iwlwifi: mvm: fix a few wd_disable comments
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
163 {
164 struct bio *b;
165
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
168
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
178 {
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
181
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187 * We have a system wide 'event count' that is incremented
188 * on any 'interesting' event, and readers of /proc/mdstat
189 * can use 'poll' or 'select' to find out when the event
190 * count increases.
191 *
192 * Events are:
193 * start array, stop array, error, add device, remove device,
194 * start build, activate spare
195 */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200 atomic_inc(&md_event_count);
201 wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206 * when calling sysfs_notify isn't needed.
207 */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210 atomic_inc(&md_event_count);
211 wake_up(&md_event_waiters);
212 }
213
214 /*
215 * Enables to iterate over all existing md arrays
216 * all_mddevs_lock protects this list.
217 */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221
222 /*
223 * iterates through all used mddevs in the system.
224 * We take care to grab the all_mddevs_lock whenever navigating
225 * the list, and to always hold a refcount when unlocked.
226 * Any code which breaks out of this loop while own
227 * a reference to the current mddev and must mddev_put it.
228 */
229 #define for_each_mddev(_mddev,_tmp) \
230 \
231 for (({ spin_lock(&all_mddevs_lock); \
232 _tmp = all_mddevs.next; \
233 _mddev = NULL;}); \
234 ({ if (_tmp != &all_mddevs) \
235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236 spin_unlock(&all_mddevs_lock); \
237 if (_mddev) mddev_put(_mddev); \
238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
239 _tmp != &all_mddevs;}); \
240 ({ spin_lock(&all_mddevs_lock); \
241 _tmp = _tmp->next;}) \
242 )
243
244
245 /* Rather than calling directly into the personality make_request function,
246 * IO requests come here first so that we can check if the device is
247 * being suspended pending a reconfiguration.
248 * We hold a refcount over the call to ->make_request. By the time that
249 * call has finished, the bio has been linked into some internal structure
250 * and so is visible to ->quiesce(), so we don't need the refcount any more.
251 */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254 const int rw = bio_data_dir(bio);
255 struct mddev *mddev = q->queuedata;
256 int cpu;
257 unsigned int sectors;
258
259 if (mddev == NULL || mddev->pers == NULL
260 || !mddev->ready) {
261 bio_io_error(bio);
262 return;
263 }
264 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266 return;
267 }
268 smp_rmb(); /* Ensure implications of 'active' are visible */
269 rcu_read_lock();
270 if (mddev->suspended) {
271 DEFINE_WAIT(__wait);
272 for (;;) {
273 prepare_to_wait(&mddev->sb_wait, &__wait,
274 TASK_UNINTERRUPTIBLE);
275 if (!mddev->suspended)
276 break;
277 rcu_read_unlock();
278 schedule();
279 rcu_read_lock();
280 }
281 finish_wait(&mddev->sb_wait, &__wait);
282 }
283 atomic_inc(&mddev->active_io);
284 rcu_read_unlock();
285
286 /*
287 * save the sectors now since our bio can
288 * go away inside make_request
289 */
290 sectors = bio_sectors(bio);
291 mddev->pers->make_request(mddev, bio);
292
293 cpu = part_stat_lock();
294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296 part_stat_unlock();
297
298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299 wake_up(&mddev->sb_wait);
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303 * to the device, and that any requests that have been submitted
304 * are completely handled.
305 * Once ->stop is called and completes, the module will be completely
306 * unused.
307 */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 BUG_ON(mddev->suspended);
311 mddev->suspended = 1;
312 synchronize_rcu();
313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314 mddev->pers->quiesce(mddev, 1);
315
316 del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319
320 void mddev_resume(struct mddev *mddev)
321 {
322 mddev->suspended = 0;
323 wake_up(&mddev->sb_wait);
324 mddev->pers->quiesce(mddev, 0);
325
326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 md_wakeup_thread(mddev->thread);
328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337
338 /*
339 * Generic flush handling for md
340 */
341
342 static void md_end_flush(struct bio *bio, int err)
343 {
344 struct md_rdev *rdev = bio->bi_private;
345 struct mddev *mddev = rdev->mddev;
346
347 rdev_dec_pending(rdev, mddev);
348
349 if (atomic_dec_and_test(&mddev->flush_pending)) {
350 /* The pre-request flush has finished */
351 queue_work(md_wq, &mddev->flush_work);
352 }
353 bio_put(bio);
354 }
355
356 static void md_submit_flush_data(struct work_struct *ws);
357
358 static void submit_flushes(struct work_struct *ws)
359 {
360 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361 struct md_rdev *rdev;
362
363 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364 atomic_set(&mddev->flush_pending, 1);
365 rcu_read_lock();
366 rdev_for_each_rcu(rdev, mddev)
367 if (rdev->raid_disk >= 0 &&
368 !test_bit(Faulty, &rdev->flags)) {
369 /* Take two references, one is dropped
370 * when request finishes, one after
371 * we reclaim rcu_read_lock
372 */
373 struct bio *bi;
374 atomic_inc(&rdev->nr_pending);
375 atomic_inc(&rdev->nr_pending);
376 rcu_read_unlock();
377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378 bi->bi_end_io = md_end_flush;
379 bi->bi_private = rdev;
380 bi->bi_bdev = rdev->bdev;
381 atomic_inc(&mddev->flush_pending);
382 submit_bio(WRITE_FLUSH, bi);
383 rcu_read_lock();
384 rdev_dec_pending(rdev, mddev);
385 }
386 rcu_read_unlock();
387 if (atomic_dec_and_test(&mddev->flush_pending))
388 queue_work(md_wq, &mddev->flush_work);
389 }
390
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394 struct bio *bio = mddev->flush_bio;
395
396 if (bio->bi_iter.bi_size == 0)
397 /* an empty barrier - all done */
398 bio_endio(bio, 0);
399 else {
400 bio->bi_rw &= ~REQ_FLUSH;
401 mddev->pers->make_request(mddev, bio);
402 }
403
404 mddev->flush_bio = NULL;
405 wake_up(&mddev->sb_wait);
406 }
407
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410 spin_lock_irq(&mddev->write_lock);
411 wait_event_lock_irq(mddev->sb_wait,
412 !mddev->flush_bio,
413 mddev->write_lock);
414 mddev->flush_bio = bio;
415 spin_unlock_irq(&mddev->write_lock);
416
417 INIT_WORK(&mddev->flush_work, submit_flushes);
418 queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424 struct mddev *mddev = cb->data;
425 md_wakeup_thread(mddev->thread);
426 kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432 atomic_inc(&mddev->active);
433 return mddev;
434 }
435
436 static void mddev_delayed_delete(struct work_struct *ws);
437
438 static void mddev_put(struct mddev *mddev)
439 {
440 struct bio_set *bs = NULL;
441
442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443 return;
444 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445 mddev->ctime == 0 && !mddev->hold_active) {
446 /* Array is not configured at all, and not held active,
447 * so destroy it */
448 list_del_init(&mddev->all_mddevs);
449 bs = mddev->bio_set;
450 mddev->bio_set = NULL;
451 if (mddev->gendisk) {
452 /* We did a probe so need to clean up. Call
453 * queue_work inside the spinlock so that
454 * flush_workqueue() after mddev_find will
455 * succeed in waiting for the work to be done.
456 */
457 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458 queue_work(md_misc_wq, &mddev->del_work);
459 } else
460 kfree(mddev);
461 }
462 spin_unlock(&all_mddevs_lock);
463 if (bs)
464 bioset_free(bs);
465 }
466
467 void mddev_init(struct mddev *mddev)
468 {
469 mutex_init(&mddev->open_mutex);
470 mutex_init(&mddev->reconfig_mutex);
471 mutex_init(&mddev->bitmap_info.mutex);
472 INIT_LIST_HEAD(&mddev->disks);
473 INIT_LIST_HEAD(&mddev->all_mddevs);
474 init_timer(&mddev->safemode_timer);
475 atomic_set(&mddev->active, 1);
476 atomic_set(&mddev->openers, 0);
477 atomic_set(&mddev->active_io, 0);
478 spin_lock_init(&mddev->write_lock);
479 atomic_set(&mddev->flush_pending, 0);
480 init_waitqueue_head(&mddev->sb_wait);
481 init_waitqueue_head(&mddev->recovery_wait);
482 mddev->reshape_position = MaxSector;
483 mddev->reshape_backwards = 0;
484 mddev->last_sync_action = "none";
485 mddev->resync_min = 0;
486 mddev->resync_max = MaxSector;
487 mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490
491 static struct mddev * mddev_find(dev_t unit)
492 {
493 struct mddev *mddev, *new = NULL;
494
495 if (unit && MAJOR(unit) != MD_MAJOR)
496 unit &= ~((1<<MdpMinorShift)-1);
497
498 retry:
499 spin_lock(&all_mddevs_lock);
500
501 if (unit) {
502 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503 if (mddev->unit == unit) {
504 mddev_get(mddev);
505 spin_unlock(&all_mddevs_lock);
506 kfree(new);
507 return mddev;
508 }
509
510 if (new) {
511 list_add(&new->all_mddevs, &all_mddevs);
512 spin_unlock(&all_mddevs_lock);
513 new->hold_active = UNTIL_IOCTL;
514 return new;
515 }
516 } else if (new) {
517 /* find an unused unit number */
518 static int next_minor = 512;
519 int start = next_minor;
520 int is_free = 0;
521 int dev = 0;
522 while (!is_free) {
523 dev = MKDEV(MD_MAJOR, next_minor);
524 next_minor++;
525 if (next_minor > MINORMASK)
526 next_minor = 0;
527 if (next_minor == start) {
528 /* Oh dear, all in use. */
529 spin_unlock(&all_mddevs_lock);
530 kfree(new);
531 return NULL;
532 }
533
534 is_free = 1;
535 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 if (mddev->unit == dev) {
537 is_free = 0;
538 break;
539 }
540 }
541 new->unit = dev;
542 new->md_minor = MINOR(dev);
543 new->hold_active = UNTIL_STOP;
544 list_add(&new->all_mddevs, &all_mddevs);
545 spin_unlock(&all_mddevs_lock);
546 return new;
547 }
548 spin_unlock(&all_mddevs_lock);
549
550 new = kzalloc(sizeof(*new), GFP_KERNEL);
551 if (!new)
552 return NULL;
553
554 new->unit = unit;
555 if (MAJOR(unit) == MD_MAJOR)
556 new->md_minor = MINOR(unit);
557 else
558 new->md_minor = MINOR(unit) >> MdpMinorShift;
559
560 mddev_init(new);
561
562 goto retry;
563 }
564
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567 return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569
570 /* Sometimes we need to take the lock in a situation where
571 * failure due to interrupts is not acceptable.
572 */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575 mutex_lock(&mddev->reconfig_mutex);
576 }
577
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580 return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585 return mutex_trylock(&mddev->reconfig_mutex);
586 }
587
588 static struct attribute_group md_redundancy_group;
589
590 static void mddev_unlock(struct mddev * mddev)
591 {
592 if (mddev->to_remove) {
593 /* These cannot be removed under reconfig_mutex as
594 * an access to the files will try to take reconfig_mutex
595 * while holding the file unremovable, which leads to
596 * a deadlock.
597 * So hold set sysfs_active while the remove in happeing,
598 * and anything else which might set ->to_remove or my
599 * otherwise change the sysfs namespace will fail with
600 * -EBUSY if sysfs_active is still set.
601 * We set sysfs_active under reconfig_mutex and elsewhere
602 * test it under the same mutex to ensure its correct value
603 * is seen.
604 */
605 struct attribute_group *to_remove = mddev->to_remove;
606 mddev->to_remove = NULL;
607 mddev->sysfs_active = 1;
608 mutex_unlock(&mddev->reconfig_mutex);
609
610 if (mddev->kobj.sd) {
611 if (to_remove != &md_redundancy_group)
612 sysfs_remove_group(&mddev->kobj, to_remove);
613 if (mddev->pers == NULL ||
614 mddev->pers->sync_request == NULL) {
615 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616 if (mddev->sysfs_action)
617 sysfs_put(mddev->sysfs_action);
618 mddev->sysfs_action = NULL;
619 }
620 }
621 mddev->sysfs_active = 0;
622 } else
623 mutex_unlock(&mddev->reconfig_mutex);
624
625 /* As we've dropped the mutex we need a spinlock to
626 * make sure the thread doesn't disappear
627 */
628 spin_lock(&pers_lock);
629 md_wakeup_thread(mddev->thread);
630 spin_unlock(&pers_lock);
631 }
632
633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
634 {
635 struct md_rdev *rdev;
636
637 rdev_for_each(rdev, mddev)
638 if (rdev->desc_nr == nr)
639 return rdev;
640
641 return NULL;
642 }
643
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646 struct md_rdev *rdev;
647
648 rdev_for_each_rcu(rdev, mddev)
649 if (rdev->desc_nr == nr)
650 return rdev;
651
652 return NULL;
653 }
654
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 {
657 struct md_rdev *rdev;
658
659 rdev_for_each(rdev, mddev)
660 if (rdev->bdev->bd_dev == dev)
661 return rdev;
662
663 return NULL;
664 }
665
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 {
668 struct md_rdev *rdev;
669
670 rdev_for_each_rcu(rdev, mddev)
671 if (rdev->bdev->bd_dev == dev)
672 return rdev;
673
674 return NULL;
675 }
676
677 static struct md_personality *find_pers(int level, char *clevel)
678 {
679 struct md_personality *pers;
680 list_for_each_entry(pers, &pers_list, list) {
681 if (level != LEVEL_NONE && pers->level == level)
682 return pers;
683 if (strcmp(pers->name, clevel)==0)
684 return pers;
685 }
686 return NULL;
687 }
688
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 {
692 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693 return MD_NEW_SIZE_SECTORS(num_sectors);
694 }
695
696 static int alloc_disk_sb(struct md_rdev * rdev)
697 {
698 if (rdev->sb_page)
699 MD_BUG();
700
701 rdev->sb_page = alloc_page(GFP_KERNEL);
702 if (!rdev->sb_page) {
703 printk(KERN_ALERT "md: out of memory.\n");
704 return -ENOMEM;
705 }
706
707 return 0;
708 }
709
710 void md_rdev_clear(struct md_rdev *rdev)
711 {
712 if (rdev->sb_page) {
713 put_page(rdev->sb_page);
714 rdev->sb_loaded = 0;
715 rdev->sb_page = NULL;
716 rdev->sb_start = 0;
717 rdev->sectors = 0;
718 }
719 if (rdev->bb_page) {
720 put_page(rdev->bb_page);
721 rdev->bb_page = NULL;
722 }
723 kfree(rdev->badblocks.page);
724 rdev->badblocks.page = NULL;
725 }
726 EXPORT_SYMBOL_GPL(md_rdev_clear);
727
728 static void super_written(struct bio *bio, int error)
729 {
730 struct md_rdev *rdev = bio->bi_private;
731 struct mddev *mddev = rdev->mddev;
732
733 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
734 printk("md: super_written gets error=%d, uptodate=%d\n",
735 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
736 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
737 md_error(mddev, rdev);
738 }
739
740 if (atomic_dec_and_test(&mddev->pending_writes))
741 wake_up(&mddev->sb_wait);
742 bio_put(bio);
743 }
744
745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
746 sector_t sector, int size, struct page *page)
747 {
748 /* write first size bytes of page to sector of rdev
749 * Increment mddev->pending_writes before returning
750 * and decrement it on completion, waking up sb_wait
751 * if zero is reached.
752 * If an error occurred, call md_error
753 */
754 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
755
756 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
757 bio->bi_iter.bi_sector = sector;
758 bio_add_page(bio, page, size, 0);
759 bio->bi_private = rdev;
760 bio->bi_end_io = super_written;
761
762 atomic_inc(&mddev->pending_writes);
763 submit_bio(WRITE_FLUSH_FUA, bio);
764 }
765
766 void md_super_wait(struct mddev *mddev)
767 {
768 /* wait for all superblock writes that were scheduled to complete */
769 DEFINE_WAIT(wq);
770 for(;;) {
771 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
772 if (atomic_read(&mddev->pending_writes)==0)
773 break;
774 schedule();
775 }
776 finish_wait(&mddev->sb_wait, &wq);
777 }
778
779 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
780 struct page *page, int rw, bool metadata_op)
781 {
782 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
783 int ret;
784
785 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
786 rdev->meta_bdev : rdev->bdev;
787 if (metadata_op)
788 bio->bi_iter.bi_sector = sector + rdev->sb_start;
789 else if (rdev->mddev->reshape_position != MaxSector &&
790 (rdev->mddev->reshape_backwards ==
791 (sector >= rdev->mddev->reshape_position)))
792 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
793 else
794 bio->bi_iter.bi_sector = sector + rdev->data_offset;
795 bio_add_page(bio, page, size, 0);
796 submit_bio_wait(rw, bio);
797
798 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
799 bio_put(bio);
800 return ret;
801 }
802 EXPORT_SYMBOL_GPL(sync_page_io);
803
804 static int read_disk_sb(struct md_rdev * rdev, int size)
805 {
806 char b[BDEVNAME_SIZE];
807 if (!rdev->sb_page) {
808 MD_BUG();
809 return -EINVAL;
810 }
811 if (rdev->sb_loaded)
812 return 0;
813
814
815 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
816 goto fail;
817 rdev->sb_loaded = 1;
818 return 0;
819
820 fail:
821 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
822 bdevname(rdev->bdev,b));
823 return -EINVAL;
824 }
825
826 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828 return sb1->set_uuid0 == sb2->set_uuid0 &&
829 sb1->set_uuid1 == sb2->set_uuid1 &&
830 sb1->set_uuid2 == sb2->set_uuid2 &&
831 sb1->set_uuid3 == sb2->set_uuid3;
832 }
833
834 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
835 {
836 int ret;
837 mdp_super_t *tmp1, *tmp2;
838
839 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
840 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
841
842 if (!tmp1 || !tmp2) {
843 ret = 0;
844 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
845 goto abort;
846 }
847
848 *tmp1 = *sb1;
849 *tmp2 = *sb2;
850
851 /*
852 * nr_disks is not constant
853 */
854 tmp1->nr_disks = 0;
855 tmp2->nr_disks = 0;
856
857 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
858 abort:
859 kfree(tmp1);
860 kfree(tmp2);
861 return ret;
862 }
863
864
865 static u32 md_csum_fold(u32 csum)
866 {
867 csum = (csum & 0xffff) + (csum >> 16);
868 return (csum & 0xffff) + (csum >> 16);
869 }
870
871 static unsigned int calc_sb_csum(mdp_super_t * sb)
872 {
873 u64 newcsum = 0;
874 u32 *sb32 = (u32*)sb;
875 int i;
876 unsigned int disk_csum, csum;
877
878 disk_csum = sb->sb_csum;
879 sb->sb_csum = 0;
880
881 for (i = 0; i < MD_SB_BYTES/4 ; i++)
882 newcsum += sb32[i];
883 csum = (newcsum & 0xffffffff) + (newcsum>>32);
884
885
886 #ifdef CONFIG_ALPHA
887 /* This used to use csum_partial, which was wrong for several
888 * reasons including that different results are returned on
889 * different architectures. It isn't critical that we get exactly
890 * the same return value as before (we always csum_fold before
891 * testing, and that removes any differences). However as we
892 * know that csum_partial always returned a 16bit value on
893 * alphas, do a fold to maximise conformity to previous behaviour.
894 */
895 sb->sb_csum = md_csum_fold(disk_csum);
896 #else
897 sb->sb_csum = disk_csum;
898 #endif
899 return csum;
900 }
901
902
903 /*
904 * Handle superblock details.
905 * We want to be able to handle multiple superblock formats
906 * so we have a common interface to them all, and an array of
907 * different handlers.
908 * We rely on user-space to write the initial superblock, and support
909 * reading and updating of superblocks.
910 * Interface methods are:
911 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
912 * loads and validates a superblock on dev.
913 * if refdev != NULL, compare superblocks on both devices
914 * Return:
915 * 0 - dev has a superblock that is compatible with refdev
916 * 1 - dev has a superblock that is compatible and newer than refdev
917 * so dev should be used as the refdev in future
918 * -EINVAL superblock incompatible or invalid
919 * -othererror e.g. -EIO
920 *
921 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
922 * Verify that dev is acceptable into mddev.
923 * The first time, mddev->raid_disks will be 0, and data from
924 * dev should be merged in. Subsequent calls check that dev
925 * is new enough. Return 0 or -EINVAL
926 *
927 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
928 * Update the superblock for rdev with data in mddev
929 * This does not write to disc.
930 *
931 */
932
933 struct super_type {
934 char *name;
935 struct module *owner;
936 int (*load_super)(struct md_rdev *rdev,
937 struct md_rdev *refdev,
938 int minor_version);
939 int (*validate_super)(struct mddev *mddev,
940 struct md_rdev *rdev);
941 void (*sync_super)(struct mddev *mddev,
942 struct md_rdev *rdev);
943 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
944 sector_t num_sectors);
945 int (*allow_new_offset)(struct md_rdev *rdev,
946 unsigned long long new_offset);
947 };
948
949 /*
950 * Check that the given mddev has no bitmap.
951 *
952 * This function is called from the run method of all personalities that do not
953 * support bitmaps. It prints an error message and returns non-zero if mddev
954 * has a bitmap. Otherwise, it returns 0.
955 *
956 */
957 int md_check_no_bitmap(struct mddev *mddev)
958 {
959 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
960 return 0;
961 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
962 mdname(mddev), mddev->pers->name);
963 return 1;
964 }
965 EXPORT_SYMBOL(md_check_no_bitmap);
966
967 /*
968 * load_super for 0.90.0
969 */
970 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
971 {
972 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
973 mdp_super_t *sb;
974 int ret;
975
976 /*
977 * Calculate the position of the superblock (512byte sectors),
978 * it's at the end of the disk.
979 *
980 * It also happens to be a multiple of 4Kb.
981 */
982 rdev->sb_start = calc_dev_sboffset(rdev);
983
984 ret = read_disk_sb(rdev, MD_SB_BYTES);
985 if (ret) return ret;
986
987 ret = -EINVAL;
988
989 bdevname(rdev->bdev, b);
990 sb = page_address(rdev->sb_page);
991
992 if (sb->md_magic != MD_SB_MAGIC) {
993 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
994 b);
995 goto abort;
996 }
997
998 if (sb->major_version != 0 ||
999 sb->minor_version < 90 ||
1000 sb->minor_version > 91) {
1001 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1002 sb->major_version, sb->minor_version,
1003 b);
1004 goto abort;
1005 }
1006
1007 if (sb->raid_disks <= 0)
1008 goto abort;
1009
1010 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1011 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1012 b);
1013 goto abort;
1014 }
1015
1016 rdev->preferred_minor = sb->md_minor;
1017 rdev->data_offset = 0;
1018 rdev->new_data_offset = 0;
1019 rdev->sb_size = MD_SB_BYTES;
1020 rdev->badblocks.shift = -1;
1021
1022 if (sb->level == LEVEL_MULTIPATH)
1023 rdev->desc_nr = -1;
1024 else
1025 rdev->desc_nr = sb->this_disk.number;
1026
1027 if (!refdev) {
1028 ret = 1;
1029 } else {
1030 __u64 ev1, ev2;
1031 mdp_super_t *refsb = page_address(refdev->sb_page);
1032 if (!uuid_equal(refsb, sb)) {
1033 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1034 b, bdevname(refdev->bdev,b2));
1035 goto abort;
1036 }
1037 if (!sb_equal(refsb, sb)) {
1038 printk(KERN_WARNING "md: %s has same UUID"
1039 " but different superblock to %s\n",
1040 b, bdevname(refdev->bdev, b2));
1041 goto abort;
1042 }
1043 ev1 = md_event(sb);
1044 ev2 = md_event(refsb);
1045 if (ev1 > ev2)
1046 ret = 1;
1047 else
1048 ret = 0;
1049 }
1050 rdev->sectors = rdev->sb_start;
1051 /* Limit to 4TB as metadata cannot record more than that.
1052 * (not needed for Linear and RAID0 as metadata doesn't
1053 * record this size)
1054 */
1055 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1056 rdev->sectors = (2ULL << 32) - 2;
1057
1058 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1059 /* "this cannot possibly happen" ... */
1060 ret = -EINVAL;
1061
1062 abort:
1063 return ret;
1064 }
1065
1066 /*
1067 * validate_super for 0.90.0
1068 */
1069 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1070 {
1071 mdp_disk_t *desc;
1072 mdp_super_t *sb = page_address(rdev->sb_page);
1073 __u64 ev1 = md_event(sb);
1074
1075 rdev->raid_disk = -1;
1076 clear_bit(Faulty, &rdev->flags);
1077 clear_bit(In_sync, &rdev->flags);
1078 clear_bit(Bitmap_sync, &rdev->flags);
1079 clear_bit(WriteMostly, &rdev->flags);
1080
1081 if (mddev->raid_disks == 0) {
1082 mddev->major_version = 0;
1083 mddev->minor_version = sb->minor_version;
1084 mddev->patch_version = sb->patch_version;
1085 mddev->external = 0;
1086 mddev->chunk_sectors = sb->chunk_size >> 9;
1087 mddev->ctime = sb->ctime;
1088 mddev->utime = sb->utime;
1089 mddev->level = sb->level;
1090 mddev->clevel[0] = 0;
1091 mddev->layout = sb->layout;
1092 mddev->raid_disks = sb->raid_disks;
1093 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1094 mddev->events = ev1;
1095 mddev->bitmap_info.offset = 0;
1096 mddev->bitmap_info.space = 0;
1097 /* bitmap can use 60 K after the 4K superblocks */
1098 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1099 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1100 mddev->reshape_backwards = 0;
1101
1102 if (mddev->minor_version >= 91) {
1103 mddev->reshape_position = sb->reshape_position;
1104 mddev->delta_disks = sb->delta_disks;
1105 mddev->new_level = sb->new_level;
1106 mddev->new_layout = sb->new_layout;
1107 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1108 if (mddev->delta_disks < 0)
1109 mddev->reshape_backwards = 1;
1110 } else {
1111 mddev->reshape_position = MaxSector;
1112 mddev->delta_disks = 0;
1113 mddev->new_level = mddev->level;
1114 mddev->new_layout = mddev->layout;
1115 mddev->new_chunk_sectors = mddev->chunk_sectors;
1116 }
1117
1118 if (sb->state & (1<<MD_SB_CLEAN))
1119 mddev->recovery_cp = MaxSector;
1120 else {
1121 if (sb->events_hi == sb->cp_events_hi &&
1122 sb->events_lo == sb->cp_events_lo) {
1123 mddev->recovery_cp = sb->recovery_cp;
1124 } else
1125 mddev->recovery_cp = 0;
1126 }
1127
1128 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1129 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1130 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1131 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1132
1133 mddev->max_disks = MD_SB_DISKS;
1134
1135 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1136 mddev->bitmap_info.file == NULL) {
1137 mddev->bitmap_info.offset =
1138 mddev->bitmap_info.default_offset;
1139 mddev->bitmap_info.space =
1140 mddev->bitmap_info.default_space;
1141 }
1142
1143 } else if (mddev->pers == NULL) {
1144 /* Insist on good event counter while assembling, except
1145 * for spares (which don't need an event count) */
1146 ++ev1;
1147 if (sb->disks[rdev->desc_nr].state & (
1148 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1149 if (ev1 < mddev->events)
1150 return -EINVAL;
1151 } else if (mddev->bitmap) {
1152 /* if adding to array with a bitmap, then we can accept an
1153 * older device ... but not too old.
1154 */
1155 if (ev1 < mddev->bitmap->events_cleared)
1156 return 0;
1157 if (ev1 < mddev->events)
1158 set_bit(Bitmap_sync, &rdev->flags);
1159 } else {
1160 if (ev1 < mddev->events)
1161 /* just a hot-add of a new device, leave raid_disk at -1 */
1162 return 0;
1163 }
1164
1165 if (mddev->level != LEVEL_MULTIPATH) {
1166 desc = sb->disks + rdev->desc_nr;
1167
1168 if (desc->state & (1<<MD_DISK_FAULTY))
1169 set_bit(Faulty, &rdev->flags);
1170 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1171 desc->raid_disk < mddev->raid_disks */) {
1172 set_bit(In_sync, &rdev->flags);
1173 rdev->raid_disk = desc->raid_disk;
1174 rdev->saved_raid_disk = desc->raid_disk;
1175 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1176 /* active but not in sync implies recovery up to
1177 * reshape position. We don't know exactly where
1178 * that is, so set to zero for now */
1179 if (mddev->minor_version >= 91) {
1180 rdev->recovery_offset = 0;
1181 rdev->raid_disk = desc->raid_disk;
1182 }
1183 }
1184 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1185 set_bit(WriteMostly, &rdev->flags);
1186 } else /* MULTIPATH are always insync */
1187 set_bit(In_sync, &rdev->flags);
1188 return 0;
1189 }
1190
1191 /*
1192 * sync_super for 0.90.0
1193 */
1194 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1195 {
1196 mdp_super_t *sb;
1197 struct md_rdev *rdev2;
1198 int next_spare = mddev->raid_disks;
1199
1200
1201 /* make rdev->sb match mddev data..
1202 *
1203 * 1/ zero out disks
1204 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1205 * 3/ any empty disks < next_spare become removed
1206 *
1207 * disks[0] gets initialised to REMOVED because
1208 * we cannot be sure from other fields if it has
1209 * been initialised or not.
1210 */
1211 int i;
1212 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1213
1214 rdev->sb_size = MD_SB_BYTES;
1215
1216 sb = page_address(rdev->sb_page);
1217
1218 memset(sb, 0, sizeof(*sb));
1219
1220 sb->md_magic = MD_SB_MAGIC;
1221 sb->major_version = mddev->major_version;
1222 sb->patch_version = mddev->patch_version;
1223 sb->gvalid_words = 0; /* ignored */
1224 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1225 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1226 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1227 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1228
1229 sb->ctime = mddev->ctime;
1230 sb->level = mddev->level;
1231 sb->size = mddev->dev_sectors / 2;
1232 sb->raid_disks = mddev->raid_disks;
1233 sb->md_minor = mddev->md_minor;
1234 sb->not_persistent = 0;
1235 sb->utime = mddev->utime;
1236 sb->state = 0;
1237 sb->events_hi = (mddev->events>>32);
1238 sb->events_lo = (u32)mddev->events;
1239
1240 if (mddev->reshape_position == MaxSector)
1241 sb->minor_version = 90;
1242 else {
1243 sb->minor_version = 91;
1244 sb->reshape_position = mddev->reshape_position;
1245 sb->new_level = mddev->new_level;
1246 sb->delta_disks = mddev->delta_disks;
1247 sb->new_layout = mddev->new_layout;
1248 sb->new_chunk = mddev->new_chunk_sectors << 9;
1249 }
1250 mddev->minor_version = sb->minor_version;
1251 if (mddev->in_sync)
1252 {
1253 sb->recovery_cp = mddev->recovery_cp;
1254 sb->cp_events_hi = (mddev->events>>32);
1255 sb->cp_events_lo = (u32)mddev->events;
1256 if (mddev->recovery_cp == MaxSector)
1257 sb->state = (1<< MD_SB_CLEAN);
1258 } else
1259 sb->recovery_cp = 0;
1260
1261 sb->layout = mddev->layout;
1262 sb->chunk_size = mddev->chunk_sectors << 9;
1263
1264 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1265 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1266
1267 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1268 rdev_for_each(rdev2, mddev) {
1269 mdp_disk_t *d;
1270 int desc_nr;
1271 int is_active = test_bit(In_sync, &rdev2->flags);
1272
1273 if (rdev2->raid_disk >= 0 &&
1274 sb->minor_version >= 91)
1275 /* we have nowhere to store the recovery_offset,
1276 * but if it is not below the reshape_position,
1277 * we can piggy-back on that.
1278 */
1279 is_active = 1;
1280 if (rdev2->raid_disk < 0 ||
1281 test_bit(Faulty, &rdev2->flags))
1282 is_active = 0;
1283 if (is_active)
1284 desc_nr = rdev2->raid_disk;
1285 else
1286 desc_nr = next_spare++;
1287 rdev2->desc_nr = desc_nr;
1288 d = &sb->disks[rdev2->desc_nr];
1289 nr_disks++;
1290 d->number = rdev2->desc_nr;
1291 d->major = MAJOR(rdev2->bdev->bd_dev);
1292 d->minor = MINOR(rdev2->bdev->bd_dev);
1293 if (is_active)
1294 d->raid_disk = rdev2->raid_disk;
1295 else
1296 d->raid_disk = rdev2->desc_nr; /* compatibility */
1297 if (test_bit(Faulty, &rdev2->flags))
1298 d->state = (1<<MD_DISK_FAULTY);
1299 else if (is_active) {
1300 d->state = (1<<MD_DISK_ACTIVE);
1301 if (test_bit(In_sync, &rdev2->flags))
1302 d->state |= (1<<MD_DISK_SYNC);
1303 active++;
1304 working++;
1305 } else {
1306 d->state = 0;
1307 spare++;
1308 working++;
1309 }
1310 if (test_bit(WriteMostly, &rdev2->flags))
1311 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1312 }
1313 /* now set the "removed" and "faulty" bits on any missing devices */
1314 for (i=0 ; i < mddev->raid_disks ; i++) {
1315 mdp_disk_t *d = &sb->disks[i];
1316 if (d->state == 0 && d->number == 0) {
1317 d->number = i;
1318 d->raid_disk = i;
1319 d->state = (1<<MD_DISK_REMOVED);
1320 d->state |= (1<<MD_DISK_FAULTY);
1321 failed++;
1322 }
1323 }
1324 sb->nr_disks = nr_disks;
1325 sb->active_disks = active;
1326 sb->working_disks = working;
1327 sb->failed_disks = failed;
1328 sb->spare_disks = spare;
1329
1330 sb->this_disk = sb->disks[rdev->desc_nr];
1331 sb->sb_csum = calc_sb_csum(sb);
1332 }
1333
1334 /*
1335 * rdev_size_change for 0.90.0
1336 */
1337 static unsigned long long
1338 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1339 {
1340 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1341 return 0; /* component must fit device */
1342 if (rdev->mddev->bitmap_info.offset)
1343 return 0; /* can't move bitmap */
1344 rdev->sb_start = calc_dev_sboffset(rdev);
1345 if (!num_sectors || num_sectors > rdev->sb_start)
1346 num_sectors = rdev->sb_start;
1347 /* Limit to 4TB as metadata cannot record more than that.
1348 * 4TB == 2^32 KB, or 2*2^32 sectors.
1349 */
1350 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1351 num_sectors = (2ULL << 32) - 2;
1352 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1353 rdev->sb_page);
1354 md_super_wait(rdev->mddev);
1355 return num_sectors;
1356 }
1357
1358 static int
1359 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1360 {
1361 /* non-zero offset changes not possible with v0.90 */
1362 return new_offset == 0;
1363 }
1364
1365 /*
1366 * version 1 superblock
1367 */
1368
1369 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1370 {
1371 __le32 disk_csum;
1372 u32 csum;
1373 unsigned long long newcsum;
1374 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1375 __le32 *isuper = (__le32*)sb;
1376
1377 disk_csum = sb->sb_csum;
1378 sb->sb_csum = 0;
1379 newcsum = 0;
1380 for (; size >= 4; size -= 4)
1381 newcsum += le32_to_cpu(*isuper++);
1382
1383 if (size == 2)
1384 newcsum += le16_to_cpu(*(__le16*) isuper);
1385
1386 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1387 sb->sb_csum = disk_csum;
1388 return cpu_to_le32(csum);
1389 }
1390
1391 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1392 int acknowledged);
1393 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1394 {
1395 struct mdp_superblock_1 *sb;
1396 int ret;
1397 sector_t sb_start;
1398 sector_t sectors;
1399 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1400 int bmask;
1401
1402 /*
1403 * Calculate the position of the superblock in 512byte sectors.
1404 * It is always aligned to a 4K boundary and
1405 * depeding on minor_version, it can be:
1406 * 0: At least 8K, but less than 12K, from end of device
1407 * 1: At start of device
1408 * 2: 4K from start of device.
1409 */
1410 switch(minor_version) {
1411 case 0:
1412 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1413 sb_start -= 8*2;
1414 sb_start &= ~(sector_t)(4*2-1);
1415 break;
1416 case 1:
1417 sb_start = 0;
1418 break;
1419 case 2:
1420 sb_start = 8;
1421 break;
1422 default:
1423 return -EINVAL;
1424 }
1425 rdev->sb_start = sb_start;
1426
1427 /* superblock is rarely larger than 1K, but it can be larger,
1428 * and it is safe to read 4k, so we do that
1429 */
1430 ret = read_disk_sb(rdev, 4096);
1431 if (ret) return ret;
1432
1433
1434 sb = page_address(rdev->sb_page);
1435
1436 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1437 sb->major_version != cpu_to_le32(1) ||
1438 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1439 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1440 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1441 return -EINVAL;
1442
1443 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1444 printk("md: invalid superblock checksum on %s\n",
1445 bdevname(rdev->bdev,b));
1446 return -EINVAL;
1447 }
1448 if (le64_to_cpu(sb->data_size) < 10) {
1449 printk("md: data_size too small on %s\n",
1450 bdevname(rdev->bdev,b));
1451 return -EINVAL;
1452 }
1453 if (sb->pad0 ||
1454 sb->pad3[0] ||
1455 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1456 /* Some padding is non-zero, might be a new feature */
1457 return -EINVAL;
1458
1459 rdev->preferred_minor = 0xffff;
1460 rdev->data_offset = le64_to_cpu(sb->data_offset);
1461 rdev->new_data_offset = rdev->data_offset;
1462 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1463 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1464 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1465 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1466
1467 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1468 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1469 if (rdev->sb_size & bmask)
1470 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1471
1472 if (minor_version
1473 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1474 return -EINVAL;
1475 if (minor_version
1476 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1477 return -EINVAL;
1478
1479 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1480 rdev->desc_nr = -1;
1481 else
1482 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1483
1484 if (!rdev->bb_page) {
1485 rdev->bb_page = alloc_page(GFP_KERNEL);
1486 if (!rdev->bb_page)
1487 return -ENOMEM;
1488 }
1489 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1490 rdev->badblocks.count == 0) {
1491 /* need to load the bad block list.
1492 * Currently we limit it to one page.
1493 */
1494 s32 offset;
1495 sector_t bb_sector;
1496 u64 *bbp;
1497 int i;
1498 int sectors = le16_to_cpu(sb->bblog_size);
1499 if (sectors > (PAGE_SIZE / 512))
1500 return -EINVAL;
1501 offset = le32_to_cpu(sb->bblog_offset);
1502 if (offset == 0)
1503 return -EINVAL;
1504 bb_sector = (long long)offset;
1505 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1506 rdev->bb_page, READ, true))
1507 return -EIO;
1508 bbp = (u64 *)page_address(rdev->bb_page);
1509 rdev->badblocks.shift = sb->bblog_shift;
1510 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1511 u64 bb = le64_to_cpu(*bbp);
1512 int count = bb & (0x3ff);
1513 u64 sector = bb >> 10;
1514 sector <<= sb->bblog_shift;
1515 count <<= sb->bblog_shift;
1516 if (bb + 1 == 0)
1517 break;
1518 if (md_set_badblocks(&rdev->badblocks,
1519 sector, count, 1) == 0)
1520 return -EINVAL;
1521 }
1522 } else if (sb->bblog_offset != 0)
1523 rdev->badblocks.shift = 0;
1524
1525 if (!refdev) {
1526 ret = 1;
1527 } else {
1528 __u64 ev1, ev2;
1529 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1530
1531 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1532 sb->level != refsb->level ||
1533 sb->layout != refsb->layout ||
1534 sb->chunksize != refsb->chunksize) {
1535 printk(KERN_WARNING "md: %s has strangely different"
1536 " superblock to %s\n",
1537 bdevname(rdev->bdev,b),
1538 bdevname(refdev->bdev,b2));
1539 return -EINVAL;
1540 }
1541 ev1 = le64_to_cpu(sb->events);
1542 ev2 = le64_to_cpu(refsb->events);
1543
1544 if (ev1 > ev2)
1545 ret = 1;
1546 else
1547 ret = 0;
1548 }
1549 if (minor_version) {
1550 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1551 sectors -= rdev->data_offset;
1552 } else
1553 sectors = rdev->sb_start;
1554 if (sectors < le64_to_cpu(sb->data_size))
1555 return -EINVAL;
1556 rdev->sectors = le64_to_cpu(sb->data_size);
1557 return ret;
1558 }
1559
1560 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1561 {
1562 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1563 __u64 ev1 = le64_to_cpu(sb->events);
1564
1565 rdev->raid_disk = -1;
1566 clear_bit(Faulty, &rdev->flags);
1567 clear_bit(In_sync, &rdev->flags);
1568 clear_bit(Bitmap_sync, &rdev->flags);
1569 clear_bit(WriteMostly, &rdev->flags);
1570
1571 if (mddev->raid_disks == 0) {
1572 mddev->major_version = 1;
1573 mddev->patch_version = 0;
1574 mddev->external = 0;
1575 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1576 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1577 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1578 mddev->level = le32_to_cpu(sb->level);
1579 mddev->clevel[0] = 0;
1580 mddev->layout = le32_to_cpu(sb->layout);
1581 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1582 mddev->dev_sectors = le64_to_cpu(sb->size);
1583 mddev->events = ev1;
1584 mddev->bitmap_info.offset = 0;
1585 mddev->bitmap_info.space = 0;
1586 /* Default location for bitmap is 1K after superblock
1587 * using 3K - total of 4K
1588 */
1589 mddev->bitmap_info.default_offset = 1024 >> 9;
1590 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1591 mddev->reshape_backwards = 0;
1592
1593 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1594 memcpy(mddev->uuid, sb->set_uuid, 16);
1595
1596 mddev->max_disks = (4096-256)/2;
1597
1598 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1599 mddev->bitmap_info.file == NULL) {
1600 mddev->bitmap_info.offset =
1601 (__s32)le32_to_cpu(sb->bitmap_offset);
1602 /* Metadata doesn't record how much space is available.
1603 * For 1.0, we assume we can use up to the superblock
1604 * if before, else to 4K beyond superblock.
1605 * For others, assume no change is possible.
1606 */
1607 if (mddev->minor_version > 0)
1608 mddev->bitmap_info.space = 0;
1609 else if (mddev->bitmap_info.offset > 0)
1610 mddev->bitmap_info.space =
1611 8 - mddev->bitmap_info.offset;
1612 else
1613 mddev->bitmap_info.space =
1614 -mddev->bitmap_info.offset;
1615 }
1616
1617 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1618 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1619 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1620 mddev->new_level = le32_to_cpu(sb->new_level);
1621 mddev->new_layout = le32_to_cpu(sb->new_layout);
1622 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1623 if (mddev->delta_disks < 0 ||
1624 (mddev->delta_disks == 0 &&
1625 (le32_to_cpu(sb->feature_map)
1626 & MD_FEATURE_RESHAPE_BACKWARDS)))
1627 mddev->reshape_backwards = 1;
1628 } else {
1629 mddev->reshape_position = MaxSector;
1630 mddev->delta_disks = 0;
1631 mddev->new_level = mddev->level;
1632 mddev->new_layout = mddev->layout;
1633 mddev->new_chunk_sectors = mddev->chunk_sectors;
1634 }
1635
1636 } else if (mddev->pers == NULL) {
1637 /* Insist of good event counter while assembling, except for
1638 * spares (which don't need an event count) */
1639 ++ev1;
1640 if (rdev->desc_nr >= 0 &&
1641 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1642 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1643 if (ev1 < mddev->events)
1644 return -EINVAL;
1645 } else if (mddev->bitmap) {
1646 /* If adding to array with a bitmap, then we can accept an
1647 * older device, but not too old.
1648 */
1649 if (ev1 < mddev->bitmap->events_cleared)
1650 return 0;
1651 if (ev1 < mddev->events)
1652 set_bit(Bitmap_sync, &rdev->flags);
1653 } else {
1654 if (ev1 < mddev->events)
1655 /* just a hot-add of a new device, leave raid_disk at -1 */
1656 return 0;
1657 }
1658 if (mddev->level != LEVEL_MULTIPATH) {
1659 int role;
1660 if (rdev->desc_nr < 0 ||
1661 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1662 role = 0xffff;
1663 rdev->desc_nr = -1;
1664 } else
1665 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1666 switch(role) {
1667 case 0xffff: /* spare */
1668 break;
1669 case 0xfffe: /* faulty */
1670 set_bit(Faulty, &rdev->flags);
1671 break;
1672 default:
1673 rdev->saved_raid_disk = role;
1674 if ((le32_to_cpu(sb->feature_map) &
1675 MD_FEATURE_RECOVERY_OFFSET)) {
1676 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1677 if (!(le32_to_cpu(sb->feature_map) &
1678 MD_FEATURE_RECOVERY_BITMAP))
1679 rdev->saved_raid_disk = -1;
1680 } else
1681 set_bit(In_sync, &rdev->flags);
1682 rdev->raid_disk = role;
1683 break;
1684 }
1685 if (sb->devflags & WriteMostly1)
1686 set_bit(WriteMostly, &rdev->flags);
1687 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1688 set_bit(Replacement, &rdev->flags);
1689 } else /* MULTIPATH are always insync */
1690 set_bit(In_sync, &rdev->flags);
1691
1692 return 0;
1693 }
1694
1695 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1696 {
1697 struct mdp_superblock_1 *sb;
1698 struct md_rdev *rdev2;
1699 int max_dev, i;
1700 /* make rdev->sb match mddev and rdev data. */
1701
1702 sb = page_address(rdev->sb_page);
1703
1704 sb->feature_map = 0;
1705 sb->pad0 = 0;
1706 sb->recovery_offset = cpu_to_le64(0);
1707 memset(sb->pad3, 0, sizeof(sb->pad3));
1708
1709 sb->utime = cpu_to_le64((__u64)mddev->utime);
1710 sb->events = cpu_to_le64(mddev->events);
1711 if (mddev->in_sync)
1712 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1713 else
1714 sb->resync_offset = cpu_to_le64(0);
1715
1716 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1717
1718 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1719 sb->size = cpu_to_le64(mddev->dev_sectors);
1720 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1721 sb->level = cpu_to_le32(mddev->level);
1722 sb->layout = cpu_to_le32(mddev->layout);
1723
1724 if (test_bit(WriteMostly, &rdev->flags))
1725 sb->devflags |= WriteMostly1;
1726 else
1727 sb->devflags &= ~WriteMostly1;
1728 sb->data_offset = cpu_to_le64(rdev->data_offset);
1729 sb->data_size = cpu_to_le64(rdev->sectors);
1730
1731 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1732 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1733 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1734 }
1735
1736 if (rdev->raid_disk >= 0 &&
1737 !test_bit(In_sync, &rdev->flags)) {
1738 sb->feature_map |=
1739 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1740 sb->recovery_offset =
1741 cpu_to_le64(rdev->recovery_offset);
1742 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1743 sb->feature_map |=
1744 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1745 }
1746 if (test_bit(Replacement, &rdev->flags))
1747 sb->feature_map |=
1748 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1749
1750 if (mddev->reshape_position != MaxSector) {
1751 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1752 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1753 sb->new_layout = cpu_to_le32(mddev->new_layout);
1754 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1755 sb->new_level = cpu_to_le32(mddev->new_level);
1756 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1757 if (mddev->delta_disks == 0 &&
1758 mddev->reshape_backwards)
1759 sb->feature_map
1760 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1761 if (rdev->new_data_offset != rdev->data_offset) {
1762 sb->feature_map
1763 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1764 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1765 - rdev->data_offset));
1766 }
1767 }
1768
1769 if (rdev->badblocks.count == 0)
1770 /* Nothing to do for bad blocks*/ ;
1771 else if (sb->bblog_offset == 0)
1772 /* Cannot record bad blocks on this device */
1773 md_error(mddev, rdev);
1774 else {
1775 struct badblocks *bb = &rdev->badblocks;
1776 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1777 u64 *p = bb->page;
1778 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1779 if (bb->changed) {
1780 unsigned seq;
1781
1782 retry:
1783 seq = read_seqbegin(&bb->lock);
1784
1785 memset(bbp, 0xff, PAGE_SIZE);
1786
1787 for (i = 0 ; i < bb->count ; i++) {
1788 u64 internal_bb = p[i];
1789 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1790 | BB_LEN(internal_bb));
1791 bbp[i] = cpu_to_le64(store_bb);
1792 }
1793 bb->changed = 0;
1794 if (read_seqretry(&bb->lock, seq))
1795 goto retry;
1796
1797 bb->sector = (rdev->sb_start +
1798 (int)le32_to_cpu(sb->bblog_offset));
1799 bb->size = le16_to_cpu(sb->bblog_size);
1800 }
1801 }
1802
1803 max_dev = 0;
1804 rdev_for_each(rdev2, mddev)
1805 if (rdev2->desc_nr+1 > max_dev)
1806 max_dev = rdev2->desc_nr+1;
1807
1808 if (max_dev > le32_to_cpu(sb->max_dev)) {
1809 int bmask;
1810 sb->max_dev = cpu_to_le32(max_dev);
1811 rdev->sb_size = max_dev * 2 + 256;
1812 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1813 if (rdev->sb_size & bmask)
1814 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1815 } else
1816 max_dev = le32_to_cpu(sb->max_dev);
1817
1818 for (i=0; i<max_dev;i++)
1819 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1820
1821 rdev_for_each(rdev2, mddev) {
1822 i = rdev2->desc_nr;
1823 if (test_bit(Faulty, &rdev2->flags))
1824 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1825 else if (test_bit(In_sync, &rdev2->flags))
1826 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1827 else if (rdev2->raid_disk >= 0)
1828 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1829 else
1830 sb->dev_roles[i] = cpu_to_le16(0xffff);
1831 }
1832
1833 sb->sb_csum = calc_sb_1_csum(sb);
1834 }
1835
1836 static unsigned long long
1837 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1838 {
1839 struct mdp_superblock_1 *sb;
1840 sector_t max_sectors;
1841 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1842 return 0; /* component must fit device */
1843 if (rdev->data_offset != rdev->new_data_offset)
1844 return 0; /* too confusing */
1845 if (rdev->sb_start < rdev->data_offset) {
1846 /* minor versions 1 and 2; superblock before data */
1847 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1848 max_sectors -= rdev->data_offset;
1849 if (!num_sectors || num_sectors > max_sectors)
1850 num_sectors = max_sectors;
1851 } else if (rdev->mddev->bitmap_info.offset) {
1852 /* minor version 0 with bitmap we can't move */
1853 return 0;
1854 } else {
1855 /* minor version 0; superblock after data */
1856 sector_t sb_start;
1857 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1858 sb_start &= ~(sector_t)(4*2 - 1);
1859 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1860 if (!num_sectors || num_sectors > max_sectors)
1861 num_sectors = max_sectors;
1862 rdev->sb_start = sb_start;
1863 }
1864 sb = page_address(rdev->sb_page);
1865 sb->data_size = cpu_to_le64(num_sectors);
1866 sb->super_offset = rdev->sb_start;
1867 sb->sb_csum = calc_sb_1_csum(sb);
1868 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1869 rdev->sb_page);
1870 md_super_wait(rdev->mddev);
1871 return num_sectors;
1872
1873 }
1874
1875 static int
1876 super_1_allow_new_offset(struct md_rdev *rdev,
1877 unsigned long long new_offset)
1878 {
1879 /* All necessary checks on new >= old have been done */
1880 struct bitmap *bitmap;
1881 if (new_offset >= rdev->data_offset)
1882 return 1;
1883
1884 /* with 1.0 metadata, there is no metadata to tread on
1885 * so we can always move back */
1886 if (rdev->mddev->minor_version == 0)
1887 return 1;
1888
1889 /* otherwise we must be sure not to step on
1890 * any metadata, so stay:
1891 * 36K beyond start of superblock
1892 * beyond end of badblocks
1893 * beyond write-intent bitmap
1894 */
1895 if (rdev->sb_start + (32+4)*2 > new_offset)
1896 return 0;
1897 bitmap = rdev->mddev->bitmap;
1898 if (bitmap && !rdev->mddev->bitmap_info.file &&
1899 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1900 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1901 return 0;
1902 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1903 return 0;
1904
1905 return 1;
1906 }
1907
1908 static struct super_type super_types[] = {
1909 [0] = {
1910 .name = "0.90.0",
1911 .owner = THIS_MODULE,
1912 .load_super = super_90_load,
1913 .validate_super = super_90_validate,
1914 .sync_super = super_90_sync,
1915 .rdev_size_change = super_90_rdev_size_change,
1916 .allow_new_offset = super_90_allow_new_offset,
1917 },
1918 [1] = {
1919 .name = "md-1",
1920 .owner = THIS_MODULE,
1921 .load_super = super_1_load,
1922 .validate_super = super_1_validate,
1923 .sync_super = super_1_sync,
1924 .rdev_size_change = super_1_rdev_size_change,
1925 .allow_new_offset = super_1_allow_new_offset,
1926 },
1927 };
1928
1929 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1930 {
1931 if (mddev->sync_super) {
1932 mddev->sync_super(mddev, rdev);
1933 return;
1934 }
1935
1936 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1937
1938 super_types[mddev->major_version].sync_super(mddev, rdev);
1939 }
1940
1941 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1942 {
1943 struct md_rdev *rdev, *rdev2;
1944
1945 rcu_read_lock();
1946 rdev_for_each_rcu(rdev, mddev1)
1947 rdev_for_each_rcu(rdev2, mddev2)
1948 if (rdev->bdev->bd_contains ==
1949 rdev2->bdev->bd_contains) {
1950 rcu_read_unlock();
1951 return 1;
1952 }
1953 rcu_read_unlock();
1954 return 0;
1955 }
1956
1957 static LIST_HEAD(pending_raid_disks);
1958
1959 /*
1960 * Try to register data integrity profile for an mddev
1961 *
1962 * This is called when an array is started and after a disk has been kicked
1963 * from the array. It only succeeds if all working and active component devices
1964 * are integrity capable with matching profiles.
1965 */
1966 int md_integrity_register(struct mddev *mddev)
1967 {
1968 struct md_rdev *rdev, *reference = NULL;
1969
1970 if (list_empty(&mddev->disks))
1971 return 0; /* nothing to do */
1972 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1973 return 0; /* shouldn't register, or already is */
1974 rdev_for_each(rdev, mddev) {
1975 /* skip spares and non-functional disks */
1976 if (test_bit(Faulty, &rdev->flags))
1977 continue;
1978 if (rdev->raid_disk < 0)
1979 continue;
1980 if (!reference) {
1981 /* Use the first rdev as the reference */
1982 reference = rdev;
1983 continue;
1984 }
1985 /* does this rdev's profile match the reference profile? */
1986 if (blk_integrity_compare(reference->bdev->bd_disk,
1987 rdev->bdev->bd_disk) < 0)
1988 return -EINVAL;
1989 }
1990 if (!reference || !bdev_get_integrity(reference->bdev))
1991 return 0;
1992 /*
1993 * All component devices are integrity capable and have matching
1994 * profiles, register the common profile for the md device.
1995 */
1996 if (blk_integrity_register(mddev->gendisk,
1997 bdev_get_integrity(reference->bdev)) != 0) {
1998 printk(KERN_ERR "md: failed to register integrity for %s\n",
1999 mdname(mddev));
2000 return -EINVAL;
2001 }
2002 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2003 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2004 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2005 mdname(mddev));
2006 return -EINVAL;
2007 }
2008 return 0;
2009 }
2010 EXPORT_SYMBOL(md_integrity_register);
2011
2012 /* Disable data integrity if non-capable/non-matching disk is being added */
2013 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2014 {
2015 struct blk_integrity *bi_rdev;
2016 struct blk_integrity *bi_mddev;
2017
2018 if (!mddev->gendisk)
2019 return;
2020
2021 bi_rdev = bdev_get_integrity(rdev->bdev);
2022 bi_mddev = blk_get_integrity(mddev->gendisk);
2023
2024 if (!bi_mddev) /* nothing to do */
2025 return;
2026 if (rdev->raid_disk < 0) /* skip spares */
2027 return;
2028 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2029 rdev->bdev->bd_disk) >= 0)
2030 return;
2031 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2032 blk_integrity_unregister(mddev->gendisk);
2033 }
2034 EXPORT_SYMBOL(md_integrity_add_rdev);
2035
2036 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2037 {
2038 char b[BDEVNAME_SIZE];
2039 struct kobject *ko;
2040 char *s;
2041 int err;
2042
2043 if (rdev->mddev) {
2044 MD_BUG();
2045 return -EINVAL;
2046 }
2047
2048 /* prevent duplicates */
2049 if (find_rdev(mddev, rdev->bdev->bd_dev))
2050 return -EEXIST;
2051
2052 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2053 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2054 rdev->sectors < mddev->dev_sectors)) {
2055 if (mddev->pers) {
2056 /* Cannot change size, so fail
2057 * If mddev->level <= 0, then we don't care
2058 * about aligning sizes (e.g. linear)
2059 */
2060 if (mddev->level > 0)
2061 return -ENOSPC;
2062 } else
2063 mddev->dev_sectors = rdev->sectors;
2064 }
2065
2066 /* Verify rdev->desc_nr is unique.
2067 * If it is -1, assign a free number, else
2068 * check number is not in use
2069 */
2070 if (rdev->desc_nr < 0) {
2071 int choice = 0;
2072 if (mddev->pers) choice = mddev->raid_disks;
2073 while (find_rdev_nr(mddev, choice))
2074 choice++;
2075 rdev->desc_nr = choice;
2076 } else {
2077 if (find_rdev_nr(mddev, rdev->desc_nr))
2078 return -EBUSY;
2079 }
2080 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2081 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2082 mdname(mddev), mddev->max_disks);
2083 return -EBUSY;
2084 }
2085 bdevname(rdev->bdev,b);
2086 while ( (s=strchr(b, '/')) != NULL)
2087 *s = '!';
2088
2089 rdev->mddev = mddev;
2090 printk(KERN_INFO "md: bind<%s>\n", b);
2091
2092 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2093 goto fail;
2094
2095 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2096 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2097 /* failure here is OK */;
2098 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2099
2100 list_add_rcu(&rdev->same_set, &mddev->disks);
2101 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2102
2103 /* May as well allow recovery to be retried once */
2104 mddev->recovery_disabled++;
2105
2106 return 0;
2107
2108 fail:
2109 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2110 b, mdname(mddev));
2111 return err;
2112 }
2113
2114 static void md_delayed_delete(struct work_struct *ws)
2115 {
2116 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2117 kobject_del(&rdev->kobj);
2118 kobject_put(&rdev->kobj);
2119 }
2120
2121 static void unbind_rdev_from_array(struct md_rdev * rdev)
2122 {
2123 char b[BDEVNAME_SIZE];
2124 if (!rdev->mddev) {
2125 MD_BUG();
2126 return;
2127 }
2128 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2129 list_del_rcu(&rdev->same_set);
2130 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2131 rdev->mddev = NULL;
2132 sysfs_remove_link(&rdev->kobj, "block");
2133 sysfs_put(rdev->sysfs_state);
2134 rdev->sysfs_state = NULL;
2135 rdev->badblocks.count = 0;
2136 /* We need to delay this, otherwise we can deadlock when
2137 * writing to 'remove' to "dev/state". We also need
2138 * to delay it due to rcu usage.
2139 */
2140 synchronize_rcu();
2141 INIT_WORK(&rdev->del_work, md_delayed_delete);
2142 kobject_get(&rdev->kobj);
2143 queue_work(md_misc_wq, &rdev->del_work);
2144 }
2145
2146 /*
2147 * prevent the device from being mounted, repartitioned or
2148 * otherwise reused by a RAID array (or any other kernel
2149 * subsystem), by bd_claiming the device.
2150 */
2151 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2152 {
2153 int err = 0;
2154 struct block_device *bdev;
2155 char b[BDEVNAME_SIZE];
2156
2157 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2158 shared ? (struct md_rdev *)lock_rdev : rdev);
2159 if (IS_ERR(bdev)) {
2160 printk(KERN_ERR "md: could not open %s.\n",
2161 __bdevname(dev, b));
2162 return PTR_ERR(bdev);
2163 }
2164 rdev->bdev = bdev;
2165 return err;
2166 }
2167
2168 static void unlock_rdev(struct md_rdev *rdev)
2169 {
2170 struct block_device *bdev = rdev->bdev;
2171 rdev->bdev = NULL;
2172 if (!bdev)
2173 MD_BUG();
2174 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2175 }
2176
2177 void md_autodetect_dev(dev_t dev);
2178
2179 static void export_rdev(struct md_rdev * rdev)
2180 {
2181 char b[BDEVNAME_SIZE];
2182 printk(KERN_INFO "md: export_rdev(%s)\n",
2183 bdevname(rdev->bdev,b));
2184 if (rdev->mddev)
2185 MD_BUG();
2186 md_rdev_clear(rdev);
2187 #ifndef MODULE
2188 if (test_bit(AutoDetected, &rdev->flags))
2189 md_autodetect_dev(rdev->bdev->bd_dev);
2190 #endif
2191 unlock_rdev(rdev);
2192 kobject_put(&rdev->kobj);
2193 }
2194
2195 static void kick_rdev_from_array(struct md_rdev * rdev)
2196 {
2197 unbind_rdev_from_array(rdev);
2198 export_rdev(rdev);
2199 }
2200
2201 static void export_array(struct mddev *mddev)
2202 {
2203 struct md_rdev *rdev, *tmp;
2204
2205 rdev_for_each_safe(rdev, tmp, mddev) {
2206 if (!rdev->mddev) {
2207 MD_BUG();
2208 continue;
2209 }
2210 kick_rdev_from_array(rdev);
2211 }
2212 if (!list_empty(&mddev->disks))
2213 MD_BUG();
2214 mddev->raid_disks = 0;
2215 mddev->major_version = 0;
2216 }
2217
2218 static void print_desc(mdp_disk_t *desc)
2219 {
2220 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2221 desc->major,desc->minor,desc->raid_disk,desc->state);
2222 }
2223
2224 static void print_sb_90(mdp_super_t *sb)
2225 {
2226 int i;
2227
2228 printk(KERN_INFO
2229 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2230 sb->major_version, sb->minor_version, sb->patch_version,
2231 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2232 sb->ctime);
2233 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2234 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2235 sb->md_minor, sb->layout, sb->chunk_size);
2236 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2237 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2238 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2239 sb->failed_disks, sb->spare_disks,
2240 sb->sb_csum, (unsigned long)sb->events_lo);
2241
2242 printk(KERN_INFO);
2243 for (i = 0; i < MD_SB_DISKS; i++) {
2244 mdp_disk_t *desc;
2245
2246 desc = sb->disks + i;
2247 if (desc->number || desc->major || desc->minor ||
2248 desc->raid_disk || (desc->state && (desc->state != 4))) {
2249 printk(" D %2d: ", i);
2250 print_desc(desc);
2251 }
2252 }
2253 printk(KERN_INFO "md: THIS: ");
2254 print_desc(&sb->this_disk);
2255 }
2256
2257 static void print_sb_1(struct mdp_superblock_1 *sb)
2258 {
2259 __u8 *uuid;
2260
2261 uuid = sb->set_uuid;
2262 printk(KERN_INFO
2263 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2264 "md: Name: \"%s\" CT:%llu\n",
2265 le32_to_cpu(sb->major_version),
2266 le32_to_cpu(sb->feature_map),
2267 uuid,
2268 sb->set_name,
2269 (unsigned long long)le64_to_cpu(sb->ctime)
2270 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2271
2272 uuid = sb->device_uuid;
2273 printk(KERN_INFO
2274 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2275 " RO:%llu\n"
2276 "md: Dev:%08x UUID: %pU\n"
2277 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2278 "md: (MaxDev:%u) \n",
2279 le32_to_cpu(sb->level),
2280 (unsigned long long)le64_to_cpu(sb->size),
2281 le32_to_cpu(sb->raid_disks),
2282 le32_to_cpu(sb->layout),
2283 le32_to_cpu(sb->chunksize),
2284 (unsigned long long)le64_to_cpu(sb->data_offset),
2285 (unsigned long long)le64_to_cpu(sb->data_size),
2286 (unsigned long long)le64_to_cpu(sb->super_offset),
2287 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2288 le32_to_cpu(sb->dev_number),
2289 uuid,
2290 sb->devflags,
2291 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2292 (unsigned long long)le64_to_cpu(sb->events),
2293 (unsigned long long)le64_to_cpu(sb->resync_offset),
2294 le32_to_cpu(sb->sb_csum),
2295 le32_to_cpu(sb->max_dev)
2296 );
2297 }
2298
2299 static void print_rdev(struct md_rdev *rdev, int major_version)
2300 {
2301 char b[BDEVNAME_SIZE];
2302 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2303 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2304 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2305 rdev->desc_nr);
2306 if (rdev->sb_loaded) {
2307 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2308 switch (major_version) {
2309 case 0:
2310 print_sb_90(page_address(rdev->sb_page));
2311 break;
2312 case 1:
2313 print_sb_1(page_address(rdev->sb_page));
2314 break;
2315 }
2316 } else
2317 printk(KERN_INFO "md: no rdev superblock!\n");
2318 }
2319
2320 static void md_print_devices(void)
2321 {
2322 struct list_head *tmp;
2323 struct md_rdev *rdev;
2324 struct mddev *mddev;
2325 char b[BDEVNAME_SIZE];
2326
2327 printk("\n");
2328 printk("md: **********************************\n");
2329 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2330 printk("md: **********************************\n");
2331 for_each_mddev(mddev, tmp) {
2332
2333 if (mddev->bitmap)
2334 bitmap_print_sb(mddev->bitmap);
2335 else
2336 printk("%s: ", mdname(mddev));
2337 rdev_for_each(rdev, mddev)
2338 printk("<%s>", bdevname(rdev->bdev,b));
2339 printk("\n");
2340
2341 rdev_for_each(rdev, mddev)
2342 print_rdev(rdev, mddev->major_version);
2343 }
2344 printk("md: **********************************\n");
2345 printk("\n");
2346 }
2347
2348
2349 static void sync_sbs(struct mddev * mddev, int nospares)
2350 {
2351 /* Update each superblock (in-memory image), but
2352 * if we are allowed to, skip spares which already
2353 * have the right event counter, or have one earlier
2354 * (which would mean they aren't being marked as dirty
2355 * with the rest of the array)
2356 */
2357 struct md_rdev *rdev;
2358 rdev_for_each(rdev, mddev) {
2359 if (rdev->sb_events == mddev->events ||
2360 (nospares &&
2361 rdev->raid_disk < 0 &&
2362 rdev->sb_events+1 == mddev->events)) {
2363 /* Don't update this superblock */
2364 rdev->sb_loaded = 2;
2365 } else {
2366 sync_super(mddev, rdev);
2367 rdev->sb_loaded = 1;
2368 }
2369 }
2370 }
2371
2372 static void md_update_sb(struct mddev * mddev, int force_change)
2373 {
2374 struct md_rdev *rdev;
2375 int sync_req;
2376 int nospares = 0;
2377 int any_badblocks_changed = 0;
2378
2379 if (mddev->ro) {
2380 if (force_change)
2381 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2382 return;
2383 }
2384 repeat:
2385 /* First make sure individual recovery_offsets are correct */
2386 rdev_for_each(rdev, mddev) {
2387 if (rdev->raid_disk >= 0 &&
2388 mddev->delta_disks >= 0 &&
2389 !test_bit(In_sync, &rdev->flags) &&
2390 mddev->curr_resync_completed > rdev->recovery_offset)
2391 rdev->recovery_offset = mddev->curr_resync_completed;
2392
2393 }
2394 if (!mddev->persistent) {
2395 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2396 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2397 if (!mddev->external) {
2398 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2399 rdev_for_each(rdev, mddev) {
2400 if (rdev->badblocks.changed) {
2401 rdev->badblocks.changed = 0;
2402 md_ack_all_badblocks(&rdev->badblocks);
2403 md_error(mddev, rdev);
2404 }
2405 clear_bit(Blocked, &rdev->flags);
2406 clear_bit(BlockedBadBlocks, &rdev->flags);
2407 wake_up(&rdev->blocked_wait);
2408 }
2409 }
2410 wake_up(&mddev->sb_wait);
2411 return;
2412 }
2413
2414 spin_lock_irq(&mddev->write_lock);
2415
2416 mddev->utime = get_seconds();
2417
2418 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2419 force_change = 1;
2420 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2421 /* just a clean<-> dirty transition, possibly leave spares alone,
2422 * though if events isn't the right even/odd, we will have to do
2423 * spares after all
2424 */
2425 nospares = 1;
2426 if (force_change)
2427 nospares = 0;
2428 if (mddev->degraded)
2429 /* If the array is degraded, then skipping spares is both
2430 * dangerous and fairly pointless.
2431 * Dangerous because a device that was removed from the array
2432 * might have a event_count that still looks up-to-date,
2433 * so it can be re-added without a resync.
2434 * Pointless because if there are any spares to skip,
2435 * then a recovery will happen and soon that array won't
2436 * be degraded any more and the spare can go back to sleep then.
2437 */
2438 nospares = 0;
2439
2440 sync_req = mddev->in_sync;
2441
2442 /* If this is just a dirty<->clean transition, and the array is clean
2443 * and 'events' is odd, we can roll back to the previous clean state */
2444 if (nospares
2445 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2446 && mddev->can_decrease_events
2447 && mddev->events != 1) {
2448 mddev->events--;
2449 mddev->can_decrease_events = 0;
2450 } else {
2451 /* otherwise we have to go forward and ... */
2452 mddev->events ++;
2453 mddev->can_decrease_events = nospares;
2454 }
2455
2456 if (!mddev->events) {
2457 /*
2458 * oops, this 64-bit counter should never wrap.
2459 * Either we are in around ~1 trillion A.C., assuming
2460 * 1 reboot per second, or we have a bug:
2461 */
2462 MD_BUG();
2463 mddev->events --;
2464 }
2465
2466 rdev_for_each(rdev, mddev) {
2467 if (rdev->badblocks.changed)
2468 any_badblocks_changed++;
2469 if (test_bit(Faulty, &rdev->flags))
2470 set_bit(FaultRecorded, &rdev->flags);
2471 }
2472
2473 sync_sbs(mddev, nospares);
2474 spin_unlock_irq(&mddev->write_lock);
2475
2476 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2477 mdname(mddev), mddev->in_sync);
2478
2479 bitmap_update_sb(mddev->bitmap);
2480 rdev_for_each(rdev, mddev) {
2481 char b[BDEVNAME_SIZE];
2482
2483 if (rdev->sb_loaded != 1)
2484 continue; /* no noise on spare devices */
2485
2486 if (!test_bit(Faulty, &rdev->flags)) {
2487 md_super_write(mddev,rdev,
2488 rdev->sb_start, rdev->sb_size,
2489 rdev->sb_page);
2490 pr_debug("md: (write) %s's sb offset: %llu\n",
2491 bdevname(rdev->bdev, b),
2492 (unsigned long long)rdev->sb_start);
2493 rdev->sb_events = mddev->events;
2494 if (rdev->badblocks.size) {
2495 md_super_write(mddev, rdev,
2496 rdev->badblocks.sector,
2497 rdev->badblocks.size << 9,
2498 rdev->bb_page);
2499 rdev->badblocks.size = 0;
2500 }
2501
2502 } else
2503 pr_debug("md: %s (skipping faulty)\n",
2504 bdevname(rdev->bdev, b));
2505
2506 if (mddev->level == LEVEL_MULTIPATH)
2507 /* only need to write one superblock... */
2508 break;
2509 }
2510 md_super_wait(mddev);
2511 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2512
2513 spin_lock_irq(&mddev->write_lock);
2514 if (mddev->in_sync != sync_req ||
2515 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2516 /* have to write it out again */
2517 spin_unlock_irq(&mddev->write_lock);
2518 goto repeat;
2519 }
2520 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2521 spin_unlock_irq(&mddev->write_lock);
2522 wake_up(&mddev->sb_wait);
2523 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2524 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2525
2526 rdev_for_each(rdev, mddev) {
2527 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2528 clear_bit(Blocked, &rdev->flags);
2529
2530 if (any_badblocks_changed)
2531 md_ack_all_badblocks(&rdev->badblocks);
2532 clear_bit(BlockedBadBlocks, &rdev->flags);
2533 wake_up(&rdev->blocked_wait);
2534 }
2535 }
2536
2537 /* words written to sysfs files may, or may not, be \n terminated.
2538 * We want to accept with case. For this we use cmd_match.
2539 */
2540 static int cmd_match(const char *cmd, const char *str)
2541 {
2542 /* See if cmd, written into a sysfs file, matches
2543 * str. They must either be the same, or cmd can
2544 * have a trailing newline
2545 */
2546 while (*cmd && *str && *cmd == *str) {
2547 cmd++;
2548 str++;
2549 }
2550 if (*cmd == '\n')
2551 cmd++;
2552 if (*str || *cmd)
2553 return 0;
2554 return 1;
2555 }
2556
2557 struct rdev_sysfs_entry {
2558 struct attribute attr;
2559 ssize_t (*show)(struct md_rdev *, char *);
2560 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2561 };
2562
2563 static ssize_t
2564 state_show(struct md_rdev *rdev, char *page)
2565 {
2566 char *sep = "";
2567 size_t len = 0;
2568
2569 if (test_bit(Faulty, &rdev->flags) ||
2570 rdev->badblocks.unacked_exist) {
2571 len+= sprintf(page+len, "%sfaulty",sep);
2572 sep = ",";
2573 }
2574 if (test_bit(In_sync, &rdev->flags)) {
2575 len += sprintf(page+len, "%sin_sync",sep);
2576 sep = ",";
2577 }
2578 if (test_bit(WriteMostly, &rdev->flags)) {
2579 len += sprintf(page+len, "%swrite_mostly",sep);
2580 sep = ",";
2581 }
2582 if (test_bit(Blocked, &rdev->flags) ||
2583 (rdev->badblocks.unacked_exist
2584 && !test_bit(Faulty, &rdev->flags))) {
2585 len += sprintf(page+len, "%sblocked", sep);
2586 sep = ",";
2587 }
2588 if (!test_bit(Faulty, &rdev->flags) &&
2589 !test_bit(In_sync, &rdev->flags)) {
2590 len += sprintf(page+len, "%sspare", sep);
2591 sep = ",";
2592 }
2593 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2594 len += sprintf(page+len, "%swrite_error", sep);
2595 sep = ",";
2596 }
2597 if (test_bit(WantReplacement, &rdev->flags)) {
2598 len += sprintf(page+len, "%swant_replacement", sep);
2599 sep = ",";
2600 }
2601 if (test_bit(Replacement, &rdev->flags)) {
2602 len += sprintf(page+len, "%sreplacement", sep);
2603 sep = ",";
2604 }
2605
2606 return len+sprintf(page+len, "\n");
2607 }
2608
2609 static ssize_t
2610 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2611 {
2612 /* can write
2613 * faulty - simulates an error
2614 * remove - disconnects the device
2615 * writemostly - sets write_mostly
2616 * -writemostly - clears write_mostly
2617 * blocked - sets the Blocked flags
2618 * -blocked - clears the Blocked and possibly simulates an error
2619 * insync - sets Insync providing device isn't active
2620 * -insync - clear Insync for a device with a slot assigned,
2621 * so that it gets rebuilt based on bitmap
2622 * write_error - sets WriteErrorSeen
2623 * -write_error - clears WriteErrorSeen
2624 */
2625 int err = -EINVAL;
2626 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2627 md_error(rdev->mddev, rdev);
2628 if (test_bit(Faulty, &rdev->flags))
2629 err = 0;
2630 else
2631 err = -EBUSY;
2632 } else if (cmd_match(buf, "remove")) {
2633 if (rdev->raid_disk >= 0)
2634 err = -EBUSY;
2635 else {
2636 struct mddev *mddev = rdev->mddev;
2637 kick_rdev_from_array(rdev);
2638 if (mddev->pers)
2639 md_update_sb(mddev, 1);
2640 md_new_event(mddev);
2641 err = 0;
2642 }
2643 } else if (cmd_match(buf, "writemostly")) {
2644 set_bit(WriteMostly, &rdev->flags);
2645 err = 0;
2646 } else if (cmd_match(buf, "-writemostly")) {
2647 clear_bit(WriteMostly, &rdev->flags);
2648 err = 0;
2649 } else if (cmd_match(buf, "blocked")) {
2650 set_bit(Blocked, &rdev->flags);
2651 err = 0;
2652 } else if (cmd_match(buf, "-blocked")) {
2653 if (!test_bit(Faulty, &rdev->flags) &&
2654 rdev->badblocks.unacked_exist) {
2655 /* metadata handler doesn't understand badblocks,
2656 * so we need to fail the device
2657 */
2658 md_error(rdev->mddev, rdev);
2659 }
2660 clear_bit(Blocked, &rdev->flags);
2661 clear_bit(BlockedBadBlocks, &rdev->flags);
2662 wake_up(&rdev->blocked_wait);
2663 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2664 md_wakeup_thread(rdev->mddev->thread);
2665
2666 err = 0;
2667 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2668 set_bit(In_sync, &rdev->flags);
2669 err = 0;
2670 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2671 clear_bit(In_sync, &rdev->flags);
2672 rdev->saved_raid_disk = rdev->raid_disk;
2673 rdev->raid_disk = -1;
2674 err = 0;
2675 } else if (cmd_match(buf, "write_error")) {
2676 set_bit(WriteErrorSeen, &rdev->flags);
2677 err = 0;
2678 } else if (cmd_match(buf, "-write_error")) {
2679 clear_bit(WriteErrorSeen, &rdev->flags);
2680 err = 0;
2681 } else if (cmd_match(buf, "want_replacement")) {
2682 /* Any non-spare device that is not a replacement can
2683 * become want_replacement at any time, but we then need to
2684 * check if recovery is needed.
2685 */
2686 if (rdev->raid_disk >= 0 &&
2687 !test_bit(Replacement, &rdev->flags))
2688 set_bit(WantReplacement, &rdev->flags);
2689 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2690 md_wakeup_thread(rdev->mddev->thread);
2691 err = 0;
2692 } else if (cmd_match(buf, "-want_replacement")) {
2693 /* Clearing 'want_replacement' is always allowed.
2694 * Once replacements starts it is too late though.
2695 */
2696 err = 0;
2697 clear_bit(WantReplacement, &rdev->flags);
2698 } else if (cmd_match(buf, "replacement")) {
2699 /* Can only set a device as a replacement when array has not
2700 * yet been started. Once running, replacement is automatic
2701 * from spares, or by assigning 'slot'.
2702 */
2703 if (rdev->mddev->pers)
2704 err = -EBUSY;
2705 else {
2706 set_bit(Replacement, &rdev->flags);
2707 err = 0;
2708 }
2709 } else if (cmd_match(buf, "-replacement")) {
2710 /* Similarly, can only clear Replacement before start */
2711 if (rdev->mddev->pers)
2712 err = -EBUSY;
2713 else {
2714 clear_bit(Replacement, &rdev->flags);
2715 err = 0;
2716 }
2717 }
2718 if (!err)
2719 sysfs_notify_dirent_safe(rdev->sysfs_state);
2720 return err ? err : len;
2721 }
2722 static struct rdev_sysfs_entry rdev_state =
2723 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2724
2725 static ssize_t
2726 errors_show(struct md_rdev *rdev, char *page)
2727 {
2728 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2729 }
2730
2731 static ssize_t
2732 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2733 {
2734 char *e;
2735 unsigned long n = simple_strtoul(buf, &e, 10);
2736 if (*buf && (*e == 0 || *e == '\n')) {
2737 atomic_set(&rdev->corrected_errors, n);
2738 return len;
2739 }
2740 return -EINVAL;
2741 }
2742 static struct rdev_sysfs_entry rdev_errors =
2743 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2744
2745 static ssize_t
2746 slot_show(struct md_rdev *rdev, char *page)
2747 {
2748 if (rdev->raid_disk < 0)
2749 return sprintf(page, "none\n");
2750 else
2751 return sprintf(page, "%d\n", rdev->raid_disk);
2752 }
2753
2754 static ssize_t
2755 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2756 {
2757 char *e;
2758 int err;
2759 int slot = simple_strtoul(buf, &e, 10);
2760 if (strncmp(buf, "none", 4)==0)
2761 slot = -1;
2762 else if (e==buf || (*e && *e!= '\n'))
2763 return -EINVAL;
2764 if (rdev->mddev->pers && slot == -1) {
2765 /* Setting 'slot' on an active array requires also
2766 * updating the 'rd%d' link, and communicating
2767 * with the personality with ->hot_*_disk.
2768 * For now we only support removing
2769 * failed/spare devices. This normally happens automatically,
2770 * but not when the metadata is externally managed.
2771 */
2772 if (rdev->raid_disk == -1)
2773 return -EEXIST;
2774 /* personality does all needed checks */
2775 if (rdev->mddev->pers->hot_remove_disk == NULL)
2776 return -EINVAL;
2777 clear_bit(Blocked, &rdev->flags);
2778 remove_and_add_spares(rdev->mddev, rdev);
2779 if (rdev->raid_disk >= 0)
2780 return -EBUSY;
2781 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2782 md_wakeup_thread(rdev->mddev->thread);
2783 } else if (rdev->mddev->pers) {
2784 /* Activating a spare .. or possibly reactivating
2785 * if we ever get bitmaps working here.
2786 */
2787
2788 if (rdev->raid_disk != -1)
2789 return -EBUSY;
2790
2791 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2792 return -EBUSY;
2793
2794 if (rdev->mddev->pers->hot_add_disk == NULL)
2795 return -EINVAL;
2796
2797 if (slot >= rdev->mddev->raid_disks &&
2798 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2799 return -ENOSPC;
2800
2801 rdev->raid_disk = slot;
2802 if (test_bit(In_sync, &rdev->flags))
2803 rdev->saved_raid_disk = slot;
2804 else
2805 rdev->saved_raid_disk = -1;
2806 clear_bit(In_sync, &rdev->flags);
2807 clear_bit(Bitmap_sync, &rdev->flags);
2808 err = rdev->mddev->pers->
2809 hot_add_disk(rdev->mddev, rdev);
2810 if (err) {
2811 rdev->raid_disk = -1;
2812 return err;
2813 } else
2814 sysfs_notify_dirent_safe(rdev->sysfs_state);
2815 if (sysfs_link_rdev(rdev->mddev, rdev))
2816 /* failure here is OK */;
2817 /* don't wakeup anyone, leave that to userspace. */
2818 } else {
2819 if (slot >= rdev->mddev->raid_disks &&
2820 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2821 return -ENOSPC;
2822 rdev->raid_disk = slot;
2823 /* assume it is working */
2824 clear_bit(Faulty, &rdev->flags);
2825 clear_bit(WriteMostly, &rdev->flags);
2826 set_bit(In_sync, &rdev->flags);
2827 sysfs_notify_dirent_safe(rdev->sysfs_state);
2828 }
2829 return len;
2830 }
2831
2832
2833 static struct rdev_sysfs_entry rdev_slot =
2834 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2835
2836 static ssize_t
2837 offset_show(struct md_rdev *rdev, char *page)
2838 {
2839 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2840 }
2841
2842 static ssize_t
2843 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2844 {
2845 unsigned long long offset;
2846 if (kstrtoull(buf, 10, &offset) < 0)
2847 return -EINVAL;
2848 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2849 return -EBUSY;
2850 if (rdev->sectors && rdev->mddev->external)
2851 /* Must set offset before size, so overlap checks
2852 * can be sane */
2853 return -EBUSY;
2854 rdev->data_offset = offset;
2855 rdev->new_data_offset = offset;
2856 return len;
2857 }
2858
2859 static struct rdev_sysfs_entry rdev_offset =
2860 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2861
2862 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2863 {
2864 return sprintf(page, "%llu\n",
2865 (unsigned long long)rdev->new_data_offset);
2866 }
2867
2868 static ssize_t new_offset_store(struct md_rdev *rdev,
2869 const char *buf, size_t len)
2870 {
2871 unsigned long long new_offset;
2872 struct mddev *mddev = rdev->mddev;
2873
2874 if (kstrtoull(buf, 10, &new_offset) < 0)
2875 return -EINVAL;
2876
2877 if (mddev->sync_thread)
2878 return -EBUSY;
2879 if (new_offset == rdev->data_offset)
2880 /* reset is always permitted */
2881 ;
2882 else if (new_offset > rdev->data_offset) {
2883 /* must not push array size beyond rdev_sectors */
2884 if (new_offset - rdev->data_offset
2885 + mddev->dev_sectors > rdev->sectors)
2886 return -E2BIG;
2887 }
2888 /* Metadata worries about other space details. */
2889
2890 /* decreasing the offset is inconsistent with a backwards
2891 * reshape.
2892 */
2893 if (new_offset < rdev->data_offset &&
2894 mddev->reshape_backwards)
2895 return -EINVAL;
2896 /* Increasing offset is inconsistent with forwards
2897 * reshape. reshape_direction should be set to
2898 * 'backwards' first.
2899 */
2900 if (new_offset > rdev->data_offset &&
2901 !mddev->reshape_backwards)
2902 return -EINVAL;
2903
2904 if (mddev->pers && mddev->persistent &&
2905 !super_types[mddev->major_version]
2906 .allow_new_offset(rdev, new_offset))
2907 return -E2BIG;
2908 rdev->new_data_offset = new_offset;
2909 if (new_offset > rdev->data_offset)
2910 mddev->reshape_backwards = 1;
2911 else if (new_offset < rdev->data_offset)
2912 mddev->reshape_backwards = 0;
2913
2914 return len;
2915 }
2916 static struct rdev_sysfs_entry rdev_new_offset =
2917 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2918
2919 static ssize_t
2920 rdev_size_show(struct md_rdev *rdev, char *page)
2921 {
2922 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2923 }
2924
2925 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2926 {
2927 /* check if two start/length pairs overlap */
2928 if (s1+l1 <= s2)
2929 return 0;
2930 if (s2+l2 <= s1)
2931 return 0;
2932 return 1;
2933 }
2934
2935 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2936 {
2937 unsigned long long blocks;
2938 sector_t new;
2939
2940 if (kstrtoull(buf, 10, &blocks) < 0)
2941 return -EINVAL;
2942
2943 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2944 return -EINVAL; /* sector conversion overflow */
2945
2946 new = blocks * 2;
2947 if (new != blocks * 2)
2948 return -EINVAL; /* unsigned long long to sector_t overflow */
2949
2950 *sectors = new;
2951 return 0;
2952 }
2953
2954 static ssize_t
2955 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2956 {
2957 struct mddev *my_mddev = rdev->mddev;
2958 sector_t oldsectors = rdev->sectors;
2959 sector_t sectors;
2960
2961 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2962 return -EINVAL;
2963 if (rdev->data_offset != rdev->new_data_offset)
2964 return -EINVAL; /* too confusing */
2965 if (my_mddev->pers && rdev->raid_disk >= 0) {
2966 if (my_mddev->persistent) {
2967 sectors = super_types[my_mddev->major_version].
2968 rdev_size_change(rdev, sectors);
2969 if (!sectors)
2970 return -EBUSY;
2971 } else if (!sectors)
2972 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2973 rdev->data_offset;
2974 if (!my_mddev->pers->resize)
2975 /* Cannot change size for RAID0 or Linear etc */
2976 return -EINVAL;
2977 }
2978 if (sectors < my_mddev->dev_sectors)
2979 return -EINVAL; /* component must fit device */
2980
2981 rdev->sectors = sectors;
2982 if (sectors > oldsectors && my_mddev->external) {
2983 /* need to check that all other rdevs with the same ->bdev
2984 * do not overlap. We need to unlock the mddev to avoid
2985 * a deadlock. We have already changed rdev->sectors, and if
2986 * we have to change it back, we will have the lock again.
2987 */
2988 struct mddev *mddev;
2989 int overlap = 0;
2990 struct list_head *tmp;
2991
2992 mddev_unlock(my_mddev);
2993 for_each_mddev(mddev, tmp) {
2994 struct md_rdev *rdev2;
2995
2996 mddev_lock_nointr(mddev);
2997 rdev_for_each(rdev2, mddev)
2998 if (rdev->bdev == rdev2->bdev &&
2999 rdev != rdev2 &&
3000 overlaps(rdev->data_offset, rdev->sectors,
3001 rdev2->data_offset,
3002 rdev2->sectors)) {
3003 overlap = 1;
3004 break;
3005 }
3006 mddev_unlock(mddev);
3007 if (overlap) {
3008 mddev_put(mddev);
3009 break;
3010 }
3011 }
3012 mddev_lock_nointr(my_mddev);
3013 if (overlap) {
3014 /* Someone else could have slipped in a size
3015 * change here, but doing so is just silly.
3016 * We put oldsectors back because we *know* it is
3017 * safe, and trust userspace not to race with
3018 * itself
3019 */
3020 rdev->sectors = oldsectors;
3021 return -EBUSY;
3022 }
3023 }
3024 return len;
3025 }
3026
3027 static struct rdev_sysfs_entry rdev_size =
3028 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3029
3030
3031 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3032 {
3033 unsigned long long recovery_start = rdev->recovery_offset;
3034
3035 if (test_bit(In_sync, &rdev->flags) ||
3036 recovery_start == MaxSector)
3037 return sprintf(page, "none\n");
3038
3039 return sprintf(page, "%llu\n", recovery_start);
3040 }
3041
3042 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3043 {
3044 unsigned long long recovery_start;
3045
3046 if (cmd_match(buf, "none"))
3047 recovery_start = MaxSector;
3048 else if (kstrtoull(buf, 10, &recovery_start))
3049 return -EINVAL;
3050
3051 if (rdev->mddev->pers &&
3052 rdev->raid_disk >= 0)
3053 return -EBUSY;
3054
3055 rdev->recovery_offset = recovery_start;
3056 if (recovery_start == MaxSector)
3057 set_bit(In_sync, &rdev->flags);
3058 else
3059 clear_bit(In_sync, &rdev->flags);
3060 return len;
3061 }
3062
3063 static struct rdev_sysfs_entry rdev_recovery_start =
3064 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3065
3066
3067 static ssize_t
3068 badblocks_show(struct badblocks *bb, char *page, int unack);
3069 static ssize_t
3070 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3071
3072 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3073 {
3074 return badblocks_show(&rdev->badblocks, page, 0);
3075 }
3076 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3077 {
3078 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3079 /* Maybe that ack was all we needed */
3080 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3081 wake_up(&rdev->blocked_wait);
3082 return rv;
3083 }
3084 static struct rdev_sysfs_entry rdev_bad_blocks =
3085 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3086
3087
3088 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3089 {
3090 return badblocks_show(&rdev->badblocks, page, 1);
3091 }
3092 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3093 {
3094 return badblocks_store(&rdev->badblocks, page, len, 1);
3095 }
3096 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3097 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3098
3099 static struct attribute *rdev_default_attrs[] = {
3100 &rdev_state.attr,
3101 &rdev_errors.attr,
3102 &rdev_slot.attr,
3103 &rdev_offset.attr,
3104 &rdev_new_offset.attr,
3105 &rdev_size.attr,
3106 &rdev_recovery_start.attr,
3107 &rdev_bad_blocks.attr,
3108 &rdev_unack_bad_blocks.attr,
3109 NULL,
3110 };
3111 static ssize_t
3112 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3113 {
3114 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3115 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3116 struct mddev *mddev = rdev->mddev;
3117 ssize_t rv;
3118
3119 if (!entry->show)
3120 return -EIO;
3121
3122 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3123 if (!rv) {
3124 if (rdev->mddev == NULL)
3125 rv = -EBUSY;
3126 else
3127 rv = entry->show(rdev, page);
3128 mddev_unlock(mddev);
3129 }
3130 return rv;
3131 }
3132
3133 static ssize_t
3134 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3135 const char *page, size_t length)
3136 {
3137 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3138 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3139 ssize_t rv;
3140 struct mddev *mddev = rdev->mddev;
3141
3142 if (!entry->store)
3143 return -EIO;
3144 if (!capable(CAP_SYS_ADMIN))
3145 return -EACCES;
3146 rv = mddev ? mddev_lock(mddev): -EBUSY;
3147 if (!rv) {
3148 if (rdev->mddev == NULL)
3149 rv = -EBUSY;
3150 else
3151 rv = entry->store(rdev, page, length);
3152 mddev_unlock(mddev);
3153 }
3154 return rv;
3155 }
3156
3157 static void rdev_free(struct kobject *ko)
3158 {
3159 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3160 kfree(rdev);
3161 }
3162 static const struct sysfs_ops rdev_sysfs_ops = {
3163 .show = rdev_attr_show,
3164 .store = rdev_attr_store,
3165 };
3166 static struct kobj_type rdev_ktype = {
3167 .release = rdev_free,
3168 .sysfs_ops = &rdev_sysfs_ops,
3169 .default_attrs = rdev_default_attrs,
3170 };
3171
3172 int md_rdev_init(struct md_rdev *rdev)
3173 {
3174 rdev->desc_nr = -1;
3175 rdev->saved_raid_disk = -1;
3176 rdev->raid_disk = -1;
3177 rdev->flags = 0;
3178 rdev->data_offset = 0;
3179 rdev->new_data_offset = 0;
3180 rdev->sb_events = 0;
3181 rdev->last_read_error.tv_sec = 0;
3182 rdev->last_read_error.tv_nsec = 0;
3183 rdev->sb_loaded = 0;
3184 rdev->bb_page = NULL;
3185 atomic_set(&rdev->nr_pending, 0);
3186 atomic_set(&rdev->read_errors, 0);
3187 atomic_set(&rdev->corrected_errors, 0);
3188
3189 INIT_LIST_HEAD(&rdev->same_set);
3190 init_waitqueue_head(&rdev->blocked_wait);
3191
3192 /* Add space to store bad block list.
3193 * This reserves the space even on arrays where it cannot
3194 * be used - I wonder if that matters
3195 */
3196 rdev->badblocks.count = 0;
3197 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3198 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3199 seqlock_init(&rdev->badblocks.lock);
3200 if (rdev->badblocks.page == NULL)
3201 return -ENOMEM;
3202
3203 return 0;
3204 }
3205 EXPORT_SYMBOL_GPL(md_rdev_init);
3206 /*
3207 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3208 *
3209 * mark the device faulty if:
3210 *
3211 * - the device is nonexistent (zero size)
3212 * - the device has no valid superblock
3213 *
3214 * a faulty rdev _never_ has rdev->sb set.
3215 */
3216 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3217 {
3218 char b[BDEVNAME_SIZE];
3219 int err;
3220 struct md_rdev *rdev;
3221 sector_t size;
3222
3223 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3224 if (!rdev) {
3225 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3226 return ERR_PTR(-ENOMEM);
3227 }
3228
3229 err = md_rdev_init(rdev);
3230 if (err)
3231 goto abort_free;
3232 err = alloc_disk_sb(rdev);
3233 if (err)
3234 goto abort_free;
3235
3236 err = lock_rdev(rdev, newdev, super_format == -2);
3237 if (err)
3238 goto abort_free;
3239
3240 kobject_init(&rdev->kobj, &rdev_ktype);
3241
3242 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3243 if (!size) {
3244 printk(KERN_WARNING
3245 "md: %s has zero or unknown size, marking faulty!\n",
3246 bdevname(rdev->bdev,b));
3247 err = -EINVAL;
3248 goto abort_free;
3249 }
3250
3251 if (super_format >= 0) {
3252 err = super_types[super_format].
3253 load_super(rdev, NULL, super_minor);
3254 if (err == -EINVAL) {
3255 printk(KERN_WARNING
3256 "md: %s does not have a valid v%d.%d "
3257 "superblock, not importing!\n",
3258 bdevname(rdev->bdev,b),
3259 super_format, super_minor);
3260 goto abort_free;
3261 }
3262 if (err < 0) {
3263 printk(KERN_WARNING
3264 "md: could not read %s's sb, not importing!\n",
3265 bdevname(rdev->bdev,b));
3266 goto abort_free;
3267 }
3268 }
3269
3270 return rdev;
3271
3272 abort_free:
3273 if (rdev->bdev)
3274 unlock_rdev(rdev);
3275 md_rdev_clear(rdev);
3276 kfree(rdev);
3277 return ERR_PTR(err);
3278 }
3279
3280 /*
3281 * Check a full RAID array for plausibility
3282 */
3283
3284
3285 static void analyze_sbs(struct mddev * mddev)
3286 {
3287 int i;
3288 struct md_rdev *rdev, *freshest, *tmp;
3289 char b[BDEVNAME_SIZE];
3290
3291 freshest = NULL;
3292 rdev_for_each_safe(rdev, tmp, mddev)
3293 switch (super_types[mddev->major_version].
3294 load_super(rdev, freshest, mddev->minor_version)) {
3295 case 1:
3296 freshest = rdev;
3297 break;
3298 case 0:
3299 break;
3300 default:
3301 printk( KERN_ERR \
3302 "md: fatal superblock inconsistency in %s"
3303 " -- removing from array\n",
3304 bdevname(rdev->bdev,b));
3305 kick_rdev_from_array(rdev);
3306 }
3307
3308
3309 super_types[mddev->major_version].
3310 validate_super(mddev, freshest);
3311
3312 i = 0;
3313 rdev_for_each_safe(rdev, tmp, mddev) {
3314 if (mddev->max_disks &&
3315 (rdev->desc_nr >= mddev->max_disks ||
3316 i > mddev->max_disks)) {
3317 printk(KERN_WARNING
3318 "md: %s: %s: only %d devices permitted\n",
3319 mdname(mddev), bdevname(rdev->bdev, b),
3320 mddev->max_disks);
3321 kick_rdev_from_array(rdev);
3322 continue;
3323 }
3324 if (rdev != freshest)
3325 if (super_types[mddev->major_version].
3326 validate_super(mddev, rdev)) {
3327 printk(KERN_WARNING "md: kicking non-fresh %s"
3328 " from array!\n",
3329 bdevname(rdev->bdev,b));
3330 kick_rdev_from_array(rdev);
3331 continue;
3332 }
3333 if (mddev->level == LEVEL_MULTIPATH) {
3334 rdev->desc_nr = i++;
3335 rdev->raid_disk = rdev->desc_nr;
3336 set_bit(In_sync, &rdev->flags);
3337 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3338 rdev->raid_disk = -1;
3339 clear_bit(In_sync, &rdev->flags);
3340 }
3341 }
3342 }
3343
3344 /* Read a fixed-point number.
3345 * Numbers in sysfs attributes should be in "standard" units where
3346 * possible, so time should be in seconds.
3347 * However we internally use a a much smaller unit such as
3348 * milliseconds or jiffies.
3349 * This function takes a decimal number with a possible fractional
3350 * component, and produces an integer which is the result of
3351 * multiplying that number by 10^'scale'.
3352 * all without any floating-point arithmetic.
3353 */
3354 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3355 {
3356 unsigned long result = 0;
3357 long decimals = -1;
3358 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3359 if (*cp == '.')
3360 decimals = 0;
3361 else if (decimals < scale) {
3362 unsigned int value;
3363 value = *cp - '0';
3364 result = result * 10 + value;
3365 if (decimals >= 0)
3366 decimals++;
3367 }
3368 cp++;
3369 }
3370 if (*cp == '\n')
3371 cp++;
3372 if (*cp)
3373 return -EINVAL;
3374 if (decimals < 0)
3375 decimals = 0;
3376 while (decimals < scale) {
3377 result *= 10;
3378 decimals ++;
3379 }
3380 *res = result;
3381 return 0;
3382 }
3383
3384
3385 static void md_safemode_timeout(unsigned long data);
3386
3387 static ssize_t
3388 safe_delay_show(struct mddev *mddev, char *page)
3389 {
3390 int msec = (mddev->safemode_delay*1000)/HZ;
3391 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3392 }
3393 static ssize_t
3394 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3395 {
3396 unsigned long msec;
3397
3398 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3399 return -EINVAL;
3400 if (msec == 0)
3401 mddev->safemode_delay = 0;
3402 else {
3403 unsigned long old_delay = mddev->safemode_delay;
3404 mddev->safemode_delay = (msec*HZ)/1000;
3405 if (mddev->safemode_delay == 0)
3406 mddev->safemode_delay = 1;
3407 if (mddev->safemode_delay < old_delay || old_delay == 0)
3408 md_safemode_timeout((unsigned long)mddev);
3409 }
3410 return len;
3411 }
3412 static struct md_sysfs_entry md_safe_delay =
3413 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3414
3415 static ssize_t
3416 level_show(struct mddev *mddev, char *page)
3417 {
3418 struct md_personality *p = mddev->pers;
3419 if (p)
3420 return sprintf(page, "%s\n", p->name);
3421 else if (mddev->clevel[0])
3422 return sprintf(page, "%s\n", mddev->clevel);
3423 else if (mddev->level != LEVEL_NONE)
3424 return sprintf(page, "%d\n", mddev->level);
3425 else
3426 return 0;
3427 }
3428
3429 static ssize_t
3430 level_store(struct mddev *mddev, const char *buf, size_t len)
3431 {
3432 char clevel[16];
3433 ssize_t rv = len;
3434 struct md_personality *pers;
3435 long level;
3436 void *priv;
3437 struct md_rdev *rdev;
3438
3439 if (mddev->pers == NULL) {
3440 if (len == 0)
3441 return 0;
3442 if (len >= sizeof(mddev->clevel))
3443 return -ENOSPC;
3444 strncpy(mddev->clevel, buf, len);
3445 if (mddev->clevel[len-1] == '\n')
3446 len--;
3447 mddev->clevel[len] = 0;
3448 mddev->level = LEVEL_NONE;
3449 return rv;
3450 }
3451
3452 /* request to change the personality. Need to ensure:
3453 * - array is not engaged in resync/recovery/reshape
3454 * - old personality can be suspended
3455 * - new personality will access other array.
3456 */
3457
3458 if (mddev->sync_thread ||
3459 mddev->reshape_position != MaxSector ||
3460 mddev->sysfs_active)
3461 return -EBUSY;
3462
3463 if (!mddev->pers->quiesce) {
3464 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3465 mdname(mddev), mddev->pers->name);
3466 return -EINVAL;
3467 }
3468
3469 /* Now find the new personality */
3470 if (len == 0 || len >= sizeof(clevel))
3471 return -EINVAL;
3472 strncpy(clevel, buf, len);
3473 if (clevel[len-1] == '\n')
3474 len--;
3475 clevel[len] = 0;
3476 if (kstrtol(clevel, 10, &level))
3477 level = LEVEL_NONE;
3478
3479 if (request_module("md-%s", clevel) != 0)
3480 request_module("md-level-%s", clevel);
3481 spin_lock(&pers_lock);
3482 pers = find_pers(level, clevel);
3483 if (!pers || !try_module_get(pers->owner)) {
3484 spin_unlock(&pers_lock);
3485 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3486 return -EINVAL;
3487 }
3488 spin_unlock(&pers_lock);
3489
3490 if (pers == mddev->pers) {
3491 /* Nothing to do! */
3492 module_put(pers->owner);
3493 return rv;
3494 }
3495 if (!pers->takeover) {
3496 module_put(pers->owner);
3497 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3498 mdname(mddev), clevel);
3499 return -EINVAL;
3500 }
3501
3502 rdev_for_each(rdev, mddev)
3503 rdev->new_raid_disk = rdev->raid_disk;
3504
3505 /* ->takeover must set new_* and/or delta_disks
3506 * if it succeeds, and may set them when it fails.
3507 */
3508 priv = pers->takeover(mddev);
3509 if (IS_ERR(priv)) {
3510 mddev->new_level = mddev->level;
3511 mddev->new_layout = mddev->layout;
3512 mddev->new_chunk_sectors = mddev->chunk_sectors;
3513 mddev->raid_disks -= mddev->delta_disks;
3514 mddev->delta_disks = 0;
3515 mddev->reshape_backwards = 0;
3516 module_put(pers->owner);
3517 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3518 mdname(mddev), clevel);
3519 return PTR_ERR(priv);
3520 }
3521
3522 /* Looks like we have a winner */
3523 mddev_suspend(mddev);
3524 mddev->pers->stop(mddev);
3525
3526 if (mddev->pers->sync_request == NULL &&
3527 pers->sync_request != NULL) {
3528 /* need to add the md_redundancy_group */
3529 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3530 printk(KERN_WARNING
3531 "md: cannot register extra attributes for %s\n",
3532 mdname(mddev));
3533 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3534 }
3535 if (mddev->pers->sync_request != NULL &&
3536 pers->sync_request == NULL) {
3537 /* need to remove the md_redundancy_group */
3538 if (mddev->to_remove == NULL)
3539 mddev->to_remove = &md_redundancy_group;
3540 }
3541
3542 if (mddev->pers->sync_request == NULL &&
3543 mddev->external) {
3544 /* We are converting from a no-redundancy array
3545 * to a redundancy array and metadata is managed
3546 * externally so we need to be sure that writes
3547 * won't block due to a need to transition
3548 * clean->dirty
3549 * until external management is started.
3550 */
3551 mddev->in_sync = 0;
3552 mddev->safemode_delay = 0;
3553 mddev->safemode = 0;
3554 }
3555
3556 rdev_for_each(rdev, mddev) {
3557 if (rdev->raid_disk < 0)
3558 continue;
3559 if (rdev->new_raid_disk >= mddev->raid_disks)
3560 rdev->new_raid_disk = -1;
3561 if (rdev->new_raid_disk == rdev->raid_disk)
3562 continue;
3563 sysfs_unlink_rdev(mddev, rdev);
3564 }
3565 rdev_for_each(rdev, mddev) {
3566 if (rdev->raid_disk < 0)
3567 continue;
3568 if (rdev->new_raid_disk == rdev->raid_disk)
3569 continue;
3570 rdev->raid_disk = rdev->new_raid_disk;
3571 if (rdev->raid_disk < 0)
3572 clear_bit(In_sync, &rdev->flags);
3573 else {
3574 if (sysfs_link_rdev(mddev, rdev))
3575 printk(KERN_WARNING "md: cannot register rd%d"
3576 " for %s after level change\n",
3577 rdev->raid_disk, mdname(mddev));
3578 }
3579 }
3580
3581 module_put(mddev->pers->owner);
3582 mddev->pers = pers;
3583 mddev->private = priv;
3584 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3585 mddev->level = mddev->new_level;
3586 mddev->layout = mddev->new_layout;
3587 mddev->chunk_sectors = mddev->new_chunk_sectors;
3588 mddev->delta_disks = 0;
3589 mddev->reshape_backwards = 0;
3590 mddev->degraded = 0;
3591 if (mddev->pers->sync_request == NULL) {
3592 /* this is now an array without redundancy, so
3593 * it must always be in_sync
3594 */
3595 mddev->in_sync = 1;
3596 del_timer_sync(&mddev->safemode_timer);
3597 }
3598 blk_set_stacking_limits(&mddev->queue->limits);
3599 pers->run(mddev);
3600 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3601 mddev_resume(mddev);
3602 if (!mddev->thread)
3603 md_update_sb(mddev, 1);
3604 sysfs_notify(&mddev->kobj, NULL, "level");
3605 md_new_event(mddev);
3606 return rv;
3607 }
3608
3609 static struct md_sysfs_entry md_level =
3610 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3611
3612
3613 static ssize_t
3614 layout_show(struct mddev *mddev, char *page)
3615 {
3616 /* just a number, not meaningful for all levels */
3617 if (mddev->reshape_position != MaxSector &&
3618 mddev->layout != mddev->new_layout)
3619 return sprintf(page, "%d (%d)\n",
3620 mddev->new_layout, mddev->layout);
3621 return sprintf(page, "%d\n", mddev->layout);
3622 }
3623
3624 static ssize_t
3625 layout_store(struct mddev *mddev, const char *buf, size_t len)
3626 {
3627 char *e;
3628 unsigned long n = simple_strtoul(buf, &e, 10);
3629
3630 if (!*buf || (*e && *e != '\n'))
3631 return -EINVAL;
3632
3633 if (mddev->pers) {
3634 int err;
3635 if (mddev->pers->check_reshape == NULL)
3636 return -EBUSY;
3637 mddev->new_layout = n;
3638 err = mddev->pers->check_reshape(mddev);
3639 if (err) {
3640 mddev->new_layout = mddev->layout;
3641 return err;
3642 }
3643 } else {
3644 mddev->new_layout = n;
3645 if (mddev->reshape_position == MaxSector)
3646 mddev->layout = n;
3647 }
3648 return len;
3649 }
3650 static struct md_sysfs_entry md_layout =
3651 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3652
3653
3654 static ssize_t
3655 raid_disks_show(struct mddev *mddev, char *page)
3656 {
3657 if (mddev->raid_disks == 0)
3658 return 0;
3659 if (mddev->reshape_position != MaxSector &&
3660 mddev->delta_disks != 0)
3661 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3662 mddev->raid_disks - mddev->delta_disks);
3663 return sprintf(page, "%d\n", mddev->raid_disks);
3664 }
3665
3666 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3667
3668 static ssize_t
3669 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3670 {
3671 char *e;
3672 int rv = 0;
3673 unsigned long n = simple_strtoul(buf, &e, 10);
3674
3675 if (!*buf || (*e && *e != '\n'))
3676 return -EINVAL;
3677
3678 if (mddev->pers)
3679 rv = update_raid_disks(mddev, n);
3680 else if (mddev->reshape_position != MaxSector) {
3681 struct md_rdev *rdev;
3682 int olddisks = mddev->raid_disks - mddev->delta_disks;
3683
3684 rdev_for_each(rdev, mddev) {
3685 if (olddisks < n &&
3686 rdev->data_offset < rdev->new_data_offset)
3687 return -EINVAL;
3688 if (olddisks > n &&
3689 rdev->data_offset > rdev->new_data_offset)
3690 return -EINVAL;
3691 }
3692 mddev->delta_disks = n - olddisks;
3693 mddev->raid_disks = n;
3694 mddev->reshape_backwards = (mddev->delta_disks < 0);
3695 } else
3696 mddev->raid_disks = n;
3697 return rv ? rv : len;
3698 }
3699 static struct md_sysfs_entry md_raid_disks =
3700 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3701
3702 static ssize_t
3703 chunk_size_show(struct mddev *mddev, char *page)
3704 {
3705 if (mddev->reshape_position != MaxSector &&
3706 mddev->chunk_sectors != mddev->new_chunk_sectors)
3707 return sprintf(page, "%d (%d)\n",
3708 mddev->new_chunk_sectors << 9,
3709 mddev->chunk_sectors << 9);
3710 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3711 }
3712
3713 static ssize_t
3714 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3715 {
3716 char *e;
3717 unsigned long n = simple_strtoul(buf, &e, 10);
3718
3719 if (!*buf || (*e && *e != '\n'))
3720 return -EINVAL;
3721
3722 if (mddev->pers) {
3723 int err;
3724 if (mddev->pers->check_reshape == NULL)
3725 return -EBUSY;
3726 mddev->new_chunk_sectors = n >> 9;
3727 err = mddev->pers->check_reshape(mddev);
3728 if (err) {
3729 mddev->new_chunk_sectors = mddev->chunk_sectors;
3730 return err;
3731 }
3732 } else {
3733 mddev->new_chunk_sectors = n >> 9;
3734 if (mddev->reshape_position == MaxSector)
3735 mddev->chunk_sectors = n >> 9;
3736 }
3737 return len;
3738 }
3739 static struct md_sysfs_entry md_chunk_size =
3740 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3741
3742 static ssize_t
3743 resync_start_show(struct mddev *mddev, char *page)
3744 {
3745 if (mddev->recovery_cp == MaxSector)
3746 return sprintf(page, "none\n");
3747 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3748 }
3749
3750 static ssize_t
3751 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3752 {
3753 char *e;
3754 unsigned long long n = simple_strtoull(buf, &e, 10);
3755
3756 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3757 return -EBUSY;
3758 if (cmd_match(buf, "none"))
3759 n = MaxSector;
3760 else if (!*buf || (*e && *e != '\n'))
3761 return -EINVAL;
3762
3763 mddev->recovery_cp = n;
3764 if (mddev->pers)
3765 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3766 return len;
3767 }
3768 static struct md_sysfs_entry md_resync_start =
3769 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3770
3771 /*
3772 * The array state can be:
3773 *
3774 * clear
3775 * No devices, no size, no level
3776 * Equivalent to STOP_ARRAY ioctl
3777 * inactive
3778 * May have some settings, but array is not active
3779 * all IO results in error
3780 * When written, doesn't tear down array, but just stops it
3781 * suspended (not supported yet)
3782 * All IO requests will block. The array can be reconfigured.
3783 * Writing this, if accepted, will block until array is quiescent
3784 * readonly
3785 * no resync can happen. no superblocks get written.
3786 * write requests fail
3787 * read-auto
3788 * like readonly, but behaves like 'clean' on a write request.
3789 *
3790 * clean - no pending writes, but otherwise active.
3791 * When written to inactive array, starts without resync
3792 * If a write request arrives then
3793 * if metadata is known, mark 'dirty' and switch to 'active'.
3794 * if not known, block and switch to write-pending
3795 * If written to an active array that has pending writes, then fails.
3796 * active
3797 * fully active: IO and resync can be happening.
3798 * When written to inactive array, starts with resync
3799 *
3800 * write-pending
3801 * clean, but writes are blocked waiting for 'active' to be written.
3802 *
3803 * active-idle
3804 * like active, but no writes have been seen for a while (100msec).
3805 *
3806 */
3807 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3808 write_pending, active_idle, bad_word};
3809 static char *array_states[] = {
3810 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3811 "write-pending", "active-idle", NULL };
3812
3813 static int match_word(const char *word, char **list)
3814 {
3815 int n;
3816 for (n=0; list[n]; n++)
3817 if (cmd_match(word, list[n]))
3818 break;
3819 return n;
3820 }
3821
3822 static ssize_t
3823 array_state_show(struct mddev *mddev, char *page)
3824 {
3825 enum array_state st = inactive;
3826
3827 if (mddev->pers)
3828 switch(mddev->ro) {
3829 case 1:
3830 st = readonly;
3831 break;
3832 case 2:
3833 st = read_auto;
3834 break;
3835 case 0:
3836 if (mddev->in_sync)
3837 st = clean;
3838 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3839 st = write_pending;
3840 else if (mddev->safemode)
3841 st = active_idle;
3842 else
3843 st = active;
3844 }
3845 else {
3846 if (list_empty(&mddev->disks) &&
3847 mddev->raid_disks == 0 &&
3848 mddev->dev_sectors == 0)
3849 st = clear;
3850 else
3851 st = inactive;
3852 }
3853 return sprintf(page, "%s\n", array_states[st]);
3854 }
3855
3856 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3857 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3858 static int do_md_run(struct mddev * mddev);
3859 static int restart_array(struct mddev *mddev);
3860
3861 static ssize_t
3862 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3863 {
3864 int err = -EINVAL;
3865 enum array_state st = match_word(buf, array_states);
3866 switch(st) {
3867 case bad_word:
3868 break;
3869 case clear:
3870 /* stopping an active array */
3871 err = do_md_stop(mddev, 0, NULL);
3872 break;
3873 case inactive:
3874 /* stopping an active array */
3875 if (mddev->pers)
3876 err = do_md_stop(mddev, 2, NULL);
3877 else
3878 err = 0; /* already inactive */
3879 break;
3880 case suspended:
3881 break; /* not supported yet */
3882 case readonly:
3883 if (mddev->pers)
3884 err = md_set_readonly(mddev, NULL);
3885 else {
3886 mddev->ro = 1;
3887 set_disk_ro(mddev->gendisk, 1);
3888 err = do_md_run(mddev);
3889 }
3890 break;
3891 case read_auto:
3892 if (mddev->pers) {
3893 if (mddev->ro == 0)
3894 err = md_set_readonly(mddev, NULL);
3895 else if (mddev->ro == 1)
3896 err = restart_array(mddev);
3897 if (err == 0) {
3898 mddev->ro = 2;
3899 set_disk_ro(mddev->gendisk, 0);
3900 }
3901 } else {
3902 mddev->ro = 2;
3903 err = do_md_run(mddev);
3904 }
3905 break;
3906 case clean:
3907 if (mddev->pers) {
3908 restart_array(mddev);
3909 spin_lock_irq(&mddev->write_lock);
3910 if (atomic_read(&mddev->writes_pending) == 0) {
3911 if (mddev->in_sync == 0) {
3912 mddev->in_sync = 1;
3913 if (mddev->safemode == 1)
3914 mddev->safemode = 0;
3915 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3916 }
3917 err = 0;
3918 } else
3919 err = -EBUSY;
3920 spin_unlock_irq(&mddev->write_lock);
3921 } else
3922 err = -EINVAL;
3923 break;
3924 case active:
3925 if (mddev->pers) {
3926 restart_array(mddev);
3927 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3928 wake_up(&mddev->sb_wait);
3929 err = 0;
3930 } else {
3931 mddev->ro = 0;
3932 set_disk_ro(mddev->gendisk, 0);
3933 err = do_md_run(mddev);
3934 }
3935 break;
3936 case write_pending:
3937 case active_idle:
3938 /* these cannot be set */
3939 break;
3940 }
3941 if (err)
3942 return err;
3943 else {
3944 if (mddev->hold_active == UNTIL_IOCTL)
3945 mddev->hold_active = 0;
3946 sysfs_notify_dirent_safe(mddev->sysfs_state);
3947 return len;
3948 }
3949 }
3950 static struct md_sysfs_entry md_array_state =
3951 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3952
3953 static ssize_t
3954 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3955 return sprintf(page, "%d\n",
3956 atomic_read(&mddev->max_corr_read_errors));
3957 }
3958
3959 static ssize_t
3960 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3961 {
3962 char *e;
3963 unsigned long n = simple_strtoul(buf, &e, 10);
3964
3965 if (*buf && (*e == 0 || *e == '\n')) {
3966 atomic_set(&mddev->max_corr_read_errors, n);
3967 return len;
3968 }
3969 return -EINVAL;
3970 }
3971
3972 static struct md_sysfs_entry max_corr_read_errors =
3973 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3974 max_corrected_read_errors_store);
3975
3976 static ssize_t
3977 null_show(struct mddev *mddev, char *page)
3978 {
3979 return -EINVAL;
3980 }
3981
3982 static ssize_t
3983 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3984 {
3985 /* buf must be %d:%d\n? giving major and minor numbers */
3986 /* The new device is added to the array.
3987 * If the array has a persistent superblock, we read the
3988 * superblock to initialise info and check validity.
3989 * Otherwise, only checking done is that in bind_rdev_to_array,
3990 * which mainly checks size.
3991 */
3992 char *e;
3993 int major = simple_strtoul(buf, &e, 10);
3994 int minor;
3995 dev_t dev;
3996 struct md_rdev *rdev;
3997 int err;
3998
3999 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4000 return -EINVAL;
4001 minor = simple_strtoul(e+1, &e, 10);
4002 if (*e && *e != '\n')
4003 return -EINVAL;
4004 dev = MKDEV(major, minor);
4005 if (major != MAJOR(dev) ||
4006 minor != MINOR(dev))
4007 return -EOVERFLOW;
4008
4009
4010 if (mddev->persistent) {
4011 rdev = md_import_device(dev, mddev->major_version,
4012 mddev->minor_version);
4013 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4014 struct md_rdev *rdev0
4015 = list_entry(mddev->disks.next,
4016 struct md_rdev, same_set);
4017 err = super_types[mddev->major_version]
4018 .load_super(rdev, rdev0, mddev->minor_version);
4019 if (err < 0)
4020 goto out;
4021 }
4022 } else if (mddev->external)
4023 rdev = md_import_device(dev, -2, -1);
4024 else
4025 rdev = md_import_device(dev, -1, -1);
4026
4027 if (IS_ERR(rdev))
4028 return PTR_ERR(rdev);
4029 err = bind_rdev_to_array(rdev, mddev);
4030 out:
4031 if (err)
4032 export_rdev(rdev);
4033 return err ? err : len;
4034 }
4035
4036 static struct md_sysfs_entry md_new_device =
4037 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4038
4039 static ssize_t
4040 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4041 {
4042 char *end;
4043 unsigned long chunk, end_chunk;
4044
4045 if (!mddev->bitmap)
4046 goto out;
4047 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4048 while (*buf) {
4049 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4050 if (buf == end) break;
4051 if (*end == '-') { /* range */
4052 buf = end + 1;
4053 end_chunk = simple_strtoul(buf, &end, 0);
4054 if (buf == end) break;
4055 }
4056 if (*end && !isspace(*end)) break;
4057 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4058 buf = skip_spaces(end);
4059 }
4060 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4061 out:
4062 return len;
4063 }
4064
4065 static struct md_sysfs_entry md_bitmap =
4066 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4067
4068 static ssize_t
4069 size_show(struct mddev *mddev, char *page)
4070 {
4071 return sprintf(page, "%llu\n",
4072 (unsigned long long)mddev->dev_sectors / 2);
4073 }
4074
4075 static int update_size(struct mddev *mddev, sector_t num_sectors);
4076
4077 static ssize_t
4078 size_store(struct mddev *mddev, const char *buf, size_t len)
4079 {
4080 /* If array is inactive, we can reduce the component size, but
4081 * not increase it (except from 0).
4082 * If array is active, we can try an on-line resize
4083 */
4084 sector_t sectors;
4085 int err = strict_blocks_to_sectors(buf, &sectors);
4086
4087 if (err < 0)
4088 return err;
4089 if (mddev->pers) {
4090 err = update_size(mddev, sectors);
4091 md_update_sb(mddev, 1);
4092 } else {
4093 if (mddev->dev_sectors == 0 ||
4094 mddev->dev_sectors > sectors)
4095 mddev->dev_sectors = sectors;
4096 else
4097 err = -ENOSPC;
4098 }
4099 return err ? err : len;
4100 }
4101
4102 static struct md_sysfs_entry md_size =
4103 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4104
4105
4106 /* Metadata version.
4107 * This is one of
4108 * 'none' for arrays with no metadata (good luck...)
4109 * 'external' for arrays with externally managed metadata,
4110 * or N.M for internally known formats
4111 */
4112 static ssize_t
4113 metadata_show(struct mddev *mddev, char *page)
4114 {
4115 if (mddev->persistent)
4116 return sprintf(page, "%d.%d\n",
4117 mddev->major_version, mddev->minor_version);
4118 else if (mddev->external)
4119 return sprintf(page, "external:%s\n", mddev->metadata_type);
4120 else
4121 return sprintf(page, "none\n");
4122 }
4123
4124 static ssize_t
4125 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4126 {
4127 int major, minor;
4128 char *e;
4129 /* Changing the details of 'external' metadata is
4130 * always permitted. Otherwise there must be
4131 * no devices attached to the array.
4132 */
4133 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4134 ;
4135 else if (!list_empty(&mddev->disks))
4136 return -EBUSY;
4137
4138 if (cmd_match(buf, "none")) {
4139 mddev->persistent = 0;
4140 mddev->external = 0;
4141 mddev->major_version = 0;
4142 mddev->minor_version = 90;
4143 return len;
4144 }
4145 if (strncmp(buf, "external:", 9) == 0) {
4146 size_t namelen = len-9;
4147 if (namelen >= sizeof(mddev->metadata_type))
4148 namelen = sizeof(mddev->metadata_type)-1;
4149 strncpy(mddev->metadata_type, buf+9, namelen);
4150 mddev->metadata_type[namelen] = 0;
4151 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4152 mddev->metadata_type[--namelen] = 0;
4153 mddev->persistent = 0;
4154 mddev->external = 1;
4155 mddev->major_version = 0;
4156 mddev->minor_version = 90;
4157 return len;
4158 }
4159 major = simple_strtoul(buf, &e, 10);
4160 if (e==buf || *e != '.')
4161 return -EINVAL;
4162 buf = e+1;
4163 minor = simple_strtoul(buf, &e, 10);
4164 if (e==buf || (*e && *e != '\n') )
4165 return -EINVAL;
4166 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4167 return -ENOENT;
4168 mddev->major_version = major;
4169 mddev->minor_version = minor;
4170 mddev->persistent = 1;
4171 mddev->external = 0;
4172 return len;
4173 }
4174
4175 static struct md_sysfs_entry md_metadata =
4176 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4177
4178 static ssize_t
4179 action_show(struct mddev *mddev, char *page)
4180 {
4181 char *type = "idle";
4182 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4183 type = "frozen";
4184 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4185 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4186 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4187 type = "reshape";
4188 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4189 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4190 type = "resync";
4191 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4192 type = "check";
4193 else
4194 type = "repair";
4195 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4196 type = "recover";
4197 }
4198 return sprintf(page, "%s\n", type);
4199 }
4200
4201 static ssize_t
4202 action_store(struct mddev *mddev, const char *page, size_t len)
4203 {
4204 if (!mddev->pers || !mddev->pers->sync_request)
4205 return -EINVAL;
4206
4207 if (cmd_match(page, "frozen"))
4208 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4209 else
4210 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4211
4212 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4213 if (mddev->sync_thread) {
4214 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4215 md_reap_sync_thread(mddev);
4216 }
4217 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4218 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4219 return -EBUSY;
4220 else if (cmd_match(page, "resync"))
4221 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4222 else if (cmd_match(page, "recover")) {
4223 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4224 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4225 } else if (cmd_match(page, "reshape")) {
4226 int err;
4227 if (mddev->pers->start_reshape == NULL)
4228 return -EINVAL;
4229 err = mddev->pers->start_reshape(mddev);
4230 if (err)
4231 return err;
4232 sysfs_notify(&mddev->kobj, NULL, "degraded");
4233 } else {
4234 if (cmd_match(page, "check"))
4235 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4236 else if (!cmd_match(page, "repair"))
4237 return -EINVAL;
4238 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4239 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4240 }
4241 if (mddev->ro == 2) {
4242 /* A write to sync_action is enough to justify
4243 * canceling read-auto mode
4244 */
4245 mddev->ro = 0;
4246 md_wakeup_thread(mddev->sync_thread);
4247 }
4248 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4249 md_wakeup_thread(mddev->thread);
4250 sysfs_notify_dirent_safe(mddev->sysfs_action);
4251 return len;
4252 }
4253
4254 static struct md_sysfs_entry md_scan_mode =
4255 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4256
4257 static ssize_t
4258 last_sync_action_show(struct mddev *mddev, char *page)
4259 {
4260 return sprintf(page, "%s\n", mddev->last_sync_action);
4261 }
4262
4263 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4264
4265 static ssize_t
4266 mismatch_cnt_show(struct mddev *mddev, char *page)
4267 {
4268 return sprintf(page, "%llu\n",
4269 (unsigned long long)
4270 atomic64_read(&mddev->resync_mismatches));
4271 }
4272
4273 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4274
4275 static ssize_t
4276 sync_min_show(struct mddev *mddev, char *page)
4277 {
4278 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4279 mddev->sync_speed_min ? "local": "system");
4280 }
4281
4282 static ssize_t
4283 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4284 {
4285 int min;
4286 char *e;
4287 if (strncmp(buf, "system", 6)==0) {
4288 mddev->sync_speed_min = 0;
4289 return len;
4290 }
4291 min = simple_strtoul(buf, &e, 10);
4292 if (buf == e || (*e && *e != '\n') || min <= 0)
4293 return -EINVAL;
4294 mddev->sync_speed_min = min;
4295 return len;
4296 }
4297
4298 static struct md_sysfs_entry md_sync_min =
4299 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4300
4301 static ssize_t
4302 sync_max_show(struct mddev *mddev, char *page)
4303 {
4304 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4305 mddev->sync_speed_max ? "local": "system");
4306 }
4307
4308 static ssize_t
4309 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4310 {
4311 int max;
4312 char *e;
4313 if (strncmp(buf, "system", 6)==0) {
4314 mddev->sync_speed_max = 0;
4315 return len;
4316 }
4317 max = simple_strtoul(buf, &e, 10);
4318 if (buf == e || (*e && *e != '\n') || max <= 0)
4319 return -EINVAL;
4320 mddev->sync_speed_max = max;
4321 return len;
4322 }
4323
4324 static struct md_sysfs_entry md_sync_max =
4325 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4326
4327 static ssize_t
4328 degraded_show(struct mddev *mddev, char *page)
4329 {
4330 return sprintf(page, "%d\n", mddev->degraded);
4331 }
4332 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4333
4334 static ssize_t
4335 sync_force_parallel_show(struct mddev *mddev, char *page)
4336 {
4337 return sprintf(page, "%d\n", mddev->parallel_resync);
4338 }
4339
4340 static ssize_t
4341 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4342 {
4343 long n;
4344
4345 if (kstrtol(buf, 10, &n))
4346 return -EINVAL;
4347
4348 if (n != 0 && n != 1)
4349 return -EINVAL;
4350
4351 mddev->parallel_resync = n;
4352
4353 if (mddev->sync_thread)
4354 wake_up(&resync_wait);
4355
4356 return len;
4357 }
4358
4359 /* force parallel resync, even with shared block devices */
4360 static struct md_sysfs_entry md_sync_force_parallel =
4361 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4362 sync_force_parallel_show, sync_force_parallel_store);
4363
4364 static ssize_t
4365 sync_speed_show(struct mddev *mddev, char *page)
4366 {
4367 unsigned long resync, dt, db;
4368 if (mddev->curr_resync == 0)
4369 return sprintf(page, "none\n");
4370 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4371 dt = (jiffies - mddev->resync_mark) / HZ;
4372 if (!dt) dt++;
4373 db = resync - mddev->resync_mark_cnt;
4374 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4375 }
4376
4377 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4378
4379 static ssize_t
4380 sync_completed_show(struct mddev *mddev, char *page)
4381 {
4382 unsigned long long max_sectors, resync;
4383
4384 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4385 return sprintf(page, "none\n");
4386
4387 if (mddev->curr_resync == 1 ||
4388 mddev->curr_resync == 2)
4389 return sprintf(page, "delayed\n");
4390
4391 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4392 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4393 max_sectors = mddev->resync_max_sectors;
4394 else
4395 max_sectors = mddev->dev_sectors;
4396
4397 resync = mddev->curr_resync_completed;
4398 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4399 }
4400
4401 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4402
4403 static ssize_t
4404 min_sync_show(struct mddev *mddev, char *page)
4405 {
4406 return sprintf(page, "%llu\n",
4407 (unsigned long long)mddev->resync_min);
4408 }
4409 static ssize_t
4410 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4411 {
4412 unsigned long long min;
4413 if (kstrtoull(buf, 10, &min))
4414 return -EINVAL;
4415 if (min > mddev->resync_max)
4416 return -EINVAL;
4417 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4418 return -EBUSY;
4419
4420 /* Must be a multiple of chunk_size */
4421 if (mddev->chunk_sectors) {
4422 sector_t temp = min;
4423 if (sector_div(temp, mddev->chunk_sectors))
4424 return -EINVAL;
4425 }
4426 mddev->resync_min = min;
4427
4428 return len;
4429 }
4430
4431 static struct md_sysfs_entry md_min_sync =
4432 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4433
4434 static ssize_t
4435 max_sync_show(struct mddev *mddev, char *page)
4436 {
4437 if (mddev->resync_max == MaxSector)
4438 return sprintf(page, "max\n");
4439 else
4440 return sprintf(page, "%llu\n",
4441 (unsigned long long)mddev->resync_max);
4442 }
4443 static ssize_t
4444 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4445 {
4446 if (strncmp(buf, "max", 3) == 0)
4447 mddev->resync_max = MaxSector;
4448 else {
4449 unsigned long long max;
4450 if (kstrtoull(buf, 10, &max))
4451 return -EINVAL;
4452 if (max < mddev->resync_min)
4453 return -EINVAL;
4454 if (max < mddev->resync_max &&
4455 mddev->ro == 0 &&
4456 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4457 return -EBUSY;
4458
4459 /* Must be a multiple of chunk_size */
4460 if (mddev->chunk_sectors) {
4461 sector_t temp = max;
4462 if (sector_div(temp, mddev->chunk_sectors))
4463 return -EINVAL;
4464 }
4465 mddev->resync_max = max;
4466 }
4467 wake_up(&mddev->recovery_wait);
4468 return len;
4469 }
4470
4471 static struct md_sysfs_entry md_max_sync =
4472 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4473
4474 static ssize_t
4475 suspend_lo_show(struct mddev *mddev, char *page)
4476 {
4477 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4478 }
4479
4480 static ssize_t
4481 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4482 {
4483 char *e;
4484 unsigned long long new = simple_strtoull(buf, &e, 10);
4485 unsigned long long old = mddev->suspend_lo;
4486
4487 if (mddev->pers == NULL ||
4488 mddev->pers->quiesce == NULL)
4489 return -EINVAL;
4490 if (buf == e || (*e && *e != '\n'))
4491 return -EINVAL;
4492
4493 mddev->suspend_lo = new;
4494 if (new >= old)
4495 /* Shrinking suspended region */
4496 mddev->pers->quiesce(mddev, 2);
4497 else {
4498 /* Expanding suspended region - need to wait */
4499 mddev->pers->quiesce(mddev, 1);
4500 mddev->pers->quiesce(mddev, 0);
4501 }
4502 return len;
4503 }
4504 static struct md_sysfs_entry md_suspend_lo =
4505 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4506
4507
4508 static ssize_t
4509 suspend_hi_show(struct mddev *mddev, char *page)
4510 {
4511 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4512 }
4513
4514 static ssize_t
4515 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4516 {
4517 char *e;
4518 unsigned long long new = simple_strtoull(buf, &e, 10);
4519 unsigned long long old = mddev->suspend_hi;
4520
4521 if (mddev->pers == NULL ||
4522 mddev->pers->quiesce == NULL)
4523 return -EINVAL;
4524 if (buf == e || (*e && *e != '\n'))
4525 return -EINVAL;
4526
4527 mddev->suspend_hi = new;
4528 if (new <= old)
4529 /* Shrinking suspended region */
4530 mddev->pers->quiesce(mddev, 2);
4531 else {
4532 /* Expanding suspended region - need to wait */
4533 mddev->pers->quiesce(mddev, 1);
4534 mddev->pers->quiesce(mddev, 0);
4535 }
4536 return len;
4537 }
4538 static struct md_sysfs_entry md_suspend_hi =
4539 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4540
4541 static ssize_t
4542 reshape_position_show(struct mddev *mddev, char *page)
4543 {
4544 if (mddev->reshape_position != MaxSector)
4545 return sprintf(page, "%llu\n",
4546 (unsigned long long)mddev->reshape_position);
4547 strcpy(page, "none\n");
4548 return 5;
4549 }
4550
4551 static ssize_t
4552 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4553 {
4554 struct md_rdev *rdev;
4555 char *e;
4556 unsigned long long new = simple_strtoull(buf, &e, 10);
4557 if (mddev->pers)
4558 return -EBUSY;
4559 if (buf == e || (*e && *e != '\n'))
4560 return -EINVAL;
4561 mddev->reshape_position = new;
4562 mddev->delta_disks = 0;
4563 mddev->reshape_backwards = 0;
4564 mddev->new_level = mddev->level;
4565 mddev->new_layout = mddev->layout;
4566 mddev->new_chunk_sectors = mddev->chunk_sectors;
4567 rdev_for_each(rdev, mddev)
4568 rdev->new_data_offset = rdev->data_offset;
4569 return len;
4570 }
4571
4572 static struct md_sysfs_entry md_reshape_position =
4573 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4574 reshape_position_store);
4575
4576 static ssize_t
4577 reshape_direction_show(struct mddev *mddev, char *page)
4578 {
4579 return sprintf(page, "%s\n",
4580 mddev->reshape_backwards ? "backwards" : "forwards");
4581 }
4582
4583 static ssize_t
4584 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4585 {
4586 int backwards = 0;
4587 if (cmd_match(buf, "forwards"))
4588 backwards = 0;
4589 else if (cmd_match(buf, "backwards"))
4590 backwards = 1;
4591 else
4592 return -EINVAL;
4593 if (mddev->reshape_backwards == backwards)
4594 return len;
4595
4596 /* check if we are allowed to change */
4597 if (mddev->delta_disks)
4598 return -EBUSY;
4599
4600 if (mddev->persistent &&
4601 mddev->major_version == 0)
4602 return -EINVAL;
4603
4604 mddev->reshape_backwards = backwards;
4605 return len;
4606 }
4607
4608 static struct md_sysfs_entry md_reshape_direction =
4609 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4610 reshape_direction_store);
4611
4612 static ssize_t
4613 array_size_show(struct mddev *mddev, char *page)
4614 {
4615 if (mddev->external_size)
4616 return sprintf(page, "%llu\n",
4617 (unsigned long long)mddev->array_sectors/2);
4618 else
4619 return sprintf(page, "default\n");
4620 }
4621
4622 static ssize_t
4623 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4624 {
4625 sector_t sectors;
4626
4627 if (strncmp(buf, "default", 7) == 0) {
4628 if (mddev->pers)
4629 sectors = mddev->pers->size(mddev, 0, 0);
4630 else
4631 sectors = mddev->array_sectors;
4632
4633 mddev->external_size = 0;
4634 } else {
4635 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4636 return -EINVAL;
4637 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4638 return -E2BIG;
4639
4640 mddev->external_size = 1;
4641 }
4642
4643 mddev->array_sectors = sectors;
4644 if (mddev->pers) {
4645 set_capacity(mddev->gendisk, mddev->array_sectors);
4646 revalidate_disk(mddev->gendisk);
4647 }
4648 return len;
4649 }
4650
4651 static struct md_sysfs_entry md_array_size =
4652 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4653 array_size_store);
4654
4655 static struct attribute *md_default_attrs[] = {
4656 &md_level.attr,
4657 &md_layout.attr,
4658 &md_raid_disks.attr,
4659 &md_chunk_size.attr,
4660 &md_size.attr,
4661 &md_resync_start.attr,
4662 &md_metadata.attr,
4663 &md_new_device.attr,
4664 &md_safe_delay.attr,
4665 &md_array_state.attr,
4666 &md_reshape_position.attr,
4667 &md_reshape_direction.attr,
4668 &md_array_size.attr,
4669 &max_corr_read_errors.attr,
4670 NULL,
4671 };
4672
4673 static struct attribute *md_redundancy_attrs[] = {
4674 &md_scan_mode.attr,
4675 &md_last_scan_mode.attr,
4676 &md_mismatches.attr,
4677 &md_sync_min.attr,
4678 &md_sync_max.attr,
4679 &md_sync_speed.attr,
4680 &md_sync_force_parallel.attr,
4681 &md_sync_completed.attr,
4682 &md_min_sync.attr,
4683 &md_max_sync.attr,
4684 &md_suspend_lo.attr,
4685 &md_suspend_hi.attr,
4686 &md_bitmap.attr,
4687 &md_degraded.attr,
4688 NULL,
4689 };
4690 static struct attribute_group md_redundancy_group = {
4691 .name = NULL,
4692 .attrs = md_redundancy_attrs,
4693 };
4694
4695
4696 static ssize_t
4697 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4698 {
4699 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4700 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4701 ssize_t rv;
4702
4703 if (!entry->show)
4704 return -EIO;
4705 spin_lock(&all_mddevs_lock);
4706 if (list_empty(&mddev->all_mddevs)) {
4707 spin_unlock(&all_mddevs_lock);
4708 return -EBUSY;
4709 }
4710 mddev_get(mddev);
4711 spin_unlock(&all_mddevs_lock);
4712
4713 rv = mddev_lock(mddev);
4714 if (!rv) {
4715 rv = entry->show(mddev, page);
4716 mddev_unlock(mddev);
4717 }
4718 mddev_put(mddev);
4719 return rv;
4720 }
4721
4722 static ssize_t
4723 md_attr_store(struct kobject *kobj, struct attribute *attr,
4724 const char *page, size_t length)
4725 {
4726 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4727 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4728 ssize_t rv;
4729
4730 if (!entry->store)
4731 return -EIO;
4732 if (!capable(CAP_SYS_ADMIN))
4733 return -EACCES;
4734 spin_lock(&all_mddevs_lock);
4735 if (list_empty(&mddev->all_mddevs)) {
4736 spin_unlock(&all_mddevs_lock);
4737 return -EBUSY;
4738 }
4739 mddev_get(mddev);
4740 spin_unlock(&all_mddevs_lock);
4741 if (entry->store == new_dev_store)
4742 flush_workqueue(md_misc_wq);
4743 rv = mddev_lock(mddev);
4744 if (!rv) {
4745 rv = entry->store(mddev, page, length);
4746 mddev_unlock(mddev);
4747 }
4748 mddev_put(mddev);
4749 return rv;
4750 }
4751
4752 static void md_free(struct kobject *ko)
4753 {
4754 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4755
4756 if (mddev->sysfs_state)
4757 sysfs_put(mddev->sysfs_state);
4758
4759 if (mddev->gendisk) {
4760 del_gendisk(mddev->gendisk);
4761 put_disk(mddev->gendisk);
4762 }
4763 if (mddev->queue)
4764 blk_cleanup_queue(mddev->queue);
4765
4766 kfree(mddev);
4767 }
4768
4769 static const struct sysfs_ops md_sysfs_ops = {
4770 .show = md_attr_show,
4771 .store = md_attr_store,
4772 };
4773 static struct kobj_type md_ktype = {
4774 .release = md_free,
4775 .sysfs_ops = &md_sysfs_ops,
4776 .default_attrs = md_default_attrs,
4777 };
4778
4779 int mdp_major = 0;
4780
4781 static void mddev_delayed_delete(struct work_struct *ws)
4782 {
4783 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4784
4785 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4786 kobject_del(&mddev->kobj);
4787 kobject_put(&mddev->kobj);
4788 }
4789
4790 static int md_alloc(dev_t dev, char *name)
4791 {
4792 static DEFINE_MUTEX(disks_mutex);
4793 struct mddev *mddev = mddev_find(dev);
4794 struct gendisk *disk;
4795 int partitioned;
4796 int shift;
4797 int unit;
4798 int error;
4799
4800 if (!mddev)
4801 return -ENODEV;
4802
4803 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4804 shift = partitioned ? MdpMinorShift : 0;
4805 unit = MINOR(mddev->unit) >> shift;
4806
4807 /* wait for any previous instance of this device to be
4808 * completely removed (mddev_delayed_delete).
4809 */
4810 flush_workqueue(md_misc_wq);
4811
4812 mutex_lock(&disks_mutex);
4813 error = -EEXIST;
4814 if (mddev->gendisk)
4815 goto abort;
4816
4817 if (name) {
4818 /* Need to ensure that 'name' is not a duplicate.
4819 */
4820 struct mddev *mddev2;
4821 spin_lock(&all_mddevs_lock);
4822
4823 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4824 if (mddev2->gendisk &&
4825 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4826 spin_unlock(&all_mddevs_lock);
4827 goto abort;
4828 }
4829 spin_unlock(&all_mddevs_lock);
4830 }
4831
4832 error = -ENOMEM;
4833 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4834 if (!mddev->queue)
4835 goto abort;
4836 mddev->queue->queuedata = mddev;
4837
4838 blk_queue_make_request(mddev->queue, md_make_request);
4839 blk_set_stacking_limits(&mddev->queue->limits);
4840
4841 disk = alloc_disk(1 << shift);
4842 if (!disk) {
4843 blk_cleanup_queue(mddev->queue);
4844 mddev->queue = NULL;
4845 goto abort;
4846 }
4847 disk->major = MAJOR(mddev->unit);
4848 disk->first_minor = unit << shift;
4849 if (name)
4850 strcpy(disk->disk_name, name);
4851 else if (partitioned)
4852 sprintf(disk->disk_name, "md_d%d", unit);
4853 else
4854 sprintf(disk->disk_name, "md%d", unit);
4855 disk->fops = &md_fops;
4856 disk->private_data = mddev;
4857 disk->queue = mddev->queue;
4858 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4859 /* Allow extended partitions. This makes the
4860 * 'mdp' device redundant, but we can't really
4861 * remove it now.
4862 */
4863 disk->flags |= GENHD_FL_EXT_DEVT;
4864 mddev->gendisk = disk;
4865 /* As soon as we call add_disk(), another thread could get
4866 * through to md_open, so make sure it doesn't get too far
4867 */
4868 mutex_lock(&mddev->open_mutex);
4869 add_disk(disk);
4870
4871 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4872 &disk_to_dev(disk)->kobj, "%s", "md");
4873 if (error) {
4874 /* This isn't possible, but as kobject_init_and_add is marked
4875 * __must_check, we must do something with the result
4876 */
4877 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4878 disk->disk_name);
4879 error = 0;
4880 }
4881 if (mddev->kobj.sd &&
4882 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4883 printk(KERN_DEBUG "pointless warning\n");
4884 mutex_unlock(&mddev->open_mutex);
4885 abort:
4886 mutex_unlock(&disks_mutex);
4887 if (!error && mddev->kobj.sd) {
4888 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4889 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4890 }
4891 mddev_put(mddev);
4892 return error;
4893 }
4894
4895 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4896 {
4897 md_alloc(dev, NULL);
4898 return NULL;
4899 }
4900
4901 static int add_named_array(const char *val, struct kernel_param *kp)
4902 {
4903 /* val must be "md_*" where * is not all digits.
4904 * We allocate an array with a large free minor number, and
4905 * set the name to val. val must not already be an active name.
4906 */
4907 int len = strlen(val);
4908 char buf[DISK_NAME_LEN];
4909
4910 while (len && val[len-1] == '\n')
4911 len--;
4912 if (len >= DISK_NAME_LEN)
4913 return -E2BIG;
4914 strlcpy(buf, val, len+1);
4915 if (strncmp(buf, "md_", 3) != 0)
4916 return -EINVAL;
4917 return md_alloc(0, buf);
4918 }
4919
4920 static void md_safemode_timeout(unsigned long data)
4921 {
4922 struct mddev *mddev = (struct mddev *) data;
4923
4924 if (!atomic_read(&mddev->writes_pending)) {
4925 mddev->safemode = 1;
4926 if (mddev->external)
4927 sysfs_notify_dirent_safe(mddev->sysfs_state);
4928 }
4929 md_wakeup_thread(mddev->thread);
4930 }
4931
4932 static int start_dirty_degraded;
4933
4934 int md_run(struct mddev *mddev)
4935 {
4936 int err;
4937 struct md_rdev *rdev;
4938 struct md_personality *pers;
4939
4940 if (list_empty(&mddev->disks))
4941 /* cannot run an array with no devices.. */
4942 return -EINVAL;
4943
4944 if (mddev->pers)
4945 return -EBUSY;
4946 /* Cannot run until previous stop completes properly */
4947 if (mddev->sysfs_active)
4948 return -EBUSY;
4949
4950 /*
4951 * Analyze all RAID superblock(s)
4952 */
4953 if (!mddev->raid_disks) {
4954 if (!mddev->persistent)
4955 return -EINVAL;
4956 analyze_sbs(mddev);
4957 }
4958
4959 if (mddev->level != LEVEL_NONE)
4960 request_module("md-level-%d", mddev->level);
4961 else if (mddev->clevel[0])
4962 request_module("md-%s", mddev->clevel);
4963
4964 /*
4965 * Drop all container device buffers, from now on
4966 * the only valid external interface is through the md
4967 * device.
4968 */
4969 rdev_for_each(rdev, mddev) {
4970 if (test_bit(Faulty, &rdev->flags))
4971 continue;
4972 sync_blockdev(rdev->bdev);
4973 invalidate_bdev(rdev->bdev);
4974
4975 /* perform some consistency tests on the device.
4976 * We don't want the data to overlap the metadata,
4977 * Internal Bitmap issues have been handled elsewhere.
4978 */
4979 if (rdev->meta_bdev) {
4980 /* Nothing to check */;
4981 } else if (rdev->data_offset < rdev->sb_start) {
4982 if (mddev->dev_sectors &&
4983 rdev->data_offset + mddev->dev_sectors
4984 > rdev->sb_start) {
4985 printk("md: %s: data overlaps metadata\n",
4986 mdname(mddev));
4987 return -EINVAL;
4988 }
4989 } else {
4990 if (rdev->sb_start + rdev->sb_size/512
4991 > rdev->data_offset) {
4992 printk("md: %s: metadata overlaps data\n",
4993 mdname(mddev));
4994 return -EINVAL;
4995 }
4996 }
4997 sysfs_notify_dirent_safe(rdev->sysfs_state);
4998 }
4999
5000 if (mddev->bio_set == NULL)
5001 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5002
5003 spin_lock(&pers_lock);
5004 pers = find_pers(mddev->level, mddev->clevel);
5005 if (!pers || !try_module_get(pers->owner)) {
5006 spin_unlock(&pers_lock);
5007 if (mddev->level != LEVEL_NONE)
5008 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5009 mddev->level);
5010 else
5011 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5012 mddev->clevel);
5013 return -EINVAL;
5014 }
5015 mddev->pers = pers;
5016 spin_unlock(&pers_lock);
5017 if (mddev->level != pers->level) {
5018 mddev->level = pers->level;
5019 mddev->new_level = pers->level;
5020 }
5021 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5022
5023 if (mddev->reshape_position != MaxSector &&
5024 pers->start_reshape == NULL) {
5025 /* This personality cannot handle reshaping... */
5026 mddev->pers = NULL;
5027 module_put(pers->owner);
5028 return -EINVAL;
5029 }
5030
5031 if (pers->sync_request) {
5032 /* Warn if this is a potentially silly
5033 * configuration.
5034 */
5035 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5036 struct md_rdev *rdev2;
5037 int warned = 0;
5038
5039 rdev_for_each(rdev, mddev)
5040 rdev_for_each(rdev2, mddev) {
5041 if (rdev < rdev2 &&
5042 rdev->bdev->bd_contains ==
5043 rdev2->bdev->bd_contains) {
5044 printk(KERN_WARNING
5045 "%s: WARNING: %s appears to be"
5046 " on the same physical disk as"
5047 " %s.\n",
5048 mdname(mddev),
5049 bdevname(rdev->bdev,b),
5050 bdevname(rdev2->bdev,b2));
5051 warned = 1;
5052 }
5053 }
5054
5055 if (warned)
5056 printk(KERN_WARNING
5057 "True protection against single-disk"
5058 " failure might be compromised.\n");
5059 }
5060
5061 mddev->recovery = 0;
5062 /* may be over-ridden by personality */
5063 mddev->resync_max_sectors = mddev->dev_sectors;
5064
5065 mddev->ok_start_degraded = start_dirty_degraded;
5066
5067 if (start_readonly && mddev->ro == 0)
5068 mddev->ro = 2; /* read-only, but switch on first write */
5069
5070 err = mddev->pers->run(mddev);
5071 if (err)
5072 printk(KERN_ERR "md: pers->run() failed ...\n");
5073 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5074 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5075 " but 'external_size' not in effect?\n", __func__);
5076 printk(KERN_ERR
5077 "md: invalid array_size %llu > default size %llu\n",
5078 (unsigned long long)mddev->array_sectors / 2,
5079 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5080 err = -EINVAL;
5081 mddev->pers->stop(mddev);
5082 }
5083 if (err == 0 && mddev->pers->sync_request &&
5084 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5085 err = bitmap_create(mddev);
5086 if (err) {
5087 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5088 mdname(mddev), err);
5089 mddev->pers->stop(mddev);
5090 }
5091 }
5092 if (err) {
5093 module_put(mddev->pers->owner);
5094 mddev->pers = NULL;
5095 bitmap_destroy(mddev);
5096 return err;
5097 }
5098 if (mddev->pers->sync_request) {
5099 if (mddev->kobj.sd &&
5100 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5101 printk(KERN_WARNING
5102 "md: cannot register extra attributes for %s\n",
5103 mdname(mddev));
5104 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5105 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5106 mddev->ro = 0;
5107
5108 atomic_set(&mddev->writes_pending,0);
5109 atomic_set(&mddev->max_corr_read_errors,
5110 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5111 mddev->safemode = 0;
5112 mddev->safemode_timer.function = md_safemode_timeout;
5113 mddev->safemode_timer.data = (unsigned long) mddev;
5114 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5115 mddev->in_sync = 1;
5116 smp_wmb();
5117 mddev->ready = 1;
5118 rdev_for_each(rdev, mddev)
5119 if (rdev->raid_disk >= 0)
5120 if (sysfs_link_rdev(mddev, rdev))
5121 /* failure here is OK */;
5122
5123 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5124
5125 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5126 md_update_sb(mddev, 0);
5127
5128 md_new_event(mddev);
5129 sysfs_notify_dirent_safe(mddev->sysfs_state);
5130 sysfs_notify_dirent_safe(mddev->sysfs_action);
5131 sysfs_notify(&mddev->kobj, NULL, "degraded");
5132 return 0;
5133 }
5134 EXPORT_SYMBOL_GPL(md_run);
5135
5136 static int do_md_run(struct mddev *mddev)
5137 {
5138 int err;
5139
5140 err = md_run(mddev);
5141 if (err)
5142 goto out;
5143 err = bitmap_load(mddev);
5144 if (err) {
5145 bitmap_destroy(mddev);
5146 goto out;
5147 }
5148
5149 md_wakeup_thread(mddev->thread);
5150 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5151
5152 set_capacity(mddev->gendisk, mddev->array_sectors);
5153 revalidate_disk(mddev->gendisk);
5154 mddev->changed = 1;
5155 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5156 out:
5157 return err;
5158 }
5159
5160 static int restart_array(struct mddev *mddev)
5161 {
5162 struct gendisk *disk = mddev->gendisk;
5163
5164 /* Complain if it has no devices */
5165 if (list_empty(&mddev->disks))
5166 return -ENXIO;
5167 if (!mddev->pers)
5168 return -EINVAL;
5169 if (!mddev->ro)
5170 return -EBUSY;
5171 mddev->safemode = 0;
5172 mddev->ro = 0;
5173 set_disk_ro(disk, 0);
5174 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5175 mdname(mddev));
5176 /* Kick recovery or resync if necessary */
5177 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5178 md_wakeup_thread(mddev->thread);
5179 md_wakeup_thread(mddev->sync_thread);
5180 sysfs_notify_dirent_safe(mddev->sysfs_state);
5181 return 0;
5182 }
5183
5184 /* similar to deny_write_access, but accounts for our holding a reference
5185 * to the file ourselves */
5186 static int deny_bitmap_write_access(struct file * file)
5187 {
5188 struct inode *inode = file->f_mapping->host;
5189
5190 spin_lock(&inode->i_lock);
5191 if (atomic_read(&inode->i_writecount) > 1) {
5192 spin_unlock(&inode->i_lock);
5193 return -ETXTBSY;
5194 }
5195 atomic_set(&inode->i_writecount, -1);
5196 spin_unlock(&inode->i_lock);
5197
5198 return 0;
5199 }
5200
5201 void restore_bitmap_write_access(struct file *file)
5202 {
5203 struct inode *inode = file->f_mapping->host;
5204
5205 spin_lock(&inode->i_lock);
5206 atomic_set(&inode->i_writecount, 1);
5207 spin_unlock(&inode->i_lock);
5208 }
5209
5210 static void md_clean(struct mddev *mddev)
5211 {
5212 mddev->array_sectors = 0;
5213 mddev->external_size = 0;
5214 mddev->dev_sectors = 0;
5215 mddev->raid_disks = 0;
5216 mddev->recovery_cp = 0;
5217 mddev->resync_min = 0;
5218 mddev->resync_max = MaxSector;
5219 mddev->reshape_position = MaxSector;
5220 mddev->external = 0;
5221 mddev->persistent = 0;
5222 mddev->level = LEVEL_NONE;
5223 mddev->clevel[0] = 0;
5224 mddev->flags = 0;
5225 mddev->ro = 0;
5226 mddev->metadata_type[0] = 0;
5227 mddev->chunk_sectors = 0;
5228 mddev->ctime = mddev->utime = 0;
5229 mddev->layout = 0;
5230 mddev->max_disks = 0;
5231 mddev->events = 0;
5232 mddev->can_decrease_events = 0;
5233 mddev->delta_disks = 0;
5234 mddev->reshape_backwards = 0;
5235 mddev->new_level = LEVEL_NONE;
5236 mddev->new_layout = 0;
5237 mddev->new_chunk_sectors = 0;
5238 mddev->curr_resync = 0;
5239 atomic64_set(&mddev->resync_mismatches, 0);
5240 mddev->suspend_lo = mddev->suspend_hi = 0;
5241 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5242 mddev->recovery = 0;
5243 mddev->in_sync = 0;
5244 mddev->changed = 0;
5245 mddev->degraded = 0;
5246 mddev->safemode = 0;
5247 mddev->merge_check_needed = 0;
5248 mddev->bitmap_info.offset = 0;
5249 mddev->bitmap_info.default_offset = 0;
5250 mddev->bitmap_info.default_space = 0;
5251 mddev->bitmap_info.chunksize = 0;
5252 mddev->bitmap_info.daemon_sleep = 0;
5253 mddev->bitmap_info.max_write_behind = 0;
5254 }
5255
5256 static void __md_stop_writes(struct mddev *mddev)
5257 {
5258 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5259 if (mddev->sync_thread) {
5260 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5261 md_reap_sync_thread(mddev);
5262 }
5263
5264 del_timer_sync(&mddev->safemode_timer);
5265
5266 bitmap_flush(mddev);
5267 md_super_wait(mddev);
5268
5269 if (mddev->ro == 0 &&
5270 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5271 /* mark array as shutdown cleanly */
5272 mddev->in_sync = 1;
5273 md_update_sb(mddev, 1);
5274 }
5275 }
5276
5277 void md_stop_writes(struct mddev *mddev)
5278 {
5279 mddev_lock_nointr(mddev);
5280 __md_stop_writes(mddev);
5281 mddev_unlock(mddev);
5282 }
5283 EXPORT_SYMBOL_GPL(md_stop_writes);
5284
5285 static void __md_stop(struct mddev *mddev)
5286 {
5287 mddev->ready = 0;
5288 mddev->pers->stop(mddev);
5289 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5290 mddev->to_remove = &md_redundancy_group;
5291 module_put(mddev->pers->owner);
5292 mddev->pers = NULL;
5293 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5294 }
5295
5296 void md_stop(struct mddev *mddev)
5297 {
5298 /* stop the array and free an attached data structures.
5299 * This is called from dm-raid
5300 */
5301 __md_stop(mddev);
5302 bitmap_destroy(mddev);
5303 if (mddev->bio_set)
5304 bioset_free(mddev->bio_set);
5305 }
5306
5307 EXPORT_SYMBOL_GPL(md_stop);
5308
5309 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5310 {
5311 int err = 0;
5312 int did_freeze = 0;
5313
5314 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5315 did_freeze = 1;
5316 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5317 md_wakeup_thread(mddev->thread);
5318 }
5319 if (mddev->sync_thread) {
5320 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5321 /* Thread might be blocked waiting for metadata update
5322 * which will now never happen */
5323 wake_up_process(mddev->sync_thread->tsk);
5324 }
5325 mddev_unlock(mddev);
5326 wait_event(resync_wait, mddev->sync_thread == NULL);
5327 mddev_lock_nointr(mddev);
5328
5329 mutex_lock(&mddev->open_mutex);
5330 if (atomic_read(&mddev->openers) > !!bdev ||
5331 mddev->sync_thread ||
5332 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5333 printk("md: %s still in use.\n",mdname(mddev));
5334 if (did_freeze) {
5335 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5336 md_wakeup_thread(mddev->thread);
5337 }
5338 err = -EBUSY;
5339 goto out;
5340 }
5341 if (mddev->pers) {
5342 __md_stop_writes(mddev);
5343
5344 err = -ENXIO;
5345 if (mddev->ro==1)
5346 goto out;
5347 mddev->ro = 1;
5348 set_disk_ro(mddev->gendisk, 1);
5349 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5350 sysfs_notify_dirent_safe(mddev->sysfs_state);
5351 err = 0;
5352 }
5353 out:
5354 mutex_unlock(&mddev->open_mutex);
5355 return err;
5356 }
5357
5358 /* mode:
5359 * 0 - completely stop and dis-assemble array
5360 * 2 - stop but do not disassemble array
5361 */
5362 static int do_md_stop(struct mddev * mddev, int mode,
5363 struct block_device *bdev)
5364 {
5365 struct gendisk *disk = mddev->gendisk;
5366 struct md_rdev *rdev;
5367 int did_freeze = 0;
5368
5369 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5370 did_freeze = 1;
5371 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5372 md_wakeup_thread(mddev->thread);
5373 }
5374 if (mddev->sync_thread) {
5375 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5376 /* Thread might be blocked waiting for metadata update
5377 * which will now never happen */
5378 wake_up_process(mddev->sync_thread->tsk);
5379 }
5380 mddev_unlock(mddev);
5381 wait_event(resync_wait, mddev->sync_thread == NULL);
5382 mddev_lock_nointr(mddev);
5383
5384 mutex_lock(&mddev->open_mutex);
5385 if (atomic_read(&mddev->openers) > !!bdev ||
5386 mddev->sysfs_active ||
5387 mddev->sync_thread ||
5388 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5389 printk("md: %s still in use.\n",mdname(mddev));
5390 mutex_unlock(&mddev->open_mutex);
5391 if (did_freeze) {
5392 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5393 md_wakeup_thread(mddev->thread);
5394 }
5395 return -EBUSY;
5396 }
5397 if (mddev->pers) {
5398 if (mddev->ro)
5399 set_disk_ro(disk, 0);
5400
5401 __md_stop_writes(mddev);
5402 __md_stop(mddev);
5403 mddev->queue->merge_bvec_fn = NULL;
5404 mddev->queue->backing_dev_info.congested_fn = NULL;
5405
5406 /* tell userspace to handle 'inactive' */
5407 sysfs_notify_dirent_safe(mddev->sysfs_state);
5408
5409 rdev_for_each(rdev, mddev)
5410 if (rdev->raid_disk >= 0)
5411 sysfs_unlink_rdev(mddev, rdev);
5412
5413 set_capacity(disk, 0);
5414 mutex_unlock(&mddev->open_mutex);
5415 mddev->changed = 1;
5416 revalidate_disk(disk);
5417
5418 if (mddev->ro)
5419 mddev->ro = 0;
5420 } else
5421 mutex_unlock(&mddev->open_mutex);
5422 /*
5423 * Free resources if final stop
5424 */
5425 if (mode == 0) {
5426 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5427
5428 bitmap_destroy(mddev);
5429 if (mddev->bitmap_info.file) {
5430 restore_bitmap_write_access(mddev->bitmap_info.file);
5431 fput(mddev->bitmap_info.file);
5432 mddev->bitmap_info.file = NULL;
5433 }
5434 mddev->bitmap_info.offset = 0;
5435
5436 export_array(mddev);
5437
5438 md_clean(mddev);
5439 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5440 if (mddev->hold_active == UNTIL_STOP)
5441 mddev->hold_active = 0;
5442 }
5443 blk_integrity_unregister(disk);
5444 md_new_event(mddev);
5445 sysfs_notify_dirent_safe(mddev->sysfs_state);
5446 return 0;
5447 }
5448
5449 #ifndef MODULE
5450 static void autorun_array(struct mddev *mddev)
5451 {
5452 struct md_rdev *rdev;
5453 int err;
5454
5455 if (list_empty(&mddev->disks))
5456 return;
5457
5458 printk(KERN_INFO "md: running: ");
5459
5460 rdev_for_each(rdev, mddev) {
5461 char b[BDEVNAME_SIZE];
5462 printk("<%s>", bdevname(rdev->bdev,b));
5463 }
5464 printk("\n");
5465
5466 err = do_md_run(mddev);
5467 if (err) {
5468 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5469 do_md_stop(mddev, 0, NULL);
5470 }
5471 }
5472
5473 /*
5474 * lets try to run arrays based on all disks that have arrived
5475 * until now. (those are in pending_raid_disks)
5476 *
5477 * the method: pick the first pending disk, collect all disks with
5478 * the same UUID, remove all from the pending list and put them into
5479 * the 'same_array' list. Then order this list based on superblock
5480 * update time (freshest comes first), kick out 'old' disks and
5481 * compare superblocks. If everything's fine then run it.
5482 *
5483 * If "unit" is allocated, then bump its reference count
5484 */
5485 static void autorun_devices(int part)
5486 {
5487 struct md_rdev *rdev0, *rdev, *tmp;
5488 struct mddev *mddev;
5489 char b[BDEVNAME_SIZE];
5490
5491 printk(KERN_INFO "md: autorun ...\n");
5492 while (!list_empty(&pending_raid_disks)) {
5493 int unit;
5494 dev_t dev;
5495 LIST_HEAD(candidates);
5496 rdev0 = list_entry(pending_raid_disks.next,
5497 struct md_rdev, same_set);
5498
5499 printk(KERN_INFO "md: considering %s ...\n",
5500 bdevname(rdev0->bdev,b));
5501 INIT_LIST_HEAD(&candidates);
5502 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5503 if (super_90_load(rdev, rdev0, 0) >= 0) {
5504 printk(KERN_INFO "md: adding %s ...\n",
5505 bdevname(rdev->bdev,b));
5506 list_move(&rdev->same_set, &candidates);
5507 }
5508 /*
5509 * now we have a set of devices, with all of them having
5510 * mostly sane superblocks. It's time to allocate the
5511 * mddev.
5512 */
5513 if (part) {
5514 dev = MKDEV(mdp_major,
5515 rdev0->preferred_minor << MdpMinorShift);
5516 unit = MINOR(dev) >> MdpMinorShift;
5517 } else {
5518 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5519 unit = MINOR(dev);
5520 }
5521 if (rdev0->preferred_minor != unit) {
5522 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5523 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5524 break;
5525 }
5526
5527 md_probe(dev, NULL, NULL);
5528 mddev = mddev_find(dev);
5529 if (!mddev || !mddev->gendisk) {
5530 if (mddev)
5531 mddev_put(mddev);
5532 printk(KERN_ERR
5533 "md: cannot allocate memory for md drive.\n");
5534 break;
5535 }
5536 if (mddev_lock(mddev))
5537 printk(KERN_WARNING "md: %s locked, cannot run\n",
5538 mdname(mddev));
5539 else if (mddev->raid_disks || mddev->major_version
5540 || !list_empty(&mddev->disks)) {
5541 printk(KERN_WARNING
5542 "md: %s already running, cannot run %s\n",
5543 mdname(mddev), bdevname(rdev0->bdev,b));
5544 mddev_unlock(mddev);
5545 } else {
5546 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5547 mddev->persistent = 1;
5548 rdev_for_each_list(rdev, tmp, &candidates) {
5549 list_del_init(&rdev->same_set);
5550 if (bind_rdev_to_array(rdev, mddev))
5551 export_rdev(rdev);
5552 }
5553 autorun_array(mddev);
5554 mddev_unlock(mddev);
5555 }
5556 /* on success, candidates will be empty, on error
5557 * it won't...
5558 */
5559 rdev_for_each_list(rdev, tmp, &candidates) {
5560 list_del_init(&rdev->same_set);
5561 export_rdev(rdev);
5562 }
5563 mddev_put(mddev);
5564 }
5565 printk(KERN_INFO "md: ... autorun DONE.\n");
5566 }
5567 #endif /* !MODULE */
5568
5569 static int get_version(void __user * arg)
5570 {
5571 mdu_version_t ver;
5572
5573 ver.major = MD_MAJOR_VERSION;
5574 ver.minor = MD_MINOR_VERSION;
5575 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5576
5577 if (copy_to_user(arg, &ver, sizeof(ver)))
5578 return -EFAULT;
5579
5580 return 0;
5581 }
5582
5583 static int get_array_info(struct mddev * mddev, void __user * arg)
5584 {
5585 mdu_array_info_t info;
5586 int nr,working,insync,failed,spare;
5587 struct md_rdev *rdev;
5588
5589 nr = working = insync = failed = spare = 0;
5590 rcu_read_lock();
5591 rdev_for_each_rcu(rdev, mddev) {
5592 nr++;
5593 if (test_bit(Faulty, &rdev->flags))
5594 failed++;
5595 else {
5596 working++;
5597 if (test_bit(In_sync, &rdev->flags))
5598 insync++;
5599 else
5600 spare++;
5601 }
5602 }
5603 rcu_read_unlock();
5604
5605 info.major_version = mddev->major_version;
5606 info.minor_version = mddev->minor_version;
5607 info.patch_version = MD_PATCHLEVEL_VERSION;
5608 info.ctime = mddev->ctime;
5609 info.level = mddev->level;
5610 info.size = mddev->dev_sectors / 2;
5611 if (info.size != mddev->dev_sectors / 2) /* overflow */
5612 info.size = -1;
5613 info.nr_disks = nr;
5614 info.raid_disks = mddev->raid_disks;
5615 info.md_minor = mddev->md_minor;
5616 info.not_persistent= !mddev->persistent;
5617
5618 info.utime = mddev->utime;
5619 info.state = 0;
5620 if (mddev->in_sync)
5621 info.state = (1<<MD_SB_CLEAN);
5622 if (mddev->bitmap && mddev->bitmap_info.offset)
5623 info.state = (1<<MD_SB_BITMAP_PRESENT);
5624 info.active_disks = insync;
5625 info.working_disks = working;
5626 info.failed_disks = failed;
5627 info.spare_disks = spare;
5628
5629 info.layout = mddev->layout;
5630 info.chunk_size = mddev->chunk_sectors << 9;
5631
5632 if (copy_to_user(arg, &info, sizeof(info)))
5633 return -EFAULT;
5634
5635 return 0;
5636 }
5637
5638 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5639 {
5640 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5641 char *ptr, *buf = NULL;
5642 int err = -ENOMEM;
5643
5644 file = kmalloc(sizeof(*file), GFP_NOIO);
5645
5646 if (!file)
5647 goto out;
5648
5649 /* bitmap disabled, zero the first byte and copy out */
5650 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5651 file->pathname[0] = '\0';
5652 goto copy_out;
5653 }
5654
5655 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5656 if (!buf)
5657 goto out;
5658
5659 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5660 buf, sizeof(file->pathname));
5661 if (IS_ERR(ptr))
5662 goto out;
5663
5664 strcpy(file->pathname, ptr);
5665
5666 copy_out:
5667 err = 0;
5668 if (copy_to_user(arg, file, sizeof(*file)))
5669 err = -EFAULT;
5670 out:
5671 kfree(buf);
5672 kfree(file);
5673 return err;
5674 }
5675
5676 static int get_disk_info(struct mddev * mddev, void __user * arg)
5677 {
5678 mdu_disk_info_t info;
5679 struct md_rdev *rdev;
5680
5681 if (copy_from_user(&info, arg, sizeof(info)))
5682 return -EFAULT;
5683
5684 rcu_read_lock();
5685 rdev = find_rdev_nr_rcu(mddev, info.number);
5686 if (rdev) {
5687 info.major = MAJOR(rdev->bdev->bd_dev);
5688 info.minor = MINOR(rdev->bdev->bd_dev);
5689 info.raid_disk = rdev->raid_disk;
5690 info.state = 0;
5691 if (test_bit(Faulty, &rdev->flags))
5692 info.state |= (1<<MD_DISK_FAULTY);
5693 else if (test_bit(In_sync, &rdev->flags)) {
5694 info.state |= (1<<MD_DISK_ACTIVE);
5695 info.state |= (1<<MD_DISK_SYNC);
5696 }
5697 if (test_bit(WriteMostly, &rdev->flags))
5698 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5699 } else {
5700 info.major = info.minor = 0;
5701 info.raid_disk = -1;
5702 info.state = (1<<MD_DISK_REMOVED);
5703 }
5704 rcu_read_unlock();
5705
5706 if (copy_to_user(arg, &info, sizeof(info)))
5707 return -EFAULT;
5708
5709 return 0;
5710 }
5711
5712 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5713 {
5714 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5715 struct md_rdev *rdev;
5716 dev_t dev = MKDEV(info->major,info->minor);
5717
5718 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5719 return -EOVERFLOW;
5720
5721 if (!mddev->raid_disks) {
5722 int err;
5723 /* expecting a device which has a superblock */
5724 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5725 if (IS_ERR(rdev)) {
5726 printk(KERN_WARNING
5727 "md: md_import_device returned %ld\n",
5728 PTR_ERR(rdev));
5729 return PTR_ERR(rdev);
5730 }
5731 if (!list_empty(&mddev->disks)) {
5732 struct md_rdev *rdev0
5733 = list_entry(mddev->disks.next,
5734 struct md_rdev, same_set);
5735 err = super_types[mddev->major_version]
5736 .load_super(rdev, rdev0, mddev->minor_version);
5737 if (err < 0) {
5738 printk(KERN_WARNING
5739 "md: %s has different UUID to %s\n",
5740 bdevname(rdev->bdev,b),
5741 bdevname(rdev0->bdev,b2));
5742 export_rdev(rdev);
5743 return -EINVAL;
5744 }
5745 }
5746 err = bind_rdev_to_array(rdev, mddev);
5747 if (err)
5748 export_rdev(rdev);
5749 return err;
5750 }
5751
5752 /*
5753 * add_new_disk can be used once the array is assembled
5754 * to add "hot spares". They must already have a superblock
5755 * written
5756 */
5757 if (mddev->pers) {
5758 int err;
5759 if (!mddev->pers->hot_add_disk) {
5760 printk(KERN_WARNING
5761 "%s: personality does not support diskops!\n",
5762 mdname(mddev));
5763 return -EINVAL;
5764 }
5765 if (mddev->persistent)
5766 rdev = md_import_device(dev, mddev->major_version,
5767 mddev->minor_version);
5768 else
5769 rdev = md_import_device(dev, -1, -1);
5770 if (IS_ERR(rdev)) {
5771 printk(KERN_WARNING
5772 "md: md_import_device returned %ld\n",
5773 PTR_ERR(rdev));
5774 return PTR_ERR(rdev);
5775 }
5776 /* set saved_raid_disk if appropriate */
5777 if (!mddev->persistent) {
5778 if (info->state & (1<<MD_DISK_SYNC) &&
5779 info->raid_disk < mddev->raid_disks) {
5780 rdev->raid_disk = info->raid_disk;
5781 set_bit(In_sync, &rdev->flags);
5782 clear_bit(Bitmap_sync, &rdev->flags);
5783 } else
5784 rdev->raid_disk = -1;
5785 rdev->saved_raid_disk = rdev->raid_disk;
5786 } else
5787 super_types[mddev->major_version].
5788 validate_super(mddev, rdev);
5789 if ((info->state & (1<<MD_DISK_SYNC)) &&
5790 rdev->raid_disk != info->raid_disk) {
5791 /* This was a hot-add request, but events doesn't
5792 * match, so reject it.
5793 */
5794 export_rdev(rdev);
5795 return -EINVAL;
5796 }
5797
5798 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5799 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5800 set_bit(WriteMostly, &rdev->flags);
5801 else
5802 clear_bit(WriteMostly, &rdev->flags);
5803
5804 rdev->raid_disk = -1;
5805 err = bind_rdev_to_array(rdev, mddev);
5806 if (!err && !mddev->pers->hot_remove_disk) {
5807 /* If there is hot_add_disk but no hot_remove_disk
5808 * then added disks for geometry changes,
5809 * and should be added immediately.
5810 */
5811 super_types[mddev->major_version].
5812 validate_super(mddev, rdev);
5813 err = mddev->pers->hot_add_disk(mddev, rdev);
5814 if (err)
5815 unbind_rdev_from_array(rdev);
5816 }
5817 if (err)
5818 export_rdev(rdev);
5819 else
5820 sysfs_notify_dirent_safe(rdev->sysfs_state);
5821
5822 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5823 if (mddev->degraded)
5824 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5825 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5826 if (!err)
5827 md_new_event(mddev);
5828 md_wakeup_thread(mddev->thread);
5829 return err;
5830 }
5831
5832 /* otherwise, add_new_disk is only allowed
5833 * for major_version==0 superblocks
5834 */
5835 if (mddev->major_version != 0) {
5836 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5837 mdname(mddev));
5838 return -EINVAL;
5839 }
5840
5841 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5842 int err;
5843 rdev = md_import_device(dev, -1, 0);
5844 if (IS_ERR(rdev)) {
5845 printk(KERN_WARNING
5846 "md: error, md_import_device() returned %ld\n",
5847 PTR_ERR(rdev));
5848 return PTR_ERR(rdev);
5849 }
5850 rdev->desc_nr = info->number;
5851 if (info->raid_disk < mddev->raid_disks)
5852 rdev->raid_disk = info->raid_disk;
5853 else
5854 rdev->raid_disk = -1;
5855
5856 if (rdev->raid_disk < mddev->raid_disks)
5857 if (info->state & (1<<MD_DISK_SYNC))
5858 set_bit(In_sync, &rdev->flags);
5859
5860 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5861 set_bit(WriteMostly, &rdev->flags);
5862
5863 if (!mddev->persistent) {
5864 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5865 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5866 } else
5867 rdev->sb_start = calc_dev_sboffset(rdev);
5868 rdev->sectors = rdev->sb_start;
5869
5870 err = bind_rdev_to_array(rdev, mddev);
5871 if (err) {
5872 export_rdev(rdev);
5873 return err;
5874 }
5875 }
5876
5877 return 0;
5878 }
5879
5880 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5881 {
5882 char b[BDEVNAME_SIZE];
5883 struct md_rdev *rdev;
5884
5885 rdev = find_rdev(mddev, dev);
5886 if (!rdev)
5887 return -ENXIO;
5888
5889 clear_bit(Blocked, &rdev->flags);
5890 remove_and_add_spares(mddev, rdev);
5891
5892 if (rdev->raid_disk >= 0)
5893 goto busy;
5894
5895 kick_rdev_from_array(rdev);
5896 md_update_sb(mddev, 1);
5897 md_new_event(mddev);
5898
5899 return 0;
5900 busy:
5901 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5902 bdevname(rdev->bdev,b), mdname(mddev));
5903 return -EBUSY;
5904 }
5905
5906 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5907 {
5908 char b[BDEVNAME_SIZE];
5909 int err;
5910 struct md_rdev *rdev;
5911
5912 if (!mddev->pers)
5913 return -ENODEV;
5914
5915 if (mddev->major_version != 0) {
5916 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5917 " version-0 superblocks.\n",
5918 mdname(mddev));
5919 return -EINVAL;
5920 }
5921 if (!mddev->pers->hot_add_disk) {
5922 printk(KERN_WARNING
5923 "%s: personality does not support diskops!\n",
5924 mdname(mddev));
5925 return -EINVAL;
5926 }
5927
5928 rdev = md_import_device(dev, -1, 0);
5929 if (IS_ERR(rdev)) {
5930 printk(KERN_WARNING
5931 "md: error, md_import_device() returned %ld\n",
5932 PTR_ERR(rdev));
5933 return -EINVAL;
5934 }
5935
5936 if (mddev->persistent)
5937 rdev->sb_start = calc_dev_sboffset(rdev);
5938 else
5939 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5940
5941 rdev->sectors = rdev->sb_start;
5942
5943 if (test_bit(Faulty, &rdev->flags)) {
5944 printk(KERN_WARNING
5945 "md: can not hot-add faulty %s disk to %s!\n",
5946 bdevname(rdev->bdev,b), mdname(mddev));
5947 err = -EINVAL;
5948 goto abort_export;
5949 }
5950 clear_bit(In_sync, &rdev->flags);
5951 rdev->desc_nr = -1;
5952 rdev->saved_raid_disk = -1;
5953 err = bind_rdev_to_array(rdev, mddev);
5954 if (err)
5955 goto abort_export;
5956
5957 /*
5958 * The rest should better be atomic, we can have disk failures
5959 * noticed in interrupt contexts ...
5960 */
5961
5962 rdev->raid_disk = -1;
5963
5964 md_update_sb(mddev, 1);
5965
5966 /*
5967 * Kick recovery, maybe this spare has to be added to the
5968 * array immediately.
5969 */
5970 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5971 md_wakeup_thread(mddev->thread);
5972 md_new_event(mddev);
5973 return 0;
5974
5975 abort_export:
5976 export_rdev(rdev);
5977 return err;
5978 }
5979
5980 static int set_bitmap_file(struct mddev *mddev, int fd)
5981 {
5982 int err;
5983
5984 if (mddev->pers) {
5985 if (!mddev->pers->quiesce)
5986 return -EBUSY;
5987 if (mddev->recovery || mddev->sync_thread)
5988 return -EBUSY;
5989 /* we should be able to change the bitmap.. */
5990 }
5991
5992
5993 if (fd >= 0) {
5994 if (mddev->bitmap)
5995 return -EEXIST; /* cannot add when bitmap is present */
5996 mddev->bitmap_info.file = fget(fd);
5997
5998 if (mddev->bitmap_info.file == NULL) {
5999 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6000 mdname(mddev));
6001 return -EBADF;
6002 }
6003
6004 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6005 if (err) {
6006 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6007 mdname(mddev));
6008 fput(mddev->bitmap_info.file);
6009 mddev->bitmap_info.file = NULL;
6010 return err;
6011 }
6012 mddev->bitmap_info.offset = 0; /* file overrides offset */
6013 } else if (mddev->bitmap == NULL)
6014 return -ENOENT; /* cannot remove what isn't there */
6015 err = 0;
6016 if (mddev->pers) {
6017 mddev->pers->quiesce(mddev, 1);
6018 if (fd >= 0) {
6019 err = bitmap_create(mddev);
6020 if (!err)
6021 err = bitmap_load(mddev);
6022 }
6023 if (fd < 0 || err) {
6024 bitmap_destroy(mddev);
6025 fd = -1; /* make sure to put the file */
6026 }
6027 mddev->pers->quiesce(mddev, 0);
6028 }
6029 if (fd < 0) {
6030 if (mddev->bitmap_info.file) {
6031 restore_bitmap_write_access(mddev->bitmap_info.file);
6032 fput(mddev->bitmap_info.file);
6033 }
6034 mddev->bitmap_info.file = NULL;
6035 }
6036
6037 return err;
6038 }
6039
6040 /*
6041 * set_array_info is used two different ways
6042 * The original usage is when creating a new array.
6043 * In this usage, raid_disks is > 0 and it together with
6044 * level, size, not_persistent,layout,chunksize determine the
6045 * shape of the array.
6046 * This will always create an array with a type-0.90.0 superblock.
6047 * The newer usage is when assembling an array.
6048 * In this case raid_disks will be 0, and the major_version field is
6049 * use to determine which style super-blocks are to be found on the devices.
6050 * The minor and patch _version numbers are also kept incase the
6051 * super_block handler wishes to interpret them.
6052 */
6053 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6054 {
6055
6056 if (info->raid_disks == 0) {
6057 /* just setting version number for superblock loading */
6058 if (info->major_version < 0 ||
6059 info->major_version >= ARRAY_SIZE(super_types) ||
6060 super_types[info->major_version].name == NULL) {
6061 /* maybe try to auto-load a module? */
6062 printk(KERN_INFO
6063 "md: superblock version %d not known\n",
6064 info->major_version);
6065 return -EINVAL;
6066 }
6067 mddev->major_version = info->major_version;
6068 mddev->minor_version = info->minor_version;
6069 mddev->patch_version = info->patch_version;
6070 mddev->persistent = !info->not_persistent;
6071 /* ensure mddev_put doesn't delete this now that there
6072 * is some minimal configuration.
6073 */
6074 mddev->ctime = get_seconds();
6075 return 0;
6076 }
6077 mddev->major_version = MD_MAJOR_VERSION;
6078 mddev->minor_version = MD_MINOR_VERSION;
6079 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6080 mddev->ctime = get_seconds();
6081
6082 mddev->level = info->level;
6083 mddev->clevel[0] = 0;
6084 mddev->dev_sectors = 2 * (sector_t)info->size;
6085 mddev->raid_disks = info->raid_disks;
6086 /* don't set md_minor, it is determined by which /dev/md* was
6087 * openned
6088 */
6089 if (info->state & (1<<MD_SB_CLEAN))
6090 mddev->recovery_cp = MaxSector;
6091 else
6092 mddev->recovery_cp = 0;
6093 mddev->persistent = ! info->not_persistent;
6094 mddev->external = 0;
6095
6096 mddev->layout = info->layout;
6097 mddev->chunk_sectors = info->chunk_size >> 9;
6098
6099 mddev->max_disks = MD_SB_DISKS;
6100
6101 if (mddev->persistent)
6102 mddev->flags = 0;
6103 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6104
6105 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6106 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6107 mddev->bitmap_info.offset = 0;
6108
6109 mddev->reshape_position = MaxSector;
6110
6111 /*
6112 * Generate a 128 bit UUID
6113 */
6114 get_random_bytes(mddev->uuid, 16);
6115
6116 mddev->new_level = mddev->level;
6117 mddev->new_chunk_sectors = mddev->chunk_sectors;
6118 mddev->new_layout = mddev->layout;
6119 mddev->delta_disks = 0;
6120 mddev->reshape_backwards = 0;
6121
6122 return 0;
6123 }
6124
6125 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6126 {
6127 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6128
6129 if (mddev->external_size)
6130 return;
6131
6132 mddev->array_sectors = array_sectors;
6133 }
6134 EXPORT_SYMBOL(md_set_array_sectors);
6135
6136 static int update_size(struct mddev *mddev, sector_t num_sectors)
6137 {
6138 struct md_rdev *rdev;
6139 int rv;
6140 int fit = (num_sectors == 0);
6141
6142 if (mddev->pers->resize == NULL)
6143 return -EINVAL;
6144 /* The "num_sectors" is the number of sectors of each device that
6145 * is used. This can only make sense for arrays with redundancy.
6146 * linear and raid0 always use whatever space is available. We can only
6147 * consider changing this number if no resync or reconstruction is
6148 * happening, and if the new size is acceptable. It must fit before the
6149 * sb_start or, if that is <data_offset, it must fit before the size
6150 * of each device. If num_sectors is zero, we find the largest size
6151 * that fits.
6152 */
6153 if (mddev->sync_thread)
6154 return -EBUSY;
6155
6156 rdev_for_each(rdev, mddev) {
6157 sector_t avail = rdev->sectors;
6158
6159 if (fit && (num_sectors == 0 || num_sectors > avail))
6160 num_sectors = avail;
6161 if (avail < num_sectors)
6162 return -ENOSPC;
6163 }
6164 rv = mddev->pers->resize(mddev, num_sectors);
6165 if (!rv)
6166 revalidate_disk(mddev->gendisk);
6167 return rv;
6168 }
6169
6170 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6171 {
6172 int rv;
6173 struct md_rdev *rdev;
6174 /* change the number of raid disks */
6175 if (mddev->pers->check_reshape == NULL)
6176 return -EINVAL;
6177 if (raid_disks <= 0 ||
6178 (mddev->max_disks && raid_disks >= mddev->max_disks))
6179 return -EINVAL;
6180 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6181 return -EBUSY;
6182
6183 rdev_for_each(rdev, mddev) {
6184 if (mddev->raid_disks < raid_disks &&
6185 rdev->data_offset < rdev->new_data_offset)
6186 return -EINVAL;
6187 if (mddev->raid_disks > raid_disks &&
6188 rdev->data_offset > rdev->new_data_offset)
6189 return -EINVAL;
6190 }
6191
6192 mddev->delta_disks = raid_disks - mddev->raid_disks;
6193 if (mddev->delta_disks < 0)
6194 mddev->reshape_backwards = 1;
6195 else if (mddev->delta_disks > 0)
6196 mddev->reshape_backwards = 0;
6197
6198 rv = mddev->pers->check_reshape(mddev);
6199 if (rv < 0) {
6200 mddev->delta_disks = 0;
6201 mddev->reshape_backwards = 0;
6202 }
6203 return rv;
6204 }
6205
6206
6207 /*
6208 * update_array_info is used to change the configuration of an
6209 * on-line array.
6210 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6211 * fields in the info are checked against the array.
6212 * Any differences that cannot be handled will cause an error.
6213 * Normally, only one change can be managed at a time.
6214 */
6215 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6216 {
6217 int rv = 0;
6218 int cnt = 0;
6219 int state = 0;
6220
6221 /* calculate expected state,ignoring low bits */
6222 if (mddev->bitmap && mddev->bitmap_info.offset)
6223 state |= (1 << MD_SB_BITMAP_PRESENT);
6224
6225 if (mddev->major_version != info->major_version ||
6226 mddev->minor_version != info->minor_version ||
6227 /* mddev->patch_version != info->patch_version || */
6228 mddev->ctime != info->ctime ||
6229 mddev->level != info->level ||
6230 /* mddev->layout != info->layout || */
6231 !mddev->persistent != info->not_persistent||
6232 mddev->chunk_sectors != info->chunk_size >> 9 ||
6233 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6234 ((state^info->state) & 0xfffffe00)
6235 )
6236 return -EINVAL;
6237 /* Check there is only one change */
6238 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6239 cnt++;
6240 if (mddev->raid_disks != info->raid_disks)
6241 cnt++;
6242 if (mddev->layout != info->layout)
6243 cnt++;
6244 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6245 cnt++;
6246 if (cnt == 0)
6247 return 0;
6248 if (cnt > 1)
6249 return -EINVAL;
6250
6251 if (mddev->layout != info->layout) {
6252 /* Change layout
6253 * we don't need to do anything at the md level, the
6254 * personality will take care of it all.
6255 */
6256 if (mddev->pers->check_reshape == NULL)
6257 return -EINVAL;
6258 else {
6259 mddev->new_layout = info->layout;
6260 rv = mddev->pers->check_reshape(mddev);
6261 if (rv)
6262 mddev->new_layout = mddev->layout;
6263 return rv;
6264 }
6265 }
6266 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6267 rv = update_size(mddev, (sector_t)info->size * 2);
6268
6269 if (mddev->raid_disks != info->raid_disks)
6270 rv = update_raid_disks(mddev, info->raid_disks);
6271
6272 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6273 if (mddev->pers->quiesce == NULL)
6274 return -EINVAL;
6275 if (mddev->recovery || mddev->sync_thread)
6276 return -EBUSY;
6277 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6278 /* add the bitmap */
6279 if (mddev->bitmap)
6280 return -EEXIST;
6281 if (mddev->bitmap_info.default_offset == 0)
6282 return -EINVAL;
6283 mddev->bitmap_info.offset =
6284 mddev->bitmap_info.default_offset;
6285 mddev->bitmap_info.space =
6286 mddev->bitmap_info.default_space;
6287 mddev->pers->quiesce(mddev, 1);
6288 rv = bitmap_create(mddev);
6289 if (!rv)
6290 rv = bitmap_load(mddev);
6291 if (rv)
6292 bitmap_destroy(mddev);
6293 mddev->pers->quiesce(mddev, 0);
6294 } else {
6295 /* remove the bitmap */
6296 if (!mddev->bitmap)
6297 return -ENOENT;
6298 if (mddev->bitmap->storage.file)
6299 return -EINVAL;
6300 mddev->pers->quiesce(mddev, 1);
6301 bitmap_destroy(mddev);
6302 mddev->pers->quiesce(mddev, 0);
6303 mddev->bitmap_info.offset = 0;
6304 }
6305 }
6306 md_update_sb(mddev, 1);
6307 return rv;
6308 }
6309
6310 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6311 {
6312 struct md_rdev *rdev;
6313 int err = 0;
6314
6315 if (mddev->pers == NULL)
6316 return -ENODEV;
6317
6318 rcu_read_lock();
6319 rdev = find_rdev_rcu(mddev, dev);
6320 if (!rdev)
6321 err = -ENODEV;
6322 else {
6323 md_error(mddev, rdev);
6324 if (!test_bit(Faulty, &rdev->flags))
6325 err = -EBUSY;
6326 }
6327 rcu_read_unlock();
6328 return err;
6329 }
6330
6331 /*
6332 * We have a problem here : there is no easy way to give a CHS
6333 * virtual geometry. We currently pretend that we have a 2 heads
6334 * 4 sectors (with a BIG number of cylinders...). This drives
6335 * dosfs just mad... ;-)
6336 */
6337 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6338 {
6339 struct mddev *mddev = bdev->bd_disk->private_data;
6340
6341 geo->heads = 2;
6342 geo->sectors = 4;
6343 geo->cylinders = mddev->array_sectors / 8;
6344 return 0;
6345 }
6346
6347 static inline bool md_ioctl_valid(unsigned int cmd)
6348 {
6349 switch (cmd) {
6350 case ADD_NEW_DISK:
6351 case BLKROSET:
6352 case GET_ARRAY_INFO:
6353 case GET_BITMAP_FILE:
6354 case GET_DISK_INFO:
6355 case HOT_ADD_DISK:
6356 case HOT_REMOVE_DISK:
6357 case PRINT_RAID_DEBUG:
6358 case RAID_AUTORUN:
6359 case RAID_VERSION:
6360 case RESTART_ARRAY_RW:
6361 case RUN_ARRAY:
6362 case SET_ARRAY_INFO:
6363 case SET_BITMAP_FILE:
6364 case SET_DISK_FAULTY:
6365 case STOP_ARRAY:
6366 case STOP_ARRAY_RO:
6367 return true;
6368 default:
6369 return false;
6370 }
6371 }
6372
6373 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6374 unsigned int cmd, unsigned long arg)
6375 {
6376 int err = 0;
6377 void __user *argp = (void __user *)arg;
6378 struct mddev *mddev = NULL;
6379 int ro;
6380
6381 if (!md_ioctl_valid(cmd))
6382 return -ENOTTY;
6383
6384 switch (cmd) {
6385 case RAID_VERSION:
6386 case GET_ARRAY_INFO:
6387 case GET_DISK_INFO:
6388 break;
6389 default:
6390 if (!capable(CAP_SYS_ADMIN))
6391 return -EACCES;
6392 }
6393
6394 /*
6395 * Commands dealing with the RAID driver but not any
6396 * particular array:
6397 */
6398 switch (cmd) {
6399 case RAID_VERSION:
6400 err = get_version(argp);
6401 goto done;
6402
6403 case PRINT_RAID_DEBUG:
6404 err = 0;
6405 md_print_devices();
6406 goto done;
6407
6408 #ifndef MODULE
6409 case RAID_AUTORUN:
6410 err = 0;
6411 autostart_arrays(arg);
6412 goto done;
6413 #endif
6414 default:;
6415 }
6416
6417 /*
6418 * Commands creating/starting a new array:
6419 */
6420
6421 mddev = bdev->bd_disk->private_data;
6422
6423 if (!mddev) {
6424 BUG();
6425 goto abort;
6426 }
6427
6428 /* Some actions do not requires the mutex */
6429 switch (cmd) {
6430 case GET_ARRAY_INFO:
6431 if (!mddev->raid_disks && !mddev->external)
6432 err = -ENODEV;
6433 else
6434 err = get_array_info(mddev, argp);
6435 goto abort;
6436
6437 case GET_DISK_INFO:
6438 if (!mddev->raid_disks && !mddev->external)
6439 err = -ENODEV;
6440 else
6441 err = get_disk_info(mddev, argp);
6442 goto abort;
6443
6444 case SET_DISK_FAULTY:
6445 err = set_disk_faulty(mddev, new_decode_dev(arg));
6446 goto abort;
6447 }
6448
6449 if (cmd == ADD_NEW_DISK)
6450 /* need to ensure md_delayed_delete() has completed */
6451 flush_workqueue(md_misc_wq);
6452
6453 if (cmd == HOT_REMOVE_DISK)
6454 /* need to ensure recovery thread has run */
6455 wait_event_interruptible_timeout(mddev->sb_wait,
6456 !test_bit(MD_RECOVERY_NEEDED,
6457 &mddev->flags),
6458 msecs_to_jiffies(5000));
6459 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6460 /* Need to flush page cache, and ensure no-one else opens
6461 * and writes
6462 */
6463 mutex_lock(&mddev->open_mutex);
6464 if (atomic_read(&mddev->openers) > 1) {
6465 mutex_unlock(&mddev->open_mutex);
6466 err = -EBUSY;
6467 goto abort;
6468 }
6469 set_bit(MD_STILL_CLOSED, &mddev->flags);
6470 mutex_unlock(&mddev->open_mutex);
6471 sync_blockdev(bdev);
6472 }
6473 err = mddev_lock(mddev);
6474 if (err) {
6475 printk(KERN_INFO
6476 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6477 err, cmd);
6478 goto abort;
6479 }
6480
6481 if (cmd == SET_ARRAY_INFO) {
6482 mdu_array_info_t info;
6483 if (!arg)
6484 memset(&info, 0, sizeof(info));
6485 else if (copy_from_user(&info, argp, sizeof(info))) {
6486 err = -EFAULT;
6487 goto abort_unlock;
6488 }
6489 if (mddev->pers) {
6490 err = update_array_info(mddev, &info);
6491 if (err) {
6492 printk(KERN_WARNING "md: couldn't update"
6493 " array info. %d\n", err);
6494 goto abort_unlock;
6495 }
6496 goto done_unlock;
6497 }
6498 if (!list_empty(&mddev->disks)) {
6499 printk(KERN_WARNING
6500 "md: array %s already has disks!\n",
6501 mdname(mddev));
6502 err = -EBUSY;
6503 goto abort_unlock;
6504 }
6505 if (mddev->raid_disks) {
6506 printk(KERN_WARNING
6507 "md: array %s already initialised!\n",
6508 mdname(mddev));
6509 err = -EBUSY;
6510 goto abort_unlock;
6511 }
6512 err = set_array_info(mddev, &info);
6513 if (err) {
6514 printk(KERN_WARNING "md: couldn't set"
6515 " array info. %d\n", err);
6516 goto abort_unlock;
6517 }
6518 goto done_unlock;
6519 }
6520
6521 /*
6522 * Commands querying/configuring an existing array:
6523 */
6524 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6525 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6526 if ((!mddev->raid_disks && !mddev->external)
6527 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6528 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6529 && cmd != GET_BITMAP_FILE) {
6530 err = -ENODEV;
6531 goto abort_unlock;
6532 }
6533
6534 /*
6535 * Commands even a read-only array can execute:
6536 */
6537 switch (cmd) {
6538 case GET_BITMAP_FILE:
6539 err = get_bitmap_file(mddev, argp);
6540 goto done_unlock;
6541
6542 case RESTART_ARRAY_RW:
6543 err = restart_array(mddev);
6544 goto done_unlock;
6545
6546 case STOP_ARRAY:
6547 err = do_md_stop(mddev, 0, bdev);
6548 goto done_unlock;
6549
6550 case STOP_ARRAY_RO:
6551 err = md_set_readonly(mddev, bdev);
6552 goto done_unlock;
6553
6554 case HOT_REMOVE_DISK:
6555 err = hot_remove_disk(mddev, new_decode_dev(arg));
6556 goto done_unlock;
6557
6558 case ADD_NEW_DISK:
6559 /* We can support ADD_NEW_DISK on read-only arrays
6560 * on if we are re-adding a preexisting device.
6561 * So require mddev->pers and MD_DISK_SYNC.
6562 */
6563 if (mddev->pers) {
6564 mdu_disk_info_t info;
6565 if (copy_from_user(&info, argp, sizeof(info)))
6566 err = -EFAULT;
6567 else if (!(info.state & (1<<MD_DISK_SYNC)))
6568 /* Need to clear read-only for this */
6569 break;
6570 else
6571 err = add_new_disk(mddev, &info);
6572 goto done_unlock;
6573 }
6574 break;
6575
6576 case BLKROSET:
6577 if (get_user(ro, (int __user *)(arg))) {
6578 err = -EFAULT;
6579 goto done_unlock;
6580 }
6581 err = -EINVAL;
6582
6583 /* if the bdev is going readonly the value of mddev->ro
6584 * does not matter, no writes are coming
6585 */
6586 if (ro)
6587 goto done_unlock;
6588
6589 /* are we are already prepared for writes? */
6590 if (mddev->ro != 1)
6591 goto done_unlock;
6592
6593 /* transitioning to readauto need only happen for
6594 * arrays that call md_write_start
6595 */
6596 if (mddev->pers) {
6597 err = restart_array(mddev);
6598 if (err == 0) {
6599 mddev->ro = 2;
6600 set_disk_ro(mddev->gendisk, 0);
6601 }
6602 }
6603 goto done_unlock;
6604 }
6605
6606 /*
6607 * The remaining ioctls are changing the state of the
6608 * superblock, so we do not allow them on read-only arrays.
6609 * However non-MD ioctls (e.g. get-size) will still come through
6610 * here and hit the 'default' below, so only disallow
6611 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6612 */
6613 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6614 if (mddev->ro == 2) {
6615 mddev->ro = 0;
6616 sysfs_notify_dirent_safe(mddev->sysfs_state);
6617 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6618 /* mddev_unlock will wake thread */
6619 /* If a device failed while we were read-only, we
6620 * need to make sure the metadata is updated now.
6621 */
6622 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6623 mddev_unlock(mddev);
6624 wait_event(mddev->sb_wait,
6625 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6626 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6627 mddev_lock_nointr(mddev);
6628 }
6629 } else {
6630 err = -EROFS;
6631 goto abort_unlock;
6632 }
6633 }
6634
6635 switch (cmd) {
6636 case ADD_NEW_DISK:
6637 {
6638 mdu_disk_info_t info;
6639 if (copy_from_user(&info, argp, sizeof(info)))
6640 err = -EFAULT;
6641 else
6642 err = add_new_disk(mddev, &info);
6643 goto done_unlock;
6644 }
6645
6646 case HOT_ADD_DISK:
6647 err = hot_add_disk(mddev, new_decode_dev(arg));
6648 goto done_unlock;
6649
6650 case RUN_ARRAY:
6651 err = do_md_run(mddev);
6652 goto done_unlock;
6653
6654 case SET_BITMAP_FILE:
6655 err = set_bitmap_file(mddev, (int)arg);
6656 goto done_unlock;
6657
6658 default:
6659 err = -EINVAL;
6660 goto abort_unlock;
6661 }
6662
6663 done_unlock:
6664 abort_unlock:
6665 if (mddev->hold_active == UNTIL_IOCTL &&
6666 err != -EINVAL)
6667 mddev->hold_active = 0;
6668 mddev_unlock(mddev);
6669
6670 return err;
6671 done:
6672 if (err)
6673 MD_BUG();
6674 abort:
6675 return err;
6676 }
6677 #ifdef CONFIG_COMPAT
6678 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6679 unsigned int cmd, unsigned long arg)
6680 {
6681 switch (cmd) {
6682 case HOT_REMOVE_DISK:
6683 case HOT_ADD_DISK:
6684 case SET_DISK_FAULTY:
6685 case SET_BITMAP_FILE:
6686 /* These take in integer arg, do not convert */
6687 break;
6688 default:
6689 arg = (unsigned long)compat_ptr(arg);
6690 break;
6691 }
6692
6693 return md_ioctl(bdev, mode, cmd, arg);
6694 }
6695 #endif /* CONFIG_COMPAT */
6696
6697 static int md_open(struct block_device *bdev, fmode_t mode)
6698 {
6699 /*
6700 * Succeed if we can lock the mddev, which confirms that
6701 * it isn't being stopped right now.
6702 */
6703 struct mddev *mddev = mddev_find(bdev->bd_dev);
6704 int err;
6705
6706 if (!mddev)
6707 return -ENODEV;
6708
6709 if (mddev->gendisk != bdev->bd_disk) {
6710 /* we are racing with mddev_put which is discarding this
6711 * bd_disk.
6712 */
6713 mddev_put(mddev);
6714 /* Wait until bdev->bd_disk is definitely gone */
6715 flush_workqueue(md_misc_wq);
6716 /* Then retry the open from the top */
6717 return -ERESTARTSYS;
6718 }
6719 BUG_ON(mddev != bdev->bd_disk->private_data);
6720
6721 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6722 goto out;
6723
6724 err = 0;
6725 atomic_inc(&mddev->openers);
6726 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6727 mutex_unlock(&mddev->open_mutex);
6728
6729 check_disk_change(bdev);
6730 out:
6731 return err;
6732 }
6733
6734 static void md_release(struct gendisk *disk, fmode_t mode)
6735 {
6736 struct mddev *mddev = disk->private_data;
6737
6738 BUG_ON(!mddev);
6739 atomic_dec(&mddev->openers);
6740 mddev_put(mddev);
6741 }
6742
6743 static int md_media_changed(struct gendisk *disk)
6744 {
6745 struct mddev *mddev = disk->private_data;
6746
6747 return mddev->changed;
6748 }
6749
6750 static int md_revalidate(struct gendisk *disk)
6751 {
6752 struct mddev *mddev = disk->private_data;
6753
6754 mddev->changed = 0;
6755 return 0;
6756 }
6757 static const struct block_device_operations md_fops =
6758 {
6759 .owner = THIS_MODULE,
6760 .open = md_open,
6761 .release = md_release,
6762 .ioctl = md_ioctl,
6763 #ifdef CONFIG_COMPAT
6764 .compat_ioctl = md_compat_ioctl,
6765 #endif
6766 .getgeo = md_getgeo,
6767 .media_changed = md_media_changed,
6768 .revalidate_disk= md_revalidate,
6769 };
6770
6771 static int md_thread(void * arg)
6772 {
6773 struct md_thread *thread = arg;
6774
6775 /*
6776 * md_thread is a 'system-thread', it's priority should be very
6777 * high. We avoid resource deadlocks individually in each
6778 * raid personality. (RAID5 does preallocation) We also use RR and
6779 * the very same RT priority as kswapd, thus we will never get
6780 * into a priority inversion deadlock.
6781 *
6782 * we definitely have to have equal or higher priority than
6783 * bdflush, otherwise bdflush will deadlock if there are too
6784 * many dirty RAID5 blocks.
6785 */
6786
6787 allow_signal(SIGKILL);
6788 while (!kthread_should_stop()) {
6789
6790 /* We need to wait INTERRUPTIBLE so that
6791 * we don't add to the load-average.
6792 * That means we need to be sure no signals are
6793 * pending
6794 */
6795 if (signal_pending(current))
6796 flush_signals(current);
6797
6798 wait_event_interruptible_timeout
6799 (thread->wqueue,
6800 test_bit(THREAD_WAKEUP, &thread->flags)
6801 || kthread_should_stop(),
6802 thread->timeout);
6803
6804 clear_bit(THREAD_WAKEUP, &thread->flags);
6805 if (!kthread_should_stop())
6806 thread->run(thread);
6807 }
6808
6809 return 0;
6810 }
6811
6812 void md_wakeup_thread(struct md_thread *thread)
6813 {
6814 if (thread) {
6815 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6816 set_bit(THREAD_WAKEUP, &thread->flags);
6817 wake_up(&thread->wqueue);
6818 }
6819 }
6820
6821 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6822 struct mddev *mddev, const char *name)
6823 {
6824 struct md_thread *thread;
6825
6826 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6827 if (!thread)
6828 return NULL;
6829
6830 init_waitqueue_head(&thread->wqueue);
6831
6832 thread->run = run;
6833 thread->mddev = mddev;
6834 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6835 thread->tsk = kthread_run(md_thread, thread,
6836 "%s_%s",
6837 mdname(thread->mddev),
6838 name);
6839 if (IS_ERR(thread->tsk)) {
6840 kfree(thread);
6841 return NULL;
6842 }
6843 return thread;
6844 }
6845
6846 void md_unregister_thread(struct md_thread **threadp)
6847 {
6848 struct md_thread *thread = *threadp;
6849 if (!thread)
6850 return;
6851 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6852 /* Locking ensures that mddev_unlock does not wake_up a
6853 * non-existent thread
6854 */
6855 spin_lock(&pers_lock);
6856 *threadp = NULL;
6857 spin_unlock(&pers_lock);
6858
6859 kthread_stop(thread->tsk);
6860 kfree(thread);
6861 }
6862
6863 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6864 {
6865 if (!mddev) {
6866 MD_BUG();
6867 return;
6868 }
6869
6870 if (!rdev || test_bit(Faulty, &rdev->flags))
6871 return;
6872
6873 if (!mddev->pers || !mddev->pers->error_handler)
6874 return;
6875 mddev->pers->error_handler(mddev,rdev);
6876 if (mddev->degraded)
6877 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6878 sysfs_notify_dirent_safe(rdev->sysfs_state);
6879 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6880 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6881 md_wakeup_thread(mddev->thread);
6882 if (mddev->event_work.func)
6883 queue_work(md_misc_wq, &mddev->event_work);
6884 md_new_event_inintr(mddev);
6885 }
6886
6887 /* seq_file implementation /proc/mdstat */
6888
6889 static void status_unused(struct seq_file *seq)
6890 {
6891 int i = 0;
6892 struct md_rdev *rdev;
6893
6894 seq_printf(seq, "unused devices: ");
6895
6896 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6897 char b[BDEVNAME_SIZE];
6898 i++;
6899 seq_printf(seq, "%s ",
6900 bdevname(rdev->bdev,b));
6901 }
6902 if (!i)
6903 seq_printf(seq, "<none>");
6904
6905 seq_printf(seq, "\n");
6906 }
6907
6908
6909 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6910 {
6911 sector_t max_sectors, resync, res;
6912 unsigned long dt, db;
6913 sector_t rt;
6914 int scale;
6915 unsigned int per_milli;
6916
6917 if (mddev->curr_resync <= 3)
6918 resync = 0;
6919 else
6920 resync = mddev->curr_resync
6921 - atomic_read(&mddev->recovery_active);
6922
6923 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6924 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6925 max_sectors = mddev->resync_max_sectors;
6926 else
6927 max_sectors = mddev->dev_sectors;
6928
6929 /*
6930 * Should not happen.
6931 */
6932 if (!max_sectors) {
6933 MD_BUG();
6934 return;
6935 }
6936 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6937 * in a sector_t, and (max_sectors>>scale) will fit in a
6938 * u32, as those are the requirements for sector_div.
6939 * Thus 'scale' must be at least 10
6940 */
6941 scale = 10;
6942 if (sizeof(sector_t) > sizeof(unsigned long)) {
6943 while ( max_sectors/2 > (1ULL<<(scale+32)))
6944 scale++;
6945 }
6946 res = (resync>>scale)*1000;
6947 sector_div(res, (u32)((max_sectors>>scale)+1));
6948
6949 per_milli = res;
6950 {
6951 int i, x = per_milli/50, y = 20-x;
6952 seq_printf(seq, "[");
6953 for (i = 0; i < x; i++)
6954 seq_printf(seq, "=");
6955 seq_printf(seq, ">");
6956 for (i = 0; i < y; i++)
6957 seq_printf(seq, ".");
6958 seq_printf(seq, "] ");
6959 }
6960 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6961 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6962 "reshape" :
6963 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6964 "check" :
6965 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6966 "resync" : "recovery"))),
6967 per_milli/10, per_milli % 10,
6968 (unsigned long long) resync/2,
6969 (unsigned long long) max_sectors/2);
6970
6971 /*
6972 * dt: time from mark until now
6973 * db: blocks written from mark until now
6974 * rt: remaining time
6975 *
6976 * rt is a sector_t, so could be 32bit or 64bit.
6977 * So we divide before multiply in case it is 32bit and close
6978 * to the limit.
6979 * We scale the divisor (db) by 32 to avoid losing precision
6980 * near the end of resync when the number of remaining sectors
6981 * is close to 'db'.
6982 * We then divide rt by 32 after multiplying by db to compensate.
6983 * The '+1' avoids division by zero if db is very small.
6984 */
6985 dt = ((jiffies - mddev->resync_mark) / HZ);
6986 if (!dt) dt++;
6987 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6988 - mddev->resync_mark_cnt;
6989
6990 rt = max_sectors - resync; /* number of remaining sectors */
6991 sector_div(rt, db/32+1);
6992 rt *= dt;
6993 rt >>= 5;
6994
6995 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6996 ((unsigned long)rt % 60)/6);
6997
6998 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6999 }
7000
7001 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7002 {
7003 struct list_head *tmp;
7004 loff_t l = *pos;
7005 struct mddev *mddev;
7006
7007 if (l >= 0x10000)
7008 return NULL;
7009 if (!l--)
7010 /* header */
7011 return (void*)1;
7012
7013 spin_lock(&all_mddevs_lock);
7014 list_for_each(tmp,&all_mddevs)
7015 if (!l--) {
7016 mddev = list_entry(tmp, struct mddev, all_mddevs);
7017 mddev_get(mddev);
7018 spin_unlock(&all_mddevs_lock);
7019 return mddev;
7020 }
7021 spin_unlock(&all_mddevs_lock);
7022 if (!l--)
7023 return (void*)2;/* tail */
7024 return NULL;
7025 }
7026
7027 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7028 {
7029 struct list_head *tmp;
7030 struct mddev *next_mddev, *mddev = v;
7031
7032 ++*pos;
7033 if (v == (void*)2)
7034 return NULL;
7035
7036 spin_lock(&all_mddevs_lock);
7037 if (v == (void*)1)
7038 tmp = all_mddevs.next;
7039 else
7040 tmp = mddev->all_mddevs.next;
7041 if (tmp != &all_mddevs)
7042 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7043 else {
7044 next_mddev = (void*)2;
7045 *pos = 0x10000;
7046 }
7047 spin_unlock(&all_mddevs_lock);
7048
7049 if (v != (void*)1)
7050 mddev_put(mddev);
7051 return next_mddev;
7052
7053 }
7054
7055 static void md_seq_stop(struct seq_file *seq, void *v)
7056 {
7057 struct mddev *mddev = v;
7058
7059 if (mddev && v != (void*)1 && v != (void*)2)
7060 mddev_put(mddev);
7061 }
7062
7063 static int md_seq_show(struct seq_file *seq, void *v)
7064 {
7065 struct mddev *mddev = v;
7066 sector_t sectors;
7067 struct md_rdev *rdev;
7068
7069 if (v == (void*)1) {
7070 struct md_personality *pers;
7071 seq_printf(seq, "Personalities : ");
7072 spin_lock(&pers_lock);
7073 list_for_each_entry(pers, &pers_list, list)
7074 seq_printf(seq, "[%s] ", pers->name);
7075
7076 spin_unlock(&pers_lock);
7077 seq_printf(seq, "\n");
7078 seq->poll_event = atomic_read(&md_event_count);
7079 return 0;
7080 }
7081 if (v == (void*)2) {
7082 status_unused(seq);
7083 return 0;
7084 }
7085
7086 if (mddev_lock(mddev) < 0)
7087 return -EINTR;
7088
7089 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7090 seq_printf(seq, "%s : %sactive", mdname(mddev),
7091 mddev->pers ? "" : "in");
7092 if (mddev->pers) {
7093 if (mddev->ro==1)
7094 seq_printf(seq, " (read-only)");
7095 if (mddev->ro==2)
7096 seq_printf(seq, " (auto-read-only)");
7097 seq_printf(seq, " %s", mddev->pers->name);
7098 }
7099
7100 sectors = 0;
7101 rdev_for_each(rdev, mddev) {
7102 char b[BDEVNAME_SIZE];
7103 seq_printf(seq, " %s[%d]",
7104 bdevname(rdev->bdev,b), rdev->desc_nr);
7105 if (test_bit(WriteMostly, &rdev->flags))
7106 seq_printf(seq, "(W)");
7107 if (test_bit(Faulty, &rdev->flags)) {
7108 seq_printf(seq, "(F)");
7109 continue;
7110 }
7111 if (rdev->raid_disk < 0)
7112 seq_printf(seq, "(S)"); /* spare */
7113 if (test_bit(Replacement, &rdev->flags))
7114 seq_printf(seq, "(R)");
7115 sectors += rdev->sectors;
7116 }
7117
7118 if (!list_empty(&mddev->disks)) {
7119 if (mddev->pers)
7120 seq_printf(seq, "\n %llu blocks",
7121 (unsigned long long)
7122 mddev->array_sectors / 2);
7123 else
7124 seq_printf(seq, "\n %llu blocks",
7125 (unsigned long long)sectors / 2);
7126 }
7127 if (mddev->persistent) {
7128 if (mddev->major_version != 0 ||
7129 mddev->minor_version != 90) {
7130 seq_printf(seq," super %d.%d",
7131 mddev->major_version,
7132 mddev->minor_version);
7133 }
7134 } else if (mddev->external)
7135 seq_printf(seq, " super external:%s",
7136 mddev->metadata_type);
7137 else
7138 seq_printf(seq, " super non-persistent");
7139
7140 if (mddev->pers) {
7141 mddev->pers->status(seq, mddev);
7142 seq_printf(seq, "\n ");
7143 if (mddev->pers->sync_request) {
7144 if (mddev->curr_resync > 2) {
7145 status_resync(seq, mddev);
7146 seq_printf(seq, "\n ");
7147 } else if (mddev->curr_resync >= 1)
7148 seq_printf(seq, "\tresync=DELAYED\n ");
7149 else if (mddev->recovery_cp < MaxSector)
7150 seq_printf(seq, "\tresync=PENDING\n ");
7151 }
7152 } else
7153 seq_printf(seq, "\n ");
7154
7155 bitmap_status(seq, mddev->bitmap);
7156
7157 seq_printf(seq, "\n");
7158 }
7159 mddev_unlock(mddev);
7160
7161 return 0;
7162 }
7163
7164 static const struct seq_operations md_seq_ops = {
7165 .start = md_seq_start,
7166 .next = md_seq_next,
7167 .stop = md_seq_stop,
7168 .show = md_seq_show,
7169 };
7170
7171 static int md_seq_open(struct inode *inode, struct file *file)
7172 {
7173 struct seq_file *seq;
7174 int error;
7175
7176 error = seq_open(file, &md_seq_ops);
7177 if (error)
7178 return error;
7179
7180 seq = file->private_data;
7181 seq->poll_event = atomic_read(&md_event_count);
7182 return error;
7183 }
7184
7185 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7186 {
7187 struct seq_file *seq = filp->private_data;
7188 int mask;
7189
7190 poll_wait(filp, &md_event_waiters, wait);
7191
7192 /* always allow read */
7193 mask = POLLIN | POLLRDNORM;
7194
7195 if (seq->poll_event != atomic_read(&md_event_count))
7196 mask |= POLLERR | POLLPRI;
7197 return mask;
7198 }
7199
7200 static const struct file_operations md_seq_fops = {
7201 .owner = THIS_MODULE,
7202 .open = md_seq_open,
7203 .read = seq_read,
7204 .llseek = seq_lseek,
7205 .release = seq_release_private,
7206 .poll = mdstat_poll,
7207 };
7208
7209 int register_md_personality(struct md_personality *p)
7210 {
7211 spin_lock(&pers_lock);
7212 list_add_tail(&p->list, &pers_list);
7213 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7214 spin_unlock(&pers_lock);
7215 return 0;
7216 }
7217
7218 int unregister_md_personality(struct md_personality *p)
7219 {
7220 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7221 spin_lock(&pers_lock);
7222 list_del_init(&p->list);
7223 spin_unlock(&pers_lock);
7224 return 0;
7225 }
7226
7227 static int is_mddev_idle(struct mddev *mddev, int init)
7228 {
7229 struct md_rdev * rdev;
7230 int idle;
7231 int curr_events;
7232
7233 idle = 1;
7234 rcu_read_lock();
7235 rdev_for_each_rcu(rdev, mddev) {
7236 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7237 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7238 (int)part_stat_read(&disk->part0, sectors[1]) -
7239 atomic_read(&disk->sync_io);
7240 /* sync IO will cause sync_io to increase before the disk_stats
7241 * as sync_io is counted when a request starts, and
7242 * disk_stats is counted when it completes.
7243 * So resync activity will cause curr_events to be smaller than
7244 * when there was no such activity.
7245 * non-sync IO will cause disk_stat to increase without
7246 * increasing sync_io so curr_events will (eventually)
7247 * be larger than it was before. Once it becomes
7248 * substantially larger, the test below will cause
7249 * the array to appear non-idle, and resync will slow
7250 * down.
7251 * If there is a lot of outstanding resync activity when
7252 * we set last_event to curr_events, then all that activity
7253 * completing might cause the array to appear non-idle
7254 * and resync will be slowed down even though there might
7255 * not have been non-resync activity. This will only
7256 * happen once though. 'last_events' will soon reflect
7257 * the state where there is little or no outstanding
7258 * resync requests, and further resync activity will
7259 * always make curr_events less than last_events.
7260 *
7261 */
7262 if (init || curr_events - rdev->last_events > 64) {
7263 rdev->last_events = curr_events;
7264 idle = 0;
7265 }
7266 }
7267 rcu_read_unlock();
7268 return idle;
7269 }
7270
7271 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7272 {
7273 /* another "blocks" (512byte) blocks have been synced */
7274 atomic_sub(blocks, &mddev->recovery_active);
7275 wake_up(&mddev->recovery_wait);
7276 if (!ok) {
7277 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7278 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7279 md_wakeup_thread(mddev->thread);
7280 // stop recovery, signal do_sync ....
7281 }
7282 }
7283
7284
7285 /* md_write_start(mddev, bi)
7286 * If we need to update some array metadata (e.g. 'active' flag
7287 * in superblock) before writing, schedule a superblock update
7288 * and wait for it to complete.
7289 */
7290 void md_write_start(struct mddev *mddev, struct bio *bi)
7291 {
7292 int did_change = 0;
7293 if (bio_data_dir(bi) != WRITE)
7294 return;
7295
7296 BUG_ON(mddev->ro == 1);
7297 if (mddev->ro == 2) {
7298 /* need to switch to read/write */
7299 mddev->ro = 0;
7300 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7301 md_wakeup_thread(mddev->thread);
7302 md_wakeup_thread(mddev->sync_thread);
7303 did_change = 1;
7304 }
7305 atomic_inc(&mddev->writes_pending);
7306 if (mddev->safemode == 1)
7307 mddev->safemode = 0;
7308 if (mddev->in_sync) {
7309 spin_lock_irq(&mddev->write_lock);
7310 if (mddev->in_sync) {
7311 mddev->in_sync = 0;
7312 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7313 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7314 md_wakeup_thread(mddev->thread);
7315 did_change = 1;
7316 }
7317 spin_unlock_irq(&mddev->write_lock);
7318 }
7319 if (did_change)
7320 sysfs_notify_dirent_safe(mddev->sysfs_state);
7321 wait_event(mddev->sb_wait,
7322 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7323 }
7324
7325 void md_write_end(struct mddev *mddev)
7326 {
7327 if (atomic_dec_and_test(&mddev->writes_pending)) {
7328 if (mddev->safemode == 2)
7329 md_wakeup_thread(mddev->thread);
7330 else if (mddev->safemode_delay)
7331 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7332 }
7333 }
7334
7335 /* md_allow_write(mddev)
7336 * Calling this ensures that the array is marked 'active' so that writes
7337 * may proceed without blocking. It is important to call this before
7338 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7339 * Must be called with mddev_lock held.
7340 *
7341 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7342 * is dropped, so return -EAGAIN after notifying userspace.
7343 */
7344 int md_allow_write(struct mddev *mddev)
7345 {
7346 if (!mddev->pers)
7347 return 0;
7348 if (mddev->ro)
7349 return 0;
7350 if (!mddev->pers->sync_request)
7351 return 0;
7352
7353 spin_lock_irq(&mddev->write_lock);
7354 if (mddev->in_sync) {
7355 mddev->in_sync = 0;
7356 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7357 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7358 if (mddev->safemode_delay &&
7359 mddev->safemode == 0)
7360 mddev->safemode = 1;
7361 spin_unlock_irq(&mddev->write_lock);
7362 md_update_sb(mddev, 0);
7363 sysfs_notify_dirent_safe(mddev->sysfs_state);
7364 } else
7365 spin_unlock_irq(&mddev->write_lock);
7366
7367 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7368 return -EAGAIN;
7369 else
7370 return 0;
7371 }
7372 EXPORT_SYMBOL_GPL(md_allow_write);
7373
7374 #define SYNC_MARKS 10
7375 #define SYNC_MARK_STEP (3*HZ)
7376 #define UPDATE_FREQUENCY (5*60*HZ)
7377 void md_do_sync(struct md_thread *thread)
7378 {
7379 struct mddev *mddev = thread->mddev;
7380 struct mddev *mddev2;
7381 unsigned int currspeed = 0,
7382 window;
7383 sector_t max_sectors,j, io_sectors;
7384 unsigned long mark[SYNC_MARKS];
7385 unsigned long update_time;
7386 sector_t mark_cnt[SYNC_MARKS];
7387 int last_mark,m;
7388 struct list_head *tmp;
7389 sector_t last_check;
7390 int skipped = 0;
7391 struct md_rdev *rdev;
7392 char *desc, *action = NULL;
7393 struct blk_plug plug;
7394
7395 /* just incase thread restarts... */
7396 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7397 return;
7398 if (mddev->ro) /* never try to sync a read-only array */
7399 return;
7400
7401 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7402 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7403 desc = "data-check";
7404 action = "check";
7405 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7406 desc = "requested-resync";
7407 action = "repair";
7408 } else
7409 desc = "resync";
7410 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7411 desc = "reshape";
7412 else
7413 desc = "recovery";
7414
7415 mddev->last_sync_action = action ?: desc;
7416
7417 /* we overload curr_resync somewhat here.
7418 * 0 == not engaged in resync at all
7419 * 2 == checking that there is no conflict with another sync
7420 * 1 == like 2, but have yielded to allow conflicting resync to
7421 * commense
7422 * other == active in resync - this many blocks
7423 *
7424 * Before starting a resync we must have set curr_resync to
7425 * 2, and then checked that every "conflicting" array has curr_resync
7426 * less than ours. When we find one that is the same or higher
7427 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7428 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7429 * This will mean we have to start checking from the beginning again.
7430 *
7431 */
7432
7433 do {
7434 mddev->curr_resync = 2;
7435
7436 try_again:
7437 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7438 goto skip;
7439 for_each_mddev(mddev2, tmp) {
7440 if (mddev2 == mddev)
7441 continue;
7442 if (!mddev->parallel_resync
7443 && mddev2->curr_resync
7444 && match_mddev_units(mddev, mddev2)) {
7445 DEFINE_WAIT(wq);
7446 if (mddev < mddev2 && mddev->curr_resync == 2) {
7447 /* arbitrarily yield */
7448 mddev->curr_resync = 1;
7449 wake_up(&resync_wait);
7450 }
7451 if (mddev > mddev2 && mddev->curr_resync == 1)
7452 /* no need to wait here, we can wait the next
7453 * time 'round when curr_resync == 2
7454 */
7455 continue;
7456 /* We need to wait 'interruptible' so as not to
7457 * contribute to the load average, and not to
7458 * be caught by 'softlockup'
7459 */
7460 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7461 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7462 mddev2->curr_resync >= mddev->curr_resync) {
7463 printk(KERN_INFO "md: delaying %s of %s"
7464 " until %s has finished (they"
7465 " share one or more physical units)\n",
7466 desc, mdname(mddev), mdname(mddev2));
7467 mddev_put(mddev2);
7468 if (signal_pending(current))
7469 flush_signals(current);
7470 schedule();
7471 finish_wait(&resync_wait, &wq);
7472 goto try_again;
7473 }
7474 finish_wait(&resync_wait, &wq);
7475 }
7476 }
7477 } while (mddev->curr_resync < 2);
7478
7479 j = 0;
7480 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7481 /* resync follows the size requested by the personality,
7482 * which defaults to physical size, but can be virtual size
7483 */
7484 max_sectors = mddev->resync_max_sectors;
7485 atomic64_set(&mddev->resync_mismatches, 0);
7486 /* we don't use the checkpoint if there's a bitmap */
7487 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7488 j = mddev->resync_min;
7489 else if (!mddev->bitmap)
7490 j = mddev->recovery_cp;
7491
7492 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7493 max_sectors = mddev->resync_max_sectors;
7494 else {
7495 /* recovery follows the physical size of devices */
7496 max_sectors = mddev->dev_sectors;
7497 j = MaxSector;
7498 rcu_read_lock();
7499 rdev_for_each_rcu(rdev, mddev)
7500 if (rdev->raid_disk >= 0 &&
7501 !test_bit(Faulty, &rdev->flags) &&
7502 !test_bit(In_sync, &rdev->flags) &&
7503 rdev->recovery_offset < j)
7504 j = rdev->recovery_offset;
7505 rcu_read_unlock();
7506 }
7507
7508 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7509 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7510 " %d KB/sec/disk.\n", speed_min(mddev));
7511 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7512 "(but not more than %d KB/sec) for %s.\n",
7513 speed_max(mddev), desc);
7514
7515 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7516
7517 io_sectors = 0;
7518 for (m = 0; m < SYNC_MARKS; m++) {
7519 mark[m] = jiffies;
7520 mark_cnt[m] = io_sectors;
7521 }
7522 last_mark = 0;
7523 mddev->resync_mark = mark[last_mark];
7524 mddev->resync_mark_cnt = mark_cnt[last_mark];
7525
7526 /*
7527 * Tune reconstruction:
7528 */
7529 window = 32*(PAGE_SIZE/512);
7530 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7531 window/2, (unsigned long long)max_sectors/2);
7532
7533 atomic_set(&mddev->recovery_active, 0);
7534 last_check = 0;
7535
7536 if (j>2) {
7537 printk(KERN_INFO
7538 "md: resuming %s of %s from checkpoint.\n",
7539 desc, mdname(mddev));
7540 mddev->curr_resync = j;
7541 } else
7542 mddev->curr_resync = 3; /* no longer delayed */
7543 mddev->curr_resync_completed = j;
7544 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7545 md_new_event(mddev);
7546 update_time = jiffies;
7547
7548 blk_start_plug(&plug);
7549 while (j < max_sectors) {
7550 sector_t sectors;
7551
7552 skipped = 0;
7553
7554 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7555 ((mddev->curr_resync > mddev->curr_resync_completed &&
7556 (mddev->curr_resync - mddev->curr_resync_completed)
7557 > (max_sectors >> 4)) ||
7558 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7559 (j - mddev->curr_resync_completed)*2
7560 >= mddev->resync_max - mddev->curr_resync_completed
7561 )) {
7562 /* time to update curr_resync_completed */
7563 wait_event(mddev->recovery_wait,
7564 atomic_read(&mddev->recovery_active) == 0);
7565 mddev->curr_resync_completed = j;
7566 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7567 j > mddev->recovery_cp)
7568 mddev->recovery_cp = j;
7569 update_time = jiffies;
7570 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7571 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7572 }
7573
7574 while (j >= mddev->resync_max &&
7575 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7576 /* As this condition is controlled by user-space,
7577 * we can block indefinitely, so use '_interruptible'
7578 * to avoid triggering warnings.
7579 */
7580 flush_signals(current); /* just in case */
7581 wait_event_interruptible(mddev->recovery_wait,
7582 mddev->resync_max > j
7583 || test_bit(MD_RECOVERY_INTR,
7584 &mddev->recovery));
7585 }
7586
7587 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7588 break;
7589
7590 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7591 currspeed < speed_min(mddev));
7592 if (sectors == 0) {
7593 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7594 break;
7595 }
7596
7597 if (!skipped) { /* actual IO requested */
7598 io_sectors += sectors;
7599 atomic_add(sectors, &mddev->recovery_active);
7600 }
7601
7602 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7603 break;
7604
7605 j += sectors;
7606 if (j > 2)
7607 mddev->curr_resync = j;
7608 mddev->curr_mark_cnt = io_sectors;
7609 if (last_check == 0)
7610 /* this is the earliest that rebuild will be
7611 * visible in /proc/mdstat
7612 */
7613 md_new_event(mddev);
7614
7615 if (last_check + window > io_sectors || j == max_sectors)
7616 continue;
7617
7618 last_check = io_sectors;
7619 repeat:
7620 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7621 /* step marks */
7622 int next = (last_mark+1) % SYNC_MARKS;
7623
7624 mddev->resync_mark = mark[next];
7625 mddev->resync_mark_cnt = mark_cnt[next];
7626 mark[next] = jiffies;
7627 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7628 last_mark = next;
7629 }
7630
7631 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7632 break;
7633
7634 /*
7635 * this loop exits only if either when we are slower than
7636 * the 'hard' speed limit, or the system was IO-idle for
7637 * a jiffy.
7638 * the system might be non-idle CPU-wise, but we only care
7639 * about not overloading the IO subsystem. (things like an
7640 * e2fsck being done on the RAID array should execute fast)
7641 */
7642 cond_resched();
7643
7644 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7645 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7646
7647 if (currspeed > speed_min(mddev)) {
7648 if ((currspeed > speed_max(mddev)) ||
7649 !is_mddev_idle(mddev, 0)) {
7650 msleep(500);
7651 goto repeat;
7652 }
7653 }
7654 }
7655 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7656 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7657 ? "interrupted" : "done");
7658 /*
7659 * this also signals 'finished resyncing' to md_stop
7660 */
7661 blk_finish_plug(&plug);
7662 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7663
7664 /* tell personality that we are finished */
7665 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7666
7667 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7668 mddev->curr_resync > 2) {
7669 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7670 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7671 if (mddev->curr_resync >= mddev->recovery_cp) {
7672 printk(KERN_INFO
7673 "md: checkpointing %s of %s.\n",
7674 desc, mdname(mddev));
7675 if (test_bit(MD_RECOVERY_ERROR,
7676 &mddev->recovery))
7677 mddev->recovery_cp =
7678 mddev->curr_resync_completed;
7679 else
7680 mddev->recovery_cp =
7681 mddev->curr_resync;
7682 }
7683 } else
7684 mddev->recovery_cp = MaxSector;
7685 } else {
7686 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7687 mddev->curr_resync = MaxSector;
7688 rcu_read_lock();
7689 rdev_for_each_rcu(rdev, mddev)
7690 if (rdev->raid_disk >= 0 &&
7691 mddev->delta_disks >= 0 &&
7692 !test_bit(Faulty, &rdev->flags) &&
7693 !test_bit(In_sync, &rdev->flags) &&
7694 rdev->recovery_offset < mddev->curr_resync)
7695 rdev->recovery_offset = mddev->curr_resync;
7696 rcu_read_unlock();
7697 }
7698 }
7699 skip:
7700 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7701
7702 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7703 /* We completed so min/max setting can be forgotten if used. */
7704 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7705 mddev->resync_min = 0;
7706 mddev->resync_max = MaxSector;
7707 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7708 mddev->resync_min = mddev->curr_resync_completed;
7709 mddev->curr_resync = 0;
7710 wake_up(&resync_wait);
7711 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7712 md_wakeup_thread(mddev->thread);
7713 return;
7714 }
7715 EXPORT_SYMBOL_GPL(md_do_sync);
7716
7717 static int remove_and_add_spares(struct mddev *mddev,
7718 struct md_rdev *this)
7719 {
7720 struct md_rdev *rdev;
7721 int spares = 0;
7722 int removed = 0;
7723
7724 rdev_for_each(rdev, mddev)
7725 if ((this == NULL || rdev == this) &&
7726 rdev->raid_disk >= 0 &&
7727 !test_bit(Blocked, &rdev->flags) &&
7728 (test_bit(Faulty, &rdev->flags) ||
7729 ! test_bit(In_sync, &rdev->flags)) &&
7730 atomic_read(&rdev->nr_pending)==0) {
7731 if (mddev->pers->hot_remove_disk(
7732 mddev, rdev) == 0) {
7733 sysfs_unlink_rdev(mddev, rdev);
7734 rdev->raid_disk = -1;
7735 removed++;
7736 }
7737 }
7738 if (removed && mddev->kobj.sd)
7739 sysfs_notify(&mddev->kobj, NULL, "degraded");
7740
7741 if (this)
7742 goto no_add;
7743
7744 rdev_for_each(rdev, mddev) {
7745 if (rdev->raid_disk >= 0 &&
7746 !test_bit(In_sync, &rdev->flags) &&
7747 !test_bit(Faulty, &rdev->flags))
7748 spares++;
7749 if (rdev->raid_disk >= 0)
7750 continue;
7751 if (test_bit(Faulty, &rdev->flags))
7752 continue;
7753 if (mddev->ro &&
7754 ! (rdev->saved_raid_disk >= 0 &&
7755 !test_bit(Bitmap_sync, &rdev->flags)))
7756 continue;
7757
7758 if (rdev->saved_raid_disk < 0)
7759 rdev->recovery_offset = 0;
7760 if (mddev->pers->
7761 hot_add_disk(mddev, rdev) == 0) {
7762 if (sysfs_link_rdev(mddev, rdev))
7763 /* failure here is OK */;
7764 spares++;
7765 md_new_event(mddev);
7766 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7767 }
7768 }
7769 no_add:
7770 if (removed)
7771 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7772 return spares;
7773 }
7774
7775 /*
7776 * This routine is regularly called by all per-raid-array threads to
7777 * deal with generic issues like resync and super-block update.
7778 * Raid personalities that don't have a thread (linear/raid0) do not
7779 * need this as they never do any recovery or update the superblock.
7780 *
7781 * It does not do any resync itself, but rather "forks" off other threads
7782 * to do that as needed.
7783 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7784 * "->recovery" and create a thread at ->sync_thread.
7785 * When the thread finishes it sets MD_RECOVERY_DONE
7786 * and wakeups up this thread which will reap the thread and finish up.
7787 * This thread also removes any faulty devices (with nr_pending == 0).
7788 *
7789 * The overall approach is:
7790 * 1/ if the superblock needs updating, update it.
7791 * 2/ If a recovery thread is running, don't do anything else.
7792 * 3/ If recovery has finished, clean up, possibly marking spares active.
7793 * 4/ If there are any faulty devices, remove them.
7794 * 5/ If array is degraded, try to add spares devices
7795 * 6/ If array has spares or is not in-sync, start a resync thread.
7796 */
7797 void md_check_recovery(struct mddev *mddev)
7798 {
7799 if (mddev->suspended)
7800 return;
7801
7802 if (mddev->bitmap)
7803 bitmap_daemon_work(mddev);
7804
7805 if (signal_pending(current)) {
7806 if (mddev->pers->sync_request && !mddev->external) {
7807 printk(KERN_INFO "md: %s in immediate safe mode\n",
7808 mdname(mddev));
7809 mddev->safemode = 2;
7810 }
7811 flush_signals(current);
7812 }
7813
7814 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7815 return;
7816 if ( ! (
7817 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7818 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7819 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7820 (mddev->external == 0 && mddev->safemode == 1) ||
7821 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7822 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7823 ))
7824 return;
7825
7826 if (mddev_trylock(mddev)) {
7827 int spares = 0;
7828
7829 if (mddev->ro) {
7830 /* On a read-only array we can:
7831 * - remove failed devices
7832 * - add already-in_sync devices if the array itself
7833 * is in-sync.
7834 * As we only add devices that are already in-sync,
7835 * we can activate the spares immediately.
7836 */
7837 remove_and_add_spares(mddev, NULL);
7838 /* There is no thread, but we need to call
7839 * ->spare_active and clear saved_raid_disk
7840 */
7841 md_reap_sync_thread(mddev);
7842 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7843 goto unlock;
7844 }
7845
7846 if (!mddev->external) {
7847 int did_change = 0;
7848 spin_lock_irq(&mddev->write_lock);
7849 if (mddev->safemode &&
7850 !atomic_read(&mddev->writes_pending) &&
7851 !mddev->in_sync &&
7852 mddev->recovery_cp == MaxSector) {
7853 mddev->in_sync = 1;
7854 did_change = 1;
7855 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7856 }
7857 if (mddev->safemode == 1)
7858 mddev->safemode = 0;
7859 spin_unlock_irq(&mddev->write_lock);
7860 if (did_change)
7861 sysfs_notify_dirent_safe(mddev->sysfs_state);
7862 }
7863
7864 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7865 md_update_sb(mddev, 0);
7866
7867 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7868 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7869 /* resync/recovery still happening */
7870 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7871 goto unlock;
7872 }
7873 if (mddev->sync_thread) {
7874 md_reap_sync_thread(mddev);
7875 goto unlock;
7876 }
7877 /* Set RUNNING before clearing NEEDED to avoid
7878 * any transients in the value of "sync_action".
7879 */
7880 mddev->curr_resync_completed = 0;
7881 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7882 /* Clear some bits that don't mean anything, but
7883 * might be left set
7884 */
7885 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7886 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7887
7888 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7889 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7890 goto unlock;
7891 /* no recovery is running.
7892 * remove any failed drives, then
7893 * add spares if possible.
7894 * Spares are also removed and re-added, to allow
7895 * the personality to fail the re-add.
7896 */
7897
7898 if (mddev->reshape_position != MaxSector) {
7899 if (mddev->pers->check_reshape == NULL ||
7900 mddev->pers->check_reshape(mddev) != 0)
7901 /* Cannot proceed */
7902 goto unlock;
7903 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7904 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7905 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7906 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7907 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7908 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7909 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7910 } else if (mddev->recovery_cp < MaxSector) {
7911 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7912 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7913 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7914 /* nothing to be done ... */
7915 goto unlock;
7916
7917 if (mddev->pers->sync_request) {
7918 if (spares) {
7919 /* We are adding a device or devices to an array
7920 * which has the bitmap stored on all devices.
7921 * So make sure all bitmap pages get written
7922 */
7923 bitmap_write_all(mddev->bitmap);
7924 }
7925 mddev->sync_thread = md_register_thread(md_do_sync,
7926 mddev,
7927 "resync");
7928 if (!mddev->sync_thread) {
7929 printk(KERN_ERR "%s: could not start resync"
7930 " thread...\n",
7931 mdname(mddev));
7932 /* leave the spares where they are, it shouldn't hurt */
7933 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7934 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7935 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7936 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7937 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7938 } else
7939 md_wakeup_thread(mddev->sync_thread);
7940 sysfs_notify_dirent_safe(mddev->sysfs_action);
7941 md_new_event(mddev);
7942 }
7943 unlock:
7944 wake_up(&mddev->sb_wait);
7945
7946 if (!mddev->sync_thread) {
7947 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7948 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7949 &mddev->recovery))
7950 if (mddev->sysfs_action)
7951 sysfs_notify_dirent_safe(mddev->sysfs_action);
7952 }
7953 mddev_unlock(mddev);
7954 }
7955 }
7956
7957 void md_reap_sync_thread(struct mddev *mddev)
7958 {
7959 struct md_rdev *rdev;
7960
7961 /* resync has finished, collect result */
7962 md_unregister_thread(&mddev->sync_thread);
7963 wake_up(&resync_wait);
7964 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7965 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7966 /* success...*/
7967 /* activate any spares */
7968 if (mddev->pers->spare_active(mddev)) {
7969 sysfs_notify(&mddev->kobj, NULL,
7970 "degraded");
7971 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7972 }
7973 }
7974 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7975 mddev->pers->finish_reshape)
7976 mddev->pers->finish_reshape(mddev);
7977
7978 /* If array is no-longer degraded, then any saved_raid_disk
7979 * information must be scrapped.
7980 */
7981 if (!mddev->degraded)
7982 rdev_for_each(rdev, mddev)
7983 rdev->saved_raid_disk = -1;
7984
7985 md_update_sb(mddev, 1);
7986 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7987 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7988 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7989 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7990 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7991 /* flag recovery needed just to double check */
7992 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7993 sysfs_notify_dirent_safe(mddev->sysfs_action);
7994 md_new_event(mddev);
7995 if (mddev->event_work.func)
7996 queue_work(md_misc_wq, &mddev->event_work);
7997 }
7998
7999 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8000 {
8001 sysfs_notify_dirent_safe(rdev->sysfs_state);
8002 wait_event_timeout(rdev->blocked_wait,
8003 !test_bit(Blocked, &rdev->flags) &&
8004 !test_bit(BlockedBadBlocks, &rdev->flags),
8005 msecs_to_jiffies(5000));
8006 rdev_dec_pending(rdev, mddev);
8007 }
8008 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8009
8010 void md_finish_reshape(struct mddev *mddev)
8011 {
8012 /* called be personality module when reshape completes. */
8013 struct md_rdev *rdev;
8014
8015 rdev_for_each(rdev, mddev) {
8016 if (rdev->data_offset > rdev->new_data_offset)
8017 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8018 else
8019 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8020 rdev->data_offset = rdev->new_data_offset;
8021 }
8022 }
8023 EXPORT_SYMBOL(md_finish_reshape);
8024
8025 /* Bad block management.
8026 * We can record which blocks on each device are 'bad' and so just
8027 * fail those blocks, or that stripe, rather than the whole device.
8028 * Entries in the bad-block table are 64bits wide. This comprises:
8029 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8030 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8031 * A 'shift' can be set so that larger blocks are tracked and
8032 * consequently larger devices can be covered.
8033 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8034 *
8035 * Locking of the bad-block table uses a seqlock so md_is_badblock
8036 * might need to retry if it is very unlucky.
8037 * We will sometimes want to check for bad blocks in a bi_end_io function,
8038 * so we use the write_seqlock_irq variant.
8039 *
8040 * When looking for a bad block we specify a range and want to
8041 * know if any block in the range is bad. So we binary-search
8042 * to the last range that starts at-or-before the given endpoint,
8043 * (or "before the sector after the target range")
8044 * then see if it ends after the given start.
8045 * We return
8046 * 0 if there are no known bad blocks in the range
8047 * 1 if there are known bad block which are all acknowledged
8048 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8049 * plus the start/length of the first bad section we overlap.
8050 */
8051 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8052 sector_t *first_bad, int *bad_sectors)
8053 {
8054 int hi;
8055 int lo;
8056 u64 *p = bb->page;
8057 int rv;
8058 sector_t target = s + sectors;
8059 unsigned seq;
8060
8061 if (bb->shift > 0) {
8062 /* round the start down, and the end up */
8063 s >>= bb->shift;
8064 target += (1<<bb->shift) - 1;
8065 target >>= bb->shift;
8066 sectors = target - s;
8067 }
8068 /* 'target' is now the first block after the bad range */
8069
8070 retry:
8071 seq = read_seqbegin(&bb->lock);
8072 lo = 0;
8073 rv = 0;
8074 hi = bb->count;
8075
8076 /* Binary search between lo and hi for 'target'
8077 * i.e. for the last range that starts before 'target'
8078 */
8079 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8080 * are known not to be the last range before target.
8081 * VARIANT: hi-lo is the number of possible
8082 * ranges, and decreases until it reaches 1
8083 */
8084 while (hi - lo > 1) {
8085 int mid = (lo + hi) / 2;
8086 sector_t a = BB_OFFSET(p[mid]);
8087 if (a < target)
8088 /* This could still be the one, earlier ranges
8089 * could not. */
8090 lo = mid;
8091 else
8092 /* This and later ranges are definitely out. */
8093 hi = mid;
8094 }
8095 /* 'lo' might be the last that started before target, but 'hi' isn't */
8096 if (hi > lo) {
8097 /* need to check all range that end after 's' to see if
8098 * any are unacknowledged.
8099 */
8100 while (lo >= 0 &&
8101 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8102 if (BB_OFFSET(p[lo]) < target) {
8103 /* starts before the end, and finishes after
8104 * the start, so they must overlap
8105 */
8106 if (rv != -1 && BB_ACK(p[lo]))
8107 rv = 1;
8108 else
8109 rv = -1;
8110 *first_bad = BB_OFFSET(p[lo]);
8111 *bad_sectors = BB_LEN(p[lo]);
8112 }
8113 lo--;
8114 }
8115 }
8116
8117 if (read_seqretry(&bb->lock, seq))
8118 goto retry;
8119
8120 return rv;
8121 }
8122 EXPORT_SYMBOL_GPL(md_is_badblock);
8123
8124 /*
8125 * Add a range of bad blocks to the table.
8126 * This might extend the table, or might contract it
8127 * if two adjacent ranges can be merged.
8128 * We binary-search to find the 'insertion' point, then
8129 * decide how best to handle it.
8130 */
8131 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8132 int acknowledged)
8133 {
8134 u64 *p;
8135 int lo, hi;
8136 int rv = 1;
8137 unsigned long flags;
8138
8139 if (bb->shift < 0)
8140 /* badblocks are disabled */
8141 return 0;
8142
8143 if (bb->shift) {
8144 /* round the start down, and the end up */
8145 sector_t next = s + sectors;
8146 s >>= bb->shift;
8147 next += (1<<bb->shift) - 1;
8148 next >>= bb->shift;
8149 sectors = next - s;
8150 }
8151
8152 write_seqlock_irqsave(&bb->lock, flags);
8153
8154 p = bb->page;
8155 lo = 0;
8156 hi = bb->count;
8157 /* Find the last range that starts at-or-before 's' */
8158 while (hi - lo > 1) {
8159 int mid = (lo + hi) / 2;
8160 sector_t a = BB_OFFSET(p[mid]);
8161 if (a <= s)
8162 lo = mid;
8163 else
8164 hi = mid;
8165 }
8166 if (hi > lo && BB_OFFSET(p[lo]) > s)
8167 hi = lo;
8168
8169 if (hi > lo) {
8170 /* we found a range that might merge with the start
8171 * of our new range
8172 */
8173 sector_t a = BB_OFFSET(p[lo]);
8174 sector_t e = a + BB_LEN(p[lo]);
8175 int ack = BB_ACK(p[lo]);
8176 if (e >= s) {
8177 /* Yes, we can merge with a previous range */
8178 if (s == a && s + sectors >= e)
8179 /* new range covers old */
8180 ack = acknowledged;
8181 else
8182 ack = ack && acknowledged;
8183
8184 if (e < s + sectors)
8185 e = s + sectors;
8186 if (e - a <= BB_MAX_LEN) {
8187 p[lo] = BB_MAKE(a, e-a, ack);
8188 s = e;
8189 } else {
8190 /* does not all fit in one range,
8191 * make p[lo] maximal
8192 */
8193 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8194 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8195 s = a + BB_MAX_LEN;
8196 }
8197 sectors = e - s;
8198 }
8199 }
8200 if (sectors && hi < bb->count) {
8201 /* 'hi' points to the first range that starts after 's'.
8202 * Maybe we can merge with the start of that range */
8203 sector_t a = BB_OFFSET(p[hi]);
8204 sector_t e = a + BB_LEN(p[hi]);
8205 int ack = BB_ACK(p[hi]);
8206 if (a <= s + sectors) {
8207 /* merging is possible */
8208 if (e <= s + sectors) {
8209 /* full overlap */
8210 e = s + sectors;
8211 ack = acknowledged;
8212 } else
8213 ack = ack && acknowledged;
8214
8215 a = s;
8216 if (e - a <= BB_MAX_LEN) {
8217 p[hi] = BB_MAKE(a, e-a, ack);
8218 s = e;
8219 } else {
8220 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8221 s = a + BB_MAX_LEN;
8222 }
8223 sectors = e - s;
8224 lo = hi;
8225 hi++;
8226 }
8227 }
8228 if (sectors == 0 && hi < bb->count) {
8229 /* we might be able to combine lo and hi */
8230 /* Note: 's' is at the end of 'lo' */
8231 sector_t a = BB_OFFSET(p[hi]);
8232 int lolen = BB_LEN(p[lo]);
8233 int hilen = BB_LEN(p[hi]);
8234 int newlen = lolen + hilen - (s - a);
8235 if (s >= a && newlen < BB_MAX_LEN) {
8236 /* yes, we can combine them */
8237 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8238 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8239 memmove(p + hi, p + hi + 1,
8240 (bb->count - hi - 1) * 8);
8241 bb->count--;
8242 }
8243 }
8244 while (sectors) {
8245 /* didn't merge (it all).
8246 * Need to add a range just before 'hi' */
8247 if (bb->count >= MD_MAX_BADBLOCKS) {
8248 /* No room for more */
8249 rv = 0;
8250 break;
8251 } else {
8252 int this_sectors = sectors;
8253 memmove(p + hi + 1, p + hi,
8254 (bb->count - hi) * 8);
8255 bb->count++;
8256
8257 if (this_sectors > BB_MAX_LEN)
8258 this_sectors = BB_MAX_LEN;
8259 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8260 sectors -= this_sectors;
8261 s += this_sectors;
8262 }
8263 }
8264
8265 bb->changed = 1;
8266 if (!acknowledged)
8267 bb->unacked_exist = 1;
8268 write_sequnlock_irqrestore(&bb->lock, flags);
8269
8270 return rv;
8271 }
8272
8273 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8274 int is_new)
8275 {
8276 int rv;
8277 if (is_new)
8278 s += rdev->new_data_offset;
8279 else
8280 s += rdev->data_offset;
8281 rv = md_set_badblocks(&rdev->badblocks,
8282 s, sectors, 0);
8283 if (rv) {
8284 /* Make sure they get written out promptly */
8285 sysfs_notify_dirent_safe(rdev->sysfs_state);
8286 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8287 md_wakeup_thread(rdev->mddev->thread);
8288 }
8289 return rv;
8290 }
8291 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8292
8293 /*
8294 * Remove a range of bad blocks from the table.
8295 * This may involve extending the table if we spilt a region,
8296 * but it must not fail. So if the table becomes full, we just
8297 * drop the remove request.
8298 */
8299 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8300 {
8301 u64 *p;
8302 int lo, hi;
8303 sector_t target = s + sectors;
8304 int rv = 0;
8305
8306 if (bb->shift > 0) {
8307 /* When clearing we round the start up and the end down.
8308 * This should not matter as the shift should align with
8309 * the block size and no rounding should ever be needed.
8310 * However it is better the think a block is bad when it
8311 * isn't than to think a block is not bad when it is.
8312 */
8313 s += (1<<bb->shift) - 1;
8314 s >>= bb->shift;
8315 target >>= bb->shift;
8316 sectors = target - s;
8317 }
8318
8319 write_seqlock_irq(&bb->lock);
8320
8321 p = bb->page;
8322 lo = 0;
8323 hi = bb->count;
8324 /* Find the last range that starts before 'target' */
8325 while (hi - lo > 1) {
8326 int mid = (lo + hi) / 2;
8327 sector_t a = BB_OFFSET(p[mid]);
8328 if (a < target)
8329 lo = mid;
8330 else
8331 hi = mid;
8332 }
8333 if (hi > lo) {
8334 /* p[lo] is the last range that could overlap the
8335 * current range. Earlier ranges could also overlap,
8336 * but only this one can overlap the end of the range.
8337 */
8338 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8339 /* Partial overlap, leave the tail of this range */
8340 int ack = BB_ACK(p[lo]);
8341 sector_t a = BB_OFFSET(p[lo]);
8342 sector_t end = a + BB_LEN(p[lo]);
8343
8344 if (a < s) {
8345 /* we need to split this range */
8346 if (bb->count >= MD_MAX_BADBLOCKS) {
8347 rv = 0;
8348 goto out;
8349 }
8350 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8351 bb->count++;
8352 p[lo] = BB_MAKE(a, s-a, ack);
8353 lo++;
8354 }
8355 p[lo] = BB_MAKE(target, end - target, ack);
8356 /* there is no longer an overlap */
8357 hi = lo;
8358 lo--;
8359 }
8360 while (lo >= 0 &&
8361 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8362 /* This range does overlap */
8363 if (BB_OFFSET(p[lo]) < s) {
8364 /* Keep the early parts of this range. */
8365 int ack = BB_ACK(p[lo]);
8366 sector_t start = BB_OFFSET(p[lo]);
8367 p[lo] = BB_MAKE(start, s - start, ack);
8368 /* now low doesn't overlap, so.. */
8369 break;
8370 }
8371 lo--;
8372 }
8373 /* 'lo' is strictly before, 'hi' is strictly after,
8374 * anything between needs to be discarded
8375 */
8376 if (hi - lo > 1) {
8377 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8378 bb->count -= (hi - lo - 1);
8379 }
8380 }
8381
8382 bb->changed = 1;
8383 out:
8384 write_sequnlock_irq(&bb->lock);
8385 return rv;
8386 }
8387
8388 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8389 int is_new)
8390 {
8391 if (is_new)
8392 s += rdev->new_data_offset;
8393 else
8394 s += rdev->data_offset;
8395 return md_clear_badblocks(&rdev->badblocks,
8396 s, sectors);
8397 }
8398 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8399
8400 /*
8401 * Acknowledge all bad blocks in a list.
8402 * This only succeeds if ->changed is clear. It is used by
8403 * in-kernel metadata updates
8404 */
8405 void md_ack_all_badblocks(struct badblocks *bb)
8406 {
8407 if (bb->page == NULL || bb->changed)
8408 /* no point even trying */
8409 return;
8410 write_seqlock_irq(&bb->lock);
8411
8412 if (bb->changed == 0 && bb->unacked_exist) {
8413 u64 *p = bb->page;
8414 int i;
8415 for (i = 0; i < bb->count ; i++) {
8416 if (!BB_ACK(p[i])) {
8417 sector_t start = BB_OFFSET(p[i]);
8418 int len = BB_LEN(p[i]);
8419 p[i] = BB_MAKE(start, len, 1);
8420 }
8421 }
8422 bb->unacked_exist = 0;
8423 }
8424 write_sequnlock_irq(&bb->lock);
8425 }
8426 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8427
8428 /* sysfs access to bad-blocks list.
8429 * We present two files.
8430 * 'bad-blocks' lists sector numbers and lengths of ranges that
8431 * are recorded as bad. The list is truncated to fit within
8432 * the one-page limit of sysfs.
8433 * Writing "sector length" to this file adds an acknowledged
8434 * bad block list.
8435 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8436 * been acknowledged. Writing to this file adds bad blocks
8437 * without acknowledging them. This is largely for testing.
8438 */
8439
8440 static ssize_t
8441 badblocks_show(struct badblocks *bb, char *page, int unack)
8442 {
8443 size_t len;
8444 int i;
8445 u64 *p = bb->page;
8446 unsigned seq;
8447
8448 if (bb->shift < 0)
8449 return 0;
8450
8451 retry:
8452 seq = read_seqbegin(&bb->lock);
8453
8454 len = 0;
8455 i = 0;
8456
8457 while (len < PAGE_SIZE && i < bb->count) {
8458 sector_t s = BB_OFFSET(p[i]);
8459 unsigned int length = BB_LEN(p[i]);
8460 int ack = BB_ACK(p[i]);
8461 i++;
8462
8463 if (unack && ack)
8464 continue;
8465
8466 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8467 (unsigned long long)s << bb->shift,
8468 length << bb->shift);
8469 }
8470 if (unack && len == 0)
8471 bb->unacked_exist = 0;
8472
8473 if (read_seqretry(&bb->lock, seq))
8474 goto retry;
8475
8476 return len;
8477 }
8478
8479 #define DO_DEBUG 1
8480
8481 static ssize_t
8482 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8483 {
8484 unsigned long long sector;
8485 int length;
8486 char newline;
8487 #ifdef DO_DEBUG
8488 /* Allow clearing via sysfs *only* for testing/debugging.
8489 * Normally only a successful write may clear a badblock
8490 */
8491 int clear = 0;
8492 if (page[0] == '-') {
8493 clear = 1;
8494 page++;
8495 }
8496 #endif /* DO_DEBUG */
8497
8498 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8499 case 3:
8500 if (newline != '\n')
8501 return -EINVAL;
8502 case 2:
8503 if (length <= 0)
8504 return -EINVAL;
8505 break;
8506 default:
8507 return -EINVAL;
8508 }
8509
8510 #ifdef DO_DEBUG
8511 if (clear) {
8512 md_clear_badblocks(bb, sector, length);
8513 return len;
8514 }
8515 #endif /* DO_DEBUG */
8516 if (md_set_badblocks(bb, sector, length, !unack))
8517 return len;
8518 else
8519 return -ENOSPC;
8520 }
8521
8522 static int md_notify_reboot(struct notifier_block *this,
8523 unsigned long code, void *x)
8524 {
8525 struct list_head *tmp;
8526 struct mddev *mddev;
8527 int need_delay = 0;
8528
8529 for_each_mddev(mddev, tmp) {
8530 if (mddev_trylock(mddev)) {
8531 if (mddev->pers)
8532 __md_stop_writes(mddev);
8533 mddev->safemode = 2;
8534 mddev_unlock(mddev);
8535 }
8536 need_delay = 1;
8537 }
8538 /*
8539 * certain more exotic SCSI devices are known to be
8540 * volatile wrt too early system reboots. While the
8541 * right place to handle this issue is the given
8542 * driver, we do want to have a safe RAID driver ...
8543 */
8544 if (need_delay)
8545 mdelay(1000*1);
8546
8547 return NOTIFY_DONE;
8548 }
8549
8550 static struct notifier_block md_notifier = {
8551 .notifier_call = md_notify_reboot,
8552 .next = NULL,
8553 .priority = INT_MAX, /* before any real devices */
8554 };
8555
8556 static void md_geninit(void)
8557 {
8558 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8559
8560 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8561 }
8562
8563 static int __init md_init(void)
8564 {
8565 int ret = -ENOMEM;
8566
8567 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8568 if (!md_wq)
8569 goto err_wq;
8570
8571 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8572 if (!md_misc_wq)
8573 goto err_misc_wq;
8574
8575 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8576 goto err_md;
8577
8578 if ((ret = register_blkdev(0, "mdp")) < 0)
8579 goto err_mdp;
8580 mdp_major = ret;
8581
8582 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8583 md_probe, NULL, NULL);
8584 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8585 md_probe, NULL, NULL);
8586
8587 register_reboot_notifier(&md_notifier);
8588 raid_table_header = register_sysctl_table(raid_root_table);
8589
8590 md_geninit();
8591 return 0;
8592
8593 err_mdp:
8594 unregister_blkdev(MD_MAJOR, "md");
8595 err_md:
8596 destroy_workqueue(md_misc_wq);
8597 err_misc_wq:
8598 destroy_workqueue(md_wq);
8599 err_wq:
8600 return ret;
8601 }
8602
8603 #ifndef MODULE
8604
8605 /*
8606 * Searches all registered partitions for autorun RAID arrays
8607 * at boot time.
8608 */
8609
8610 static LIST_HEAD(all_detected_devices);
8611 struct detected_devices_node {
8612 struct list_head list;
8613 dev_t dev;
8614 };
8615
8616 void md_autodetect_dev(dev_t dev)
8617 {
8618 struct detected_devices_node *node_detected_dev;
8619
8620 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8621 if (node_detected_dev) {
8622 node_detected_dev->dev = dev;
8623 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8624 } else {
8625 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8626 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8627 }
8628 }
8629
8630
8631 static void autostart_arrays(int part)
8632 {
8633 struct md_rdev *rdev;
8634 struct detected_devices_node *node_detected_dev;
8635 dev_t dev;
8636 int i_scanned, i_passed;
8637
8638 i_scanned = 0;
8639 i_passed = 0;
8640
8641 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8642
8643 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8644 i_scanned++;
8645 node_detected_dev = list_entry(all_detected_devices.next,
8646 struct detected_devices_node, list);
8647 list_del(&node_detected_dev->list);
8648 dev = node_detected_dev->dev;
8649 kfree(node_detected_dev);
8650 rdev = md_import_device(dev,0, 90);
8651 if (IS_ERR(rdev))
8652 continue;
8653
8654 if (test_bit(Faulty, &rdev->flags)) {
8655 MD_BUG();
8656 continue;
8657 }
8658 set_bit(AutoDetected, &rdev->flags);
8659 list_add(&rdev->same_set, &pending_raid_disks);
8660 i_passed++;
8661 }
8662
8663 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8664 i_scanned, i_passed);
8665
8666 autorun_devices(part);
8667 }
8668
8669 #endif /* !MODULE */
8670
8671 static __exit void md_exit(void)
8672 {
8673 struct mddev *mddev;
8674 struct list_head *tmp;
8675
8676 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8677 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8678
8679 unregister_blkdev(MD_MAJOR,"md");
8680 unregister_blkdev(mdp_major, "mdp");
8681 unregister_reboot_notifier(&md_notifier);
8682 unregister_sysctl_table(raid_table_header);
8683 remove_proc_entry("mdstat", NULL);
8684 for_each_mddev(mddev, tmp) {
8685 export_array(mddev);
8686 mddev->hold_active = 0;
8687 }
8688 destroy_workqueue(md_misc_wq);
8689 destroy_workqueue(md_wq);
8690 }
8691
8692 subsys_initcall(md_init);
8693 module_exit(md_exit)
8694
8695 static int get_ro(char *buffer, struct kernel_param *kp)
8696 {
8697 return sprintf(buffer, "%d", start_readonly);
8698 }
8699 static int set_ro(const char *val, struct kernel_param *kp)
8700 {
8701 char *e;
8702 int num = simple_strtoul(val, &e, 10);
8703 if (*val && (*e == '\0' || *e == '\n')) {
8704 start_readonly = num;
8705 return 0;
8706 }
8707 return -EINVAL;
8708 }
8709
8710 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8711 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8712
8713 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8714
8715 EXPORT_SYMBOL(register_md_personality);
8716 EXPORT_SYMBOL(unregister_md_personality);
8717 EXPORT_SYMBOL(md_error);
8718 EXPORT_SYMBOL(md_done_sync);
8719 EXPORT_SYMBOL(md_write_start);
8720 EXPORT_SYMBOL(md_write_end);
8721 EXPORT_SYMBOL(md_register_thread);
8722 EXPORT_SYMBOL(md_unregister_thread);
8723 EXPORT_SYMBOL(md_wakeup_thread);
8724 EXPORT_SYMBOL(md_check_recovery);
8725 EXPORT_SYMBOL(md_reap_sync_thread);
8726 MODULE_LICENSE("GPL");
8727 MODULE_DESCRIPTION("MD RAID framework");
8728 MODULE_ALIAS("md");
8729 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.260008 seconds and 5 git commands to generate.