md: enable suspend/resume of md devices.
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63
64 static void md_print_devices(void);
65
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69
70 /*
71 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72 * is 1000 KB/sec, so the extra system load does not show up that much.
73 * Increase it if you want to have more _guaranteed_ speed. Note that
74 * the RAID driver will use the maximum available bandwidth if the IO
75 * subsystem is idle. There is also an 'absolute maximum' reconstruction
76 * speed limit - in case reconstruction slows down your system despite
77 * idle IO detection.
78 *
79 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80 * or /sys/block/mdX/md/sync_speed_{min,max}
81 */
82
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 return mddev->sync_speed_min ?
88 mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90
91 static inline int speed_max(mddev_t *mddev)
92 {
93 return mddev->sync_speed_max ?
94 mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96
97 static struct ctl_table_header *raid_table_header;
98
99 static ctl_table raid_table[] = {
100 {
101 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
102 .procname = "speed_limit_min",
103 .data = &sysctl_speed_limit_min,
104 .maxlen = sizeof(int),
105 .mode = S_IRUGO|S_IWUSR,
106 .proc_handler = &proc_dointvec,
107 },
108 {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
110 .procname = "speed_limit_max",
111 .data = &sysctl_speed_limit_max,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
115 },
116 { .ctl_name = 0 }
117 };
118
119 static ctl_table raid_dir_table[] = {
120 {
121 .ctl_name = DEV_RAID,
122 .procname = "raid",
123 .maxlen = 0,
124 .mode = S_IRUGO|S_IXUGO,
125 .child = raid_table,
126 },
127 { .ctl_name = 0 }
128 };
129
130 static ctl_table raid_root_table[] = {
131 {
132 .ctl_name = CTL_DEV,
133 .procname = "dev",
134 .maxlen = 0,
135 .mode = 0555,
136 .child = raid_dir_table,
137 },
138 { .ctl_name = 0 }
139 };
140
141 static struct block_device_operations md_fops;
142
143 static int start_readonly;
144
145 /*
146 * We have a system wide 'event count' that is incremented
147 * on any 'interesting' event, and readers of /proc/mdstat
148 * can use 'poll' or 'select' to find out when the event
149 * count increases.
150 *
151 * Events are:
152 * start array, stop array, error, add device, remove device,
153 * start build, activate spare
154 */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 atomic_inc(&md_event_count);
160 wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163
164 /* Alternate version that can be called from interrupts
165 * when calling sysfs_notify isn't needed.
166 */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 atomic_inc(&md_event_count);
170 wake_up(&md_event_waiters);
171 }
172
173 /*
174 * Enables to iterate over all existing md arrays
175 * all_mddevs_lock protects this list.
176 */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179
180
181 /*
182 * iterates through all used mddevs in the system.
183 * We take care to grab the all_mddevs_lock whenever navigating
184 * the list, and to always hold a refcount when unlocked.
185 * Any code which breaks out of this loop while own
186 * a reference to the current mddev and must mddev_put it.
187 */
188 #define for_each_mddev(mddev,tmp) \
189 \
190 for (({ spin_lock(&all_mddevs_lock); \
191 tmp = all_mddevs.next; \
192 mddev = NULL;}); \
193 ({ if (tmp != &all_mddevs) \
194 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 spin_unlock(&all_mddevs_lock); \
196 if (mddev) mddev_put(mddev); \
197 mddev = list_entry(tmp, mddev_t, all_mddevs); \
198 tmp != &all_mddevs;}); \
199 ({ spin_lock(&all_mddevs_lock); \
200 tmp = tmp->next;}) \
201 )
202
203
204 /* Rather than calling directly into the personality make_request function,
205 * IO requests come here first so that we can check if the device is
206 * being suspended pending a reconfiguration.
207 * We hold a refcount over the call to ->make_request. By the time that
208 * call has finished, the bio has been linked into some internal structure
209 * and so is visible to ->quiesce(), so we don't need the refcount any more.
210 */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 mddev_t *mddev = q->queuedata;
214 int rv;
215 if (mddev == NULL || mddev->pers == NULL) {
216 bio_io_error(bio);
217 return 0;
218 }
219 rcu_read_lock();
220 if (mddev->suspended) {
221 DEFINE_WAIT(__wait);
222 for (;;) {
223 prepare_to_wait(&mddev->sb_wait, &__wait,
224 TASK_UNINTERRUPTIBLE);
225 if (!mddev->suspended)
226 break;
227 rcu_read_unlock();
228 schedule();
229 rcu_read_lock();
230 }
231 finish_wait(&mddev->sb_wait, &__wait);
232 }
233 atomic_inc(&mddev->active_io);
234 rcu_read_unlock();
235 rv = mddev->pers->make_request(q, bio);
236 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 wake_up(&mddev->sb_wait);
238
239 return rv;
240 }
241
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 BUG_ON(mddev->suspended);
245 mddev->suspended = 1;
246 synchronize_rcu();
247 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 mddev->pers->quiesce(mddev, 1);
249 md_unregister_thread(mddev->thread);
250 mddev->thread = NULL;
251 /* we now know that no code is executing in the personality module,
252 * except possibly the tail end of a ->bi_end_io function, but that
253 * is certain to complete before the module has a chance to get
254 * unloaded
255 */
256 }
257
258 static void mddev_resume(mddev_t *mddev)
259 {
260 mddev->suspended = 0;
261 wake_up(&mddev->sb_wait);
262 mddev->pers->quiesce(mddev, 0);
263 }
264
265
266 static inline mddev_t *mddev_get(mddev_t *mddev)
267 {
268 atomic_inc(&mddev->active);
269 return mddev;
270 }
271
272 static void mddev_delayed_delete(struct work_struct *ws)
273 {
274 mddev_t *mddev = container_of(ws, mddev_t, del_work);
275 kobject_del(&mddev->kobj);
276 kobject_put(&mddev->kobj);
277 }
278
279 static void mddev_put(mddev_t *mddev)
280 {
281 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
282 return;
283 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
284 !mddev->hold_active) {
285 list_del(&mddev->all_mddevs);
286 if (mddev->gendisk) {
287 /* we did a probe so need to clean up.
288 * Call schedule_work inside the spinlock
289 * so that flush_scheduled_work() after
290 * mddev_find will succeed in waiting for the
291 * work to be done.
292 */
293 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
294 schedule_work(&mddev->del_work);
295 } else
296 kfree(mddev);
297 }
298 spin_unlock(&all_mddevs_lock);
299 }
300
301 static mddev_t * mddev_find(dev_t unit)
302 {
303 mddev_t *mddev, *new = NULL;
304
305 retry:
306 spin_lock(&all_mddevs_lock);
307
308 if (unit) {
309 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
310 if (mddev->unit == unit) {
311 mddev_get(mddev);
312 spin_unlock(&all_mddevs_lock);
313 kfree(new);
314 return mddev;
315 }
316
317 if (new) {
318 list_add(&new->all_mddevs, &all_mddevs);
319 spin_unlock(&all_mddevs_lock);
320 new->hold_active = UNTIL_IOCTL;
321 return new;
322 }
323 } else if (new) {
324 /* find an unused unit number */
325 static int next_minor = 512;
326 int start = next_minor;
327 int is_free = 0;
328 int dev = 0;
329 while (!is_free) {
330 dev = MKDEV(MD_MAJOR, next_minor);
331 next_minor++;
332 if (next_minor > MINORMASK)
333 next_minor = 0;
334 if (next_minor == start) {
335 /* Oh dear, all in use. */
336 spin_unlock(&all_mddevs_lock);
337 kfree(new);
338 return NULL;
339 }
340
341 is_free = 1;
342 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
343 if (mddev->unit == dev) {
344 is_free = 0;
345 break;
346 }
347 }
348 new->unit = dev;
349 new->md_minor = MINOR(dev);
350 new->hold_active = UNTIL_STOP;
351 list_add(&new->all_mddevs, &all_mddevs);
352 spin_unlock(&all_mddevs_lock);
353 return new;
354 }
355 spin_unlock(&all_mddevs_lock);
356
357 new = kzalloc(sizeof(*new), GFP_KERNEL);
358 if (!new)
359 return NULL;
360
361 new->unit = unit;
362 if (MAJOR(unit) == MD_MAJOR)
363 new->md_minor = MINOR(unit);
364 else
365 new->md_minor = MINOR(unit) >> MdpMinorShift;
366
367 mutex_init(&new->reconfig_mutex);
368 INIT_LIST_HEAD(&new->disks);
369 INIT_LIST_HEAD(&new->all_mddevs);
370 init_timer(&new->safemode_timer);
371 atomic_set(&new->active, 1);
372 atomic_set(&new->openers, 0);
373 atomic_set(&new->active_io, 0);
374 spin_lock_init(&new->write_lock);
375 init_waitqueue_head(&new->sb_wait);
376 init_waitqueue_head(&new->recovery_wait);
377 new->reshape_position = MaxSector;
378 new->resync_min = 0;
379 new->resync_max = MaxSector;
380 new->level = LEVEL_NONE;
381
382 goto retry;
383 }
384
385 static inline int mddev_lock(mddev_t * mddev)
386 {
387 return mutex_lock_interruptible(&mddev->reconfig_mutex);
388 }
389
390 static inline int mddev_trylock(mddev_t * mddev)
391 {
392 return mutex_trylock(&mddev->reconfig_mutex);
393 }
394
395 static inline void mddev_unlock(mddev_t * mddev)
396 {
397 mutex_unlock(&mddev->reconfig_mutex);
398
399 md_wakeup_thread(mddev->thread);
400 }
401
402 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
403 {
404 mdk_rdev_t *rdev;
405
406 list_for_each_entry(rdev, &mddev->disks, same_set)
407 if (rdev->desc_nr == nr)
408 return rdev;
409
410 return NULL;
411 }
412
413 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
414 {
415 mdk_rdev_t *rdev;
416
417 list_for_each_entry(rdev, &mddev->disks, same_set)
418 if (rdev->bdev->bd_dev == dev)
419 return rdev;
420
421 return NULL;
422 }
423
424 static struct mdk_personality *find_pers(int level, char *clevel)
425 {
426 struct mdk_personality *pers;
427 list_for_each_entry(pers, &pers_list, list) {
428 if (level != LEVEL_NONE && pers->level == level)
429 return pers;
430 if (strcmp(pers->name, clevel)==0)
431 return pers;
432 }
433 return NULL;
434 }
435
436 /* return the offset of the super block in 512byte sectors */
437 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
438 {
439 sector_t num_sectors = bdev->bd_inode->i_size / 512;
440 return MD_NEW_SIZE_SECTORS(num_sectors);
441 }
442
443 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
444 {
445 sector_t num_sectors = rdev->sb_start;
446
447 if (chunk_size)
448 num_sectors &= ~((sector_t)chunk_size/512 - 1);
449 return num_sectors;
450 }
451
452 static int alloc_disk_sb(mdk_rdev_t * rdev)
453 {
454 if (rdev->sb_page)
455 MD_BUG();
456
457 rdev->sb_page = alloc_page(GFP_KERNEL);
458 if (!rdev->sb_page) {
459 printk(KERN_ALERT "md: out of memory.\n");
460 return -ENOMEM;
461 }
462
463 return 0;
464 }
465
466 static void free_disk_sb(mdk_rdev_t * rdev)
467 {
468 if (rdev->sb_page) {
469 put_page(rdev->sb_page);
470 rdev->sb_loaded = 0;
471 rdev->sb_page = NULL;
472 rdev->sb_start = 0;
473 rdev->sectors = 0;
474 }
475 }
476
477
478 static void super_written(struct bio *bio, int error)
479 {
480 mdk_rdev_t *rdev = bio->bi_private;
481 mddev_t *mddev = rdev->mddev;
482
483 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
484 printk("md: super_written gets error=%d, uptodate=%d\n",
485 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
486 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
487 md_error(mddev, rdev);
488 }
489
490 if (atomic_dec_and_test(&mddev->pending_writes))
491 wake_up(&mddev->sb_wait);
492 bio_put(bio);
493 }
494
495 static void super_written_barrier(struct bio *bio, int error)
496 {
497 struct bio *bio2 = bio->bi_private;
498 mdk_rdev_t *rdev = bio2->bi_private;
499 mddev_t *mddev = rdev->mddev;
500
501 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
502 error == -EOPNOTSUPP) {
503 unsigned long flags;
504 /* barriers don't appear to be supported :-( */
505 set_bit(BarriersNotsupp, &rdev->flags);
506 mddev->barriers_work = 0;
507 spin_lock_irqsave(&mddev->write_lock, flags);
508 bio2->bi_next = mddev->biolist;
509 mddev->biolist = bio2;
510 spin_unlock_irqrestore(&mddev->write_lock, flags);
511 wake_up(&mddev->sb_wait);
512 bio_put(bio);
513 } else {
514 bio_put(bio2);
515 bio->bi_private = rdev;
516 super_written(bio, error);
517 }
518 }
519
520 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
521 sector_t sector, int size, struct page *page)
522 {
523 /* write first size bytes of page to sector of rdev
524 * Increment mddev->pending_writes before returning
525 * and decrement it on completion, waking up sb_wait
526 * if zero is reached.
527 * If an error occurred, call md_error
528 *
529 * As we might need to resubmit the request if BIO_RW_BARRIER
530 * causes ENOTSUPP, we allocate a spare bio...
531 */
532 struct bio *bio = bio_alloc(GFP_NOIO, 1);
533 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
534
535 bio->bi_bdev = rdev->bdev;
536 bio->bi_sector = sector;
537 bio_add_page(bio, page, size, 0);
538 bio->bi_private = rdev;
539 bio->bi_end_io = super_written;
540 bio->bi_rw = rw;
541
542 atomic_inc(&mddev->pending_writes);
543 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
544 struct bio *rbio;
545 rw |= (1<<BIO_RW_BARRIER);
546 rbio = bio_clone(bio, GFP_NOIO);
547 rbio->bi_private = bio;
548 rbio->bi_end_io = super_written_barrier;
549 submit_bio(rw, rbio);
550 } else
551 submit_bio(rw, bio);
552 }
553
554 void md_super_wait(mddev_t *mddev)
555 {
556 /* wait for all superblock writes that were scheduled to complete.
557 * if any had to be retried (due to BARRIER problems), retry them
558 */
559 DEFINE_WAIT(wq);
560 for(;;) {
561 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
562 if (atomic_read(&mddev->pending_writes)==0)
563 break;
564 while (mddev->biolist) {
565 struct bio *bio;
566 spin_lock_irq(&mddev->write_lock);
567 bio = mddev->biolist;
568 mddev->biolist = bio->bi_next ;
569 bio->bi_next = NULL;
570 spin_unlock_irq(&mddev->write_lock);
571 submit_bio(bio->bi_rw, bio);
572 }
573 schedule();
574 }
575 finish_wait(&mddev->sb_wait, &wq);
576 }
577
578 static void bi_complete(struct bio *bio, int error)
579 {
580 complete((struct completion*)bio->bi_private);
581 }
582
583 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
584 struct page *page, int rw)
585 {
586 struct bio *bio = bio_alloc(GFP_NOIO, 1);
587 struct completion event;
588 int ret;
589
590 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
591
592 bio->bi_bdev = bdev;
593 bio->bi_sector = sector;
594 bio_add_page(bio, page, size, 0);
595 init_completion(&event);
596 bio->bi_private = &event;
597 bio->bi_end_io = bi_complete;
598 submit_bio(rw, bio);
599 wait_for_completion(&event);
600
601 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
602 bio_put(bio);
603 return ret;
604 }
605 EXPORT_SYMBOL_GPL(sync_page_io);
606
607 static int read_disk_sb(mdk_rdev_t * rdev, int size)
608 {
609 char b[BDEVNAME_SIZE];
610 if (!rdev->sb_page) {
611 MD_BUG();
612 return -EINVAL;
613 }
614 if (rdev->sb_loaded)
615 return 0;
616
617
618 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
619 goto fail;
620 rdev->sb_loaded = 1;
621 return 0;
622
623 fail:
624 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
625 bdevname(rdev->bdev,b));
626 return -EINVAL;
627 }
628
629 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
630 {
631 return sb1->set_uuid0 == sb2->set_uuid0 &&
632 sb1->set_uuid1 == sb2->set_uuid1 &&
633 sb1->set_uuid2 == sb2->set_uuid2 &&
634 sb1->set_uuid3 == sb2->set_uuid3;
635 }
636
637 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
638 {
639 int ret;
640 mdp_super_t *tmp1, *tmp2;
641
642 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
643 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
644
645 if (!tmp1 || !tmp2) {
646 ret = 0;
647 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
648 goto abort;
649 }
650
651 *tmp1 = *sb1;
652 *tmp2 = *sb2;
653
654 /*
655 * nr_disks is not constant
656 */
657 tmp1->nr_disks = 0;
658 tmp2->nr_disks = 0;
659
660 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
661 abort:
662 kfree(tmp1);
663 kfree(tmp2);
664 return ret;
665 }
666
667
668 static u32 md_csum_fold(u32 csum)
669 {
670 csum = (csum & 0xffff) + (csum >> 16);
671 return (csum & 0xffff) + (csum >> 16);
672 }
673
674 static unsigned int calc_sb_csum(mdp_super_t * sb)
675 {
676 u64 newcsum = 0;
677 u32 *sb32 = (u32*)sb;
678 int i;
679 unsigned int disk_csum, csum;
680
681 disk_csum = sb->sb_csum;
682 sb->sb_csum = 0;
683
684 for (i = 0; i < MD_SB_BYTES/4 ; i++)
685 newcsum += sb32[i];
686 csum = (newcsum & 0xffffffff) + (newcsum>>32);
687
688
689 #ifdef CONFIG_ALPHA
690 /* This used to use csum_partial, which was wrong for several
691 * reasons including that different results are returned on
692 * different architectures. It isn't critical that we get exactly
693 * the same return value as before (we always csum_fold before
694 * testing, and that removes any differences). However as we
695 * know that csum_partial always returned a 16bit value on
696 * alphas, do a fold to maximise conformity to previous behaviour.
697 */
698 sb->sb_csum = md_csum_fold(disk_csum);
699 #else
700 sb->sb_csum = disk_csum;
701 #endif
702 return csum;
703 }
704
705
706 /*
707 * Handle superblock details.
708 * We want to be able to handle multiple superblock formats
709 * so we have a common interface to them all, and an array of
710 * different handlers.
711 * We rely on user-space to write the initial superblock, and support
712 * reading and updating of superblocks.
713 * Interface methods are:
714 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
715 * loads and validates a superblock on dev.
716 * if refdev != NULL, compare superblocks on both devices
717 * Return:
718 * 0 - dev has a superblock that is compatible with refdev
719 * 1 - dev has a superblock that is compatible and newer than refdev
720 * so dev should be used as the refdev in future
721 * -EINVAL superblock incompatible or invalid
722 * -othererror e.g. -EIO
723 *
724 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
725 * Verify that dev is acceptable into mddev.
726 * The first time, mddev->raid_disks will be 0, and data from
727 * dev should be merged in. Subsequent calls check that dev
728 * is new enough. Return 0 or -EINVAL
729 *
730 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
731 * Update the superblock for rdev with data in mddev
732 * This does not write to disc.
733 *
734 */
735
736 struct super_type {
737 char *name;
738 struct module *owner;
739 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
740 int minor_version);
741 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
742 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
743 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
744 sector_t num_sectors);
745 };
746
747 /*
748 * load_super for 0.90.0
749 */
750 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
751 {
752 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
753 mdp_super_t *sb;
754 int ret;
755
756 /*
757 * Calculate the position of the superblock (512byte sectors),
758 * it's at the end of the disk.
759 *
760 * It also happens to be a multiple of 4Kb.
761 */
762 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
763
764 ret = read_disk_sb(rdev, MD_SB_BYTES);
765 if (ret) return ret;
766
767 ret = -EINVAL;
768
769 bdevname(rdev->bdev, b);
770 sb = (mdp_super_t*)page_address(rdev->sb_page);
771
772 if (sb->md_magic != MD_SB_MAGIC) {
773 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
774 b);
775 goto abort;
776 }
777
778 if (sb->major_version != 0 ||
779 sb->minor_version < 90 ||
780 sb->minor_version > 91) {
781 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
782 sb->major_version, sb->minor_version,
783 b);
784 goto abort;
785 }
786
787 if (sb->raid_disks <= 0)
788 goto abort;
789
790 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
791 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
792 b);
793 goto abort;
794 }
795
796 rdev->preferred_minor = sb->md_minor;
797 rdev->data_offset = 0;
798 rdev->sb_size = MD_SB_BYTES;
799
800 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
801 if (sb->level != 1 && sb->level != 4
802 && sb->level != 5 && sb->level != 6
803 && sb->level != 10) {
804 /* FIXME use a better test */
805 printk(KERN_WARNING
806 "md: bitmaps not supported for this level.\n");
807 goto abort;
808 }
809 }
810
811 if (sb->level == LEVEL_MULTIPATH)
812 rdev->desc_nr = -1;
813 else
814 rdev->desc_nr = sb->this_disk.number;
815
816 if (!refdev) {
817 ret = 1;
818 } else {
819 __u64 ev1, ev2;
820 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
821 if (!uuid_equal(refsb, sb)) {
822 printk(KERN_WARNING "md: %s has different UUID to %s\n",
823 b, bdevname(refdev->bdev,b2));
824 goto abort;
825 }
826 if (!sb_equal(refsb, sb)) {
827 printk(KERN_WARNING "md: %s has same UUID"
828 " but different superblock to %s\n",
829 b, bdevname(refdev->bdev, b2));
830 goto abort;
831 }
832 ev1 = md_event(sb);
833 ev2 = md_event(refsb);
834 if (ev1 > ev2)
835 ret = 1;
836 else
837 ret = 0;
838 }
839 rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
840
841 if (rdev->sectors < sb->size * 2 && sb->level > 1)
842 /* "this cannot possibly happen" ... */
843 ret = -EINVAL;
844
845 abort:
846 return ret;
847 }
848
849 /*
850 * validate_super for 0.90.0
851 */
852 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
853 {
854 mdp_disk_t *desc;
855 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
856 __u64 ev1 = md_event(sb);
857
858 rdev->raid_disk = -1;
859 clear_bit(Faulty, &rdev->flags);
860 clear_bit(In_sync, &rdev->flags);
861 clear_bit(WriteMostly, &rdev->flags);
862 clear_bit(BarriersNotsupp, &rdev->flags);
863
864 if (mddev->raid_disks == 0) {
865 mddev->major_version = 0;
866 mddev->minor_version = sb->minor_version;
867 mddev->patch_version = sb->patch_version;
868 mddev->external = 0;
869 mddev->chunk_size = sb->chunk_size;
870 mddev->ctime = sb->ctime;
871 mddev->utime = sb->utime;
872 mddev->level = sb->level;
873 mddev->clevel[0] = 0;
874 mddev->layout = sb->layout;
875 mddev->raid_disks = sb->raid_disks;
876 mddev->dev_sectors = sb->size * 2;
877 mddev->events = ev1;
878 mddev->bitmap_offset = 0;
879 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
880
881 if (mddev->minor_version >= 91) {
882 mddev->reshape_position = sb->reshape_position;
883 mddev->delta_disks = sb->delta_disks;
884 mddev->new_level = sb->new_level;
885 mddev->new_layout = sb->new_layout;
886 mddev->new_chunk = sb->new_chunk;
887 } else {
888 mddev->reshape_position = MaxSector;
889 mddev->delta_disks = 0;
890 mddev->new_level = mddev->level;
891 mddev->new_layout = mddev->layout;
892 mddev->new_chunk = mddev->chunk_size;
893 }
894
895 if (sb->state & (1<<MD_SB_CLEAN))
896 mddev->recovery_cp = MaxSector;
897 else {
898 if (sb->events_hi == sb->cp_events_hi &&
899 sb->events_lo == sb->cp_events_lo) {
900 mddev->recovery_cp = sb->recovery_cp;
901 } else
902 mddev->recovery_cp = 0;
903 }
904
905 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
906 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
907 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
908 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
909
910 mddev->max_disks = MD_SB_DISKS;
911
912 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
913 mddev->bitmap_file == NULL)
914 mddev->bitmap_offset = mddev->default_bitmap_offset;
915
916 } else if (mddev->pers == NULL) {
917 /* Insist on good event counter while assembling */
918 ++ev1;
919 if (ev1 < mddev->events)
920 return -EINVAL;
921 } else if (mddev->bitmap) {
922 /* if adding to array with a bitmap, then we can accept an
923 * older device ... but not too old.
924 */
925 if (ev1 < mddev->bitmap->events_cleared)
926 return 0;
927 } else {
928 if (ev1 < mddev->events)
929 /* just a hot-add of a new device, leave raid_disk at -1 */
930 return 0;
931 }
932
933 if (mddev->level != LEVEL_MULTIPATH) {
934 desc = sb->disks + rdev->desc_nr;
935
936 if (desc->state & (1<<MD_DISK_FAULTY))
937 set_bit(Faulty, &rdev->flags);
938 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
939 desc->raid_disk < mddev->raid_disks */) {
940 set_bit(In_sync, &rdev->flags);
941 rdev->raid_disk = desc->raid_disk;
942 }
943 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
944 set_bit(WriteMostly, &rdev->flags);
945 } else /* MULTIPATH are always insync */
946 set_bit(In_sync, &rdev->flags);
947 return 0;
948 }
949
950 /*
951 * sync_super for 0.90.0
952 */
953 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
954 {
955 mdp_super_t *sb;
956 mdk_rdev_t *rdev2;
957 int next_spare = mddev->raid_disks;
958
959
960 /* make rdev->sb match mddev data..
961 *
962 * 1/ zero out disks
963 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
964 * 3/ any empty disks < next_spare become removed
965 *
966 * disks[0] gets initialised to REMOVED because
967 * we cannot be sure from other fields if it has
968 * been initialised or not.
969 */
970 int i;
971 int active=0, working=0,failed=0,spare=0,nr_disks=0;
972
973 rdev->sb_size = MD_SB_BYTES;
974
975 sb = (mdp_super_t*)page_address(rdev->sb_page);
976
977 memset(sb, 0, sizeof(*sb));
978
979 sb->md_magic = MD_SB_MAGIC;
980 sb->major_version = mddev->major_version;
981 sb->patch_version = mddev->patch_version;
982 sb->gvalid_words = 0; /* ignored */
983 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
984 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
985 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
986 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
987
988 sb->ctime = mddev->ctime;
989 sb->level = mddev->level;
990 sb->size = mddev->dev_sectors / 2;
991 sb->raid_disks = mddev->raid_disks;
992 sb->md_minor = mddev->md_minor;
993 sb->not_persistent = 0;
994 sb->utime = mddev->utime;
995 sb->state = 0;
996 sb->events_hi = (mddev->events>>32);
997 sb->events_lo = (u32)mddev->events;
998
999 if (mddev->reshape_position == MaxSector)
1000 sb->minor_version = 90;
1001 else {
1002 sb->minor_version = 91;
1003 sb->reshape_position = mddev->reshape_position;
1004 sb->new_level = mddev->new_level;
1005 sb->delta_disks = mddev->delta_disks;
1006 sb->new_layout = mddev->new_layout;
1007 sb->new_chunk = mddev->new_chunk;
1008 }
1009 mddev->minor_version = sb->minor_version;
1010 if (mddev->in_sync)
1011 {
1012 sb->recovery_cp = mddev->recovery_cp;
1013 sb->cp_events_hi = (mddev->events>>32);
1014 sb->cp_events_lo = (u32)mddev->events;
1015 if (mddev->recovery_cp == MaxSector)
1016 sb->state = (1<< MD_SB_CLEAN);
1017 } else
1018 sb->recovery_cp = 0;
1019
1020 sb->layout = mddev->layout;
1021 sb->chunk_size = mddev->chunk_size;
1022
1023 if (mddev->bitmap && mddev->bitmap_file == NULL)
1024 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1025
1026 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1027 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1028 mdp_disk_t *d;
1029 int desc_nr;
1030 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1031 && !test_bit(Faulty, &rdev2->flags))
1032 desc_nr = rdev2->raid_disk;
1033 else
1034 desc_nr = next_spare++;
1035 rdev2->desc_nr = desc_nr;
1036 d = &sb->disks[rdev2->desc_nr];
1037 nr_disks++;
1038 d->number = rdev2->desc_nr;
1039 d->major = MAJOR(rdev2->bdev->bd_dev);
1040 d->minor = MINOR(rdev2->bdev->bd_dev);
1041 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1042 && !test_bit(Faulty, &rdev2->flags))
1043 d->raid_disk = rdev2->raid_disk;
1044 else
1045 d->raid_disk = rdev2->desc_nr; /* compatibility */
1046 if (test_bit(Faulty, &rdev2->flags))
1047 d->state = (1<<MD_DISK_FAULTY);
1048 else if (test_bit(In_sync, &rdev2->flags)) {
1049 d->state = (1<<MD_DISK_ACTIVE);
1050 d->state |= (1<<MD_DISK_SYNC);
1051 active++;
1052 working++;
1053 } else {
1054 d->state = 0;
1055 spare++;
1056 working++;
1057 }
1058 if (test_bit(WriteMostly, &rdev2->flags))
1059 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1060 }
1061 /* now set the "removed" and "faulty" bits on any missing devices */
1062 for (i=0 ; i < mddev->raid_disks ; i++) {
1063 mdp_disk_t *d = &sb->disks[i];
1064 if (d->state == 0 && d->number == 0) {
1065 d->number = i;
1066 d->raid_disk = i;
1067 d->state = (1<<MD_DISK_REMOVED);
1068 d->state |= (1<<MD_DISK_FAULTY);
1069 failed++;
1070 }
1071 }
1072 sb->nr_disks = nr_disks;
1073 sb->active_disks = active;
1074 sb->working_disks = working;
1075 sb->failed_disks = failed;
1076 sb->spare_disks = spare;
1077
1078 sb->this_disk = sb->disks[rdev->desc_nr];
1079 sb->sb_csum = calc_sb_csum(sb);
1080 }
1081
1082 /*
1083 * rdev_size_change for 0.90.0
1084 */
1085 static unsigned long long
1086 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1087 {
1088 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1089 return 0; /* component must fit device */
1090 if (rdev->mddev->bitmap_offset)
1091 return 0; /* can't move bitmap */
1092 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1093 if (!num_sectors || num_sectors > rdev->sb_start)
1094 num_sectors = rdev->sb_start;
1095 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1096 rdev->sb_page);
1097 md_super_wait(rdev->mddev);
1098 return num_sectors / 2; /* kB for sysfs */
1099 }
1100
1101
1102 /*
1103 * version 1 superblock
1104 */
1105
1106 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1107 {
1108 __le32 disk_csum;
1109 u32 csum;
1110 unsigned long long newcsum;
1111 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1112 __le32 *isuper = (__le32*)sb;
1113 int i;
1114
1115 disk_csum = sb->sb_csum;
1116 sb->sb_csum = 0;
1117 newcsum = 0;
1118 for (i=0; size>=4; size -= 4 )
1119 newcsum += le32_to_cpu(*isuper++);
1120
1121 if (size == 2)
1122 newcsum += le16_to_cpu(*(__le16*) isuper);
1123
1124 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1125 sb->sb_csum = disk_csum;
1126 return cpu_to_le32(csum);
1127 }
1128
1129 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1130 {
1131 struct mdp_superblock_1 *sb;
1132 int ret;
1133 sector_t sb_start;
1134 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1135 int bmask;
1136
1137 /*
1138 * Calculate the position of the superblock in 512byte sectors.
1139 * It is always aligned to a 4K boundary and
1140 * depeding on minor_version, it can be:
1141 * 0: At least 8K, but less than 12K, from end of device
1142 * 1: At start of device
1143 * 2: 4K from start of device.
1144 */
1145 switch(minor_version) {
1146 case 0:
1147 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1148 sb_start -= 8*2;
1149 sb_start &= ~(sector_t)(4*2-1);
1150 break;
1151 case 1:
1152 sb_start = 0;
1153 break;
1154 case 2:
1155 sb_start = 8;
1156 break;
1157 default:
1158 return -EINVAL;
1159 }
1160 rdev->sb_start = sb_start;
1161
1162 /* superblock is rarely larger than 1K, but it can be larger,
1163 * and it is safe to read 4k, so we do that
1164 */
1165 ret = read_disk_sb(rdev, 4096);
1166 if (ret) return ret;
1167
1168
1169 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1170
1171 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1172 sb->major_version != cpu_to_le32(1) ||
1173 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1174 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1175 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1176 return -EINVAL;
1177
1178 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1179 printk("md: invalid superblock checksum on %s\n",
1180 bdevname(rdev->bdev,b));
1181 return -EINVAL;
1182 }
1183 if (le64_to_cpu(sb->data_size) < 10) {
1184 printk("md: data_size too small on %s\n",
1185 bdevname(rdev->bdev,b));
1186 return -EINVAL;
1187 }
1188 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1189 if (sb->level != cpu_to_le32(1) &&
1190 sb->level != cpu_to_le32(4) &&
1191 sb->level != cpu_to_le32(5) &&
1192 sb->level != cpu_to_le32(6) &&
1193 sb->level != cpu_to_le32(10)) {
1194 printk(KERN_WARNING
1195 "md: bitmaps not supported for this level.\n");
1196 return -EINVAL;
1197 }
1198 }
1199
1200 rdev->preferred_minor = 0xffff;
1201 rdev->data_offset = le64_to_cpu(sb->data_offset);
1202 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1203
1204 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1205 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1206 if (rdev->sb_size & bmask)
1207 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1208
1209 if (minor_version
1210 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1211 return -EINVAL;
1212
1213 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1214 rdev->desc_nr = -1;
1215 else
1216 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1217
1218 if (!refdev) {
1219 ret = 1;
1220 } else {
1221 __u64 ev1, ev2;
1222 struct mdp_superblock_1 *refsb =
1223 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1224
1225 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1226 sb->level != refsb->level ||
1227 sb->layout != refsb->layout ||
1228 sb->chunksize != refsb->chunksize) {
1229 printk(KERN_WARNING "md: %s has strangely different"
1230 " superblock to %s\n",
1231 bdevname(rdev->bdev,b),
1232 bdevname(refdev->bdev,b2));
1233 return -EINVAL;
1234 }
1235 ev1 = le64_to_cpu(sb->events);
1236 ev2 = le64_to_cpu(refsb->events);
1237
1238 if (ev1 > ev2)
1239 ret = 1;
1240 else
1241 ret = 0;
1242 }
1243 if (minor_version)
1244 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1245 le64_to_cpu(sb->data_offset);
1246 else
1247 rdev->sectors = rdev->sb_start;
1248 if (rdev->sectors < le64_to_cpu(sb->data_size))
1249 return -EINVAL;
1250 rdev->sectors = le64_to_cpu(sb->data_size);
1251 if (le32_to_cpu(sb->chunksize))
1252 rdev->sectors &= ~((sector_t)le32_to_cpu(sb->chunksize) - 1);
1253
1254 if (le64_to_cpu(sb->size) > rdev->sectors)
1255 return -EINVAL;
1256 return ret;
1257 }
1258
1259 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1260 {
1261 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1262 __u64 ev1 = le64_to_cpu(sb->events);
1263
1264 rdev->raid_disk = -1;
1265 clear_bit(Faulty, &rdev->flags);
1266 clear_bit(In_sync, &rdev->flags);
1267 clear_bit(WriteMostly, &rdev->flags);
1268 clear_bit(BarriersNotsupp, &rdev->flags);
1269
1270 if (mddev->raid_disks == 0) {
1271 mddev->major_version = 1;
1272 mddev->patch_version = 0;
1273 mddev->external = 0;
1274 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1275 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1276 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1277 mddev->level = le32_to_cpu(sb->level);
1278 mddev->clevel[0] = 0;
1279 mddev->layout = le32_to_cpu(sb->layout);
1280 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1281 mddev->dev_sectors = le64_to_cpu(sb->size);
1282 mddev->events = ev1;
1283 mddev->bitmap_offset = 0;
1284 mddev->default_bitmap_offset = 1024 >> 9;
1285
1286 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1287 memcpy(mddev->uuid, sb->set_uuid, 16);
1288
1289 mddev->max_disks = (4096-256)/2;
1290
1291 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1292 mddev->bitmap_file == NULL )
1293 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1294
1295 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1296 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1297 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1298 mddev->new_level = le32_to_cpu(sb->new_level);
1299 mddev->new_layout = le32_to_cpu(sb->new_layout);
1300 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1301 } else {
1302 mddev->reshape_position = MaxSector;
1303 mddev->delta_disks = 0;
1304 mddev->new_level = mddev->level;
1305 mddev->new_layout = mddev->layout;
1306 mddev->new_chunk = mddev->chunk_size;
1307 }
1308
1309 } else if (mddev->pers == NULL) {
1310 /* Insist of good event counter while assembling */
1311 ++ev1;
1312 if (ev1 < mddev->events)
1313 return -EINVAL;
1314 } else if (mddev->bitmap) {
1315 /* If adding to array with a bitmap, then we can accept an
1316 * older device, but not too old.
1317 */
1318 if (ev1 < mddev->bitmap->events_cleared)
1319 return 0;
1320 } else {
1321 if (ev1 < mddev->events)
1322 /* just a hot-add of a new device, leave raid_disk at -1 */
1323 return 0;
1324 }
1325 if (mddev->level != LEVEL_MULTIPATH) {
1326 int role;
1327 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1328 switch(role) {
1329 case 0xffff: /* spare */
1330 break;
1331 case 0xfffe: /* faulty */
1332 set_bit(Faulty, &rdev->flags);
1333 break;
1334 default:
1335 if ((le32_to_cpu(sb->feature_map) &
1336 MD_FEATURE_RECOVERY_OFFSET))
1337 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1338 else
1339 set_bit(In_sync, &rdev->flags);
1340 rdev->raid_disk = role;
1341 break;
1342 }
1343 if (sb->devflags & WriteMostly1)
1344 set_bit(WriteMostly, &rdev->flags);
1345 } else /* MULTIPATH are always insync */
1346 set_bit(In_sync, &rdev->flags);
1347
1348 return 0;
1349 }
1350
1351 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1352 {
1353 struct mdp_superblock_1 *sb;
1354 mdk_rdev_t *rdev2;
1355 int max_dev, i;
1356 /* make rdev->sb match mddev and rdev data. */
1357
1358 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1359
1360 sb->feature_map = 0;
1361 sb->pad0 = 0;
1362 sb->recovery_offset = cpu_to_le64(0);
1363 memset(sb->pad1, 0, sizeof(sb->pad1));
1364 memset(sb->pad2, 0, sizeof(sb->pad2));
1365 memset(sb->pad3, 0, sizeof(sb->pad3));
1366
1367 sb->utime = cpu_to_le64((__u64)mddev->utime);
1368 sb->events = cpu_to_le64(mddev->events);
1369 if (mddev->in_sync)
1370 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1371 else
1372 sb->resync_offset = cpu_to_le64(0);
1373
1374 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1375
1376 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1377 sb->size = cpu_to_le64(mddev->dev_sectors);
1378
1379 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1380 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1381 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1382 }
1383
1384 if (rdev->raid_disk >= 0 &&
1385 !test_bit(In_sync, &rdev->flags)) {
1386 if (mddev->curr_resync_completed > rdev->recovery_offset)
1387 rdev->recovery_offset = mddev->curr_resync_completed;
1388 if (rdev->recovery_offset > 0) {
1389 sb->feature_map |=
1390 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1391 sb->recovery_offset =
1392 cpu_to_le64(rdev->recovery_offset);
1393 }
1394 }
1395
1396 if (mddev->reshape_position != MaxSector) {
1397 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1398 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1399 sb->new_layout = cpu_to_le32(mddev->new_layout);
1400 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1401 sb->new_level = cpu_to_le32(mddev->new_level);
1402 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1403 }
1404
1405 max_dev = 0;
1406 list_for_each_entry(rdev2, &mddev->disks, same_set)
1407 if (rdev2->desc_nr+1 > max_dev)
1408 max_dev = rdev2->desc_nr+1;
1409
1410 if (max_dev > le32_to_cpu(sb->max_dev))
1411 sb->max_dev = cpu_to_le32(max_dev);
1412 for (i=0; i<max_dev;i++)
1413 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1414
1415 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1416 i = rdev2->desc_nr;
1417 if (test_bit(Faulty, &rdev2->flags))
1418 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1419 else if (test_bit(In_sync, &rdev2->flags))
1420 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1421 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1422 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1423 else
1424 sb->dev_roles[i] = cpu_to_le16(0xffff);
1425 }
1426
1427 sb->sb_csum = calc_sb_1_csum(sb);
1428 }
1429
1430 static unsigned long long
1431 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1432 {
1433 struct mdp_superblock_1 *sb;
1434 sector_t max_sectors;
1435 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1436 return 0; /* component must fit device */
1437 if (rdev->sb_start < rdev->data_offset) {
1438 /* minor versions 1 and 2; superblock before data */
1439 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1440 max_sectors -= rdev->data_offset;
1441 if (!num_sectors || num_sectors > max_sectors)
1442 num_sectors = max_sectors;
1443 } else if (rdev->mddev->bitmap_offset) {
1444 /* minor version 0 with bitmap we can't move */
1445 return 0;
1446 } else {
1447 /* minor version 0; superblock after data */
1448 sector_t sb_start;
1449 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1450 sb_start &= ~(sector_t)(4*2 - 1);
1451 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1452 if (!num_sectors || num_sectors > max_sectors)
1453 num_sectors = max_sectors;
1454 rdev->sb_start = sb_start;
1455 }
1456 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1457 sb->data_size = cpu_to_le64(num_sectors);
1458 sb->super_offset = rdev->sb_start;
1459 sb->sb_csum = calc_sb_1_csum(sb);
1460 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1461 rdev->sb_page);
1462 md_super_wait(rdev->mddev);
1463 return num_sectors / 2; /* kB for sysfs */
1464 }
1465
1466 static struct super_type super_types[] = {
1467 [0] = {
1468 .name = "0.90.0",
1469 .owner = THIS_MODULE,
1470 .load_super = super_90_load,
1471 .validate_super = super_90_validate,
1472 .sync_super = super_90_sync,
1473 .rdev_size_change = super_90_rdev_size_change,
1474 },
1475 [1] = {
1476 .name = "md-1",
1477 .owner = THIS_MODULE,
1478 .load_super = super_1_load,
1479 .validate_super = super_1_validate,
1480 .sync_super = super_1_sync,
1481 .rdev_size_change = super_1_rdev_size_change,
1482 },
1483 };
1484
1485 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1486 {
1487 mdk_rdev_t *rdev, *rdev2;
1488
1489 rcu_read_lock();
1490 rdev_for_each_rcu(rdev, mddev1)
1491 rdev_for_each_rcu(rdev2, mddev2)
1492 if (rdev->bdev->bd_contains ==
1493 rdev2->bdev->bd_contains) {
1494 rcu_read_unlock();
1495 return 1;
1496 }
1497 rcu_read_unlock();
1498 return 0;
1499 }
1500
1501 static LIST_HEAD(pending_raid_disks);
1502
1503 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
1504 {
1505 struct mdk_personality *pers = mddev->pers;
1506 struct gendisk *disk = mddev->gendisk;
1507 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1508 struct blk_integrity *bi_mddev = blk_get_integrity(disk);
1509
1510 /* Data integrity passthrough not supported on RAID 4, 5 and 6 */
1511 if (pers && pers->level >= 4 && pers->level <= 6)
1512 return;
1513
1514 /* If rdev is integrity capable, register profile for mddev */
1515 if (!bi_mddev && bi_rdev) {
1516 if (blk_integrity_register(disk, bi_rdev))
1517 printk(KERN_ERR "%s: %s Could not register integrity!\n",
1518 __func__, disk->disk_name);
1519 else
1520 printk(KERN_NOTICE "Enabling data integrity on %s\n",
1521 disk->disk_name);
1522 return;
1523 }
1524
1525 /* Check that mddev and rdev have matching profiles */
1526 if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
1527 printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
1528 disk->disk_name, rdev->bdev->bd_disk->disk_name);
1529 printk(KERN_NOTICE "Disabling data integrity on %s\n",
1530 disk->disk_name);
1531 blk_integrity_unregister(disk);
1532 }
1533 }
1534
1535 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1536 {
1537 char b[BDEVNAME_SIZE];
1538 struct kobject *ko;
1539 char *s;
1540 int err;
1541
1542 if (rdev->mddev) {
1543 MD_BUG();
1544 return -EINVAL;
1545 }
1546
1547 /* prevent duplicates */
1548 if (find_rdev(mddev, rdev->bdev->bd_dev))
1549 return -EEXIST;
1550
1551 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1552 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1553 rdev->sectors < mddev->dev_sectors)) {
1554 if (mddev->pers) {
1555 /* Cannot change size, so fail
1556 * If mddev->level <= 0, then we don't care
1557 * about aligning sizes (e.g. linear)
1558 */
1559 if (mddev->level > 0)
1560 return -ENOSPC;
1561 } else
1562 mddev->dev_sectors = rdev->sectors;
1563 }
1564
1565 /* Verify rdev->desc_nr is unique.
1566 * If it is -1, assign a free number, else
1567 * check number is not in use
1568 */
1569 if (rdev->desc_nr < 0) {
1570 int choice = 0;
1571 if (mddev->pers) choice = mddev->raid_disks;
1572 while (find_rdev_nr(mddev, choice))
1573 choice++;
1574 rdev->desc_nr = choice;
1575 } else {
1576 if (find_rdev_nr(mddev, rdev->desc_nr))
1577 return -EBUSY;
1578 }
1579 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1580 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1581 mdname(mddev), mddev->max_disks);
1582 return -EBUSY;
1583 }
1584 bdevname(rdev->bdev,b);
1585 while ( (s=strchr(b, '/')) != NULL)
1586 *s = '!';
1587
1588 rdev->mddev = mddev;
1589 printk(KERN_INFO "md: bind<%s>\n", b);
1590
1591 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1592 goto fail;
1593
1594 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1595 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1596 kobject_del(&rdev->kobj);
1597 goto fail;
1598 }
1599 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1600
1601 list_add_rcu(&rdev->same_set, &mddev->disks);
1602 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1603
1604 /* May as well allow recovery to be retried once */
1605 mddev->recovery_disabled = 0;
1606
1607 md_integrity_check(rdev, mddev);
1608 return 0;
1609
1610 fail:
1611 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1612 b, mdname(mddev));
1613 return err;
1614 }
1615
1616 static void md_delayed_delete(struct work_struct *ws)
1617 {
1618 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1619 kobject_del(&rdev->kobj);
1620 kobject_put(&rdev->kobj);
1621 }
1622
1623 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1624 {
1625 char b[BDEVNAME_SIZE];
1626 if (!rdev->mddev) {
1627 MD_BUG();
1628 return;
1629 }
1630 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1631 list_del_rcu(&rdev->same_set);
1632 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1633 rdev->mddev = NULL;
1634 sysfs_remove_link(&rdev->kobj, "block");
1635 sysfs_put(rdev->sysfs_state);
1636 rdev->sysfs_state = NULL;
1637 /* We need to delay this, otherwise we can deadlock when
1638 * writing to 'remove' to "dev/state". We also need
1639 * to delay it due to rcu usage.
1640 */
1641 synchronize_rcu();
1642 INIT_WORK(&rdev->del_work, md_delayed_delete);
1643 kobject_get(&rdev->kobj);
1644 schedule_work(&rdev->del_work);
1645 }
1646
1647 /*
1648 * prevent the device from being mounted, repartitioned or
1649 * otherwise reused by a RAID array (or any other kernel
1650 * subsystem), by bd_claiming the device.
1651 */
1652 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1653 {
1654 int err = 0;
1655 struct block_device *bdev;
1656 char b[BDEVNAME_SIZE];
1657
1658 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1659 if (IS_ERR(bdev)) {
1660 printk(KERN_ERR "md: could not open %s.\n",
1661 __bdevname(dev, b));
1662 return PTR_ERR(bdev);
1663 }
1664 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1665 if (err) {
1666 printk(KERN_ERR "md: could not bd_claim %s.\n",
1667 bdevname(bdev, b));
1668 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1669 return err;
1670 }
1671 if (!shared)
1672 set_bit(AllReserved, &rdev->flags);
1673 rdev->bdev = bdev;
1674 return err;
1675 }
1676
1677 static void unlock_rdev(mdk_rdev_t *rdev)
1678 {
1679 struct block_device *bdev = rdev->bdev;
1680 rdev->bdev = NULL;
1681 if (!bdev)
1682 MD_BUG();
1683 bd_release(bdev);
1684 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1685 }
1686
1687 void md_autodetect_dev(dev_t dev);
1688
1689 static void export_rdev(mdk_rdev_t * rdev)
1690 {
1691 char b[BDEVNAME_SIZE];
1692 printk(KERN_INFO "md: export_rdev(%s)\n",
1693 bdevname(rdev->bdev,b));
1694 if (rdev->mddev)
1695 MD_BUG();
1696 free_disk_sb(rdev);
1697 #ifndef MODULE
1698 if (test_bit(AutoDetected, &rdev->flags))
1699 md_autodetect_dev(rdev->bdev->bd_dev);
1700 #endif
1701 unlock_rdev(rdev);
1702 kobject_put(&rdev->kobj);
1703 }
1704
1705 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1706 {
1707 unbind_rdev_from_array(rdev);
1708 export_rdev(rdev);
1709 }
1710
1711 static void export_array(mddev_t *mddev)
1712 {
1713 mdk_rdev_t *rdev, *tmp;
1714
1715 rdev_for_each(rdev, tmp, mddev) {
1716 if (!rdev->mddev) {
1717 MD_BUG();
1718 continue;
1719 }
1720 kick_rdev_from_array(rdev);
1721 }
1722 if (!list_empty(&mddev->disks))
1723 MD_BUG();
1724 mddev->raid_disks = 0;
1725 mddev->major_version = 0;
1726 }
1727
1728 static void print_desc(mdp_disk_t *desc)
1729 {
1730 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1731 desc->major,desc->minor,desc->raid_disk,desc->state);
1732 }
1733
1734 static void print_sb_90(mdp_super_t *sb)
1735 {
1736 int i;
1737
1738 printk(KERN_INFO
1739 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1740 sb->major_version, sb->minor_version, sb->patch_version,
1741 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1742 sb->ctime);
1743 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1744 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1745 sb->md_minor, sb->layout, sb->chunk_size);
1746 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1747 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1748 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1749 sb->failed_disks, sb->spare_disks,
1750 sb->sb_csum, (unsigned long)sb->events_lo);
1751
1752 printk(KERN_INFO);
1753 for (i = 0; i < MD_SB_DISKS; i++) {
1754 mdp_disk_t *desc;
1755
1756 desc = sb->disks + i;
1757 if (desc->number || desc->major || desc->minor ||
1758 desc->raid_disk || (desc->state && (desc->state != 4))) {
1759 printk(" D %2d: ", i);
1760 print_desc(desc);
1761 }
1762 }
1763 printk(KERN_INFO "md: THIS: ");
1764 print_desc(&sb->this_disk);
1765 }
1766
1767 static void print_sb_1(struct mdp_superblock_1 *sb)
1768 {
1769 __u8 *uuid;
1770
1771 uuid = sb->set_uuid;
1772 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1773 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1774 KERN_INFO "md: Name: \"%s\" CT:%llu\n",
1775 le32_to_cpu(sb->major_version),
1776 le32_to_cpu(sb->feature_map),
1777 uuid[0], uuid[1], uuid[2], uuid[3],
1778 uuid[4], uuid[5], uuid[6], uuid[7],
1779 uuid[8], uuid[9], uuid[10], uuid[11],
1780 uuid[12], uuid[13], uuid[14], uuid[15],
1781 sb->set_name,
1782 (unsigned long long)le64_to_cpu(sb->ctime)
1783 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1784
1785 uuid = sb->device_uuid;
1786 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1787 " RO:%llu\n"
1788 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1789 ":%02x%02x%02x%02x%02x%02x\n"
1790 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1791 KERN_INFO "md: (MaxDev:%u) \n",
1792 le32_to_cpu(sb->level),
1793 (unsigned long long)le64_to_cpu(sb->size),
1794 le32_to_cpu(sb->raid_disks),
1795 le32_to_cpu(sb->layout),
1796 le32_to_cpu(sb->chunksize),
1797 (unsigned long long)le64_to_cpu(sb->data_offset),
1798 (unsigned long long)le64_to_cpu(sb->data_size),
1799 (unsigned long long)le64_to_cpu(sb->super_offset),
1800 (unsigned long long)le64_to_cpu(sb->recovery_offset),
1801 le32_to_cpu(sb->dev_number),
1802 uuid[0], uuid[1], uuid[2], uuid[3],
1803 uuid[4], uuid[5], uuid[6], uuid[7],
1804 uuid[8], uuid[9], uuid[10], uuid[11],
1805 uuid[12], uuid[13], uuid[14], uuid[15],
1806 sb->devflags,
1807 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1808 (unsigned long long)le64_to_cpu(sb->events),
1809 (unsigned long long)le64_to_cpu(sb->resync_offset),
1810 le32_to_cpu(sb->sb_csum),
1811 le32_to_cpu(sb->max_dev)
1812 );
1813 }
1814
1815 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1816 {
1817 char b[BDEVNAME_SIZE];
1818 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1819 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1820 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1821 rdev->desc_nr);
1822 if (rdev->sb_loaded) {
1823 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1824 switch (major_version) {
1825 case 0:
1826 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1827 break;
1828 case 1:
1829 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1830 break;
1831 }
1832 } else
1833 printk(KERN_INFO "md: no rdev superblock!\n");
1834 }
1835
1836 static void md_print_devices(void)
1837 {
1838 struct list_head *tmp;
1839 mdk_rdev_t *rdev;
1840 mddev_t *mddev;
1841 char b[BDEVNAME_SIZE];
1842
1843 printk("\n");
1844 printk("md: **********************************\n");
1845 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1846 printk("md: **********************************\n");
1847 for_each_mddev(mddev, tmp) {
1848
1849 if (mddev->bitmap)
1850 bitmap_print_sb(mddev->bitmap);
1851 else
1852 printk("%s: ", mdname(mddev));
1853 list_for_each_entry(rdev, &mddev->disks, same_set)
1854 printk("<%s>", bdevname(rdev->bdev,b));
1855 printk("\n");
1856
1857 list_for_each_entry(rdev, &mddev->disks, same_set)
1858 print_rdev(rdev, mddev->major_version);
1859 }
1860 printk("md: **********************************\n");
1861 printk("\n");
1862 }
1863
1864
1865 static void sync_sbs(mddev_t * mddev, int nospares)
1866 {
1867 /* Update each superblock (in-memory image), but
1868 * if we are allowed to, skip spares which already
1869 * have the right event counter, or have one earlier
1870 * (which would mean they aren't being marked as dirty
1871 * with the rest of the array)
1872 */
1873 mdk_rdev_t *rdev;
1874
1875 list_for_each_entry(rdev, &mddev->disks, same_set) {
1876 if (rdev->sb_events == mddev->events ||
1877 (nospares &&
1878 rdev->raid_disk < 0 &&
1879 (rdev->sb_events&1)==0 &&
1880 rdev->sb_events+1 == mddev->events)) {
1881 /* Don't update this superblock */
1882 rdev->sb_loaded = 2;
1883 } else {
1884 super_types[mddev->major_version].
1885 sync_super(mddev, rdev);
1886 rdev->sb_loaded = 1;
1887 }
1888 }
1889 }
1890
1891 static void md_update_sb(mddev_t * mddev, int force_change)
1892 {
1893 mdk_rdev_t *rdev;
1894 int sync_req;
1895 int nospares = 0;
1896
1897 if (mddev->external)
1898 return;
1899 repeat:
1900 spin_lock_irq(&mddev->write_lock);
1901
1902 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1903 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1904 force_change = 1;
1905 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1906 /* just a clean<-> dirty transition, possibly leave spares alone,
1907 * though if events isn't the right even/odd, we will have to do
1908 * spares after all
1909 */
1910 nospares = 1;
1911 if (force_change)
1912 nospares = 0;
1913 if (mddev->degraded)
1914 /* If the array is degraded, then skipping spares is both
1915 * dangerous and fairly pointless.
1916 * Dangerous because a device that was removed from the array
1917 * might have a event_count that still looks up-to-date,
1918 * so it can be re-added without a resync.
1919 * Pointless because if there are any spares to skip,
1920 * then a recovery will happen and soon that array won't
1921 * be degraded any more and the spare can go back to sleep then.
1922 */
1923 nospares = 0;
1924
1925 sync_req = mddev->in_sync;
1926 mddev->utime = get_seconds();
1927
1928 /* If this is just a dirty<->clean transition, and the array is clean
1929 * and 'events' is odd, we can roll back to the previous clean state */
1930 if (nospares
1931 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1932 && (mddev->events & 1)
1933 && mddev->events != 1)
1934 mddev->events--;
1935 else {
1936 /* otherwise we have to go forward and ... */
1937 mddev->events ++;
1938 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1939 /* .. if the array isn't clean, insist on an odd 'events' */
1940 if ((mddev->events&1)==0) {
1941 mddev->events++;
1942 nospares = 0;
1943 }
1944 } else {
1945 /* otherwise insist on an even 'events' (for clean states) */
1946 if ((mddev->events&1)) {
1947 mddev->events++;
1948 nospares = 0;
1949 }
1950 }
1951 }
1952
1953 if (!mddev->events) {
1954 /*
1955 * oops, this 64-bit counter should never wrap.
1956 * Either we are in around ~1 trillion A.C., assuming
1957 * 1 reboot per second, or we have a bug:
1958 */
1959 MD_BUG();
1960 mddev->events --;
1961 }
1962
1963 /*
1964 * do not write anything to disk if using
1965 * nonpersistent superblocks
1966 */
1967 if (!mddev->persistent) {
1968 if (!mddev->external)
1969 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1970
1971 spin_unlock_irq(&mddev->write_lock);
1972 wake_up(&mddev->sb_wait);
1973 return;
1974 }
1975 sync_sbs(mddev, nospares);
1976 spin_unlock_irq(&mddev->write_lock);
1977
1978 dprintk(KERN_INFO
1979 "md: updating %s RAID superblock on device (in sync %d)\n",
1980 mdname(mddev),mddev->in_sync);
1981
1982 bitmap_update_sb(mddev->bitmap);
1983 list_for_each_entry(rdev, &mddev->disks, same_set) {
1984 char b[BDEVNAME_SIZE];
1985 dprintk(KERN_INFO "md: ");
1986 if (rdev->sb_loaded != 1)
1987 continue; /* no noise on spare devices */
1988 if (test_bit(Faulty, &rdev->flags))
1989 dprintk("(skipping faulty ");
1990
1991 dprintk("%s ", bdevname(rdev->bdev,b));
1992 if (!test_bit(Faulty, &rdev->flags)) {
1993 md_super_write(mddev,rdev,
1994 rdev->sb_start, rdev->sb_size,
1995 rdev->sb_page);
1996 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1997 bdevname(rdev->bdev,b),
1998 (unsigned long long)rdev->sb_start);
1999 rdev->sb_events = mddev->events;
2000
2001 } else
2002 dprintk(")\n");
2003 if (mddev->level == LEVEL_MULTIPATH)
2004 /* only need to write one superblock... */
2005 break;
2006 }
2007 md_super_wait(mddev);
2008 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2009
2010 spin_lock_irq(&mddev->write_lock);
2011 if (mddev->in_sync != sync_req ||
2012 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2013 /* have to write it out again */
2014 spin_unlock_irq(&mddev->write_lock);
2015 goto repeat;
2016 }
2017 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2018 spin_unlock_irq(&mddev->write_lock);
2019 wake_up(&mddev->sb_wait);
2020
2021 }
2022
2023 /* words written to sysfs files may, or may not, be \n terminated.
2024 * We want to accept with case. For this we use cmd_match.
2025 */
2026 static int cmd_match(const char *cmd, const char *str)
2027 {
2028 /* See if cmd, written into a sysfs file, matches
2029 * str. They must either be the same, or cmd can
2030 * have a trailing newline
2031 */
2032 while (*cmd && *str && *cmd == *str) {
2033 cmd++;
2034 str++;
2035 }
2036 if (*cmd == '\n')
2037 cmd++;
2038 if (*str || *cmd)
2039 return 0;
2040 return 1;
2041 }
2042
2043 struct rdev_sysfs_entry {
2044 struct attribute attr;
2045 ssize_t (*show)(mdk_rdev_t *, char *);
2046 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2047 };
2048
2049 static ssize_t
2050 state_show(mdk_rdev_t *rdev, char *page)
2051 {
2052 char *sep = "";
2053 size_t len = 0;
2054
2055 if (test_bit(Faulty, &rdev->flags)) {
2056 len+= sprintf(page+len, "%sfaulty",sep);
2057 sep = ",";
2058 }
2059 if (test_bit(In_sync, &rdev->flags)) {
2060 len += sprintf(page+len, "%sin_sync",sep);
2061 sep = ",";
2062 }
2063 if (test_bit(WriteMostly, &rdev->flags)) {
2064 len += sprintf(page+len, "%swrite_mostly",sep);
2065 sep = ",";
2066 }
2067 if (test_bit(Blocked, &rdev->flags)) {
2068 len += sprintf(page+len, "%sblocked", sep);
2069 sep = ",";
2070 }
2071 if (!test_bit(Faulty, &rdev->flags) &&
2072 !test_bit(In_sync, &rdev->flags)) {
2073 len += sprintf(page+len, "%sspare", sep);
2074 sep = ",";
2075 }
2076 return len+sprintf(page+len, "\n");
2077 }
2078
2079 static ssize_t
2080 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2081 {
2082 /* can write
2083 * faulty - simulates and error
2084 * remove - disconnects the device
2085 * writemostly - sets write_mostly
2086 * -writemostly - clears write_mostly
2087 * blocked - sets the Blocked flag
2088 * -blocked - clears the Blocked flag
2089 */
2090 int err = -EINVAL;
2091 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2092 md_error(rdev->mddev, rdev);
2093 err = 0;
2094 } else if (cmd_match(buf, "remove")) {
2095 if (rdev->raid_disk >= 0)
2096 err = -EBUSY;
2097 else {
2098 mddev_t *mddev = rdev->mddev;
2099 kick_rdev_from_array(rdev);
2100 if (mddev->pers)
2101 md_update_sb(mddev, 1);
2102 md_new_event(mddev);
2103 err = 0;
2104 }
2105 } else if (cmd_match(buf, "writemostly")) {
2106 set_bit(WriteMostly, &rdev->flags);
2107 err = 0;
2108 } else if (cmd_match(buf, "-writemostly")) {
2109 clear_bit(WriteMostly, &rdev->flags);
2110 err = 0;
2111 } else if (cmd_match(buf, "blocked")) {
2112 set_bit(Blocked, &rdev->flags);
2113 err = 0;
2114 } else if (cmd_match(buf, "-blocked")) {
2115 clear_bit(Blocked, &rdev->flags);
2116 wake_up(&rdev->blocked_wait);
2117 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2118 md_wakeup_thread(rdev->mddev->thread);
2119
2120 err = 0;
2121 }
2122 if (!err && rdev->sysfs_state)
2123 sysfs_notify_dirent(rdev->sysfs_state);
2124 return err ? err : len;
2125 }
2126 static struct rdev_sysfs_entry rdev_state =
2127 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2128
2129 static ssize_t
2130 errors_show(mdk_rdev_t *rdev, char *page)
2131 {
2132 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2133 }
2134
2135 static ssize_t
2136 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2137 {
2138 char *e;
2139 unsigned long n = simple_strtoul(buf, &e, 10);
2140 if (*buf && (*e == 0 || *e == '\n')) {
2141 atomic_set(&rdev->corrected_errors, n);
2142 return len;
2143 }
2144 return -EINVAL;
2145 }
2146 static struct rdev_sysfs_entry rdev_errors =
2147 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2148
2149 static ssize_t
2150 slot_show(mdk_rdev_t *rdev, char *page)
2151 {
2152 if (rdev->raid_disk < 0)
2153 return sprintf(page, "none\n");
2154 else
2155 return sprintf(page, "%d\n", rdev->raid_disk);
2156 }
2157
2158 static ssize_t
2159 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2160 {
2161 char *e;
2162 int err;
2163 char nm[20];
2164 int slot = simple_strtoul(buf, &e, 10);
2165 if (strncmp(buf, "none", 4)==0)
2166 slot = -1;
2167 else if (e==buf || (*e && *e!= '\n'))
2168 return -EINVAL;
2169 if (rdev->mddev->pers && slot == -1) {
2170 /* Setting 'slot' on an active array requires also
2171 * updating the 'rd%d' link, and communicating
2172 * with the personality with ->hot_*_disk.
2173 * For now we only support removing
2174 * failed/spare devices. This normally happens automatically,
2175 * but not when the metadata is externally managed.
2176 */
2177 if (rdev->raid_disk == -1)
2178 return -EEXIST;
2179 /* personality does all needed checks */
2180 if (rdev->mddev->pers->hot_add_disk == NULL)
2181 return -EINVAL;
2182 err = rdev->mddev->pers->
2183 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2184 if (err)
2185 return err;
2186 sprintf(nm, "rd%d", rdev->raid_disk);
2187 sysfs_remove_link(&rdev->mddev->kobj, nm);
2188 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2189 md_wakeup_thread(rdev->mddev->thread);
2190 } else if (rdev->mddev->pers) {
2191 mdk_rdev_t *rdev2;
2192 /* Activating a spare .. or possibly reactivating
2193 * if we every get bitmaps working here.
2194 */
2195
2196 if (rdev->raid_disk != -1)
2197 return -EBUSY;
2198
2199 if (rdev->mddev->pers->hot_add_disk == NULL)
2200 return -EINVAL;
2201
2202 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2203 if (rdev2->raid_disk == slot)
2204 return -EEXIST;
2205
2206 rdev->raid_disk = slot;
2207 if (test_bit(In_sync, &rdev->flags))
2208 rdev->saved_raid_disk = slot;
2209 else
2210 rdev->saved_raid_disk = -1;
2211 err = rdev->mddev->pers->
2212 hot_add_disk(rdev->mddev, rdev);
2213 if (err) {
2214 rdev->raid_disk = -1;
2215 return err;
2216 } else
2217 sysfs_notify_dirent(rdev->sysfs_state);
2218 sprintf(nm, "rd%d", rdev->raid_disk);
2219 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2220 printk(KERN_WARNING
2221 "md: cannot register "
2222 "%s for %s\n",
2223 nm, mdname(rdev->mddev));
2224
2225 /* don't wakeup anyone, leave that to userspace. */
2226 } else {
2227 if (slot >= rdev->mddev->raid_disks)
2228 return -ENOSPC;
2229 rdev->raid_disk = slot;
2230 /* assume it is working */
2231 clear_bit(Faulty, &rdev->flags);
2232 clear_bit(WriteMostly, &rdev->flags);
2233 set_bit(In_sync, &rdev->flags);
2234 sysfs_notify_dirent(rdev->sysfs_state);
2235 }
2236 return len;
2237 }
2238
2239
2240 static struct rdev_sysfs_entry rdev_slot =
2241 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2242
2243 static ssize_t
2244 offset_show(mdk_rdev_t *rdev, char *page)
2245 {
2246 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2247 }
2248
2249 static ssize_t
2250 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2251 {
2252 char *e;
2253 unsigned long long offset = simple_strtoull(buf, &e, 10);
2254 if (e==buf || (*e && *e != '\n'))
2255 return -EINVAL;
2256 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2257 return -EBUSY;
2258 if (rdev->sectors && rdev->mddev->external)
2259 /* Must set offset before size, so overlap checks
2260 * can be sane */
2261 return -EBUSY;
2262 rdev->data_offset = offset;
2263 return len;
2264 }
2265
2266 static struct rdev_sysfs_entry rdev_offset =
2267 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2268
2269 static ssize_t
2270 rdev_size_show(mdk_rdev_t *rdev, char *page)
2271 {
2272 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2273 }
2274
2275 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2276 {
2277 /* check if two start/length pairs overlap */
2278 if (s1+l1 <= s2)
2279 return 0;
2280 if (s2+l2 <= s1)
2281 return 0;
2282 return 1;
2283 }
2284
2285 static ssize_t
2286 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2287 {
2288 mddev_t *my_mddev = rdev->mddev;
2289 sector_t oldsectors = rdev->sectors;
2290 unsigned long long sectors;
2291
2292 if (strict_strtoull(buf, 10, &sectors) < 0)
2293 return -EINVAL;
2294 sectors *= 2;
2295 if (my_mddev->pers && rdev->raid_disk >= 0) {
2296 if (my_mddev->persistent) {
2297 sectors = super_types[my_mddev->major_version].
2298 rdev_size_change(rdev, sectors);
2299 if (!sectors)
2300 return -EBUSY;
2301 } else if (!sectors)
2302 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2303 rdev->data_offset;
2304 }
2305 if (sectors < my_mddev->dev_sectors)
2306 return -EINVAL; /* component must fit device */
2307
2308 rdev->sectors = sectors;
2309 if (sectors > oldsectors && my_mddev->external) {
2310 /* need to check that all other rdevs with the same ->bdev
2311 * do not overlap. We need to unlock the mddev to avoid
2312 * a deadlock. We have already changed rdev->sectors, and if
2313 * we have to change it back, we will have the lock again.
2314 */
2315 mddev_t *mddev;
2316 int overlap = 0;
2317 struct list_head *tmp;
2318
2319 mddev_unlock(my_mddev);
2320 for_each_mddev(mddev, tmp) {
2321 mdk_rdev_t *rdev2;
2322
2323 mddev_lock(mddev);
2324 list_for_each_entry(rdev2, &mddev->disks, same_set)
2325 if (test_bit(AllReserved, &rdev2->flags) ||
2326 (rdev->bdev == rdev2->bdev &&
2327 rdev != rdev2 &&
2328 overlaps(rdev->data_offset, rdev->sectors,
2329 rdev2->data_offset,
2330 rdev2->sectors))) {
2331 overlap = 1;
2332 break;
2333 }
2334 mddev_unlock(mddev);
2335 if (overlap) {
2336 mddev_put(mddev);
2337 break;
2338 }
2339 }
2340 mddev_lock(my_mddev);
2341 if (overlap) {
2342 /* Someone else could have slipped in a size
2343 * change here, but doing so is just silly.
2344 * We put oldsectors back because we *know* it is
2345 * safe, and trust userspace not to race with
2346 * itself
2347 */
2348 rdev->sectors = oldsectors;
2349 return -EBUSY;
2350 }
2351 }
2352 return len;
2353 }
2354
2355 static struct rdev_sysfs_entry rdev_size =
2356 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2357
2358 static struct attribute *rdev_default_attrs[] = {
2359 &rdev_state.attr,
2360 &rdev_errors.attr,
2361 &rdev_slot.attr,
2362 &rdev_offset.attr,
2363 &rdev_size.attr,
2364 NULL,
2365 };
2366 static ssize_t
2367 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2368 {
2369 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2370 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2371 mddev_t *mddev = rdev->mddev;
2372 ssize_t rv;
2373
2374 if (!entry->show)
2375 return -EIO;
2376
2377 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2378 if (!rv) {
2379 if (rdev->mddev == NULL)
2380 rv = -EBUSY;
2381 else
2382 rv = entry->show(rdev, page);
2383 mddev_unlock(mddev);
2384 }
2385 return rv;
2386 }
2387
2388 static ssize_t
2389 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2390 const char *page, size_t length)
2391 {
2392 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2393 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2394 ssize_t rv;
2395 mddev_t *mddev = rdev->mddev;
2396
2397 if (!entry->store)
2398 return -EIO;
2399 if (!capable(CAP_SYS_ADMIN))
2400 return -EACCES;
2401 rv = mddev ? mddev_lock(mddev): -EBUSY;
2402 if (!rv) {
2403 if (rdev->mddev == NULL)
2404 rv = -EBUSY;
2405 else
2406 rv = entry->store(rdev, page, length);
2407 mddev_unlock(mddev);
2408 }
2409 return rv;
2410 }
2411
2412 static void rdev_free(struct kobject *ko)
2413 {
2414 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2415 kfree(rdev);
2416 }
2417 static struct sysfs_ops rdev_sysfs_ops = {
2418 .show = rdev_attr_show,
2419 .store = rdev_attr_store,
2420 };
2421 static struct kobj_type rdev_ktype = {
2422 .release = rdev_free,
2423 .sysfs_ops = &rdev_sysfs_ops,
2424 .default_attrs = rdev_default_attrs,
2425 };
2426
2427 /*
2428 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2429 *
2430 * mark the device faulty if:
2431 *
2432 * - the device is nonexistent (zero size)
2433 * - the device has no valid superblock
2434 *
2435 * a faulty rdev _never_ has rdev->sb set.
2436 */
2437 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2438 {
2439 char b[BDEVNAME_SIZE];
2440 int err;
2441 mdk_rdev_t *rdev;
2442 sector_t size;
2443
2444 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2445 if (!rdev) {
2446 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2447 return ERR_PTR(-ENOMEM);
2448 }
2449
2450 if ((err = alloc_disk_sb(rdev)))
2451 goto abort_free;
2452
2453 err = lock_rdev(rdev, newdev, super_format == -2);
2454 if (err)
2455 goto abort_free;
2456
2457 kobject_init(&rdev->kobj, &rdev_ktype);
2458
2459 rdev->desc_nr = -1;
2460 rdev->saved_raid_disk = -1;
2461 rdev->raid_disk = -1;
2462 rdev->flags = 0;
2463 rdev->data_offset = 0;
2464 rdev->sb_events = 0;
2465 atomic_set(&rdev->nr_pending, 0);
2466 atomic_set(&rdev->read_errors, 0);
2467 atomic_set(&rdev->corrected_errors, 0);
2468
2469 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2470 if (!size) {
2471 printk(KERN_WARNING
2472 "md: %s has zero or unknown size, marking faulty!\n",
2473 bdevname(rdev->bdev,b));
2474 err = -EINVAL;
2475 goto abort_free;
2476 }
2477
2478 if (super_format >= 0) {
2479 err = super_types[super_format].
2480 load_super(rdev, NULL, super_minor);
2481 if (err == -EINVAL) {
2482 printk(KERN_WARNING
2483 "md: %s does not have a valid v%d.%d "
2484 "superblock, not importing!\n",
2485 bdevname(rdev->bdev,b),
2486 super_format, super_minor);
2487 goto abort_free;
2488 }
2489 if (err < 0) {
2490 printk(KERN_WARNING
2491 "md: could not read %s's sb, not importing!\n",
2492 bdevname(rdev->bdev,b));
2493 goto abort_free;
2494 }
2495 }
2496
2497 INIT_LIST_HEAD(&rdev->same_set);
2498 init_waitqueue_head(&rdev->blocked_wait);
2499
2500 return rdev;
2501
2502 abort_free:
2503 if (rdev->sb_page) {
2504 if (rdev->bdev)
2505 unlock_rdev(rdev);
2506 free_disk_sb(rdev);
2507 }
2508 kfree(rdev);
2509 return ERR_PTR(err);
2510 }
2511
2512 /*
2513 * Check a full RAID array for plausibility
2514 */
2515
2516
2517 static void analyze_sbs(mddev_t * mddev)
2518 {
2519 int i;
2520 mdk_rdev_t *rdev, *freshest, *tmp;
2521 char b[BDEVNAME_SIZE];
2522
2523 freshest = NULL;
2524 rdev_for_each(rdev, tmp, mddev)
2525 switch (super_types[mddev->major_version].
2526 load_super(rdev, freshest, mddev->minor_version)) {
2527 case 1:
2528 freshest = rdev;
2529 break;
2530 case 0:
2531 break;
2532 default:
2533 printk( KERN_ERR \
2534 "md: fatal superblock inconsistency in %s"
2535 " -- removing from array\n",
2536 bdevname(rdev->bdev,b));
2537 kick_rdev_from_array(rdev);
2538 }
2539
2540
2541 super_types[mddev->major_version].
2542 validate_super(mddev, freshest);
2543
2544 i = 0;
2545 rdev_for_each(rdev, tmp, mddev) {
2546 if (rdev->desc_nr >= mddev->max_disks ||
2547 i > mddev->max_disks) {
2548 printk(KERN_WARNING
2549 "md: %s: %s: only %d devices permitted\n",
2550 mdname(mddev), bdevname(rdev->bdev, b),
2551 mddev->max_disks);
2552 kick_rdev_from_array(rdev);
2553 continue;
2554 }
2555 if (rdev != freshest)
2556 if (super_types[mddev->major_version].
2557 validate_super(mddev, rdev)) {
2558 printk(KERN_WARNING "md: kicking non-fresh %s"
2559 " from array!\n",
2560 bdevname(rdev->bdev,b));
2561 kick_rdev_from_array(rdev);
2562 continue;
2563 }
2564 if (mddev->level == LEVEL_MULTIPATH) {
2565 rdev->desc_nr = i++;
2566 rdev->raid_disk = rdev->desc_nr;
2567 set_bit(In_sync, &rdev->flags);
2568 } else if (rdev->raid_disk >= mddev->raid_disks) {
2569 rdev->raid_disk = -1;
2570 clear_bit(In_sync, &rdev->flags);
2571 }
2572 }
2573
2574
2575
2576 if (mddev->recovery_cp != MaxSector &&
2577 mddev->level >= 1)
2578 printk(KERN_ERR "md: %s: raid array is not clean"
2579 " -- starting background reconstruction\n",
2580 mdname(mddev));
2581
2582 }
2583
2584 static void md_safemode_timeout(unsigned long data);
2585
2586 static ssize_t
2587 safe_delay_show(mddev_t *mddev, char *page)
2588 {
2589 int msec = (mddev->safemode_delay*1000)/HZ;
2590 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2591 }
2592 static ssize_t
2593 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2594 {
2595 int scale=1;
2596 int dot=0;
2597 int i;
2598 unsigned long msec;
2599 char buf[30];
2600
2601 /* remove a period, and count digits after it */
2602 if (len >= sizeof(buf))
2603 return -EINVAL;
2604 strlcpy(buf, cbuf, sizeof(buf));
2605 for (i=0; i<len; i++) {
2606 if (dot) {
2607 if (isdigit(buf[i])) {
2608 buf[i-1] = buf[i];
2609 scale *= 10;
2610 }
2611 buf[i] = 0;
2612 } else if (buf[i] == '.') {
2613 dot=1;
2614 buf[i] = 0;
2615 }
2616 }
2617 if (strict_strtoul(buf, 10, &msec) < 0)
2618 return -EINVAL;
2619 msec = (msec * 1000) / scale;
2620 if (msec == 0)
2621 mddev->safemode_delay = 0;
2622 else {
2623 unsigned long old_delay = mddev->safemode_delay;
2624 mddev->safemode_delay = (msec*HZ)/1000;
2625 if (mddev->safemode_delay == 0)
2626 mddev->safemode_delay = 1;
2627 if (mddev->safemode_delay < old_delay)
2628 md_safemode_timeout((unsigned long)mddev);
2629 }
2630 return len;
2631 }
2632 static struct md_sysfs_entry md_safe_delay =
2633 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2634
2635 static ssize_t
2636 level_show(mddev_t *mddev, char *page)
2637 {
2638 struct mdk_personality *p = mddev->pers;
2639 if (p)
2640 return sprintf(page, "%s\n", p->name);
2641 else if (mddev->clevel[0])
2642 return sprintf(page, "%s\n", mddev->clevel);
2643 else if (mddev->level != LEVEL_NONE)
2644 return sprintf(page, "%d\n", mddev->level);
2645 else
2646 return 0;
2647 }
2648
2649 static ssize_t
2650 level_store(mddev_t *mddev, const char *buf, size_t len)
2651 {
2652 ssize_t rv = len;
2653 if (mddev->pers)
2654 return -EBUSY;
2655 if (len == 0)
2656 return 0;
2657 if (len >= sizeof(mddev->clevel))
2658 return -ENOSPC;
2659 strncpy(mddev->clevel, buf, len);
2660 if (mddev->clevel[len-1] == '\n')
2661 len--;
2662 mddev->clevel[len] = 0;
2663 mddev->level = LEVEL_NONE;
2664 return rv;
2665 }
2666
2667 static struct md_sysfs_entry md_level =
2668 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2669
2670
2671 static ssize_t
2672 layout_show(mddev_t *mddev, char *page)
2673 {
2674 /* just a number, not meaningful for all levels */
2675 if (mddev->reshape_position != MaxSector &&
2676 mddev->layout != mddev->new_layout)
2677 return sprintf(page, "%d (%d)\n",
2678 mddev->new_layout, mddev->layout);
2679 return sprintf(page, "%d\n", mddev->layout);
2680 }
2681
2682 static ssize_t
2683 layout_store(mddev_t *mddev, const char *buf, size_t len)
2684 {
2685 char *e;
2686 unsigned long n = simple_strtoul(buf, &e, 10);
2687
2688 if (!*buf || (*e && *e != '\n'))
2689 return -EINVAL;
2690
2691 if (mddev->pers)
2692 return -EBUSY;
2693
2694 mddev->new_layout = n;
2695 if (mddev->reshape_position == MaxSector)
2696 mddev->layout = n;
2697 return len;
2698 }
2699 static struct md_sysfs_entry md_layout =
2700 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2701
2702
2703 static ssize_t
2704 raid_disks_show(mddev_t *mddev, char *page)
2705 {
2706 if (mddev->raid_disks == 0)
2707 return 0;
2708 if (mddev->reshape_position != MaxSector &&
2709 mddev->delta_disks != 0)
2710 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2711 mddev->raid_disks - mddev->delta_disks);
2712 return sprintf(page, "%d\n", mddev->raid_disks);
2713 }
2714
2715 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2716
2717 static ssize_t
2718 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2719 {
2720 char *e;
2721 int rv = 0;
2722 unsigned long n = simple_strtoul(buf, &e, 10);
2723
2724 if (!*buf || (*e && *e != '\n'))
2725 return -EINVAL;
2726
2727 if (mddev->pers)
2728 rv = update_raid_disks(mddev, n);
2729 else if (mddev->reshape_position != MaxSector) {
2730 int olddisks = mddev->raid_disks - mddev->delta_disks;
2731 mddev->delta_disks = n - olddisks;
2732 mddev->raid_disks = n;
2733 } else
2734 mddev->raid_disks = n;
2735 return rv ? rv : len;
2736 }
2737 static struct md_sysfs_entry md_raid_disks =
2738 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2739
2740 static ssize_t
2741 chunk_size_show(mddev_t *mddev, char *page)
2742 {
2743 if (mddev->reshape_position != MaxSector &&
2744 mddev->chunk_size != mddev->new_chunk)
2745 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2746 mddev->chunk_size);
2747 return sprintf(page, "%d\n", mddev->chunk_size);
2748 }
2749
2750 static ssize_t
2751 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2752 {
2753 /* can only set chunk_size if array is not yet active */
2754 char *e;
2755 unsigned long n = simple_strtoul(buf, &e, 10);
2756
2757 if (!*buf || (*e && *e != '\n'))
2758 return -EINVAL;
2759
2760 if (mddev->pers)
2761 return -EBUSY;
2762
2763 mddev->new_chunk = n;
2764 if (mddev->reshape_position == MaxSector)
2765 mddev->chunk_size = n;
2766 return len;
2767 }
2768 static struct md_sysfs_entry md_chunk_size =
2769 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2770
2771 static ssize_t
2772 resync_start_show(mddev_t *mddev, char *page)
2773 {
2774 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2775 }
2776
2777 static ssize_t
2778 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2779 {
2780 char *e;
2781 unsigned long long n = simple_strtoull(buf, &e, 10);
2782
2783 if (mddev->pers)
2784 return -EBUSY;
2785 if (!*buf || (*e && *e != '\n'))
2786 return -EINVAL;
2787
2788 mddev->recovery_cp = n;
2789 return len;
2790 }
2791 static struct md_sysfs_entry md_resync_start =
2792 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2793
2794 /*
2795 * The array state can be:
2796 *
2797 * clear
2798 * No devices, no size, no level
2799 * Equivalent to STOP_ARRAY ioctl
2800 * inactive
2801 * May have some settings, but array is not active
2802 * all IO results in error
2803 * When written, doesn't tear down array, but just stops it
2804 * suspended (not supported yet)
2805 * All IO requests will block. The array can be reconfigured.
2806 * Writing this, if accepted, will block until array is quiescent
2807 * readonly
2808 * no resync can happen. no superblocks get written.
2809 * write requests fail
2810 * read-auto
2811 * like readonly, but behaves like 'clean' on a write request.
2812 *
2813 * clean - no pending writes, but otherwise active.
2814 * When written to inactive array, starts without resync
2815 * If a write request arrives then
2816 * if metadata is known, mark 'dirty' and switch to 'active'.
2817 * if not known, block and switch to write-pending
2818 * If written to an active array that has pending writes, then fails.
2819 * active
2820 * fully active: IO and resync can be happening.
2821 * When written to inactive array, starts with resync
2822 *
2823 * write-pending
2824 * clean, but writes are blocked waiting for 'active' to be written.
2825 *
2826 * active-idle
2827 * like active, but no writes have been seen for a while (100msec).
2828 *
2829 */
2830 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2831 write_pending, active_idle, bad_word};
2832 static char *array_states[] = {
2833 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2834 "write-pending", "active-idle", NULL };
2835
2836 static int match_word(const char *word, char **list)
2837 {
2838 int n;
2839 for (n=0; list[n]; n++)
2840 if (cmd_match(word, list[n]))
2841 break;
2842 return n;
2843 }
2844
2845 static ssize_t
2846 array_state_show(mddev_t *mddev, char *page)
2847 {
2848 enum array_state st = inactive;
2849
2850 if (mddev->pers)
2851 switch(mddev->ro) {
2852 case 1:
2853 st = readonly;
2854 break;
2855 case 2:
2856 st = read_auto;
2857 break;
2858 case 0:
2859 if (mddev->in_sync)
2860 st = clean;
2861 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2862 st = write_pending;
2863 else if (mddev->safemode)
2864 st = active_idle;
2865 else
2866 st = active;
2867 }
2868 else {
2869 if (list_empty(&mddev->disks) &&
2870 mddev->raid_disks == 0 &&
2871 mddev->dev_sectors == 0)
2872 st = clear;
2873 else
2874 st = inactive;
2875 }
2876 return sprintf(page, "%s\n", array_states[st]);
2877 }
2878
2879 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2880 static int do_md_run(mddev_t * mddev);
2881 static int restart_array(mddev_t *mddev);
2882
2883 static ssize_t
2884 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2885 {
2886 int err = -EINVAL;
2887 enum array_state st = match_word(buf, array_states);
2888 switch(st) {
2889 case bad_word:
2890 break;
2891 case clear:
2892 /* stopping an active array */
2893 if (atomic_read(&mddev->openers) > 0)
2894 return -EBUSY;
2895 err = do_md_stop(mddev, 0, 0);
2896 break;
2897 case inactive:
2898 /* stopping an active array */
2899 if (mddev->pers) {
2900 if (atomic_read(&mddev->openers) > 0)
2901 return -EBUSY;
2902 err = do_md_stop(mddev, 2, 0);
2903 } else
2904 err = 0; /* already inactive */
2905 break;
2906 case suspended:
2907 break; /* not supported yet */
2908 case readonly:
2909 if (mddev->pers)
2910 err = do_md_stop(mddev, 1, 0);
2911 else {
2912 mddev->ro = 1;
2913 set_disk_ro(mddev->gendisk, 1);
2914 err = do_md_run(mddev);
2915 }
2916 break;
2917 case read_auto:
2918 if (mddev->pers) {
2919 if (mddev->ro == 0)
2920 err = do_md_stop(mddev, 1, 0);
2921 else if (mddev->ro == 1)
2922 err = restart_array(mddev);
2923 if (err == 0) {
2924 mddev->ro = 2;
2925 set_disk_ro(mddev->gendisk, 0);
2926 }
2927 } else {
2928 mddev->ro = 2;
2929 err = do_md_run(mddev);
2930 }
2931 break;
2932 case clean:
2933 if (mddev->pers) {
2934 restart_array(mddev);
2935 spin_lock_irq(&mddev->write_lock);
2936 if (atomic_read(&mddev->writes_pending) == 0) {
2937 if (mddev->in_sync == 0) {
2938 mddev->in_sync = 1;
2939 if (mddev->safemode == 1)
2940 mddev->safemode = 0;
2941 if (mddev->persistent)
2942 set_bit(MD_CHANGE_CLEAN,
2943 &mddev->flags);
2944 }
2945 err = 0;
2946 } else
2947 err = -EBUSY;
2948 spin_unlock_irq(&mddev->write_lock);
2949 } else {
2950 mddev->ro = 0;
2951 mddev->recovery_cp = MaxSector;
2952 err = do_md_run(mddev);
2953 }
2954 break;
2955 case active:
2956 if (mddev->pers) {
2957 restart_array(mddev);
2958 if (mddev->external)
2959 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2960 wake_up(&mddev->sb_wait);
2961 err = 0;
2962 } else {
2963 mddev->ro = 0;
2964 set_disk_ro(mddev->gendisk, 0);
2965 err = do_md_run(mddev);
2966 }
2967 break;
2968 case write_pending:
2969 case active_idle:
2970 /* these cannot be set */
2971 break;
2972 }
2973 if (err)
2974 return err;
2975 else {
2976 sysfs_notify_dirent(mddev->sysfs_state);
2977 return len;
2978 }
2979 }
2980 static struct md_sysfs_entry md_array_state =
2981 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2982
2983 static ssize_t
2984 null_show(mddev_t *mddev, char *page)
2985 {
2986 return -EINVAL;
2987 }
2988
2989 static ssize_t
2990 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2991 {
2992 /* buf must be %d:%d\n? giving major and minor numbers */
2993 /* The new device is added to the array.
2994 * If the array has a persistent superblock, we read the
2995 * superblock to initialise info and check validity.
2996 * Otherwise, only checking done is that in bind_rdev_to_array,
2997 * which mainly checks size.
2998 */
2999 char *e;
3000 int major = simple_strtoul(buf, &e, 10);
3001 int minor;
3002 dev_t dev;
3003 mdk_rdev_t *rdev;
3004 int err;
3005
3006 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3007 return -EINVAL;
3008 minor = simple_strtoul(e+1, &e, 10);
3009 if (*e && *e != '\n')
3010 return -EINVAL;
3011 dev = MKDEV(major, minor);
3012 if (major != MAJOR(dev) ||
3013 minor != MINOR(dev))
3014 return -EOVERFLOW;
3015
3016
3017 if (mddev->persistent) {
3018 rdev = md_import_device(dev, mddev->major_version,
3019 mddev->minor_version);
3020 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3021 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3022 mdk_rdev_t, same_set);
3023 err = super_types[mddev->major_version]
3024 .load_super(rdev, rdev0, mddev->minor_version);
3025 if (err < 0)
3026 goto out;
3027 }
3028 } else if (mddev->external)
3029 rdev = md_import_device(dev, -2, -1);
3030 else
3031 rdev = md_import_device(dev, -1, -1);
3032
3033 if (IS_ERR(rdev))
3034 return PTR_ERR(rdev);
3035 err = bind_rdev_to_array(rdev, mddev);
3036 out:
3037 if (err)
3038 export_rdev(rdev);
3039 return err ? err : len;
3040 }
3041
3042 static struct md_sysfs_entry md_new_device =
3043 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3044
3045 static ssize_t
3046 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3047 {
3048 char *end;
3049 unsigned long chunk, end_chunk;
3050
3051 if (!mddev->bitmap)
3052 goto out;
3053 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3054 while (*buf) {
3055 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3056 if (buf == end) break;
3057 if (*end == '-') { /* range */
3058 buf = end + 1;
3059 end_chunk = simple_strtoul(buf, &end, 0);
3060 if (buf == end) break;
3061 }
3062 if (*end && !isspace(*end)) break;
3063 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3064 buf = end;
3065 while (isspace(*buf)) buf++;
3066 }
3067 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3068 out:
3069 return len;
3070 }
3071
3072 static struct md_sysfs_entry md_bitmap =
3073 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3074
3075 static ssize_t
3076 size_show(mddev_t *mddev, char *page)
3077 {
3078 return sprintf(page, "%llu\n",
3079 (unsigned long long)mddev->dev_sectors / 2);
3080 }
3081
3082 static int update_size(mddev_t *mddev, sector_t num_sectors);
3083
3084 static ssize_t
3085 size_store(mddev_t *mddev, const char *buf, size_t len)
3086 {
3087 /* If array is inactive, we can reduce the component size, but
3088 * not increase it (except from 0).
3089 * If array is active, we can try an on-line resize
3090 */
3091 unsigned long long sectors;
3092 int err = strict_strtoull(buf, 10, &sectors);
3093
3094 if (err < 0)
3095 return err;
3096 sectors *= 2;
3097 if (mddev->pers) {
3098 err = update_size(mddev, sectors);
3099 md_update_sb(mddev, 1);
3100 } else {
3101 if (mddev->dev_sectors == 0 ||
3102 mddev->dev_sectors > sectors)
3103 mddev->dev_sectors = sectors;
3104 else
3105 err = -ENOSPC;
3106 }
3107 return err ? err : len;
3108 }
3109
3110 static struct md_sysfs_entry md_size =
3111 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3112
3113
3114 /* Metdata version.
3115 * This is one of
3116 * 'none' for arrays with no metadata (good luck...)
3117 * 'external' for arrays with externally managed metadata,
3118 * or N.M for internally known formats
3119 */
3120 static ssize_t
3121 metadata_show(mddev_t *mddev, char *page)
3122 {
3123 if (mddev->persistent)
3124 return sprintf(page, "%d.%d\n",
3125 mddev->major_version, mddev->minor_version);
3126 else if (mddev->external)
3127 return sprintf(page, "external:%s\n", mddev->metadata_type);
3128 else
3129 return sprintf(page, "none\n");
3130 }
3131
3132 static ssize_t
3133 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3134 {
3135 int major, minor;
3136 char *e;
3137 /* Changing the details of 'external' metadata is
3138 * always permitted. Otherwise there must be
3139 * no devices attached to the array.
3140 */
3141 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3142 ;
3143 else if (!list_empty(&mddev->disks))
3144 return -EBUSY;
3145
3146 if (cmd_match(buf, "none")) {
3147 mddev->persistent = 0;
3148 mddev->external = 0;
3149 mddev->major_version = 0;
3150 mddev->minor_version = 90;
3151 return len;
3152 }
3153 if (strncmp(buf, "external:", 9) == 0) {
3154 size_t namelen = len-9;
3155 if (namelen >= sizeof(mddev->metadata_type))
3156 namelen = sizeof(mddev->metadata_type)-1;
3157 strncpy(mddev->metadata_type, buf+9, namelen);
3158 mddev->metadata_type[namelen] = 0;
3159 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3160 mddev->metadata_type[--namelen] = 0;
3161 mddev->persistent = 0;
3162 mddev->external = 1;
3163 mddev->major_version = 0;
3164 mddev->minor_version = 90;
3165 return len;
3166 }
3167 major = simple_strtoul(buf, &e, 10);
3168 if (e==buf || *e != '.')
3169 return -EINVAL;
3170 buf = e+1;
3171 minor = simple_strtoul(buf, &e, 10);
3172 if (e==buf || (*e && *e != '\n') )
3173 return -EINVAL;
3174 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3175 return -ENOENT;
3176 mddev->major_version = major;
3177 mddev->minor_version = minor;
3178 mddev->persistent = 1;
3179 mddev->external = 0;
3180 return len;
3181 }
3182
3183 static struct md_sysfs_entry md_metadata =
3184 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3185
3186 static ssize_t
3187 action_show(mddev_t *mddev, char *page)
3188 {
3189 char *type = "idle";
3190 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3191 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3192 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3193 type = "reshape";
3194 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3195 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3196 type = "resync";
3197 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3198 type = "check";
3199 else
3200 type = "repair";
3201 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3202 type = "recover";
3203 }
3204 return sprintf(page, "%s\n", type);
3205 }
3206
3207 static ssize_t
3208 action_store(mddev_t *mddev, const char *page, size_t len)
3209 {
3210 if (!mddev->pers || !mddev->pers->sync_request)
3211 return -EINVAL;
3212
3213 if (cmd_match(page, "idle")) {
3214 if (mddev->sync_thread) {
3215 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3216 md_unregister_thread(mddev->sync_thread);
3217 mddev->sync_thread = NULL;
3218 mddev->recovery = 0;
3219 }
3220 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3221 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3222 return -EBUSY;
3223 else if (cmd_match(page, "resync"))
3224 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3225 else if (cmd_match(page, "recover")) {
3226 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3227 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3228 } else if (cmd_match(page, "reshape")) {
3229 int err;
3230 if (mddev->pers->start_reshape == NULL)
3231 return -EINVAL;
3232 err = mddev->pers->start_reshape(mddev);
3233 if (err)
3234 return err;
3235 sysfs_notify(&mddev->kobj, NULL, "degraded");
3236 } else {
3237 if (cmd_match(page, "check"))
3238 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3239 else if (!cmd_match(page, "repair"))
3240 return -EINVAL;
3241 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3242 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3243 }
3244 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3245 md_wakeup_thread(mddev->thread);
3246 sysfs_notify_dirent(mddev->sysfs_action);
3247 return len;
3248 }
3249
3250 static ssize_t
3251 mismatch_cnt_show(mddev_t *mddev, char *page)
3252 {
3253 return sprintf(page, "%llu\n",
3254 (unsigned long long) mddev->resync_mismatches);
3255 }
3256
3257 static struct md_sysfs_entry md_scan_mode =
3258 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3259
3260
3261 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3262
3263 static ssize_t
3264 sync_min_show(mddev_t *mddev, char *page)
3265 {
3266 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3267 mddev->sync_speed_min ? "local": "system");
3268 }
3269
3270 static ssize_t
3271 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3272 {
3273 int min;
3274 char *e;
3275 if (strncmp(buf, "system", 6)==0) {
3276 mddev->sync_speed_min = 0;
3277 return len;
3278 }
3279 min = simple_strtoul(buf, &e, 10);
3280 if (buf == e || (*e && *e != '\n') || min <= 0)
3281 return -EINVAL;
3282 mddev->sync_speed_min = min;
3283 return len;
3284 }
3285
3286 static struct md_sysfs_entry md_sync_min =
3287 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3288
3289 static ssize_t
3290 sync_max_show(mddev_t *mddev, char *page)
3291 {
3292 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3293 mddev->sync_speed_max ? "local": "system");
3294 }
3295
3296 static ssize_t
3297 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3298 {
3299 int max;
3300 char *e;
3301 if (strncmp(buf, "system", 6)==0) {
3302 mddev->sync_speed_max = 0;
3303 return len;
3304 }
3305 max = simple_strtoul(buf, &e, 10);
3306 if (buf == e || (*e && *e != '\n') || max <= 0)
3307 return -EINVAL;
3308 mddev->sync_speed_max = max;
3309 return len;
3310 }
3311
3312 static struct md_sysfs_entry md_sync_max =
3313 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3314
3315 static ssize_t
3316 degraded_show(mddev_t *mddev, char *page)
3317 {
3318 return sprintf(page, "%d\n", mddev->degraded);
3319 }
3320 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3321
3322 static ssize_t
3323 sync_force_parallel_show(mddev_t *mddev, char *page)
3324 {
3325 return sprintf(page, "%d\n", mddev->parallel_resync);
3326 }
3327
3328 static ssize_t
3329 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3330 {
3331 long n;
3332
3333 if (strict_strtol(buf, 10, &n))
3334 return -EINVAL;
3335
3336 if (n != 0 && n != 1)
3337 return -EINVAL;
3338
3339 mddev->parallel_resync = n;
3340
3341 if (mddev->sync_thread)
3342 wake_up(&resync_wait);
3343
3344 return len;
3345 }
3346
3347 /* force parallel resync, even with shared block devices */
3348 static struct md_sysfs_entry md_sync_force_parallel =
3349 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3350 sync_force_parallel_show, sync_force_parallel_store);
3351
3352 static ssize_t
3353 sync_speed_show(mddev_t *mddev, char *page)
3354 {
3355 unsigned long resync, dt, db;
3356 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3357 dt = (jiffies - mddev->resync_mark) / HZ;
3358 if (!dt) dt++;
3359 db = resync - mddev->resync_mark_cnt;
3360 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3361 }
3362
3363 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3364
3365 static ssize_t
3366 sync_completed_show(mddev_t *mddev, char *page)
3367 {
3368 unsigned long max_sectors, resync;
3369
3370 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3371 max_sectors = mddev->resync_max_sectors;
3372 else
3373 max_sectors = mddev->dev_sectors;
3374
3375 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3376 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3377 }
3378
3379 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3380
3381 static ssize_t
3382 min_sync_show(mddev_t *mddev, char *page)
3383 {
3384 return sprintf(page, "%llu\n",
3385 (unsigned long long)mddev->resync_min);
3386 }
3387 static ssize_t
3388 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3389 {
3390 unsigned long long min;
3391 if (strict_strtoull(buf, 10, &min))
3392 return -EINVAL;
3393 if (min > mddev->resync_max)
3394 return -EINVAL;
3395 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3396 return -EBUSY;
3397
3398 /* Must be a multiple of chunk_size */
3399 if (mddev->chunk_size) {
3400 if (min & (sector_t)((mddev->chunk_size>>9)-1))
3401 return -EINVAL;
3402 }
3403 mddev->resync_min = min;
3404
3405 return len;
3406 }
3407
3408 static struct md_sysfs_entry md_min_sync =
3409 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3410
3411 static ssize_t
3412 max_sync_show(mddev_t *mddev, char *page)
3413 {
3414 if (mddev->resync_max == MaxSector)
3415 return sprintf(page, "max\n");
3416 else
3417 return sprintf(page, "%llu\n",
3418 (unsigned long long)mddev->resync_max);
3419 }
3420 static ssize_t
3421 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3422 {
3423 if (strncmp(buf, "max", 3) == 0)
3424 mddev->resync_max = MaxSector;
3425 else {
3426 unsigned long long max;
3427 if (strict_strtoull(buf, 10, &max))
3428 return -EINVAL;
3429 if (max < mddev->resync_min)
3430 return -EINVAL;
3431 if (max < mddev->resync_max &&
3432 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3433 return -EBUSY;
3434
3435 /* Must be a multiple of chunk_size */
3436 if (mddev->chunk_size) {
3437 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3438 return -EINVAL;
3439 }
3440 mddev->resync_max = max;
3441 }
3442 wake_up(&mddev->recovery_wait);
3443 return len;
3444 }
3445
3446 static struct md_sysfs_entry md_max_sync =
3447 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3448
3449 static ssize_t
3450 suspend_lo_show(mddev_t *mddev, char *page)
3451 {
3452 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3453 }
3454
3455 static ssize_t
3456 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3457 {
3458 char *e;
3459 unsigned long long new = simple_strtoull(buf, &e, 10);
3460
3461 if (mddev->pers->quiesce == NULL)
3462 return -EINVAL;
3463 if (buf == e || (*e && *e != '\n'))
3464 return -EINVAL;
3465 if (new >= mddev->suspend_hi ||
3466 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3467 mddev->suspend_lo = new;
3468 mddev->pers->quiesce(mddev, 2);
3469 return len;
3470 } else
3471 return -EINVAL;
3472 }
3473 static struct md_sysfs_entry md_suspend_lo =
3474 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3475
3476
3477 static ssize_t
3478 suspend_hi_show(mddev_t *mddev, char *page)
3479 {
3480 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3481 }
3482
3483 static ssize_t
3484 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3485 {
3486 char *e;
3487 unsigned long long new = simple_strtoull(buf, &e, 10);
3488
3489 if (mddev->pers->quiesce == NULL)
3490 return -EINVAL;
3491 if (buf == e || (*e && *e != '\n'))
3492 return -EINVAL;
3493 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3494 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3495 mddev->suspend_hi = new;
3496 mddev->pers->quiesce(mddev, 1);
3497 mddev->pers->quiesce(mddev, 0);
3498 return len;
3499 } else
3500 return -EINVAL;
3501 }
3502 static struct md_sysfs_entry md_suspend_hi =
3503 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3504
3505 static ssize_t
3506 reshape_position_show(mddev_t *mddev, char *page)
3507 {
3508 if (mddev->reshape_position != MaxSector)
3509 return sprintf(page, "%llu\n",
3510 (unsigned long long)mddev->reshape_position);
3511 strcpy(page, "none\n");
3512 return 5;
3513 }
3514
3515 static ssize_t
3516 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3517 {
3518 char *e;
3519 unsigned long long new = simple_strtoull(buf, &e, 10);
3520 if (mddev->pers)
3521 return -EBUSY;
3522 if (buf == e || (*e && *e != '\n'))
3523 return -EINVAL;
3524 mddev->reshape_position = new;
3525 mddev->delta_disks = 0;
3526 mddev->new_level = mddev->level;
3527 mddev->new_layout = mddev->layout;
3528 mddev->new_chunk = mddev->chunk_size;
3529 return len;
3530 }
3531
3532 static struct md_sysfs_entry md_reshape_position =
3533 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3534 reshape_position_store);
3535
3536
3537 static struct attribute *md_default_attrs[] = {
3538 &md_level.attr,
3539 &md_layout.attr,
3540 &md_raid_disks.attr,
3541 &md_chunk_size.attr,
3542 &md_size.attr,
3543 &md_resync_start.attr,
3544 &md_metadata.attr,
3545 &md_new_device.attr,
3546 &md_safe_delay.attr,
3547 &md_array_state.attr,
3548 &md_reshape_position.attr,
3549 NULL,
3550 };
3551
3552 static struct attribute *md_redundancy_attrs[] = {
3553 &md_scan_mode.attr,
3554 &md_mismatches.attr,
3555 &md_sync_min.attr,
3556 &md_sync_max.attr,
3557 &md_sync_speed.attr,
3558 &md_sync_force_parallel.attr,
3559 &md_sync_completed.attr,
3560 &md_min_sync.attr,
3561 &md_max_sync.attr,
3562 &md_suspend_lo.attr,
3563 &md_suspend_hi.attr,
3564 &md_bitmap.attr,
3565 &md_degraded.attr,
3566 NULL,
3567 };
3568 static struct attribute_group md_redundancy_group = {
3569 .name = NULL,
3570 .attrs = md_redundancy_attrs,
3571 };
3572
3573
3574 static ssize_t
3575 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3576 {
3577 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3578 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3579 ssize_t rv;
3580
3581 if (!entry->show)
3582 return -EIO;
3583 rv = mddev_lock(mddev);
3584 if (!rv) {
3585 rv = entry->show(mddev, page);
3586 mddev_unlock(mddev);
3587 }
3588 return rv;
3589 }
3590
3591 static ssize_t
3592 md_attr_store(struct kobject *kobj, struct attribute *attr,
3593 const char *page, size_t length)
3594 {
3595 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3596 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3597 ssize_t rv;
3598
3599 if (!entry->store)
3600 return -EIO;
3601 if (!capable(CAP_SYS_ADMIN))
3602 return -EACCES;
3603 rv = mddev_lock(mddev);
3604 if (mddev->hold_active == UNTIL_IOCTL)
3605 mddev->hold_active = 0;
3606 if (!rv) {
3607 rv = entry->store(mddev, page, length);
3608 mddev_unlock(mddev);
3609 }
3610 return rv;
3611 }
3612
3613 static void md_free(struct kobject *ko)
3614 {
3615 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3616
3617 if (mddev->sysfs_state)
3618 sysfs_put(mddev->sysfs_state);
3619
3620 if (mddev->gendisk) {
3621 del_gendisk(mddev->gendisk);
3622 put_disk(mddev->gendisk);
3623 }
3624 if (mddev->queue)
3625 blk_cleanup_queue(mddev->queue);
3626
3627 kfree(mddev);
3628 }
3629
3630 static struct sysfs_ops md_sysfs_ops = {
3631 .show = md_attr_show,
3632 .store = md_attr_store,
3633 };
3634 static struct kobj_type md_ktype = {
3635 .release = md_free,
3636 .sysfs_ops = &md_sysfs_ops,
3637 .default_attrs = md_default_attrs,
3638 };
3639
3640 int mdp_major = 0;
3641
3642 static int md_alloc(dev_t dev, char *name)
3643 {
3644 static DEFINE_MUTEX(disks_mutex);
3645 mddev_t *mddev = mddev_find(dev);
3646 struct gendisk *disk;
3647 int partitioned;
3648 int shift;
3649 int unit;
3650 int error;
3651
3652 if (!mddev)
3653 return -ENODEV;
3654
3655 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3656 shift = partitioned ? MdpMinorShift : 0;
3657 unit = MINOR(mddev->unit) >> shift;
3658
3659 /* wait for any previous instance if this device
3660 * to be completed removed (mddev_delayed_delete).
3661 */
3662 flush_scheduled_work();
3663
3664 mutex_lock(&disks_mutex);
3665 if (mddev->gendisk) {
3666 mutex_unlock(&disks_mutex);
3667 mddev_put(mddev);
3668 return -EEXIST;
3669 }
3670
3671 if (name) {
3672 /* Need to ensure that 'name' is not a duplicate.
3673 */
3674 mddev_t *mddev2;
3675 spin_lock(&all_mddevs_lock);
3676
3677 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3678 if (mddev2->gendisk &&
3679 strcmp(mddev2->gendisk->disk_name, name) == 0) {
3680 spin_unlock(&all_mddevs_lock);
3681 return -EEXIST;
3682 }
3683 spin_unlock(&all_mddevs_lock);
3684 }
3685
3686 mddev->queue = blk_alloc_queue(GFP_KERNEL);
3687 if (!mddev->queue) {
3688 mutex_unlock(&disks_mutex);
3689 mddev_put(mddev);
3690 return -ENOMEM;
3691 }
3692 mddev->queue->queuedata = mddev;
3693
3694 /* Can be unlocked because the queue is new: no concurrency */
3695 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3696
3697 blk_queue_make_request(mddev->queue, md_make_request);
3698
3699 disk = alloc_disk(1 << shift);
3700 if (!disk) {
3701 mutex_unlock(&disks_mutex);
3702 blk_cleanup_queue(mddev->queue);
3703 mddev->queue = NULL;
3704 mddev_put(mddev);
3705 return -ENOMEM;
3706 }
3707 disk->major = MAJOR(mddev->unit);
3708 disk->first_minor = unit << shift;
3709 if (name)
3710 strcpy(disk->disk_name, name);
3711 else if (partitioned)
3712 sprintf(disk->disk_name, "md_d%d", unit);
3713 else
3714 sprintf(disk->disk_name, "md%d", unit);
3715 disk->fops = &md_fops;
3716 disk->private_data = mddev;
3717 disk->queue = mddev->queue;
3718 /* Allow extended partitions. This makes the
3719 * 'mdp' device redundant, but we can't really
3720 * remove it now.
3721 */
3722 disk->flags |= GENHD_FL_EXT_DEVT;
3723 add_disk(disk);
3724 mddev->gendisk = disk;
3725 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3726 &disk_to_dev(disk)->kobj, "%s", "md");
3727 mutex_unlock(&disks_mutex);
3728 if (error)
3729 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3730 disk->disk_name);
3731 else {
3732 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3733 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3734 }
3735 mddev_put(mddev);
3736 return 0;
3737 }
3738
3739 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3740 {
3741 md_alloc(dev, NULL);
3742 return NULL;
3743 }
3744
3745 static int add_named_array(const char *val, struct kernel_param *kp)
3746 {
3747 /* val must be "md_*" where * is not all digits.
3748 * We allocate an array with a large free minor number, and
3749 * set the name to val. val must not already be an active name.
3750 */
3751 int len = strlen(val);
3752 char buf[DISK_NAME_LEN];
3753
3754 while (len && val[len-1] == '\n')
3755 len--;
3756 if (len >= DISK_NAME_LEN)
3757 return -E2BIG;
3758 strlcpy(buf, val, len+1);
3759 if (strncmp(buf, "md_", 3) != 0)
3760 return -EINVAL;
3761 return md_alloc(0, buf);
3762 }
3763
3764 static void md_safemode_timeout(unsigned long data)
3765 {
3766 mddev_t *mddev = (mddev_t *) data;
3767
3768 if (!atomic_read(&mddev->writes_pending)) {
3769 mddev->safemode = 1;
3770 if (mddev->external)
3771 sysfs_notify_dirent(mddev->sysfs_state);
3772 }
3773 md_wakeup_thread(mddev->thread);
3774 }
3775
3776 static int start_dirty_degraded;
3777
3778 static int do_md_run(mddev_t * mddev)
3779 {
3780 int err;
3781 int chunk_size;
3782 mdk_rdev_t *rdev;
3783 struct gendisk *disk;
3784 struct mdk_personality *pers;
3785 char b[BDEVNAME_SIZE];
3786
3787 if (list_empty(&mddev->disks))
3788 /* cannot run an array with no devices.. */
3789 return -EINVAL;
3790
3791 if (mddev->pers)
3792 return -EBUSY;
3793
3794 /*
3795 * Analyze all RAID superblock(s)
3796 */
3797 if (!mddev->raid_disks) {
3798 if (!mddev->persistent)
3799 return -EINVAL;
3800 analyze_sbs(mddev);
3801 }
3802
3803 chunk_size = mddev->chunk_size;
3804
3805 if (chunk_size) {
3806 if (chunk_size > MAX_CHUNK_SIZE) {
3807 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3808 chunk_size, MAX_CHUNK_SIZE);
3809 return -EINVAL;
3810 }
3811 /*
3812 * chunk-size has to be a power of 2
3813 */
3814 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3815 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3816 return -EINVAL;
3817 }
3818
3819 /* devices must have minimum size of one chunk */
3820 list_for_each_entry(rdev, &mddev->disks, same_set) {
3821 if (test_bit(Faulty, &rdev->flags))
3822 continue;
3823 if (rdev->sectors < chunk_size / 512) {
3824 printk(KERN_WARNING
3825 "md: Dev %s smaller than chunk_size:"
3826 " %llu < %d\n",
3827 bdevname(rdev->bdev,b),
3828 (unsigned long long)rdev->sectors,
3829 chunk_size / 512);
3830 return -EINVAL;
3831 }
3832 }
3833 }
3834
3835 if (mddev->level != LEVEL_NONE)
3836 request_module("md-level-%d", mddev->level);
3837 else if (mddev->clevel[0])
3838 request_module("md-%s", mddev->clevel);
3839
3840 /*
3841 * Drop all container device buffers, from now on
3842 * the only valid external interface is through the md
3843 * device.
3844 */
3845 list_for_each_entry(rdev, &mddev->disks, same_set) {
3846 if (test_bit(Faulty, &rdev->flags))
3847 continue;
3848 sync_blockdev(rdev->bdev);
3849 invalidate_bdev(rdev->bdev);
3850
3851 /* perform some consistency tests on the device.
3852 * We don't want the data to overlap the metadata,
3853 * Internal Bitmap issues have been handled elsewhere.
3854 */
3855 if (rdev->data_offset < rdev->sb_start) {
3856 if (mddev->dev_sectors &&
3857 rdev->data_offset + mddev->dev_sectors
3858 > rdev->sb_start) {
3859 printk("md: %s: data overlaps metadata\n",
3860 mdname(mddev));
3861 return -EINVAL;
3862 }
3863 } else {
3864 if (rdev->sb_start + rdev->sb_size/512
3865 > rdev->data_offset) {
3866 printk("md: %s: metadata overlaps data\n",
3867 mdname(mddev));
3868 return -EINVAL;
3869 }
3870 }
3871 sysfs_notify_dirent(rdev->sysfs_state);
3872 }
3873
3874 md_probe(mddev->unit, NULL, NULL);
3875 disk = mddev->gendisk;
3876 if (!disk)
3877 return -ENOMEM;
3878
3879 spin_lock(&pers_lock);
3880 pers = find_pers(mddev->level, mddev->clevel);
3881 if (!pers || !try_module_get(pers->owner)) {
3882 spin_unlock(&pers_lock);
3883 if (mddev->level != LEVEL_NONE)
3884 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3885 mddev->level);
3886 else
3887 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3888 mddev->clevel);
3889 return -EINVAL;
3890 }
3891 mddev->pers = pers;
3892 spin_unlock(&pers_lock);
3893 if (mddev->level != pers->level) {
3894 mddev->level = pers->level;
3895 mddev->new_level = pers->level;
3896 }
3897 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3898
3899 if (pers->level >= 4 && pers->level <= 6)
3900 /* Cannot support integrity (yet) */
3901 blk_integrity_unregister(mddev->gendisk);
3902
3903 if (mddev->reshape_position != MaxSector &&
3904 pers->start_reshape == NULL) {
3905 /* This personality cannot handle reshaping... */
3906 mddev->pers = NULL;
3907 module_put(pers->owner);
3908 return -EINVAL;
3909 }
3910
3911 if (pers->sync_request) {
3912 /* Warn if this is a potentially silly
3913 * configuration.
3914 */
3915 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3916 mdk_rdev_t *rdev2;
3917 int warned = 0;
3918
3919 list_for_each_entry(rdev, &mddev->disks, same_set)
3920 list_for_each_entry(rdev2, &mddev->disks, same_set) {
3921 if (rdev < rdev2 &&
3922 rdev->bdev->bd_contains ==
3923 rdev2->bdev->bd_contains) {
3924 printk(KERN_WARNING
3925 "%s: WARNING: %s appears to be"
3926 " on the same physical disk as"
3927 " %s.\n",
3928 mdname(mddev),
3929 bdevname(rdev->bdev,b),
3930 bdevname(rdev2->bdev,b2));
3931 warned = 1;
3932 }
3933 }
3934
3935 if (warned)
3936 printk(KERN_WARNING
3937 "True protection against single-disk"
3938 " failure might be compromised.\n");
3939 }
3940
3941 mddev->recovery = 0;
3942 /* may be over-ridden by personality */
3943 mddev->resync_max_sectors = mddev->dev_sectors;
3944
3945 mddev->barriers_work = 1;
3946 mddev->ok_start_degraded = start_dirty_degraded;
3947
3948 if (start_readonly)
3949 mddev->ro = 2; /* read-only, but switch on first write */
3950
3951 err = mddev->pers->run(mddev);
3952 if (err)
3953 printk(KERN_ERR "md: pers->run() failed ...\n");
3954 else if (mddev->pers->sync_request) {
3955 err = bitmap_create(mddev);
3956 if (err) {
3957 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3958 mdname(mddev), err);
3959 mddev->pers->stop(mddev);
3960 }
3961 }
3962 if (err) {
3963 module_put(mddev->pers->owner);
3964 mddev->pers = NULL;
3965 bitmap_destroy(mddev);
3966 return err;
3967 }
3968 if (mddev->pers->sync_request) {
3969 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3970 printk(KERN_WARNING
3971 "md: cannot register extra attributes for %s\n",
3972 mdname(mddev));
3973 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3974 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3975 mddev->ro = 0;
3976
3977 atomic_set(&mddev->writes_pending,0);
3978 mddev->safemode = 0;
3979 mddev->safemode_timer.function = md_safemode_timeout;
3980 mddev->safemode_timer.data = (unsigned long) mddev;
3981 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3982 mddev->in_sync = 1;
3983
3984 list_for_each_entry(rdev, &mddev->disks, same_set)
3985 if (rdev->raid_disk >= 0) {
3986 char nm[20];
3987 sprintf(nm, "rd%d", rdev->raid_disk);
3988 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3989 printk("md: cannot register %s for %s\n",
3990 nm, mdname(mddev));
3991 }
3992
3993 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3994
3995 if (mddev->flags)
3996 md_update_sb(mddev, 0);
3997
3998 set_capacity(disk, mddev->array_sectors);
3999
4000 /* If there is a partially-recovered drive we need to
4001 * start recovery here. If we leave it to md_check_recovery,
4002 * it will remove the drives and not do the right thing
4003 */
4004 if (mddev->degraded && !mddev->sync_thread) {
4005 int spares = 0;
4006 list_for_each_entry(rdev, &mddev->disks, same_set)
4007 if (rdev->raid_disk >= 0 &&
4008 !test_bit(In_sync, &rdev->flags) &&
4009 !test_bit(Faulty, &rdev->flags))
4010 /* complete an interrupted recovery */
4011 spares++;
4012 if (spares && mddev->pers->sync_request) {
4013 mddev->recovery = 0;
4014 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4015 mddev->sync_thread = md_register_thread(md_do_sync,
4016 mddev,
4017 "%s_resync");
4018 if (!mddev->sync_thread) {
4019 printk(KERN_ERR "%s: could not start resync"
4020 " thread...\n",
4021 mdname(mddev));
4022 /* leave the spares where they are, it shouldn't hurt */
4023 mddev->recovery = 0;
4024 }
4025 }
4026 }
4027 md_wakeup_thread(mddev->thread);
4028 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4029
4030 mddev->changed = 1;
4031 md_new_event(mddev);
4032 sysfs_notify_dirent(mddev->sysfs_state);
4033 if (mddev->sysfs_action)
4034 sysfs_notify_dirent(mddev->sysfs_action);
4035 sysfs_notify(&mddev->kobj, NULL, "degraded");
4036 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4037 return 0;
4038 }
4039
4040 static int restart_array(mddev_t *mddev)
4041 {
4042 struct gendisk *disk = mddev->gendisk;
4043
4044 /* Complain if it has no devices */
4045 if (list_empty(&mddev->disks))
4046 return -ENXIO;
4047 if (!mddev->pers)
4048 return -EINVAL;
4049 if (!mddev->ro)
4050 return -EBUSY;
4051 mddev->safemode = 0;
4052 mddev->ro = 0;
4053 set_disk_ro(disk, 0);
4054 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4055 mdname(mddev));
4056 /* Kick recovery or resync if necessary */
4057 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4058 md_wakeup_thread(mddev->thread);
4059 md_wakeup_thread(mddev->sync_thread);
4060 sysfs_notify_dirent(mddev->sysfs_state);
4061 return 0;
4062 }
4063
4064 /* similar to deny_write_access, but accounts for our holding a reference
4065 * to the file ourselves */
4066 static int deny_bitmap_write_access(struct file * file)
4067 {
4068 struct inode *inode = file->f_mapping->host;
4069
4070 spin_lock(&inode->i_lock);
4071 if (atomic_read(&inode->i_writecount) > 1) {
4072 spin_unlock(&inode->i_lock);
4073 return -ETXTBSY;
4074 }
4075 atomic_set(&inode->i_writecount, -1);
4076 spin_unlock(&inode->i_lock);
4077
4078 return 0;
4079 }
4080
4081 static void restore_bitmap_write_access(struct file *file)
4082 {
4083 struct inode *inode = file->f_mapping->host;
4084
4085 spin_lock(&inode->i_lock);
4086 atomic_set(&inode->i_writecount, 1);
4087 spin_unlock(&inode->i_lock);
4088 }
4089
4090 /* mode:
4091 * 0 - completely stop and dis-assemble array
4092 * 1 - switch to readonly
4093 * 2 - stop but do not disassemble array
4094 */
4095 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4096 {
4097 int err = 0;
4098 struct gendisk *disk = mddev->gendisk;
4099
4100 if (atomic_read(&mddev->openers) > is_open) {
4101 printk("md: %s still in use.\n",mdname(mddev));
4102 return -EBUSY;
4103 }
4104
4105 if (mddev->pers) {
4106
4107 if (mddev->sync_thread) {
4108 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4109 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4110 md_unregister_thread(mddev->sync_thread);
4111 mddev->sync_thread = NULL;
4112 }
4113
4114 del_timer_sync(&mddev->safemode_timer);
4115
4116 switch(mode) {
4117 case 1: /* readonly */
4118 err = -ENXIO;
4119 if (mddev->ro==1)
4120 goto out;
4121 mddev->ro = 1;
4122 break;
4123 case 0: /* disassemble */
4124 case 2: /* stop */
4125 bitmap_flush(mddev);
4126 md_super_wait(mddev);
4127 if (mddev->ro)
4128 set_disk_ro(disk, 0);
4129
4130 mddev->pers->stop(mddev);
4131 mddev->queue->merge_bvec_fn = NULL;
4132 mddev->queue->unplug_fn = NULL;
4133 mddev->queue->backing_dev_info.congested_fn = NULL;
4134 if (mddev->pers->sync_request) {
4135 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
4136 if (mddev->sysfs_action)
4137 sysfs_put(mddev->sysfs_action);
4138 mddev->sysfs_action = NULL;
4139 }
4140 module_put(mddev->pers->owner);
4141 mddev->pers = NULL;
4142 /* tell userspace to handle 'inactive' */
4143 sysfs_notify_dirent(mddev->sysfs_state);
4144
4145 set_capacity(disk, 0);
4146 mddev->changed = 1;
4147
4148 if (mddev->ro)
4149 mddev->ro = 0;
4150 }
4151 if (!mddev->in_sync || mddev->flags) {
4152 /* mark array as shutdown cleanly */
4153 mddev->in_sync = 1;
4154 md_update_sb(mddev, 1);
4155 }
4156 if (mode == 1)
4157 set_disk_ro(disk, 1);
4158 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4159 }
4160
4161 /*
4162 * Free resources if final stop
4163 */
4164 if (mode == 0) {
4165 mdk_rdev_t *rdev;
4166
4167 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4168
4169 bitmap_destroy(mddev);
4170 if (mddev->bitmap_file) {
4171 restore_bitmap_write_access(mddev->bitmap_file);
4172 fput(mddev->bitmap_file);
4173 mddev->bitmap_file = NULL;
4174 }
4175 mddev->bitmap_offset = 0;
4176
4177 list_for_each_entry(rdev, &mddev->disks, same_set)
4178 if (rdev->raid_disk >= 0) {
4179 char nm[20];
4180 sprintf(nm, "rd%d", rdev->raid_disk);
4181 sysfs_remove_link(&mddev->kobj, nm);
4182 }
4183
4184 /* make sure all md_delayed_delete calls have finished */
4185 flush_scheduled_work();
4186
4187 export_array(mddev);
4188
4189 mddev->array_sectors = 0;
4190 mddev->dev_sectors = 0;
4191 mddev->raid_disks = 0;
4192 mddev->recovery_cp = 0;
4193 mddev->resync_min = 0;
4194 mddev->resync_max = MaxSector;
4195 mddev->reshape_position = MaxSector;
4196 mddev->external = 0;
4197 mddev->persistent = 0;
4198 mddev->level = LEVEL_NONE;
4199 mddev->clevel[0] = 0;
4200 mddev->flags = 0;
4201 mddev->ro = 0;
4202 mddev->metadata_type[0] = 0;
4203 mddev->chunk_size = 0;
4204 mddev->ctime = mddev->utime = 0;
4205 mddev->layout = 0;
4206 mddev->max_disks = 0;
4207 mddev->events = 0;
4208 mddev->delta_disks = 0;
4209 mddev->new_level = LEVEL_NONE;
4210 mddev->new_layout = 0;
4211 mddev->new_chunk = 0;
4212 mddev->curr_resync = 0;
4213 mddev->resync_mismatches = 0;
4214 mddev->suspend_lo = mddev->suspend_hi = 0;
4215 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4216 mddev->recovery = 0;
4217 mddev->in_sync = 0;
4218 mddev->changed = 0;
4219 mddev->degraded = 0;
4220 mddev->barriers_work = 0;
4221 mddev->safemode = 0;
4222 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4223 if (mddev->hold_active == UNTIL_STOP)
4224 mddev->hold_active = 0;
4225
4226 } else if (mddev->pers)
4227 printk(KERN_INFO "md: %s switched to read-only mode.\n",
4228 mdname(mddev));
4229 err = 0;
4230 blk_integrity_unregister(disk);
4231 md_new_event(mddev);
4232 sysfs_notify_dirent(mddev->sysfs_state);
4233 out:
4234 return err;
4235 }
4236
4237 #ifndef MODULE
4238 static void autorun_array(mddev_t *mddev)
4239 {
4240 mdk_rdev_t *rdev;
4241 int err;
4242
4243 if (list_empty(&mddev->disks))
4244 return;
4245
4246 printk(KERN_INFO "md: running: ");
4247
4248 list_for_each_entry(rdev, &mddev->disks, same_set) {
4249 char b[BDEVNAME_SIZE];
4250 printk("<%s>", bdevname(rdev->bdev,b));
4251 }
4252 printk("\n");
4253
4254 err = do_md_run(mddev);
4255 if (err) {
4256 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4257 do_md_stop(mddev, 0, 0);
4258 }
4259 }
4260
4261 /*
4262 * lets try to run arrays based on all disks that have arrived
4263 * until now. (those are in pending_raid_disks)
4264 *
4265 * the method: pick the first pending disk, collect all disks with
4266 * the same UUID, remove all from the pending list and put them into
4267 * the 'same_array' list. Then order this list based on superblock
4268 * update time (freshest comes first), kick out 'old' disks and
4269 * compare superblocks. If everything's fine then run it.
4270 *
4271 * If "unit" is allocated, then bump its reference count
4272 */
4273 static void autorun_devices(int part)
4274 {
4275 mdk_rdev_t *rdev0, *rdev, *tmp;
4276 mddev_t *mddev;
4277 char b[BDEVNAME_SIZE];
4278
4279 printk(KERN_INFO "md: autorun ...\n");
4280 while (!list_empty(&pending_raid_disks)) {
4281 int unit;
4282 dev_t dev;
4283 LIST_HEAD(candidates);
4284 rdev0 = list_entry(pending_raid_disks.next,
4285 mdk_rdev_t, same_set);
4286
4287 printk(KERN_INFO "md: considering %s ...\n",
4288 bdevname(rdev0->bdev,b));
4289 INIT_LIST_HEAD(&candidates);
4290 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4291 if (super_90_load(rdev, rdev0, 0) >= 0) {
4292 printk(KERN_INFO "md: adding %s ...\n",
4293 bdevname(rdev->bdev,b));
4294 list_move(&rdev->same_set, &candidates);
4295 }
4296 /*
4297 * now we have a set of devices, with all of them having
4298 * mostly sane superblocks. It's time to allocate the
4299 * mddev.
4300 */
4301 if (part) {
4302 dev = MKDEV(mdp_major,
4303 rdev0->preferred_minor << MdpMinorShift);
4304 unit = MINOR(dev) >> MdpMinorShift;
4305 } else {
4306 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4307 unit = MINOR(dev);
4308 }
4309 if (rdev0->preferred_minor != unit) {
4310 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4311 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4312 break;
4313 }
4314
4315 md_probe(dev, NULL, NULL);
4316 mddev = mddev_find(dev);
4317 if (!mddev || !mddev->gendisk) {
4318 if (mddev)
4319 mddev_put(mddev);
4320 printk(KERN_ERR
4321 "md: cannot allocate memory for md drive.\n");
4322 break;
4323 }
4324 if (mddev_lock(mddev))
4325 printk(KERN_WARNING "md: %s locked, cannot run\n",
4326 mdname(mddev));
4327 else if (mddev->raid_disks || mddev->major_version
4328 || !list_empty(&mddev->disks)) {
4329 printk(KERN_WARNING
4330 "md: %s already running, cannot run %s\n",
4331 mdname(mddev), bdevname(rdev0->bdev,b));
4332 mddev_unlock(mddev);
4333 } else {
4334 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4335 mddev->persistent = 1;
4336 rdev_for_each_list(rdev, tmp, &candidates) {
4337 list_del_init(&rdev->same_set);
4338 if (bind_rdev_to_array(rdev, mddev))
4339 export_rdev(rdev);
4340 }
4341 autorun_array(mddev);
4342 mddev_unlock(mddev);
4343 }
4344 /* on success, candidates will be empty, on error
4345 * it won't...
4346 */
4347 rdev_for_each_list(rdev, tmp, &candidates) {
4348 list_del_init(&rdev->same_set);
4349 export_rdev(rdev);
4350 }
4351 mddev_put(mddev);
4352 }
4353 printk(KERN_INFO "md: ... autorun DONE.\n");
4354 }
4355 #endif /* !MODULE */
4356
4357 static int get_version(void __user * arg)
4358 {
4359 mdu_version_t ver;
4360
4361 ver.major = MD_MAJOR_VERSION;
4362 ver.minor = MD_MINOR_VERSION;
4363 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4364
4365 if (copy_to_user(arg, &ver, sizeof(ver)))
4366 return -EFAULT;
4367
4368 return 0;
4369 }
4370
4371 static int get_array_info(mddev_t * mddev, void __user * arg)
4372 {
4373 mdu_array_info_t info;
4374 int nr,working,active,failed,spare;
4375 mdk_rdev_t *rdev;
4376
4377 nr=working=active=failed=spare=0;
4378 list_for_each_entry(rdev, &mddev->disks, same_set) {
4379 nr++;
4380 if (test_bit(Faulty, &rdev->flags))
4381 failed++;
4382 else {
4383 working++;
4384 if (test_bit(In_sync, &rdev->flags))
4385 active++;
4386 else
4387 spare++;
4388 }
4389 }
4390
4391 info.major_version = mddev->major_version;
4392 info.minor_version = mddev->minor_version;
4393 info.patch_version = MD_PATCHLEVEL_VERSION;
4394 info.ctime = mddev->ctime;
4395 info.level = mddev->level;
4396 info.size = mddev->dev_sectors / 2;
4397 if (info.size != mddev->dev_sectors / 2) /* overflow */
4398 info.size = -1;
4399 info.nr_disks = nr;
4400 info.raid_disks = mddev->raid_disks;
4401 info.md_minor = mddev->md_minor;
4402 info.not_persistent= !mddev->persistent;
4403
4404 info.utime = mddev->utime;
4405 info.state = 0;
4406 if (mddev->in_sync)
4407 info.state = (1<<MD_SB_CLEAN);
4408 if (mddev->bitmap && mddev->bitmap_offset)
4409 info.state = (1<<MD_SB_BITMAP_PRESENT);
4410 info.active_disks = active;
4411 info.working_disks = working;
4412 info.failed_disks = failed;
4413 info.spare_disks = spare;
4414
4415 info.layout = mddev->layout;
4416 info.chunk_size = mddev->chunk_size;
4417
4418 if (copy_to_user(arg, &info, sizeof(info)))
4419 return -EFAULT;
4420
4421 return 0;
4422 }
4423
4424 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4425 {
4426 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4427 char *ptr, *buf = NULL;
4428 int err = -ENOMEM;
4429
4430 if (md_allow_write(mddev))
4431 file = kmalloc(sizeof(*file), GFP_NOIO);
4432 else
4433 file = kmalloc(sizeof(*file), GFP_KERNEL);
4434
4435 if (!file)
4436 goto out;
4437
4438 /* bitmap disabled, zero the first byte and copy out */
4439 if (!mddev->bitmap || !mddev->bitmap->file) {
4440 file->pathname[0] = '\0';
4441 goto copy_out;
4442 }
4443
4444 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4445 if (!buf)
4446 goto out;
4447
4448 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4449 if (IS_ERR(ptr))
4450 goto out;
4451
4452 strcpy(file->pathname, ptr);
4453
4454 copy_out:
4455 err = 0;
4456 if (copy_to_user(arg, file, sizeof(*file)))
4457 err = -EFAULT;
4458 out:
4459 kfree(buf);
4460 kfree(file);
4461 return err;
4462 }
4463
4464 static int get_disk_info(mddev_t * mddev, void __user * arg)
4465 {
4466 mdu_disk_info_t info;
4467 mdk_rdev_t *rdev;
4468
4469 if (copy_from_user(&info, arg, sizeof(info)))
4470 return -EFAULT;
4471
4472 rdev = find_rdev_nr(mddev, info.number);
4473 if (rdev) {
4474 info.major = MAJOR(rdev->bdev->bd_dev);
4475 info.minor = MINOR(rdev->bdev->bd_dev);
4476 info.raid_disk = rdev->raid_disk;
4477 info.state = 0;
4478 if (test_bit(Faulty, &rdev->flags))
4479 info.state |= (1<<MD_DISK_FAULTY);
4480 else if (test_bit(In_sync, &rdev->flags)) {
4481 info.state |= (1<<MD_DISK_ACTIVE);
4482 info.state |= (1<<MD_DISK_SYNC);
4483 }
4484 if (test_bit(WriteMostly, &rdev->flags))
4485 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4486 } else {
4487 info.major = info.minor = 0;
4488 info.raid_disk = -1;
4489 info.state = (1<<MD_DISK_REMOVED);
4490 }
4491
4492 if (copy_to_user(arg, &info, sizeof(info)))
4493 return -EFAULT;
4494
4495 return 0;
4496 }
4497
4498 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4499 {
4500 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4501 mdk_rdev_t *rdev;
4502 dev_t dev = MKDEV(info->major,info->minor);
4503
4504 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4505 return -EOVERFLOW;
4506
4507 if (!mddev->raid_disks) {
4508 int err;
4509 /* expecting a device which has a superblock */
4510 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4511 if (IS_ERR(rdev)) {
4512 printk(KERN_WARNING
4513 "md: md_import_device returned %ld\n",
4514 PTR_ERR(rdev));
4515 return PTR_ERR(rdev);
4516 }
4517 if (!list_empty(&mddev->disks)) {
4518 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4519 mdk_rdev_t, same_set);
4520 int err = super_types[mddev->major_version]
4521 .load_super(rdev, rdev0, mddev->minor_version);
4522 if (err < 0) {
4523 printk(KERN_WARNING
4524 "md: %s has different UUID to %s\n",
4525 bdevname(rdev->bdev,b),
4526 bdevname(rdev0->bdev,b2));
4527 export_rdev(rdev);
4528 return -EINVAL;
4529 }
4530 }
4531 err = bind_rdev_to_array(rdev, mddev);
4532 if (err)
4533 export_rdev(rdev);
4534 return err;
4535 }
4536
4537 /*
4538 * add_new_disk can be used once the array is assembled
4539 * to add "hot spares". They must already have a superblock
4540 * written
4541 */
4542 if (mddev->pers) {
4543 int err;
4544 if (!mddev->pers->hot_add_disk) {
4545 printk(KERN_WARNING
4546 "%s: personality does not support diskops!\n",
4547 mdname(mddev));
4548 return -EINVAL;
4549 }
4550 if (mddev->persistent)
4551 rdev = md_import_device(dev, mddev->major_version,
4552 mddev->minor_version);
4553 else
4554 rdev = md_import_device(dev, -1, -1);
4555 if (IS_ERR(rdev)) {
4556 printk(KERN_WARNING
4557 "md: md_import_device returned %ld\n",
4558 PTR_ERR(rdev));
4559 return PTR_ERR(rdev);
4560 }
4561 /* set save_raid_disk if appropriate */
4562 if (!mddev->persistent) {
4563 if (info->state & (1<<MD_DISK_SYNC) &&
4564 info->raid_disk < mddev->raid_disks)
4565 rdev->raid_disk = info->raid_disk;
4566 else
4567 rdev->raid_disk = -1;
4568 } else
4569 super_types[mddev->major_version].
4570 validate_super(mddev, rdev);
4571 rdev->saved_raid_disk = rdev->raid_disk;
4572
4573 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4574 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4575 set_bit(WriteMostly, &rdev->flags);
4576 else
4577 clear_bit(WriteMostly, &rdev->flags);
4578
4579 rdev->raid_disk = -1;
4580 err = bind_rdev_to_array(rdev, mddev);
4581 if (!err && !mddev->pers->hot_remove_disk) {
4582 /* If there is hot_add_disk but no hot_remove_disk
4583 * then added disks for geometry changes,
4584 * and should be added immediately.
4585 */
4586 super_types[mddev->major_version].
4587 validate_super(mddev, rdev);
4588 err = mddev->pers->hot_add_disk(mddev, rdev);
4589 if (err)
4590 unbind_rdev_from_array(rdev);
4591 }
4592 if (err)
4593 export_rdev(rdev);
4594 else
4595 sysfs_notify_dirent(rdev->sysfs_state);
4596
4597 md_update_sb(mddev, 1);
4598 if (mddev->degraded)
4599 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4600 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4601 md_wakeup_thread(mddev->thread);
4602 return err;
4603 }
4604
4605 /* otherwise, add_new_disk is only allowed
4606 * for major_version==0 superblocks
4607 */
4608 if (mddev->major_version != 0) {
4609 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4610 mdname(mddev));
4611 return -EINVAL;
4612 }
4613
4614 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4615 int err;
4616 rdev = md_import_device(dev, -1, 0);
4617 if (IS_ERR(rdev)) {
4618 printk(KERN_WARNING
4619 "md: error, md_import_device() returned %ld\n",
4620 PTR_ERR(rdev));
4621 return PTR_ERR(rdev);
4622 }
4623 rdev->desc_nr = info->number;
4624 if (info->raid_disk < mddev->raid_disks)
4625 rdev->raid_disk = info->raid_disk;
4626 else
4627 rdev->raid_disk = -1;
4628
4629 if (rdev->raid_disk < mddev->raid_disks)
4630 if (info->state & (1<<MD_DISK_SYNC))
4631 set_bit(In_sync, &rdev->flags);
4632
4633 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4634 set_bit(WriteMostly, &rdev->flags);
4635
4636 if (!mddev->persistent) {
4637 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4638 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4639 } else
4640 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4641 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4642
4643 err = bind_rdev_to_array(rdev, mddev);
4644 if (err) {
4645 export_rdev(rdev);
4646 return err;
4647 }
4648 }
4649
4650 return 0;
4651 }
4652
4653 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4654 {
4655 char b[BDEVNAME_SIZE];
4656 mdk_rdev_t *rdev;
4657
4658 rdev = find_rdev(mddev, dev);
4659 if (!rdev)
4660 return -ENXIO;
4661
4662 if (rdev->raid_disk >= 0)
4663 goto busy;
4664
4665 kick_rdev_from_array(rdev);
4666 md_update_sb(mddev, 1);
4667 md_new_event(mddev);
4668
4669 return 0;
4670 busy:
4671 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4672 bdevname(rdev->bdev,b), mdname(mddev));
4673 return -EBUSY;
4674 }
4675
4676 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4677 {
4678 char b[BDEVNAME_SIZE];
4679 int err;
4680 mdk_rdev_t *rdev;
4681
4682 if (!mddev->pers)
4683 return -ENODEV;
4684
4685 if (mddev->major_version != 0) {
4686 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4687 " version-0 superblocks.\n",
4688 mdname(mddev));
4689 return -EINVAL;
4690 }
4691 if (!mddev->pers->hot_add_disk) {
4692 printk(KERN_WARNING
4693 "%s: personality does not support diskops!\n",
4694 mdname(mddev));
4695 return -EINVAL;
4696 }
4697
4698 rdev = md_import_device(dev, -1, 0);
4699 if (IS_ERR(rdev)) {
4700 printk(KERN_WARNING
4701 "md: error, md_import_device() returned %ld\n",
4702 PTR_ERR(rdev));
4703 return -EINVAL;
4704 }
4705
4706 if (mddev->persistent)
4707 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4708 else
4709 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4710
4711 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4712
4713 if (test_bit(Faulty, &rdev->flags)) {
4714 printk(KERN_WARNING
4715 "md: can not hot-add faulty %s disk to %s!\n",
4716 bdevname(rdev->bdev,b), mdname(mddev));
4717 err = -EINVAL;
4718 goto abort_export;
4719 }
4720 clear_bit(In_sync, &rdev->flags);
4721 rdev->desc_nr = -1;
4722 rdev->saved_raid_disk = -1;
4723 err = bind_rdev_to_array(rdev, mddev);
4724 if (err)
4725 goto abort_export;
4726
4727 /*
4728 * The rest should better be atomic, we can have disk failures
4729 * noticed in interrupt contexts ...
4730 */
4731
4732 rdev->raid_disk = -1;
4733
4734 md_update_sb(mddev, 1);
4735
4736 /*
4737 * Kick recovery, maybe this spare has to be added to the
4738 * array immediately.
4739 */
4740 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4741 md_wakeup_thread(mddev->thread);
4742 md_new_event(mddev);
4743 return 0;
4744
4745 abort_export:
4746 export_rdev(rdev);
4747 return err;
4748 }
4749
4750 static int set_bitmap_file(mddev_t *mddev, int fd)
4751 {
4752 int err;
4753
4754 if (mddev->pers) {
4755 if (!mddev->pers->quiesce)
4756 return -EBUSY;
4757 if (mddev->recovery || mddev->sync_thread)
4758 return -EBUSY;
4759 /* we should be able to change the bitmap.. */
4760 }
4761
4762
4763 if (fd >= 0) {
4764 if (mddev->bitmap)
4765 return -EEXIST; /* cannot add when bitmap is present */
4766 mddev->bitmap_file = fget(fd);
4767
4768 if (mddev->bitmap_file == NULL) {
4769 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4770 mdname(mddev));
4771 return -EBADF;
4772 }
4773
4774 err = deny_bitmap_write_access(mddev->bitmap_file);
4775 if (err) {
4776 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4777 mdname(mddev));
4778 fput(mddev->bitmap_file);
4779 mddev->bitmap_file = NULL;
4780 return err;
4781 }
4782 mddev->bitmap_offset = 0; /* file overrides offset */
4783 } else if (mddev->bitmap == NULL)
4784 return -ENOENT; /* cannot remove what isn't there */
4785 err = 0;
4786 if (mddev->pers) {
4787 mddev->pers->quiesce(mddev, 1);
4788 if (fd >= 0)
4789 err = bitmap_create(mddev);
4790 if (fd < 0 || err) {
4791 bitmap_destroy(mddev);
4792 fd = -1; /* make sure to put the file */
4793 }
4794 mddev->pers->quiesce(mddev, 0);
4795 }
4796 if (fd < 0) {
4797 if (mddev->bitmap_file) {
4798 restore_bitmap_write_access(mddev->bitmap_file);
4799 fput(mddev->bitmap_file);
4800 }
4801 mddev->bitmap_file = NULL;
4802 }
4803
4804 return err;
4805 }
4806
4807 /*
4808 * set_array_info is used two different ways
4809 * The original usage is when creating a new array.
4810 * In this usage, raid_disks is > 0 and it together with
4811 * level, size, not_persistent,layout,chunksize determine the
4812 * shape of the array.
4813 * This will always create an array with a type-0.90.0 superblock.
4814 * The newer usage is when assembling an array.
4815 * In this case raid_disks will be 0, and the major_version field is
4816 * use to determine which style super-blocks are to be found on the devices.
4817 * The minor and patch _version numbers are also kept incase the
4818 * super_block handler wishes to interpret them.
4819 */
4820 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4821 {
4822
4823 if (info->raid_disks == 0) {
4824 /* just setting version number for superblock loading */
4825 if (info->major_version < 0 ||
4826 info->major_version >= ARRAY_SIZE(super_types) ||
4827 super_types[info->major_version].name == NULL) {
4828 /* maybe try to auto-load a module? */
4829 printk(KERN_INFO
4830 "md: superblock version %d not known\n",
4831 info->major_version);
4832 return -EINVAL;
4833 }
4834 mddev->major_version = info->major_version;
4835 mddev->minor_version = info->minor_version;
4836 mddev->patch_version = info->patch_version;
4837 mddev->persistent = !info->not_persistent;
4838 return 0;
4839 }
4840 mddev->major_version = MD_MAJOR_VERSION;
4841 mddev->minor_version = MD_MINOR_VERSION;
4842 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4843 mddev->ctime = get_seconds();
4844
4845 mddev->level = info->level;
4846 mddev->clevel[0] = 0;
4847 mddev->dev_sectors = 2 * (sector_t)info->size;
4848 mddev->raid_disks = info->raid_disks;
4849 /* don't set md_minor, it is determined by which /dev/md* was
4850 * openned
4851 */
4852 if (info->state & (1<<MD_SB_CLEAN))
4853 mddev->recovery_cp = MaxSector;
4854 else
4855 mddev->recovery_cp = 0;
4856 mddev->persistent = ! info->not_persistent;
4857 mddev->external = 0;
4858
4859 mddev->layout = info->layout;
4860 mddev->chunk_size = info->chunk_size;
4861
4862 mddev->max_disks = MD_SB_DISKS;
4863
4864 if (mddev->persistent)
4865 mddev->flags = 0;
4866 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4867
4868 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4869 mddev->bitmap_offset = 0;
4870
4871 mddev->reshape_position = MaxSector;
4872
4873 /*
4874 * Generate a 128 bit UUID
4875 */
4876 get_random_bytes(mddev->uuid, 16);
4877
4878 mddev->new_level = mddev->level;
4879 mddev->new_chunk = mddev->chunk_size;
4880 mddev->new_layout = mddev->layout;
4881 mddev->delta_disks = 0;
4882
4883 return 0;
4884 }
4885
4886 static int update_size(mddev_t *mddev, sector_t num_sectors)
4887 {
4888 mdk_rdev_t *rdev;
4889 int rv;
4890 int fit = (num_sectors == 0);
4891
4892 if (mddev->pers->resize == NULL)
4893 return -EINVAL;
4894 /* The "num_sectors" is the number of sectors of each device that
4895 * is used. This can only make sense for arrays with redundancy.
4896 * linear and raid0 always use whatever space is available. We can only
4897 * consider changing this number if no resync or reconstruction is
4898 * happening, and if the new size is acceptable. It must fit before the
4899 * sb_start or, if that is <data_offset, it must fit before the size
4900 * of each device. If num_sectors is zero, we find the largest size
4901 * that fits.
4902
4903 */
4904 if (mddev->sync_thread)
4905 return -EBUSY;
4906 if (mddev->bitmap)
4907 /* Sorry, cannot grow a bitmap yet, just remove it,
4908 * grow, and re-add.
4909 */
4910 return -EBUSY;
4911 list_for_each_entry(rdev, &mddev->disks, same_set) {
4912 sector_t avail = rdev->sectors;
4913
4914 if (fit && (num_sectors == 0 || num_sectors > avail))
4915 num_sectors = avail;
4916 if (avail < num_sectors)
4917 return -ENOSPC;
4918 }
4919 rv = mddev->pers->resize(mddev, num_sectors);
4920 if (!rv) {
4921 struct block_device *bdev;
4922
4923 bdev = bdget_disk(mddev->gendisk, 0);
4924 if (bdev) {
4925 mutex_lock(&bdev->bd_inode->i_mutex);
4926 i_size_write(bdev->bd_inode,
4927 (loff_t)mddev->array_sectors << 9);
4928 mutex_unlock(&bdev->bd_inode->i_mutex);
4929 bdput(bdev);
4930 }
4931 }
4932 return rv;
4933 }
4934
4935 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4936 {
4937 int rv;
4938 /* change the number of raid disks */
4939 if (mddev->pers->check_reshape == NULL)
4940 return -EINVAL;
4941 if (raid_disks <= 0 ||
4942 raid_disks >= mddev->max_disks)
4943 return -EINVAL;
4944 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4945 return -EBUSY;
4946 mddev->delta_disks = raid_disks - mddev->raid_disks;
4947
4948 rv = mddev->pers->check_reshape(mddev);
4949 return rv;
4950 }
4951
4952
4953 /*
4954 * update_array_info is used to change the configuration of an
4955 * on-line array.
4956 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4957 * fields in the info are checked against the array.
4958 * Any differences that cannot be handled will cause an error.
4959 * Normally, only one change can be managed at a time.
4960 */
4961 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4962 {
4963 int rv = 0;
4964 int cnt = 0;
4965 int state = 0;
4966
4967 /* calculate expected state,ignoring low bits */
4968 if (mddev->bitmap && mddev->bitmap_offset)
4969 state |= (1 << MD_SB_BITMAP_PRESENT);
4970
4971 if (mddev->major_version != info->major_version ||
4972 mddev->minor_version != info->minor_version ||
4973 /* mddev->patch_version != info->patch_version || */
4974 mddev->ctime != info->ctime ||
4975 mddev->level != info->level ||
4976 /* mddev->layout != info->layout || */
4977 !mddev->persistent != info->not_persistent||
4978 mddev->chunk_size != info->chunk_size ||
4979 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4980 ((state^info->state) & 0xfffffe00)
4981 )
4982 return -EINVAL;
4983 /* Check there is only one change */
4984 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
4985 cnt++;
4986 if (mddev->raid_disks != info->raid_disks)
4987 cnt++;
4988 if (mddev->layout != info->layout)
4989 cnt++;
4990 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
4991 cnt++;
4992 if (cnt == 0)
4993 return 0;
4994 if (cnt > 1)
4995 return -EINVAL;
4996
4997 if (mddev->layout != info->layout) {
4998 /* Change layout
4999 * we don't need to do anything at the md level, the
5000 * personality will take care of it all.
5001 */
5002 if (mddev->pers->reconfig == NULL)
5003 return -EINVAL;
5004 else
5005 return mddev->pers->reconfig(mddev, info->layout, -1);
5006 }
5007 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5008 rv = update_size(mddev, (sector_t)info->size * 2);
5009
5010 if (mddev->raid_disks != info->raid_disks)
5011 rv = update_raid_disks(mddev, info->raid_disks);
5012
5013 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5014 if (mddev->pers->quiesce == NULL)
5015 return -EINVAL;
5016 if (mddev->recovery || mddev->sync_thread)
5017 return -EBUSY;
5018 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5019 /* add the bitmap */
5020 if (mddev->bitmap)
5021 return -EEXIST;
5022 if (mddev->default_bitmap_offset == 0)
5023 return -EINVAL;
5024 mddev->bitmap_offset = mddev->default_bitmap_offset;
5025 mddev->pers->quiesce(mddev, 1);
5026 rv = bitmap_create(mddev);
5027 if (rv)
5028 bitmap_destroy(mddev);
5029 mddev->pers->quiesce(mddev, 0);
5030 } else {
5031 /* remove the bitmap */
5032 if (!mddev->bitmap)
5033 return -ENOENT;
5034 if (mddev->bitmap->file)
5035 return -EINVAL;
5036 mddev->pers->quiesce(mddev, 1);
5037 bitmap_destroy(mddev);
5038 mddev->pers->quiesce(mddev, 0);
5039 mddev->bitmap_offset = 0;
5040 }
5041 }
5042 md_update_sb(mddev, 1);
5043 return rv;
5044 }
5045
5046 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5047 {
5048 mdk_rdev_t *rdev;
5049
5050 if (mddev->pers == NULL)
5051 return -ENODEV;
5052
5053 rdev = find_rdev(mddev, dev);
5054 if (!rdev)
5055 return -ENODEV;
5056
5057 md_error(mddev, rdev);
5058 return 0;
5059 }
5060
5061 /*
5062 * We have a problem here : there is no easy way to give a CHS
5063 * virtual geometry. We currently pretend that we have a 2 heads
5064 * 4 sectors (with a BIG number of cylinders...). This drives
5065 * dosfs just mad... ;-)
5066 */
5067 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5068 {
5069 mddev_t *mddev = bdev->bd_disk->private_data;
5070
5071 geo->heads = 2;
5072 geo->sectors = 4;
5073 geo->cylinders = get_capacity(mddev->gendisk) / 8;
5074 return 0;
5075 }
5076
5077 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5078 unsigned int cmd, unsigned long arg)
5079 {
5080 int err = 0;
5081 void __user *argp = (void __user *)arg;
5082 mddev_t *mddev = NULL;
5083
5084 if (!capable(CAP_SYS_ADMIN))
5085 return -EACCES;
5086
5087 /*
5088 * Commands dealing with the RAID driver but not any
5089 * particular array:
5090 */
5091 switch (cmd)
5092 {
5093 case RAID_VERSION:
5094 err = get_version(argp);
5095 goto done;
5096
5097 case PRINT_RAID_DEBUG:
5098 err = 0;
5099 md_print_devices();
5100 goto done;
5101
5102 #ifndef MODULE
5103 case RAID_AUTORUN:
5104 err = 0;
5105 autostart_arrays(arg);
5106 goto done;
5107 #endif
5108 default:;
5109 }
5110
5111 /*
5112 * Commands creating/starting a new array:
5113 */
5114
5115 mddev = bdev->bd_disk->private_data;
5116
5117 if (!mddev) {
5118 BUG();
5119 goto abort;
5120 }
5121
5122 err = mddev_lock(mddev);
5123 if (err) {
5124 printk(KERN_INFO
5125 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5126 err, cmd);
5127 goto abort;
5128 }
5129
5130 switch (cmd)
5131 {
5132 case SET_ARRAY_INFO:
5133 {
5134 mdu_array_info_t info;
5135 if (!arg)
5136 memset(&info, 0, sizeof(info));
5137 else if (copy_from_user(&info, argp, sizeof(info))) {
5138 err = -EFAULT;
5139 goto abort_unlock;
5140 }
5141 if (mddev->pers) {
5142 err = update_array_info(mddev, &info);
5143 if (err) {
5144 printk(KERN_WARNING "md: couldn't update"
5145 " array info. %d\n", err);
5146 goto abort_unlock;
5147 }
5148 goto done_unlock;
5149 }
5150 if (!list_empty(&mddev->disks)) {
5151 printk(KERN_WARNING
5152 "md: array %s already has disks!\n",
5153 mdname(mddev));
5154 err = -EBUSY;
5155 goto abort_unlock;
5156 }
5157 if (mddev->raid_disks) {
5158 printk(KERN_WARNING
5159 "md: array %s already initialised!\n",
5160 mdname(mddev));
5161 err = -EBUSY;
5162 goto abort_unlock;
5163 }
5164 err = set_array_info(mddev, &info);
5165 if (err) {
5166 printk(KERN_WARNING "md: couldn't set"
5167 " array info. %d\n", err);
5168 goto abort_unlock;
5169 }
5170 }
5171 goto done_unlock;
5172
5173 default:;
5174 }
5175
5176 /*
5177 * Commands querying/configuring an existing array:
5178 */
5179 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5180 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5181 if ((!mddev->raid_disks && !mddev->external)
5182 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5183 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5184 && cmd != GET_BITMAP_FILE) {
5185 err = -ENODEV;
5186 goto abort_unlock;
5187 }
5188
5189 /*
5190 * Commands even a read-only array can execute:
5191 */
5192 switch (cmd)
5193 {
5194 case GET_ARRAY_INFO:
5195 err = get_array_info(mddev, argp);
5196 goto done_unlock;
5197
5198 case GET_BITMAP_FILE:
5199 err = get_bitmap_file(mddev, argp);
5200 goto done_unlock;
5201
5202 case GET_DISK_INFO:
5203 err = get_disk_info(mddev, argp);
5204 goto done_unlock;
5205
5206 case RESTART_ARRAY_RW:
5207 err = restart_array(mddev);
5208 goto done_unlock;
5209
5210 case STOP_ARRAY:
5211 err = do_md_stop(mddev, 0, 1);
5212 goto done_unlock;
5213
5214 case STOP_ARRAY_RO:
5215 err = do_md_stop(mddev, 1, 1);
5216 goto done_unlock;
5217
5218 }
5219
5220 /*
5221 * The remaining ioctls are changing the state of the
5222 * superblock, so we do not allow them on read-only arrays.
5223 * However non-MD ioctls (e.g. get-size) will still come through
5224 * here and hit the 'default' below, so only disallow
5225 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5226 */
5227 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5228 if (mddev->ro == 2) {
5229 mddev->ro = 0;
5230 sysfs_notify_dirent(mddev->sysfs_state);
5231 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5232 md_wakeup_thread(mddev->thread);
5233 } else {
5234 err = -EROFS;
5235 goto abort_unlock;
5236 }
5237 }
5238
5239 switch (cmd)
5240 {
5241 case ADD_NEW_DISK:
5242 {
5243 mdu_disk_info_t info;
5244 if (copy_from_user(&info, argp, sizeof(info)))
5245 err = -EFAULT;
5246 else
5247 err = add_new_disk(mddev, &info);
5248 goto done_unlock;
5249 }
5250
5251 case HOT_REMOVE_DISK:
5252 err = hot_remove_disk(mddev, new_decode_dev(arg));
5253 goto done_unlock;
5254
5255 case HOT_ADD_DISK:
5256 err = hot_add_disk(mddev, new_decode_dev(arg));
5257 goto done_unlock;
5258
5259 case SET_DISK_FAULTY:
5260 err = set_disk_faulty(mddev, new_decode_dev(arg));
5261 goto done_unlock;
5262
5263 case RUN_ARRAY:
5264 err = do_md_run(mddev);
5265 goto done_unlock;
5266
5267 case SET_BITMAP_FILE:
5268 err = set_bitmap_file(mddev, (int)arg);
5269 goto done_unlock;
5270
5271 default:
5272 err = -EINVAL;
5273 goto abort_unlock;
5274 }
5275
5276 done_unlock:
5277 abort_unlock:
5278 if (mddev->hold_active == UNTIL_IOCTL &&
5279 err != -EINVAL)
5280 mddev->hold_active = 0;
5281 mddev_unlock(mddev);
5282
5283 return err;
5284 done:
5285 if (err)
5286 MD_BUG();
5287 abort:
5288 return err;
5289 }
5290
5291 static int md_open(struct block_device *bdev, fmode_t mode)
5292 {
5293 /*
5294 * Succeed if we can lock the mddev, which confirms that
5295 * it isn't being stopped right now.
5296 */
5297 mddev_t *mddev = mddev_find(bdev->bd_dev);
5298 int err;
5299
5300 if (mddev->gendisk != bdev->bd_disk) {
5301 /* we are racing with mddev_put which is discarding this
5302 * bd_disk.
5303 */
5304 mddev_put(mddev);
5305 /* Wait until bdev->bd_disk is definitely gone */
5306 flush_scheduled_work();
5307 /* Then retry the open from the top */
5308 return -ERESTARTSYS;
5309 }
5310 BUG_ON(mddev != bdev->bd_disk->private_data);
5311
5312 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5313 goto out;
5314
5315 err = 0;
5316 atomic_inc(&mddev->openers);
5317 mddev_unlock(mddev);
5318
5319 check_disk_change(bdev);
5320 out:
5321 return err;
5322 }
5323
5324 static int md_release(struct gendisk *disk, fmode_t mode)
5325 {
5326 mddev_t *mddev = disk->private_data;
5327
5328 BUG_ON(!mddev);
5329 atomic_dec(&mddev->openers);
5330 mddev_put(mddev);
5331
5332 return 0;
5333 }
5334
5335 static int md_media_changed(struct gendisk *disk)
5336 {
5337 mddev_t *mddev = disk->private_data;
5338
5339 return mddev->changed;
5340 }
5341
5342 static int md_revalidate(struct gendisk *disk)
5343 {
5344 mddev_t *mddev = disk->private_data;
5345
5346 mddev->changed = 0;
5347 return 0;
5348 }
5349 static struct block_device_operations md_fops =
5350 {
5351 .owner = THIS_MODULE,
5352 .open = md_open,
5353 .release = md_release,
5354 .locked_ioctl = md_ioctl,
5355 .getgeo = md_getgeo,
5356 .media_changed = md_media_changed,
5357 .revalidate_disk= md_revalidate,
5358 };
5359
5360 static int md_thread(void * arg)
5361 {
5362 mdk_thread_t *thread = arg;
5363
5364 /*
5365 * md_thread is a 'system-thread', it's priority should be very
5366 * high. We avoid resource deadlocks individually in each
5367 * raid personality. (RAID5 does preallocation) We also use RR and
5368 * the very same RT priority as kswapd, thus we will never get
5369 * into a priority inversion deadlock.
5370 *
5371 * we definitely have to have equal or higher priority than
5372 * bdflush, otherwise bdflush will deadlock if there are too
5373 * many dirty RAID5 blocks.
5374 */
5375
5376 allow_signal(SIGKILL);
5377 while (!kthread_should_stop()) {
5378
5379 /* We need to wait INTERRUPTIBLE so that
5380 * we don't add to the load-average.
5381 * That means we need to be sure no signals are
5382 * pending
5383 */
5384 if (signal_pending(current))
5385 flush_signals(current);
5386
5387 wait_event_interruptible_timeout
5388 (thread->wqueue,
5389 test_bit(THREAD_WAKEUP, &thread->flags)
5390 || kthread_should_stop(),
5391 thread->timeout);
5392
5393 clear_bit(THREAD_WAKEUP, &thread->flags);
5394
5395 thread->run(thread->mddev);
5396 }
5397
5398 return 0;
5399 }
5400
5401 void md_wakeup_thread(mdk_thread_t *thread)
5402 {
5403 if (thread) {
5404 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5405 set_bit(THREAD_WAKEUP, &thread->flags);
5406 wake_up(&thread->wqueue);
5407 }
5408 }
5409
5410 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5411 const char *name)
5412 {
5413 mdk_thread_t *thread;
5414
5415 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5416 if (!thread)
5417 return NULL;
5418
5419 init_waitqueue_head(&thread->wqueue);
5420
5421 thread->run = run;
5422 thread->mddev = mddev;
5423 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5424 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5425 if (IS_ERR(thread->tsk)) {
5426 kfree(thread);
5427 return NULL;
5428 }
5429 return thread;
5430 }
5431
5432 void md_unregister_thread(mdk_thread_t *thread)
5433 {
5434 if (!thread)
5435 return;
5436 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5437
5438 kthread_stop(thread->tsk);
5439 kfree(thread);
5440 }
5441
5442 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5443 {
5444 if (!mddev) {
5445 MD_BUG();
5446 return;
5447 }
5448
5449 if (!rdev || test_bit(Faulty, &rdev->flags))
5450 return;
5451
5452 if (mddev->external)
5453 set_bit(Blocked, &rdev->flags);
5454 /*
5455 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5456 mdname(mddev),
5457 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5458 __builtin_return_address(0),__builtin_return_address(1),
5459 __builtin_return_address(2),__builtin_return_address(3));
5460 */
5461 if (!mddev->pers)
5462 return;
5463 if (!mddev->pers->error_handler)
5464 return;
5465 mddev->pers->error_handler(mddev,rdev);
5466 if (mddev->degraded)
5467 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5468 set_bit(StateChanged, &rdev->flags);
5469 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5470 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5471 md_wakeup_thread(mddev->thread);
5472 md_new_event_inintr(mddev);
5473 }
5474
5475 /* seq_file implementation /proc/mdstat */
5476
5477 static void status_unused(struct seq_file *seq)
5478 {
5479 int i = 0;
5480 mdk_rdev_t *rdev;
5481
5482 seq_printf(seq, "unused devices: ");
5483
5484 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5485 char b[BDEVNAME_SIZE];
5486 i++;
5487 seq_printf(seq, "%s ",
5488 bdevname(rdev->bdev,b));
5489 }
5490 if (!i)
5491 seq_printf(seq, "<none>");
5492
5493 seq_printf(seq, "\n");
5494 }
5495
5496
5497 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5498 {
5499 sector_t max_blocks, resync, res;
5500 unsigned long dt, db, rt;
5501 int scale;
5502 unsigned int per_milli;
5503
5504 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5505
5506 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5507 max_blocks = mddev->resync_max_sectors >> 1;
5508 else
5509 max_blocks = mddev->dev_sectors / 2;
5510
5511 /*
5512 * Should not happen.
5513 */
5514 if (!max_blocks) {
5515 MD_BUG();
5516 return;
5517 }
5518 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5519 * in a sector_t, and (max_blocks>>scale) will fit in a
5520 * u32, as those are the requirements for sector_div.
5521 * Thus 'scale' must be at least 10
5522 */
5523 scale = 10;
5524 if (sizeof(sector_t) > sizeof(unsigned long)) {
5525 while ( max_blocks/2 > (1ULL<<(scale+32)))
5526 scale++;
5527 }
5528 res = (resync>>scale)*1000;
5529 sector_div(res, (u32)((max_blocks>>scale)+1));
5530
5531 per_milli = res;
5532 {
5533 int i, x = per_milli/50, y = 20-x;
5534 seq_printf(seq, "[");
5535 for (i = 0; i < x; i++)
5536 seq_printf(seq, "=");
5537 seq_printf(seq, ">");
5538 for (i = 0; i < y; i++)
5539 seq_printf(seq, ".");
5540 seq_printf(seq, "] ");
5541 }
5542 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5543 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5544 "reshape" :
5545 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5546 "check" :
5547 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5548 "resync" : "recovery"))),
5549 per_milli/10, per_milli % 10,
5550 (unsigned long long) resync,
5551 (unsigned long long) max_blocks);
5552
5553 /*
5554 * We do not want to overflow, so the order of operands and
5555 * the * 100 / 100 trick are important. We do a +1 to be
5556 * safe against division by zero. We only estimate anyway.
5557 *
5558 * dt: time from mark until now
5559 * db: blocks written from mark until now
5560 * rt: remaining time
5561 */
5562 dt = ((jiffies - mddev->resync_mark) / HZ);
5563 if (!dt) dt++;
5564 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5565 - mddev->resync_mark_cnt;
5566 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5567
5568 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5569
5570 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5571 }
5572
5573 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5574 {
5575 struct list_head *tmp;
5576 loff_t l = *pos;
5577 mddev_t *mddev;
5578
5579 if (l >= 0x10000)
5580 return NULL;
5581 if (!l--)
5582 /* header */
5583 return (void*)1;
5584
5585 spin_lock(&all_mddevs_lock);
5586 list_for_each(tmp,&all_mddevs)
5587 if (!l--) {
5588 mddev = list_entry(tmp, mddev_t, all_mddevs);
5589 mddev_get(mddev);
5590 spin_unlock(&all_mddevs_lock);
5591 return mddev;
5592 }
5593 spin_unlock(&all_mddevs_lock);
5594 if (!l--)
5595 return (void*)2;/* tail */
5596 return NULL;
5597 }
5598
5599 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5600 {
5601 struct list_head *tmp;
5602 mddev_t *next_mddev, *mddev = v;
5603
5604 ++*pos;
5605 if (v == (void*)2)
5606 return NULL;
5607
5608 spin_lock(&all_mddevs_lock);
5609 if (v == (void*)1)
5610 tmp = all_mddevs.next;
5611 else
5612 tmp = mddev->all_mddevs.next;
5613 if (tmp != &all_mddevs)
5614 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5615 else {
5616 next_mddev = (void*)2;
5617 *pos = 0x10000;
5618 }
5619 spin_unlock(&all_mddevs_lock);
5620
5621 if (v != (void*)1)
5622 mddev_put(mddev);
5623 return next_mddev;
5624
5625 }
5626
5627 static void md_seq_stop(struct seq_file *seq, void *v)
5628 {
5629 mddev_t *mddev = v;
5630
5631 if (mddev && v != (void*)1 && v != (void*)2)
5632 mddev_put(mddev);
5633 }
5634
5635 struct mdstat_info {
5636 int event;
5637 };
5638
5639 static int md_seq_show(struct seq_file *seq, void *v)
5640 {
5641 mddev_t *mddev = v;
5642 sector_t sectors;
5643 mdk_rdev_t *rdev;
5644 struct mdstat_info *mi = seq->private;
5645 struct bitmap *bitmap;
5646
5647 if (v == (void*)1) {
5648 struct mdk_personality *pers;
5649 seq_printf(seq, "Personalities : ");
5650 spin_lock(&pers_lock);
5651 list_for_each_entry(pers, &pers_list, list)
5652 seq_printf(seq, "[%s] ", pers->name);
5653
5654 spin_unlock(&pers_lock);
5655 seq_printf(seq, "\n");
5656 mi->event = atomic_read(&md_event_count);
5657 return 0;
5658 }
5659 if (v == (void*)2) {
5660 status_unused(seq);
5661 return 0;
5662 }
5663
5664 if (mddev_lock(mddev) < 0)
5665 return -EINTR;
5666
5667 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5668 seq_printf(seq, "%s : %sactive", mdname(mddev),
5669 mddev->pers ? "" : "in");
5670 if (mddev->pers) {
5671 if (mddev->ro==1)
5672 seq_printf(seq, " (read-only)");
5673 if (mddev->ro==2)
5674 seq_printf(seq, " (auto-read-only)");
5675 seq_printf(seq, " %s", mddev->pers->name);
5676 }
5677
5678 sectors = 0;
5679 list_for_each_entry(rdev, &mddev->disks, same_set) {
5680 char b[BDEVNAME_SIZE];
5681 seq_printf(seq, " %s[%d]",
5682 bdevname(rdev->bdev,b), rdev->desc_nr);
5683 if (test_bit(WriteMostly, &rdev->flags))
5684 seq_printf(seq, "(W)");
5685 if (test_bit(Faulty, &rdev->flags)) {
5686 seq_printf(seq, "(F)");
5687 continue;
5688 } else if (rdev->raid_disk < 0)
5689 seq_printf(seq, "(S)"); /* spare */
5690 sectors += rdev->sectors;
5691 }
5692
5693 if (!list_empty(&mddev->disks)) {
5694 if (mddev->pers)
5695 seq_printf(seq, "\n %llu blocks",
5696 (unsigned long long)
5697 mddev->array_sectors / 2);
5698 else
5699 seq_printf(seq, "\n %llu blocks",
5700 (unsigned long long)sectors / 2);
5701 }
5702 if (mddev->persistent) {
5703 if (mddev->major_version != 0 ||
5704 mddev->minor_version != 90) {
5705 seq_printf(seq," super %d.%d",
5706 mddev->major_version,
5707 mddev->minor_version);
5708 }
5709 } else if (mddev->external)
5710 seq_printf(seq, " super external:%s",
5711 mddev->metadata_type);
5712 else
5713 seq_printf(seq, " super non-persistent");
5714
5715 if (mddev->pers) {
5716 mddev->pers->status(seq, mddev);
5717 seq_printf(seq, "\n ");
5718 if (mddev->pers->sync_request) {
5719 if (mddev->curr_resync > 2) {
5720 status_resync(seq, mddev);
5721 seq_printf(seq, "\n ");
5722 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5723 seq_printf(seq, "\tresync=DELAYED\n ");
5724 else if (mddev->recovery_cp < MaxSector)
5725 seq_printf(seq, "\tresync=PENDING\n ");
5726 }
5727 } else
5728 seq_printf(seq, "\n ");
5729
5730 if ((bitmap = mddev->bitmap)) {
5731 unsigned long chunk_kb;
5732 unsigned long flags;
5733 spin_lock_irqsave(&bitmap->lock, flags);
5734 chunk_kb = bitmap->chunksize >> 10;
5735 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5736 "%lu%s chunk",
5737 bitmap->pages - bitmap->missing_pages,
5738 bitmap->pages,
5739 (bitmap->pages - bitmap->missing_pages)
5740 << (PAGE_SHIFT - 10),
5741 chunk_kb ? chunk_kb : bitmap->chunksize,
5742 chunk_kb ? "KB" : "B");
5743 if (bitmap->file) {
5744 seq_printf(seq, ", file: ");
5745 seq_path(seq, &bitmap->file->f_path, " \t\n");
5746 }
5747
5748 seq_printf(seq, "\n");
5749 spin_unlock_irqrestore(&bitmap->lock, flags);
5750 }
5751
5752 seq_printf(seq, "\n");
5753 }
5754 mddev_unlock(mddev);
5755
5756 return 0;
5757 }
5758
5759 static struct seq_operations md_seq_ops = {
5760 .start = md_seq_start,
5761 .next = md_seq_next,
5762 .stop = md_seq_stop,
5763 .show = md_seq_show,
5764 };
5765
5766 static int md_seq_open(struct inode *inode, struct file *file)
5767 {
5768 int error;
5769 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5770 if (mi == NULL)
5771 return -ENOMEM;
5772
5773 error = seq_open(file, &md_seq_ops);
5774 if (error)
5775 kfree(mi);
5776 else {
5777 struct seq_file *p = file->private_data;
5778 p->private = mi;
5779 mi->event = atomic_read(&md_event_count);
5780 }
5781 return error;
5782 }
5783
5784 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5785 {
5786 struct seq_file *m = filp->private_data;
5787 struct mdstat_info *mi = m->private;
5788 int mask;
5789
5790 poll_wait(filp, &md_event_waiters, wait);
5791
5792 /* always allow read */
5793 mask = POLLIN | POLLRDNORM;
5794
5795 if (mi->event != atomic_read(&md_event_count))
5796 mask |= POLLERR | POLLPRI;
5797 return mask;
5798 }
5799
5800 static const struct file_operations md_seq_fops = {
5801 .owner = THIS_MODULE,
5802 .open = md_seq_open,
5803 .read = seq_read,
5804 .llseek = seq_lseek,
5805 .release = seq_release_private,
5806 .poll = mdstat_poll,
5807 };
5808
5809 int register_md_personality(struct mdk_personality *p)
5810 {
5811 spin_lock(&pers_lock);
5812 list_add_tail(&p->list, &pers_list);
5813 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5814 spin_unlock(&pers_lock);
5815 return 0;
5816 }
5817
5818 int unregister_md_personality(struct mdk_personality *p)
5819 {
5820 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5821 spin_lock(&pers_lock);
5822 list_del_init(&p->list);
5823 spin_unlock(&pers_lock);
5824 return 0;
5825 }
5826
5827 static int is_mddev_idle(mddev_t *mddev, int init)
5828 {
5829 mdk_rdev_t * rdev;
5830 int idle;
5831 int curr_events;
5832
5833 idle = 1;
5834 rcu_read_lock();
5835 rdev_for_each_rcu(rdev, mddev) {
5836 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5837 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
5838 (int)part_stat_read(&disk->part0, sectors[1]) -
5839 atomic_read(&disk->sync_io);
5840 /* sync IO will cause sync_io to increase before the disk_stats
5841 * as sync_io is counted when a request starts, and
5842 * disk_stats is counted when it completes.
5843 * So resync activity will cause curr_events to be smaller than
5844 * when there was no such activity.
5845 * non-sync IO will cause disk_stat to increase without
5846 * increasing sync_io so curr_events will (eventually)
5847 * be larger than it was before. Once it becomes
5848 * substantially larger, the test below will cause
5849 * the array to appear non-idle, and resync will slow
5850 * down.
5851 * If there is a lot of outstanding resync activity when
5852 * we set last_event to curr_events, then all that activity
5853 * completing might cause the array to appear non-idle
5854 * and resync will be slowed down even though there might
5855 * not have been non-resync activity. This will only
5856 * happen once though. 'last_events' will soon reflect
5857 * the state where there is little or no outstanding
5858 * resync requests, and further resync activity will
5859 * always make curr_events less than last_events.
5860 *
5861 */
5862 if (init || curr_events - rdev->last_events > 64) {
5863 rdev->last_events = curr_events;
5864 idle = 0;
5865 }
5866 }
5867 rcu_read_unlock();
5868 return idle;
5869 }
5870
5871 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5872 {
5873 /* another "blocks" (512byte) blocks have been synced */
5874 atomic_sub(blocks, &mddev->recovery_active);
5875 wake_up(&mddev->recovery_wait);
5876 if (!ok) {
5877 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5878 md_wakeup_thread(mddev->thread);
5879 // stop recovery, signal do_sync ....
5880 }
5881 }
5882
5883
5884 /* md_write_start(mddev, bi)
5885 * If we need to update some array metadata (e.g. 'active' flag
5886 * in superblock) before writing, schedule a superblock update
5887 * and wait for it to complete.
5888 */
5889 void md_write_start(mddev_t *mddev, struct bio *bi)
5890 {
5891 int did_change = 0;
5892 if (bio_data_dir(bi) != WRITE)
5893 return;
5894
5895 BUG_ON(mddev->ro == 1);
5896 if (mddev->ro == 2) {
5897 /* need to switch to read/write */
5898 mddev->ro = 0;
5899 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5900 md_wakeup_thread(mddev->thread);
5901 md_wakeup_thread(mddev->sync_thread);
5902 did_change = 1;
5903 }
5904 atomic_inc(&mddev->writes_pending);
5905 if (mddev->safemode == 1)
5906 mddev->safemode = 0;
5907 if (mddev->in_sync) {
5908 spin_lock_irq(&mddev->write_lock);
5909 if (mddev->in_sync) {
5910 mddev->in_sync = 0;
5911 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5912 md_wakeup_thread(mddev->thread);
5913 did_change = 1;
5914 }
5915 spin_unlock_irq(&mddev->write_lock);
5916 }
5917 if (did_change)
5918 sysfs_notify_dirent(mddev->sysfs_state);
5919 wait_event(mddev->sb_wait,
5920 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5921 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5922 }
5923
5924 void md_write_end(mddev_t *mddev)
5925 {
5926 if (atomic_dec_and_test(&mddev->writes_pending)) {
5927 if (mddev->safemode == 2)
5928 md_wakeup_thread(mddev->thread);
5929 else if (mddev->safemode_delay)
5930 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5931 }
5932 }
5933
5934 /* md_allow_write(mddev)
5935 * Calling this ensures that the array is marked 'active' so that writes
5936 * may proceed without blocking. It is important to call this before
5937 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5938 * Must be called with mddev_lock held.
5939 *
5940 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
5941 * is dropped, so return -EAGAIN after notifying userspace.
5942 */
5943 int md_allow_write(mddev_t *mddev)
5944 {
5945 if (!mddev->pers)
5946 return 0;
5947 if (mddev->ro)
5948 return 0;
5949 if (!mddev->pers->sync_request)
5950 return 0;
5951
5952 spin_lock_irq(&mddev->write_lock);
5953 if (mddev->in_sync) {
5954 mddev->in_sync = 0;
5955 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5956 if (mddev->safemode_delay &&
5957 mddev->safemode == 0)
5958 mddev->safemode = 1;
5959 spin_unlock_irq(&mddev->write_lock);
5960 md_update_sb(mddev, 0);
5961 sysfs_notify_dirent(mddev->sysfs_state);
5962 } else
5963 spin_unlock_irq(&mddev->write_lock);
5964
5965 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
5966 return -EAGAIN;
5967 else
5968 return 0;
5969 }
5970 EXPORT_SYMBOL_GPL(md_allow_write);
5971
5972 #define SYNC_MARKS 10
5973 #define SYNC_MARK_STEP (3*HZ)
5974 void md_do_sync(mddev_t *mddev)
5975 {
5976 mddev_t *mddev2;
5977 unsigned int currspeed = 0,
5978 window;
5979 sector_t max_sectors,j, io_sectors;
5980 unsigned long mark[SYNC_MARKS];
5981 sector_t mark_cnt[SYNC_MARKS];
5982 int last_mark,m;
5983 struct list_head *tmp;
5984 sector_t last_check;
5985 int skipped = 0;
5986 mdk_rdev_t *rdev;
5987 char *desc;
5988
5989 /* just incase thread restarts... */
5990 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5991 return;
5992 if (mddev->ro) /* never try to sync a read-only array */
5993 return;
5994
5995 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5996 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5997 desc = "data-check";
5998 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5999 desc = "requested-resync";
6000 else
6001 desc = "resync";
6002 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6003 desc = "reshape";
6004 else
6005 desc = "recovery";
6006
6007 /* we overload curr_resync somewhat here.
6008 * 0 == not engaged in resync at all
6009 * 2 == checking that there is no conflict with another sync
6010 * 1 == like 2, but have yielded to allow conflicting resync to
6011 * commense
6012 * other == active in resync - this many blocks
6013 *
6014 * Before starting a resync we must have set curr_resync to
6015 * 2, and then checked that every "conflicting" array has curr_resync
6016 * less than ours. When we find one that is the same or higher
6017 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6018 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6019 * This will mean we have to start checking from the beginning again.
6020 *
6021 */
6022
6023 do {
6024 mddev->curr_resync = 2;
6025
6026 try_again:
6027 if (kthread_should_stop()) {
6028 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6029 goto skip;
6030 }
6031 for_each_mddev(mddev2, tmp) {
6032 if (mddev2 == mddev)
6033 continue;
6034 if (!mddev->parallel_resync
6035 && mddev2->curr_resync
6036 && match_mddev_units(mddev, mddev2)) {
6037 DEFINE_WAIT(wq);
6038 if (mddev < mddev2 && mddev->curr_resync == 2) {
6039 /* arbitrarily yield */
6040 mddev->curr_resync = 1;
6041 wake_up(&resync_wait);
6042 }
6043 if (mddev > mddev2 && mddev->curr_resync == 1)
6044 /* no need to wait here, we can wait the next
6045 * time 'round when curr_resync == 2
6046 */
6047 continue;
6048 /* We need to wait 'interruptible' so as not to
6049 * contribute to the load average, and not to
6050 * be caught by 'softlockup'
6051 */
6052 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6053 if (!kthread_should_stop() &&
6054 mddev2->curr_resync >= mddev->curr_resync) {
6055 printk(KERN_INFO "md: delaying %s of %s"
6056 " until %s has finished (they"
6057 " share one or more physical units)\n",
6058 desc, mdname(mddev), mdname(mddev2));
6059 mddev_put(mddev2);
6060 if (signal_pending(current))
6061 flush_signals(current);
6062 schedule();
6063 finish_wait(&resync_wait, &wq);
6064 goto try_again;
6065 }
6066 finish_wait(&resync_wait, &wq);
6067 }
6068 }
6069 } while (mddev->curr_resync < 2);
6070
6071 j = 0;
6072 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6073 /* resync follows the size requested by the personality,
6074 * which defaults to physical size, but can be virtual size
6075 */
6076 max_sectors = mddev->resync_max_sectors;
6077 mddev->resync_mismatches = 0;
6078 /* we don't use the checkpoint if there's a bitmap */
6079 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6080 j = mddev->resync_min;
6081 else if (!mddev->bitmap)
6082 j = mddev->recovery_cp;
6083
6084 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6085 max_sectors = mddev->dev_sectors;
6086 else {
6087 /* recovery follows the physical size of devices */
6088 max_sectors = mddev->dev_sectors;
6089 j = MaxSector;
6090 list_for_each_entry(rdev, &mddev->disks, same_set)
6091 if (rdev->raid_disk >= 0 &&
6092 !test_bit(Faulty, &rdev->flags) &&
6093 !test_bit(In_sync, &rdev->flags) &&
6094 rdev->recovery_offset < j)
6095 j = rdev->recovery_offset;
6096 }
6097
6098 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6099 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6100 " %d KB/sec/disk.\n", speed_min(mddev));
6101 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6102 "(but not more than %d KB/sec) for %s.\n",
6103 speed_max(mddev), desc);
6104
6105 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6106
6107 io_sectors = 0;
6108 for (m = 0; m < SYNC_MARKS; m++) {
6109 mark[m] = jiffies;
6110 mark_cnt[m] = io_sectors;
6111 }
6112 last_mark = 0;
6113 mddev->resync_mark = mark[last_mark];
6114 mddev->resync_mark_cnt = mark_cnt[last_mark];
6115
6116 /*
6117 * Tune reconstruction:
6118 */
6119 window = 32*(PAGE_SIZE/512);
6120 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6121 window/2,(unsigned long long) max_sectors/2);
6122
6123 atomic_set(&mddev->recovery_active, 0);
6124 last_check = 0;
6125
6126 if (j>2) {
6127 printk(KERN_INFO
6128 "md: resuming %s of %s from checkpoint.\n",
6129 desc, mdname(mddev));
6130 mddev->curr_resync = j;
6131 }
6132
6133 while (j < max_sectors) {
6134 sector_t sectors;
6135
6136 skipped = 0;
6137 if (j >= mddev->resync_max) {
6138 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6139 wait_event(mddev->recovery_wait,
6140 mddev->resync_max > j
6141 || kthread_should_stop());
6142 }
6143 if (kthread_should_stop())
6144 goto interrupted;
6145
6146 if (mddev->curr_resync > mddev->curr_resync_completed &&
6147 (mddev->curr_resync - mddev->curr_resync_completed)
6148 > (max_sectors >> 4)) {
6149 /* time to update curr_resync_completed */
6150 blk_unplug(mddev->queue);
6151 wait_event(mddev->recovery_wait,
6152 atomic_read(&mddev->recovery_active) == 0);
6153 mddev->curr_resync_completed =
6154 mddev->curr_resync;
6155 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6156 }
6157 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6158 currspeed < speed_min(mddev));
6159 if (sectors == 0) {
6160 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6161 goto out;
6162 }
6163
6164 if (!skipped) { /* actual IO requested */
6165 io_sectors += sectors;
6166 atomic_add(sectors, &mddev->recovery_active);
6167 }
6168
6169 j += sectors;
6170 if (j>1) mddev->curr_resync = j;
6171 mddev->curr_mark_cnt = io_sectors;
6172 if (last_check == 0)
6173 /* this is the earliers that rebuilt will be
6174 * visible in /proc/mdstat
6175 */
6176 md_new_event(mddev);
6177
6178 if (last_check + window > io_sectors || j == max_sectors)
6179 continue;
6180
6181 last_check = io_sectors;
6182
6183 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6184 break;
6185
6186 repeat:
6187 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6188 /* step marks */
6189 int next = (last_mark+1) % SYNC_MARKS;
6190
6191 mddev->resync_mark = mark[next];
6192 mddev->resync_mark_cnt = mark_cnt[next];
6193 mark[next] = jiffies;
6194 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6195 last_mark = next;
6196 }
6197
6198
6199 if (kthread_should_stop())
6200 goto interrupted;
6201
6202
6203 /*
6204 * this loop exits only if either when we are slower than
6205 * the 'hard' speed limit, or the system was IO-idle for
6206 * a jiffy.
6207 * the system might be non-idle CPU-wise, but we only care
6208 * about not overloading the IO subsystem. (things like an
6209 * e2fsck being done on the RAID array should execute fast)
6210 */
6211 blk_unplug(mddev->queue);
6212 cond_resched();
6213
6214 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6215 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6216
6217 if (currspeed > speed_min(mddev)) {
6218 if ((currspeed > speed_max(mddev)) ||
6219 !is_mddev_idle(mddev, 0)) {
6220 msleep(500);
6221 goto repeat;
6222 }
6223 }
6224 }
6225 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6226 /*
6227 * this also signals 'finished resyncing' to md_stop
6228 */
6229 out:
6230 blk_unplug(mddev->queue);
6231
6232 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6233
6234 /* tell personality that we are finished */
6235 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6236
6237 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6238 mddev->curr_resync > 2) {
6239 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6240 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6241 if (mddev->curr_resync >= mddev->recovery_cp) {
6242 printk(KERN_INFO
6243 "md: checkpointing %s of %s.\n",
6244 desc, mdname(mddev));
6245 mddev->recovery_cp = mddev->curr_resync;
6246 }
6247 } else
6248 mddev->recovery_cp = MaxSector;
6249 } else {
6250 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6251 mddev->curr_resync = MaxSector;
6252 list_for_each_entry(rdev, &mddev->disks, same_set)
6253 if (rdev->raid_disk >= 0 &&
6254 !test_bit(Faulty, &rdev->flags) &&
6255 !test_bit(In_sync, &rdev->flags) &&
6256 rdev->recovery_offset < mddev->curr_resync)
6257 rdev->recovery_offset = mddev->curr_resync;
6258 }
6259 }
6260 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6261
6262 skip:
6263 mddev->curr_resync = 0;
6264 mddev->resync_min = 0;
6265 mddev->resync_max = MaxSector;
6266 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6267 wake_up(&resync_wait);
6268 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6269 md_wakeup_thread(mddev->thread);
6270 return;
6271
6272 interrupted:
6273 /*
6274 * got a signal, exit.
6275 */
6276 printk(KERN_INFO
6277 "md: md_do_sync() got signal ... exiting\n");
6278 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6279 goto out;
6280
6281 }
6282 EXPORT_SYMBOL_GPL(md_do_sync);
6283
6284
6285 static int remove_and_add_spares(mddev_t *mddev)
6286 {
6287 mdk_rdev_t *rdev;
6288 int spares = 0;
6289
6290 mddev->curr_resync_completed = 0;
6291
6292 list_for_each_entry(rdev, &mddev->disks, same_set)
6293 if (rdev->raid_disk >= 0 &&
6294 !test_bit(Blocked, &rdev->flags) &&
6295 (test_bit(Faulty, &rdev->flags) ||
6296 ! test_bit(In_sync, &rdev->flags)) &&
6297 atomic_read(&rdev->nr_pending)==0) {
6298 if (mddev->pers->hot_remove_disk(
6299 mddev, rdev->raid_disk)==0) {
6300 char nm[20];
6301 sprintf(nm,"rd%d", rdev->raid_disk);
6302 sysfs_remove_link(&mddev->kobj, nm);
6303 rdev->raid_disk = -1;
6304 }
6305 }
6306
6307 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6308 list_for_each_entry(rdev, &mddev->disks, same_set) {
6309 if (rdev->raid_disk >= 0 &&
6310 !test_bit(In_sync, &rdev->flags) &&
6311 !test_bit(Blocked, &rdev->flags))
6312 spares++;
6313 if (rdev->raid_disk < 0
6314 && !test_bit(Faulty, &rdev->flags)) {
6315 rdev->recovery_offset = 0;
6316 if (mddev->pers->
6317 hot_add_disk(mddev, rdev) == 0) {
6318 char nm[20];
6319 sprintf(nm, "rd%d", rdev->raid_disk);
6320 if (sysfs_create_link(&mddev->kobj,
6321 &rdev->kobj, nm))
6322 printk(KERN_WARNING
6323 "md: cannot register "
6324 "%s for %s\n",
6325 nm, mdname(mddev));
6326 spares++;
6327 md_new_event(mddev);
6328 } else
6329 break;
6330 }
6331 }
6332 }
6333 return spares;
6334 }
6335 /*
6336 * This routine is regularly called by all per-raid-array threads to
6337 * deal with generic issues like resync and super-block update.
6338 * Raid personalities that don't have a thread (linear/raid0) do not
6339 * need this as they never do any recovery or update the superblock.
6340 *
6341 * It does not do any resync itself, but rather "forks" off other threads
6342 * to do that as needed.
6343 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6344 * "->recovery" and create a thread at ->sync_thread.
6345 * When the thread finishes it sets MD_RECOVERY_DONE
6346 * and wakeups up this thread which will reap the thread and finish up.
6347 * This thread also removes any faulty devices (with nr_pending == 0).
6348 *
6349 * The overall approach is:
6350 * 1/ if the superblock needs updating, update it.
6351 * 2/ If a recovery thread is running, don't do anything else.
6352 * 3/ If recovery has finished, clean up, possibly marking spares active.
6353 * 4/ If there are any faulty devices, remove them.
6354 * 5/ If array is degraded, try to add spares devices
6355 * 6/ If array has spares or is not in-sync, start a resync thread.
6356 */
6357 void md_check_recovery(mddev_t *mddev)
6358 {
6359 mdk_rdev_t *rdev;
6360
6361
6362 if (mddev->bitmap)
6363 bitmap_daemon_work(mddev->bitmap);
6364
6365 if (mddev->ro)
6366 return;
6367
6368 if (signal_pending(current)) {
6369 if (mddev->pers->sync_request && !mddev->external) {
6370 printk(KERN_INFO "md: %s in immediate safe mode\n",
6371 mdname(mddev));
6372 mddev->safemode = 2;
6373 }
6374 flush_signals(current);
6375 }
6376
6377 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6378 return;
6379 if ( ! (
6380 (mddev->flags && !mddev->external) ||
6381 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6382 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6383 (mddev->external == 0 && mddev->safemode == 1) ||
6384 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6385 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6386 ))
6387 return;
6388
6389 if (mddev_trylock(mddev)) {
6390 int spares = 0;
6391
6392 if (mddev->ro) {
6393 /* Only thing we do on a ro array is remove
6394 * failed devices.
6395 */
6396 remove_and_add_spares(mddev);
6397 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6398 goto unlock;
6399 }
6400
6401 if (!mddev->external) {
6402 int did_change = 0;
6403 spin_lock_irq(&mddev->write_lock);
6404 if (mddev->safemode &&
6405 !atomic_read(&mddev->writes_pending) &&
6406 !mddev->in_sync &&
6407 mddev->recovery_cp == MaxSector) {
6408 mddev->in_sync = 1;
6409 did_change = 1;
6410 if (mddev->persistent)
6411 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6412 }
6413 if (mddev->safemode == 1)
6414 mddev->safemode = 0;
6415 spin_unlock_irq(&mddev->write_lock);
6416 if (did_change)
6417 sysfs_notify_dirent(mddev->sysfs_state);
6418 }
6419
6420 if (mddev->flags)
6421 md_update_sb(mddev, 0);
6422
6423 list_for_each_entry(rdev, &mddev->disks, same_set)
6424 if (test_and_clear_bit(StateChanged, &rdev->flags))
6425 sysfs_notify_dirent(rdev->sysfs_state);
6426
6427
6428 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6429 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6430 /* resync/recovery still happening */
6431 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6432 goto unlock;
6433 }
6434 if (mddev->sync_thread) {
6435 /* resync has finished, collect result */
6436 md_unregister_thread(mddev->sync_thread);
6437 mddev->sync_thread = NULL;
6438 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6439 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6440 /* success...*/
6441 /* activate any spares */
6442 if (mddev->pers->spare_active(mddev))
6443 sysfs_notify(&mddev->kobj, NULL,
6444 "degraded");
6445 }
6446 md_update_sb(mddev, 1);
6447
6448 /* if array is no-longer degraded, then any saved_raid_disk
6449 * information must be scrapped
6450 */
6451 if (!mddev->degraded)
6452 list_for_each_entry(rdev, &mddev->disks, same_set)
6453 rdev->saved_raid_disk = -1;
6454
6455 mddev->recovery = 0;
6456 /* flag recovery needed just to double check */
6457 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6458 sysfs_notify_dirent(mddev->sysfs_action);
6459 md_new_event(mddev);
6460 goto unlock;
6461 }
6462 /* Set RUNNING before clearing NEEDED to avoid
6463 * any transients in the value of "sync_action".
6464 */
6465 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6466 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6467 /* Clear some bits that don't mean anything, but
6468 * might be left set
6469 */
6470 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6471 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6472
6473 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6474 goto unlock;
6475 /* no recovery is running.
6476 * remove any failed drives, then
6477 * add spares if possible.
6478 * Spare are also removed and re-added, to allow
6479 * the personality to fail the re-add.
6480 */
6481
6482 if (mddev->reshape_position != MaxSector) {
6483 if (mddev->pers->check_reshape(mddev) != 0)
6484 /* Cannot proceed */
6485 goto unlock;
6486 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6487 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6488 } else if ((spares = remove_and_add_spares(mddev))) {
6489 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6490 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6491 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6492 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6493 } else if (mddev->recovery_cp < MaxSector) {
6494 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6495 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6496 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6497 /* nothing to be done ... */
6498 goto unlock;
6499
6500 if (mddev->pers->sync_request) {
6501 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6502 /* We are adding a device or devices to an array
6503 * which has the bitmap stored on all devices.
6504 * So make sure all bitmap pages get written
6505 */
6506 bitmap_write_all(mddev->bitmap);
6507 }
6508 mddev->sync_thread = md_register_thread(md_do_sync,
6509 mddev,
6510 "%s_resync");
6511 if (!mddev->sync_thread) {
6512 printk(KERN_ERR "%s: could not start resync"
6513 " thread...\n",
6514 mdname(mddev));
6515 /* leave the spares where they are, it shouldn't hurt */
6516 mddev->recovery = 0;
6517 } else
6518 md_wakeup_thread(mddev->sync_thread);
6519 sysfs_notify_dirent(mddev->sysfs_action);
6520 md_new_event(mddev);
6521 }
6522 unlock:
6523 if (!mddev->sync_thread) {
6524 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6525 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6526 &mddev->recovery))
6527 if (mddev->sysfs_action)
6528 sysfs_notify_dirent(mddev->sysfs_action);
6529 }
6530 mddev_unlock(mddev);
6531 }
6532 }
6533
6534 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6535 {
6536 sysfs_notify_dirent(rdev->sysfs_state);
6537 wait_event_timeout(rdev->blocked_wait,
6538 !test_bit(Blocked, &rdev->flags),
6539 msecs_to_jiffies(5000));
6540 rdev_dec_pending(rdev, mddev);
6541 }
6542 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6543
6544 static int md_notify_reboot(struct notifier_block *this,
6545 unsigned long code, void *x)
6546 {
6547 struct list_head *tmp;
6548 mddev_t *mddev;
6549
6550 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6551
6552 printk(KERN_INFO "md: stopping all md devices.\n");
6553
6554 for_each_mddev(mddev, tmp)
6555 if (mddev_trylock(mddev)) {
6556 /* Force a switch to readonly even array
6557 * appears to still be in use. Hence
6558 * the '100'.
6559 */
6560 do_md_stop(mddev, 1, 100);
6561 mddev_unlock(mddev);
6562 }
6563 /*
6564 * certain more exotic SCSI devices are known to be
6565 * volatile wrt too early system reboots. While the
6566 * right place to handle this issue is the given
6567 * driver, we do want to have a safe RAID driver ...
6568 */
6569 mdelay(1000*1);
6570 }
6571 return NOTIFY_DONE;
6572 }
6573
6574 static struct notifier_block md_notifier = {
6575 .notifier_call = md_notify_reboot,
6576 .next = NULL,
6577 .priority = INT_MAX, /* before any real devices */
6578 };
6579
6580 static void md_geninit(void)
6581 {
6582 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6583
6584 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6585 }
6586
6587 static int __init md_init(void)
6588 {
6589 if (register_blkdev(MD_MAJOR, "md"))
6590 return -1;
6591 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6592 unregister_blkdev(MD_MAJOR, "md");
6593 return -1;
6594 }
6595 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6596 md_probe, NULL, NULL);
6597 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6598 md_probe, NULL, NULL);
6599
6600 register_reboot_notifier(&md_notifier);
6601 raid_table_header = register_sysctl_table(raid_root_table);
6602
6603 md_geninit();
6604 return 0;
6605 }
6606
6607
6608 #ifndef MODULE
6609
6610 /*
6611 * Searches all registered partitions for autorun RAID arrays
6612 * at boot time.
6613 */
6614
6615 static LIST_HEAD(all_detected_devices);
6616 struct detected_devices_node {
6617 struct list_head list;
6618 dev_t dev;
6619 };
6620
6621 void md_autodetect_dev(dev_t dev)
6622 {
6623 struct detected_devices_node *node_detected_dev;
6624
6625 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6626 if (node_detected_dev) {
6627 node_detected_dev->dev = dev;
6628 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6629 } else {
6630 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6631 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6632 }
6633 }
6634
6635
6636 static void autostart_arrays(int part)
6637 {
6638 mdk_rdev_t *rdev;
6639 struct detected_devices_node *node_detected_dev;
6640 dev_t dev;
6641 int i_scanned, i_passed;
6642
6643 i_scanned = 0;
6644 i_passed = 0;
6645
6646 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6647
6648 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6649 i_scanned++;
6650 node_detected_dev = list_entry(all_detected_devices.next,
6651 struct detected_devices_node, list);
6652 list_del(&node_detected_dev->list);
6653 dev = node_detected_dev->dev;
6654 kfree(node_detected_dev);
6655 rdev = md_import_device(dev,0, 90);
6656 if (IS_ERR(rdev))
6657 continue;
6658
6659 if (test_bit(Faulty, &rdev->flags)) {
6660 MD_BUG();
6661 continue;
6662 }
6663 set_bit(AutoDetected, &rdev->flags);
6664 list_add(&rdev->same_set, &pending_raid_disks);
6665 i_passed++;
6666 }
6667
6668 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6669 i_scanned, i_passed);
6670
6671 autorun_devices(part);
6672 }
6673
6674 #endif /* !MODULE */
6675
6676 static __exit void md_exit(void)
6677 {
6678 mddev_t *mddev;
6679 struct list_head *tmp;
6680
6681 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6682 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6683
6684 unregister_blkdev(MD_MAJOR,"md");
6685 unregister_blkdev(mdp_major, "mdp");
6686 unregister_reboot_notifier(&md_notifier);
6687 unregister_sysctl_table(raid_table_header);
6688 remove_proc_entry("mdstat", NULL);
6689 for_each_mddev(mddev, tmp) {
6690 export_array(mddev);
6691 mddev->hold_active = 0;
6692 }
6693 }
6694
6695 subsys_initcall(md_init);
6696 module_exit(md_exit)
6697
6698 static int get_ro(char *buffer, struct kernel_param *kp)
6699 {
6700 return sprintf(buffer, "%d", start_readonly);
6701 }
6702 static int set_ro(const char *val, struct kernel_param *kp)
6703 {
6704 char *e;
6705 int num = simple_strtoul(val, &e, 10);
6706 if (*val && (*e == '\0' || *e == '\n')) {
6707 start_readonly = num;
6708 return 0;
6709 }
6710 return -EINVAL;
6711 }
6712
6713 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6714 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6715
6716 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6717
6718 EXPORT_SYMBOL(register_md_personality);
6719 EXPORT_SYMBOL(unregister_md_personality);
6720 EXPORT_SYMBOL(md_error);
6721 EXPORT_SYMBOL(md_done_sync);
6722 EXPORT_SYMBOL(md_write_start);
6723 EXPORT_SYMBOL(md_write_end);
6724 EXPORT_SYMBOL(md_register_thread);
6725 EXPORT_SYMBOL(md_unregister_thread);
6726 EXPORT_SYMBOL(md_wakeup_thread);
6727 EXPORT_SYMBOL(md_check_recovery);
6728 MODULE_LICENSE("GPL");
6729 MODULE_ALIAS("md");
6730 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.192595 seconds and 5 git commands to generate.