncmp(buf, "md_", 3) != 0)
4924 return -EINVAL;
4925 return md_alloc(0, buf);
4926 }
4927
4928 static void md_safemode_timeout(unsigned long data)
4929 {
4930 struct mddev *mddev = (struct mddev *) data;
4931
4932 if (!atomic_read(&mddev->writes_pending)) {
4933 mddev->safemode = 1;
4934 if (mddev->external)
4935 sysfs_notify_dirent_safe(mddev->sysfs_state);
4936 }
4937 md_wakeup_thread(mddev->thread);
4938 }
4939
4940 static int start_dirty_degraded;
4941
4942 int md_run(struct mddev *mddev)
4943 {
4944 int err;
4945 struct md_rdev *rdev;
4946 struct md_personality *pers;
4947
4948 if (list_empty(&mddev->disks))
4949 /* cannot run an array with no devices.. */
4950 return -EINVAL;
4951
4952 if (mddev->pers)
4953 return -EBUSY;
4954 /* Cannot run until previous stop completes properly */
4955 if (mddev->sysfs_active)
4956 return -EBUSY;
4957
4958 /*
4959 * Analyze all RAID superblock(s)
4960 */
4961 if (!mddev->raid_disks) {
4962 if (!mddev->persistent)
4963 return -EINVAL;
4964 analyze_sbs(mddev);
4965 }
4966
4967 if (mddev->level != LEVEL_NONE)
4968 request_module("md-level-%d", mddev->level);
4969 else if (mddev->clevel[0])
4970 request_module("md-%s", mddev->clevel);
4971
4972 /*
4973 * Drop all container device buffers, from now on
4974 * the only valid external interface is through the md
4975 * device.
4976 */
4977 rdev_for_each(rdev, mddev) {
4978 if (test_bit(Faulty, &rdev->flags))
4979 continue;
4980 sync_blockdev(rdev->bdev);
4981 invalidate_bdev(rdev->bdev);
4982
4983 /* perform some consistency tests on the device.
4984 * We don't want the data to overlap the metadata,
4985 * Internal Bitmap issues have been handled elsewhere.
4986 */
4987 if (rdev->meta_bdev) {
4988 /* Nothing to check */;
4989 } else if (rdev->data_offset < rdev->sb_start) {
4990 if (mddev->dev_sectors &&
4991 rdev->data_offset + mddev->dev_sectors
4992 > rdev->sb_start) {
4993 printk("md: %s: data overlaps metadata\n",
4994 mdname(mddev));
4995 return -EINVAL;
4996 }
4997 } else {
4998 if (rdev->sb_start + rdev->sb_size/512
4999 > rdev->data_offset) {
5000 printk("md: %s: metadata overlaps data\n",
5001 mdname(mddev));
5002 return -EINVAL;
5003 }
5004 }
5005 sysfs_notify_dirent_safe(rdev->sysfs_state);
5006 }
5007
5008 if (mddev->bio_set == NULL)
5009 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5010 sizeof(struct mddev *));
5011
5012 spin_lock(&pers_lock);
5013 pers = find_pers(mddev->level, mddev->clevel);
5014 if (!pers || !try_module_get(pers->owner)) {
5015 spin_unlock(&pers_lock);
5016 if (mddev->level != LEVEL_NONE)
5017 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5018 mddev->level);
5019 else
5020 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5021 mddev->clevel);
5022 return -EINVAL;
5023 }
5024 mddev->pers = pers;
5025 spin_unlock(&pers_lock);
5026 if (mddev->level != pers->level) {
5027 mddev->level = pers->level;
5028 mddev->new_level = pers->level;
5029 }
5030 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5031
5032 if (mddev->reshape_position != MaxSector &&
5033 pers->start_reshape == NULL) {
5034 /* This personality cannot handle reshaping... */
5035 mddev->pers = NULL;
5036 module_put(pers->owner);
5037 return -EINVAL;
5038 }
5039
5040 if (pers->sync_request) {
5041 /* Warn if this is a potentially silly
5042 * configuration.
5043 */
5044 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5045 struct md_rdev *rdev2;
5046 int warned = 0;
5047
5048 rdev_for_each(rdev, mddev)
5049 rdev_for_each(rdev2, mddev) {
5050 if (rdev < rdev2 &&
5051 rdev->bdev->bd_contains ==
5052 rdev2->bdev->bd_contains) {
5053 printk(KERN_WARNING
5054 "%s: WARNING: %s appears to be"
5055 " on the same physical disk as"
5056 " %s.\n",
5057 mdname(mddev),
5058 bdevname(rdev->bdev,b),
5059 bdevname(rdev2->bdev,b2));
5060 warned = 1;
5061 }
5062 }
5063
5064 if (warned)
5065 printk(KERN_WARNING
5066 "True protection against single-disk"
5067 " failure might be compromised.\n");
5068 }
5069
5070 mddev->recovery = 0;
5071 /* may be over-ridden by personality */
5072 mddev->resync_max_sectors = mddev->dev_sectors;
5073
5074 mddev->ok_start_degraded = start_dirty_degraded;
5075
5076 if (start_readonly && mddev->ro == 0)
5077 mddev->ro = 2; /* read-only, but switch on first write */
5078
5079 err = mddev->pers->run(mddev);
5080 if (err)
5081 printk(KERN_ERR "md: pers->run() failed ...\n");
5082 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5083 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5084 " but 'external_size' not in effect?\n", __func__);
5085 printk(KERN_ERR
5086 "md: invalid array_size %llu > default size %llu\n",
5087 (unsigned long long)mddev->array_sectors / 2,
5088 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5089 err = -EINVAL;
5090 mddev->pers->stop(mddev);
5091 }
5092 if (err == 0 && mddev->pers->sync_request &&
5093 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5094 err = bitmap_create(mddev);
5095 if (err) {
5096 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5097 mdname(mddev), err);
5098 mddev->pers->stop(mddev);
5099 }
5100 }
5101 if (err) {
5102 module_put(mddev->pers->owner);
5103 mddev->pers = NULL;
5104 bitmap_destroy(mddev);
5105 return err;
5106 }
5107 if (mddev->pers->sync_request) {
5108 if (mddev->kobj.sd &&
5109 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5110 printk(KERN_WARNING
5111 "md: cannot register extra attributes for %s\n",
5112 mdname(mddev));
5113 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5114 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5115 mddev->ro = 0;
5116
5117 atomic_set(&mddev->writes_pending,0);
5118 atomic_set(&mddev->max_corr_read_errors,
5119 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5120 mddev->safemode = 0;
5121 mddev->safemode_timer.function = md_safemode_timeout;
5122 mddev->safemode_timer.data = (unsigned long) mddev;
5123 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5124 mddev->in_sync = 1;
5125 smp_wmb();
5126 mddev->ready = 1;
5127 rdev_for_each(rdev, mddev)
5128 if (rdev->raid_disk >= 0)
5129 if (sysfs_link_rdev(mddev, rdev))
5130 /* failure here is OK */;
5131
5132 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5133
5134 if (mddev->flags)
5135 md_update_sb(mddev, 0);
5136
5137 md_new_event(mddev);
5138 sysfs_notify_dirent_safe(mddev->sysfs_state);
5139 sysfs_notify_dirent_safe(mddev->sysfs_action);
5140 sysfs_notify(&mddev->kobj, NULL, "degraded");
5141 return 0;
5142 }
5143 EXPORT_SYMBOL_GPL(md_run);
5144
5145 static int do_md_run(struct mddev *mddev)
5146 {
5147 int err;
5148
5149 err = md_run(mddev);
5150 if (err)
5151 goto out;
5152 err = bitmap_load(mddev);
5153 if (err) {
5154 bitmap_destroy(mddev);
5155 goto out;
5156 }
5157
5158 md_wakeup_thread(mddev->thread);
5159 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5160
5161 set_capacity(mddev->gendisk, mddev->array_sectors);
5162 revalidate_disk(mddev->gendisk);
5163 mddev->changed = 1;
5164 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5165 out:
5166 return err;
5167 }
5168
5169 static int restart_array(struct mddev *mddev)
5170 {
5171 struct gendisk *disk = mddev->gendisk;
5172
5173 /* Complain if it has no devices */
5174 if (list_empty(&mddev->disks))
5175 return -ENXIO;
5176 if (!mddev->pers)
5177 return -EINVAL;
5178 if (!mddev->ro)
5179 return -EBUSY;
5180 mddev->safemode = 0;
5181 mddev->ro = 0;
5182 set_disk_ro(disk, 0);
5183 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5184 mdname(mddev));
5185 /* Kick recovery or resync if necessary */
5186 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5187 md_wakeup_thread(mddev->thread);
5188 md_wakeup_thread(mddev->sync_thread);
5189 sysfs_notify_dirent_safe(mddev->sysfs_state);
5190 return 0;
5191 }
5192
5193 /* similar to deny_write_access, but accounts for our holding a reference
5194 * to the file ourselves */
5195 static int deny_bitmap_write_access(struct file * file)
5196 {
5197 struct inode *inode = file->f_mapping->host;
5198
5199 spin_lock(&inode->i_lock);
5200 if (atomic_read(&inode->i_writecount) > 1) {
5201 spin_unlock(&inode->i_lock);
5202 return -ETXTBSY;
5203 }
5204 atomic_set(&inode->i_writecount, -1);
5205 spin_unlock(&inode->i_lock);
5206
5207 return 0;
5208 }
5209
5210 void restore_bitmap_write_access(struct file *file)
5211 {
5212 struct inode *inode = file->f_mapping->host;
5213
5214 spin_lock(&inode->i_lock);
5215 atomic_set(&inode->i_writecount, 1);
5216 spin_unlock(&inode->i_lock);
5217 }
5218
5219 static void md_clean(struct mddev *mddev)
5220 {
5221 mddev->array_sectors = 0;
5222 mddev->external_size = 0;
5223 mddev->dev_sectors = 0;
5224 mddev->raid_disks = 0;
5225 mddev->recovery_cp = 0;
5226 mddev->resync_min = 0;
5227 mddev->resync_max = MaxSector;
5228 mddev->reshape_position = MaxSector;
5229 mddev->external = 0;
5230 mddev->persistent = 0;
5231 mddev->level = LEVEL_NONE;
5232 mddev->clevel[0] = 0;
5233 mddev->flags = 0;
5234 mddev->ro = 0;
5235 mddev->metadata_type[0] = 0;
5236 mddev->chunk_sectors = 0;
5237 mddev->ctime = mddev->utime = 0;
5238 mddev->layout = 0;
5239 mddev->max_disks = 0;
5240 mddev->events = 0;
5241 mddev->can_decrease_events = 0;
5242 mddev->delta_disks = 0;
5243 mddev->reshape_backwards = 0;
5244 mddev->new_level = LEVEL_NONE;
5245 mddev->new_layout = 0;
5246 mddev->new_chunk_sectors = 0;
5247 mddev->curr_resync = 0;
5248 mddev->resync_mismatches = 0;
5249 mddev->suspend_lo = mddev->suspend_hi = 0;
5250 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5251 mddev->recovery = 0;
5252 mddev->in_sync = 0;
5253 mddev->changed = 0;
5254 mddev->degraded = 0;
5255 mddev->safemode = 0;
5256 mddev->merge_check_needed = 0;
5257 mddev->bitmap_info.offset = 0;
5258 mddev->bitmap_info.default_offset = 0;
5259 mddev->bitmap_info.default_space = 0;
5260 mddev->bitmap_info.chunksize = 0;
5261 mddev->bitmap_info.daemon_sleep = 0;
5262 mddev->bitmap_info.max_write_behind = 0;
5263 }
5264
5265 static void __md_stop_writes(struct mddev *mddev)
5266 {
5267 if (mddev->sync_thread) {
5268 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5269 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5270 reap_sync_thread(mddev);
5271 }
5272
5273 del_timer_sync(&mddev->safemode_timer);
5274
5275 bitmap_flush(mddev);
5276 md_super_wait(mddev);
5277
5278 if (!mddev->in_sync || mddev->flags) {
5279 /* mark array as shutdown cleanly */
5280 mddev->in_sync = 1;
5281 md_update_sb(mddev, 1);
5282 }
5283 }
5284
5285 void md_stop_writes(struct mddev *mddev)
5286 {
5287 mddev_lock(mddev);
5288 __md_stop_writes(mddev);
5289 mddev_unlock(mddev);
5290 }
5291 EXPORT_SYMBOL_GPL(md_stop_writes);
5292
5293 void md_stop(struct mddev *mddev)
5294 {
5295 mddev->ready = 0;
5296 mddev->pers->stop(mddev);
5297 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5298 mddev->to_remove = &md_redundancy_group;
5299 module_put(mddev->pers->owner);
5300 mddev->pers = NULL;
5301 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5302 }
5303 EXPORT_SYMBOL_GPL(md_stop);
5304
5305 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5306 {
5307 int err = 0;
5308 mutex_lock(&mddev->open_mutex);
5309 if (atomic_read(&mddev->openers) > !!bdev) {
5310 printk("md: %s still in use.\n",mdname(mddev));
5311 err = -EBUSY;
5312 goto out;
5313 }
5314 if (bdev)
5315 sync_blockdev(bdev);
5316 if (mddev->pers) {
5317 __md_stop_writes(mddev);
5318
5319 err = -ENXIO;
5320 if (mddev->ro==1)
5321 goto out;
5322 mddev->ro = 1;
5323 set_disk_ro(mddev->gendisk, 1);
5324 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5325 sysfs_notify_dirent_safe(mddev->sysfs_state);
5326 err = 0;
5327 }
5328 out:
5329 mutex_unlock(&mddev->open_mutex);
5330 return err;
5331 }
5332
5333 /* mode:
5334 * 0 - completely stop and dis-assemble array
5335 * 2 - stop but do not disassemble array
5336 */
5337 static int do_md_stop(struct mddev * mddev, int mode,
5338 struct block_device *bdev)
5339 {
5340 struct gendisk *disk = mddev->gendisk;
5341 struct md_rdev *rdev;
5342
5343 mutex_lock(&mddev->open_mutex);
5344 if (atomic_read(&mddev->openers) > !!bdev ||
5345 mddev->sysfs_active) {
5346 printk("md: %s still in use.\n",mdname(mddev));
5347 mutex_unlock(&mddev->open_mutex);
5348 return -EBUSY;
5349 }
5350 if (bdev)
5351 /* It is possible IO was issued on some other
5352 * open file which was closed before we took ->open_mutex.
5353 * As that was not the last close __blkdev_put will not
5354 * have called sync_blockdev, so we must.
5355 */
5356 sync_blockdev(bdev);
5357
5358 if (mddev->pers) {
5359 if (mddev->ro)
5360 set_disk_ro(disk, 0);
5361
5362 __md_stop_writes(mddev);
5363 md_stop(mddev);
5364 mddev->queue->merge_bvec_fn = NULL;
5365 mddev->queue->backing_dev_info.congested_fn = NULL;
5366
5367 /* tell userspace to handle 'inactive' */
5368 sysfs_notify_dirent_safe(mddev->sysfs_state);
5369
5370 rdev_for_each(rdev, mddev)
5371 if (rdev->raid_disk >= 0)
5372 sysfs_unlink_rdev(mddev, rdev);
5373
5374 set_capacity(disk, 0);
5375 mutex_unlock(&mddev->open_mutex);
5376 mddev->changed = 1;
5377 revalidate_disk(disk);
5378
5379 if (mddev->ro)
5380 mddev->ro = 0;
5381 } else
5382 mutex_unlock(&mddev->open_mutex);
5383 /*
5384 * Free resources if final stop
5385 */
5386 if (mode == 0) {
5387 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5388
5389 bitmap_destroy(mddev);
5390 if (mddev->bitmap_info.file) {
5391 restore_bitmap_write_access(mddev->bitmap_info.file);
5392 fput(mddev->bitmap_info.file);
5393 mddev->bitmap_info.file = NULL;
5394 }
5395 mddev->bitmap_info.offset = 0;
5396
5397 export_array(mddev);
5398
5399 md_clean(mddev);
5400 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5401 if (mddev->hold_active == UNTIL_STOP)
5402 mddev->hold_active = 0;
5403 }
5404 blk_integrity_unregister(disk);
5405 md_new_event(mddev);
5406 sysfs_notify_dirent_safe(mddev->sysfs_state);
5407 return 0;
5408 }
5409
5410 #ifndef MODULE
5411 static void autorun_array(struct mddev *mddev)
5412 {
5413 struct md_rdev *rdev;
5414 int err;
5415
5416 if (list_empty(&mddev->disks))
5417 return;
5418
5419 printk(KERN_INFO "md: running: ");
5420
5421 rdev_for_each(rdev, mddev) {
5422 char b[BDEVNAME_SIZE];
5423 printk("<%s>", bdevname(rdev->bdev,b));
5424 }
5425 printk("\n");
5426
5427 err = do_md_run(mddev);
5428 if (err) {
5429 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5430 do_md_stop(mddev, 0, NULL);
5431 }
5432 }
5433
5434 /*
5435 * lets try to run arrays based on all disks that have arrived
5436 * until now. (those are in pending_raid_disks)
5437 *
5438 * the method: pick the first pending disk, collect all disks with
5439 * the same UUID, remove all from the pending list and put them into
5440 * the 'same_array' list. Then order this list based on superblock
5441 * update time (freshest comes first), kick out 'old' disks and
5442 * compare superblocks. If everything's fine then run it.
5443 *
5444 * If "unit" is allocated, then bump its reference count
5445 */
5446 static void autorun_devices(int part)
5447 {
5448 struct md_rdev *rdev0, *rdev, *tmp;
5449 struct mddev *mddev;
5450 char b[BDEVNAME_SIZE];
5451
5452 printk(KERN_INFO "md: autorun ...\n");
5453 while (!list_empty(&pending_raid_disks)) {
5454 int unit;
5455 dev_t dev;
5456 LIST_HEAD(candidates);
5457 rdev0 = list_entry(pending_raid_disks.next,
5458 struct md_rdev, same_set);
5459
5460 printk(KERN_INFO "md: considering %s ...\n",
5461 bdevname(rdev0->bdev,b));
5462 INIT_LIST_HEAD(&candidates);
5463 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5464 if (super_90_load(rdev, rdev0, 0) >= 0) {
5465 printk(KERN_INFO "md: adding %s ...\n",
5466 bdevname(rdev->bdev,b));
5467 list_move(&rdev->same_set, &candidates);
5468 }
5469 /*
5470 * now we have a set of devices, with all of them having
5471 * mostly sane superblocks. It's time to allocate the
5472 * mddev.
5473 */
5474 if (part) {
5475 dev = MKDEV(mdp_major,
5476 rdev0->preferred_minor << MdpMinorShift);
5477 unit = MINOR(dev) >> MdpMinorShift;
5478 } else {
5479 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5480 unit = MINOR(dev);
5481 }
5482 if (rdev0->preferred_minor != unit) {
5483 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5484 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5485 break;
5486 }
5487
5488 md_probe(dev, NULL, NULL);
5489 mddev = mddev_find(dev);
5490 if (!mddev || !mddev->gendisk) {
5491 if (mddev)
5492 mddev_put(mddev);
5493 printk(KERN_ERR
5494 "md: cannot allocate memory for md drive.\n");
5495 break;
5496 }
5497 if (mddev_lock(mddev))
5498 printk(KERN_WARNING "md: %s locked, cannot run\n",
5499 mdname(mddev));
5500 else if (mddev->raid_disks || mddev->major_version
5501 || !list_empty(&mddev->disks)) {
5502 printk(KERN_WARNING
5503 "md: %s already running, cannot run %s\n",
5504 mdname(mddev), bdevname(rdev0->bdev,b));
5505 mddev_unlock(mddev);
5506 } else {
5507 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5508 mddev->persistent = 1;
5509 rdev_for_each_list(rdev, tmp, &candidates) {
5510 list_del_init(&rdev->same_set);
5511 if (bind_rdev_to_array(rdev, mddev))
5512 export_rdev(rdev);
5513 }
5514 autorun_array(mddev);
5515 mddev_unlock(mddev);
5516 }
5517 /* on success, candidates will be empty, on error
5518 * it won't...
5519 */
5520 rdev_for_each_list(rdev, tmp, &candidates) {
5521 list_del_init(&rdev->same_set);
5522 export_rdev(rdev);
5523 }
5524 mddev_put(mddev);
5525 }
5526 printk(KERN_INFO "md: ... autorun DONE.\n");
5527 }
5528 #endif /* !MODULE */
5529
5530 static int get_version(void __user * arg)
5531 {
5532 mdu_version_t ver;
5533
5534 ver.major = MD_MAJOR_VERSION;
5535 ver.minor = MD_MINOR_VERSION;
5536 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5537
5538 if (copy_to_user(arg, &ver, sizeof(ver)))
5539 return -EFAULT;
5540
5541 return 0;
5542 }
5543
5544 static int get_array_info(struct mddev * mddev, void __user * arg)
5545 {
5546 mdu_array_info_t info;
5547 int nr,working,insync,failed,spare;
5548 struct md_rdev *rdev;
5549
5550 nr=working=insync=failed=spare=0;
5551 rdev_for_each(rdev, mddev) {
5552 nr++;
5553 if (test_bit(Faulty, &rdev->flags))
5554 failed++;
5555 else {
5556 working++;
5557 if (test_bit(In_sync, &rdev->flags))
5558 insync++;
5559 else
5560 spare++;
5561 }
5562 }
5563
5564 info.major_version = mddev->major_version;
5565 info.minor_version = mddev->minor_version;
5566 info.patch_version = MD_PATCHLEVEL_VERSION;
5567 info.ctime = mddev->ctime;
5568 info.level = mddev->level;
5569 info.size = mddev->dev_sectors / 2;
5570 if (info.size != mddev->dev_sectors / 2) /* overflow */
5571 info.size = -1;
5572 info.nr_disks = nr;
5573 info.raid_disks = mddev->raid_disks;
5574 info.md_minor = mddev->md_minor;
5575 info.not_persistent= !mddev->persistent;
5576
5577 info.utime = mddev->utime;
5578 info.state = 0;
5579 if (mddev->in_sync)
5580 info.state = (1<<MD_SB_CLEAN);
5581 if (mddev->bitmap && mddev->bitmap_info.offset)
5582 info.state = (1<<MD_SB_BITMAP_PRESENT);
5583 info.active_disks = insync;
5584 info.working_disks = working;
5585 info.failed_disks = failed;
5586 info.spare_disks = spare;
5587
5588 info.layout = mddev->layout;
5589 info.chunk_size = mddev->chunk_sectors << 9;
5590
5591 if (copy_to_user(arg, &info, sizeof(info)))
5592 return -EFAULT;
5593
5594 return 0;
5595 }
5596
5597 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5598 {
5599 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5600 char *ptr, *buf = NULL;
5601 int err = -ENOMEM;
5602
5603 if (md_allow_write(mddev))
5604 file = kmalloc(sizeof(*file), GFP_NOIO);
5605 else
5606 file = kmalloc(sizeof(*file), GFP_KERNEL);
5607
5608 if (!file)
5609 goto out;
5610
5611 /* bitmap disabled, zero the first byte and copy out */
5612 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5613 file->pathname[0] = '\0';
5614 goto copy_out;
5615 }
5616
5617 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5618 if (!buf)
5619 goto out;
5620
5621 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5622 buf, sizeof(file->pathname));
5623 if (IS_ERR(ptr))
5624 goto out;
5625
5626 strcpy(file->pathname, ptr);
5627
5628 copy_out:
5629 err = 0;
5630 if (copy_to_user(arg, file, sizeof(*file)))
5631 err = -EFAULT;
5632 out:
5633 kfree(buf);
5634 kfree(file);
5635 return err;
5636 }
5637
5638 static int get_disk_info(struct mddev * mddev, void __user * arg)
5639 {
5640 mdu_disk_info_t info;
5641 struct md_rdev *rdev;
5642
5643 if (copy_from_user(&info, arg, sizeof(info)))
5644 return -EFAULT;
5645
5646 rdev = find_rdev_nr(mddev, info.number);
5647 if (rdev) {
5648 info.major = MAJOR(rdev->bdev->bd_dev);
5649 info.minor = MINOR(rdev->bdev->bd_dev);
5650 info.raid_disk = rdev->raid_disk;
5651 info.state = 0;
5652 if (test_bit(Faulty, &rdev->flags))
5653 info.state |= (1<<MD_DISK_FAULTY);
5654 else if (test_bit(In_sync, &rdev->flags)) {
5655 info.state |= (1<<MD_DISK_ACTIVE);
5656 info.state |= (1<<MD_DISK_SYNC);
5657 }
5658 if (test_bit(WriteMostly, &rdev->flags))
5659 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5660 } else {
5661 info.major = info.minor = 0;
5662 info.raid_disk = -1;
5663 info.state = (1<<MD_DISK_REMOVED);
5664 }
5665
5666 if (copy_to_user(arg, &info, sizeof(info)))
5667 return -EFAULT;
5668
5669 return 0;
5670 }
5671
5672 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5673 {
5674 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5675 struct md_rdev *rdev;
5676 dev_t dev = MKDEV(info->major,info->minor);
5677
5678 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5679 return -EOVERFLOW;
5680
5681 if (!mddev->raid_disks) {
5682 int err;
5683 /* expecting a device which has a superblock */
5684 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5685 if (IS_ERR(rdev)) {
5686 printk(KERN_WARNING
5687 "md: md_import_device returned %ld\n",
5688 PTR_ERR(rdev));
5689 return PTR_ERR(rdev);
5690 }
5691 if (!list_empty(&mddev->disks)) {
5692 struct md_rdev *rdev0
5693 = list_entry(mddev->disks.next,
5694 struct md_rdev, same_set);
5695 err = super_types[mddev->major_version]
5696 .load_super(rdev, rdev0, mddev->minor_version);
5697 if (err < 0) {
5698 printk(KERN_WARNING
5699 "md: %s has different UUID to %s\n",
5700 bdevname(rdev->bdev,b),
5701 bdevname(rdev0->bdev,b2));
5702 export_rdev(rdev);
5703 return -EINVAL;
5704 }
5705 }
5706 err = bind_rdev_to_array(rdev, mddev);
5707 if (err)
5708 export_rdev(rdev);
5709 return err;
5710 }
5711
5712 /*
5713 * add_new_disk can be used once the array is assembled
5714 * to add "hot spares". They must already have a superblock
5715 * written
5716 */
5717 if (mddev->pers) {
5718 int err;
5719 if (!mddev->pers->hot_add_disk) {
5720 printk(KERN_WARNING
5721 "%s: personality does not support diskops!\n",
5722 mdname(mddev));
5723 return -EINVAL;
5724 }
5725 if (mddev->persistent)
5726 rdev = md_import_device(dev, mddev->major_version,
5727 mddev->minor_version);
5728 else
5729 rdev = md_import_device(dev, -1, -1);
5730 if (IS_ERR(rdev)) {
5731 printk(KERN_WARNING
5732 "md: md_import_device returned %ld\n",
5733 PTR_ERR(rdev));
5734 return PTR_ERR(rdev);
5735 }
5736 /* set saved_raid_disk if appropriate */
5737 if (!mddev->persistent) {
5738 if (info->state & (1<<MD_DISK_SYNC) &&
5739 info->raid_disk < mddev->raid_disks) {
5740 rdev->raid_disk = info->raid_disk;
5741 set_bit(In_sync, &rdev->flags);
5742 } else
5743 rdev->raid_disk = -1;
5744 } else
5745 super_types[mddev->major_version].
5746 validate_super(mddev, rdev);
5747 if ((info->state & (1<<MD_DISK_SYNC)) &&
5748 rdev->raid_disk != info->raid_disk) {
5749 /* This was a hot-add request, but events doesn't
5750 * match, so reject it.
5751 */
5752 export_rdev(rdev);
5753 return -EINVAL;
5754 }
5755
5756 if (test_bit(In_sync, &rdev->flags))
5757 rdev->saved_raid_disk = rdev->raid_disk;
5758 else
5759 rdev->saved_raid_disk = -1;
5760
5761 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5762 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5763 set_bit(WriteMostly, &rdev->flags);
5764 else
5765 clear_bit(WriteMostly, &rdev->flags);
5766
5767 rdev->raid_disk = -1;
5768 err = bind_rdev_to_array(rdev, mddev);
5769 if (!err && !mddev->pers->hot_remove_disk) {
5770 /* If there is hot_add_disk but no hot_remove_disk
5771 * then added disks for geometry changes,
5772 * and should be added immediately.
5773 */
5774 super_types[mddev->major_version].
5775 validate_super(mddev, rdev);
5776 err = mddev->pers->hot_add_disk(mddev, rdev);
5777 if (err)
5778 unbind_rdev_from_array(rdev);
5779 }
5780 if (err)
5781 export_rdev(rdev);
5782 else
5783 sysfs_notify_dirent_safe(rdev->sysfs_state);
5784
5785 md_update_sb(mddev, 1);
5786 if (mddev->degraded)
5787 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5788 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5789 if (!err)
5790 md_new_event(mddev);
5791 md_wakeup_thread(mddev->thread);
5792 return err;
5793 }
5794
5795 /* otherwise, add_new_disk is only allowed
5796 * for major_version==0 superblocks
5797 */
5798 if (mddev->major_version != 0) {
5799 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5800 mdname(mddev));
5801 return -EINVAL;
5802 }
5803
5804 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5805 int err;
5806 rdev = md_import_device(dev, -1, 0);
5807 if (IS_ERR(rdev)) {
5808 printk(KERN_WARNING
5809 "md: error, md_import_device() returned %ld\n",
5810 PTR_ERR(rdev));
5811 return PTR_ERR(rdev);
5812 }
5813 rdev->desc_nr = info->number;
5814 if (info->raid_disk < mddev->raid_disks)
5815 rdev->raid_disk = info->raid_disk;
5816 else
5817 rdev->raid_disk = -1;
5818
5819 if (rdev->raid_disk < mddev->raid_disks)
5820 if (info->state & (1<<MD_DISK_SYNC))
5821 set_bit(In_sync, &rdev->flags);
5822
5823 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5824 set_bit(WriteMostly, &rdev->flags);
5825
5826 if (!mddev->persistent) {
5827 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5828 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5829 } else
5830 rdev->sb_start = calc_dev_sboffset(rdev);
5831 rdev->sectors = rdev->sb_start;
5832
5833 err = bind_rdev_to_array(rdev, mddev);
5834 if (err) {
5835 export_rdev(rdev);
5836 return err;
5837 }
5838 }
5839
5840 return 0;
5841 }
5842
5843 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5844 {
5845 char b[BDEVNAME_SIZE];
5846 struct md_rdev *rdev;
5847
5848 rdev = find_rdev(mddev, dev);
5849 if (!rdev)
5850 return -ENXIO;
5851
5852 if (rdev->raid_disk >= 0)
5853 goto busy;
5854
5855 kick_rdev_from_array(rdev);
5856 md_update_sb(mddev, 1);
5857 md_new_event(mddev);
5858
5859 return 0;
5860 busy:
5861 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5862 bdevname(rdev->bdev,b), mdname(mddev));
5863 return -EBUSY;
5864 }
5865
5866 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5867 {
5868 char b[BDEVNAME_SIZE];
5869 int err;
5870 struct md_rdev *rdev;
5871
5872 if (!mddev->pers)
5873 return -ENODEV;
5874
5875 if (mddev->major_version != 0) {
5876 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5877 " version-0 superblocks.\n",
5878 mdname(mddev));
5879 return -EINVAL;
5880 }
5881 if (!mddev->pers->hot_add_disk) {
5882 printk(KERN_WARNING
5883 "%s: personality does not support diskops!\n",
5884 mdname(mddev));
5885 return -EINVAL;
5886 }
5887
5888 rdev = md_import_device(dev, -1, 0);
5889 if (IS_ERR(rdev)) {
5890 printk(KERN_WARNING
5891 "md: error, md_import_device() returned %ld\n",
5892 PTR_ERR(rdev));
5893 return -EINVAL;
5894 }
5895
5896 if (mddev->persistent)
5897 rdev->sb_start = calc_dev_sboffset(rdev);
5898 else
5899 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5900
5901 rdev->sectors = rdev->sb_start;
5902
5903 if (test_bit(Faulty, &rdev->flags)) {
5904 printk(KERN_WARNING
5905 "md: can not hot-add faulty %s disk to %s!\n",
5906 bdevname(rdev->bdev,b), mdname(mddev));
5907 err = -EINVAL;
5908 goto abort_export;
5909 }
5910 clear_bit(In_sync, &rdev->flags);
5911 rdev->desc_nr = -1;
5912 rdev->saved_raid_disk = -1;
5913 err = bind_rdev_to_array(rdev, mddev);
5914 if (err)
5915 goto abort_export;
5916
5917 /*
5918 * The rest should better be atomic, we can have disk failures
5919 * noticed in interrupt contexts ...
5920 */
5921
5922 rdev->raid_disk = -1;
5923
5924 md_update_sb(mddev, 1);
5925
5926 /*
5927 * Kick recovery, maybe this spare has to be added to the
5928 * array immediately.
5929 */
5930 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5931 md_wakeup_thread(mddev->thread);
5932 md_new_event(mddev);
5933 return 0;
5934
5935 abort_export:
5936 export_rdev(rdev);
5937 return err;
5938 }
5939
5940 static int set_bitmap_file(struct mddev *mddev, int fd)
5941 {
5942 int err;
5943
5944 if (mddev->pers) {
5945 if (!mddev->pers->quiesce)
5946 return -EBUSY;
5947 if (mddev->recovery || mddev->sync_thread)
5948 return -EBUSY;
5949 /* we should be able to change the bitmap.. */
5950 }
5951
5952
5953 if (fd >= 0) {
5954 if (mddev->bitmap)
5955 return -EEXIST; /* cannot add when bitmap is present */
5956 mddev->bitmap_info.file = fget(fd);
5957
5958 if (mddev->bitmap_info.file == NULL) {
5959 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5960 mdname(mddev));
5961 return -EBADF;
5962 }
5963
5964 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5965 if (err) {
5966 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5967 mdname(mddev));
5968 fput(mddev->bitmap_info.file);
5969 mddev->bitmap_info.file = NULL;
5970 return err;
5971 }
5972 mddev->bitmap_info.offset = 0; /* file overrides offset */
5973 } else if (mddev->bitmap == NULL)
5974 return -ENOENT; /* cannot remove what isn't there */
5975 err = 0;
5976 if (mddev->pers) {
5977 mddev->pers->quiesce(mddev, 1);
5978 if (fd >= 0) {
5979 err = bitmap_create(mddev);
5980 if (!err)
5981 err = bitmap_load(mddev);
5982 }
5983 if (fd < 0 || err) {
5984 bitmap_destroy(mddev);
5985 fd = -1; /* make sure to put the file */
5986 }
5987 mddev->pers->quiesce(mddev, 0);
5988 }
5989 if (fd < 0) {
5990 if (mddev->bitmap_info.file) {
5991 restore_bitmap_write_access(mddev->bitmap_info.file);
5992 fput(mddev->bitmap_info.file);
5993 }
5994 mddev->bitmap_info.file = NULL;
5995 }
5996
5997 return err;
5998 }
5999
6000 /*
6001 * set_array_info is used two different ways
6002 * The original usage is when creating a new array.
6003 * In this usage, raid_disks is > 0 and it together with
6004 * level, size, not_persistent,layout,chunksize determine the
6005 * shape of the array.
6006 * This will always create an array with a type-0.90.0 superblock.
6007 * The newer usage is when assembling an array.
6008 * In this case raid_disks will be 0, and the major_version field is
6009 * use to determine which style super-blocks are to be found on the devices.
6010 * The minor and patch _version numbers are also kept incase the
6011 * super_block handler wishes to interpret them.
6012 */
6013 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6014 {
6015
6016 if (info->raid_disks == 0) {
6017 /* just setting version number for superblock loading */
6018 if (info->major_version < 0 ||
6019 info->major_version >= ARRAY_SIZE(super_types) ||
6020 super_types[info->major_version].name == NULL) {
6021 /* maybe try to auto-load a module? */
6022 printk(KERN_INFO
6023 "md: superblock version %d not known\n",
6024 info->major_version);
6025 return -EINVAL;
6026 }
6027 mddev->major_version = info->major_version;
6028 mddev->minor_version = info->minor_version;
6029 mddev->patch_version = info->patch_version;
6030 mddev->persistent = !info->not_persistent;
6031 /* ensure mddev_put doesn't delete this now that there
6032 * is some minimal configuration.
6033 */
6034 mddev->ctime = get_seconds();
6035 return 0;
6036 }
6037 mddev->major_version = MD_MAJOR_VERSION;
6038 mddev->minor_version = MD_MINOR_VERSION;
6039 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6040 mddev->ctime = get_seconds();
6041
6042 mddev->level = info->level;
6043 mddev->clevel[0] = 0;
6044 mddev->dev_sectors = 2 * (sector_t)info->size;
6045 mddev->raid_disks = info->raid_disks;
6046 /* don't set md_minor, it is determined by which /dev/md* was
6047 * openned
6048 */
6049 if (info->state & (1<<MD_SB_CLEAN))
6050 mddev->recovery_cp = MaxSector;
6051 else
6052 mddev->recovery_cp = 0;
6053 mddev->persistent = ! info->not_persistent;
6054 mddev->external = 0;
6055
6056 mddev->layout = info->layout;
6057 mddev->chunk_sectors = info->chunk_size >> 9;
6058
6059 mddev->max_disks = MD_SB_DISKS;
6060
6061 if (mddev->persistent)
6062 mddev->flags = 0;
6063 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6064
6065 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6066 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6067 mddev->bitmap_info.offset = 0;
6068
6069 mddev->reshape_position = MaxSector;
6070
6071 /*
6072 * Generate a 128 bit UUID
6073 */
6074 get_random_bytes(mddev->uuid, 16);
6075
6076 mddev->new_level = mddev->level;
6077 mddev->new_chunk_sectors = mddev->chunk_sectors;
6078 mddev->new_layout = mddev->layout;
6079 mddev->delta_disks = 0;
6080 mddev->reshape_backwards = 0;
6081
6082 return 0;
6083 }
6084
6085 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6086 {
6087 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6088
6089 if (mddev->external_size)
6090 return;
6091
6092 mddev->array_sectors = array_sectors;
6093 }
6094 EXPORT_SYMBOL(md_set_array_sectors);
6095
6096 static int update_size(struct mddev *mddev, sector_t num_sectors)
6097 {
6098 struct md_rdev *rdev;
6099 int rv;
6100 int fit = (num_sectors == 0);
6101
6102 if (mddev->pers->resize == NULL)
6103 return -EINVAL;
6104 /* The "num_sectors" is the number of sectors of each device that
6105 * is used. This can only make sense for arrays with redundancy.
6106 * linear and raid0 always use whatever space is available. We can only
6107 * consider changing this number if no resync or reconstruction is
6108 * happening, and if the new size is acceptable. It must fit before the
6109 * sb_start or, if that is <data_offset, it must fit before the size
6110 * of each device. If num_sectors is zero, we find the largest size
6111 * that fits.
6112 */
6113 if (mddev->sync_thread)
6114 return -EBUSY;
6115
6116 rdev_for_each(rdev, mddev) {
6117 sector_t avail = rdev->sectors;
6118
6119 if (fit && (num_sectors == 0 || num_sectors > avail))
6120 num_sectors = avail;
6121 if (avail < num_sectors)
6122 return -ENOSPC;
6123 }
6124 rv = mddev->pers->resize(mddev, num_sectors);
6125 if (!rv)
6126 revalidate_disk(mddev->gendisk);
6127 return rv;
6128 }
6129
6130 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6131 {
6132 int rv;
6133 struct md_rdev *rdev;
6134 /* change the number of raid disks */
6135 if (mddev->pers->check_reshape == NULL)
6136 return -EINVAL;
6137 if (raid_disks <= 0 ||
6138 (mddev->max_disks && raid_disks >= mddev->max_disks))
6139 return -EINVAL;
6140 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6141 return -EBUSY;
6142
6143 rdev_for_each(rdev, mddev) {
6144 if (mddev->raid_disks < raid_disks &&
6145 rdev->data_offset < rdev->new_data_offset)
6146 return -EINVAL;
6147 if (mddev->raid_disks > raid_disks &&
6148 rdev->data_offset > rdev->new_data_offset)
6149 return -EINVAL;
6150 }
6151
6152 mddev->delta_disks = raid_disks - mddev->raid_disks;
6153 if (mddev->delta_disks < 0)
6154 mddev->reshape_backwards = 1;
6155 else if (mddev->delta_disks > 0)
6156 mddev->reshape_backwards = 0;
6157
6158 rv = mddev->pers->check_reshape(mddev);
6159 if (rv < 0) {
6160 mddev->delta_disks = 0;
6161 mddev->reshape_backwards = 0;
6162 }
6163 return rv;
6164 }
6165
6166
6167 /*
6168 * update_array_info is used to change the configuration of an
6169 * on-line array.
6170 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6171 * fields in the info are checked against the array.
6172 * Any differences that cannot be handled will cause an error.
6173 * Normally, only one change can be managed at a time.
6174 */
6175 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6176 {
6177 int rv = 0;
6178 int cnt = 0;
6179 int state = 0;
6180
6181 /* calculate expected state,ignoring low bits */
6182 if (mddev->bitmap && mddev->bitmap_info.offset)
6183 state |= (1 << MD_SB_BITMAP_PRESENT);
6184
6185 if (mddev->major_version != info->major_version ||
6186 mddev->minor_version != info->minor_version ||
6187 /* mddev->patch_version != info->patch_version || */
6188 mddev->ctime != info->ctime ||
6189 mddev->level != info->level ||
6190 /* mddev->layout != info->layout || */
6191 !mddev->persistent != info->not_persistent||
6192 mddev->chunk_sectors != info->chunk_size >> 9 ||
6193 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6194 ((state^info->state) & 0xfffffe00)
6195 )
6196 return -EINVAL;
6197 /* Check there is only one change */
6198 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6199 cnt++;
6200 if (mddev->raid_disks != info->raid_disks)
6201 cnt++;
6202 if (mddev->layout != info->layout)
6203 cnt++;
6204 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6205 cnt++;
6206 if (cnt == 0)
6207 return 0;
6208 if (cnt > 1)
6209 return -EINVAL;
6210
6211 if (mddev->layout != info->layout) {
6212 /* Change layout
6213 * we don't need to do anything at the md level, the
6214 * personality will take care of it all.
6215 */
6216 if (mddev->pers->check_reshape == NULL)
6217 return -EINVAL;
6218 else {
6219 mddev->new_layout = info->layout;
6220 rv = mddev->pers->check_reshape(mddev);
6221 if (rv)
6222 mddev->new_layout = mddev->layout;
6223 return rv;
6224 }
6225 }
6226 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6227 rv = update_size(mddev, (sector_t)info->size * 2);
6228
6229 if (mddev->raid_disks != info->raid_disks)
6230 rv = update_raid_disks(mddev, info->raid_disks);
6231
6232 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6233 if (mddev->pers->quiesce == NULL)
6234 return -EINVAL;
6235 if (mddev->recovery || mddev->sync_thread)
6236 return -EBUSY;
6237 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6238 /* add the bitmap */
6239 if (mddev->bitmap)
6240 return -EEXIST;
6241 if (mddev->bitmap_info.default_offset == 0)
6242 return -EINVAL;
6243 mddev->bitmap_info.offset =
6244 mddev->bitmap_info.default_offset;
6245 mddev->bitmap_info.space =
6246 mddev->bitmap_info.default_space;
6247 mddev->pers->quiesce(mddev, 1);
6248 rv = bitmap_create(mddev);
6249 if (!rv)
6250 rv = bitmap_load(mddev);
6251 if (rv)
6252 bitmap_destroy(mddev);
6253 mddev->pers->quiesce(mddev, 0);
6254 } else {
6255 /* remove the bitmap */
6256 if (!mddev->bitmap)
6257 return -ENOENT;
6258 if (mddev->bitmap->storage.file)
6259 return -EINVAL;
6260 mddev->pers->quiesce(mddev, 1);
6261 bitmap_destroy(mddev);
6262 mddev->pers->quiesce(mddev, 0);
6263 mddev->bitmap_info.offset = 0;
6264 }
6265 }
6266 md_update_sb(mddev, 1);
6267 return rv;
6268 }
6269
6270 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6271 {
6272 struct md_rdev *rdev;
6273
6274 if (mddev->pers == NULL)
6275 return -ENODEV;
6276
6277 rdev = find_rdev(mddev, dev);
6278 if (!rdev)
6279 return -ENODEV;
6280
6281 md_error(mddev, rdev);
6282 if (!test_bit(Faulty, &rdev->flags))
6283 return -EBUSY;
6284 return 0;
6285 }
6286
6287 /*
6288 * We have a problem here : there is no easy way to give a CHS
6289 * virtual geometry. We currently pretend that we have a 2 heads
6290 * 4 sectors (with a BIG number of cylinders...). This drives
6291 * dosfs just mad... ;-)
6292 */
6293 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6294 {
6295 struct mddev *mddev = bdev->bd_disk->private_data;
6296
6297 geo->heads = 2;
6298 geo->sectors = 4;
6299 geo->cylinders = mddev->array_sectors / 8;
6300 return 0;
6301 }
6302
6303 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6304 unsigned int cmd, unsigned long arg)
6305 {
6306 int err = 0;
6307 void __user *argp = (void __user *)arg;
6308 struct mddev *mddev = NULL;
6309 int ro;
6310
6311 switch (cmd) {
6312 case RAID_VERSION:
6313 case GET_ARRAY_INFO:
6314 case GET_DISK_INFO:
6315 break;
6316 default:
6317 if (!capable(CAP_SYS_ADMIN))
6318 return -EACCES;
6319 }
6320
6321 /*
6322 * Commands dealing with the RAID driver but not any
6323 * particular array:
6324 */
6325 switch (cmd)
6326 {
6327 case RAID_VERSION:
6328 err = get_version(argp);
6329 goto done;
6330
6331 case PRINT_RAID_DEBUG:
6332 err = 0;
6333 md_print_devices();
6334 goto done;
6335
6336 #ifndef MODULE
6337 case RAID_AUTORUN:
6338 err = 0;
6339 autostart_arrays(arg);
6340 goto done;
6341 #endif
6342 default:;
6343 }
6344
6345 /*
6346 * Commands creating/starting a new array:
6347 */
6348
6349 mddev = bdev->bd_disk->private_data;
6350
6351 if (!mddev) {
6352 BUG();
6353 goto abort;
6354 }
6355
6356 err = mddev_lock(mddev);
6357 if (err) {
6358 printk(KERN_INFO
6359 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6360 err, cmd);
6361 goto abort;
6362 }
6363
6364 switch (cmd)
6365 {
6366 case SET_ARRAY_INFO:
6367 {
6368 mdu_array_info_t info;
6369 if (!arg)
6370 memset(&info, 0, sizeof(info));
6371 else if (copy_from_user(&info, argp, sizeof(info))) {
6372 err = -EFAULT;
6373 goto abort_unlock;
6374 }
6375 if (mddev->pers) {
6376 err = update_array_info(mddev, &info);
6377 if (err) {
6378 printk(KERN_WARNING "md: couldn't update"
6379 " array info. %d\n", err);
6380 goto abort_unlock;
6381 }
6382 goto done_unlock;
6383 }
6384 if (!list_empty(&mddev->disks)) {
6385 printk(KERN_WARNING
6386 "md: array %s already has disks!\n",
6387 mdname(mddev));
6388 err = -EBUSY;
6389 goto abort_unlock;
6390 }
6391 if (mddev->raid_disks) {
6392 printk(KERN_WARNING
6393 "md: array %s already initialised!\n",
6394 mdname(mddev));
6395 err = -EBUSY;
6396 goto abort_unlock;
6397 }
6398 err = set_array_info(mddev, &info);
6399 if (err) {
6400 printk(KERN_WARNING "md: couldn't set"
6401 " array info. %d\n", err);
6402 goto abort_unlock;
6403 }
6404 }
6405 goto done_unlock;
6406
6407 default:;
6408 }
6409
6410 /*
6411 * Commands querying/configuring an existing array:
6412 */
6413 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6414 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6415 if ((!mddev->raid_disks && !mddev->external)
6416 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6417 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6418 && cmd != GET_BITMAP_FILE) {
6419 err = -ENODEV;
6420 goto abort_unlock;
6421 }
6422
6423 /*
6424 * Commands even a read-only array can execute:
6425 */
6426 switch (cmd)
6427 {
6428 case GET_ARRAY_INFO:
6429 err = get_array_info(mddev, argp);
6430 goto done_unlock;
6431
6432 case GET_BITMAP_FILE:
6433 err = get_bitmap_file(mddev, argp);
6434 goto done_unlock;
6435
6436 case GET_DISK_INFO:
6437 err = get_disk_info(mddev, argp);
6438 goto done_unlock;
6439
6440 case RESTART_ARRAY_RW:
6441 err = restart_array(mddev);
6442 goto done_unlock;
6443
6444 case STOP_ARRAY:
6445 err = do_md_stop(mddev, 0, bdev);
6446 goto done_unlock;
6447
6448 case STOP_ARRAY_RO:
6449 err = md_set_readonly(mddev, bdev);
6450 goto done_unlock;
6451
6452 case BLKROSET:
6453 if (get_user(ro, (int __user *)(arg))) {
6454 err = -EFAULT;
6455 goto done_unlock;
6456 }
6457 err = -EINVAL;
6458
6459 /* if the bdev is going readonly the value of mddev->ro
6460 * does not matter, no writes are coming
6461 */
6462 if (ro)
6463 goto done_unlock;
6464
6465 /* are we are already prepared for writes? */
6466 if (mddev->ro != 1)
6467 goto done_unlock;
6468
6469 /* transitioning to readauto need only happen for
6470 * arrays that call md_write_start
6471 */
6472 if (mddev->pers) {
6473 err = restart_array(mddev);
6474 if (err == 0) {
6475 mddev->ro = 2;
6476 set_disk_ro(mddev->gendisk, 0);
6477 }
6478 }
6479 goto done_unlock;
6480 }
6481
6482 /*
6483 * The remaining ioctls are changing the state of the
6484 * superblock, so we do not allow them on read-only arrays.
6485 * However non-MD ioctls (e.g. get-size) will still come through
6486 * here and hit the 'default' below, so only disallow
6487 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6488 */
6489 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6490 if (mddev->ro == 2) {
6491 mddev->ro = 0;
6492 sysfs_notify_dirent_safe(mddev->sysfs_state);
6493 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6494 md_wakeup_thread(mddev->thread);
6495 } else {
6496 err = -EROFS;
6497 goto abort_unlock;
6498 }
6499 }
6500
6501 switch (cmd)
6502 {
6503 case ADD_NEW_DISK:
6504 {
6505 mdu_disk_info_t info;
6506 if (copy_from_user(&info, argp, sizeof(info)))
6507 err = -EFAULT;
6508 else
6509 err = add_new_disk(mddev, &info);
6510 goto done_unlock;
6511 }
6512
6513 case HOT_REMOVE_DISK:
6514 err = hot_remove_disk(mddev, new_decode_dev(arg));
6515 goto done_unlock;
6516
6517 case HOT_ADD_DISK:
6518 err = hot_add_disk(mddev, new_decode_dev(arg));
6519 goto done_unlock;
6520
6521 case SET_DISK_FAULTY:
6522 err = set_disk_faulty(mddev, new_decode_dev(arg));
6523 goto done_unlock;
6524
6525 case RUN_ARRAY:
6526 err = do_md_run(mddev);
6527 goto done_unlock;
6528
6529 case SET_BITMAP_FILE:
6530 err = set_bitmap_file(mddev, (int)arg);
6531 goto done_unlock;
6532
6533 default:
6534 err = -EINVAL;
6535 goto abort_unlock;
6536 }
6537
6538 done_unlock:
6539 abort_unlock:
6540 if (mddev->hold_active == UNTIL_IOCTL &&
6541 err != -EINVAL)
6542 mddev->hold_active = 0;
6543 mddev_unlock(mddev);
6544
6545 return err;
6546 done:
6547 if (err)
6548 MD_BUG();
6549 abort:
6550 return err;
6551 }
6552 #ifdef CONFIG_COMPAT
6553 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6554 unsigned int cmd, unsigned long arg)
6555 {
6556 switch (cmd) {
6557 case HOT_REMOVE_DISK:
6558 case HOT_ADD_DISK:
6559 case SET_DISK_FAULTY:
6560 case SET_BITMAP_FILE:
6561 /* These take in integer arg, do not convert */
6562 break;
6563 default:
6564 arg = (unsigned long)compat_ptr(arg);
6565 break;
6566 }
6567
6568 return md_ioctl(bdev, mode, cmd, arg);
6569 }
6570 #endif /* CONFIG_COMPAT */
6571
6572 static int md_open(struct block_device *bdev, fmode_t mode)
6573 {
6574 /*
6575 * Succeed if we can lock the mddev, which confirms that
6576 * it isn't being stopped right now.
6577 */
6578 struct mddev *mddev = mddev_find(bdev->bd_dev);
6579 int err;
6580
6581 if (!mddev)
6582 return -ENODEV;
6583
6584 if (mddev->gendisk != bdev->bd_disk) {
6585 /* we are racing with mddev_put which is discarding this
6586 * bd_disk.
6587 */
6588 mddev_put(mddev);
6589 /* Wait until bdev->bd_disk is definitely gone */
6590 flush_workqueue(md_misc_wq);
6591 /* Then retry the open from the top */
6592 return -ERESTARTSYS;
6593 }
6594 BUG_ON(mddev != bdev->bd_disk->private_data);
6595
6596 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6597 goto out;
6598
6599 err = 0;
6600 atomic_inc(&mddev->openers);
6601 mutex_unlock(&mddev->open_mutex);
6602
6603 check_disk_change(bdev);
6604 out:
6605 return err;
6606 }
6607
6608 static int md_release(struct gendisk *disk, fmode_t mode)
6609 {
6610 struct mddev *mddev = disk->private_data;
6611
6612 BUG_ON(!mddev);
6613 atomic_dec(&mddev->openers);
6614 mddev_put(mddev);
6615
6616 return 0;
6617 }
6618
6619 static int md_media_changed(struct gendisk *disk)
6620 {
6621 struct mddev *mddev = disk->private_data;
6622
6623 return mddev->changed;
6624 }
6625
6626 static int md_revalidate(struct gendisk *disk)
6627 {
6628 struct mddev *mddev = disk->private_data;
6629
6630 mddev->changed = 0;
6631 return 0;
6632 }
6633 static const struct block_device_operations md_fops =
6634 {
6635 .owner = THIS_MODULE,
6636 .open = md_open,
6637 .release = md_release,
6638 .ioctl = md_ioctl,
6639 #ifdef CONFIG_COMPAT
6640 .compat_ioctl = md_compat_ioctl,
6641 #endif
6642 .getgeo = md_getgeo,
6643 .media_changed = md_media_changed,
6644 .revalidate_disk= md_revalidate,
6645 };
6646
6647 static int md_thread(void * arg)
6648 {
6649 struct md_thread *thread = arg;
6650
6651 /*
6652 * md_thread is a 'system-thread', it's priority should be very
6653 * high. We avoid resource deadlocks individually in each
6654 * raid personality. (RAID5 does preallocation) We also use RR and
6655 * the very same RT priority as kswapd, thus we will never get
6656 * into a priority inversion deadlock.
6657 *
6658 * we definitely have to have equal or higher priority than
6659 * bdflush, otherwise bdflush will deadlock if there are too
6660 * many dirty RAID5 blocks.
6661 */
6662
6663 allow_signal(SIGKILL);
6664 while (!kthread_should_stop()) {
6665
6666 /* We need to wait INTERRUPTIBLE so that
6667 * we don't add to the load-average.
6668 * That means we need to be sure no signals are
6669 * pending
6670 */
6671 if (signal_pending(current))
6672 flush_signals(current);
6673
6674 wait_event_interruptible_timeout
6675 (thread->wqueue,
6676 test_bit(THREAD_WAKEUP, &thread->flags)
6677 || kthread_should_stop(),
6678 thread->timeout);
6679
6680 clear_bit(THREAD_WAKEUP, &thread->flags);
6681 if (!kthread_should_stop())
6682 thread->run(thread->mddev);
6683 }
6684
6685 return 0;
6686 }
6687
6688 void md_wakeup_thread(struct md_thread *thread)
6689 {
6690 if (thread) {
6691 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6692 set_bit(THREAD_WAKEUP, &thread->flags);
6693 wake_up(&thread->wqueue);
6694 }
6695 }
6696
6697 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6698 const char *name)
6699 {
6700 struct md_thread *thread;
6701
6702 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6703 if (!thread)
6704 return NULL;
6705
6706 init_waitqueue_head(&thread->wqueue);
6707
6708 thread->run = run;
6709 thread->mddev = mddev;
6710 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6711 thread->tsk = kthread_run(md_thread, thread,
6712 "%s_%s",
6713 mdname(thread->mddev),
6714 name);
6715 if (IS_ERR(thread->tsk)) {
6716 kfree(thread);
6717 return NULL;
6718 }
6719 return thread;
6720 }
6721
6722 void md_unregister_thread(struct md_thread **threadp)
6723 {
6724 struct md_thread *thread = *threadp;
6725 if (!thread)
6726 return;
6727 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6728 /* Locking ensures that mddev_unlock does not wake_up a
6729 * non-existent thread
6730 */
6731 spin_lock(&pers_lock);
6732 *threadp = NULL;
6733 spin_unlock(&pers_lock);
6734
6735 kthread_stop(thread->tsk);
6736 kfree(thread);
6737 }
6738
6739 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6740 {
6741 if (!mddev) {
6742 MD_BUG();
6743 return;
6744 }
6745
6746 if (!rdev || test_bit(Faulty, &rdev->flags))
6747 return;
6748
6749 if (!mddev->pers || !mddev->pers->error_handler)
6750 return;
6751 mddev->pers->error_handler(mddev,rdev);
6752 if (mddev->degraded)
6753 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6754 sysfs_notify_dirent_safe(rdev->sysfs_state);
6755 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6756 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6757 md_wakeup_thread(mddev->thread);
6758 if (mddev->event_work.func)
6759 queue_work(md_misc_wq, &mddev->event_work);
6760 md_new_event_inintr(mddev);
6761 }
6762
6763 /* seq_file implementation /proc/mdstat */
6764
6765 static void status_unused(struct seq_file *seq)
6766 {
6767 int i = 0;
6768 struct md_rdev *rdev;
6769
6770 seq_printf(seq, "unused devices: ");
6771
6772 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6773 char b[BDEVNAME_SIZE];
6774 i++;
6775 seq_printf(seq, "%s ",
6776 bdevname(rdev->bdev,b));
6777 }
6778 if (!i)
6779 seq_printf(seq, "<none>");
6780
6781 seq_printf(seq, "\n");
6782 }
6783
6784
6785 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6786 {
6787 sector_t max_sectors, resync, res;
6788 unsigned long dt, db;
6789 sector_t rt;
6790 int scale;
6791 unsigned int per_milli;
6792
6793 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6794
6795 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6796 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6797 max_sectors = mddev->resync_max_sectors;
6798 else
6799 max_sectors = mddev->dev_sectors;
6800
6801 /*
6802 * Should not happen.
6803 */
6804 if (!max_sectors) {
6805 MD_BUG();
6806 return;
6807 }
6808 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6809 * in a sector_t, and (max_sectors>>scale) will fit in a
6810 * u32, as those are the requirements for sector_div.
6811 * Thus 'scale' must be at least 10
6812 */
6813 scale = 10;
6814 if (sizeof(sector_t) > sizeof(unsigned long)) {
6815 while ( max_sectors/2 > (1ULL<<(scale+32)))
6816 scale++;
6817 }
6818 res = (resync>>scale)*1000;
6819 sector_div(res, (u32)((max_sectors>>scale)+1));
6820
6821 per_milli = res;
6822 {
6823 int i, x = per_milli/50, y = 20-x;
6824 seq_printf(seq, "[");
6825 for (i = 0; i < x; i++)
6826 seq_printf(seq, "=");
6827 seq_printf(seq, ">");
6828 for (i = 0; i < y; i++)
6829 seq_printf(seq, ".");
6830 seq_printf(seq, "] ");
6831 }
6832 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6833 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6834 "reshape" :
6835 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6836 "check" :
6837 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6838 "resync" : "recovery"))),
6839 per_milli/10, per_milli % 10,
6840 (unsigned long long) resync/2,
6841 (unsigned long long) max_sectors/2);
6842
6843 /*
6844 * dt: time from mark until now
6845 * db: blocks written from mark until now
6846 * rt: remaining time
6847 *
6848 * rt is a sector_t, so could be 32bit or 64bit.
6849 * So we divide before multiply in case it is 32bit and close
6850 * to the limit.
6851 * We scale the divisor (db) by 32 to avoid losing precision
6852 * near the end of resync when the number of remaining sectors
6853 * is close to 'db'.
6854 * We then divide rt by 32 after multiplying by db to compensate.
6855 * The '+1' avoids division by zero if db is very small.
6856 */
6857 dt = ((jiffies - mddev->resync_mark) / HZ);
6858 if (!dt) dt++;
6859 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6860 - mddev->resync_mark_cnt;
6861
6862 rt = max_sectors - resync; /* number of remaining sectors */
6863 sector_div(rt, db/32+1);
6864 rt *= dt;
6865 rt >>= 5;
6866
6867 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6868 ((unsigned long)rt % 60)/6);
6869
6870 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6871 }
6872
6873 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6874 {
6875 struct list_head *tmp;
6876 loff_t l = *pos;
6877 struct mddev *mddev;
6878
6879 if (l >= 0x10000)
6880 return NULL;
6881 if (!l--)
6882 /* header */
6883 return (void*)1;
6884
6885 spin_lock(&all_mddevs_lock);
6886 list_for_each(tmp,&all_mddevs)
6887 if (!l--) {
6888 mddev = list_entry(tmp, struct mddev, all_mddevs);
6889 mddev_get(mddev);
6890 spin_unlock(&all_mddevs_lock);
6891 return mddev;
6892 }
6893 spin_unlock(&all_mddevs_lock);
6894 if (!l--)
6895 return (void*)2;/* tail */
6896 return NULL;
6897 }
6898
6899 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6900 {
6901 struct list_head *tmp;
6902 struct mddev *next_mddev, *mddev = v;
6903
6904 ++*pos;
6905 if (v == (void*)2)
6906 return NULL;
6907
6908 spin_lock(&all_mddevs_lock);
6909 if (v == (void*)1)
6910 tmp = all_mddevs.next;
6911 else
6912 tmp = mddev->all_mddevs.next;
6913 if (tmp != &all_mddevs)
6914 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6915 else {
6916 next_mddev = (void*)2;
6917 *pos = 0x10000;
6918 }
6919 spin_unlock(&all_mddevs_lock);
6920
6921 if (v != (void*)1)
6922 mddev_put(mddev);
6923 return next_mddev;
6924
6925 }
6926
6927 static void md_seq_stop(struct seq_file *seq, void *v)
6928 {
6929 struct mddev *mddev = v;
6930
6931 if (mddev && v != (void*)1 && v != (void*)2)
6932 mddev_put(mddev);
6933 }
6934
6935 static int md_seq_show(struct seq_file *seq, void *v)
6936 {
6937 struct mddev *mddev = v;
6938 sector_t sectors;
6939 struct md_rdev *rdev;
6940
6941 if (v == (void*)1) {
6942 struct md_personality *pers;
6943 seq_printf(seq, "Personalities : ");
6944 spin_lock(&pers_lock);
6945 list_for_each_entry(pers, &pers_list, list)
6946 seq_printf(seq, "[%s] ", pers->name);
6947
6948 spin_unlock(&pers_lock);
6949 seq_printf(seq, "\n");
6950 seq->poll_event = atomic_read(&md_event_count);
6951 return 0;
6952 }
6953 if (v == (void*)2) {
6954 status_unused(seq);
6955 return 0;
6956 }
6957
6958 if (mddev_lock(mddev) < 0)
6959 return -EINTR;
6960
6961 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6962 seq_printf(seq, "%s : %sactive", mdname(mddev),
6963 mddev->pers ? "" : "in");
6964 if (mddev->pers) {
6965 if (mddev->ro==1)
6966 seq_printf(seq, " (read-only)");
6967 if (mddev->ro==2)
6968 seq_printf(seq, " (auto-read-only)");
6969 seq_printf(seq, " %s", mddev->pers->name);
6970 }
6971
6972 sectors = 0;
6973 rdev_for_each(rdev, mddev) {
6974 char b[BDEVNAME_SIZE];
6975 seq_printf(seq, " %s[%d]",
6976 bdevname(rdev->bdev,b), rdev->desc_nr);
6977 if (test_bit(WriteMostly, &rdev->flags))
6978 seq_printf(seq, "(W)");
6979 if (test_bit(Faulty, &rdev->flags)) {
6980 seq_printf(seq, "(F)");
6981 continue;
6982 }
6983 if (rdev->raid_disk < 0)
6984 seq_printf(seq, "(S)"); /* spare */
6985 if (test_bit(Replacement, &rdev->flags))
6986 seq_printf(seq, "(R)");
6987 sectors += rdev->sectors;
6988 }
6989
6990 if (!list_empty(&mddev->disks)) {
6991 if (mddev->pers)
6992 seq_printf(seq, "\n %llu blocks",
6993 (unsigned long long)
6994 mddev->array_sectors / 2);
6995 else
6996 seq_printf(seq, "\n %llu blocks",
6997 (unsigned long long)sectors / 2);
6998 }
6999 if (mddev->persistent) {
7000 if (mddev->major_version != 0 ||
7001 mddev->minor_version != 90) {
7002 seq_printf(seq," super %d.%d",
7003 mddev->major_version,
7004 mddev->minor_version);
7005 }
7006 } else if (mddev->external)
7007 seq_printf(seq, " super external:%s",
7008 mddev->metadata_type);
7009 else
7010 seq_printf(seq, " super non-persistent");
7011
7012 if (mddev->pers) {
7013 mddev->pers->status(seq, mddev);
7014 seq_printf(seq, "\n ");
7015 if (mddev->pers->sync_request) {
7016 if (mddev->curr_resync > 2) {
7017 status_resync(seq, mddev);
7018 seq_printf(seq, "\n ");
7019 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7020 seq_printf(seq, "\tresync=DELAYED\n ");
7021 else if (mddev->recovery_cp < MaxSector)
7022 seq_printf(seq, "\tresync=PENDING\n ");
7023 }
7024 } else
7025 seq_printf(seq, "\n ");
7026
7027 bitmap_status(seq, mddev->bitmap);
7028
7029 seq_printf(seq, "\n");
7030 }
7031 mddev_unlock(mddev);
7032
7033 return 0;
7034 }
7035
7036 static const struct seq_operations md_seq_ops = {
7037 .start = md_seq_start,
7038 .next = md_seq_next,
7039 .stop = md_seq_stop,
7040 .show = md_seq_show,
7041 };
7042
7043 static int md_seq_open(struct inode *inode, struct file *file)
7044 {
7045 struct seq_file *seq;
7046 int error;
7047
7048 error = seq_open(file, &md_seq_ops);
7049 if (error)
7050 return error;
7051
7052 seq = file->private_data;
7053 seq->poll_event = atomic_read(&md_event_count);
7054 return error;
7055 }
7056
7057 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7058 {
7059 struct seq_file *seq = filp->private_data;
7060 int mask;
7061
7062 poll_wait(filp, &md_event_waiters, wait);
7063
7064 /* always allow read */
7065 mask = POLLIN | POLLRDNORM;
7066
7067 if (seq->poll_event != atomic_read(&md_event_count))
7068 mask |= POLLERR | POLLPRI;
7069 return mask;
7070 }
7071
7072 static const struct file_operations md_seq_fops = {
7073 .owner = THIS_MODULE,
7074 .open = md_seq_open,
7075 .read = seq_read,
7076 .llseek = seq_lseek,
7077 .release = seq_release_private,
7078 .poll = mdstat_poll,
7079 };
7080
7081 int register_md_personality(struct md_personality *p)
7082 {
7083 spin_lock(&pers_lock);
7084 list_add_tail(&p->list, &pers_list);
7085 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7086 spin_unlock(&pers_lock);
7087 return 0;
7088 }
7089
7090 int unregister_md_personality(struct md_personality *p)
7091 {
7092 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7093 spin_lock(&pers_lock);
7094 list_del_init(&p->list);
7095 spin_unlock(&pers_lock);
7096 return 0;
7097 }
7098
7099 static int is_mddev_idle(struct mddev *mddev, int init)
7100 {
7101 struct md_rdev * rdev;
7102 int idle;
7103 int curr_events;
7104
7105 idle = 1;
7106 rcu_read_lock();
7107 rdev_for_each_rcu(rdev, mddev) {
7108 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7109 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7110 (int)part_stat_read(&disk->part0, sectors[1]) -
7111 atomic_read(&disk->sync_io);
7112 /* sync IO will cause sync_io to increase before the disk_stats
7113 * as sync_io is counted when a request starts, and
7114 * disk_stats is counted when it completes.
7115 * So resync activity will cause curr_events to be smaller than
7116 * when there was no such activity.
7117 * non-sync IO will cause disk_stat to increase without
7118 * increasing sync_io so curr_events will (eventually)
7119 * be larger than it was before. Once it becomes
7120 * substantially larger, the test below will cause
7121 * the array to appear non-idle, and resync will slow
7122 * down.
7123 * If there is a lot of outstanding resync activity when
7124 * we set last_event to curr_events, then all that activity
7125 * completing might cause the array to appear non-idle
7126 * and resync will be slowed down even though there might
7127 * not have been non-resync activity. This will only
7128 * happen once though. 'last_events' will soon reflect
7129 * the state where there is little or no outstanding
7130 * resync requests, and further resync activity will
7131 * always make curr_events less than last_events.
7132 *
7133 */
7134 if (init || curr_events - rdev->last_events > 64) {
7135 rdev->last_events = curr_events;
7136 idle = 0;
7137 }
7138 }
7139 rcu_read_unlock();
7140 return idle;
7141 }
7142
7143 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7144 {
7145 /* another "blocks" (512byte) blocks have been synced */
7146 atomic_sub(blocks, &mddev->recovery_active);
7147 wake_up(&mddev->recovery_wait);
7148 if (!ok) {
7149 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7150 md_wakeup_thread(mddev->thread);
7151 // stop recovery, signal do_sync ....
7152 }
7153 }
7154
7155
7156 /* md_write_start(mddev, bi)
7157 * If we need to update some array metadata (e.g. 'active' flag
7158 * in superblock) before writing, schedule a superblock update
7159 * and wait for it to complete.
7160 */
7161 void md_write_start(struct mddev *mddev, struct bio *bi)
7162 {
7163 int did_change = 0;
7164 if (bio_data_dir(bi) != WRITE)
7165 return;
7166
7167 BUG_ON(mddev->ro == 1);
7168 if (mddev->ro == 2) {
7169 /* need to switch to read/write */
7170 mddev->ro = 0;
7171 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7172 md_wakeup_thread(mddev->thread);
7173 md_wakeup_thread(mddev->sync_thread);
7174 did_change = 1;
7175 }
7176 atomic_inc(&mddev->writes_pending);
7177 if (mddev->safemode == 1)
7178 mddev->safemode = 0;
7179 if (mddev->in_sync) {
7180 spin_lock_irq(&mddev->write_lock);
7181 if (mddev->in_sync) {
7182 mddev->in_sync = 0;
7183 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7184 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7185 md_wakeup_thread(mddev->thread);
7186 did_change = 1;
7187 }
7188 spin_unlock_irq(&mddev->write_lock);
7189 }
7190 if (did_change)
7191 sysfs_notify_dirent_safe(mddev->sysfs_state);
7192 wait_event(mddev->sb_wait,
7193 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7194 }
7195
7196 void md_write_end(struct mddev *mddev)
7197 {
7198 if (atomic_dec_and_test(&mddev->writes_pending)) {
7199 if (mddev->safemode == 2)
7200 md_wakeup_thread(mddev->thread);
7201 else if (mddev->safemode_delay)
7202 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7203 }
7204 }
7205
7206 /* md_allow_write(mddev)
7207 * Calling this ensures that the array is marked 'active' so that writes
7208 * may proceed without blocking. It is important to call this before
7209 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7210 * Must be called with mddev_lock held.
7211 *
7212 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7213 * is dropped, so return -EAGAIN after notifying userspace.
7214 */
7215 int md_allow_write(struct mddev *mddev)
7216 {
7217 if (!mddev->pers)
7218 return 0;
7219 if (mddev->ro)
7220 return 0;
7221 if (!mddev->pers->sync_request)
7222 return 0;
7223
7224 spin_lock_irq(&mddev->write_lock);
7225 if (mddev->in_sync) {
7226 mddev->in_sync = 0;
7227 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7228 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7229 if (mddev->safemode_delay &&
7230 mddev->safemode == 0)
7231 mddev->safemode = 1;
7232 spin_unlock_irq(&mddev->write_lock);
7233 md_update_sb(mddev, 0);
7234 sysfs_notify_dirent_safe(mddev->sysfs_state);
7235 } else
7236 spin_unlock_irq(&mddev->write_lock);
7237
7238 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7239 return -EAGAIN;
7240 else
7241 return 0;
7242 }
7243 EXPORT_SYMBOL_GPL(md_allow_write);
7244
7245 #define SYNC_MARKS 10
7246 #define SYNC_MARK_STEP (3*HZ)
7247 void md_do_sync(struct mddev *mddev)
7248 {
7249 struct mddev *mddev2;
7250 unsigned int currspeed = 0,
7251 window;
7252 sector_t max_sectors,j, io_sectors;
7253 unsigned long mark[SYNC_MARKS];
7254 sector_t mark_cnt[SYNC_MARKS];
7255 int last_mark,m;
7256 struct list_head *tmp;
7257 sector_t last_check;
7258 int skipped = 0;
7259 struct md_rdev *rdev;
7260 char *desc;
7261 struct blk_plug plug;
7262
7263 /* just incase thread restarts... */
7264 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7265 return;
7266 if (mddev->ro) /* never try to sync a read-only array */
7267 return;
7268
7269 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7270 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7271 desc = "data-check";
7272 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7273 desc = "requested-resync";
7274 else
7275 desc = "resync";
7276 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7277 desc = "reshape";
7278 else
7279 desc = "recovery";
7280
7281 /* we overload curr_resync somewhat here.
7282 * 0 == not engaged in resync at all
7283 * 2 == checking that there is no conflict with another sync
7284 * 1 == like 2, but have yielded to allow conflicting resync to
7285 * commense
7286 * other == active in resync - this many blocks
7287 *
7288 * Before starting a resync we must have set curr_resync to
7289 * 2, and then checked that every "conflicting" array has curr_resync
7290 * less than ours. When we find one that is the same or higher
7291 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7292 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7293 * This will mean we have to start checking from the beginning again.
7294 *
7295 */
7296
7297 do {
7298 mddev->curr_resync = 2;
7299
7300 try_again:
7301 if (kthread_should_stop())
7302 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7303
7304 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7305 goto skip;
7306 for_each_mddev(mddev2, tmp) {
7307 if (mddev2 == mddev)
7308 continue;
7309 if (!mddev->parallel_resync
7310 && mddev2->curr_resync
7311 && match_mddev_units(mddev, mddev2)) {
7312 DEFINE_WAIT(wq);
7313 if (mddev < mddev2 && mddev->curr_resync == 2) {
7314 /* arbitrarily yield */
7315 mddev->curr_resync = 1;
7316 wake_up(&resync_wait);
7317 }
7318 if (mddev > mddev2 && mddev->curr_resync == 1)
7319 /* no need to wait here, we can wait the next
7320 * time 'round when curr_resync == 2
7321 */
7322 continue;
7323 /* We need to wait 'interruptible' so as not to
7324 * contribute to the load average, and not to
7325 * be caught by 'softlockup'
7326 */
7327 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7328 if (!kthread_should_stop() &&
7329 mddev2->curr_resync >= mddev->curr_resync) {
7330 printk(KERN_INFO "md: delaying %s of %s"
7331 " until %s has finished (they"
7332 " share one or more physical units)\n",
7333 desc, mdname(mddev), mdname(mddev2));
7334 mddev_put(mddev2);
7335 if (signal_pending(current))
7336 flush_signals(current);
7337 schedule();
7338 finish_wait(&resync_wait, &wq);
7339 goto try_again;
7340 }
7341 finish_wait(&resync_wait, &wq);
7342 }
7343 }
7344 } while (mddev->curr_resync < 2);
7345
7346 j = 0;
7347 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7348 /* resync follows the size requested by the personality,
7349 * which defaults to physical size, but can be virtual size
7350 */
7351 max_sectors = mddev->resync_max_sectors;
7352 mddev->resync_mismatches = 0;
7353 /* we don't use the checkpoint if there's a bitmap */
7354 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7355 j = mddev->resync_min;
7356 else if (!mddev->bitmap)
7357 j = mddev->recovery_cp;
7358
7359 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7360 max_sectors = mddev->resync_max_sectors;
7361 else {
7362 /* recovery follows the physical size of devices */
7363 max_sectors = mddev->dev_sectors;
7364 j = MaxSector;
7365 rcu_read_lock();
7366 rdev_for_each_rcu(rdev, mddev)
7367 if (rdev->raid_disk >= 0 &&
7368 !test_bit(Faulty, &rdev->flags) &&
7369 !test_bit(In_sync, &rdev->flags) &&
7370 rdev->recovery_offset < j)
7371 j = rdev->recovery_offset;
7372 rcu_read_unlock();
7373 }
7374
7375 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7376 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7377 " %d KB/sec/disk.\n", speed_min(mddev));
7378 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7379 "(but not more than %d KB/sec) for %s.\n",
7380 speed_max(mddev), desc);
7381
7382 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7383
7384 io_sectors = 0;
7385 for (m = 0; m < SYNC_MARKS; m++) {
7386 mark[m] = jiffies;
7387 mark_cnt[m] = io_sectors;
7388 }
7389 last_mark = 0;
7390 mddev->resync_mark = mark[last_mark];
7391 mddev->resync_mark_cnt = mark_cnt[last_mark];
7392
7393 /*
7394 * Tune reconstruction:
7395 */
7396 window = 32*(PAGE_SIZE/512);
7397 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7398 window/2, (unsigned long long)max_sectors/2);
7399
7400 atomic_set(&mddev->recovery_active, 0);
7401 last_check = 0;
7402
7403 if (j>2) {
7404 printk(KERN_INFO
7405 "md: resuming %s of %s from checkpoint.\n",
7406 desc, mdname(mddev));
7407 mddev->curr_resync = j;
7408 }
7409 mddev->curr_resync_completed = j;
7410
7411 blk_start_plug(&plug);
7412 while (j < max_sectors) {
7413 sector_t sectors;
7414
7415 skipped = 0;
7416
7417 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7418 ((mddev->curr_resync > mddev->curr_resync_completed &&
7419 (mddev->curr_resync - mddev->curr_resync_completed)
7420 > (max_sectors >> 4)) ||
7421 (j - mddev->curr_resync_completed)*2
7422 >= mddev->resync_max - mddev->curr_resync_completed
7423 )) {
7424 /* time to update curr_resync_completed */
7425 wait_event(mddev->recovery_wait,
7426 atomic_read(&mddev->recovery_active) == 0);
7427 mddev->curr_resync_completed = j;
7428 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7429 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7430 }
7431
7432 while (j >= mddev->resync_max && !kthread_should_stop()) {
7433 /* As this condition is controlled by user-space,
7434 * we can block indefinitely, so use '_interruptible'
7435 * to avoid triggering warnings.
7436 */
7437 flush_signals(current); /* just in case */
7438 wait_event_interruptible(mddev->recovery_wait,
7439 mddev->resync_max > j
7440 || kthread_should_stop());
7441 }
7442
7443 if (kthread_should_stop())
7444 goto interrupted;
7445
7446 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7447 currspeed < speed_min(mddev));
7448 if (sectors == 0) {
7449 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7450 goto out;
7451 }
7452
7453 if (!skipped) { /* actual IO requested */
7454 io_sectors += sectors;
7455 atomic_add(sectors, &mddev->recovery_active);
7456 }
7457
7458 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7459 break;
7460
7461 j += sectors;
7462 if (j>1) mddev->curr_resync = j;
7463 mddev->curr_mark_cnt = io_sectors;
7464 if (last_check == 0)
7465 /* this is the earliest that rebuild will be
7466 * visible in /proc/mdstat
7467 */
7468 md_new_event(mddev);
7469
7470 if (last_check + window > io_sectors || j == max_sectors)
7471 continue;
7472
7473 last_check = io_sectors;
7474 repeat:
7475 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7476 /* step marks */
7477 int next = (last_mark+1) % SYNC_MARKS;
7478
7479 mddev->resync_mark = mark[next];
7480 mddev->resync_mark_cnt = mark_cnt[next];
7481 mark[next] = jiffies;
7482 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7483 last_mark = next;
7484 }
7485
7486
7487 if (kthread_should_stop())
7488 goto interrupted;
7489
7490
7491 /*
7492 * this loop exits only if either when we are slower than
7493 * the 'hard' speed limit, or the system was IO-idle for
7494 * a jiffy.
7495 * the system might be non-idle CPU-wise, but we only care
7496 * about not overloading the IO subsystem. (things like an
7497 * e2fsck being done on the RAID array should execute fast)
7498 */
7499 cond_resched();
7500
7501 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7502 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7503
7504 if (currspeed > speed_min(mddev)) {
7505 if ((currspeed > speed_max(mddev)) ||
7506 !is_mddev_idle(mddev, 0)) {
7507 msleep(500);
7508 goto repeat;
7509 }
7510 }
7511 }
7512 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7513 /*
7514 * this also signals 'finished resyncing' to md_stop
7515 */
7516 out:
7517 blk_finish_plug(&plug);
7518 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7519
7520 /* tell personality that we are finished */
7521 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7522
7523 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7524 mddev->curr_resync > 2) {
7525 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7526 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7527 if (mddev->curr_resync >= mddev->recovery_cp) {
7528 printk(KERN_INFO
7529 "md: checkpointing %s of %s.\n",
7530 desc, mdname(mddev));
7531 mddev->recovery_cp =
7532 mddev->curr_resync_completed;
7533 }
7534 } else
7535 mddev->recovery_cp = MaxSector;
7536 } else {
7537 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7538 mddev->curr_resync = MaxSector;
7539 rcu_read_lock();
7540 rdev_for_each_rcu(rdev, mddev)
7541 if (rdev->raid_disk >= 0 &&
7542 mddev->delta_disks >= 0 &&
7543 !test_bit(Faulty, &rdev->flags) &&
7544 !test_bit(In_sync, &rdev->flags) &&
7545 rdev->recovery_offset < mddev->curr_resync)
7546 rdev->recovery_offset = mddev->curr_resync;
7547 rcu_read_unlock();
7548 }
7549 }
7550 skip:
7551 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7552
7553 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7554 /* We completed so min/max setting can be forgotten if used. */
7555 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7556 mddev->resync_min = 0;
7557 mddev->resync_max = MaxSector;
7558 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7559 mddev->resync_min = mddev->curr_resync_completed;
7560 mddev->curr_resync = 0;
7561 wake_up(&resync_wait);
7562 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7563 md_wakeup_thread(mddev->thread);
7564 return;
7565
7566 interrupted:
7567 /*
7568 * got a signal, exit.
7569 */
7570 printk(KERN_INFO
7571 "md: md_do_sync() got signal ... exiting\n");
7572 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7573 goto out;
7574
7575 }
7576 EXPORT_SYMBOL_GPL(md_do_sync);
7577
7578 static int remove_and_add_spares(struct mddev *mddev)
7579 {
7580 struct md_rdev *rdev;
7581 int spares = 0;
7582 int removed = 0;
7583
7584 mddev->curr_resync_completed = 0;
7585
7586 rdev_for_each(rdev, mddev)
7587 if (rdev->raid_disk >= 0 &&
7588 !test_bit(Blocked, &rdev->flags) &&
7589 (test_bit(Faulty, &rdev->flags) ||
7590 ! test_bit(In_sync, &rdev->flags)) &&
7591 atomic_read(&rdev->nr_pending)==0) {
7592 if (mddev->pers->hot_remove_disk(
7593 mddev, rdev) == 0) {
7594 sysfs_unlink_rdev(mddev, rdev);
7595 rdev->raid_disk = -1;
7596 removed++;
7597 }
7598 }
7599 if (removed)
7600 sysfs_notify(&mddev->kobj, NULL,
7601 "degraded");
7602
7603
7604 rdev_for_each(rdev, mddev) {
7605 if (rdev->raid_disk >= 0 &&
7606 !test_bit(In_sync, &rdev->flags) &&
7607 !test_bit(Faulty, &rdev->flags))
7608 spares++;
7609 if (rdev->raid_disk < 0
7610 && !test_bit(Faulty, &rdev->flags)) {
7611 rdev->recovery_offset = 0;
7612 if (mddev->pers->
7613 hot_add_disk(mddev, rdev) == 0) {
7614 if (sysfs_link_rdev(mddev, rdev))
7615 /* failure here is OK */;
7616 spares++;
7617 md_new_event(mddev);
7618 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7619 }
7620 }
7621 }
7622 if (removed)
7623 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7624 return spares;
7625 }
7626
7627 static void reap_sync_thread(struct mddev *mddev)
7628 {
7629 struct md_rdev *rdev;
7630
7631 /* resync has finished, collect result */
7632 md_unregister_thread(&mddev->sync_thread);
7633 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7634 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7635 /* success...*/
7636 /* activate any spares */
7637 if (mddev->pers->spare_active(mddev)) {
7638 sysfs_notify(&mddev->kobj, NULL,
7639 "degraded");
7640 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7641 }
7642 }
7643 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7644 mddev->pers->finish_reshape)
7645 mddev->pers->finish_reshape(mddev);
7646
7647 /* If array is no-longer degraded, then any saved_raid_disk
7648 * information must be scrapped. Also if any device is now
7649 * In_sync we must scrape the saved_raid_disk for that device
7650 * do the superblock for an incrementally recovered device
7651 * written out.
7652 */
7653 rdev_for_each(rdev, mddev)
7654 if (!mddev->degraded ||
7655 test_bit(In_sync, &rdev->flags))
7656 rdev->saved_raid_disk = -1;
7657
7658 md_update_sb(mddev, 1);
7659 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7660 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7661 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7662 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7663 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7664 /* flag recovery needed just to double check */
7665 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7666 sysfs_notify_dirent_safe(mddev->sysfs_action);
7667 md_new_event(mddev);
7668 if (mddev->event_work.func)
7669 queue_work(md_misc_wq, &mddev->event_work);
7670 }
7671
7672 /*
7673 * This routine is regularly called by all per-raid-array threads to
7674 * deal with generic issues like resync and super-block update.
7675 * Raid personalities that don't have a thread (linear/raid0) do not
7676 * need this as they never do any recovery or update the superblock.
7677 *
7678 * It does not do any resync itself, but rather "forks" off other threads
7679 * to do that as needed.
7680 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7681 * "->recovery" and create a thread at ->sync_thread.
7682 * When the thread finishes it sets MD_RECOVERY_DONE
7683 * and wakeups up this thread which will reap the thread and finish up.
7684 * This thread also removes any faulty devices (with nr_pending == 0).
7685 *
7686 * The overall approach is:
7687 * 1/ if the superblock needs updating, update it.
7688 * 2/ If a recovery thread is running, don't do anything else.
7689 * 3/ If recovery has finished, clean up, possibly marking spares active.
7690 * 4/ If there are any faulty devices, remove them.
7691 * 5/ If array is degraded, try to add spares devices
7692 * 6/ If array has spares or is not in-sync, start a resync thread.
7693 */
7694 void md_check_recovery(struct mddev *mddev)
7695 {
7696 if (mddev->suspended)
7697 return;
7698
7699 if (mddev->bitmap)
7700 bitmap_daemon_work(mddev);
7701
7702 if (signal_pending(current)) {
7703 if (mddev->pers->sync_request && !mddev->external) {
7704 printk(KERN_INFO "md: %s in immediate safe mode\n",
7705 mdname(mddev));
7706 mddev->safemode = 2;
7707 }
7708 flush_signals(current);
7709 }
7710
7711 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7712 return;
7713 if ( ! (
7714 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7715 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7716 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7717 (mddev->external == 0 && mddev->safemode == 1) ||
7718 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7719 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7720 ))
7721 return;
7722
7723 if (mddev_trylock(mddev)) {
7724 int spares = 0;
7725
7726 if (mddev->ro) {
7727 /* Only thing we do on a ro array is remove
7728 * failed devices.
7729 */
7730 struct md_rdev *rdev;
7731 rdev_for_each(rdev, mddev)
7732 if (rdev->raid_disk >= 0 &&
7733 !test_bit(Blocked, &rdev->flags) &&
7734 test_bit(Faulty, &rdev->flags) &&
7735 atomic_read(&rdev->nr_pending)==0) {
7736 if (mddev->pers->hot_remove_disk(
7737 mddev, rdev) == 0) {
7738 sysfs_unlink_rdev(mddev, rdev);
7739 rdev->raid_disk = -1;
7740 }
7741 }
7742 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7743 goto unlock;
7744 }
7745
7746 if (!mddev->external) {
7747 int did_change = 0;
7748 spin_lock_irq(&mddev->write_lock);
7749 if (mddev->safemode &&
7750 !atomic_read(&mddev->writes_pending) &&
7751 !mddev->in_sync &&
7752 mddev->recovery_cp == MaxSector) {
7753 mddev->in_sync = 1;
7754 did_change = 1;
7755 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7756 }
7757 if (mddev->safemode == 1)
7758 mddev->safemode = 0;
7759 spin_unlock_irq(&mddev->write_lock);
7760 if (did_change)
7761 sysfs_notify_dirent_safe(mddev->sysfs_state);
7762 }
7763
7764 if (mddev->flags)
7765 md_update_sb(mddev, 0);
7766
7767 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7768 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7769 /* resync/recovery still happening */
7770 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7771 goto unlock;
7772 }
7773 if (mddev->sync_thread) {
7774 reap_sync_thread(mddev);
7775 goto unlock;
7776 }
7777 /* Set RUNNING before clearing NEEDED to avoid
7778 * any transients in the value of "sync_action".
7779 */
7780 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7781 /* Clear some bits that don't mean anything, but
7782 * might be left set
7783 */
7784 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7785 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7786
7787 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7788 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7789 goto unlock;
7790 /* no recovery is running.
7791 * remove any failed drives, then
7792 * add spares if possible.
7793 * Spare are also removed and re-added, to allow
7794 * the personality to fail the re-add.
7795 */
7796
7797 if (mddev->reshape_position != MaxSector) {
7798 if (mddev->pers->check_reshape == NULL ||
7799 mddev->pers->check_reshape(mddev) != 0)
7800 /* Cannot proceed */
7801 goto unlock;
7802 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7803 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7804 } else if ((spares = remove_and_add_spares(mddev))) {
7805 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7806 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7807 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7808 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7809 } else if (mddev->recovery_cp < MaxSector) {
7810 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7811 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7812 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7813 /* nothing to be done ... */
7814 goto unlock;
7815
7816 if (mddev->pers->sync_request) {
7817 if (spares) {
7818 /* We are adding a device or devices to an array
7819 * which has the bitmap stored on all devices.
7820 * So make sure all bitmap pages get written
7821 */
7822 bitmap_write_all(mddev->bitmap);
7823 }
7824 mddev->sync_thread = md_register_thread(md_do_sync,
7825 mddev,
7826 "resync");
7827 if (!mddev->sync_thread) {
7828 printk(KERN_ERR "%s: could not start resync"
7829 " thread...\n",
7830 mdname(mddev));
7831 /* leave the spares where they are, it shouldn't hurt */
7832 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7833 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7834 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7835 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7836 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7837 } else
7838 md_wakeup_thread(mddev->sync_thread);
7839 sysfs_notify_dirent_safe(mddev->sysfs_action);
7840 md_new_event(mddev);
7841 }
7842 unlock:
7843 if (!mddev->sync_thread) {
7844 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7845 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7846 &mddev->recovery))
7847 if (mddev->sysfs_action)
7848 sysfs_notify_dirent_safe(mddev->sysfs_action);
7849 }
7850 mddev_unlock(mddev);
7851 }
7852 }
7853
7854 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7855 {
7856 sysfs_notify_dirent_safe(rdev->sysfs_state);
7857 wait_event_timeout(rdev->blocked_wait,
7858 !test_bit(Blocked, &rdev->flags) &&
7859 !test_bit(BlockedBadBlocks, &rdev->flags),
7860 msecs_to_jiffies(5000));
7861 rdev_dec_pending(rdev, mddev);
7862 }
7863 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7864
7865 void md_finish_reshape(struct mddev *mddev)
7866 {
7867 /* called be personality module when reshape completes. */
7868 struct md_rdev *rdev;
7869
7870 rdev_for_each(rdev, mddev) {
7871 if (rdev->data_offset > rdev->new_data_offset)
7872 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7873 else
7874 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7875 rdev->data_offset = rdev->new_data_offset;
7876 }
7877 }
7878 EXPORT_SYMBOL(md_finish_reshape);
7879
7880 /* Bad block management.
7881 * We can record which blocks on each device are 'bad' and so just
7882 * fail those blocks, or that stripe, rather than the whole device.
7883 * Entries in the bad-block table are 64bits wide. This comprises:
7884 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7885 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7886 * A 'shift' can be set so that larger blocks are tracked and
7887 * consequently larger devices can be covered.
7888 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7889 *
7890 * Locking of the bad-block table uses a seqlock so md_is_badblock
7891 * might need to retry if it is very unlucky.
7892 * We will sometimes want to check for bad blocks in a bi_end_io function,
7893 * so we use the write_seqlock_irq variant.
7894 *
7895 * When looking for a bad block we specify a range and want to
7896 * know if any block in the range is bad. So we binary-search
7897 * to the last range that starts at-or-before the given endpoint,
7898 * (or "before the sector after the target range")
7899 * then see if it ends after the given start.
7900 * We return
7901 * 0 if there are no known bad blocks in the range
7902 * 1 if there are known bad block which are all acknowledged
7903 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7904 * plus the start/length of the first bad section we overlap.
7905 */
7906 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7907 sector_t *first_bad, int *bad_sectors)
7908 {
7909 int hi;
7910 int lo = 0;
7911 u64 *p = bb->page;
7912 int rv = 0;
7913 sector_t target = s + sectors;
7914 unsigned seq;
7915
7916 if (bb->shift > 0) {
7917 /* round the start down, and the end up */
7918 s >>= bb->shift;
7919 target += (1<<bb->shift) - 1;
7920 target >>= bb->shift;
7921 sectors = target - s;
7922 }
7923 /* 'target' is now the first block after the bad range */
7924
7925 retry:
7926 seq = read_seqbegin(&bb->lock);
7927
7928 hi = bb->count;
7929
7930 /* Binary search between lo and hi for 'target'
7931 * i.e. for the last range that starts before 'target'
7932 */
7933 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7934 * are known not to be the last range before target.
7935 * VARIANT: hi-lo is the number of possible
7936 * ranges, and decreases until it reaches 1
7937 */
7938 while (hi - lo > 1) {
7939 int mid = (lo + hi) / 2;
7940 sector_t a = BB_OFFSET(p[mid]);
7941 if (a < target)
7942 /* This could still be the one, earlier ranges
7943 * could not. */
7944 lo = mid;
7945 else
7946 /* This and later ranges are definitely out. */
7947 hi = mid;
7948 }
7949 /* 'lo' might be the last that started before target, but 'hi' isn't */
7950 if (hi > lo) {
7951 /* need to check all range that end after 's' to see if
7952 * any are unacknowledged.
7953 */
7954 while (lo >= 0 &&
7955 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7956 if (BB_OFFSET(p[lo]) < target) {
7957 /* starts before the end, and finishes after
7958 * the start, so they must overlap
7959 */
7960 if (rv != -1 && BB_ACK(p[lo]))
7961 rv = 1;
7962 else
7963 rv = -1;
7964 *first_bad = BB_OFFSET(p[lo]);
7965 *bad_sectors = BB_LEN(p[lo]);
7966 }
7967 lo--;
7968 }
7969 }
7970
7971 if (read_seqretry(&bb->lock, seq))
7972 goto retry;
7973
7974 return rv;
7975 }
7976 EXPORT_SYMBOL_GPL(md_is_badblock);
7977
7978 /*
7979 * Add a range of bad blocks to the table.
7980 * This might extend the table, or might contract it
7981 * if two adjacent ranges can be merged.
7982 * We binary-search to find the 'insertion' point, then
7983 * decide how best to handle it.
7984 */
7985 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7986 int acknowledged)
7987 {
7988 u64 *p;
7989 int lo, hi;
7990 int rv = 1;
7991
7992 if (bb->shift < 0)
7993 /* badblocks are disabled */
7994 return 0;
7995
7996 if (bb->shift) {
7997 /* round the start down, and the end up */
7998 sector_t next = s + sectors;
7999 s >>= bb->shift;
8000 next += (1<<bb->shift) - 1;
8001 next >>= bb->shift;
8002 sectors = next - s;
8003 }
8004
8005 write_seqlock_irq(&bb->lock);
8006
8007 p = bb->page;
8008 lo = 0;
8009 hi = bb->count;
8010 /* Find the last range that starts at-or-before 's' */
8011 while (hi - lo > 1) {
8012 int mid = (lo + hi) / 2;
8013 sector_t a = BB_OFFSET(p[mid]);
8014 if (a <= s)
8015 lo = mid;
8016 else
8017 hi = mid;
8018 }
8019 if (hi > lo && BB_OFFSET(p[lo]) > s)
8020 hi = lo;
8021
8022 if (hi > lo) {
8023 /* we found a range that might merge with the start
8024 * of our new range
8025 */
8026 sector_t a = BB_OFFSET(p[lo]);
8027 sector_t e = a + BB_LEN(p[lo]);
8028 int ack = BB_ACK(p[lo]);
8029 if (e >= s) {
8030 /* Yes, we can merge with a previous range */
8031 if (s == a && s + sectors >= e)
8032 /* new range covers old */
8033 ack = acknowledged;
8034 else
8035 ack = ack && acknowledged;
8036
8037 if (e < s + sectors)
8038 e = s + sectors;
8039 if (e - a <= BB_MAX_LEN) {
8040 p[lo] = BB_MAKE(a, e-a, ack);
8041 s = e;
8042 } else {
8043 /* does not all fit in one range,
8044 * make p[lo] maximal
8045 */
8046 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8047 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8048 s = a + BB_MAX_LEN;
8049 }
8050 sectors = e - s;
8051 }
8052 }
8053 if (sectors && hi < bb->count) {
8054 /* 'hi' points to the first range that starts after 's'.
8055 * Maybe we can merge with the start of that range */
8056 sector_t a = BB_OFFSET(p[hi]);
8057 sector_t e = a + BB_LEN(p[hi]);
8058 int ack = BB_ACK(p[hi]);
8059 if (a <= s + sectors) {
8060 /* merging is possible */
8061 if (e <= s + sectors) {
8062 /* full overlap */
8063 e = s + sectors;
8064 ack = acknowledged;
8065 } else
8066 ack = ack && acknowledged;
8067
8068 a = s;
8069 if (e - a <= BB_MAX_LEN) {
8070 p[hi] = BB_MAKE(a, e-a, ack);
8071 s = e;
8072 } else {
8073 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8074 s = a + BB_MAX_LEN;
8075 }
8076 sectors = e - s;
8077 lo = hi;
8078 hi++;
8079 }
8080 }
8081 if (sectors == 0 && hi < bb->count) {
8082 /* we might be able to combine lo and hi */
8083 /* Note: 's' is at the end of 'lo' */
8084 sector_t a = BB_OFFSET(p[hi]);
8085 int lolen = BB_LEN(p[lo]);
8086 int hilen = BB_LEN(p[hi]);
8087 int newlen = lolen + hilen - (s - a);
8088 if (s >= a && newlen < BB_MAX_LEN) {
8089 /* yes, we can combine them */
8090 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8091 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8092 memmove(p + hi, p + hi + 1,
8093 (bb->count - hi - 1) * 8);
8094 bb->count--;
8095 }
8096 }
8097 while (sectors) {
8098 /* didn't merge (it all).
8099 * Need to add a range just before 'hi' */
8100 if (bb->count >= MD_MAX_BADBLOCKS) {
8101 /* No room for more */
8102 rv = 0;
8103 break;
8104 } else {
8105 int this_sectors = sectors;
8106 memmove(p + hi + 1, p + hi,
8107 (bb->count - hi) * 8);
8108 bb->count++;
8109
8110 if (this_sectors > BB_MAX_LEN)
8111 this_sectors = BB_MAX_LEN;
8112 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8113 sectors -= this_sectors;
8114 s += this_sectors;
8115 }
8116 }
8117
8118 bb->changed = 1;
8119 if (!acknowledged)
8120 bb->unacked_exist = 1;
8121 write_sequnlock_irq(&bb->lock);
8122
8123 return rv;
8124 }
8125
8126 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8127 int is_new)
8128 {
8129 int rv;
8130 if (is_new)
8131 s += rdev->new_data_offset;
8132 else
8133 s += rdev->data_offset;
8134 rv = md_set_badblocks(&rdev->badblocks,
8135 s, sectors, 0);
8136 if (rv) {
8137 /* Make sure they get written out promptly */
8138 sysfs_notify_dirent_safe(rdev->sysfs_state);
8139 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8140 md_wakeup_thread(rdev->mddev->thread);
8141 }
8142 return rv;
8143 }
8144 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8145
8146 /*
8147 * Remove a range of bad blocks from the table.
8148 * This may involve extending the table if we spilt a region,
8149 * but it must not fail. So if the table becomes full, we just
8150 * drop the remove request.
8151 */
8152 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8153 {
8154 u64 *p;
8155 int lo, hi;
8156 sector_t target = s + sectors;
8157 int rv = 0;
8158
8159 if (bb->shift > 0) {
8160 /* When clearing we round the start up and the end down.
8161 * This should not matter as the shift should align with
8162 * the block size and no rounding should ever be needed.
8163 * However it is better the think a block is bad when it
8164 * isn't than to think a block is not bad when it is.
8165 */
8166 s += (1<<bb->shift) - 1;
8167 s >>= bb->shift;
8168 target >>= bb->shift;
8169 sectors = target - s;
8170 }
8171
8172 write_seqlock_irq(&bb->lock);
8173
8174 p = bb->page;
8175 lo = 0;
8176 hi = bb->count;
8177 /* Find the last range that starts before 'target' */
8178 while (hi - lo > 1) {
8179 int mid = (lo + hi) / 2;
8180 sector_t a = BB_OFFSET(p[mid]);
8181 if (a < target)
8182 lo = mid;
8183 else
8184 hi = mid;
8185 }
8186 if (hi > lo) {
8187 /* p[lo] is the last range that could overlap the
8188 * current range. Earlier ranges could also overlap,
8189 * but only this one can overlap the end of the range.
8190 */
8191 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8192 /* Partial overlap, leave the tail of this range */
8193 int ack = BB_ACK(p[lo]);
8194 sector_t a = BB_OFFSET(p[lo]);
8195 sector_t end = a + BB_LEN(p[lo]);
8196
8197 if (a < s) {
8198 /* we need to split this range */
8199 if (bb->count >= MD_MAX_BADBLOCKS) {
8200 rv = 0;
8201 goto out;
8202 }
8203 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8204 bb->count++;
8205 p[lo] = BB_MAKE(a, s-a, ack);
8206 lo++;
8207 }
8208 p[lo] = BB_MAKE(target, end - target, ack);
8209 /* there is no longer an overlap */
8210 hi = lo;
8211 lo--;
8212 }
8213 while (lo >= 0 &&
8214 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8215 /* This range does overlap */
8216 if (BB_OFFSET(p[lo]) < s) {
8217 /* Keep the early parts of this range. */
8218 int ack = BB_ACK(p[lo]);
8219 sector_t start = BB_OFFSET(p[lo]);
8220 p[lo] = BB_MAKE(start, s - start, ack);
8221 /* now low doesn't overlap, so.. */
8222 break;
8223 }
8224 lo--;
8225 }
8226 /* 'lo' is strictly before, 'hi' is strictly after,
8227 * anything between needs to be discarded
8228 */
8229 if (hi - lo > 1) {
8230 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8231 bb->count -= (hi - lo - 1);
8232 }
8233 }
8234
8235 bb->changed = 1;
8236 out:
8237 write_sequnlock_irq(&bb->lock);
8238 return rv;
8239 }
8240
8241 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8242 int is_new)
8243 {
8244 if (is_new)
8245 s += rdev->new_data_offset;
8246 else
8247 s += rdev->data_offset;
8248 return md_clear_badblocks(&rdev->badblocks,
8249 s, sectors);
8250 }
8251 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8252
8253 /*
8254 * Acknowledge all bad blocks in a list.
8255 * This only succeeds if ->changed is clear. It is used by
8256 * in-kernel metadata updates
8257 */
8258 void md_ack_all_badblocks(struct badblocks *bb)
8259 {
8260 if (bb->page == NULL || bb->changed)
8261 /* no point even trying */
8262 return;
8263 write_seqlock_irq(&bb->lock);
8264
8265 if (bb->changed == 0 && bb->unacked_exist) {
8266 u64 *p = bb->page;
8267 int i;
8268 for (i = 0; i < bb->count ; i++) {
8269 if (!BB_ACK(p[i])) {
8270 sector_t start = BB_OFFSET(p[i]);
8271 int len = BB_LEN(p[i]);
8272 p[i] = BB_MAKE(start, len, 1);
8273 }
8274 }
8275 bb->unacked_exist = 0;
8276 }
8277 write_sequnlock_irq(&bb->lock);
8278 }
8279 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8280
8281 /* sysfs access to bad-blocks list.
8282 * We present two files.
8283 * 'bad-blocks' lists sector numbers and lengths of ranges that
8284 * are recorded as bad. The list is truncated to fit within
8285 * the one-page limit of sysfs.
8286 * Writing "sector length" to this file adds an acknowledged
8287 * bad block list.
8288 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8289 * been acknowledged. Writing to this file adds bad blocks
8290 * without acknowledging them. This is largely for testing.
8291 */
8292
8293 static ssize_t
8294 badblocks_show(struct badblocks *bb, char *page, int unack)
8295 {
8296 size_t len;
8297 int i;
8298 u64 *p = bb->page;
8299 unsigned seq;
8300
8301 if (bb->shift < 0)
8302 return 0;
8303
8304 retry:
8305 seq = read_seqbegin(&bb->lock);
8306
8307 len = 0;
8308 i = 0;
8309
8310 while (len < PAGE_SIZE && i < bb->count) {
8311 sector_t s = BB_OFFSET(p[i]);
8312 unsigned int length = BB_LEN(p[i]);
8313 int ack = BB_ACK(p[i]);
8314 i++;
8315
8316 if (unack && ack)
8317 continue;
8318
8319 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8320 (unsigned long long)s << bb->shift,
8321 length << bb->shift);
8322 }
8323 if (unack && len == 0)
8324 bb->unacked_exist = 0;
8325
8326 if (read_seqretry(&bb->lock, seq))
8327 goto retry;
8328
8329 return len;
8330 }
8331
8332 #define DO_DEBUG 1
8333
8334 static ssize_t
8335 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8336 {
8337 unsigned long long sector;
8338 int length;
8339 char newline;
8340 #ifdef DO_DEBUG
8341 /* Allow clearing via sysfs *only* for testing/debugging.
8342 * Normally only a successful write may clear a badblock
8343 */
8344 int clear = 0;
8345 if (page[0] == '-') {
8346 clear = 1;
8347 page++;
8348 }
8349 #endif /* DO_DEBUG */
8350
8351 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8352 case 3:
8353 if (newline != '\n')
8354 return -EINVAL;
8355 case 2:
8356 if (length <= 0)
8357 return -EINVAL;
8358 break;
8359 default:
8360 return -EINVAL;
8361 }
8362
8363 #ifdef DO_DEBUG
8364 if (clear) {
8365 md_clear_badblocks(bb, sector, length);
8366 return len;
8367 }
8368 #endif /* DO_DEBUG */
8369 if (md_set_badblocks(bb, sector, length, !unack))
8370 return len;
8371 else
8372 return -ENOSPC;
8373 }
8374
8375 static int md_notify_reboot(struct notifier_block *this,
8376 unsigned long code, void *x)
8377 {
8378 struct list_head *tmp;
8379 struct mddev *mddev;
8380 int need_delay = 0;
8381
8382 for_each_mddev(mddev, tmp) {
8383 if (mddev_trylock(mddev)) {
8384 if (mddev->pers)
8385 __md_stop_writes(mddev);
8386 mddev->safemode = 2;
8387 mddev_unlock(mddev);
8388 }
8389 need_delay = 1;
8390 }
8391 /*
8392 * certain more exotic SCSI devices are known to be
8393 * volatile wrt too early system reboots. While the
8394 * right place to handle this issue is the given
8395 * driver, we do want to have a safe RAID driver ...
8396 */
8397 if (need_delay)
8398 mdelay(1000*1);
8399
8400 return NOTIFY_DONE;
8401 }
8402
8403 static struct notifier_block md_notifier = {
8404 .notifier_call = md_notify_reboot,
8405 .next = NULL,
8406 .priority = INT_MAX, /* before any real devices */
8407 };
8408
8409 static void md_geninit(void)
8410 {
8411 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8412
8413 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8414 }
8415
8416 static int __init md_init(void)
8417 {
8418 int ret = -ENOMEM;
8419
8420 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8421 if (!md_wq)
8422 goto err_wq;
8423
8424 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8425 if (!md_misc_wq)
8426 goto err_misc_wq;
8427
8428 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8429 goto err_md;
8430
8431 if ((ret = register_blkdev(0, "mdp")) < 0)
8432 goto err_mdp;
8433 mdp_major = ret;
8434
8435 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8436 md_probe, NULL, NULL);
8437 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8438 md_probe, NULL, NULL);
8439
8440 register_reboot_notifier(&md_notifier);
8441 raid_table_header = register_sysctl_table(raid_root_table);
8442
8443 md_geninit();
8444 return 0;
8445
8446 err_mdp:
8447 unregister_blkdev(MD_MAJOR, "md");
8448 err_md:
8449 destroy_workqueue(md_misc_wq);
8450 err_misc_wq:
8451 destroy_workqueue(md_wq);
8452 err_wq:
8453 return ret;
8454 }
8455
8456 #ifndef MODULE
8457
8458 /*
8459 * Searches all registered partitions for autorun RAID arrays
8460 * at boot time.
8461 */
8462
8463 static LIST_HEAD(all_detected_devices);
8464 struct detected_devices_node {
8465 struct list_head list;
8466 dev_t dev;
8467 };
8468
8469 void md_autodetect_dev(dev_t dev)
8470 {
8471 struct detected_devices_node *node_detected_dev;
8472
8473 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8474 if (node_detected_dev) {
8475 node_detected_dev->dev = dev;
8476 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8477 } else {
8478 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8479 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8480 }
8481 }
8482
8483
8484 static void autostart_arrays(int part)
8485 {
8486 struct md_rdev *rdev;
8487 struct detected_devices_node *node_detected_dev;
8488 dev_t dev;
8489 int i_scanned, i_passed;
8490
8491 i_scanned = 0;
8492 i_passed = 0;
8493
8494 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8495
8496 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8497 i_scanned++;
8498 node_detected_dev = list_entry(all_detected_devices.next,
8499 struct detected_devices_node, list);
8500 list_del(&node_detected_dev->list);
8501 dev = node_detected_dev->dev;
8502 kfree(node_detected_dev);
8503 rdev = md_import_device(dev,0, 90);
8504 if (IS_ERR(rdev))
8505 continue;
8506
8507 if (test_bit(Faulty, &rdev->flags)) {
8508 MD_BUG();
8509 continue;
8510 }
8511 set_bit(AutoDetected, &rdev->flags);
8512 list_add(&rdev->same_set, &pending_raid_disks);
8513 i_passed++;
8514 }
8515
8516 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8517 i_scanned, i_passed);
8518
8519 autorun_devices(part);
8520 }
8521
8522 #endif /* !MODULE */
8523
8524 static __exit void md_exit(void)
8525 {
8526 struct mddev *mddev;
8527 struct list_head *tmp;
8528
8529 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8530 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8531
8532 unregister_blkdev(MD_MAJOR,"md");
8533 unregister_blkdev(mdp_major, "mdp");
8534 unregister_reboot_notifier(&md_notifier);
8535 unregister_sysctl_table(raid_table_header);
8536 remove_proc_entry("mdstat", NULL);
8537 for_each_mddev(mddev, tmp) {
8538 export_array(mddev);
8539 mddev->hold_active = 0;
8540 }
8541 destroy_workqueue(md_misc_wq);
8542 destroy_workqueue(md_wq);
8543 }
8544
8545 subsys_initcall(md_init);
8546 module_exit(md_exit)
8547
8548 static int get_ro(char *buffer, struct kernel_param *kp)
8549 {
8550 return sprintf(buffer, "%d", start_readonly);
8551 }
8552 static int set_ro(const char *val, struct kernel_param *kp)
8553 {
8554 char *e;
8555 int num = simple_strtoul(val, &e, 10);
8556 if (*val && (*e == '\0' || *e == '\n')) {
8557 start_readonly = num;
8558 return 0;
8559 }
8560 return -EINVAL;
8561 }
8562
8563 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8564 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8565
8566 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8567
8568 EXPORT_SYMBOL(register_md_personality);
8569 EXPORT_SYMBOL(unregister_md_personality);
8570 EXPORT_SYMBOL(md_error);
8571 EXPORT_SYMBOL(md_done_sync);
8572 EXPORT_SYMBOL(md_write_start);
8573 EXPORT_SYMBOL(md_write_end);
8574 EXPORT_SYMBOL(md_register_thread);
8575 EXPORT_SYMBOL(md_unregister_thread);
8576 EXPORT_SYMBOL(md_wakeup_thread);
8577 EXPORT_SYMBOL(md_check_recovery);
8578 MODULE_LICENSE("GPL");
8579 MODULE_DESCRIPTION("MD RAID framework");
8580 MODULE_ALIAS("md");
8581 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.370988 seconds and 5 git commands to generate.