3de623aceed0423d413f79c1c91965703a1ce49f
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/reboot.h>
47 #include <linux/file.h>
48 #include <linux/compat.h>
49 #include <linux/delay.h>
50 #include <linux/raid/md_p.h>
51 #include <linux/raid/md_u.h>
52 #include <linux/slab.h>
53 #include "md.h"
54 #include "bitmap.h"
55
56 #define DEBUG 0
57 #define dprintk(x...) ((void)(DEBUG && printk(x)))
58
59
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66
67 static void md_print_devices(void);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70
71 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
72
73 /*
74 * Default number of read corrections we'll attempt on an rdev
75 * before ejecting it from the array. We divide the read error
76 * count by 2 for every hour elapsed between read errors.
77 */
78 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
79 /*
80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81 * is 1000 KB/sec, so the extra system load does not show up that much.
82 * Increase it if you want to have more _guaranteed_ speed. Note that
83 * the RAID driver will use the maximum available bandwidth if the IO
84 * subsystem is idle. There is also an 'absolute maximum' reconstruction
85 * speed limit - in case reconstruction slows down your system despite
86 * idle IO detection.
87 *
88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89 * or /sys/block/mdX/md/sync_speed_{min,max}
90 */
91
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 return mddev->sync_speed_min ?
97 mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99
100 static inline int speed_max(mddev_t *mddev)
101 {
102 return mddev->sync_speed_max ?
103 mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105
106 static struct ctl_table_header *raid_table_header;
107
108 static ctl_table raid_table[] = {
109 {
110 .procname = "speed_limit_min",
111 .data = &sysctl_speed_limit_min,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = proc_dointvec,
115 },
116 {
117 .procname = "speed_limit_max",
118 .data = &sysctl_speed_limit_max,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 { }
124 };
125
126 static ctl_table raid_dir_table[] = {
127 {
128 .procname = "raid",
129 .maxlen = 0,
130 .mode = S_IRUGO|S_IXUGO,
131 .child = raid_table,
132 },
133 { }
134 };
135
136 static ctl_table raid_root_table[] = {
137 {
138 .procname = "dev",
139 .maxlen = 0,
140 .mode = 0555,
141 .child = raid_dir_table,
142 },
143 { }
144 };
145
146 static const struct block_device_operations md_fops;
147
148 static int start_readonly;
149
150 /*
151 * We have a system wide 'event count' that is incremented
152 * on any 'interesting' event, and readers of /proc/mdstat
153 * can use 'poll' or 'select' to find out when the event
154 * count increases.
155 *
156 * Events are:
157 * start array, stop array, error, add device, remove device,
158 * start build, activate spare
159 */
160 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
161 static atomic_t md_event_count;
162 void md_new_event(mddev_t *mddev)
163 {
164 atomic_inc(&md_event_count);
165 wake_up(&md_event_waiters);
166 }
167 EXPORT_SYMBOL_GPL(md_new_event);
168
169 /* Alternate version that can be called from interrupts
170 * when calling sysfs_notify isn't needed.
171 */
172 static void md_new_event_inintr(mddev_t *mddev)
173 {
174 atomic_inc(&md_event_count);
175 wake_up(&md_event_waiters);
176 }
177
178 /*
179 * Enables to iterate over all existing md arrays
180 * all_mddevs_lock protects this list.
181 */
182 static LIST_HEAD(all_mddevs);
183 static DEFINE_SPINLOCK(all_mddevs_lock);
184
185
186 /*
187 * iterates through all used mddevs in the system.
188 * We take care to grab the all_mddevs_lock whenever navigating
189 * the list, and to always hold a refcount when unlocked.
190 * Any code which breaks out of this loop while own
191 * a reference to the current mddev and must mddev_put it.
192 */
193 #define for_each_mddev(mddev,tmp) \
194 \
195 for (({ spin_lock(&all_mddevs_lock); \
196 tmp = all_mddevs.next; \
197 mddev = NULL;}); \
198 ({ if (tmp != &all_mddevs) \
199 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
200 spin_unlock(&all_mddevs_lock); \
201 if (mddev) mddev_put(mddev); \
202 mddev = list_entry(tmp, mddev_t, all_mddevs); \
203 tmp != &all_mddevs;}); \
204 ({ spin_lock(&all_mddevs_lock); \
205 tmp = tmp->next;}) \
206 )
207
208
209 /* Rather than calling directly into the personality make_request function,
210 * IO requests come here first so that we can check if the device is
211 * being suspended pending a reconfiguration.
212 * We hold a refcount over the call to ->make_request. By the time that
213 * call has finished, the bio has been linked into some internal structure
214 * and so is visible to ->quiesce(), so we don't need the refcount any more.
215 */
216 static int md_make_request(struct request_queue *q, struct bio *bio)
217 {
218 const int rw = bio_data_dir(bio);
219 mddev_t *mddev = q->queuedata;
220 int rv;
221 int cpu;
222
223 if (mddev == NULL || mddev->pers == NULL) {
224 bio_io_error(bio);
225 return 0;
226 }
227 rcu_read_lock();
228 if (mddev->suspended || mddev->barrier) {
229 DEFINE_WAIT(__wait);
230 for (;;) {
231 prepare_to_wait(&mddev->sb_wait, &__wait,
232 TASK_UNINTERRUPTIBLE);
233 if (!mddev->suspended && !mddev->barrier)
234 break;
235 rcu_read_unlock();
236 schedule();
237 rcu_read_lock();
238 }
239 finish_wait(&mddev->sb_wait, &__wait);
240 }
241 atomic_inc(&mddev->active_io);
242 rcu_read_unlock();
243
244 rv = mddev->pers->make_request(mddev, bio);
245
246 cpu = part_stat_lock();
247 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
248 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
249 bio_sectors(bio));
250 part_stat_unlock();
251
252 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
253 wake_up(&mddev->sb_wait);
254
255 return rv;
256 }
257
258 /* mddev_suspend makes sure no new requests are submitted
259 * to the device, and that any requests that have been submitted
260 * are completely handled.
261 * Once ->stop is called and completes, the module will be completely
262 * unused.
263 */
264 static void mddev_suspend(mddev_t *mddev)
265 {
266 BUG_ON(mddev->suspended);
267 mddev->suspended = 1;
268 synchronize_rcu();
269 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
270 mddev->pers->quiesce(mddev, 1);
271 }
272
273 static void mddev_resume(mddev_t *mddev)
274 {
275 mddev->suspended = 0;
276 wake_up(&mddev->sb_wait);
277 mddev->pers->quiesce(mddev, 0);
278 }
279
280 int mddev_congested(mddev_t *mddev, int bits)
281 {
282 if (mddev->barrier)
283 return 1;
284 return mddev->suspended;
285 }
286 EXPORT_SYMBOL(mddev_congested);
287
288 /*
289 * Generic barrier handling for md
290 */
291
292 #define POST_REQUEST_BARRIER ((void*)1)
293
294 static void md_end_barrier(struct bio *bio, int err)
295 {
296 mdk_rdev_t *rdev = bio->bi_private;
297 mddev_t *mddev = rdev->mddev;
298 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
299 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
300
301 rdev_dec_pending(rdev, mddev);
302
303 if (atomic_dec_and_test(&mddev->flush_pending)) {
304 if (mddev->barrier == POST_REQUEST_BARRIER) {
305 /* This was a post-request barrier */
306 mddev->barrier = NULL;
307 wake_up(&mddev->sb_wait);
308 } else
309 /* The pre-request barrier has finished */
310 schedule_work(&mddev->barrier_work);
311 }
312 bio_put(bio);
313 }
314
315 static void submit_barriers(mddev_t *mddev)
316 {
317 mdk_rdev_t *rdev;
318
319 rcu_read_lock();
320 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
321 if (rdev->raid_disk >= 0 &&
322 !test_bit(Faulty, &rdev->flags)) {
323 /* Take two references, one is dropped
324 * when request finishes, one after
325 * we reclaim rcu_read_lock
326 */
327 struct bio *bi;
328 atomic_inc(&rdev->nr_pending);
329 atomic_inc(&rdev->nr_pending);
330 rcu_read_unlock();
331 bi = bio_alloc(GFP_KERNEL, 0);
332 bi->bi_end_io = md_end_barrier;
333 bi->bi_private = rdev;
334 bi->bi_bdev = rdev->bdev;
335 atomic_inc(&mddev->flush_pending);
336 submit_bio(WRITE_BARRIER, bi);
337 rcu_read_lock();
338 rdev_dec_pending(rdev, mddev);
339 }
340 rcu_read_unlock();
341 }
342
343 static void md_submit_barrier(struct work_struct *ws)
344 {
345 mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
346 struct bio *bio = mddev->barrier;
347
348 atomic_set(&mddev->flush_pending, 1);
349
350 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
351 bio_endio(bio, -EOPNOTSUPP);
352 else if (bio->bi_size == 0)
353 /* an empty barrier - all done */
354 bio_endio(bio, 0);
355 else {
356 bio->bi_rw &= ~(1<<BIO_RW_BARRIER);
357 if (mddev->pers->make_request(mddev, bio))
358 generic_make_request(bio);
359 mddev->barrier = POST_REQUEST_BARRIER;
360 submit_barriers(mddev);
361 }
362 if (atomic_dec_and_test(&mddev->flush_pending)) {
363 mddev->barrier = NULL;
364 wake_up(&mddev->sb_wait);
365 }
366 }
367
368 void md_barrier_request(mddev_t *mddev, struct bio *bio)
369 {
370 spin_lock_irq(&mddev->write_lock);
371 wait_event_lock_irq(mddev->sb_wait,
372 !mddev->barrier,
373 mddev->write_lock, /*nothing*/);
374 mddev->barrier = bio;
375 spin_unlock_irq(&mddev->write_lock);
376
377 atomic_set(&mddev->flush_pending, 1);
378 INIT_WORK(&mddev->barrier_work, md_submit_barrier);
379
380 submit_barriers(mddev);
381
382 if (atomic_dec_and_test(&mddev->flush_pending))
383 schedule_work(&mddev->barrier_work);
384 }
385 EXPORT_SYMBOL(md_barrier_request);
386
387 static inline mddev_t *mddev_get(mddev_t *mddev)
388 {
389 atomic_inc(&mddev->active);
390 return mddev;
391 }
392
393 static void mddev_delayed_delete(struct work_struct *ws);
394
395 static void mddev_put(mddev_t *mddev)
396 {
397 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
398 return;
399 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
400 mddev->ctime == 0 && !mddev->hold_active) {
401 /* Array is not configured at all, and not held active,
402 * so destroy it */
403 list_del(&mddev->all_mddevs);
404 if (mddev->gendisk) {
405 /* we did a probe so need to clean up.
406 * Call schedule_work inside the spinlock
407 * so that flush_scheduled_work() after
408 * mddev_find will succeed in waiting for the
409 * work to be done.
410 */
411 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
412 schedule_work(&mddev->del_work);
413 } else
414 kfree(mddev);
415 }
416 spin_unlock(&all_mddevs_lock);
417 }
418
419 static void mddev_init(mddev_t *mddev)
420 {
421 mutex_init(&mddev->open_mutex);
422 mutex_init(&mddev->reconfig_mutex);
423 mutex_init(&mddev->bitmap_info.mutex);
424 INIT_LIST_HEAD(&mddev->disks);
425 INIT_LIST_HEAD(&mddev->all_mddevs);
426 init_timer(&mddev->safemode_timer);
427 atomic_set(&mddev->active, 1);
428 atomic_set(&mddev->openers, 0);
429 atomic_set(&mddev->active_io, 0);
430 spin_lock_init(&mddev->write_lock);
431 atomic_set(&mddev->flush_pending, 0);
432 init_waitqueue_head(&mddev->sb_wait);
433 init_waitqueue_head(&mddev->recovery_wait);
434 mddev->reshape_position = MaxSector;
435 mddev->resync_min = 0;
436 mddev->resync_max = MaxSector;
437 mddev->level = LEVEL_NONE;
438 }
439
440 static mddev_t * mddev_find(dev_t unit)
441 {
442 mddev_t *mddev, *new = NULL;
443
444 retry:
445 spin_lock(&all_mddevs_lock);
446
447 if (unit) {
448 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
449 if (mddev->unit == unit) {
450 mddev_get(mddev);
451 spin_unlock(&all_mddevs_lock);
452 kfree(new);
453 return mddev;
454 }
455
456 if (new) {
457 list_add(&new->all_mddevs, &all_mddevs);
458 spin_unlock(&all_mddevs_lock);
459 new->hold_active = UNTIL_IOCTL;
460 return new;
461 }
462 } else if (new) {
463 /* find an unused unit number */
464 static int next_minor = 512;
465 int start = next_minor;
466 int is_free = 0;
467 int dev = 0;
468 while (!is_free) {
469 dev = MKDEV(MD_MAJOR, next_minor);
470 next_minor++;
471 if (next_minor > MINORMASK)
472 next_minor = 0;
473 if (next_minor == start) {
474 /* Oh dear, all in use. */
475 spin_unlock(&all_mddevs_lock);
476 kfree(new);
477 return NULL;
478 }
479
480 is_free = 1;
481 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
482 if (mddev->unit == dev) {
483 is_free = 0;
484 break;
485 }
486 }
487 new->unit = dev;
488 new->md_minor = MINOR(dev);
489 new->hold_active = UNTIL_STOP;
490 list_add(&new->all_mddevs, &all_mddevs);
491 spin_unlock(&all_mddevs_lock);
492 return new;
493 }
494 spin_unlock(&all_mddevs_lock);
495
496 new = kzalloc(sizeof(*new), GFP_KERNEL);
497 if (!new)
498 return NULL;
499
500 new->unit = unit;
501 if (MAJOR(unit) == MD_MAJOR)
502 new->md_minor = MINOR(unit);
503 else
504 new->md_minor = MINOR(unit) >> MdpMinorShift;
505
506 mddev_init(new);
507
508 goto retry;
509 }
510
511 static inline int mddev_lock(mddev_t * mddev)
512 {
513 return mutex_lock_interruptible(&mddev->reconfig_mutex);
514 }
515
516 static inline int mddev_is_locked(mddev_t *mddev)
517 {
518 return mutex_is_locked(&mddev->reconfig_mutex);
519 }
520
521 static inline int mddev_trylock(mddev_t * mddev)
522 {
523 return mutex_trylock(&mddev->reconfig_mutex);
524 }
525
526 static struct attribute_group md_redundancy_group;
527
528 static void mddev_unlock(mddev_t * mddev)
529 {
530 if (mddev->to_remove) {
531 /* These cannot be removed under reconfig_mutex as
532 * an access to the files will try to take reconfig_mutex
533 * while holding the file unremovable, which leads to
534 * a deadlock.
535 * So hold open_mutex instead - we are allowed to take
536 * it while holding reconfig_mutex, and md_run can
537 * use it to wait for the remove to complete.
538 */
539 struct attribute_group *to_remove = mddev->to_remove;
540 mddev->to_remove = NULL;
541 mutex_lock(&mddev->open_mutex);
542 mutex_unlock(&mddev->reconfig_mutex);
543
544 if (mddev->kobj.sd) {
545 if (to_remove != &md_redundancy_group)
546 sysfs_remove_group(&mddev->kobj, to_remove);
547 if (mddev->pers == NULL ||
548 mddev->pers->sync_request == NULL) {
549 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
550 if (mddev->sysfs_action)
551 sysfs_put(mddev->sysfs_action);
552 mddev->sysfs_action = NULL;
553 }
554 }
555 mutex_unlock(&mddev->open_mutex);
556 } else
557 mutex_unlock(&mddev->reconfig_mutex);
558
559 md_wakeup_thread(mddev->thread);
560 }
561
562 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
563 {
564 mdk_rdev_t *rdev;
565
566 list_for_each_entry(rdev, &mddev->disks, same_set)
567 if (rdev->desc_nr == nr)
568 return rdev;
569
570 return NULL;
571 }
572
573 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
574 {
575 mdk_rdev_t *rdev;
576
577 list_for_each_entry(rdev, &mddev->disks, same_set)
578 if (rdev->bdev->bd_dev == dev)
579 return rdev;
580
581 return NULL;
582 }
583
584 static struct mdk_personality *find_pers(int level, char *clevel)
585 {
586 struct mdk_personality *pers;
587 list_for_each_entry(pers, &pers_list, list) {
588 if (level != LEVEL_NONE && pers->level == level)
589 return pers;
590 if (strcmp(pers->name, clevel)==0)
591 return pers;
592 }
593 return NULL;
594 }
595
596 /* return the offset of the super block in 512byte sectors */
597 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
598 {
599 sector_t num_sectors = bdev->bd_inode->i_size / 512;
600 return MD_NEW_SIZE_SECTORS(num_sectors);
601 }
602
603 static int alloc_disk_sb(mdk_rdev_t * rdev)
604 {
605 if (rdev->sb_page)
606 MD_BUG();
607
608 rdev->sb_page = alloc_page(GFP_KERNEL);
609 if (!rdev->sb_page) {
610 printk(KERN_ALERT "md: out of memory.\n");
611 return -ENOMEM;
612 }
613
614 return 0;
615 }
616
617 static void free_disk_sb(mdk_rdev_t * rdev)
618 {
619 if (rdev->sb_page) {
620 put_page(rdev->sb_page);
621 rdev->sb_loaded = 0;
622 rdev->sb_page = NULL;
623 rdev->sb_start = 0;
624 rdev->sectors = 0;
625 }
626 }
627
628
629 static void super_written(struct bio *bio, int error)
630 {
631 mdk_rdev_t *rdev = bio->bi_private;
632 mddev_t *mddev = rdev->mddev;
633
634 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
635 printk("md: super_written gets error=%d, uptodate=%d\n",
636 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
637 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
638 md_error(mddev, rdev);
639 }
640
641 if (atomic_dec_and_test(&mddev->pending_writes))
642 wake_up(&mddev->sb_wait);
643 bio_put(bio);
644 }
645
646 static void super_written_barrier(struct bio *bio, int error)
647 {
648 struct bio *bio2 = bio->bi_private;
649 mdk_rdev_t *rdev = bio2->bi_private;
650 mddev_t *mddev = rdev->mddev;
651
652 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
653 error == -EOPNOTSUPP) {
654 unsigned long flags;
655 /* barriers don't appear to be supported :-( */
656 set_bit(BarriersNotsupp, &rdev->flags);
657 mddev->barriers_work = 0;
658 spin_lock_irqsave(&mddev->write_lock, flags);
659 bio2->bi_next = mddev->biolist;
660 mddev->biolist = bio2;
661 spin_unlock_irqrestore(&mddev->write_lock, flags);
662 wake_up(&mddev->sb_wait);
663 bio_put(bio);
664 } else {
665 bio_put(bio2);
666 bio->bi_private = rdev;
667 super_written(bio, error);
668 }
669 }
670
671 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
672 sector_t sector, int size, struct page *page)
673 {
674 /* write first size bytes of page to sector of rdev
675 * Increment mddev->pending_writes before returning
676 * and decrement it on completion, waking up sb_wait
677 * if zero is reached.
678 * If an error occurred, call md_error
679 *
680 * As we might need to resubmit the request if BIO_RW_BARRIER
681 * causes ENOTSUPP, we allocate a spare bio...
682 */
683 struct bio *bio = bio_alloc(GFP_NOIO, 1);
684 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
685
686 bio->bi_bdev = rdev->bdev;
687 bio->bi_sector = sector;
688 bio_add_page(bio, page, size, 0);
689 bio->bi_private = rdev;
690 bio->bi_end_io = super_written;
691 bio->bi_rw = rw;
692
693 atomic_inc(&mddev->pending_writes);
694 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
695 struct bio *rbio;
696 rw |= (1<<BIO_RW_BARRIER);
697 rbio = bio_clone(bio, GFP_NOIO);
698 rbio->bi_private = bio;
699 rbio->bi_end_io = super_written_barrier;
700 submit_bio(rw, rbio);
701 } else
702 submit_bio(rw, bio);
703 }
704
705 void md_super_wait(mddev_t *mddev)
706 {
707 /* wait for all superblock writes that were scheduled to complete.
708 * if any had to be retried (due to BARRIER problems), retry them
709 */
710 DEFINE_WAIT(wq);
711 for(;;) {
712 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
713 if (atomic_read(&mddev->pending_writes)==0)
714 break;
715 while (mddev->biolist) {
716 struct bio *bio;
717 spin_lock_irq(&mddev->write_lock);
718 bio = mddev->biolist;
719 mddev->biolist = bio->bi_next ;
720 bio->bi_next = NULL;
721 spin_unlock_irq(&mddev->write_lock);
722 submit_bio(bio->bi_rw, bio);
723 }
724 schedule();
725 }
726 finish_wait(&mddev->sb_wait, &wq);
727 }
728
729 static void bi_complete(struct bio *bio, int error)
730 {
731 complete((struct completion*)bio->bi_private);
732 }
733
734 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
735 struct page *page, int rw)
736 {
737 struct bio *bio = bio_alloc(GFP_NOIO, 1);
738 struct completion event;
739 int ret;
740
741 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
742
743 bio->bi_bdev = bdev;
744 bio->bi_sector = sector;
745 bio_add_page(bio, page, size, 0);
746 init_completion(&event);
747 bio->bi_private = &event;
748 bio->bi_end_io = bi_complete;
749 submit_bio(rw, bio);
750 wait_for_completion(&event);
751
752 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
753 bio_put(bio);
754 return ret;
755 }
756 EXPORT_SYMBOL_GPL(sync_page_io);
757
758 static int read_disk_sb(mdk_rdev_t * rdev, int size)
759 {
760 char b[BDEVNAME_SIZE];
761 if (!rdev->sb_page) {
762 MD_BUG();
763 return -EINVAL;
764 }
765 if (rdev->sb_loaded)
766 return 0;
767
768
769 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
770 goto fail;
771 rdev->sb_loaded = 1;
772 return 0;
773
774 fail:
775 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
776 bdevname(rdev->bdev,b));
777 return -EINVAL;
778 }
779
780 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
781 {
782 return sb1->set_uuid0 == sb2->set_uuid0 &&
783 sb1->set_uuid1 == sb2->set_uuid1 &&
784 sb1->set_uuid2 == sb2->set_uuid2 &&
785 sb1->set_uuid3 == sb2->set_uuid3;
786 }
787
788 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
789 {
790 int ret;
791 mdp_super_t *tmp1, *tmp2;
792
793 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
794 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
795
796 if (!tmp1 || !tmp2) {
797 ret = 0;
798 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
799 goto abort;
800 }
801
802 *tmp1 = *sb1;
803 *tmp2 = *sb2;
804
805 /*
806 * nr_disks is not constant
807 */
808 tmp1->nr_disks = 0;
809 tmp2->nr_disks = 0;
810
811 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
812 abort:
813 kfree(tmp1);
814 kfree(tmp2);
815 return ret;
816 }
817
818
819 static u32 md_csum_fold(u32 csum)
820 {
821 csum = (csum & 0xffff) + (csum >> 16);
822 return (csum & 0xffff) + (csum >> 16);
823 }
824
825 static unsigned int calc_sb_csum(mdp_super_t * sb)
826 {
827 u64 newcsum = 0;
828 u32 *sb32 = (u32*)sb;
829 int i;
830 unsigned int disk_csum, csum;
831
832 disk_csum = sb->sb_csum;
833 sb->sb_csum = 0;
834
835 for (i = 0; i < MD_SB_BYTES/4 ; i++)
836 newcsum += sb32[i];
837 csum = (newcsum & 0xffffffff) + (newcsum>>32);
838
839
840 #ifdef CONFIG_ALPHA
841 /* This used to use csum_partial, which was wrong for several
842 * reasons including that different results are returned on
843 * different architectures. It isn't critical that we get exactly
844 * the same return value as before (we always csum_fold before
845 * testing, and that removes any differences). However as we
846 * know that csum_partial always returned a 16bit value on
847 * alphas, do a fold to maximise conformity to previous behaviour.
848 */
849 sb->sb_csum = md_csum_fold(disk_csum);
850 #else
851 sb->sb_csum = disk_csum;
852 #endif
853 return csum;
854 }
855
856
857 /*
858 * Handle superblock details.
859 * We want to be able to handle multiple superblock formats
860 * so we have a common interface to them all, and an array of
861 * different handlers.
862 * We rely on user-space to write the initial superblock, and support
863 * reading and updating of superblocks.
864 * Interface methods are:
865 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
866 * loads and validates a superblock on dev.
867 * if refdev != NULL, compare superblocks on both devices
868 * Return:
869 * 0 - dev has a superblock that is compatible with refdev
870 * 1 - dev has a superblock that is compatible and newer than refdev
871 * so dev should be used as the refdev in future
872 * -EINVAL superblock incompatible or invalid
873 * -othererror e.g. -EIO
874 *
875 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
876 * Verify that dev is acceptable into mddev.
877 * The first time, mddev->raid_disks will be 0, and data from
878 * dev should be merged in. Subsequent calls check that dev
879 * is new enough. Return 0 or -EINVAL
880 *
881 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
882 * Update the superblock for rdev with data in mddev
883 * This does not write to disc.
884 *
885 */
886
887 struct super_type {
888 char *name;
889 struct module *owner;
890 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
891 int minor_version);
892 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
893 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
894 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
895 sector_t num_sectors);
896 };
897
898 /*
899 * Check that the given mddev has no bitmap.
900 *
901 * This function is called from the run method of all personalities that do not
902 * support bitmaps. It prints an error message and returns non-zero if mddev
903 * has a bitmap. Otherwise, it returns 0.
904 *
905 */
906 int md_check_no_bitmap(mddev_t *mddev)
907 {
908 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
909 return 0;
910 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
911 mdname(mddev), mddev->pers->name);
912 return 1;
913 }
914 EXPORT_SYMBOL(md_check_no_bitmap);
915
916 /*
917 * load_super for 0.90.0
918 */
919 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
920 {
921 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
922 mdp_super_t *sb;
923 int ret;
924
925 /*
926 * Calculate the position of the superblock (512byte sectors),
927 * it's at the end of the disk.
928 *
929 * It also happens to be a multiple of 4Kb.
930 */
931 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
932
933 ret = read_disk_sb(rdev, MD_SB_BYTES);
934 if (ret) return ret;
935
936 ret = -EINVAL;
937
938 bdevname(rdev->bdev, b);
939 sb = (mdp_super_t*)page_address(rdev->sb_page);
940
941 if (sb->md_magic != MD_SB_MAGIC) {
942 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
943 b);
944 goto abort;
945 }
946
947 if (sb->major_version != 0 ||
948 sb->minor_version < 90 ||
949 sb->minor_version > 91) {
950 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
951 sb->major_version, sb->minor_version,
952 b);
953 goto abort;
954 }
955
956 if (sb->raid_disks <= 0)
957 goto abort;
958
959 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
960 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
961 b);
962 goto abort;
963 }
964
965 rdev->preferred_minor = sb->md_minor;
966 rdev->data_offset = 0;
967 rdev->sb_size = MD_SB_BYTES;
968
969 if (sb->level == LEVEL_MULTIPATH)
970 rdev->desc_nr = -1;
971 else
972 rdev->desc_nr = sb->this_disk.number;
973
974 if (!refdev) {
975 ret = 1;
976 } else {
977 __u64 ev1, ev2;
978 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
979 if (!uuid_equal(refsb, sb)) {
980 printk(KERN_WARNING "md: %s has different UUID to %s\n",
981 b, bdevname(refdev->bdev,b2));
982 goto abort;
983 }
984 if (!sb_equal(refsb, sb)) {
985 printk(KERN_WARNING "md: %s has same UUID"
986 " but different superblock to %s\n",
987 b, bdevname(refdev->bdev, b2));
988 goto abort;
989 }
990 ev1 = md_event(sb);
991 ev2 = md_event(refsb);
992 if (ev1 > ev2)
993 ret = 1;
994 else
995 ret = 0;
996 }
997 rdev->sectors = rdev->sb_start;
998
999 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1000 /* "this cannot possibly happen" ... */
1001 ret = -EINVAL;
1002
1003 abort:
1004 return ret;
1005 }
1006
1007 /*
1008 * validate_super for 0.90.0
1009 */
1010 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1011 {
1012 mdp_disk_t *desc;
1013 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1014 __u64 ev1 = md_event(sb);
1015
1016 rdev->raid_disk = -1;
1017 clear_bit(Faulty, &rdev->flags);
1018 clear_bit(In_sync, &rdev->flags);
1019 clear_bit(WriteMostly, &rdev->flags);
1020 clear_bit(BarriersNotsupp, &rdev->flags);
1021
1022 if (mddev->raid_disks == 0) {
1023 mddev->major_version = 0;
1024 mddev->minor_version = sb->minor_version;
1025 mddev->patch_version = sb->patch_version;
1026 mddev->external = 0;
1027 mddev->chunk_sectors = sb->chunk_size >> 9;
1028 mddev->ctime = sb->ctime;
1029 mddev->utime = sb->utime;
1030 mddev->level = sb->level;
1031 mddev->clevel[0] = 0;
1032 mddev->layout = sb->layout;
1033 mddev->raid_disks = sb->raid_disks;
1034 mddev->dev_sectors = sb->size * 2;
1035 mddev->events = ev1;
1036 mddev->bitmap_info.offset = 0;
1037 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1038
1039 if (mddev->minor_version >= 91) {
1040 mddev->reshape_position = sb->reshape_position;
1041 mddev->delta_disks = sb->delta_disks;
1042 mddev->new_level = sb->new_level;
1043 mddev->new_layout = sb->new_layout;
1044 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1045 } else {
1046 mddev->reshape_position = MaxSector;
1047 mddev->delta_disks = 0;
1048 mddev->new_level = mddev->level;
1049 mddev->new_layout = mddev->layout;
1050 mddev->new_chunk_sectors = mddev->chunk_sectors;
1051 }
1052
1053 if (sb->state & (1<<MD_SB_CLEAN))
1054 mddev->recovery_cp = MaxSector;
1055 else {
1056 if (sb->events_hi == sb->cp_events_hi &&
1057 sb->events_lo == sb->cp_events_lo) {
1058 mddev->recovery_cp = sb->recovery_cp;
1059 } else
1060 mddev->recovery_cp = 0;
1061 }
1062
1063 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1064 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1065 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1066 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1067
1068 mddev->max_disks = MD_SB_DISKS;
1069
1070 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1071 mddev->bitmap_info.file == NULL)
1072 mddev->bitmap_info.offset =
1073 mddev->bitmap_info.default_offset;
1074
1075 } else if (mddev->pers == NULL) {
1076 /* Insist on good event counter while assembling, except
1077 * for spares (which don't need an event count) */
1078 ++ev1;
1079 if (sb->disks[rdev->desc_nr].state & (
1080 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1081 if (ev1 < mddev->events)
1082 return -EINVAL;
1083 } else if (mddev->bitmap) {
1084 /* if adding to array with a bitmap, then we can accept an
1085 * older device ... but not too old.
1086 */
1087 if (ev1 < mddev->bitmap->events_cleared)
1088 return 0;
1089 } else {
1090 if (ev1 < mddev->events)
1091 /* just a hot-add of a new device, leave raid_disk at -1 */
1092 return 0;
1093 }
1094
1095 if (mddev->level != LEVEL_MULTIPATH) {
1096 desc = sb->disks + rdev->desc_nr;
1097
1098 if (desc->state & (1<<MD_DISK_FAULTY))
1099 set_bit(Faulty, &rdev->flags);
1100 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1101 desc->raid_disk < mddev->raid_disks */) {
1102 set_bit(In_sync, &rdev->flags);
1103 rdev->raid_disk = desc->raid_disk;
1104 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1105 /* active but not in sync implies recovery up to
1106 * reshape position. We don't know exactly where
1107 * that is, so set to zero for now */
1108 if (mddev->minor_version >= 91) {
1109 rdev->recovery_offset = 0;
1110 rdev->raid_disk = desc->raid_disk;
1111 }
1112 }
1113 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1114 set_bit(WriteMostly, &rdev->flags);
1115 } else /* MULTIPATH are always insync */
1116 set_bit(In_sync, &rdev->flags);
1117 return 0;
1118 }
1119
1120 /*
1121 * sync_super for 0.90.0
1122 */
1123 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1124 {
1125 mdp_super_t *sb;
1126 mdk_rdev_t *rdev2;
1127 int next_spare = mddev->raid_disks;
1128
1129
1130 /* make rdev->sb match mddev data..
1131 *
1132 * 1/ zero out disks
1133 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1134 * 3/ any empty disks < next_spare become removed
1135 *
1136 * disks[0] gets initialised to REMOVED because
1137 * we cannot be sure from other fields if it has
1138 * been initialised or not.
1139 */
1140 int i;
1141 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1142
1143 rdev->sb_size = MD_SB_BYTES;
1144
1145 sb = (mdp_super_t*)page_address(rdev->sb_page);
1146
1147 memset(sb, 0, sizeof(*sb));
1148
1149 sb->md_magic = MD_SB_MAGIC;
1150 sb->major_version = mddev->major_version;
1151 sb->patch_version = mddev->patch_version;
1152 sb->gvalid_words = 0; /* ignored */
1153 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1154 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1155 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1156 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1157
1158 sb->ctime = mddev->ctime;
1159 sb->level = mddev->level;
1160 sb->size = mddev->dev_sectors / 2;
1161 sb->raid_disks = mddev->raid_disks;
1162 sb->md_minor = mddev->md_minor;
1163 sb->not_persistent = 0;
1164 sb->utime = mddev->utime;
1165 sb->state = 0;
1166 sb->events_hi = (mddev->events>>32);
1167 sb->events_lo = (u32)mddev->events;
1168
1169 if (mddev->reshape_position == MaxSector)
1170 sb->minor_version = 90;
1171 else {
1172 sb->minor_version = 91;
1173 sb->reshape_position = mddev->reshape_position;
1174 sb->new_level = mddev->new_level;
1175 sb->delta_disks = mddev->delta_disks;
1176 sb->new_layout = mddev->new_layout;
1177 sb->new_chunk = mddev->new_chunk_sectors << 9;
1178 }
1179 mddev->minor_version = sb->minor_version;
1180 if (mddev->in_sync)
1181 {
1182 sb->recovery_cp = mddev->recovery_cp;
1183 sb->cp_events_hi = (mddev->events>>32);
1184 sb->cp_events_lo = (u32)mddev->events;
1185 if (mddev->recovery_cp == MaxSector)
1186 sb->state = (1<< MD_SB_CLEAN);
1187 } else
1188 sb->recovery_cp = 0;
1189
1190 sb->layout = mddev->layout;
1191 sb->chunk_size = mddev->chunk_sectors << 9;
1192
1193 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1194 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1195
1196 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1197 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1198 mdp_disk_t *d;
1199 int desc_nr;
1200 int is_active = test_bit(In_sync, &rdev2->flags);
1201
1202 if (rdev2->raid_disk >= 0 &&
1203 sb->minor_version >= 91)
1204 /* we have nowhere to store the recovery_offset,
1205 * but if it is not below the reshape_position,
1206 * we can piggy-back on that.
1207 */
1208 is_active = 1;
1209 if (rdev2->raid_disk < 0 ||
1210 test_bit(Faulty, &rdev2->flags))
1211 is_active = 0;
1212 if (is_active)
1213 desc_nr = rdev2->raid_disk;
1214 else
1215 desc_nr = next_spare++;
1216 rdev2->desc_nr = desc_nr;
1217 d = &sb->disks[rdev2->desc_nr];
1218 nr_disks++;
1219 d->number = rdev2->desc_nr;
1220 d->major = MAJOR(rdev2->bdev->bd_dev);
1221 d->minor = MINOR(rdev2->bdev->bd_dev);
1222 if (is_active)
1223 d->raid_disk = rdev2->raid_disk;
1224 else
1225 d->raid_disk = rdev2->desc_nr; /* compatibility */
1226 if (test_bit(Faulty, &rdev2->flags))
1227 d->state = (1<<MD_DISK_FAULTY);
1228 else if (is_active) {
1229 d->state = (1<<MD_DISK_ACTIVE);
1230 if (test_bit(In_sync, &rdev2->flags))
1231 d->state |= (1<<MD_DISK_SYNC);
1232 active++;
1233 working++;
1234 } else {
1235 d->state = 0;
1236 spare++;
1237 working++;
1238 }
1239 if (test_bit(WriteMostly, &rdev2->flags))
1240 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1241 }
1242 /* now set the "removed" and "faulty" bits on any missing devices */
1243 for (i=0 ; i < mddev->raid_disks ; i++) {
1244 mdp_disk_t *d = &sb->disks[i];
1245 if (d->state == 0 && d->number == 0) {
1246 d->number = i;
1247 d->raid_disk = i;
1248 d->state = (1<<MD_DISK_REMOVED);
1249 d->state |= (1<<MD_DISK_FAULTY);
1250 failed++;
1251 }
1252 }
1253 sb->nr_disks = nr_disks;
1254 sb->active_disks = active;
1255 sb->working_disks = working;
1256 sb->failed_disks = failed;
1257 sb->spare_disks = spare;
1258
1259 sb->this_disk = sb->disks[rdev->desc_nr];
1260 sb->sb_csum = calc_sb_csum(sb);
1261 }
1262
1263 /*
1264 * rdev_size_change for 0.90.0
1265 */
1266 static unsigned long long
1267 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1268 {
1269 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1270 return 0; /* component must fit device */
1271 if (rdev->mddev->bitmap_info.offset)
1272 return 0; /* can't move bitmap */
1273 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1274 if (!num_sectors || num_sectors > rdev->sb_start)
1275 num_sectors = rdev->sb_start;
1276 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1277 rdev->sb_page);
1278 md_super_wait(rdev->mddev);
1279 return num_sectors / 2; /* kB for sysfs */
1280 }
1281
1282
1283 /*
1284 * version 1 superblock
1285 */
1286
1287 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1288 {
1289 __le32 disk_csum;
1290 u32 csum;
1291 unsigned long long newcsum;
1292 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1293 __le32 *isuper = (__le32*)sb;
1294 int i;
1295
1296 disk_csum = sb->sb_csum;
1297 sb->sb_csum = 0;
1298 newcsum = 0;
1299 for (i=0; size>=4; size -= 4 )
1300 newcsum += le32_to_cpu(*isuper++);
1301
1302 if (size == 2)
1303 newcsum += le16_to_cpu(*(__le16*) isuper);
1304
1305 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1306 sb->sb_csum = disk_csum;
1307 return cpu_to_le32(csum);
1308 }
1309
1310 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1311 {
1312 struct mdp_superblock_1 *sb;
1313 int ret;
1314 sector_t sb_start;
1315 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1316 int bmask;
1317
1318 /*
1319 * Calculate the position of the superblock in 512byte sectors.
1320 * It is always aligned to a 4K boundary and
1321 * depeding on minor_version, it can be:
1322 * 0: At least 8K, but less than 12K, from end of device
1323 * 1: At start of device
1324 * 2: 4K from start of device.
1325 */
1326 switch(minor_version) {
1327 case 0:
1328 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1329 sb_start -= 8*2;
1330 sb_start &= ~(sector_t)(4*2-1);
1331 break;
1332 case 1:
1333 sb_start = 0;
1334 break;
1335 case 2:
1336 sb_start = 8;
1337 break;
1338 default:
1339 return -EINVAL;
1340 }
1341 rdev->sb_start = sb_start;
1342
1343 /* superblock is rarely larger than 1K, but it can be larger,
1344 * and it is safe to read 4k, so we do that
1345 */
1346 ret = read_disk_sb(rdev, 4096);
1347 if (ret) return ret;
1348
1349
1350 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1351
1352 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1353 sb->major_version != cpu_to_le32(1) ||
1354 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1355 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1356 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1357 return -EINVAL;
1358
1359 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1360 printk("md: invalid superblock checksum on %s\n",
1361 bdevname(rdev->bdev,b));
1362 return -EINVAL;
1363 }
1364 if (le64_to_cpu(sb->data_size) < 10) {
1365 printk("md: data_size too small on %s\n",
1366 bdevname(rdev->bdev,b));
1367 return -EINVAL;
1368 }
1369
1370 rdev->preferred_minor = 0xffff;
1371 rdev->data_offset = le64_to_cpu(sb->data_offset);
1372 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1373
1374 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1375 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1376 if (rdev->sb_size & bmask)
1377 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1378
1379 if (minor_version
1380 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1381 return -EINVAL;
1382
1383 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1384 rdev->desc_nr = -1;
1385 else
1386 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1387
1388 if (!refdev) {
1389 ret = 1;
1390 } else {
1391 __u64 ev1, ev2;
1392 struct mdp_superblock_1 *refsb =
1393 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1394
1395 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1396 sb->level != refsb->level ||
1397 sb->layout != refsb->layout ||
1398 sb->chunksize != refsb->chunksize) {
1399 printk(KERN_WARNING "md: %s has strangely different"
1400 " superblock to %s\n",
1401 bdevname(rdev->bdev,b),
1402 bdevname(refdev->bdev,b2));
1403 return -EINVAL;
1404 }
1405 ev1 = le64_to_cpu(sb->events);
1406 ev2 = le64_to_cpu(refsb->events);
1407
1408 if (ev1 > ev2)
1409 ret = 1;
1410 else
1411 ret = 0;
1412 }
1413 if (minor_version)
1414 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1415 le64_to_cpu(sb->data_offset);
1416 else
1417 rdev->sectors = rdev->sb_start;
1418 if (rdev->sectors < le64_to_cpu(sb->data_size))
1419 return -EINVAL;
1420 rdev->sectors = le64_to_cpu(sb->data_size);
1421 if (le64_to_cpu(sb->size) > rdev->sectors)
1422 return -EINVAL;
1423 return ret;
1424 }
1425
1426 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1427 {
1428 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1429 __u64 ev1 = le64_to_cpu(sb->events);
1430
1431 rdev->raid_disk = -1;
1432 clear_bit(Faulty, &rdev->flags);
1433 clear_bit(In_sync, &rdev->flags);
1434 clear_bit(WriteMostly, &rdev->flags);
1435 clear_bit(BarriersNotsupp, &rdev->flags);
1436
1437 if (mddev->raid_disks == 0) {
1438 mddev->major_version = 1;
1439 mddev->patch_version = 0;
1440 mddev->external = 0;
1441 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1442 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1443 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1444 mddev->level = le32_to_cpu(sb->level);
1445 mddev->clevel[0] = 0;
1446 mddev->layout = le32_to_cpu(sb->layout);
1447 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1448 mddev->dev_sectors = le64_to_cpu(sb->size);
1449 mddev->events = ev1;
1450 mddev->bitmap_info.offset = 0;
1451 mddev->bitmap_info.default_offset = 1024 >> 9;
1452
1453 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1454 memcpy(mddev->uuid, sb->set_uuid, 16);
1455
1456 mddev->max_disks = (4096-256)/2;
1457
1458 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1459 mddev->bitmap_info.file == NULL )
1460 mddev->bitmap_info.offset =
1461 (__s32)le32_to_cpu(sb->bitmap_offset);
1462
1463 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1464 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1465 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1466 mddev->new_level = le32_to_cpu(sb->new_level);
1467 mddev->new_layout = le32_to_cpu(sb->new_layout);
1468 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1469 } else {
1470 mddev->reshape_position = MaxSector;
1471 mddev->delta_disks = 0;
1472 mddev->new_level = mddev->level;
1473 mddev->new_layout = mddev->layout;
1474 mddev->new_chunk_sectors = mddev->chunk_sectors;
1475 }
1476
1477 } else if (mddev->pers == NULL) {
1478 /* Insist of good event counter while assembling, except for
1479 * spares (which don't need an event count) */
1480 ++ev1;
1481 if (rdev->desc_nr >= 0 &&
1482 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1483 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1484 if (ev1 < mddev->events)
1485 return -EINVAL;
1486 } else if (mddev->bitmap) {
1487 /* If adding to array with a bitmap, then we can accept an
1488 * older device, but not too old.
1489 */
1490 if (ev1 < mddev->bitmap->events_cleared)
1491 return 0;
1492 } else {
1493 if (ev1 < mddev->events)
1494 /* just a hot-add of a new device, leave raid_disk at -1 */
1495 return 0;
1496 }
1497 if (mddev->level != LEVEL_MULTIPATH) {
1498 int role;
1499 if (rdev->desc_nr < 0 ||
1500 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1501 role = 0xffff;
1502 rdev->desc_nr = -1;
1503 } else
1504 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1505 switch(role) {
1506 case 0xffff: /* spare */
1507 break;
1508 case 0xfffe: /* faulty */
1509 set_bit(Faulty, &rdev->flags);
1510 break;
1511 default:
1512 if ((le32_to_cpu(sb->feature_map) &
1513 MD_FEATURE_RECOVERY_OFFSET))
1514 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1515 else
1516 set_bit(In_sync, &rdev->flags);
1517 rdev->raid_disk = role;
1518 break;
1519 }
1520 if (sb->devflags & WriteMostly1)
1521 set_bit(WriteMostly, &rdev->flags);
1522 } else /* MULTIPATH are always insync */
1523 set_bit(In_sync, &rdev->flags);
1524
1525 return 0;
1526 }
1527
1528 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1529 {
1530 struct mdp_superblock_1 *sb;
1531 mdk_rdev_t *rdev2;
1532 int max_dev, i;
1533 /* make rdev->sb match mddev and rdev data. */
1534
1535 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1536
1537 sb->feature_map = 0;
1538 sb->pad0 = 0;
1539 sb->recovery_offset = cpu_to_le64(0);
1540 memset(sb->pad1, 0, sizeof(sb->pad1));
1541 memset(sb->pad2, 0, sizeof(sb->pad2));
1542 memset(sb->pad3, 0, sizeof(sb->pad3));
1543
1544 sb->utime = cpu_to_le64((__u64)mddev->utime);
1545 sb->events = cpu_to_le64(mddev->events);
1546 if (mddev->in_sync)
1547 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1548 else
1549 sb->resync_offset = cpu_to_le64(0);
1550
1551 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1552
1553 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1554 sb->size = cpu_to_le64(mddev->dev_sectors);
1555 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1556 sb->level = cpu_to_le32(mddev->level);
1557 sb->layout = cpu_to_le32(mddev->layout);
1558
1559 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1560 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1561 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1562 }
1563
1564 if (rdev->raid_disk >= 0 &&
1565 !test_bit(In_sync, &rdev->flags)) {
1566 sb->feature_map |=
1567 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1568 sb->recovery_offset =
1569 cpu_to_le64(rdev->recovery_offset);
1570 }
1571
1572 if (mddev->reshape_position != MaxSector) {
1573 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1574 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1575 sb->new_layout = cpu_to_le32(mddev->new_layout);
1576 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1577 sb->new_level = cpu_to_le32(mddev->new_level);
1578 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1579 }
1580
1581 max_dev = 0;
1582 list_for_each_entry(rdev2, &mddev->disks, same_set)
1583 if (rdev2->desc_nr+1 > max_dev)
1584 max_dev = rdev2->desc_nr+1;
1585
1586 if (max_dev > le32_to_cpu(sb->max_dev)) {
1587 int bmask;
1588 sb->max_dev = cpu_to_le32(max_dev);
1589 rdev->sb_size = max_dev * 2 + 256;
1590 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1591 if (rdev->sb_size & bmask)
1592 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1593 }
1594 for (i=0; i<max_dev;i++)
1595 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1596
1597 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1598 i = rdev2->desc_nr;
1599 if (test_bit(Faulty, &rdev2->flags))
1600 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1601 else if (test_bit(In_sync, &rdev2->flags))
1602 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1603 else if (rdev2->raid_disk >= 0)
1604 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1605 else
1606 sb->dev_roles[i] = cpu_to_le16(0xffff);
1607 }
1608
1609 sb->sb_csum = calc_sb_1_csum(sb);
1610 }
1611
1612 static unsigned long long
1613 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1614 {
1615 struct mdp_superblock_1 *sb;
1616 sector_t max_sectors;
1617 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1618 return 0; /* component must fit device */
1619 if (rdev->sb_start < rdev->data_offset) {
1620 /* minor versions 1 and 2; superblock before data */
1621 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1622 max_sectors -= rdev->data_offset;
1623 if (!num_sectors || num_sectors > max_sectors)
1624 num_sectors = max_sectors;
1625 } else if (rdev->mddev->bitmap_info.offset) {
1626 /* minor version 0 with bitmap we can't move */
1627 return 0;
1628 } else {
1629 /* minor version 0; superblock after data */
1630 sector_t sb_start;
1631 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1632 sb_start &= ~(sector_t)(4*2 - 1);
1633 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1634 if (!num_sectors || num_sectors > max_sectors)
1635 num_sectors = max_sectors;
1636 rdev->sb_start = sb_start;
1637 }
1638 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1639 sb->data_size = cpu_to_le64(num_sectors);
1640 sb->super_offset = rdev->sb_start;
1641 sb->sb_csum = calc_sb_1_csum(sb);
1642 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1643 rdev->sb_page);
1644 md_super_wait(rdev->mddev);
1645 return num_sectors / 2; /* kB for sysfs */
1646 }
1647
1648 static struct super_type super_types[] = {
1649 [0] = {
1650 .name = "0.90.0",
1651 .owner = THIS_MODULE,
1652 .load_super = super_90_load,
1653 .validate_super = super_90_validate,
1654 .sync_super = super_90_sync,
1655 .rdev_size_change = super_90_rdev_size_change,
1656 },
1657 [1] = {
1658 .name = "md-1",
1659 .owner = THIS_MODULE,
1660 .load_super = super_1_load,
1661 .validate_super = super_1_validate,
1662 .sync_super = super_1_sync,
1663 .rdev_size_change = super_1_rdev_size_change,
1664 },
1665 };
1666
1667 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1668 {
1669 mdk_rdev_t *rdev, *rdev2;
1670
1671 rcu_read_lock();
1672 rdev_for_each_rcu(rdev, mddev1)
1673 rdev_for_each_rcu(rdev2, mddev2)
1674 if (rdev->bdev->bd_contains ==
1675 rdev2->bdev->bd_contains) {
1676 rcu_read_unlock();
1677 return 1;
1678 }
1679 rcu_read_unlock();
1680 return 0;
1681 }
1682
1683 static LIST_HEAD(pending_raid_disks);
1684
1685 /*
1686 * Try to register data integrity profile for an mddev
1687 *
1688 * This is called when an array is started and after a disk has been kicked
1689 * from the array. It only succeeds if all working and active component devices
1690 * are integrity capable with matching profiles.
1691 */
1692 int md_integrity_register(mddev_t *mddev)
1693 {
1694 mdk_rdev_t *rdev, *reference = NULL;
1695
1696 if (list_empty(&mddev->disks))
1697 return 0; /* nothing to do */
1698 if (blk_get_integrity(mddev->gendisk))
1699 return 0; /* already registered */
1700 list_for_each_entry(rdev, &mddev->disks, same_set) {
1701 /* skip spares and non-functional disks */
1702 if (test_bit(Faulty, &rdev->flags))
1703 continue;
1704 if (rdev->raid_disk < 0)
1705 continue;
1706 /*
1707 * If at least one rdev is not integrity capable, we can not
1708 * enable data integrity for the md device.
1709 */
1710 if (!bdev_get_integrity(rdev->bdev))
1711 return -EINVAL;
1712 if (!reference) {
1713 /* Use the first rdev as the reference */
1714 reference = rdev;
1715 continue;
1716 }
1717 /* does this rdev's profile match the reference profile? */
1718 if (blk_integrity_compare(reference->bdev->bd_disk,
1719 rdev->bdev->bd_disk) < 0)
1720 return -EINVAL;
1721 }
1722 /*
1723 * All component devices are integrity capable and have matching
1724 * profiles, register the common profile for the md device.
1725 */
1726 if (blk_integrity_register(mddev->gendisk,
1727 bdev_get_integrity(reference->bdev)) != 0) {
1728 printk(KERN_ERR "md: failed to register integrity for %s\n",
1729 mdname(mddev));
1730 return -EINVAL;
1731 }
1732 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1733 mdname(mddev));
1734 return 0;
1735 }
1736 EXPORT_SYMBOL(md_integrity_register);
1737
1738 /* Disable data integrity if non-capable/non-matching disk is being added */
1739 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1740 {
1741 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1742 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1743
1744 if (!bi_mddev) /* nothing to do */
1745 return;
1746 if (rdev->raid_disk < 0) /* skip spares */
1747 return;
1748 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1749 rdev->bdev->bd_disk) >= 0)
1750 return;
1751 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1752 blk_integrity_unregister(mddev->gendisk);
1753 }
1754 EXPORT_SYMBOL(md_integrity_add_rdev);
1755
1756 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1757 {
1758 char b[BDEVNAME_SIZE];
1759 struct kobject *ko;
1760 char *s;
1761 int err;
1762
1763 if (rdev->mddev) {
1764 MD_BUG();
1765 return -EINVAL;
1766 }
1767
1768 /* prevent duplicates */
1769 if (find_rdev(mddev, rdev->bdev->bd_dev))
1770 return -EEXIST;
1771
1772 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1773 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1774 rdev->sectors < mddev->dev_sectors)) {
1775 if (mddev->pers) {
1776 /* Cannot change size, so fail
1777 * If mddev->level <= 0, then we don't care
1778 * about aligning sizes (e.g. linear)
1779 */
1780 if (mddev->level > 0)
1781 return -ENOSPC;
1782 } else
1783 mddev->dev_sectors = rdev->sectors;
1784 }
1785
1786 /* Verify rdev->desc_nr is unique.
1787 * If it is -1, assign a free number, else
1788 * check number is not in use
1789 */
1790 if (rdev->desc_nr < 0) {
1791 int choice = 0;
1792 if (mddev->pers) choice = mddev->raid_disks;
1793 while (find_rdev_nr(mddev, choice))
1794 choice++;
1795 rdev->desc_nr = choice;
1796 } else {
1797 if (find_rdev_nr(mddev, rdev->desc_nr))
1798 return -EBUSY;
1799 }
1800 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1801 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1802 mdname(mddev), mddev->max_disks);
1803 return -EBUSY;
1804 }
1805 bdevname(rdev->bdev,b);
1806 while ( (s=strchr(b, '/')) != NULL)
1807 *s = '!';
1808
1809 rdev->mddev = mddev;
1810 printk(KERN_INFO "md: bind<%s>\n", b);
1811
1812 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1813 goto fail;
1814
1815 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1816 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1817 /* failure here is OK */;
1818 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1819
1820 list_add_rcu(&rdev->same_set, &mddev->disks);
1821 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1822
1823 /* May as well allow recovery to be retried once */
1824 mddev->recovery_disabled = 0;
1825
1826 return 0;
1827
1828 fail:
1829 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1830 b, mdname(mddev));
1831 return err;
1832 }
1833
1834 static void md_delayed_delete(struct work_struct *ws)
1835 {
1836 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1837 kobject_del(&rdev->kobj);
1838 kobject_put(&rdev->kobj);
1839 }
1840
1841 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1842 {
1843 char b[BDEVNAME_SIZE];
1844 if (!rdev->mddev) {
1845 MD_BUG();
1846 return;
1847 }
1848 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1849 list_del_rcu(&rdev->same_set);
1850 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1851 rdev->mddev = NULL;
1852 sysfs_remove_link(&rdev->kobj, "block");
1853 sysfs_put(rdev->sysfs_state);
1854 rdev->sysfs_state = NULL;
1855 /* We need to delay this, otherwise we can deadlock when
1856 * writing to 'remove' to "dev/state". We also need
1857 * to delay it due to rcu usage.
1858 */
1859 synchronize_rcu();
1860 INIT_WORK(&rdev->del_work, md_delayed_delete);
1861 kobject_get(&rdev->kobj);
1862 schedule_work(&rdev->del_work);
1863 }
1864
1865 /*
1866 * prevent the device from being mounted, repartitioned or
1867 * otherwise reused by a RAID array (or any other kernel
1868 * subsystem), by bd_claiming the device.
1869 */
1870 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1871 {
1872 int err = 0;
1873 struct block_device *bdev;
1874 char b[BDEVNAME_SIZE];
1875
1876 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1877 if (IS_ERR(bdev)) {
1878 printk(KERN_ERR "md: could not open %s.\n",
1879 __bdevname(dev, b));
1880 return PTR_ERR(bdev);
1881 }
1882 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1883 if (err) {
1884 printk(KERN_ERR "md: could not bd_claim %s.\n",
1885 bdevname(bdev, b));
1886 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1887 return err;
1888 }
1889 if (!shared)
1890 set_bit(AllReserved, &rdev->flags);
1891 rdev->bdev = bdev;
1892 return err;
1893 }
1894
1895 static void unlock_rdev(mdk_rdev_t *rdev)
1896 {
1897 struct block_device *bdev = rdev->bdev;
1898 rdev->bdev = NULL;
1899 if (!bdev)
1900 MD_BUG();
1901 bd_release(bdev);
1902 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1903 }
1904
1905 void md_autodetect_dev(dev_t dev);
1906
1907 static void export_rdev(mdk_rdev_t * rdev)
1908 {
1909 char b[BDEVNAME_SIZE];
1910 printk(KERN_INFO "md: export_rdev(%s)\n",
1911 bdevname(rdev->bdev,b));
1912 if (rdev->mddev)
1913 MD_BUG();
1914 free_disk_sb(rdev);
1915 #ifndef MODULE
1916 if (test_bit(AutoDetected, &rdev->flags))
1917 md_autodetect_dev(rdev->bdev->bd_dev);
1918 #endif
1919 unlock_rdev(rdev);
1920 kobject_put(&rdev->kobj);
1921 }
1922
1923 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1924 {
1925 unbind_rdev_from_array(rdev);
1926 export_rdev(rdev);
1927 }
1928
1929 static void export_array(mddev_t *mddev)
1930 {
1931 mdk_rdev_t *rdev, *tmp;
1932
1933 rdev_for_each(rdev, tmp, mddev) {
1934 if (!rdev->mddev) {
1935 MD_BUG();
1936 continue;
1937 }
1938 kick_rdev_from_array(rdev);
1939 }
1940 if (!list_empty(&mddev->disks))
1941 MD_BUG();
1942 mddev->raid_disks = 0;
1943 mddev->major_version = 0;
1944 }
1945
1946 static void print_desc(mdp_disk_t *desc)
1947 {
1948 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1949 desc->major,desc->minor,desc->raid_disk,desc->state);
1950 }
1951
1952 static void print_sb_90(mdp_super_t *sb)
1953 {
1954 int i;
1955
1956 printk(KERN_INFO
1957 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1958 sb->major_version, sb->minor_version, sb->patch_version,
1959 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1960 sb->ctime);
1961 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1962 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1963 sb->md_minor, sb->layout, sb->chunk_size);
1964 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1965 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1966 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1967 sb->failed_disks, sb->spare_disks,
1968 sb->sb_csum, (unsigned long)sb->events_lo);
1969
1970 printk(KERN_INFO);
1971 for (i = 0; i < MD_SB_DISKS; i++) {
1972 mdp_disk_t *desc;
1973
1974 desc = sb->disks + i;
1975 if (desc->number || desc->major || desc->minor ||
1976 desc->raid_disk || (desc->state && (desc->state != 4))) {
1977 printk(" D %2d: ", i);
1978 print_desc(desc);
1979 }
1980 }
1981 printk(KERN_INFO "md: THIS: ");
1982 print_desc(&sb->this_disk);
1983 }
1984
1985 static void print_sb_1(struct mdp_superblock_1 *sb)
1986 {
1987 __u8 *uuid;
1988
1989 uuid = sb->set_uuid;
1990 printk(KERN_INFO
1991 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
1992 "md: Name: \"%s\" CT:%llu\n",
1993 le32_to_cpu(sb->major_version),
1994 le32_to_cpu(sb->feature_map),
1995 uuid,
1996 sb->set_name,
1997 (unsigned long long)le64_to_cpu(sb->ctime)
1998 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1999
2000 uuid = sb->device_uuid;
2001 printk(KERN_INFO
2002 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2003 " RO:%llu\n"
2004 "md: Dev:%08x UUID: %pU\n"
2005 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2006 "md: (MaxDev:%u) \n",
2007 le32_to_cpu(sb->level),
2008 (unsigned long long)le64_to_cpu(sb->size),
2009 le32_to_cpu(sb->raid_disks),
2010 le32_to_cpu(sb->layout),
2011 le32_to_cpu(sb->chunksize),
2012 (unsigned long long)le64_to_cpu(sb->data_offset),
2013 (unsigned long long)le64_to_cpu(sb->data_size),
2014 (unsigned long long)le64_to_cpu(sb->super_offset),
2015 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2016 le32_to_cpu(sb->dev_number),
2017 uuid,
2018 sb->devflags,
2019 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2020 (unsigned long long)le64_to_cpu(sb->events),
2021 (unsigned long long)le64_to_cpu(sb->resync_offset),
2022 le32_to_cpu(sb->sb_csum),
2023 le32_to_cpu(sb->max_dev)
2024 );
2025 }
2026
2027 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2028 {
2029 char b[BDEVNAME_SIZE];
2030 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2031 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2032 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2033 rdev->desc_nr);
2034 if (rdev->sb_loaded) {
2035 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2036 switch (major_version) {
2037 case 0:
2038 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2039 break;
2040 case 1:
2041 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2042 break;
2043 }
2044 } else
2045 printk(KERN_INFO "md: no rdev superblock!\n");
2046 }
2047
2048 static void md_print_devices(void)
2049 {
2050 struct list_head *tmp;
2051 mdk_rdev_t *rdev;
2052 mddev_t *mddev;
2053 char b[BDEVNAME_SIZE];
2054
2055 printk("\n");
2056 printk("md: **********************************\n");
2057 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2058 printk("md: **********************************\n");
2059 for_each_mddev(mddev, tmp) {
2060
2061 if (mddev->bitmap)
2062 bitmap_print_sb(mddev->bitmap);
2063 else
2064 printk("%s: ", mdname(mddev));
2065 list_for_each_entry(rdev, &mddev->disks, same_set)
2066 printk("<%s>", bdevname(rdev->bdev,b));
2067 printk("\n");
2068
2069 list_for_each_entry(rdev, &mddev->disks, same_set)
2070 print_rdev(rdev, mddev->major_version);
2071 }
2072 printk("md: **********************************\n");
2073 printk("\n");
2074 }
2075
2076
2077 static void sync_sbs(mddev_t * mddev, int nospares)
2078 {
2079 /* Update each superblock (in-memory image), but
2080 * if we are allowed to, skip spares which already
2081 * have the right event counter, or have one earlier
2082 * (which would mean they aren't being marked as dirty
2083 * with the rest of the array)
2084 */
2085 mdk_rdev_t *rdev;
2086
2087 /* First make sure individual recovery_offsets are correct */
2088 list_for_each_entry(rdev, &mddev->disks, same_set) {
2089 if (rdev->raid_disk >= 0 &&
2090 mddev->delta_disks >= 0 &&
2091 !test_bit(In_sync, &rdev->flags) &&
2092 mddev->curr_resync_completed > rdev->recovery_offset)
2093 rdev->recovery_offset = mddev->curr_resync_completed;
2094
2095 }
2096 list_for_each_entry(rdev, &mddev->disks, same_set) {
2097 if (rdev->sb_events == mddev->events ||
2098 (nospares &&
2099 rdev->raid_disk < 0 &&
2100 rdev->sb_events+1 == mddev->events)) {
2101 /* Don't update this superblock */
2102 rdev->sb_loaded = 2;
2103 } else {
2104 super_types[mddev->major_version].
2105 sync_super(mddev, rdev);
2106 rdev->sb_loaded = 1;
2107 }
2108 }
2109 }
2110
2111 static void md_update_sb(mddev_t * mddev, int force_change)
2112 {
2113 mdk_rdev_t *rdev;
2114 int sync_req;
2115 int nospares = 0;
2116
2117 mddev->utime = get_seconds();
2118 if (mddev->external)
2119 return;
2120 repeat:
2121 spin_lock_irq(&mddev->write_lock);
2122
2123 set_bit(MD_CHANGE_PENDING, &mddev->flags);
2124 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2125 force_change = 1;
2126 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2127 /* just a clean<-> dirty transition, possibly leave spares alone,
2128 * though if events isn't the right even/odd, we will have to do
2129 * spares after all
2130 */
2131 nospares = 1;
2132 if (force_change)
2133 nospares = 0;
2134 if (mddev->degraded)
2135 /* If the array is degraded, then skipping spares is both
2136 * dangerous and fairly pointless.
2137 * Dangerous because a device that was removed from the array
2138 * might have a event_count that still looks up-to-date,
2139 * so it can be re-added without a resync.
2140 * Pointless because if there are any spares to skip,
2141 * then a recovery will happen and soon that array won't
2142 * be degraded any more and the spare can go back to sleep then.
2143 */
2144 nospares = 0;
2145
2146 sync_req = mddev->in_sync;
2147
2148 /* If this is just a dirty<->clean transition, and the array is clean
2149 * and 'events' is odd, we can roll back to the previous clean state */
2150 if (nospares
2151 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2152 && mddev->can_decrease_events
2153 && mddev->events != 1) {
2154 mddev->events--;
2155 mddev->can_decrease_events = 0;
2156 } else {
2157 /* otherwise we have to go forward and ... */
2158 mddev->events ++;
2159 mddev->can_decrease_events = nospares;
2160 }
2161
2162 if (!mddev->events) {
2163 /*
2164 * oops, this 64-bit counter should never wrap.
2165 * Either we are in around ~1 trillion A.C., assuming
2166 * 1 reboot per second, or we have a bug:
2167 */
2168 MD_BUG();
2169 mddev->events --;
2170 }
2171
2172 /*
2173 * do not write anything to disk if using
2174 * nonpersistent superblocks
2175 */
2176 if (!mddev->persistent) {
2177 if (!mddev->external)
2178 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2179
2180 spin_unlock_irq(&mddev->write_lock);
2181 wake_up(&mddev->sb_wait);
2182 return;
2183 }
2184 sync_sbs(mddev, nospares);
2185 spin_unlock_irq(&mddev->write_lock);
2186
2187 dprintk(KERN_INFO
2188 "md: updating %s RAID superblock on device (in sync %d)\n",
2189 mdname(mddev),mddev->in_sync);
2190
2191 bitmap_update_sb(mddev->bitmap);
2192 list_for_each_entry(rdev, &mddev->disks, same_set) {
2193 char b[BDEVNAME_SIZE];
2194 dprintk(KERN_INFO "md: ");
2195 if (rdev->sb_loaded != 1)
2196 continue; /* no noise on spare devices */
2197 if (test_bit(Faulty, &rdev->flags))
2198 dprintk("(skipping faulty ");
2199
2200 dprintk("%s ", bdevname(rdev->bdev,b));
2201 if (!test_bit(Faulty, &rdev->flags)) {
2202 md_super_write(mddev,rdev,
2203 rdev->sb_start, rdev->sb_size,
2204 rdev->sb_page);
2205 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2206 bdevname(rdev->bdev,b),
2207 (unsigned long long)rdev->sb_start);
2208 rdev->sb_events = mddev->events;
2209
2210 } else
2211 dprintk(")\n");
2212 if (mddev->level == LEVEL_MULTIPATH)
2213 /* only need to write one superblock... */
2214 break;
2215 }
2216 md_super_wait(mddev);
2217 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2218
2219 spin_lock_irq(&mddev->write_lock);
2220 if (mddev->in_sync != sync_req ||
2221 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2222 /* have to write it out again */
2223 spin_unlock_irq(&mddev->write_lock);
2224 goto repeat;
2225 }
2226 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2227 spin_unlock_irq(&mddev->write_lock);
2228 wake_up(&mddev->sb_wait);
2229 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2230 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2231
2232 }
2233
2234 /* words written to sysfs files may, or may not, be \n terminated.
2235 * We want to accept with case. For this we use cmd_match.
2236 */
2237 static int cmd_match(const char *cmd, const char *str)
2238 {
2239 /* See if cmd, written into a sysfs file, matches
2240 * str. They must either be the same, or cmd can
2241 * have a trailing newline
2242 */
2243 while (*cmd && *str && *cmd == *str) {
2244 cmd++;
2245 str++;
2246 }
2247 if (*cmd == '\n')
2248 cmd++;
2249 if (*str || *cmd)
2250 return 0;
2251 return 1;
2252 }
2253
2254 struct rdev_sysfs_entry {
2255 struct attribute attr;
2256 ssize_t (*show)(mdk_rdev_t *, char *);
2257 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2258 };
2259
2260 static ssize_t
2261 state_show(mdk_rdev_t *rdev, char *page)
2262 {
2263 char *sep = "";
2264 size_t len = 0;
2265
2266 if (test_bit(Faulty, &rdev->flags)) {
2267 len+= sprintf(page+len, "%sfaulty",sep);
2268 sep = ",";
2269 }
2270 if (test_bit(In_sync, &rdev->flags)) {
2271 len += sprintf(page+len, "%sin_sync",sep);
2272 sep = ",";
2273 }
2274 if (test_bit(WriteMostly, &rdev->flags)) {
2275 len += sprintf(page+len, "%swrite_mostly",sep);
2276 sep = ",";
2277 }
2278 if (test_bit(Blocked, &rdev->flags)) {
2279 len += sprintf(page+len, "%sblocked", sep);
2280 sep = ",";
2281 }
2282 if (!test_bit(Faulty, &rdev->flags) &&
2283 !test_bit(In_sync, &rdev->flags)) {
2284 len += sprintf(page+len, "%sspare", sep);
2285 sep = ",";
2286 }
2287 return len+sprintf(page+len, "\n");
2288 }
2289
2290 static ssize_t
2291 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2292 {
2293 /* can write
2294 * faulty - simulates and error
2295 * remove - disconnects the device
2296 * writemostly - sets write_mostly
2297 * -writemostly - clears write_mostly
2298 * blocked - sets the Blocked flag
2299 * -blocked - clears the Blocked flag
2300 * insync - sets Insync providing device isn't active
2301 */
2302 int err = -EINVAL;
2303 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2304 md_error(rdev->mddev, rdev);
2305 err = 0;
2306 } else if (cmd_match(buf, "remove")) {
2307 if (rdev->raid_disk >= 0)
2308 err = -EBUSY;
2309 else {
2310 mddev_t *mddev = rdev->mddev;
2311 kick_rdev_from_array(rdev);
2312 if (mddev->pers)
2313 md_update_sb(mddev, 1);
2314 md_new_event(mddev);
2315 err = 0;
2316 }
2317 } else if (cmd_match(buf, "writemostly")) {
2318 set_bit(WriteMostly, &rdev->flags);
2319 err = 0;
2320 } else if (cmd_match(buf, "-writemostly")) {
2321 clear_bit(WriteMostly, &rdev->flags);
2322 err = 0;
2323 } else if (cmd_match(buf, "blocked")) {
2324 set_bit(Blocked, &rdev->flags);
2325 err = 0;
2326 } else if (cmd_match(buf, "-blocked")) {
2327 clear_bit(Blocked, &rdev->flags);
2328 wake_up(&rdev->blocked_wait);
2329 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2330 md_wakeup_thread(rdev->mddev->thread);
2331
2332 err = 0;
2333 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2334 set_bit(In_sync, &rdev->flags);
2335 err = 0;
2336 }
2337 if (!err)
2338 sysfs_notify_dirent_safe(rdev->sysfs_state);
2339 return err ? err : len;
2340 }
2341 static struct rdev_sysfs_entry rdev_state =
2342 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2343
2344 static ssize_t
2345 errors_show(mdk_rdev_t *rdev, char *page)
2346 {
2347 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2348 }
2349
2350 static ssize_t
2351 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2352 {
2353 char *e;
2354 unsigned long n = simple_strtoul(buf, &e, 10);
2355 if (*buf && (*e == 0 || *e == '\n')) {
2356 atomic_set(&rdev->corrected_errors, n);
2357 return len;
2358 }
2359 return -EINVAL;
2360 }
2361 static struct rdev_sysfs_entry rdev_errors =
2362 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2363
2364 static ssize_t
2365 slot_show(mdk_rdev_t *rdev, char *page)
2366 {
2367 if (rdev->raid_disk < 0)
2368 return sprintf(page, "none\n");
2369 else
2370 return sprintf(page, "%d\n", rdev->raid_disk);
2371 }
2372
2373 static ssize_t
2374 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2375 {
2376 char *e;
2377 int err;
2378 char nm[20];
2379 int slot = simple_strtoul(buf, &e, 10);
2380 if (strncmp(buf, "none", 4)==0)
2381 slot = -1;
2382 else if (e==buf || (*e && *e!= '\n'))
2383 return -EINVAL;
2384 if (rdev->mddev->pers && slot == -1) {
2385 /* Setting 'slot' on an active array requires also
2386 * updating the 'rd%d' link, and communicating
2387 * with the personality with ->hot_*_disk.
2388 * For now we only support removing
2389 * failed/spare devices. This normally happens automatically,
2390 * but not when the metadata is externally managed.
2391 */
2392 if (rdev->raid_disk == -1)
2393 return -EEXIST;
2394 /* personality does all needed checks */
2395 if (rdev->mddev->pers->hot_add_disk == NULL)
2396 return -EINVAL;
2397 err = rdev->mddev->pers->
2398 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2399 if (err)
2400 return err;
2401 sprintf(nm, "rd%d", rdev->raid_disk);
2402 sysfs_remove_link(&rdev->mddev->kobj, nm);
2403 rdev->raid_disk = -1;
2404 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2405 md_wakeup_thread(rdev->mddev->thread);
2406 } else if (rdev->mddev->pers) {
2407 mdk_rdev_t *rdev2;
2408 /* Activating a spare .. or possibly reactivating
2409 * if we ever get bitmaps working here.
2410 */
2411
2412 if (rdev->raid_disk != -1)
2413 return -EBUSY;
2414
2415 if (rdev->mddev->pers->hot_add_disk == NULL)
2416 return -EINVAL;
2417
2418 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2419 if (rdev2->raid_disk == slot)
2420 return -EEXIST;
2421
2422 rdev->raid_disk = slot;
2423 if (test_bit(In_sync, &rdev->flags))
2424 rdev->saved_raid_disk = slot;
2425 else
2426 rdev->saved_raid_disk = -1;
2427 err = rdev->mddev->pers->
2428 hot_add_disk(rdev->mddev, rdev);
2429 if (err) {
2430 rdev->raid_disk = -1;
2431 return err;
2432 } else
2433 sysfs_notify_dirent_safe(rdev->sysfs_state);
2434 sprintf(nm, "rd%d", rdev->raid_disk);
2435 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2436 /* failure here is OK */;
2437 /* don't wakeup anyone, leave that to userspace. */
2438 } else {
2439 if (slot >= rdev->mddev->raid_disks)
2440 return -ENOSPC;
2441 rdev->raid_disk = slot;
2442 /* assume it is working */
2443 clear_bit(Faulty, &rdev->flags);
2444 clear_bit(WriteMostly, &rdev->flags);
2445 set_bit(In_sync, &rdev->flags);
2446 sysfs_notify_dirent_safe(rdev->sysfs_state);
2447 }
2448 return len;
2449 }
2450
2451
2452 static struct rdev_sysfs_entry rdev_slot =
2453 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2454
2455 static ssize_t
2456 offset_show(mdk_rdev_t *rdev, char *page)
2457 {
2458 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2459 }
2460
2461 static ssize_t
2462 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2463 {
2464 char *e;
2465 unsigned long long offset = simple_strtoull(buf, &e, 10);
2466 if (e==buf || (*e && *e != '\n'))
2467 return -EINVAL;
2468 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2469 return -EBUSY;
2470 if (rdev->sectors && rdev->mddev->external)
2471 /* Must set offset before size, so overlap checks
2472 * can be sane */
2473 return -EBUSY;
2474 rdev->data_offset = offset;
2475 return len;
2476 }
2477
2478 static struct rdev_sysfs_entry rdev_offset =
2479 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2480
2481 static ssize_t
2482 rdev_size_show(mdk_rdev_t *rdev, char *page)
2483 {
2484 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2485 }
2486
2487 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2488 {
2489 /* check if two start/length pairs overlap */
2490 if (s1+l1 <= s2)
2491 return 0;
2492 if (s2+l2 <= s1)
2493 return 0;
2494 return 1;
2495 }
2496
2497 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2498 {
2499 unsigned long long blocks;
2500 sector_t new;
2501
2502 if (strict_strtoull(buf, 10, &blocks) < 0)
2503 return -EINVAL;
2504
2505 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2506 return -EINVAL; /* sector conversion overflow */
2507
2508 new = blocks * 2;
2509 if (new != blocks * 2)
2510 return -EINVAL; /* unsigned long long to sector_t overflow */
2511
2512 *sectors = new;
2513 return 0;
2514 }
2515
2516 static ssize_t
2517 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2518 {
2519 mddev_t *my_mddev = rdev->mddev;
2520 sector_t oldsectors = rdev->sectors;
2521 sector_t sectors;
2522
2523 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2524 return -EINVAL;
2525 if (my_mddev->pers && rdev->raid_disk >= 0) {
2526 if (my_mddev->persistent) {
2527 sectors = super_types[my_mddev->major_version].
2528 rdev_size_change(rdev, sectors);
2529 if (!sectors)
2530 return -EBUSY;
2531 } else if (!sectors)
2532 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2533 rdev->data_offset;
2534 }
2535 if (sectors < my_mddev->dev_sectors)
2536 return -EINVAL; /* component must fit device */
2537
2538 rdev->sectors = sectors;
2539 if (sectors > oldsectors && my_mddev->external) {
2540 /* need to check that all other rdevs with the same ->bdev
2541 * do not overlap. We need to unlock the mddev to avoid
2542 * a deadlock. We have already changed rdev->sectors, and if
2543 * we have to change it back, we will have the lock again.
2544 */
2545 mddev_t *mddev;
2546 int overlap = 0;
2547 struct list_head *tmp;
2548
2549 mddev_unlock(my_mddev);
2550 for_each_mddev(mddev, tmp) {
2551 mdk_rdev_t *rdev2;
2552
2553 mddev_lock(mddev);
2554 list_for_each_entry(rdev2, &mddev->disks, same_set)
2555 if (test_bit(AllReserved, &rdev2->flags) ||
2556 (rdev->bdev == rdev2->bdev &&
2557 rdev != rdev2 &&
2558 overlaps(rdev->data_offset, rdev->sectors,
2559 rdev2->data_offset,
2560 rdev2->sectors))) {
2561 overlap = 1;
2562 break;
2563 }
2564 mddev_unlock(mddev);
2565 if (overlap) {
2566 mddev_put(mddev);
2567 break;
2568 }
2569 }
2570 mddev_lock(my_mddev);
2571 if (overlap) {
2572 /* Someone else could have slipped in a size
2573 * change here, but doing so is just silly.
2574 * We put oldsectors back because we *know* it is
2575 * safe, and trust userspace not to race with
2576 * itself
2577 */
2578 rdev->sectors = oldsectors;
2579 return -EBUSY;
2580 }
2581 }
2582 return len;
2583 }
2584
2585 static struct rdev_sysfs_entry rdev_size =
2586 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2587
2588
2589 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2590 {
2591 unsigned long long recovery_start = rdev->recovery_offset;
2592
2593 if (test_bit(In_sync, &rdev->flags) ||
2594 recovery_start == MaxSector)
2595 return sprintf(page, "none\n");
2596
2597 return sprintf(page, "%llu\n", recovery_start);
2598 }
2599
2600 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2601 {
2602 unsigned long long recovery_start;
2603
2604 if (cmd_match(buf, "none"))
2605 recovery_start = MaxSector;
2606 else if (strict_strtoull(buf, 10, &recovery_start))
2607 return -EINVAL;
2608
2609 if (rdev->mddev->pers &&
2610 rdev->raid_disk >= 0)
2611 return -EBUSY;
2612
2613 rdev->recovery_offset = recovery_start;
2614 if (recovery_start == MaxSector)
2615 set_bit(In_sync, &rdev->flags);
2616 else
2617 clear_bit(In_sync, &rdev->flags);
2618 return len;
2619 }
2620
2621 static struct rdev_sysfs_entry rdev_recovery_start =
2622 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2623
2624 static struct attribute *rdev_default_attrs[] = {
2625 &rdev_state.attr,
2626 &rdev_errors.attr,
2627 &rdev_slot.attr,
2628 &rdev_offset.attr,
2629 &rdev_size.attr,
2630 &rdev_recovery_start.attr,
2631 NULL,
2632 };
2633 static ssize_t
2634 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2635 {
2636 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2637 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2638 mddev_t *mddev = rdev->mddev;
2639 ssize_t rv;
2640
2641 if (!entry->show)
2642 return -EIO;
2643
2644 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2645 if (!rv) {
2646 if (rdev->mddev == NULL)
2647 rv = -EBUSY;
2648 else
2649 rv = entry->show(rdev, page);
2650 mddev_unlock(mddev);
2651 }
2652 return rv;
2653 }
2654
2655 static ssize_t
2656 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2657 const char *page, size_t length)
2658 {
2659 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2660 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2661 ssize_t rv;
2662 mddev_t *mddev = rdev->mddev;
2663
2664 if (!entry->store)
2665 return -EIO;
2666 if (!capable(CAP_SYS_ADMIN))
2667 return -EACCES;
2668 rv = mddev ? mddev_lock(mddev): -EBUSY;
2669 if (!rv) {
2670 if (rdev->mddev == NULL)
2671 rv = -EBUSY;
2672 else
2673 rv = entry->store(rdev, page, length);
2674 mddev_unlock(mddev);
2675 }
2676 return rv;
2677 }
2678
2679 static void rdev_free(struct kobject *ko)
2680 {
2681 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2682 kfree(rdev);
2683 }
2684 static const struct sysfs_ops rdev_sysfs_ops = {
2685 .show = rdev_attr_show,
2686 .store = rdev_attr_store,
2687 };
2688 static struct kobj_type rdev_ktype = {
2689 .release = rdev_free,
2690 .sysfs_ops = &rdev_sysfs_ops,
2691 .default_attrs = rdev_default_attrs,
2692 };
2693
2694 void md_rdev_init(mdk_rdev_t *rdev)
2695 {
2696 rdev->desc_nr = -1;
2697 rdev->saved_raid_disk = -1;
2698 rdev->raid_disk = -1;
2699 rdev->flags = 0;
2700 rdev->data_offset = 0;
2701 rdev->sb_events = 0;
2702 rdev->last_read_error.tv_sec = 0;
2703 rdev->last_read_error.tv_nsec = 0;
2704 atomic_set(&rdev->nr_pending, 0);
2705 atomic_set(&rdev->read_errors, 0);
2706 atomic_set(&rdev->corrected_errors, 0);
2707
2708 INIT_LIST_HEAD(&rdev->same_set);
2709 init_waitqueue_head(&rdev->blocked_wait);
2710 }
2711 EXPORT_SYMBOL_GPL(md_rdev_init);
2712 /*
2713 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2714 *
2715 * mark the device faulty if:
2716 *
2717 * - the device is nonexistent (zero size)
2718 * - the device has no valid superblock
2719 *
2720 * a faulty rdev _never_ has rdev->sb set.
2721 */
2722 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2723 {
2724 char b[BDEVNAME_SIZE];
2725 int err;
2726 mdk_rdev_t *rdev;
2727 sector_t size;
2728
2729 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2730 if (!rdev) {
2731 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2732 return ERR_PTR(-ENOMEM);
2733 }
2734
2735 md_rdev_init(rdev);
2736 if ((err = alloc_disk_sb(rdev)))
2737 goto abort_free;
2738
2739 err = lock_rdev(rdev, newdev, super_format == -2);
2740 if (err)
2741 goto abort_free;
2742
2743 kobject_init(&rdev->kobj, &rdev_ktype);
2744
2745 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2746 if (!size) {
2747 printk(KERN_WARNING
2748 "md: %s has zero or unknown size, marking faulty!\n",
2749 bdevname(rdev->bdev,b));
2750 err = -EINVAL;
2751 goto abort_free;
2752 }
2753
2754 if (super_format >= 0) {
2755 err = super_types[super_format].
2756 load_super(rdev, NULL, super_minor);
2757 if (err == -EINVAL) {
2758 printk(KERN_WARNING
2759 "md: %s does not have a valid v%d.%d "
2760 "superblock, not importing!\n",
2761 bdevname(rdev->bdev,b),
2762 super_format, super_minor);
2763 goto abort_free;
2764 }
2765 if (err < 0) {
2766 printk(KERN_WARNING
2767 "md: could not read %s's sb, not importing!\n",
2768 bdevname(rdev->bdev,b));
2769 goto abort_free;
2770 }
2771 }
2772
2773 return rdev;
2774
2775 abort_free:
2776 if (rdev->sb_page) {
2777 if (rdev->bdev)
2778 unlock_rdev(rdev);
2779 free_disk_sb(rdev);
2780 }
2781 kfree(rdev);
2782 return ERR_PTR(err);
2783 }
2784
2785 /*
2786 * Check a full RAID array for plausibility
2787 */
2788
2789
2790 static void analyze_sbs(mddev_t * mddev)
2791 {
2792 int i;
2793 mdk_rdev_t *rdev, *freshest, *tmp;
2794 char b[BDEVNAME_SIZE];
2795
2796 freshest = NULL;
2797 rdev_for_each(rdev, tmp, mddev)
2798 switch (super_types[mddev->major_version].
2799 load_super(rdev, freshest, mddev->minor_version)) {
2800 case 1:
2801 freshest = rdev;
2802 break;
2803 case 0:
2804 break;
2805 default:
2806 printk( KERN_ERR \
2807 "md: fatal superblock inconsistency in %s"
2808 " -- removing from array\n",
2809 bdevname(rdev->bdev,b));
2810 kick_rdev_from_array(rdev);
2811 }
2812
2813
2814 super_types[mddev->major_version].
2815 validate_super(mddev, freshest);
2816
2817 i = 0;
2818 rdev_for_each(rdev, tmp, mddev) {
2819 if (mddev->max_disks &&
2820 (rdev->desc_nr >= mddev->max_disks ||
2821 i > mddev->max_disks)) {
2822 printk(KERN_WARNING
2823 "md: %s: %s: only %d devices permitted\n",
2824 mdname(mddev), bdevname(rdev->bdev, b),
2825 mddev->max_disks);
2826 kick_rdev_from_array(rdev);
2827 continue;
2828 }
2829 if (rdev != freshest)
2830 if (super_types[mddev->major_version].
2831 validate_super(mddev, rdev)) {
2832 printk(KERN_WARNING "md: kicking non-fresh %s"
2833 " from array!\n",
2834 bdevname(rdev->bdev,b));
2835 kick_rdev_from_array(rdev);
2836 continue;
2837 }
2838 if (mddev->level == LEVEL_MULTIPATH) {
2839 rdev->desc_nr = i++;
2840 rdev->raid_disk = rdev->desc_nr;
2841 set_bit(In_sync, &rdev->flags);
2842 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2843 rdev->raid_disk = -1;
2844 clear_bit(In_sync, &rdev->flags);
2845 }
2846 }
2847 }
2848
2849 /* Read a fixed-point number.
2850 * Numbers in sysfs attributes should be in "standard" units where
2851 * possible, so time should be in seconds.
2852 * However we internally use a a much smaller unit such as
2853 * milliseconds or jiffies.
2854 * This function takes a decimal number with a possible fractional
2855 * component, and produces an integer which is the result of
2856 * multiplying that number by 10^'scale'.
2857 * all without any floating-point arithmetic.
2858 */
2859 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2860 {
2861 unsigned long result = 0;
2862 long decimals = -1;
2863 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2864 if (*cp == '.')
2865 decimals = 0;
2866 else if (decimals < scale) {
2867 unsigned int value;
2868 value = *cp - '0';
2869 result = result * 10 + value;
2870 if (decimals >= 0)
2871 decimals++;
2872 }
2873 cp++;
2874 }
2875 if (*cp == '\n')
2876 cp++;
2877 if (*cp)
2878 return -EINVAL;
2879 if (decimals < 0)
2880 decimals = 0;
2881 while (decimals < scale) {
2882 result *= 10;
2883 decimals ++;
2884 }
2885 *res = result;
2886 return 0;
2887 }
2888
2889
2890 static void md_safemode_timeout(unsigned long data);
2891
2892 static ssize_t
2893 safe_delay_show(mddev_t *mddev, char *page)
2894 {
2895 int msec = (mddev->safemode_delay*1000)/HZ;
2896 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2897 }
2898 static ssize_t
2899 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2900 {
2901 unsigned long msec;
2902
2903 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2904 return -EINVAL;
2905 if (msec == 0)
2906 mddev->safemode_delay = 0;
2907 else {
2908 unsigned long old_delay = mddev->safemode_delay;
2909 mddev->safemode_delay = (msec*HZ)/1000;
2910 if (mddev->safemode_delay == 0)
2911 mddev->safemode_delay = 1;
2912 if (mddev->safemode_delay < old_delay)
2913 md_safemode_timeout((unsigned long)mddev);
2914 }
2915 return len;
2916 }
2917 static struct md_sysfs_entry md_safe_delay =
2918 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2919
2920 static ssize_t
2921 level_show(mddev_t *mddev, char *page)
2922 {
2923 struct mdk_personality *p = mddev->pers;
2924 if (p)
2925 return sprintf(page, "%s\n", p->name);
2926 else if (mddev->clevel[0])
2927 return sprintf(page, "%s\n", mddev->clevel);
2928 else if (mddev->level != LEVEL_NONE)
2929 return sprintf(page, "%d\n", mddev->level);
2930 else
2931 return 0;
2932 }
2933
2934 static ssize_t
2935 level_store(mddev_t *mddev, const char *buf, size_t len)
2936 {
2937 char clevel[16];
2938 ssize_t rv = len;
2939 struct mdk_personality *pers;
2940 long level;
2941 void *priv;
2942 mdk_rdev_t *rdev;
2943
2944 if (mddev->pers == NULL) {
2945 if (len == 0)
2946 return 0;
2947 if (len >= sizeof(mddev->clevel))
2948 return -ENOSPC;
2949 strncpy(mddev->clevel, buf, len);
2950 if (mddev->clevel[len-1] == '\n')
2951 len--;
2952 mddev->clevel[len] = 0;
2953 mddev->level = LEVEL_NONE;
2954 return rv;
2955 }
2956
2957 /* request to change the personality. Need to ensure:
2958 * - array is not engaged in resync/recovery/reshape
2959 * - old personality can be suspended
2960 * - new personality will access other array.
2961 */
2962
2963 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2964 return -EBUSY;
2965
2966 if (!mddev->pers->quiesce) {
2967 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2968 mdname(mddev), mddev->pers->name);
2969 return -EINVAL;
2970 }
2971
2972 /* Now find the new personality */
2973 if (len == 0 || len >= sizeof(clevel))
2974 return -EINVAL;
2975 strncpy(clevel, buf, len);
2976 if (clevel[len-1] == '\n')
2977 len--;
2978 clevel[len] = 0;
2979 if (strict_strtol(clevel, 10, &level))
2980 level = LEVEL_NONE;
2981
2982 if (request_module("md-%s", clevel) != 0)
2983 request_module("md-level-%s", clevel);
2984 spin_lock(&pers_lock);
2985 pers = find_pers(level, clevel);
2986 if (!pers || !try_module_get(pers->owner)) {
2987 spin_unlock(&pers_lock);
2988 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
2989 return -EINVAL;
2990 }
2991 spin_unlock(&pers_lock);
2992
2993 if (pers == mddev->pers) {
2994 /* Nothing to do! */
2995 module_put(pers->owner);
2996 return rv;
2997 }
2998 if (!pers->takeover) {
2999 module_put(pers->owner);
3000 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3001 mdname(mddev), clevel);
3002 return -EINVAL;
3003 }
3004
3005 list_for_each_entry(rdev, &mddev->disks, same_set)
3006 rdev->new_raid_disk = rdev->raid_disk;
3007
3008 /* ->takeover must set new_* and/or delta_disks
3009 * if it succeeds, and may set them when it fails.
3010 */
3011 priv = pers->takeover(mddev);
3012 if (IS_ERR(priv)) {
3013 mddev->new_level = mddev->level;
3014 mddev->new_layout = mddev->layout;
3015 mddev->new_chunk_sectors = mddev->chunk_sectors;
3016 mddev->raid_disks -= mddev->delta_disks;
3017 mddev->delta_disks = 0;
3018 module_put(pers->owner);
3019 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3020 mdname(mddev), clevel);
3021 return PTR_ERR(priv);
3022 }
3023
3024 /* Looks like we have a winner */
3025 mddev_suspend(mddev);
3026 mddev->pers->stop(mddev);
3027
3028 if (mddev->pers->sync_request == NULL &&
3029 pers->sync_request != NULL) {
3030 /* need to add the md_redundancy_group */
3031 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3032 printk(KERN_WARNING
3033 "md: cannot register extra attributes for %s\n",
3034 mdname(mddev));
3035 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3036 }
3037 if (mddev->pers->sync_request != NULL &&
3038 pers->sync_request == NULL) {
3039 /* need to remove the md_redundancy_group */
3040 if (mddev->to_remove == NULL)
3041 mddev->to_remove = &md_redundancy_group;
3042 }
3043
3044 if (mddev->pers->sync_request == NULL &&
3045 mddev->external) {
3046 /* We are converting from a no-redundancy array
3047 * to a redundancy array and metadata is managed
3048 * externally so we need to be sure that writes
3049 * won't block due to a need to transition
3050 * clean->dirty
3051 * until external management is started.
3052 */
3053 mddev->in_sync = 0;
3054 mddev->safemode_delay = 0;
3055 mddev->safemode = 0;
3056 }
3057
3058 list_for_each_entry(rdev, &mddev->disks, same_set) {
3059 char nm[20];
3060 if (rdev->raid_disk < 0)
3061 continue;
3062 if (rdev->new_raid_disk > mddev->raid_disks)
3063 rdev->new_raid_disk = -1;
3064 if (rdev->new_raid_disk == rdev->raid_disk)
3065 continue;
3066 sprintf(nm, "rd%d", rdev->raid_disk);
3067 sysfs_remove_link(&mddev->kobj, nm);
3068 }
3069 list_for_each_entry(rdev, &mddev->disks, same_set) {
3070 if (rdev->raid_disk < 0)
3071 continue;
3072 if (rdev->new_raid_disk == rdev->raid_disk)
3073 continue;
3074 rdev->raid_disk = rdev->new_raid_disk;
3075 if (rdev->raid_disk < 0)
3076 clear_bit(In_sync, &rdev->flags);
3077 else {
3078 char nm[20];
3079 sprintf(nm, "rd%d", rdev->raid_disk);
3080 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3081 printk("md: cannot register %s for %s after level change\n",
3082 nm, mdname(mddev));
3083 }
3084 }
3085
3086 module_put(mddev->pers->owner);
3087 mddev->pers = pers;
3088 mddev->private = priv;
3089 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3090 mddev->level = mddev->new_level;
3091 mddev->layout = mddev->new_layout;
3092 mddev->chunk_sectors = mddev->new_chunk_sectors;
3093 mddev->delta_disks = 0;
3094 if (mddev->pers->sync_request == NULL) {
3095 /* this is now an array without redundancy, so
3096 * it must always be in_sync
3097 */
3098 mddev->in_sync = 1;
3099 del_timer_sync(&mddev->safemode_timer);
3100 }
3101 pers->run(mddev);
3102 mddev_resume(mddev);
3103 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3104 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3105 md_wakeup_thread(mddev->thread);
3106 sysfs_notify(&mddev->kobj, NULL, "level");
3107 md_new_event(mddev);
3108 return rv;
3109 }
3110
3111 static struct md_sysfs_entry md_level =
3112 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3113
3114
3115 static ssize_t
3116 layout_show(mddev_t *mddev, char *page)
3117 {
3118 /* just a number, not meaningful for all levels */
3119 if (mddev->reshape_position != MaxSector &&
3120 mddev->layout != mddev->new_layout)
3121 return sprintf(page, "%d (%d)\n",
3122 mddev->new_layout, mddev->layout);
3123 return sprintf(page, "%d\n", mddev->layout);
3124 }
3125
3126 static ssize_t
3127 layout_store(mddev_t *mddev, const char *buf, size_t len)
3128 {
3129 char *e;
3130 unsigned long n = simple_strtoul(buf, &e, 10);
3131
3132 if (!*buf || (*e && *e != '\n'))
3133 return -EINVAL;
3134
3135 if (mddev->pers) {
3136 int err;
3137 if (mddev->pers->check_reshape == NULL)
3138 return -EBUSY;
3139 mddev->new_layout = n;
3140 err = mddev->pers->check_reshape(mddev);
3141 if (err) {
3142 mddev->new_layout = mddev->layout;
3143 return err;
3144 }
3145 } else {
3146 mddev->new_layout = n;
3147 if (mddev->reshape_position == MaxSector)
3148 mddev->layout = n;
3149 }
3150 return len;
3151 }
3152 static struct md_sysfs_entry md_layout =
3153 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3154
3155
3156 static ssize_t
3157 raid_disks_show(mddev_t *mddev, char *page)
3158 {
3159 if (mddev->raid_disks == 0)
3160 return 0;
3161 if (mddev->reshape_position != MaxSector &&
3162 mddev->delta_disks != 0)
3163 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3164 mddev->raid_disks - mddev->delta_disks);
3165 return sprintf(page, "%d\n", mddev->raid_disks);
3166 }
3167
3168 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3169
3170 static ssize_t
3171 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3172 {
3173 char *e;
3174 int rv = 0;
3175 unsigned long n = simple_strtoul(buf, &e, 10);
3176
3177 if (!*buf || (*e && *e != '\n'))
3178 return -EINVAL;
3179
3180 if (mddev->pers)
3181 rv = update_raid_disks(mddev, n);
3182 else if (mddev->reshape_position != MaxSector) {
3183 int olddisks = mddev->raid_disks - mddev->delta_disks;
3184 mddev->delta_disks = n - olddisks;
3185 mddev->raid_disks = n;
3186 } else
3187 mddev->raid_disks = n;
3188 return rv ? rv : len;
3189 }
3190 static struct md_sysfs_entry md_raid_disks =
3191 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3192
3193 static ssize_t
3194 chunk_size_show(mddev_t *mddev, char *page)
3195 {
3196 if (mddev->reshape_position != MaxSector &&
3197 mddev->chunk_sectors != mddev->new_chunk_sectors)
3198 return sprintf(page, "%d (%d)\n",
3199 mddev->new_chunk_sectors << 9,
3200 mddev->chunk_sectors << 9);
3201 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3202 }
3203
3204 static ssize_t
3205 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3206 {
3207 char *e;
3208 unsigned long n = simple_strtoul(buf, &e, 10);
3209
3210 if (!*buf || (*e && *e != '\n'))
3211 return -EINVAL;
3212
3213 if (mddev->pers) {
3214 int err;
3215 if (mddev->pers->check_reshape == NULL)
3216 return -EBUSY;
3217 mddev->new_chunk_sectors = n >> 9;
3218 err = mddev->pers->check_reshape(mddev);
3219 if (err) {
3220 mddev->new_chunk_sectors = mddev->chunk_sectors;
3221 return err;
3222 }
3223 } else {
3224 mddev->new_chunk_sectors = n >> 9;
3225 if (mddev->reshape_position == MaxSector)
3226 mddev->chunk_sectors = n >> 9;
3227 }
3228 return len;
3229 }
3230 static struct md_sysfs_entry md_chunk_size =
3231 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3232
3233 static ssize_t
3234 resync_start_show(mddev_t *mddev, char *page)
3235 {
3236 if (mddev->recovery_cp == MaxSector)
3237 return sprintf(page, "none\n");
3238 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3239 }
3240
3241 static ssize_t
3242 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3243 {
3244 char *e;
3245 unsigned long long n = simple_strtoull(buf, &e, 10);
3246
3247 if (mddev->pers)
3248 return -EBUSY;
3249 if (cmd_match(buf, "none"))
3250 n = MaxSector;
3251 else if (!*buf || (*e && *e != '\n'))
3252 return -EINVAL;
3253
3254 mddev->recovery_cp = n;
3255 return len;
3256 }
3257 static struct md_sysfs_entry md_resync_start =
3258 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3259
3260 /*
3261 * The array state can be:
3262 *
3263 * clear
3264 * No devices, no size, no level
3265 * Equivalent to STOP_ARRAY ioctl
3266 * inactive
3267 * May have some settings, but array is not active
3268 * all IO results in error
3269 * When written, doesn't tear down array, but just stops it
3270 * suspended (not supported yet)
3271 * All IO requests will block. The array can be reconfigured.
3272 * Writing this, if accepted, will block until array is quiescent
3273 * readonly
3274 * no resync can happen. no superblocks get written.
3275 * write requests fail
3276 * read-auto
3277 * like readonly, but behaves like 'clean' on a write request.
3278 *
3279 * clean - no pending writes, but otherwise active.
3280 * When written to inactive array, starts without resync
3281 * If a write request arrives then
3282 * if metadata is known, mark 'dirty' and switch to 'active'.
3283 * if not known, block and switch to write-pending
3284 * If written to an active array that has pending writes, then fails.
3285 * active
3286 * fully active: IO and resync can be happening.
3287 * When written to inactive array, starts with resync
3288 *
3289 * write-pending
3290 * clean, but writes are blocked waiting for 'active' to be written.
3291 *
3292 * active-idle
3293 * like active, but no writes have been seen for a while (100msec).
3294 *
3295 */
3296 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3297 write_pending, active_idle, bad_word};
3298 static char *array_states[] = {
3299 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3300 "write-pending", "active-idle", NULL };
3301
3302 static int match_word(const char *word, char **list)
3303 {
3304 int n;
3305 for (n=0; list[n]; n++)
3306 if (cmd_match(word, list[n]))
3307 break;
3308 return n;
3309 }
3310
3311 static ssize_t
3312 array_state_show(mddev_t *mddev, char *page)
3313 {
3314 enum array_state st = inactive;
3315
3316 if (mddev->pers)
3317 switch(mddev->ro) {
3318 case 1:
3319 st = readonly;
3320 break;
3321 case 2:
3322 st = read_auto;
3323 break;
3324 case 0:
3325 if (mddev->in_sync)
3326 st = clean;
3327 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3328 st = write_pending;
3329 else if (mddev->safemode)
3330 st = active_idle;
3331 else
3332 st = active;
3333 }
3334 else {
3335 if (list_empty(&mddev->disks) &&
3336 mddev->raid_disks == 0 &&
3337 mddev->dev_sectors == 0)
3338 st = clear;
3339 else
3340 st = inactive;
3341 }
3342 return sprintf(page, "%s\n", array_states[st]);
3343 }
3344
3345 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3346 static int md_set_readonly(mddev_t * mddev, int is_open);
3347 static int do_md_run(mddev_t * mddev);
3348 static int restart_array(mddev_t *mddev);
3349
3350 static ssize_t
3351 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3352 {
3353 int err = -EINVAL;
3354 enum array_state st = match_word(buf, array_states);
3355 switch(st) {
3356 case bad_word:
3357 break;
3358 case clear:
3359 /* stopping an active array */
3360 if (atomic_read(&mddev->openers) > 0)
3361 return -EBUSY;
3362 err = do_md_stop(mddev, 0, 0);
3363 break;
3364 case inactive:
3365 /* stopping an active array */
3366 if (mddev->pers) {
3367 if (atomic_read(&mddev->openers) > 0)
3368 return -EBUSY;
3369 err = do_md_stop(mddev, 2, 0);
3370 } else
3371 err = 0; /* already inactive */
3372 break;
3373 case suspended:
3374 break; /* not supported yet */
3375 case readonly:
3376 if (mddev->pers)
3377 err = md_set_readonly(mddev, 0);
3378 else {
3379 mddev->ro = 1;
3380 set_disk_ro(mddev->gendisk, 1);
3381 err = do_md_run(mddev);
3382 }
3383 break;
3384 case read_auto:
3385 if (mddev->pers) {
3386 if (mddev->ro == 0)
3387 err = md_set_readonly(mddev, 0);
3388 else if (mddev->ro == 1)
3389 err = restart_array(mddev);
3390 if (err == 0) {
3391 mddev->ro = 2;
3392 set_disk_ro(mddev->gendisk, 0);
3393 }
3394 } else {
3395 mddev->ro = 2;
3396 err = do_md_run(mddev);
3397 }
3398 break;
3399 case clean:
3400 if (mddev->pers) {
3401 restart_array(mddev);
3402 spin_lock_irq(&mddev->write_lock);
3403 if (atomic_read(&mddev->writes_pending) == 0) {
3404 if (mddev->in_sync == 0) {
3405 mddev->in_sync = 1;
3406 if (mddev->safemode == 1)
3407 mddev->safemode = 0;
3408 if (mddev->persistent)
3409 set_bit(MD_CHANGE_CLEAN,
3410 &mddev->flags);
3411 }
3412 err = 0;
3413 } else
3414 err = -EBUSY;
3415 spin_unlock_irq(&mddev->write_lock);
3416 } else
3417 err = -EINVAL;
3418 break;
3419 case active:
3420 if (mddev->pers) {
3421 restart_array(mddev);
3422 if (mddev->external)
3423 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3424 wake_up(&mddev->sb_wait);
3425 err = 0;
3426 } else {
3427 mddev->ro = 0;
3428 set_disk_ro(mddev->gendisk, 0);
3429 err = do_md_run(mddev);
3430 }
3431 break;
3432 case write_pending:
3433 case active_idle:
3434 /* these cannot be set */
3435 break;
3436 }
3437 if (err)
3438 return err;
3439 else {
3440 sysfs_notify_dirent_safe(mddev->sysfs_state);
3441 return len;
3442 }
3443 }
3444 static struct md_sysfs_entry md_array_state =
3445 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3446
3447 static ssize_t
3448 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3449 return sprintf(page, "%d\n",
3450 atomic_read(&mddev->max_corr_read_errors));
3451 }
3452
3453 static ssize_t
3454 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3455 {
3456 char *e;
3457 unsigned long n = simple_strtoul(buf, &e, 10);
3458
3459 if (*buf && (*e == 0 || *e == '\n')) {
3460 atomic_set(&mddev->max_corr_read_errors, n);
3461 return len;
3462 }
3463 return -EINVAL;
3464 }
3465
3466 static struct md_sysfs_entry max_corr_read_errors =
3467 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3468 max_corrected_read_errors_store);
3469
3470 static ssize_t
3471 null_show(mddev_t *mddev, char *page)
3472 {
3473 return -EINVAL;
3474 }
3475
3476 static ssize_t
3477 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3478 {
3479 /* buf must be %d:%d\n? giving major and minor numbers */
3480 /* The new device is added to the array.
3481 * If the array has a persistent superblock, we read the
3482 * superblock to initialise info and check validity.
3483 * Otherwise, only checking done is that in bind_rdev_to_array,
3484 * which mainly checks size.
3485 */
3486 char *e;
3487 int major = simple_strtoul(buf, &e, 10);
3488 int minor;
3489 dev_t dev;
3490 mdk_rdev_t *rdev;
3491 int err;
3492
3493 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3494 return -EINVAL;
3495 minor = simple_strtoul(e+1, &e, 10);
3496 if (*e && *e != '\n')
3497 return -EINVAL;
3498 dev = MKDEV(major, minor);
3499 if (major != MAJOR(dev) ||
3500 minor != MINOR(dev))
3501 return -EOVERFLOW;
3502
3503
3504 if (mddev->persistent) {
3505 rdev = md_import_device(dev, mddev->major_version,
3506 mddev->minor_version);
3507 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3508 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3509 mdk_rdev_t, same_set);
3510 err = super_types[mddev->major_version]
3511 .load_super(rdev, rdev0, mddev->minor_version);
3512 if (err < 0)
3513 goto out;
3514 }
3515 } else if (mddev->external)
3516 rdev = md_import_device(dev, -2, -1);
3517 else
3518 rdev = md_import_device(dev, -1, -1);
3519
3520 if (IS_ERR(rdev))
3521 return PTR_ERR(rdev);
3522 err = bind_rdev_to_array(rdev, mddev);
3523 out:
3524 if (err)
3525 export_rdev(rdev);
3526 return err ? err : len;
3527 }
3528
3529 static struct md_sysfs_entry md_new_device =
3530 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3531
3532 static ssize_t
3533 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3534 {
3535 char *end;
3536 unsigned long chunk, end_chunk;
3537
3538 if (!mddev->bitmap)
3539 goto out;
3540 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3541 while (*buf) {
3542 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3543 if (buf == end) break;
3544 if (*end == '-') { /* range */
3545 buf = end + 1;
3546 end_chunk = simple_strtoul(buf, &end, 0);
3547 if (buf == end) break;
3548 }
3549 if (*end && !isspace(*end)) break;
3550 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3551 buf = skip_spaces(end);
3552 }
3553 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3554 out:
3555 return len;
3556 }
3557
3558 static struct md_sysfs_entry md_bitmap =
3559 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3560
3561 static ssize_t
3562 size_show(mddev_t *mddev, char *page)
3563 {
3564 return sprintf(page, "%llu\n",
3565 (unsigned long long)mddev->dev_sectors / 2);
3566 }
3567
3568 static int update_size(mddev_t *mddev, sector_t num_sectors);
3569
3570 static ssize_t
3571 size_store(mddev_t *mddev, const char *buf, size_t len)
3572 {
3573 /* If array is inactive, we can reduce the component size, but
3574 * not increase it (except from 0).
3575 * If array is active, we can try an on-line resize
3576 */
3577 sector_t sectors;
3578 int err = strict_blocks_to_sectors(buf, &sectors);
3579
3580 if (err < 0)
3581 return err;
3582 if (mddev->pers) {
3583 err = update_size(mddev, sectors);
3584 md_update_sb(mddev, 1);
3585 } else {
3586 if (mddev->dev_sectors == 0 ||
3587 mddev->dev_sectors > sectors)
3588 mddev->dev_sectors = sectors;
3589 else
3590 err = -ENOSPC;
3591 }
3592 return err ? err : len;
3593 }
3594
3595 static struct md_sysfs_entry md_size =
3596 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3597
3598
3599 /* Metdata version.
3600 * This is one of
3601 * 'none' for arrays with no metadata (good luck...)
3602 * 'external' for arrays with externally managed metadata,
3603 * or N.M for internally known formats
3604 */
3605 static ssize_t
3606 metadata_show(mddev_t *mddev, char *page)
3607 {
3608 if (mddev->persistent)
3609 return sprintf(page, "%d.%d\n",
3610 mddev->major_version, mddev->minor_version);
3611 else if (mddev->external)
3612 return sprintf(page, "external:%s\n", mddev->metadata_type);
3613 else
3614 return sprintf(page, "none\n");
3615 }
3616
3617 static ssize_t
3618 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3619 {
3620 int major, minor;
3621 char *e;
3622 /* Changing the details of 'external' metadata is
3623 * always permitted. Otherwise there must be
3624 * no devices attached to the array.
3625 */
3626 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3627 ;
3628 else if (!list_empty(&mddev->disks))
3629 return -EBUSY;
3630
3631 if (cmd_match(buf, "none")) {
3632 mddev->persistent = 0;
3633 mddev->external = 0;
3634 mddev->major_version = 0;
3635 mddev->minor_version = 90;
3636 return len;
3637 }
3638 if (strncmp(buf, "external:", 9) == 0) {
3639 size_t namelen = len-9;
3640 if (namelen >= sizeof(mddev->metadata_type))
3641 namelen = sizeof(mddev->metadata_type)-1;
3642 strncpy(mddev->metadata_type, buf+9, namelen);
3643 mddev->metadata_type[namelen] = 0;
3644 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3645 mddev->metadata_type[--namelen] = 0;
3646 mddev->persistent = 0;
3647 mddev->external = 1;
3648 mddev->major_version = 0;
3649 mddev->minor_version = 90;
3650 return len;
3651 }
3652 major = simple_strtoul(buf, &e, 10);
3653 if (e==buf || *e != '.')
3654 return -EINVAL;
3655 buf = e+1;
3656 minor = simple_strtoul(buf, &e, 10);
3657 if (e==buf || (*e && *e != '\n') )
3658 return -EINVAL;
3659 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3660 return -ENOENT;
3661 mddev->major_version = major;
3662 mddev->minor_version = minor;
3663 mddev->persistent = 1;
3664 mddev->external = 0;
3665 return len;
3666 }
3667
3668 static struct md_sysfs_entry md_metadata =
3669 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3670
3671 static ssize_t
3672 action_show(mddev_t *mddev, char *page)
3673 {
3674 char *type = "idle";
3675 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3676 type = "frozen";
3677 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3678 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3679 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3680 type = "reshape";
3681 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3682 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3683 type = "resync";
3684 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3685 type = "check";
3686 else
3687 type = "repair";
3688 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3689 type = "recover";
3690 }
3691 return sprintf(page, "%s\n", type);
3692 }
3693
3694 static ssize_t
3695 action_store(mddev_t *mddev, const char *page, size_t len)
3696 {
3697 if (!mddev->pers || !mddev->pers->sync_request)
3698 return -EINVAL;
3699
3700 if (cmd_match(page, "frozen"))
3701 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3702 else
3703 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3704
3705 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3706 if (mddev->sync_thread) {
3707 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3708 md_unregister_thread(mddev->sync_thread);
3709 mddev->sync_thread = NULL;
3710 mddev->recovery = 0;
3711 }
3712 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3713 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3714 return -EBUSY;
3715 else if (cmd_match(page, "resync"))
3716 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3717 else if (cmd_match(page, "recover")) {
3718 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3719 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3720 } else if (cmd_match(page, "reshape")) {
3721 int err;
3722 if (mddev->pers->start_reshape == NULL)
3723 return -EINVAL;
3724 err = mddev->pers->start_reshape(mddev);
3725 if (err)
3726 return err;
3727 sysfs_notify(&mddev->kobj, NULL, "degraded");
3728 } else {
3729 if (cmd_match(page, "check"))
3730 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3731 else if (!cmd_match(page, "repair"))
3732 return -EINVAL;
3733 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3734 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3735 }
3736 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3737 md_wakeup_thread(mddev->thread);
3738 sysfs_notify_dirent_safe(mddev->sysfs_action);
3739 return len;
3740 }
3741
3742 static ssize_t
3743 mismatch_cnt_show(mddev_t *mddev, char *page)
3744 {
3745 return sprintf(page, "%llu\n",
3746 (unsigned long long) mddev->resync_mismatches);
3747 }
3748
3749 static struct md_sysfs_entry md_scan_mode =
3750 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3751
3752
3753 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3754
3755 static ssize_t
3756 sync_min_show(mddev_t *mddev, char *page)
3757 {
3758 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3759 mddev->sync_speed_min ? "local": "system");
3760 }
3761
3762 static ssize_t
3763 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3764 {
3765 int min;
3766 char *e;
3767 if (strncmp(buf, "system", 6)==0) {
3768 mddev->sync_speed_min = 0;
3769 return len;
3770 }
3771 min = simple_strtoul(buf, &e, 10);
3772 if (buf == e || (*e && *e != '\n') || min <= 0)
3773 return -EINVAL;
3774 mddev->sync_speed_min = min;
3775 return len;
3776 }
3777
3778 static struct md_sysfs_entry md_sync_min =
3779 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3780
3781 static ssize_t
3782 sync_max_show(mddev_t *mddev, char *page)
3783 {
3784 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3785 mddev->sync_speed_max ? "local": "system");
3786 }
3787
3788 static ssize_t
3789 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3790 {
3791 int max;
3792 char *e;
3793 if (strncmp(buf, "system", 6)==0) {
3794 mddev->sync_speed_max = 0;
3795 return len;
3796 }
3797 max = simple_strtoul(buf, &e, 10);
3798 if (buf == e || (*e && *e != '\n') || max <= 0)
3799 return -EINVAL;
3800 mddev->sync_speed_max = max;
3801 return len;
3802 }
3803
3804 static struct md_sysfs_entry md_sync_max =
3805 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3806
3807 static ssize_t
3808 degraded_show(mddev_t *mddev, char *page)
3809 {
3810 return sprintf(page, "%d\n", mddev->degraded);
3811 }
3812 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3813
3814 static ssize_t
3815 sync_force_parallel_show(mddev_t *mddev, char *page)
3816 {
3817 return sprintf(page, "%d\n", mddev->parallel_resync);
3818 }
3819
3820 static ssize_t
3821 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3822 {
3823 long n;
3824
3825 if (strict_strtol(buf, 10, &n))
3826 return -EINVAL;
3827
3828 if (n != 0 && n != 1)
3829 return -EINVAL;
3830
3831 mddev->parallel_resync = n;
3832
3833 if (mddev->sync_thread)
3834 wake_up(&resync_wait);
3835
3836 return len;
3837 }
3838
3839 /* force parallel resync, even with shared block devices */
3840 static struct md_sysfs_entry md_sync_force_parallel =
3841 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3842 sync_force_parallel_show, sync_force_parallel_store);
3843
3844 static ssize_t
3845 sync_speed_show(mddev_t *mddev, char *page)
3846 {
3847 unsigned long resync, dt, db;
3848 if (mddev->curr_resync == 0)
3849 return sprintf(page, "none\n");
3850 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3851 dt = (jiffies - mddev->resync_mark) / HZ;
3852 if (!dt) dt++;
3853 db = resync - mddev->resync_mark_cnt;
3854 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3855 }
3856
3857 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3858
3859 static ssize_t
3860 sync_completed_show(mddev_t *mddev, char *page)
3861 {
3862 unsigned long max_sectors, resync;
3863
3864 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3865 return sprintf(page, "none\n");
3866
3867 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3868 max_sectors = mddev->resync_max_sectors;
3869 else
3870 max_sectors = mddev->dev_sectors;
3871
3872 resync = mddev->curr_resync_completed;
3873 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3874 }
3875
3876 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3877
3878 static ssize_t
3879 min_sync_show(mddev_t *mddev, char *page)
3880 {
3881 return sprintf(page, "%llu\n",
3882 (unsigned long long)mddev->resync_min);
3883 }
3884 static ssize_t
3885 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3886 {
3887 unsigned long long min;
3888 if (strict_strtoull(buf, 10, &min))
3889 return -EINVAL;
3890 if (min > mddev->resync_max)
3891 return -EINVAL;
3892 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3893 return -EBUSY;
3894
3895 /* Must be a multiple of chunk_size */
3896 if (mddev->chunk_sectors) {
3897 sector_t temp = min;
3898 if (sector_div(temp, mddev->chunk_sectors))
3899 return -EINVAL;
3900 }
3901 mddev->resync_min = min;
3902
3903 return len;
3904 }
3905
3906 static struct md_sysfs_entry md_min_sync =
3907 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3908
3909 static ssize_t
3910 max_sync_show(mddev_t *mddev, char *page)
3911 {
3912 if (mddev->resync_max == MaxSector)
3913 return sprintf(page, "max\n");
3914 else
3915 return sprintf(page, "%llu\n",
3916 (unsigned long long)mddev->resync_max);
3917 }
3918 static ssize_t
3919 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3920 {
3921 if (strncmp(buf, "max", 3) == 0)
3922 mddev->resync_max = MaxSector;
3923 else {
3924 unsigned long long max;
3925 if (strict_strtoull(buf, 10, &max))
3926 return -EINVAL;
3927 if (max < mddev->resync_min)
3928 return -EINVAL;
3929 if (max < mddev->resync_max &&
3930 mddev->ro == 0 &&
3931 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3932 return -EBUSY;
3933
3934 /* Must be a multiple of chunk_size */
3935 if (mddev->chunk_sectors) {
3936 sector_t temp = max;
3937 if (sector_div(temp, mddev->chunk_sectors))
3938 return -EINVAL;
3939 }
3940 mddev->resync_max = max;
3941 }
3942 wake_up(&mddev->recovery_wait);
3943 return len;
3944 }
3945
3946 static struct md_sysfs_entry md_max_sync =
3947 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3948
3949 static ssize_t
3950 suspend_lo_show(mddev_t *mddev, char *page)
3951 {
3952 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3953 }
3954
3955 static ssize_t
3956 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3957 {
3958 char *e;
3959 unsigned long long new = simple_strtoull(buf, &e, 10);
3960
3961 if (mddev->pers == NULL ||
3962 mddev->pers->quiesce == NULL)
3963 return -EINVAL;
3964 if (buf == e || (*e && *e != '\n'))
3965 return -EINVAL;
3966 if (new >= mddev->suspend_hi ||
3967 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3968 mddev->suspend_lo = new;
3969 mddev->pers->quiesce(mddev, 2);
3970 return len;
3971 } else
3972 return -EINVAL;
3973 }
3974 static struct md_sysfs_entry md_suspend_lo =
3975 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3976
3977
3978 static ssize_t
3979 suspend_hi_show(mddev_t *mddev, char *page)
3980 {
3981 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3982 }
3983
3984 static ssize_t
3985 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3986 {
3987 char *e;
3988 unsigned long long new = simple_strtoull(buf, &e, 10);
3989
3990 if (mddev->pers == NULL ||
3991 mddev->pers->quiesce == NULL)
3992 return -EINVAL;
3993 if (buf == e || (*e && *e != '\n'))
3994 return -EINVAL;
3995 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3996 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3997 mddev->suspend_hi = new;
3998 mddev->pers->quiesce(mddev, 1);
3999 mddev->pers->quiesce(mddev, 0);
4000 return len;
4001 } else
4002 return -EINVAL;
4003 }
4004 static struct md_sysfs_entry md_suspend_hi =
4005 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4006
4007 static ssize_t
4008 reshape_position_show(mddev_t *mddev, char *page)
4009 {
4010 if (mddev->reshape_position != MaxSector)
4011 return sprintf(page, "%llu\n",
4012 (unsigned long long)mddev->reshape_position);
4013 strcpy(page, "none\n");
4014 return 5;
4015 }
4016
4017 static ssize_t
4018 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4019 {
4020 char *e;
4021 unsigned long long new = simple_strtoull(buf, &e, 10);
4022 if (mddev->pers)
4023 return -EBUSY;
4024 if (buf == e || (*e && *e != '\n'))
4025 return -EINVAL;
4026 mddev->reshape_position = new;
4027 mddev->delta_disks = 0;
4028 mddev->new_level = mddev->level;
4029 mddev->new_layout = mddev->layout;
4030 mddev->new_chunk_sectors = mddev->chunk_sectors;
4031 return len;
4032 }
4033
4034 static struct md_sysfs_entry md_reshape_position =
4035 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4036 reshape_position_store);
4037
4038 static ssize_t
4039 array_size_show(mddev_t *mddev, char *page)
4040 {
4041 if (mddev->external_size)
4042 return sprintf(page, "%llu\n",
4043 (unsigned long long)mddev->array_sectors/2);
4044 else
4045 return sprintf(page, "default\n");
4046 }
4047
4048 static ssize_t
4049 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4050 {
4051 sector_t sectors;
4052
4053 if (strncmp(buf, "default", 7) == 0) {
4054 if (mddev->pers)
4055 sectors = mddev->pers->size(mddev, 0, 0);
4056 else
4057 sectors = mddev->array_sectors;
4058
4059 mddev->external_size = 0;
4060 } else {
4061 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4062 return -EINVAL;
4063 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4064 return -E2BIG;
4065
4066 mddev->external_size = 1;
4067 }
4068
4069 mddev->array_sectors = sectors;
4070 set_capacity(mddev->gendisk, mddev->array_sectors);
4071 if (mddev->pers)
4072 revalidate_disk(mddev->gendisk);
4073
4074 return len;
4075 }
4076
4077 static struct md_sysfs_entry md_array_size =
4078 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4079 array_size_store);
4080
4081 static struct attribute *md_default_attrs[] = {
4082 &md_level.attr,
4083 &md_layout.attr,
4084 &md_raid_disks.attr,
4085 &md_chunk_size.attr,
4086 &md_size.attr,
4087 &md_resync_start.attr,
4088 &md_metadata.attr,
4089 &md_new_device.attr,
4090 &md_safe_delay.attr,
4091 &md_array_state.attr,
4092 &md_reshape_position.attr,
4093 &md_array_size.attr,
4094 &max_corr_read_errors.attr,
4095 NULL,
4096 };
4097
4098 static struct attribute *md_redundancy_attrs[] = {
4099 &md_scan_mode.attr,
4100 &md_mismatches.attr,
4101 &md_sync_min.attr,
4102 &md_sync_max.attr,
4103 &md_sync_speed.attr,
4104 &md_sync_force_parallel.attr,
4105 &md_sync_completed.attr,
4106 &md_min_sync.attr,
4107 &md_max_sync.attr,
4108 &md_suspend_lo.attr,
4109 &md_suspend_hi.attr,
4110 &md_bitmap.attr,
4111 &md_degraded.attr,
4112 NULL,
4113 };
4114 static struct attribute_group md_redundancy_group = {
4115 .name = NULL,
4116 .attrs = md_redundancy_attrs,
4117 };
4118
4119
4120 static ssize_t
4121 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4122 {
4123 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4124 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4125 ssize_t rv;
4126
4127 if (!entry->show)
4128 return -EIO;
4129 rv = mddev_lock(mddev);
4130 if (!rv) {
4131 rv = entry->show(mddev, page);
4132 mddev_unlock(mddev);
4133 }
4134 return rv;
4135 }
4136
4137 static ssize_t
4138 md_attr_store(struct kobject *kobj, struct attribute *attr,
4139 const char *page, size_t length)
4140 {
4141 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4142 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4143 ssize_t rv;
4144
4145 if (!entry->store)
4146 return -EIO;
4147 if (!capable(CAP_SYS_ADMIN))
4148 return -EACCES;
4149 rv = mddev_lock(mddev);
4150 if (mddev->hold_active == UNTIL_IOCTL)
4151 mddev->hold_active = 0;
4152 if (!rv) {
4153 rv = entry->store(mddev, page, length);
4154 mddev_unlock(mddev);
4155 }
4156 return rv;
4157 }
4158
4159 static void md_free(struct kobject *ko)
4160 {
4161 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4162
4163 if (mddev->sysfs_state)
4164 sysfs_put(mddev->sysfs_state);
4165
4166 if (mddev->gendisk) {
4167 del_gendisk(mddev->gendisk);
4168 put_disk(mddev->gendisk);
4169 }
4170 if (mddev->queue)
4171 blk_cleanup_queue(mddev->queue);
4172
4173 kfree(mddev);
4174 }
4175
4176 static const struct sysfs_ops md_sysfs_ops = {
4177 .show = md_attr_show,
4178 .store = md_attr_store,
4179 };
4180 static struct kobj_type md_ktype = {
4181 .release = md_free,
4182 .sysfs_ops = &md_sysfs_ops,
4183 .default_attrs = md_default_attrs,
4184 };
4185
4186 int mdp_major = 0;
4187
4188 static void mddev_delayed_delete(struct work_struct *ws)
4189 {
4190 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4191
4192 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4193 kobject_del(&mddev->kobj);
4194 kobject_put(&mddev->kobj);
4195 }
4196
4197 static int md_alloc(dev_t dev, char *name)
4198 {
4199 static DEFINE_MUTEX(disks_mutex);
4200 mddev_t *mddev = mddev_find(dev);
4201 struct gendisk *disk;
4202 int partitioned;
4203 int shift;
4204 int unit;
4205 int error;
4206
4207 if (!mddev)
4208 return -ENODEV;
4209
4210 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4211 shift = partitioned ? MdpMinorShift : 0;
4212 unit = MINOR(mddev->unit) >> shift;
4213
4214 /* wait for any previous instance if this device
4215 * to be completed removed (mddev_delayed_delete).
4216 */
4217 flush_scheduled_work();
4218
4219 mutex_lock(&disks_mutex);
4220 error = -EEXIST;
4221 if (mddev->gendisk)
4222 goto abort;
4223
4224 if (name) {
4225 /* Need to ensure that 'name' is not a duplicate.
4226 */
4227 mddev_t *mddev2;
4228 spin_lock(&all_mddevs_lock);
4229
4230 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4231 if (mddev2->gendisk &&
4232 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4233 spin_unlock(&all_mddevs_lock);
4234 goto abort;
4235 }
4236 spin_unlock(&all_mddevs_lock);
4237 }
4238
4239 error = -ENOMEM;
4240 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4241 if (!mddev->queue)
4242 goto abort;
4243 mddev->queue->queuedata = mddev;
4244
4245 /* Can be unlocked because the queue is new: no concurrency */
4246 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4247
4248 blk_queue_make_request(mddev->queue, md_make_request);
4249
4250 disk = alloc_disk(1 << shift);
4251 if (!disk) {
4252 blk_cleanup_queue(mddev->queue);
4253 mddev->queue = NULL;
4254 goto abort;
4255 }
4256 disk->major = MAJOR(mddev->unit);
4257 disk->first_minor = unit << shift;
4258 if (name)
4259 strcpy(disk->disk_name, name);
4260 else if (partitioned)
4261 sprintf(disk->disk_name, "md_d%d", unit);
4262 else
4263 sprintf(disk->disk_name, "md%d", unit);
4264 disk->fops = &md_fops;
4265 disk->private_data = mddev;
4266 disk->queue = mddev->queue;
4267 /* Allow extended partitions. This makes the
4268 * 'mdp' device redundant, but we can't really
4269 * remove it now.
4270 */
4271 disk->flags |= GENHD_FL_EXT_DEVT;
4272 add_disk(disk);
4273 mddev->gendisk = disk;
4274 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4275 &disk_to_dev(disk)->kobj, "%s", "md");
4276 if (error) {
4277 /* This isn't possible, but as kobject_init_and_add is marked
4278 * __must_check, we must do something with the result
4279 */
4280 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4281 disk->disk_name);
4282 error = 0;
4283 }
4284 if (mddev->kobj.sd &&
4285 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4286 printk(KERN_DEBUG "pointless warning\n");
4287 abort:
4288 mutex_unlock(&disks_mutex);
4289 if (!error && mddev->kobj.sd) {
4290 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4291 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4292 }
4293 mddev_put(mddev);
4294 return error;
4295 }
4296
4297 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4298 {
4299 md_alloc(dev, NULL);
4300 return NULL;
4301 }
4302
4303 static int add_named_array(const char *val, struct kernel_param *kp)
4304 {
4305 /* val must be "md_*" where * is not all digits.
4306 * We allocate an array with a large free minor number, and
4307 * set the name to val. val must not already be an active name.
4308 */
4309 int len = strlen(val);
4310 char buf[DISK_NAME_LEN];
4311
4312 while (len && val[len-1] == '\n')
4313 len--;
4314 if (len >= DISK_NAME_LEN)
4315 return -E2BIG;
4316 strlcpy(buf, val, len+1);
4317 if (strncmp(buf, "md_", 3) != 0)
4318 return -EINVAL;
4319 return md_alloc(0, buf);
4320 }
4321
4322 static void md_safemode_timeout(unsigned long data)
4323 {
4324 mddev_t *mddev = (mddev_t *) data;
4325
4326 if (!atomic_read(&mddev->writes_pending)) {
4327 mddev->safemode = 1;
4328 if (mddev->external)
4329 sysfs_notify_dirent_safe(mddev->sysfs_state);
4330 }
4331 md_wakeup_thread(mddev->thread);
4332 }
4333
4334 static int start_dirty_degraded;
4335
4336 static int md_run(mddev_t *mddev)
4337 {
4338 int err;
4339 mdk_rdev_t *rdev;
4340 struct mdk_personality *pers;
4341
4342 if (list_empty(&mddev->disks))
4343 /* cannot run an array with no devices.. */
4344 return -EINVAL;
4345
4346 if (mddev->pers)
4347 return -EBUSY;
4348
4349 /* These two calls synchronise us with the
4350 * sysfs_remove_group calls in mddev_unlock,
4351 * so they must have completed.
4352 */
4353 mutex_lock(&mddev->open_mutex);
4354 mutex_unlock(&mddev->open_mutex);
4355
4356 /*
4357 * Analyze all RAID superblock(s)
4358 */
4359 if (!mddev->raid_disks) {
4360 if (!mddev->persistent)
4361 return -EINVAL;
4362 analyze_sbs(mddev);
4363 }
4364
4365 if (mddev->level != LEVEL_NONE)
4366 request_module("md-level-%d", mddev->level);
4367 else if (mddev->clevel[0])
4368 request_module("md-%s", mddev->clevel);
4369
4370 /*
4371 * Drop all container device buffers, from now on
4372 * the only valid external interface is through the md
4373 * device.
4374 */
4375 list_for_each_entry(rdev, &mddev->disks, same_set) {
4376 if (test_bit(Faulty, &rdev->flags))
4377 continue;
4378 sync_blockdev(rdev->bdev);
4379 invalidate_bdev(rdev->bdev);
4380
4381 /* perform some consistency tests on the device.
4382 * We don't want the data to overlap the metadata,
4383 * Internal Bitmap issues have been handled elsewhere.
4384 */
4385 if (rdev->data_offset < rdev->sb_start) {
4386 if (mddev->dev_sectors &&
4387 rdev->data_offset + mddev->dev_sectors
4388 > rdev->sb_start) {
4389 printk("md: %s: data overlaps metadata\n",
4390 mdname(mddev));
4391 return -EINVAL;
4392 }
4393 } else {
4394 if (rdev->sb_start + rdev->sb_size/512
4395 > rdev->data_offset) {
4396 printk("md: %s: metadata overlaps data\n",
4397 mdname(mddev));
4398 return -EINVAL;
4399 }
4400 }
4401 sysfs_notify_dirent_safe(rdev->sysfs_state);
4402 }
4403
4404 spin_lock(&pers_lock);
4405 pers = find_pers(mddev->level, mddev->clevel);
4406 if (!pers || !try_module_get(pers->owner)) {
4407 spin_unlock(&pers_lock);
4408 if (mddev->level != LEVEL_NONE)
4409 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4410 mddev->level);
4411 else
4412 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4413 mddev->clevel);
4414 return -EINVAL;
4415 }
4416 mddev->pers = pers;
4417 spin_unlock(&pers_lock);
4418 if (mddev->level != pers->level) {
4419 mddev->level = pers->level;
4420 mddev->new_level = pers->level;
4421 }
4422 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4423
4424 if (mddev->reshape_position != MaxSector &&
4425 pers->start_reshape == NULL) {
4426 /* This personality cannot handle reshaping... */
4427 mddev->pers = NULL;
4428 module_put(pers->owner);
4429 return -EINVAL;
4430 }
4431
4432 if (pers->sync_request) {
4433 /* Warn if this is a potentially silly
4434 * configuration.
4435 */
4436 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4437 mdk_rdev_t *rdev2;
4438 int warned = 0;
4439
4440 list_for_each_entry(rdev, &mddev->disks, same_set)
4441 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4442 if (rdev < rdev2 &&
4443 rdev->bdev->bd_contains ==
4444 rdev2->bdev->bd_contains) {
4445 printk(KERN_WARNING
4446 "%s: WARNING: %s appears to be"
4447 " on the same physical disk as"
4448 " %s.\n",
4449 mdname(mddev),
4450 bdevname(rdev->bdev,b),
4451 bdevname(rdev2->bdev,b2));
4452 warned = 1;
4453 }
4454 }
4455
4456 if (warned)
4457 printk(KERN_WARNING
4458 "True protection against single-disk"
4459 " failure might be compromised.\n");
4460 }
4461
4462 mddev->recovery = 0;
4463 /* may be over-ridden by personality */
4464 mddev->resync_max_sectors = mddev->dev_sectors;
4465
4466 mddev->barriers_work = 1;
4467 mddev->ok_start_degraded = start_dirty_degraded;
4468
4469 if (start_readonly && mddev->ro == 0)
4470 mddev->ro = 2; /* read-only, but switch on first write */
4471
4472 err = mddev->pers->run(mddev);
4473 if (err)
4474 printk(KERN_ERR "md: pers->run() failed ...\n");
4475 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4476 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4477 " but 'external_size' not in effect?\n", __func__);
4478 printk(KERN_ERR
4479 "md: invalid array_size %llu > default size %llu\n",
4480 (unsigned long long)mddev->array_sectors / 2,
4481 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4482 err = -EINVAL;
4483 mddev->pers->stop(mddev);
4484 }
4485 if (err == 0 && mddev->pers->sync_request) {
4486 err = bitmap_create(mddev);
4487 if (err) {
4488 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4489 mdname(mddev), err);
4490 mddev->pers->stop(mddev);
4491 }
4492 }
4493 if (err) {
4494 module_put(mddev->pers->owner);
4495 mddev->pers = NULL;
4496 bitmap_destroy(mddev);
4497 return err;
4498 }
4499 if (mddev->pers->sync_request) {
4500 if (mddev->kobj.sd &&
4501 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4502 printk(KERN_WARNING
4503 "md: cannot register extra attributes for %s\n",
4504 mdname(mddev));
4505 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4506 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4507 mddev->ro = 0;
4508
4509 atomic_set(&mddev->writes_pending,0);
4510 atomic_set(&mddev->max_corr_read_errors,
4511 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4512 mddev->safemode = 0;
4513 mddev->safemode_timer.function = md_safemode_timeout;
4514 mddev->safemode_timer.data = (unsigned long) mddev;
4515 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4516 mddev->in_sync = 1;
4517
4518 list_for_each_entry(rdev, &mddev->disks, same_set)
4519 if (rdev->raid_disk >= 0) {
4520 char nm[20];
4521 sprintf(nm, "rd%d", rdev->raid_disk);
4522 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4523 /* failure here is OK */;
4524 }
4525
4526 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4527
4528 if (mddev->flags)
4529 md_update_sb(mddev, 0);
4530
4531 md_wakeup_thread(mddev->thread);
4532 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4533
4534 md_new_event(mddev);
4535 sysfs_notify_dirent_safe(mddev->sysfs_state);
4536 sysfs_notify_dirent_safe(mddev->sysfs_action);
4537 sysfs_notify(&mddev->kobj, NULL, "degraded");
4538 return 0;
4539 }
4540
4541 static int do_md_run(mddev_t *mddev)
4542 {
4543 int err;
4544
4545 err = md_run(mddev);
4546 if (err)
4547 goto out;
4548
4549 set_capacity(mddev->gendisk, mddev->array_sectors);
4550 revalidate_disk(mddev->gendisk);
4551 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4552 out:
4553 return err;
4554 }
4555
4556 static int restart_array(mddev_t *mddev)
4557 {
4558 struct gendisk *disk = mddev->gendisk;
4559
4560 /* Complain if it has no devices */
4561 if (list_empty(&mddev->disks))
4562 return -ENXIO;
4563 if (!mddev->pers)
4564 return -EINVAL;
4565 if (!mddev->ro)
4566 return -EBUSY;
4567 mddev->safemode = 0;
4568 mddev->ro = 0;
4569 set_disk_ro(disk, 0);
4570 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4571 mdname(mddev));
4572 /* Kick recovery or resync if necessary */
4573 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4574 md_wakeup_thread(mddev->thread);
4575 md_wakeup_thread(mddev->sync_thread);
4576 sysfs_notify_dirent_safe(mddev->sysfs_state);
4577 return 0;
4578 }
4579
4580 /* similar to deny_write_access, but accounts for our holding a reference
4581 * to the file ourselves */
4582 static int deny_bitmap_write_access(struct file * file)
4583 {
4584 struct inode *inode = file->f_mapping->host;
4585
4586 spin_lock(&inode->i_lock);
4587 if (atomic_read(&inode->i_writecount) > 1) {
4588 spin_unlock(&inode->i_lock);
4589 return -ETXTBSY;
4590 }
4591 atomic_set(&inode->i_writecount, -1);
4592 spin_unlock(&inode->i_lock);
4593
4594 return 0;
4595 }
4596
4597 void restore_bitmap_write_access(struct file *file)
4598 {
4599 struct inode *inode = file->f_mapping->host;
4600
4601 spin_lock(&inode->i_lock);
4602 atomic_set(&inode->i_writecount, 1);
4603 spin_unlock(&inode->i_lock);
4604 }
4605
4606 static void md_clean(mddev_t *mddev)
4607 {
4608 mddev->array_sectors = 0;
4609 mddev->external_size = 0;
4610 mddev->dev_sectors = 0;
4611 mddev->raid_disks = 0;
4612 mddev->recovery_cp = 0;
4613 mddev->resync_min = 0;
4614 mddev->resync_max = MaxSector;
4615 mddev->reshape_position = MaxSector;
4616 mddev->external = 0;
4617 mddev->persistent = 0;
4618 mddev->level = LEVEL_NONE;
4619 mddev->clevel[0] = 0;
4620 mddev->flags = 0;
4621 mddev->ro = 0;
4622 mddev->metadata_type[0] = 0;
4623 mddev->chunk_sectors = 0;
4624 mddev->ctime = mddev->utime = 0;
4625 mddev->layout = 0;
4626 mddev->max_disks = 0;
4627 mddev->events = 0;
4628 mddev->can_decrease_events = 0;
4629 mddev->delta_disks = 0;
4630 mddev->new_level = LEVEL_NONE;
4631 mddev->new_layout = 0;
4632 mddev->new_chunk_sectors = 0;
4633 mddev->curr_resync = 0;
4634 mddev->resync_mismatches = 0;
4635 mddev->suspend_lo = mddev->suspend_hi = 0;
4636 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4637 mddev->recovery = 0;
4638 mddev->in_sync = 0;
4639 mddev->degraded = 0;
4640 mddev->barriers_work = 0;
4641 mddev->safemode = 0;
4642 mddev->bitmap_info.offset = 0;
4643 mddev->bitmap_info.default_offset = 0;
4644 mddev->bitmap_info.chunksize = 0;
4645 mddev->bitmap_info.daemon_sleep = 0;
4646 mddev->bitmap_info.max_write_behind = 0;
4647 }
4648
4649 static void md_stop_writes(mddev_t *mddev)
4650 {
4651 if (mddev->sync_thread) {
4652 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4653 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4654 md_unregister_thread(mddev->sync_thread);
4655 mddev->sync_thread = NULL;
4656 }
4657
4658 del_timer_sync(&mddev->safemode_timer);
4659
4660 bitmap_flush(mddev);
4661 md_super_wait(mddev);
4662
4663 if (!mddev->in_sync || mddev->flags) {
4664 /* mark array as shutdown cleanly */
4665 mddev->in_sync = 1;
4666 md_update_sb(mddev, 1);
4667 }
4668 }
4669
4670 static void md_stop(mddev_t *mddev)
4671 {
4672 md_stop_writes(mddev);
4673
4674 mddev->pers->stop(mddev);
4675 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4676 mddev->to_remove = &md_redundancy_group;
4677 module_put(mddev->pers->owner);
4678 mddev->pers = NULL;
4679 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4680 }
4681
4682 static int md_set_readonly(mddev_t *mddev, int is_open)
4683 {
4684 int err = 0;
4685 mutex_lock(&mddev->open_mutex);
4686 if (atomic_read(&mddev->openers) > is_open) {
4687 printk("md: %s still in use.\n",mdname(mddev));
4688 err = -EBUSY;
4689 goto out;
4690 }
4691 if (mddev->pers) {
4692 md_stop_writes(mddev);
4693
4694 err = -ENXIO;
4695 if (mddev->ro==1)
4696 goto out;
4697 mddev->ro = 1;
4698 set_disk_ro(mddev->gendisk, 1);
4699 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4700 sysfs_notify_dirent_safe(mddev->sysfs_state);
4701 err = 0;
4702 }
4703 out:
4704 mutex_unlock(&mddev->open_mutex);
4705 return err;
4706 }
4707
4708 /* mode:
4709 * 0 - completely stop and dis-assemble array
4710 * 2 - stop but do not disassemble array
4711 */
4712 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4713 {
4714 int err = 0;
4715 struct gendisk *disk = mddev->gendisk;
4716 mdk_rdev_t *rdev;
4717
4718 mutex_lock(&mddev->open_mutex);
4719 if (atomic_read(&mddev->openers) > is_open) {
4720 printk("md: %s still in use.\n",mdname(mddev));
4721 err = -EBUSY;
4722 } else if (mddev->pers) {
4723
4724 if (mddev->ro)
4725 set_disk_ro(disk, 0);
4726
4727 md_stop(mddev);
4728 mddev->queue->merge_bvec_fn = NULL;
4729 mddev->queue->unplug_fn = NULL;
4730 mddev->queue->backing_dev_info.congested_fn = NULL;
4731
4732 /* tell userspace to handle 'inactive' */
4733 sysfs_notify_dirent_safe(mddev->sysfs_state);
4734
4735 list_for_each_entry(rdev, &mddev->disks, same_set)
4736 if (rdev->raid_disk >= 0) {
4737 char nm[20];
4738 sprintf(nm, "rd%d", rdev->raid_disk);
4739 sysfs_remove_link(&mddev->kobj, nm);
4740 }
4741
4742 set_capacity(disk, 0);
4743 revalidate_disk(disk);
4744
4745 if (mddev->ro)
4746 mddev->ro = 0;
4747
4748 err = 0;
4749 }
4750 mutex_unlock(&mddev->open_mutex);
4751 if (err)
4752 return err;
4753 /*
4754 * Free resources if final stop
4755 */
4756 if (mode == 0) {
4757
4758 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4759
4760 bitmap_destroy(mddev);
4761 if (mddev->bitmap_info.file) {
4762 restore_bitmap_write_access(mddev->bitmap_info.file);
4763 fput(mddev->bitmap_info.file);
4764 mddev->bitmap_info.file = NULL;
4765 }
4766 mddev->bitmap_info.offset = 0;
4767
4768 export_array(mddev);
4769
4770 md_clean(mddev);
4771 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4772 if (mddev->hold_active == UNTIL_STOP)
4773 mddev->hold_active = 0;
4774
4775 }
4776 err = 0;
4777 blk_integrity_unregister(disk);
4778 md_new_event(mddev);
4779 sysfs_notify_dirent_safe(mddev->sysfs_state);
4780 return err;
4781 }
4782
4783 #ifndef MODULE
4784 static void autorun_array(mddev_t *mddev)
4785 {
4786 mdk_rdev_t *rdev;
4787 int err;
4788
4789 if (list_empty(&mddev->disks))
4790 return;
4791
4792 printk(KERN_INFO "md: running: ");
4793
4794 list_for_each_entry(rdev, &mddev->disks, same_set) {
4795 char b[BDEVNAME_SIZE];
4796 printk("<%s>", bdevname(rdev->bdev,b));
4797 }
4798 printk("\n");
4799
4800 err = do_md_run(mddev);
4801 if (err) {
4802 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4803 do_md_stop(mddev, 0, 0);
4804 }
4805 }
4806
4807 /*
4808 * lets try to run arrays based on all disks that have arrived
4809 * until now. (those are in pending_raid_disks)
4810 *
4811 * the method: pick the first pending disk, collect all disks with
4812 * the same UUID, remove all from the pending list and put them into
4813 * the 'same_array' list. Then order this list based on superblock
4814 * update time (freshest comes first), kick out 'old' disks and
4815 * compare superblocks. If everything's fine then run it.
4816 *
4817 * If "unit" is allocated, then bump its reference count
4818 */
4819 static void autorun_devices(int part)
4820 {
4821 mdk_rdev_t *rdev0, *rdev, *tmp;
4822 mddev_t *mddev;
4823 char b[BDEVNAME_SIZE];
4824
4825 printk(KERN_INFO "md: autorun ...\n");
4826 while (!list_empty(&pending_raid_disks)) {
4827 int unit;
4828 dev_t dev;
4829 LIST_HEAD(candidates);
4830 rdev0 = list_entry(pending_raid_disks.next,
4831 mdk_rdev_t, same_set);
4832
4833 printk(KERN_INFO "md: considering %s ...\n",
4834 bdevname(rdev0->bdev,b));
4835 INIT_LIST_HEAD(&candidates);
4836 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4837 if (super_90_load(rdev, rdev0, 0) >= 0) {
4838 printk(KERN_INFO "md: adding %s ...\n",
4839 bdevname(rdev->bdev,b));
4840 list_move(&rdev->same_set, &candidates);
4841 }
4842 /*
4843 * now we have a set of devices, with all of them having
4844 * mostly sane superblocks. It's time to allocate the
4845 * mddev.
4846 */
4847 if (part) {
4848 dev = MKDEV(mdp_major,
4849 rdev0->preferred_minor << MdpMinorShift);
4850 unit = MINOR(dev) >> MdpMinorShift;
4851 } else {
4852 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4853 unit = MINOR(dev);
4854 }
4855 if (rdev0->preferred_minor != unit) {
4856 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4857 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4858 break;
4859 }
4860
4861 md_probe(dev, NULL, NULL);
4862 mddev = mddev_find(dev);
4863 if (!mddev || !mddev->gendisk) {
4864 if (mddev)
4865 mddev_put(mddev);
4866 printk(KERN_ERR
4867 "md: cannot allocate memory for md drive.\n");
4868 break;
4869 }
4870 if (mddev_lock(mddev))
4871 printk(KERN_WARNING "md: %s locked, cannot run\n",
4872 mdname(mddev));
4873 else if (mddev->raid_disks || mddev->major_version
4874 || !list_empty(&mddev->disks)) {
4875 printk(KERN_WARNING
4876 "md: %s already running, cannot run %s\n",
4877 mdname(mddev), bdevname(rdev0->bdev,b));
4878 mddev_unlock(mddev);
4879 } else {
4880 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4881 mddev->persistent = 1;
4882 rdev_for_each_list(rdev, tmp, &candidates) {
4883 list_del_init(&rdev->same_set);
4884 if (bind_rdev_to_array(rdev, mddev))
4885 export_rdev(rdev);
4886 }
4887 autorun_array(mddev);
4888 mddev_unlock(mddev);
4889 }
4890 /* on success, candidates will be empty, on error
4891 * it won't...
4892 */
4893 rdev_for_each_list(rdev, tmp, &candidates) {
4894 list_del_init(&rdev->same_set);
4895 export_rdev(rdev);
4896 }
4897 mddev_put(mddev);
4898 }
4899 printk(KERN_INFO "md: ... autorun DONE.\n");
4900 }
4901 #endif /* !MODULE */
4902
4903 static int get_version(void __user * arg)
4904 {
4905 mdu_version_t ver;
4906
4907 ver.major = MD_MAJOR_VERSION;
4908 ver.minor = MD_MINOR_VERSION;
4909 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4910
4911 if (copy_to_user(arg, &ver, sizeof(ver)))
4912 return -EFAULT;
4913
4914 return 0;
4915 }
4916
4917 static int get_array_info(mddev_t * mddev, void __user * arg)
4918 {
4919 mdu_array_info_t info;
4920 int nr,working,insync,failed,spare;
4921 mdk_rdev_t *rdev;
4922
4923 nr=working=insync=failed=spare=0;
4924 list_for_each_entry(rdev, &mddev->disks, same_set) {
4925 nr++;
4926 if (test_bit(Faulty, &rdev->flags))
4927 failed++;
4928 else {
4929 working++;
4930 if (test_bit(In_sync, &rdev->flags))
4931 insync++;
4932 else
4933 spare++;
4934 }
4935 }
4936
4937 info.major_version = mddev->major_version;
4938 info.minor_version = mddev->minor_version;
4939 info.patch_version = MD_PATCHLEVEL_VERSION;
4940 info.ctime = mddev->ctime;
4941 info.level = mddev->level;
4942 info.size = mddev->dev_sectors / 2;
4943 if (info.size != mddev->dev_sectors / 2) /* overflow */
4944 info.size = -1;
4945 info.nr_disks = nr;
4946 info.raid_disks = mddev->raid_disks;
4947 info.md_minor = mddev->md_minor;
4948 info.not_persistent= !mddev->persistent;
4949
4950 info.utime = mddev->utime;
4951 info.state = 0;
4952 if (mddev->in_sync)
4953 info.state = (1<<MD_SB_CLEAN);
4954 if (mddev->bitmap && mddev->bitmap_info.offset)
4955 info.state = (1<<MD_SB_BITMAP_PRESENT);
4956 info.active_disks = insync;
4957 info.working_disks = working;
4958 info.failed_disks = failed;
4959 info.spare_disks = spare;
4960
4961 info.layout = mddev->layout;
4962 info.chunk_size = mddev->chunk_sectors << 9;
4963
4964 if (copy_to_user(arg, &info, sizeof(info)))
4965 return -EFAULT;
4966
4967 return 0;
4968 }
4969
4970 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4971 {
4972 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4973 char *ptr, *buf = NULL;
4974 int err = -ENOMEM;
4975
4976 if (md_allow_write(mddev))
4977 file = kmalloc(sizeof(*file), GFP_NOIO);
4978 else
4979 file = kmalloc(sizeof(*file), GFP_KERNEL);
4980
4981 if (!file)
4982 goto out;
4983
4984 /* bitmap disabled, zero the first byte and copy out */
4985 if (!mddev->bitmap || !mddev->bitmap->file) {
4986 file->pathname[0] = '\0';
4987 goto copy_out;
4988 }
4989
4990 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4991 if (!buf)
4992 goto out;
4993
4994 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4995 if (IS_ERR(ptr))
4996 goto out;
4997
4998 strcpy(file->pathname, ptr);
4999
5000 copy_out:
5001 err = 0;
5002 if (copy_to_user(arg, file, sizeof(*file)))
5003 err = -EFAULT;
5004 out:
5005 kfree(buf);
5006 kfree(file);
5007 return err;
5008 }
5009
5010 static int get_disk_info(mddev_t * mddev, void __user * arg)
5011 {
5012 mdu_disk_info_t info;
5013 mdk_rdev_t *rdev;
5014
5015 if (copy_from_user(&info, arg, sizeof(info)))
5016 return -EFAULT;
5017
5018 rdev = find_rdev_nr(mddev, info.number);
5019 if (rdev) {
5020 info.major = MAJOR(rdev->bdev->bd_dev);
5021 info.minor = MINOR(rdev->bdev->bd_dev);
5022 info.raid_disk = rdev->raid_disk;
5023 info.state = 0;
5024 if (test_bit(Faulty, &rdev->flags))
5025 info.state |= (1<<MD_DISK_FAULTY);
5026 else if (test_bit(In_sync, &rdev->flags)) {
5027 info.state |= (1<<MD_DISK_ACTIVE);
5028 info.state |= (1<<MD_DISK_SYNC);
5029 }
5030 if (test_bit(WriteMostly, &rdev->flags))
5031 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5032 } else {
5033 info.major = info.minor = 0;
5034 info.raid_disk = -1;
5035 info.state = (1<<MD_DISK_REMOVED);
5036 }
5037
5038 if (copy_to_user(arg, &info, sizeof(info)))
5039 return -EFAULT;
5040
5041 return 0;
5042 }
5043
5044 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5045 {
5046 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5047 mdk_rdev_t *rdev;
5048 dev_t dev = MKDEV(info->major,info->minor);
5049
5050 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5051 return -EOVERFLOW;
5052
5053 if (!mddev->raid_disks) {
5054 int err;
5055 /* expecting a device which has a superblock */
5056 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5057 if (IS_ERR(rdev)) {
5058 printk(KERN_WARNING
5059 "md: md_import_device returned %ld\n",
5060 PTR_ERR(rdev));
5061 return PTR_ERR(rdev);
5062 }
5063 if (!list_empty(&mddev->disks)) {
5064 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5065 mdk_rdev_t, same_set);
5066 err = super_types[mddev->major_version]
5067 .load_super(rdev, rdev0, mddev->minor_version);
5068 if (err < 0) {
5069 printk(KERN_WARNING
5070 "md: %s has different UUID to %s\n",
5071 bdevname(rdev->bdev,b),
5072 bdevname(rdev0->bdev,b2));
5073 export_rdev(rdev);
5074 return -EINVAL;
5075 }
5076 }
5077 err = bind_rdev_to_array(rdev, mddev);
5078 if (err)
5079 export_rdev(rdev);
5080 return err;
5081 }
5082
5083 /*
5084 * add_new_disk can be used once the array is assembled
5085 * to add "hot spares". They must already have a superblock
5086 * written
5087 */
5088 if (mddev->pers) {
5089 int err;
5090 if (!mddev->pers->hot_add_disk) {
5091 printk(KERN_WARNING
5092 "%s: personality does not support diskops!\n",
5093 mdname(mddev));
5094 return -EINVAL;
5095 }
5096 if (mddev->persistent)
5097 rdev = md_import_device(dev, mddev->major_version,
5098 mddev->minor_version);
5099 else
5100 rdev = md_import_device(dev, -1, -1);
5101 if (IS_ERR(rdev)) {
5102 printk(KERN_WARNING
5103 "md: md_import_device returned %ld\n",
5104 PTR_ERR(rdev));
5105 return PTR_ERR(rdev);
5106 }
5107 /* set save_raid_disk if appropriate */
5108 if (!mddev->persistent) {
5109 if (info->state & (1<<MD_DISK_SYNC) &&
5110 info->raid_disk < mddev->raid_disks)
5111 rdev->raid_disk = info->raid_disk;
5112 else
5113 rdev->raid_disk = -1;
5114 } else
5115 super_types[mddev->major_version].
5116 validate_super(mddev, rdev);
5117 rdev->saved_raid_disk = rdev->raid_disk;
5118
5119 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5120 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5121 set_bit(WriteMostly, &rdev->flags);
5122 else
5123 clear_bit(WriteMostly, &rdev->flags);
5124
5125 rdev->raid_disk = -1;
5126 err = bind_rdev_to_array(rdev, mddev);
5127 if (!err && !mddev->pers->hot_remove_disk) {
5128 /* If there is hot_add_disk but no hot_remove_disk
5129 * then added disks for geometry changes,
5130 * and should be added immediately.
5131 */
5132 super_types[mddev->major_version].
5133 validate_super(mddev, rdev);
5134 err = mddev->pers->hot_add_disk(mddev, rdev);
5135 if (err)
5136 unbind_rdev_from_array(rdev);
5137 }
5138 if (err)
5139 export_rdev(rdev);
5140 else
5141 sysfs_notify_dirent_safe(rdev->sysfs_state);
5142
5143 md_update_sb(mddev, 1);
5144 if (mddev->degraded)
5145 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5146 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5147 md_wakeup_thread(mddev->thread);
5148 return err;
5149 }
5150
5151 /* otherwise, add_new_disk is only allowed
5152 * for major_version==0 superblocks
5153 */
5154 if (mddev->major_version != 0) {
5155 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5156 mdname(mddev));
5157 return -EINVAL;
5158 }
5159
5160 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5161 int err;
5162 rdev = md_import_device(dev, -1, 0);
5163 if (IS_ERR(rdev)) {
5164 printk(KERN_WARNING
5165 "md: error, md_import_device() returned %ld\n",
5166 PTR_ERR(rdev));
5167 return PTR_ERR(rdev);
5168 }
5169 rdev->desc_nr = info->number;
5170 if (info->raid_disk < mddev->raid_disks)
5171 rdev->raid_disk = info->raid_disk;
5172 else
5173 rdev->raid_disk = -1;
5174
5175 if (rdev->raid_disk < mddev->raid_disks)
5176 if (info->state & (1<<MD_DISK_SYNC))
5177 set_bit(In_sync, &rdev->flags);
5178
5179 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5180 set_bit(WriteMostly, &rdev->flags);
5181
5182 if (!mddev->persistent) {
5183 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5184 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5185 } else
5186 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5187 rdev->sectors = rdev->sb_start;
5188
5189 err = bind_rdev_to_array(rdev, mddev);
5190 if (err) {
5191 export_rdev(rdev);
5192 return err;
5193 }
5194 }
5195
5196 return 0;
5197 }
5198
5199 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5200 {
5201 char b[BDEVNAME_SIZE];
5202 mdk_rdev_t *rdev;
5203
5204 rdev = find_rdev(mddev, dev);
5205 if (!rdev)
5206 return -ENXIO;
5207
5208 if (rdev->raid_disk >= 0)
5209 goto busy;
5210
5211 kick_rdev_from_array(rdev);
5212 md_update_sb(mddev, 1);
5213 md_new_event(mddev);
5214
5215 return 0;
5216 busy:
5217 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5218 bdevname(rdev->bdev,b), mdname(mddev));
5219 return -EBUSY;
5220 }
5221
5222 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5223 {
5224 char b[BDEVNAME_SIZE];
5225 int err;
5226 mdk_rdev_t *rdev;
5227
5228 if (!mddev->pers)
5229 return -ENODEV;
5230
5231 if (mddev->major_version != 0) {
5232 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5233 " version-0 superblocks.\n",
5234 mdname(mddev));
5235 return -EINVAL;
5236 }
5237 if (!mddev->pers->hot_add_disk) {
5238 printk(KERN_WARNING
5239 "%s: personality does not support diskops!\n",
5240 mdname(mddev));
5241 return -EINVAL;
5242 }
5243
5244 rdev = md_import_device(dev, -1, 0);
5245 if (IS_ERR(rdev)) {
5246 printk(KERN_WARNING
5247 "md: error, md_import_device() returned %ld\n",
5248 PTR_ERR(rdev));
5249 return -EINVAL;
5250 }
5251
5252 if (mddev->persistent)
5253 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5254 else
5255 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5256
5257 rdev->sectors = rdev->sb_start;
5258
5259 if (test_bit(Faulty, &rdev->flags)) {
5260 printk(KERN_WARNING
5261 "md: can not hot-add faulty %s disk to %s!\n",
5262 bdevname(rdev->bdev,b), mdname(mddev));
5263 err = -EINVAL;
5264 goto abort_export;
5265 }
5266 clear_bit(In_sync, &rdev->flags);
5267 rdev->desc_nr = -1;
5268 rdev->saved_raid_disk = -1;
5269 err = bind_rdev_to_array(rdev, mddev);
5270 if (err)
5271 goto abort_export;
5272
5273 /*
5274 * The rest should better be atomic, we can have disk failures
5275 * noticed in interrupt contexts ...
5276 */
5277
5278 rdev->raid_disk = -1;
5279
5280 md_update_sb(mddev, 1);
5281
5282 /*
5283 * Kick recovery, maybe this spare has to be added to the
5284 * array immediately.
5285 */
5286 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5287 md_wakeup_thread(mddev->thread);
5288 md_new_event(mddev);
5289 return 0;
5290
5291 abort_export:
5292 export_rdev(rdev);
5293 return err;
5294 }
5295
5296 static int set_bitmap_file(mddev_t *mddev, int fd)
5297 {
5298 int err;
5299
5300 if (mddev->pers) {
5301 if (!mddev->pers->quiesce)
5302 return -EBUSY;
5303 if (mddev->recovery || mddev->sync_thread)
5304 return -EBUSY;
5305 /* we should be able to change the bitmap.. */
5306 }
5307
5308
5309 if (fd >= 0) {
5310 if (mddev->bitmap)
5311 return -EEXIST; /* cannot add when bitmap is present */
5312 mddev->bitmap_info.file = fget(fd);
5313
5314 if (mddev->bitmap_info.file == NULL) {
5315 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5316 mdname(mddev));
5317 return -EBADF;
5318 }
5319
5320 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5321 if (err) {
5322 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5323 mdname(mddev));
5324 fput(mddev->bitmap_info.file);
5325 mddev->bitmap_info.file = NULL;
5326 return err;
5327 }
5328 mddev->bitmap_info.offset = 0; /* file overrides offset */
5329 } else if (mddev->bitmap == NULL)
5330 return -ENOENT; /* cannot remove what isn't there */
5331 err = 0;
5332 if (mddev->pers) {
5333 mddev->pers->quiesce(mddev, 1);
5334 if (fd >= 0)
5335 err = bitmap_create(mddev);
5336 if (fd < 0 || err) {
5337 bitmap_destroy(mddev);
5338 fd = -1; /* make sure to put the file */
5339 }
5340 mddev->pers->quiesce(mddev, 0);
5341 }
5342 if (fd < 0) {
5343 if (mddev->bitmap_info.file) {
5344 restore_bitmap_write_access(mddev->bitmap_info.file);
5345 fput(mddev->bitmap_info.file);
5346 }
5347 mddev->bitmap_info.file = NULL;
5348 }
5349
5350 return err;
5351 }
5352
5353 /*
5354 * set_array_info is used two different ways
5355 * The original usage is when creating a new array.
5356 * In this usage, raid_disks is > 0 and it together with
5357 * level, size, not_persistent,layout,chunksize determine the
5358 * shape of the array.
5359 * This will always create an array with a type-0.90.0 superblock.
5360 * The newer usage is when assembling an array.
5361 * In this case raid_disks will be 0, and the major_version field is
5362 * use to determine which style super-blocks are to be found on the devices.
5363 * The minor and patch _version numbers are also kept incase the
5364 * super_block handler wishes to interpret them.
5365 */
5366 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5367 {
5368
5369 if (info->raid_disks == 0) {
5370 /* just setting version number for superblock loading */
5371 if (info->major_version < 0 ||
5372 info->major_version >= ARRAY_SIZE(super_types) ||
5373 super_types[info->major_version].name == NULL) {
5374 /* maybe try to auto-load a module? */
5375 printk(KERN_INFO
5376 "md: superblock version %d not known\n",
5377 info->major_version);
5378 return -EINVAL;
5379 }
5380 mddev->major_version = info->major_version;
5381 mddev->minor_version = info->minor_version;
5382 mddev->patch_version = info->patch_version;
5383 mddev->persistent = !info->not_persistent;
5384 /* ensure mddev_put doesn't delete this now that there
5385 * is some minimal configuration.
5386 */
5387 mddev->ctime = get_seconds();
5388 return 0;
5389 }
5390 mddev->major_version = MD_MAJOR_VERSION;
5391 mddev->minor_version = MD_MINOR_VERSION;
5392 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5393 mddev->ctime = get_seconds();
5394
5395 mddev->level = info->level;
5396 mddev->clevel[0] = 0;
5397 mddev->dev_sectors = 2 * (sector_t)info->size;
5398 mddev->raid_disks = info->raid_disks;
5399 /* don't set md_minor, it is determined by which /dev/md* was
5400 * openned
5401 */
5402 if (info->state & (1<<MD_SB_CLEAN))
5403 mddev->recovery_cp = MaxSector;
5404 else
5405 mddev->recovery_cp = 0;
5406 mddev->persistent = ! info->not_persistent;
5407 mddev->external = 0;
5408
5409 mddev->layout = info->layout;
5410 mddev->chunk_sectors = info->chunk_size >> 9;
5411
5412 mddev->max_disks = MD_SB_DISKS;
5413
5414 if (mddev->persistent)
5415 mddev->flags = 0;
5416 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5417
5418 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5419 mddev->bitmap_info.offset = 0;
5420
5421 mddev->reshape_position = MaxSector;
5422
5423 /*
5424 * Generate a 128 bit UUID
5425 */
5426 get_random_bytes(mddev->uuid, 16);
5427
5428 mddev->new_level = mddev->level;
5429 mddev->new_chunk_sectors = mddev->chunk_sectors;
5430 mddev->new_layout = mddev->layout;
5431 mddev->delta_disks = 0;
5432
5433 return 0;
5434 }
5435
5436 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5437 {
5438 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5439
5440 if (mddev->external_size)
5441 return;
5442
5443 mddev->array_sectors = array_sectors;
5444 }
5445 EXPORT_SYMBOL(md_set_array_sectors);
5446
5447 static int update_size(mddev_t *mddev, sector_t num_sectors)
5448 {
5449 mdk_rdev_t *rdev;
5450 int rv;
5451 int fit = (num_sectors == 0);
5452
5453 if (mddev->pers->resize == NULL)
5454 return -EINVAL;
5455 /* The "num_sectors" is the number of sectors of each device that
5456 * is used. This can only make sense for arrays with redundancy.
5457 * linear and raid0 always use whatever space is available. We can only
5458 * consider changing this number if no resync or reconstruction is
5459 * happening, and if the new size is acceptable. It must fit before the
5460 * sb_start or, if that is <data_offset, it must fit before the size
5461 * of each device. If num_sectors is zero, we find the largest size
5462 * that fits.
5463
5464 */
5465 if (mddev->sync_thread)
5466 return -EBUSY;
5467 if (mddev->bitmap)
5468 /* Sorry, cannot grow a bitmap yet, just remove it,
5469 * grow, and re-add.
5470 */
5471 return -EBUSY;
5472 list_for_each_entry(rdev, &mddev->disks, same_set) {
5473 sector_t avail = rdev->sectors;
5474
5475 if (fit && (num_sectors == 0 || num_sectors > avail))
5476 num_sectors = avail;
5477 if (avail < num_sectors)
5478 return -ENOSPC;
5479 }
5480 rv = mddev->pers->resize(mddev, num_sectors);
5481 if (!rv)
5482 revalidate_disk(mddev->gendisk);
5483 return rv;
5484 }
5485
5486 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5487 {
5488 int rv;
5489 /* change the number of raid disks */
5490 if (mddev->pers->check_reshape == NULL)
5491 return -EINVAL;
5492 if (raid_disks <= 0 ||
5493 (mddev->max_disks && raid_disks >= mddev->max_disks))
5494 return -EINVAL;
5495 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5496 return -EBUSY;
5497 mddev->delta_disks = raid_disks - mddev->raid_disks;
5498
5499 rv = mddev->pers->check_reshape(mddev);
5500 return rv;
5501 }
5502
5503
5504 /*
5505 * update_array_info is used to change the configuration of an
5506 * on-line array.
5507 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5508 * fields in the info are checked against the array.
5509 * Any differences that cannot be handled will cause an error.
5510 * Normally, only one change can be managed at a time.
5511 */
5512 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5513 {
5514 int rv = 0;
5515 int cnt = 0;
5516 int state = 0;
5517
5518 /* calculate expected state,ignoring low bits */
5519 if (mddev->bitmap && mddev->bitmap_info.offset)
5520 state |= (1 << MD_SB_BITMAP_PRESENT);
5521
5522 if (mddev->major_version != info->major_version ||
5523 mddev->minor_version != info->minor_version ||
5524 /* mddev->patch_version != info->patch_version || */
5525 mddev->ctime != info->ctime ||
5526 mddev->level != info->level ||
5527 /* mddev->layout != info->layout || */
5528 !mddev->persistent != info->not_persistent||
5529 mddev->chunk_sectors != info->chunk_size >> 9 ||
5530 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5531 ((state^info->state) & 0xfffffe00)
5532 )
5533 return -EINVAL;
5534 /* Check there is only one change */
5535 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5536 cnt++;
5537 if (mddev->raid_disks != info->raid_disks)
5538 cnt++;
5539 if (mddev->layout != info->layout)
5540 cnt++;
5541 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5542 cnt++;
5543 if (cnt == 0)
5544 return 0;
5545 if (cnt > 1)
5546 return -EINVAL;
5547
5548 if (mddev->layout != info->layout) {
5549 /* Change layout
5550 * we don't need to do anything at the md level, the
5551 * personality will take care of it all.
5552 */
5553 if (mddev->pers->check_reshape == NULL)
5554 return -EINVAL;
5555 else {
5556 mddev->new_layout = info->layout;
5557 rv = mddev->pers->check_reshape(mddev);
5558 if (rv)
5559 mddev->new_layout = mddev->layout;
5560 return rv;
5561 }
5562 }
5563 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5564 rv = update_size(mddev, (sector_t)info->size * 2);
5565
5566 if (mddev->raid_disks != info->raid_disks)
5567 rv = update_raid_disks(mddev, info->raid_disks);
5568
5569 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5570 if (mddev->pers->quiesce == NULL)
5571 return -EINVAL;
5572 if (mddev->recovery || mddev->sync_thread)
5573 return -EBUSY;
5574 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5575 /* add the bitmap */
5576 if (mddev->bitmap)
5577 return -EEXIST;
5578 if (mddev->bitmap_info.default_offset == 0)
5579 return -EINVAL;
5580 mddev->bitmap_info.offset =
5581 mddev->bitmap_info.default_offset;
5582 mddev->pers->quiesce(mddev, 1);
5583 rv = bitmap_create(mddev);
5584 if (rv)
5585 bitmap_destroy(mddev);
5586 mddev->pers->quiesce(mddev, 0);
5587 } else {
5588 /* remove the bitmap */
5589 if (!mddev->bitmap)
5590 return -ENOENT;
5591 if (mddev->bitmap->file)
5592 return -EINVAL;
5593 mddev->pers->quiesce(mddev, 1);
5594 bitmap_destroy(mddev);
5595 mddev->pers->quiesce(mddev, 0);
5596 mddev->bitmap_info.offset = 0;
5597 }
5598 }
5599 md_update_sb(mddev, 1);
5600 return rv;
5601 }
5602
5603 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5604 {
5605 mdk_rdev_t *rdev;
5606
5607 if (mddev->pers == NULL)
5608 return -ENODEV;
5609
5610 rdev = find_rdev(mddev, dev);
5611 if (!rdev)
5612 return -ENODEV;
5613
5614 md_error(mddev, rdev);
5615 return 0;
5616 }
5617
5618 /*
5619 * We have a problem here : there is no easy way to give a CHS
5620 * virtual geometry. We currently pretend that we have a 2 heads
5621 * 4 sectors (with a BIG number of cylinders...). This drives
5622 * dosfs just mad... ;-)
5623 */
5624 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5625 {
5626 mddev_t *mddev = bdev->bd_disk->private_data;
5627
5628 geo->heads = 2;
5629 geo->sectors = 4;
5630 geo->cylinders = mddev->array_sectors / 8;
5631 return 0;
5632 }
5633
5634 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5635 unsigned int cmd, unsigned long arg)
5636 {
5637 int err = 0;
5638 void __user *argp = (void __user *)arg;
5639 mddev_t *mddev = NULL;
5640 int ro;
5641
5642 if (!capable(CAP_SYS_ADMIN))
5643 return -EACCES;
5644
5645 /*
5646 * Commands dealing with the RAID driver but not any
5647 * particular array:
5648 */
5649 switch (cmd)
5650 {
5651 case RAID_VERSION:
5652 err = get_version(argp);
5653 goto done;
5654
5655 case PRINT_RAID_DEBUG:
5656 err = 0;
5657 md_print_devices();
5658 goto done;
5659
5660 #ifndef MODULE
5661 case RAID_AUTORUN:
5662 err = 0;
5663 autostart_arrays(arg);
5664 goto done;
5665 #endif
5666 default:;
5667 }
5668
5669 /*
5670 * Commands creating/starting a new array:
5671 */
5672
5673 mddev = bdev->bd_disk->private_data;
5674
5675 if (!mddev) {
5676 BUG();
5677 goto abort;
5678 }
5679
5680 err = mddev_lock(mddev);
5681 if (err) {
5682 printk(KERN_INFO
5683 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5684 err, cmd);
5685 goto abort;
5686 }
5687
5688 switch (cmd)
5689 {
5690 case SET_ARRAY_INFO:
5691 {
5692 mdu_array_info_t info;
5693 if (!arg)
5694 memset(&info, 0, sizeof(info));
5695 else if (copy_from_user(&info, argp, sizeof(info))) {
5696 err = -EFAULT;
5697 goto abort_unlock;
5698 }
5699 if (mddev->pers) {
5700 err = update_array_info(mddev, &info);
5701 if (err) {
5702 printk(KERN_WARNING "md: couldn't update"
5703 " array info. %d\n", err);
5704 goto abort_unlock;
5705 }
5706 goto done_unlock;
5707 }
5708 if (!list_empty(&mddev->disks)) {
5709 printk(KERN_WARNING
5710 "md: array %s already has disks!\n",
5711 mdname(mddev));
5712 err = -EBUSY;
5713 goto abort_unlock;
5714 }
5715 if (mddev->raid_disks) {
5716 printk(KERN_WARNING
5717 "md: array %s already initialised!\n",
5718 mdname(mddev));
5719 err = -EBUSY;
5720 goto abort_unlock;
5721 }
5722 err = set_array_info(mddev, &info);
5723 if (err) {
5724 printk(KERN_WARNING "md: couldn't set"
5725 " array info. %d\n", err);
5726 goto abort_unlock;
5727 }
5728 }
5729 goto done_unlock;
5730
5731 default:;
5732 }
5733
5734 /*
5735 * Commands querying/configuring an existing array:
5736 */
5737 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5738 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5739 if ((!mddev->raid_disks && !mddev->external)
5740 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5741 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5742 && cmd != GET_BITMAP_FILE) {
5743 err = -ENODEV;
5744 goto abort_unlock;
5745 }
5746
5747 /*
5748 * Commands even a read-only array can execute:
5749 */
5750 switch (cmd)
5751 {
5752 case GET_ARRAY_INFO:
5753 err = get_array_info(mddev, argp);
5754 goto done_unlock;
5755
5756 case GET_BITMAP_FILE:
5757 err = get_bitmap_file(mddev, argp);
5758 goto done_unlock;
5759
5760 case GET_DISK_INFO:
5761 err = get_disk_info(mddev, argp);
5762 goto done_unlock;
5763
5764 case RESTART_ARRAY_RW:
5765 err = restart_array(mddev);
5766 goto done_unlock;
5767
5768 case STOP_ARRAY:
5769 err = do_md_stop(mddev, 0, 1);
5770 goto done_unlock;
5771
5772 case STOP_ARRAY_RO:
5773 err = md_set_readonly(mddev, 1);
5774 goto done_unlock;
5775
5776 case BLKROSET:
5777 if (get_user(ro, (int __user *)(arg))) {
5778 err = -EFAULT;
5779 goto done_unlock;
5780 }
5781 err = -EINVAL;
5782
5783 /* if the bdev is going readonly the value of mddev->ro
5784 * does not matter, no writes are coming
5785 */
5786 if (ro)
5787 goto done_unlock;
5788
5789 /* are we are already prepared for writes? */
5790 if (mddev->ro != 1)
5791 goto done_unlock;
5792
5793 /* transitioning to readauto need only happen for
5794 * arrays that call md_write_start
5795 */
5796 if (mddev->pers) {
5797 err = restart_array(mddev);
5798 if (err == 0) {
5799 mddev->ro = 2;
5800 set_disk_ro(mddev->gendisk, 0);
5801 }
5802 }
5803 goto done_unlock;
5804 }
5805
5806 /*
5807 * The remaining ioctls are changing the state of the
5808 * superblock, so we do not allow them on read-only arrays.
5809 * However non-MD ioctls (e.g. get-size) will still come through
5810 * here and hit the 'default' below, so only disallow
5811 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5812 */
5813 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5814 if (mddev->ro == 2) {
5815 mddev->ro = 0;
5816 sysfs_notify_dirent_safe(mddev->sysfs_state);
5817 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5818 md_wakeup_thread(mddev->thread);
5819 } else {
5820 err = -EROFS;
5821 goto abort_unlock;
5822 }
5823 }
5824
5825 switch (cmd)
5826 {
5827 case ADD_NEW_DISK:
5828 {
5829 mdu_disk_info_t info;
5830 if (copy_from_user(&info, argp, sizeof(info)))
5831 err = -EFAULT;
5832 else
5833 err = add_new_disk(mddev, &info);
5834 goto done_unlock;
5835 }
5836
5837 case HOT_REMOVE_DISK:
5838 err = hot_remove_disk(mddev, new_decode_dev(arg));
5839 goto done_unlock;
5840
5841 case HOT_ADD_DISK:
5842 err = hot_add_disk(mddev, new_decode_dev(arg));
5843 goto done_unlock;
5844
5845 case SET_DISK_FAULTY:
5846 err = set_disk_faulty(mddev, new_decode_dev(arg));
5847 goto done_unlock;
5848
5849 case RUN_ARRAY:
5850 err = do_md_run(mddev);
5851 goto done_unlock;
5852
5853 case SET_BITMAP_FILE:
5854 err = set_bitmap_file(mddev, (int)arg);
5855 goto done_unlock;
5856
5857 default:
5858 err = -EINVAL;
5859 goto abort_unlock;
5860 }
5861
5862 done_unlock:
5863 abort_unlock:
5864 if (mddev->hold_active == UNTIL_IOCTL &&
5865 err != -EINVAL)
5866 mddev->hold_active = 0;
5867 mddev_unlock(mddev);
5868
5869 return err;
5870 done:
5871 if (err)
5872 MD_BUG();
5873 abort:
5874 return err;
5875 }
5876 #ifdef CONFIG_COMPAT
5877 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5878 unsigned int cmd, unsigned long arg)
5879 {
5880 switch (cmd) {
5881 case HOT_REMOVE_DISK:
5882 case HOT_ADD_DISK:
5883 case SET_DISK_FAULTY:
5884 case SET_BITMAP_FILE:
5885 /* These take in integer arg, do not convert */
5886 break;
5887 default:
5888 arg = (unsigned long)compat_ptr(arg);
5889 break;
5890 }
5891
5892 return md_ioctl(bdev, mode, cmd, arg);
5893 }
5894 #endif /* CONFIG_COMPAT */
5895
5896 static int md_open(struct block_device *bdev, fmode_t mode)
5897 {
5898 /*
5899 * Succeed if we can lock the mddev, which confirms that
5900 * it isn't being stopped right now.
5901 */
5902 mddev_t *mddev = mddev_find(bdev->bd_dev);
5903 int err;
5904
5905 if (mddev->gendisk != bdev->bd_disk) {
5906 /* we are racing with mddev_put which is discarding this
5907 * bd_disk.
5908 */
5909 mddev_put(mddev);
5910 /* Wait until bdev->bd_disk is definitely gone */
5911 flush_scheduled_work();
5912 /* Then retry the open from the top */
5913 return -ERESTARTSYS;
5914 }
5915 BUG_ON(mddev != bdev->bd_disk->private_data);
5916
5917 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5918 goto out;
5919
5920 err = 0;
5921 atomic_inc(&mddev->openers);
5922 mutex_unlock(&mddev->open_mutex);
5923
5924 check_disk_size_change(mddev->gendisk, bdev);
5925 out:
5926 return err;
5927 }
5928
5929 static int md_release(struct gendisk *disk, fmode_t mode)
5930 {
5931 mddev_t *mddev = disk->private_data;
5932
5933 BUG_ON(!mddev);
5934 atomic_dec(&mddev->openers);
5935 mddev_put(mddev);
5936
5937 return 0;
5938 }
5939 static const struct block_device_operations md_fops =
5940 {
5941 .owner = THIS_MODULE,
5942 .open = md_open,
5943 .release = md_release,
5944 .ioctl = md_ioctl,
5945 #ifdef CONFIG_COMPAT
5946 .compat_ioctl = md_compat_ioctl,
5947 #endif
5948 .getgeo = md_getgeo,
5949 };
5950
5951 static int md_thread(void * arg)
5952 {
5953 mdk_thread_t *thread = arg;
5954
5955 /*
5956 * md_thread is a 'system-thread', it's priority should be very
5957 * high. We avoid resource deadlocks individually in each
5958 * raid personality. (RAID5 does preallocation) We also use RR and
5959 * the very same RT priority as kswapd, thus we will never get
5960 * into a priority inversion deadlock.
5961 *
5962 * we definitely have to have equal or higher priority than
5963 * bdflush, otherwise bdflush will deadlock if there are too
5964 * many dirty RAID5 blocks.
5965 */
5966
5967 allow_signal(SIGKILL);
5968 while (!kthread_should_stop()) {
5969
5970 /* We need to wait INTERRUPTIBLE so that
5971 * we don't add to the load-average.
5972 * That means we need to be sure no signals are
5973 * pending
5974 */
5975 if (signal_pending(current))
5976 flush_signals(current);
5977
5978 wait_event_interruptible_timeout
5979 (thread->wqueue,
5980 test_bit(THREAD_WAKEUP, &thread->flags)
5981 || kthread_should_stop(),
5982 thread->timeout);
5983
5984 clear_bit(THREAD_WAKEUP, &thread->flags);
5985
5986 thread->run(thread->mddev);
5987 }
5988
5989 return 0;
5990 }
5991
5992 void md_wakeup_thread(mdk_thread_t *thread)
5993 {
5994 if (thread) {
5995 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5996 set_bit(THREAD_WAKEUP, &thread->flags);
5997 wake_up(&thread->wqueue);
5998 }
5999 }
6000
6001 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6002 const char *name)
6003 {
6004 mdk_thread_t *thread;
6005
6006 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6007 if (!thread)
6008 return NULL;
6009
6010 init_waitqueue_head(&thread->wqueue);
6011
6012 thread->run = run;
6013 thread->mddev = mddev;
6014 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6015 thread->tsk = kthread_run(md_thread, thread,
6016 "%s_%s",
6017 mdname(thread->mddev),
6018 name ?: mddev->pers->name);
6019 if (IS_ERR(thread->tsk)) {
6020 kfree(thread);
6021 return NULL;
6022 }
6023 return thread;
6024 }
6025
6026 void md_unregister_thread(mdk_thread_t *thread)
6027 {
6028 if (!thread)
6029 return;
6030 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6031
6032 kthread_stop(thread->tsk);
6033 kfree(thread);
6034 }
6035
6036 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6037 {
6038 if (!mddev) {
6039 MD_BUG();
6040 return;
6041 }
6042
6043 if (!rdev || test_bit(Faulty, &rdev->flags))
6044 return;
6045
6046 if (mddev->external)
6047 set_bit(Blocked, &rdev->flags);
6048 /*
6049 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6050 mdname(mddev),
6051 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6052 __builtin_return_address(0),__builtin_return_address(1),
6053 __builtin_return_address(2),__builtin_return_address(3));
6054 */
6055 if (!mddev->pers)
6056 return;
6057 if (!mddev->pers->error_handler)
6058 return;
6059 mddev->pers->error_handler(mddev,rdev);
6060 if (mddev->degraded)
6061 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6062 sysfs_notify_dirent_safe(rdev->sysfs_state);
6063 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6064 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6065 md_wakeup_thread(mddev->thread);
6066 md_new_event_inintr(mddev);
6067 }
6068
6069 /* seq_file implementation /proc/mdstat */
6070
6071 static void status_unused(struct seq_file *seq)
6072 {
6073 int i = 0;
6074 mdk_rdev_t *rdev;
6075
6076 seq_printf(seq, "unused devices: ");
6077
6078 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6079 char b[BDEVNAME_SIZE];
6080 i++;
6081 seq_printf(seq, "%s ",
6082 bdevname(rdev->bdev,b));
6083 }
6084 if (!i)
6085 seq_printf(seq, "<none>");
6086
6087 seq_printf(seq, "\n");
6088 }
6089
6090
6091 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6092 {
6093 sector_t max_sectors, resync, res;
6094 unsigned long dt, db;
6095 sector_t rt;
6096 int scale;
6097 unsigned int per_milli;
6098
6099 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6100
6101 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6102 max_sectors = mddev->resync_max_sectors;
6103 else
6104 max_sectors = mddev->dev_sectors;
6105
6106 /*
6107 * Should not happen.
6108 */
6109 if (!max_sectors) {
6110 MD_BUG();
6111 return;
6112 }
6113 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6114 * in a sector_t, and (max_sectors>>scale) will fit in a
6115 * u32, as those are the requirements for sector_div.
6116 * Thus 'scale' must be at least 10
6117 */
6118 scale = 10;
6119 if (sizeof(sector_t) > sizeof(unsigned long)) {
6120 while ( max_sectors/2 > (1ULL<<(scale+32)))
6121 scale++;
6122 }
6123 res = (resync>>scale)*1000;
6124 sector_div(res, (u32)((max_sectors>>scale)+1));
6125
6126 per_milli = res;
6127 {
6128 int i, x = per_milli/50, y = 20-x;
6129 seq_printf(seq, "[");
6130 for (i = 0; i < x; i++)
6131 seq_printf(seq, "=");
6132 seq_printf(seq, ">");
6133 for (i = 0; i < y; i++)
6134 seq_printf(seq, ".");
6135 seq_printf(seq, "] ");
6136 }
6137 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6138 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6139 "reshape" :
6140 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6141 "check" :
6142 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6143 "resync" : "recovery"))),
6144 per_milli/10, per_milli % 10,
6145 (unsigned long long) resync/2,
6146 (unsigned long long) max_sectors/2);
6147
6148 /*
6149 * dt: time from mark until now
6150 * db: blocks written from mark until now
6151 * rt: remaining time
6152 *
6153 * rt is a sector_t, so could be 32bit or 64bit.
6154 * So we divide before multiply in case it is 32bit and close
6155 * to the limit.
6156 * We scale the divisor (db) by 32 to avoid loosing precision
6157 * near the end of resync when the number of remaining sectors
6158 * is close to 'db'.
6159 * We then divide rt by 32 after multiplying by db to compensate.
6160 * The '+1' avoids division by zero if db is very small.
6161 */
6162 dt = ((jiffies - mddev->resync_mark) / HZ);
6163 if (!dt) dt++;
6164 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6165 - mddev->resync_mark_cnt;
6166
6167 rt = max_sectors - resync; /* number of remaining sectors */
6168 sector_div(rt, db/32+1);
6169 rt *= dt;
6170 rt >>= 5;
6171
6172 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6173 ((unsigned long)rt % 60)/6);
6174
6175 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6176 }
6177
6178 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6179 {
6180 struct list_head *tmp;
6181 loff_t l = *pos;
6182 mddev_t *mddev;
6183
6184 if (l >= 0x10000)
6185 return NULL;
6186 if (!l--)
6187 /* header */
6188 return (void*)1;
6189
6190 spin_lock(&all_mddevs_lock);
6191 list_for_each(tmp,&all_mddevs)
6192 if (!l--) {
6193 mddev = list_entry(tmp, mddev_t, all_mddevs);
6194 mddev_get(mddev);
6195 spin_unlock(&all_mddevs_lock);
6196 return mddev;
6197 }
6198 spin_unlock(&all_mddevs_lock);
6199 if (!l--)
6200 return (void*)2;/* tail */
6201 return NULL;
6202 }
6203
6204 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6205 {
6206 struct list_head *tmp;
6207 mddev_t *next_mddev, *mddev = v;
6208
6209 ++*pos;
6210 if (v == (void*)2)
6211 return NULL;
6212
6213 spin_lock(&all_mddevs_lock);
6214 if (v == (void*)1)
6215 tmp = all_mddevs.next;
6216 else
6217 tmp = mddev->all_mddevs.next;
6218 if (tmp != &all_mddevs)
6219 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6220 else {
6221 next_mddev = (void*)2;
6222 *pos = 0x10000;
6223 }
6224 spin_unlock(&all_mddevs_lock);
6225
6226 if (v != (void*)1)
6227 mddev_put(mddev);
6228 return next_mddev;
6229
6230 }
6231
6232 static void md_seq_stop(struct seq_file *seq, void *v)
6233 {
6234 mddev_t *mddev = v;
6235
6236 if (mddev && v != (void*)1 && v != (void*)2)
6237 mddev_put(mddev);
6238 }
6239
6240 struct mdstat_info {
6241 int event;
6242 };
6243
6244 static int md_seq_show(struct seq_file *seq, void *v)
6245 {
6246 mddev_t *mddev = v;
6247 sector_t sectors;
6248 mdk_rdev_t *rdev;
6249 struct mdstat_info *mi = seq->private;
6250 struct bitmap *bitmap;
6251
6252 if (v == (void*)1) {
6253 struct mdk_personality *pers;
6254 seq_printf(seq, "Personalities : ");
6255 spin_lock(&pers_lock);
6256 list_for_each_entry(pers, &pers_list, list)
6257 seq_printf(seq, "[%s] ", pers->name);
6258
6259 spin_unlock(&pers_lock);
6260 seq_printf(seq, "\n");
6261 mi->event = atomic_read(&md_event_count);
6262 return 0;
6263 }
6264 if (v == (void*)2) {
6265 status_unused(seq);
6266 return 0;
6267 }
6268
6269 if (mddev_lock(mddev) < 0)
6270 return -EINTR;
6271
6272 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6273 seq_printf(seq, "%s : %sactive", mdname(mddev),
6274 mddev->pers ? "" : "in");
6275 if (mddev->pers) {
6276 if (mddev->ro==1)
6277 seq_printf(seq, " (read-only)");
6278 if (mddev->ro==2)
6279 seq_printf(seq, " (auto-read-only)");
6280 seq_printf(seq, " %s", mddev->pers->name);
6281 }
6282
6283 sectors = 0;
6284 list_for_each_entry(rdev, &mddev->disks, same_set) {
6285 char b[BDEVNAME_SIZE];
6286 seq_printf(seq, " %s[%d]",
6287 bdevname(rdev->bdev,b), rdev->desc_nr);
6288 if (test_bit(WriteMostly, &rdev->flags))
6289 seq_printf(seq, "(W)");
6290 if (test_bit(Faulty, &rdev->flags)) {
6291 seq_printf(seq, "(F)");
6292 continue;
6293 } else if (rdev->raid_disk < 0)
6294 seq_printf(seq, "(S)"); /* spare */
6295 sectors += rdev->sectors;
6296 }
6297
6298 if (!list_empty(&mddev->disks)) {
6299 if (mddev->pers)
6300 seq_printf(seq, "\n %llu blocks",
6301 (unsigned long long)
6302 mddev->array_sectors / 2);
6303 else
6304 seq_printf(seq, "\n %llu blocks",
6305 (unsigned long long)sectors / 2);
6306 }
6307 if (mddev->persistent) {
6308 if (mddev->major_version != 0 ||
6309 mddev->minor_version != 90) {
6310 seq_printf(seq," super %d.%d",
6311 mddev->major_version,
6312 mddev->minor_version);
6313 }
6314 } else if (mddev->external)
6315 seq_printf(seq, " super external:%s",
6316 mddev->metadata_type);
6317 else
6318 seq_printf(seq, " super non-persistent");
6319
6320 if (mddev->pers) {
6321 mddev->pers->status(seq, mddev);
6322 seq_printf(seq, "\n ");
6323 if (mddev->pers->sync_request) {
6324 if (mddev->curr_resync > 2) {
6325 status_resync(seq, mddev);
6326 seq_printf(seq, "\n ");
6327 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6328 seq_printf(seq, "\tresync=DELAYED\n ");
6329 else if (mddev->recovery_cp < MaxSector)
6330 seq_printf(seq, "\tresync=PENDING\n ");
6331 }
6332 } else
6333 seq_printf(seq, "\n ");
6334
6335 if ((bitmap = mddev->bitmap)) {
6336 unsigned long chunk_kb;
6337 unsigned long flags;
6338 spin_lock_irqsave(&bitmap->lock, flags);
6339 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6340 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6341 "%lu%s chunk",
6342 bitmap->pages - bitmap->missing_pages,
6343 bitmap->pages,
6344 (bitmap->pages - bitmap->missing_pages)
6345 << (PAGE_SHIFT - 10),
6346 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6347 chunk_kb ? "KB" : "B");
6348 if (bitmap->file) {
6349 seq_printf(seq, ", file: ");
6350 seq_path(seq, &bitmap->file->f_path, " \t\n");
6351 }
6352
6353 seq_printf(seq, "\n");
6354 spin_unlock_irqrestore(&bitmap->lock, flags);
6355 }
6356
6357 seq_printf(seq, "\n");
6358 }
6359 mddev_unlock(mddev);
6360
6361 return 0;
6362 }
6363
6364 static const struct seq_operations md_seq_ops = {
6365 .start = md_seq_start,
6366 .next = md_seq_next,
6367 .stop = md_seq_stop,
6368 .show = md_seq_show,
6369 };
6370
6371 static int md_seq_open(struct inode *inode, struct file *file)
6372 {
6373 int error;
6374 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6375 if (mi == NULL)
6376 return -ENOMEM;
6377
6378 error = seq_open(file, &md_seq_ops);
6379 if (error)
6380 kfree(mi);
6381 else {
6382 struct seq_file *p = file->private_data;
6383 p->private = mi;
6384 mi->event = atomic_read(&md_event_count);
6385 }
6386 return error;
6387 }
6388
6389 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6390 {
6391 struct seq_file *m = filp->private_data;
6392 struct mdstat_info *mi = m->private;
6393 int mask;
6394
6395 poll_wait(filp, &md_event_waiters, wait);
6396
6397 /* always allow read */
6398 mask = POLLIN | POLLRDNORM;
6399
6400 if (mi->event != atomic_read(&md_event_count))
6401 mask |= POLLERR | POLLPRI;
6402 return mask;
6403 }
6404
6405 static const struct file_operations md_seq_fops = {
6406 .owner = THIS_MODULE,
6407 .open = md_seq_open,
6408 .read = seq_read,
6409 .llseek = seq_lseek,
6410 .release = seq_release_private,
6411 .poll = mdstat_poll,
6412 };
6413
6414 int register_md_personality(struct mdk_personality *p)
6415 {
6416 spin_lock(&pers_lock);
6417 list_add_tail(&p->list, &pers_list);
6418 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6419 spin_unlock(&pers_lock);
6420 return 0;
6421 }
6422
6423 int unregister_md_personality(struct mdk_personality *p)
6424 {
6425 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6426 spin_lock(&pers_lock);
6427 list_del_init(&p->list);
6428 spin_unlock(&pers_lock);
6429 return 0;
6430 }
6431
6432 static int is_mddev_idle(mddev_t *mddev, int init)
6433 {
6434 mdk_rdev_t * rdev;
6435 int idle;
6436 int curr_events;
6437
6438 idle = 1;
6439 rcu_read_lock();
6440 rdev_for_each_rcu(rdev, mddev) {
6441 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6442 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6443 (int)part_stat_read(&disk->part0, sectors[1]) -
6444 atomic_read(&disk->sync_io);
6445 /* sync IO will cause sync_io to increase before the disk_stats
6446 * as sync_io is counted when a request starts, and
6447 * disk_stats is counted when it completes.
6448 * So resync activity will cause curr_events to be smaller than
6449 * when there was no such activity.
6450 * non-sync IO will cause disk_stat to increase without
6451 * increasing sync_io so curr_events will (eventually)
6452 * be larger than it was before. Once it becomes
6453 * substantially larger, the test below will cause
6454 * the array to appear non-idle, and resync will slow
6455 * down.
6456 * If there is a lot of outstanding resync activity when
6457 * we set last_event to curr_events, then all that activity
6458 * completing might cause the array to appear non-idle
6459 * and resync will be slowed down even though there might
6460 * not have been non-resync activity. This will only
6461 * happen once though. 'last_events' will soon reflect
6462 * the state where there is little or no outstanding
6463 * resync requests, and further resync activity will
6464 * always make curr_events less than last_events.
6465 *
6466 */
6467 if (init || curr_events - rdev->last_events > 64) {
6468 rdev->last_events = curr_events;
6469 idle = 0;
6470 }
6471 }
6472 rcu_read_unlock();
6473 return idle;
6474 }
6475
6476 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6477 {
6478 /* another "blocks" (512byte) blocks have been synced */
6479 atomic_sub(blocks, &mddev->recovery_active);
6480 wake_up(&mddev->recovery_wait);
6481 if (!ok) {
6482 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6483 md_wakeup_thread(mddev->thread);
6484 // stop recovery, signal do_sync ....
6485 }
6486 }
6487
6488
6489 /* md_write_start(mddev, bi)
6490 * If we need to update some array metadata (e.g. 'active' flag
6491 * in superblock) before writing, schedule a superblock update
6492 * and wait for it to complete.
6493 */
6494 void md_write_start(mddev_t *mddev, struct bio *bi)
6495 {
6496 int did_change = 0;
6497 if (bio_data_dir(bi) != WRITE)
6498 return;
6499
6500 BUG_ON(mddev->ro == 1);
6501 if (mddev->ro == 2) {
6502 /* need to switch to read/write */
6503 mddev->ro = 0;
6504 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6505 md_wakeup_thread(mddev->thread);
6506 md_wakeup_thread(mddev->sync_thread);
6507 did_change = 1;
6508 }
6509 atomic_inc(&mddev->writes_pending);
6510 if (mddev->safemode == 1)
6511 mddev->safemode = 0;
6512 if (mddev->in_sync) {
6513 spin_lock_irq(&mddev->write_lock);
6514 if (mddev->in_sync) {
6515 mddev->in_sync = 0;
6516 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6517 md_wakeup_thread(mddev->thread);
6518 did_change = 1;
6519 }
6520 spin_unlock_irq(&mddev->write_lock);
6521 }
6522 if (did_change)
6523 sysfs_notify_dirent_safe(mddev->sysfs_state);
6524 wait_event(mddev->sb_wait,
6525 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6526 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6527 }
6528
6529 void md_write_end(mddev_t *mddev)
6530 {
6531 if (atomic_dec_and_test(&mddev->writes_pending)) {
6532 if (mddev->safemode == 2)
6533 md_wakeup_thread(mddev->thread);
6534 else if (mddev->safemode_delay)
6535 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6536 }
6537 }
6538
6539 /* md_allow_write(mddev)
6540 * Calling this ensures that the array is marked 'active' so that writes
6541 * may proceed without blocking. It is important to call this before
6542 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6543 * Must be called with mddev_lock held.
6544 *
6545 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6546 * is dropped, so return -EAGAIN after notifying userspace.
6547 */
6548 int md_allow_write(mddev_t *mddev)
6549 {
6550 if (!mddev->pers)
6551 return 0;
6552 if (mddev->ro)
6553 return 0;
6554 if (!mddev->pers->sync_request)
6555 return 0;
6556
6557 spin_lock_irq(&mddev->write_lock);
6558 if (mddev->in_sync) {
6559 mddev->in_sync = 0;
6560 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6561 if (mddev->safemode_delay &&
6562 mddev->safemode == 0)
6563 mddev->safemode = 1;
6564 spin_unlock_irq(&mddev->write_lock);
6565 md_update_sb(mddev, 0);
6566 sysfs_notify_dirent_safe(mddev->sysfs_state);
6567 } else
6568 spin_unlock_irq(&mddev->write_lock);
6569
6570 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6571 return -EAGAIN;
6572 else
6573 return 0;
6574 }
6575 EXPORT_SYMBOL_GPL(md_allow_write);
6576
6577 #define SYNC_MARKS 10
6578 #define SYNC_MARK_STEP (3*HZ)
6579 void md_do_sync(mddev_t *mddev)
6580 {
6581 mddev_t *mddev2;
6582 unsigned int currspeed = 0,
6583 window;
6584 sector_t max_sectors,j, io_sectors;
6585 unsigned long mark[SYNC_MARKS];
6586 sector_t mark_cnt[SYNC_MARKS];
6587 int last_mark,m;
6588 struct list_head *tmp;
6589 sector_t last_check;
6590 int skipped = 0;
6591 mdk_rdev_t *rdev;
6592 char *desc;
6593
6594 /* just incase thread restarts... */
6595 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6596 return;
6597 if (mddev->ro) /* never try to sync a read-only array */
6598 return;
6599
6600 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6601 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6602 desc = "data-check";
6603 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6604 desc = "requested-resync";
6605 else
6606 desc = "resync";
6607 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6608 desc = "reshape";
6609 else
6610 desc = "recovery";
6611
6612 /* we overload curr_resync somewhat here.
6613 * 0 == not engaged in resync at all
6614 * 2 == checking that there is no conflict with another sync
6615 * 1 == like 2, but have yielded to allow conflicting resync to
6616 * commense
6617 * other == active in resync - this many blocks
6618 *
6619 * Before starting a resync we must have set curr_resync to
6620 * 2, and then checked that every "conflicting" array has curr_resync
6621 * less than ours. When we find one that is the same or higher
6622 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6623 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6624 * This will mean we have to start checking from the beginning again.
6625 *
6626 */
6627
6628 do {
6629 mddev->curr_resync = 2;
6630
6631 try_again:
6632 if (kthread_should_stop())
6633 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6634
6635 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6636 goto skip;
6637 for_each_mddev(mddev2, tmp) {
6638 if (mddev2 == mddev)
6639 continue;
6640 if (!mddev->parallel_resync
6641 && mddev2->curr_resync
6642 && match_mddev_units(mddev, mddev2)) {
6643 DEFINE_WAIT(wq);
6644 if (mddev < mddev2 && mddev->curr_resync == 2) {
6645 /* arbitrarily yield */
6646 mddev->curr_resync = 1;
6647 wake_up(&resync_wait);
6648 }
6649 if (mddev > mddev2 && mddev->curr_resync == 1)
6650 /* no need to wait here, we can wait the next
6651 * time 'round when curr_resync == 2
6652 */
6653 continue;
6654 /* We need to wait 'interruptible' so as not to
6655 * contribute to the load average, and not to
6656 * be caught by 'softlockup'
6657 */
6658 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6659 if (!kthread_should_stop() &&
6660 mddev2->curr_resync >= mddev->curr_resync) {
6661 printk(KERN_INFO "md: delaying %s of %s"
6662 " until %s has finished (they"
6663 " share one or more physical units)\n",
6664 desc, mdname(mddev), mdname(mddev2));
6665 mddev_put(mddev2);
6666 if (signal_pending(current))
6667 flush_signals(current);
6668 schedule();
6669 finish_wait(&resync_wait, &wq);
6670 goto try_again;
6671 }
6672 finish_wait(&resync_wait, &wq);
6673 }
6674 }
6675 } while (mddev->curr_resync < 2);
6676
6677 j = 0;
6678 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6679 /* resync follows the size requested by the personality,
6680 * which defaults to physical size, but can be virtual size
6681 */
6682 max_sectors = mddev->resync_max_sectors;
6683 mddev->resync_mismatches = 0;
6684 /* we don't use the checkpoint if there's a bitmap */
6685 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6686 j = mddev->resync_min;
6687 else if (!mddev->bitmap)
6688 j = mddev->recovery_cp;
6689
6690 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6691 max_sectors = mddev->dev_sectors;
6692 else {
6693 /* recovery follows the physical size of devices */
6694 max_sectors = mddev->dev_sectors;
6695 j = MaxSector;
6696 rcu_read_lock();
6697 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6698 if (rdev->raid_disk >= 0 &&
6699 !test_bit(Faulty, &rdev->flags) &&
6700 !test_bit(In_sync, &rdev->flags) &&
6701 rdev->recovery_offset < j)
6702 j = rdev->recovery_offset;
6703 rcu_read_unlock();
6704 }
6705
6706 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6707 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6708 " %d KB/sec/disk.\n", speed_min(mddev));
6709 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6710 "(but not more than %d KB/sec) for %s.\n",
6711 speed_max(mddev), desc);
6712
6713 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6714
6715 io_sectors = 0;
6716 for (m = 0; m < SYNC_MARKS; m++) {
6717 mark[m] = jiffies;
6718 mark_cnt[m] = io_sectors;
6719 }
6720 last_mark = 0;
6721 mddev->resync_mark = mark[last_mark];
6722 mddev->resync_mark_cnt = mark_cnt[last_mark];
6723
6724 /*
6725 * Tune reconstruction:
6726 */
6727 window = 32*(PAGE_SIZE/512);
6728 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6729 window/2,(unsigned long long) max_sectors/2);
6730
6731 atomic_set(&mddev->recovery_active, 0);
6732 last_check = 0;
6733
6734 if (j>2) {
6735 printk(KERN_INFO
6736 "md: resuming %s of %s from checkpoint.\n",
6737 desc, mdname(mddev));
6738 mddev->curr_resync = j;
6739 }
6740 mddev->curr_resync_completed = mddev->curr_resync;
6741
6742 while (j < max_sectors) {
6743 sector_t sectors;
6744
6745 skipped = 0;
6746
6747 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6748 ((mddev->curr_resync > mddev->curr_resync_completed &&
6749 (mddev->curr_resync - mddev->curr_resync_completed)
6750 > (max_sectors >> 4)) ||
6751 (j - mddev->curr_resync_completed)*2
6752 >= mddev->resync_max - mddev->curr_resync_completed
6753 )) {
6754 /* time to update curr_resync_completed */
6755 blk_unplug(mddev->queue);
6756 wait_event(mddev->recovery_wait,
6757 atomic_read(&mddev->recovery_active) == 0);
6758 mddev->curr_resync_completed =
6759 mddev->curr_resync;
6760 if (mddev->persistent)
6761 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6762 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6763 }
6764
6765 while (j >= mddev->resync_max && !kthread_should_stop()) {
6766 /* As this condition is controlled by user-space,
6767 * we can block indefinitely, so use '_interruptible'
6768 * to avoid triggering warnings.
6769 */
6770 flush_signals(current); /* just in case */
6771 wait_event_interruptible(mddev->recovery_wait,
6772 mddev->resync_max > j
6773 || kthread_should_stop());
6774 }
6775
6776 if (kthread_should_stop())
6777 goto interrupted;
6778
6779 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6780 currspeed < speed_min(mddev));
6781 if (sectors == 0) {
6782 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6783 goto out;
6784 }
6785
6786 if (!skipped) { /* actual IO requested */
6787 io_sectors += sectors;
6788 atomic_add(sectors, &mddev->recovery_active);
6789 }
6790
6791 j += sectors;
6792 if (j>1) mddev->curr_resync = j;
6793 mddev->curr_mark_cnt = io_sectors;
6794 if (last_check == 0)
6795 /* this is the earliers that rebuilt will be
6796 * visible in /proc/mdstat
6797 */
6798 md_new_event(mddev);
6799
6800 if (last_check + window > io_sectors || j == max_sectors)
6801 continue;
6802
6803 last_check = io_sectors;
6804
6805 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6806 break;
6807
6808 repeat:
6809 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6810 /* step marks */
6811 int next = (last_mark+1) % SYNC_MARKS;
6812
6813 mddev->resync_mark = mark[next];
6814 mddev->resync_mark_cnt = mark_cnt[next];
6815 mark[next] = jiffies;
6816 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6817 last_mark = next;
6818 }
6819
6820
6821 if (kthread_should_stop())
6822 goto interrupted;
6823
6824
6825 /*
6826 * this loop exits only if either when we are slower than
6827 * the 'hard' speed limit, or the system was IO-idle for
6828 * a jiffy.
6829 * the system might be non-idle CPU-wise, but we only care
6830 * about not overloading the IO subsystem. (things like an
6831 * e2fsck being done on the RAID array should execute fast)
6832 */
6833 blk_unplug(mddev->queue);
6834 cond_resched();
6835
6836 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6837 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6838
6839 if (currspeed > speed_min(mddev)) {
6840 if ((currspeed > speed_max(mddev)) ||
6841 !is_mddev_idle(mddev, 0)) {
6842 msleep(500);
6843 goto repeat;
6844 }
6845 }
6846 }
6847 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6848 /*
6849 * this also signals 'finished resyncing' to md_stop
6850 */
6851 out:
6852 blk_unplug(mddev->queue);
6853
6854 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6855
6856 /* tell personality that we are finished */
6857 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6858
6859 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6860 mddev->curr_resync > 2) {
6861 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6862 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6863 if (mddev->curr_resync >= mddev->recovery_cp) {
6864 printk(KERN_INFO
6865 "md: checkpointing %s of %s.\n",
6866 desc, mdname(mddev));
6867 mddev->recovery_cp = mddev->curr_resync;
6868 }
6869 } else
6870 mddev->recovery_cp = MaxSector;
6871 } else {
6872 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6873 mddev->curr_resync = MaxSector;
6874 rcu_read_lock();
6875 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6876 if (rdev->raid_disk >= 0 &&
6877 mddev->delta_disks >= 0 &&
6878 !test_bit(Faulty, &rdev->flags) &&
6879 !test_bit(In_sync, &rdev->flags) &&
6880 rdev->recovery_offset < mddev->curr_resync)
6881 rdev->recovery_offset = mddev->curr_resync;
6882 rcu_read_unlock();
6883 }
6884 }
6885 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6886
6887 skip:
6888 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6889 /* We completed so min/max setting can be forgotten if used. */
6890 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6891 mddev->resync_min = 0;
6892 mddev->resync_max = MaxSector;
6893 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6894 mddev->resync_min = mddev->curr_resync_completed;
6895 mddev->curr_resync = 0;
6896 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6897 mddev->curr_resync_completed = 0;
6898 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6899 wake_up(&resync_wait);
6900 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6901 md_wakeup_thread(mddev->thread);
6902 return;
6903
6904 interrupted:
6905 /*
6906 * got a signal, exit.
6907 */
6908 printk(KERN_INFO
6909 "md: md_do_sync() got signal ... exiting\n");
6910 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6911 goto out;
6912
6913 }
6914 EXPORT_SYMBOL_GPL(md_do_sync);
6915
6916
6917 static int remove_and_add_spares(mddev_t *mddev)
6918 {
6919 mdk_rdev_t *rdev;
6920 int spares = 0;
6921
6922 mddev->curr_resync_completed = 0;
6923
6924 list_for_each_entry(rdev, &mddev->disks, same_set)
6925 if (rdev->raid_disk >= 0 &&
6926 !test_bit(Blocked, &rdev->flags) &&
6927 (test_bit(Faulty, &rdev->flags) ||
6928 ! test_bit(In_sync, &rdev->flags)) &&
6929 atomic_read(&rdev->nr_pending)==0) {
6930 if (mddev->pers->hot_remove_disk(
6931 mddev, rdev->raid_disk)==0) {
6932 char nm[20];
6933 sprintf(nm,"rd%d", rdev->raid_disk);
6934 sysfs_remove_link(&mddev->kobj, nm);
6935 rdev->raid_disk = -1;
6936 }
6937 }
6938
6939 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6940 list_for_each_entry(rdev, &mddev->disks, same_set) {
6941 if (rdev->raid_disk >= 0 &&
6942 !test_bit(In_sync, &rdev->flags) &&
6943 !test_bit(Blocked, &rdev->flags))
6944 spares++;
6945 if (rdev->raid_disk < 0
6946 && !test_bit(Faulty, &rdev->flags)) {
6947 rdev->recovery_offset = 0;
6948 if (mddev->pers->
6949 hot_add_disk(mddev, rdev) == 0) {
6950 char nm[20];
6951 sprintf(nm, "rd%d", rdev->raid_disk);
6952 if (sysfs_create_link(&mddev->kobj,
6953 &rdev->kobj, nm))
6954 /* failure here is OK */;
6955 spares++;
6956 md_new_event(mddev);
6957 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6958 } else
6959 break;
6960 }
6961 }
6962 }
6963 return spares;
6964 }
6965 /*
6966 * This routine is regularly called by all per-raid-array threads to
6967 * deal with generic issues like resync and super-block update.
6968 * Raid personalities that don't have a thread (linear/raid0) do not
6969 * need this as they never do any recovery or update the superblock.
6970 *
6971 * It does not do any resync itself, but rather "forks" off other threads
6972 * to do that as needed.
6973 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6974 * "->recovery" and create a thread at ->sync_thread.
6975 * When the thread finishes it sets MD_RECOVERY_DONE
6976 * and wakeups up this thread which will reap the thread and finish up.
6977 * This thread also removes any faulty devices (with nr_pending == 0).
6978 *
6979 * The overall approach is:
6980 * 1/ if the superblock needs updating, update it.
6981 * 2/ If a recovery thread is running, don't do anything else.
6982 * 3/ If recovery has finished, clean up, possibly marking spares active.
6983 * 4/ If there are any faulty devices, remove them.
6984 * 5/ If array is degraded, try to add spares devices
6985 * 6/ If array has spares or is not in-sync, start a resync thread.
6986 */
6987 void md_check_recovery(mddev_t *mddev)
6988 {
6989 mdk_rdev_t *rdev;
6990
6991
6992 if (mddev->bitmap)
6993 bitmap_daemon_work(mddev);
6994
6995 if (mddev->ro)
6996 return;
6997
6998 if (signal_pending(current)) {
6999 if (mddev->pers->sync_request && !mddev->external) {
7000 printk(KERN_INFO "md: %s in immediate safe mode\n",
7001 mdname(mddev));
7002 mddev->safemode = 2;
7003 }
7004 flush_signals(current);
7005 }
7006
7007 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7008 return;
7009 if ( ! (
7010 (mddev->flags && !mddev->external) ||
7011 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7012 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7013 (mddev->external == 0 && mddev->safemode == 1) ||
7014 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7015 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7016 ))
7017 return;
7018
7019 if (mddev_trylock(mddev)) {
7020 int spares = 0;
7021
7022 if (mddev->ro) {
7023 /* Only thing we do on a ro array is remove
7024 * failed devices.
7025 */
7026 remove_and_add_spares(mddev);
7027 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7028 goto unlock;
7029 }
7030
7031 if (!mddev->external) {
7032 int did_change = 0;
7033 spin_lock_irq(&mddev->write_lock);
7034 if (mddev->safemode &&
7035 !atomic_read(&mddev->writes_pending) &&
7036 !mddev->in_sync &&
7037 mddev->recovery_cp == MaxSector) {
7038 mddev->in_sync = 1;
7039 did_change = 1;
7040 if (mddev->persistent)
7041 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7042 }
7043 if (mddev->safemode == 1)
7044 mddev->safemode = 0;
7045 spin_unlock_irq(&mddev->write_lock);
7046 if (did_change)
7047 sysfs_notify_dirent_safe(mddev->sysfs_state);
7048 }
7049
7050 if (mddev->flags)
7051 md_update_sb(mddev, 0);
7052
7053 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7054 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7055 /* resync/recovery still happening */
7056 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7057 goto unlock;
7058 }
7059 if (mddev->sync_thread) {
7060 /* resync has finished, collect result */
7061 md_unregister_thread(mddev->sync_thread);
7062 mddev->sync_thread = NULL;
7063 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7064 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7065 /* success...*/
7066 /* activate any spares */
7067 if (mddev->pers->spare_active(mddev))
7068 sysfs_notify(&mddev->kobj, NULL,
7069 "degraded");
7070 }
7071 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7072 mddev->pers->finish_reshape)
7073 mddev->pers->finish_reshape(mddev);
7074 md_update_sb(mddev, 1);
7075
7076 /* if array is no-longer degraded, then any saved_raid_disk
7077 * information must be scrapped
7078 */
7079 if (!mddev->degraded)
7080 list_for_each_entry(rdev, &mddev->disks, same_set)
7081 rdev->saved_raid_disk = -1;
7082
7083 mddev->recovery = 0;
7084 /* flag recovery needed just to double check */
7085 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7086 sysfs_notify_dirent_safe(mddev->sysfs_action);
7087 md_new_event(mddev);
7088 goto unlock;
7089 }
7090 /* Set RUNNING before clearing NEEDED to avoid
7091 * any transients in the value of "sync_action".
7092 */
7093 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7094 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7095 /* Clear some bits that don't mean anything, but
7096 * might be left set
7097 */
7098 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7099 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7100
7101 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7102 goto unlock;
7103 /* no recovery is running.
7104 * remove any failed drives, then
7105 * add spares if possible.
7106 * Spare are also removed and re-added, to allow
7107 * the personality to fail the re-add.
7108 */
7109
7110 if (mddev->reshape_position != MaxSector) {
7111 if (mddev->pers->check_reshape == NULL ||
7112 mddev->pers->check_reshape(mddev) != 0)
7113 /* Cannot proceed */
7114 goto unlock;
7115 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7116 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7117 } else if ((spares = remove_and_add_spares(mddev))) {
7118 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7119 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7120 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7121 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7122 } else if (mddev->recovery_cp < MaxSector) {
7123 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7124 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7125 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7126 /* nothing to be done ... */
7127 goto unlock;
7128
7129 if (mddev->pers->sync_request) {
7130 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7131 /* We are adding a device or devices to an array
7132 * which has the bitmap stored on all devices.
7133 * So make sure all bitmap pages get written
7134 */
7135 bitmap_write_all(mddev->bitmap);
7136 }
7137 mddev->sync_thread = md_register_thread(md_do_sync,
7138 mddev,
7139 "resync");
7140 if (!mddev->sync_thread) {
7141 printk(KERN_ERR "%s: could not start resync"
7142 " thread...\n",
7143 mdname(mddev));
7144 /* leave the spares where they are, it shouldn't hurt */
7145 mddev->recovery = 0;
7146 } else
7147 md_wakeup_thread(mddev->sync_thread);
7148 sysfs_notify_dirent_safe(mddev->sysfs_action);
7149 md_new_event(mddev);
7150 }
7151 unlock:
7152 if (!mddev->sync_thread) {
7153 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7154 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7155 &mddev->recovery))
7156 if (mddev->sysfs_action)
7157 sysfs_notify_dirent_safe(mddev->sysfs_action);
7158 }
7159 mddev_unlock(mddev);
7160 }
7161 }
7162
7163 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7164 {
7165 sysfs_notify_dirent_safe(rdev->sysfs_state);
7166 wait_event_timeout(rdev->blocked_wait,
7167 !test_bit(Blocked, &rdev->flags),
7168 msecs_to_jiffies(5000));
7169 rdev_dec_pending(rdev, mddev);
7170 }
7171 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7172
7173 static int md_notify_reboot(struct notifier_block *this,
7174 unsigned long code, void *x)
7175 {
7176 struct list_head *tmp;
7177 mddev_t *mddev;
7178
7179 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7180
7181 printk(KERN_INFO "md: stopping all md devices.\n");
7182
7183 for_each_mddev(mddev, tmp)
7184 if (mddev_trylock(mddev)) {
7185 /* Force a switch to readonly even array
7186 * appears to still be in use. Hence
7187 * the '100'.
7188 */
7189 md_set_readonly(mddev, 100);
7190 mddev_unlock(mddev);
7191 }
7192 /*
7193 * certain more exotic SCSI devices are known to be
7194 * volatile wrt too early system reboots. While the
7195 * right place to handle this issue is the given
7196 * driver, we do want to have a safe RAID driver ...
7197 */
7198 mdelay(1000*1);
7199 }
7200 return NOTIFY_DONE;
7201 }
7202
7203 static struct notifier_block md_notifier = {
7204 .notifier_call = md_notify_reboot,
7205 .next = NULL,
7206 .priority = INT_MAX, /* before any real devices */
7207 };
7208
7209 static void md_geninit(void)
7210 {
7211 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7212
7213 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7214 }
7215
7216 static int __init md_init(void)
7217 {
7218 if (register_blkdev(MD_MAJOR, "md"))
7219 return -1;
7220 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7221 unregister_blkdev(MD_MAJOR, "md");
7222 return -1;
7223 }
7224 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7225 md_probe, NULL, NULL);
7226 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7227 md_probe, NULL, NULL);
7228
7229 register_reboot_notifier(&md_notifier);
7230 raid_table_header = register_sysctl_table(raid_root_table);
7231
7232 md_geninit();
7233 return 0;
7234 }
7235
7236
7237 #ifndef MODULE
7238
7239 /*
7240 * Searches all registered partitions for autorun RAID arrays
7241 * at boot time.
7242 */
7243
7244 static LIST_HEAD(all_detected_devices);
7245 struct detected_devices_node {
7246 struct list_head list;
7247 dev_t dev;
7248 };
7249
7250 void md_autodetect_dev(dev_t dev)
7251 {
7252 struct detected_devices_node *node_detected_dev;
7253
7254 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7255 if (node_detected_dev) {
7256 node_detected_dev->dev = dev;
7257 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7258 } else {
7259 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7260 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7261 }
7262 }
7263
7264
7265 static void autostart_arrays(int part)
7266 {
7267 mdk_rdev_t *rdev;
7268 struct detected_devices_node *node_detected_dev;
7269 dev_t dev;
7270 int i_scanned, i_passed;
7271
7272 i_scanned = 0;
7273 i_passed = 0;
7274
7275 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7276
7277 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7278 i_scanned++;
7279 node_detected_dev = list_entry(all_detected_devices.next,
7280 struct detected_devices_node, list);
7281 list_del(&node_detected_dev->list);
7282 dev = node_detected_dev->dev;
7283 kfree(node_detected_dev);
7284 rdev = md_import_device(dev,0, 90);
7285 if (IS_ERR(rdev))
7286 continue;
7287
7288 if (test_bit(Faulty, &rdev->flags)) {
7289 MD_BUG();
7290 continue;
7291 }
7292 set_bit(AutoDetected, &rdev->flags);
7293 list_add(&rdev->same_set, &pending_raid_disks);
7294 i_passed++;
7295 }
7296
7297 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7298 i_scanned, i_passed);
7299
7300 autorun_devices(part);
7301 }
7302
7303 #endif /* !MODULE */
7304
7305 static __exit void md_exit(void)
7306 {
7307 mddev_t *mddev;
7308 struct list_head *tmp;
7309
7310 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7311 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7312
7313 unregister_blkdev(MD_MAJOR,"md");
7314 unregister_blkdev(mdp_major, "mdp");
7315 unregister_reboot_notifier(&md_notifier);
7316 unregister_sysctl_table(raid_table_header);
7317 remove_proc_entry("mdstat", NULL);
7318 for_each_mddev(mddev, tmp) {
7319 export_array(mddev);
7320 mddev->hold_active = 0;
7321 }
7322 }
7323
7324 subsys_initcall(md_init);
7325 module_exit(md_exit)
7326
7327 static int get_ro(char *buffer, struct kernel_param *kp)
7328 {
7329 return sprintf(buffer, "%d", start_readonly);
7330 }
7331 static int set_ro(const char *val, struct kernel_param *kp)
7332 {
7333 char *e;
7334 int num = simple_strtoul(val, &e, 10);
7335 if (*val && (*e == '\0' || *e == '\n')) {
7336 start_readonly = num;
7337 return 0;
7338 }
7339 return -EINVAL;
7340 }
7341
7342 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7343 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7344
7345 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7346
7347 EXPORT_SYMBOL(register_md_personality);
7348 EXPORT_SYMBOL(unregister_md_personality);
7349 EXPORT_SYMBOL(md_error);
7350 EXPORT_SYMBOL(md_done_sync);
7351 EXPORT_SYMBOL(md_write_start);
7352 EXPORT_SYMBOL(md_write_end);
7353 EXPORT_SYMBOL(md_register_thread);
7354 EXPORT_SYMBOL(md_unregister_thread);
7355 EXPORT_SYMBOL(md_wakeup_thread);
7356 EXPORT_SYMBOL(md_check_recovery);
7357 MODULE_LICENSE("GPL");
7358 MODULE_DESCRIPTION("MD RAID framework");
7359 MODULE_ALIAS("md");
7360 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.370742 seconds and 4 git commands to generate.