[PATCH] md: endian annotation for v1 superblock access
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/suspend.h>
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46
47 #include <linux/init.h>
48
49 #include <linux/file.h>
50
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54
55 #include <asm/unaligned.h>
56
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65
66
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73
74 static void md_print_devices(void);
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80 * is 1000 KB/sec, so the extra system load does not show up that much.
81 * Increase it if you want to have more _guaranteed_ speed. Note that
82 * the RAID driver will use the maximum available bandwidth if the IO
83 * subsystem is idle. There is also an 'absolute maximum' reconstruction
84 * speed limit - in case reconstruction slows down your system despite
85 * idle IO detection.
86 *
87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88 * or /sys/block/mdX/md/sync_speed_{min,max}
89 */
90
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
94 {
95 return mddev->sync_speed_min ?
96 mddev->sync_speed_min : sysctl_speed_limit_min;
97 }
98
99 static inline int speed_max(mddev_t *mddev)
100 {
101 return mddev->sync_speed_max ?
102 mddev->sync_speed_max : sysctl_speed_limit_max;
103 }
104
105 static struct ctl_table_header *raid_table_header;
106
107 static ctl_table raid_table[] = {
108 {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
110 .procname = "speed_limit_min",
111 .data = &sysctl_speed_limit_min,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
115 },
116 {
117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = &proc_dointvec,
123 },
124 { .ctl_name = 0 }
125 };
126
127 static ctl_table raid_dir_table[] = {
128 {
129 .ctl_name = DEV_RAID,
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
134 },
135 { .ctl_name = 0 }
136 };
137
138 static ctl_table raid_root_table[] = {
139 {
140 .ctl_name = CTL_DEV,
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
145 },
146 { .ctl_name = 0 }
147 };
148
149 static struct block_device_operations md_fops;
150
151 static int start_readonly;
152
153 /*
154 * We have a system wide 'event count' that is incremented
155 * on any 'interesting' event, and readers of /proc/mdstat
156 * can use 'poll' or 'select' to find out when the event
157 * count increases.
158 *
159 * Events are:
160 * start array, stop array, error, add device, remove device,
161 * start build, activate spare
162 */
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
166 {
167 atomic_inc(&md_event_count);
168 wake_up(&md_event_waiters);
169 sysfs_notify(&mddev->kobj, NULL, "sync_action");
170 }
171 EXPORT_SYMBOL_GPL(md_new_event);
172
173 /* Alternate version that can be called from interrupts
174 * when calling sysfs_notify isn't needed.
175 */
176 static void md_new_event_inintr(mddev_t *mddev)
177 {
178 atomic_inc(&md_event_count);
179 wake_up(&md_event_waiters);
180 }
181
182 /*
183 * Enables to iterate over all existing md arrays
184 * all_mddevs_lock protects this list.
185 */
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
188
189
190 /*
191 * iterates through all used mddevs in the system.
192 * We take care to grab the all_mddevs_lock whenever navigating
193 * the list, and to always hold a refcount when unlocked.
194 * Any code which breaks out of this loop while own
195 * a reference to the current mddev and must mddev_put it.
196 */
197 #define ITERATE_MDDEV(mddev,tmp) \
198 \
199 for (({ spin_lock(&all_mddevs_lock); \
200 tmp = all_mddevs.next; \
201 mddev = NULL;}); \
202 ({ if (tmp != &all_mddevs) \
203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 spin_unlock(&all_mddevs_lock); \
205 if (mddev) mddev_put(mddev); \
206 mddev = list_entry(tmp, mddev_t, all_mddevs); \
207 tmp != &all_mddevs;}); \
208 ({ spin_lock(&all_mddevs_lock); \
209 tmp = tmp->next;}) \
210 )
211
212
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
214 {
215 bio_io_error(bio, bio->bi_size);
216 return 0;
217 }
218
219 static inline mddev_t *mddev_get(mddev_t *mddev)
220 {
221 atomic_inc(&mddev->active);
222 return mddev;
223 }
224
225 static void mddev_put(mddev_t *mddev)
226 {
227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 return;
229 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 list_del(&mddev->all_mddevs);
231 spin_unlock(&all_mddevs_lock);
232 blk_cleanup_queue(mddev->queue);
233 kobject_unregister(&mddev->kobj);
234 } else
235 spin_unlock(&all_mddevs_lock);
236 }
237
238 static mddev_t * mddev_find(dev_t unit)
239 {
240 mddev_t *mddev, *new = NULL;
241
242 retry:
243 spin_lock(&all_mddevs_lock);
244 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 if (mddev->unit == unit) {
246 mddev_get(mddev);
247 spin_unlock(&all_mddevs_lock);
248 kfree(new);
249 return mddev;
250 }
251
252 if (new) {
253 list_add(&new->all_mddevs, &all_mddevs);
254 spin_unlock(&all_mddevs_lock);
255 return new;
256 }
257 spin_unlock(&all_mddevs_lock);
258
259 new = kzalloc(sizeof(*new), GFP_KERNEL);
260 if (!new)
261 return NULL;
262
263 new->unit = unit;
264 if (MAJOR(unit) == MD_MAJOR)
265 new->md_minor = MINOR(unit);
266 else
267 new->md_minor = MINOR(unit) >> MdpMinorShift;
268
269 mutex_init(&new->reconfig_mutex);
270 INIT_LIST_HEAD(&new->disks);
271 INIT_LIST_HEAD(&new->all_mddevs);
272 init_timer(&new->safemode_timer);
273 atomic_set(&new->active, 1);
274 spin_lock_init(&new->write_lock);
275 init_waitqueue_head(&new->sb_wait);
276
277 new->queue = blk_alloc_queue(GFP_KERNEL);
278 if (!new->queue) {
279 kfree(new);
280 return NULL;
281 }
282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
283
284 blk_queue_make_request(new->queue, md_fail_request);
285
286 goto retry;
287 }
288
289 static inline int mddev_lock(mddev_t * mddev)
290 {
291 return mutex_lock_interruptible(&mddev->reconfig_mutex);
292 }
293
294 static inline int mddev_trylock(mddev_t * mddev)
295 {
296 return mutex_trylock(&mddev->reconfig_mutex);
297 }
298
299 static inline void mddev_unlock(mddev_t * mddev)
300 {
301 mutex_unlock(&mddev->reconfig_mutex);
302
303 md_wakeup_thread(mddev->thread);
304 }
305
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
307 {
308 mdk_rdev_t * rdev;
309 struct list_head *tmp;
310
311 ITERATE_RDEV(mddev,rdev,tmp) {
312 if (rdev->desc_nr == nr)
313 return rdev;
314 }
315 return NULL;
316 }
317
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
319 {
320 struct list_head *tmp;
321 mdk_rdev_t *rdev;
322
323 ITERATE_RDEV(mddev,rdev,tmp) {
324 if (rdev->bdev->bd_dev == dev)
325 return rdev;
326 }
327 return NULL;
328 }
329
330 static struct mdk_personality *find_pers(int level, char *clevel)
331 {
332 struct mdk_personality *pers;
333 list_for_each_entry(pers, &pers_list, list) {
334 if (level != LEVEL_NONE && pers->level == level)
335 return pers;
336 if (strcmp(pers->name, clevel)==0)
337 return pers;
338 }
339 return NULL;
340 }
341
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
343 {
344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 return MD_NEW_SIZE_BLOCKS(size);
346 }
347
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
349 {
350 sector_t size;
351
352 size = rdev->sb_offset;
353
354 if (chunk_size)
355 size &= ~((sector_t)chunk_size/1024 - 1);
356 return size;
357 }
358
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
360 {
361 if (rdev->sb_page)
362 MD_BUG();
363
364 rdev->sb_page = alloc_page(GFP_KERNEL);
365 if (!rdev->sb_page) {
366 printk(KERN_ALERT "md: out of memory.\n");
367 return -EINVAL;
368 }
369
370 return 0;
371 }
372
373 static void free_disk_sb(mdk_rdev_t * rdev)
374 {
375 if (rdev->sb_page) {
376 put_page(rdev->sb_page);
377 rdev->sb_loaded = 0;
378 rdev->sb_page = NULL;
379 rdev->sb_offset = 0;
380 rdev->size = 0;
381 }
382 }
383
384
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
386 {
387 mdk_rdev_t *rdev = bio->bi_private;
388 mddev_t *mddev = rdev->mddev;
389 if (bio->bi_size)
390 return 1;
391
392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 printk("md: super_written gets error=%d, uptodate=%d\n",
394 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 md_error(mddev, rdev);
397 }
398
399 if (atomic_dec_and_test(&mddev->pending_writes))
400 wake_up(&mddev->sb_wait);
401 bio_put(bio);
402 return 0;
403 }
404
405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
406 {
407 struct bio *bio2 = bio->bi_private;
408 mdk_rdev_t *rdev = bio2->bi_private;
409 mddev_t *mddev = rdev->mddev;
410 if (bio->bi_size)
411 return 1;
412
413 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
414 error == -EOPNOTSUPP) {
415 unsigned long flags;
416 /* barriers don't appear to be supported :-( */
417 set_bit(BarriersNotsupp, &rdev->flags);
418 mddev->barriers_work = 0;
419 spin_lock_irqsave(&mddev->write_lock, flags);
420 bio2->bi_next = mddev->biolist;
421 mddev->biolist = bio2;
422 spin_unlock_irqrestore(&mddev->write_lock, flags);
423 wake_up(&mddev->sb_wait);
424 bio_put(bio);
425 return 0;
426 }
427 bio_put(bio2);
428 bio->bi_private = rdev;
429 return super_written(bio, bytes_done, error);
430 }
431
432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
433 sector_t sector, int size, struct page *page)
434 {
435 /* write first size bytes of page to sector of rdev
436 * Increment mddev->pending_writes before returning
437 * and decrement it on completion, waking up sb_wait
438 * if zero is reached.
439 * If an error occurred, call md_error
440 *
441 * As we might need to resubmit the request if BIO_RW_BARRIER
442 * causes ENOTSUPP, we allocate a spare bio...
443 */
444 struct bio *bio = bio_alloc(GFP_NOIO, 1);
445 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
446
447 bio->bi_bdev = rdev->bdev;
448 bio->bi_sector = sector;
449 bio_add_page(bio, page, size, 0);
450 bio->bi_private = rdev;
451 bio->bi_end_io = super_written;
452 bio->bi_rw = rw;
453
454 atomic_inc(&mddev->pending_writes);
455 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
456 struct bio *rbio;
457 rw |= (1<<BIO_RW_BARRIER);
458 rbio = bio_clone(bio, GFP_NOIO);
459 rbio->bi_private = bio;
460 rbio->bi_end_io = super_written_barrier;
461 submit_bio(rw, rbio);
462 } else
463 submit_bio(rw, bio);
464 }
465
466 void md_super_wait(mddev_t *mddev)
467 {
468 /* wait for all superblock writes that were scheduled to complete.
469 * if any had to be retried (due to BARRIER problems), retry them
470 */
471 DEFINE_WAIT(wq);
472 for(;;) {
473 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
474 if (atomic_read(&mddev->pending_writes)==0)
475 break;
476 while (mddev->biolist) {
477 struct bio *bio;
478 spin_lock_irq(&mddev->write_lock);
479 bio = mddev->biolist;
480 mddev->biolist = bio->bi_next ;
481 bio->bi_next = NULL;
482 spin_unlock_irq(&mddev->write_lock);
483 submit_bio(bio->bi_rw, bio);
484 }
485 schedule();
486 }
487 finish_wait(&mddev->sb_wait, &wq);
488 }
489
490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
491 {
492 if (bio->bi_size)
493 return 1;
494
495 complete((struct completion*)bio->bi_private);
496 return 0;
497 }
498
499 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
500 struct page *page, int rw)
501 {
502 struct bio *bio = bio_alloc(GFP_NOIO, 1);
503 struct completion event;
504 int ret;
505
506 rw |= (1 << BIO_RW_SYNC);
507
508 bio->bi_bdev = bdev;
509 bio->bi_sector = sector;
510 bio_add_page(bio, page, size, 0);
511 init_completion(&event);
512 bio->bi_private = &event;
513 bio->bi_end_io = bi_complete;
514 submit_bio(rw, bio);
515 wait_for_completion(&event);
516
517 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
518 bio_put(bio);
519 return ret;
520 }
521 EXPORT_SYMBOL_GPL(sync_page_io);
522
523 static int read_disk_sb(mdk_rdev_t * rdev, int size)
524 {
525 char b[BDEVNAME_SIZE];
526 if (!rdev->sb_page) {
527 MD_BUG();
528 return -EINVAL;
529 }
530 if (rdev->sb_loaded)
531 return 0;
532
533
534 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
535 goto fail;
536 rdev->sb_loaded = 1;
537 return 0;
538
539 fail:
540 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
541 bdevname(rdev->bdev,b));
542 return -EINVAL;
543 }
544
545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
546 {
547 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
548 (sb1->set_uuid1 == sb2->set_uuid1) &&
549 (sb1->set_uuid2 == sb2->set_uuid2) &&
550 (sb1->set_uuid3 == sb2->set_uuid3))
551
552 return 1;
553
554 return 0;
555 }
556
557
558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
559 {
560 int ret;
561 mdp_super_t *tmp1, *tmp2;
562
563 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
564 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
565
566 if (!tmp1 || !tmp2) {
567 ret = 0;
568 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
569 goto abort;
570 }
571
572 *tmp1 = *sb1;
573 *tmp2 = *sb2;
574
575 /*
576 * nr_disks is not constant
577 */
578 tmp1->nr_disks = 0;
579 tmp2->nr_disks = 0;
580
581 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
582 ret = 0;
583 else
584 ret = 1;
585
586 abort:
587 kfree(tmp1);
588 kfree(tmp2);
589 return ret;
590 }
591
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 unsigned int disk_csum, csum;
595
596 disk_csum = sb->sb_csum;
597 sb->sb_csum = 0;
598 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
599 sb->sb_csum = disk_csum;
600 return csum;
601 }
602
603
604 /*
605 * Handle superblock details.
606 * We want to be able to handle multiple superblock formats
607 * so we have a common interface to them all, and an array of
608 * different handlers.
609 * We rely on user-space to write the initial superblock, and support
610 * reading and updating of superblocks.
611 * Interface methods are:
612 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
613 * loads and validates a superblock on dev.
614 * if refdev != NULL, compare superblocks on both devices
615 * Return:
616 * 0 - dev has a superblock that is compatible with refdev
617 * 1 - dev has a superblock that is compatible and newer than refdev
618 * so dev should be used as the refdev in future
619 * -EINVAL superblock incompatible or invalid
620 * -othererror e.g. -EIO
621 *
622 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
623 * Verify that dev is acceptable into mddev.
624 * The first time, mddev->raid_disks will be 0, and data from
625 * dev should be merged in. Subsequent calls check that dev
626 * is new enough. Return 0 or -EINVAL
627 *
628 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
629 * Update the superblock for rdev with data in mddev
630 * This does not write to disc.
631 *
632 */
633
634 struct super_type {
635 char *name;
636 struct module *owner;
637 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
638 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
640 };
641
642 /*
643 * load_super for 0.90.0
644 */
645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
646 {
647 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
648 mdp_super_t *sb;
649 int ret;
650 sector_t sb_offset;
651
652 /*
653 * Calculate the position of the superblock,
654 * it's at the end of the disk.
655 *
656 * It also happens to be a multiple of 4Kb.
657 */
658 sb_offset = calc_dev_sboffset(rdev->bdev);
659 rdev->sb_offset = sb_offset;
660
661 ret = read_disk_sb(rdev, MD_SB_BYTES);
662 if (ret) return ret;
663
664 ret = -EINVAL;
665
666 bdevname(rdev->bdev, b);
667 sb = (mdp_super_t*)page_address(rdev->sb_page);
668
669 if (sb->md_magic != MD_SB_MAGIC) {
670 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
671 b);
672 goto abort;
673 }
674
675 if (sb->major_version != 0 ||
676 sb->minor_version < 90 ||
677 sb->minor_version > 91) {
678 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
679 sb->major_version, sb->minor_version,
680 b);
681 goto abort;
682 }
683
684 if (sb->raid_disks <= 0)
685 goto abort;
686
687 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
688 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
689 b);
690 goto abort;
691 }
692
693 rdev->preferred_minor = sb->md_minor;
694 rdev->data_offset = 0;
695 rdev->sb_size = MD_SB_BYTES;
696
697 if (sb->level == LEVEL_MULTIPATH)
698 rdev->desc_nr = -1;
699 else
700 rdev->desc_nr = sb->this_disk.number;
701
702 if (refdev == 0)
703 ret = 1;
704 else {
705 __u64 ev1, ev2;
706 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
707 if (!uuid_equal(refsb, sb)) {
708 printk(KERN_WARNING "md: %s has different UUID to %s\n",
709 b, bdevname(refdev->bdev,b2));
710 goto abort;
711 }
712 if (!sb_equal(refsb, sb)) {
713 printk(KERN_WARNING "md: %s has same UUID"
714 " but different superblock to %s\n",
715 b, bdevname(refdev->bdev, b2));
716 goto abort;
717 }
718 ev1 = md_event(sb);
719 ev2 = md_event(refsb);
720 if (ev1 > ev2)
721 ret = 1;
722 else
723 ret = 0;
724 }
725 rdev->size = calc_dev_size(rdev, sb->chunk_size);
726
727 if (rdev->size < sb->size && sb->level > 1)
728 /* "this cannot possibly happen" ... */
729 ret = -EINVAL;
730
731 abort:
732 return ret;
733 }
734
735 /*
736 * validate_super for 0.90.0
737 */
738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
739 {
740 mdp_disk_t *desc;
741 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
742 __u64 ev1 = md_event(sb);
743
744 rdev->raid_disk = -1;
745 rdev->flags = 0;
746 if (mddev->raid_disks == 0) {
747 mddev->major_version = 0;
748 mddev->minor_version = sb->minor_version;
749 mddev->patch_version = sb->patch_version;
750 mddev->persistent = ! sb->not_persistent;
751 mddev->chunk_size = sb->chunk_size;
752 mddev->ctime = sb->ctime;
753 mddev->utime = sb->utime;
754 mddev->level = sb->level;
755 mddev->clevel[0] = 0;
756 mddev->layout = sb->layout;
757 mddev->raid_disks = sb->raid_disks;
758 mddev->size = sb->size;
759 mddev->events = ev1;
760 mddev->bitmap_offset = 0;
761 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
762
763 if (mddev->minor_version >= 91) {
764 mddev->reshape_position = sb->reshape_position;
765 mddev->delta_disks = sb->delta_disks;
766 mddev->new_level = sb->new_level;
767 mddev->new_layout = sb->new_layout;
768 mddev->new_chunk = sb->new_chunk;
769 } else {
770 mddev->reshape_position = MaxSector;
771 mddev->delta_disks = 0;
772 mddev->new_level = mddev->level;
773 mddev->new_layout = mddev->layout;
774 mddev->new_chunk = mddev->chunk_size;
775 }
776
777 if (sb->state & (1<<MD_SB_CLEAN))
778 mddev->recovery_cp = MaxSector;
779 else {
780 if (sb->events_hi == sb->cp_events_hi &&
781 sb->events_lo == sb->cp_events_lo) {
782 mddev->recovery_cp = sb->recovery_cp;
783 } else
784 mddev->recovery_cp = 0;
785 }
786
787 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
788 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
789 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
790 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
791
792 mddev->max_disks = MD_SB_DISKS;
793
794 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
795 mddev->bitmap_file == NULL) {
796 if (mddev->level != 1 && mddev->level != 4
797 && mddev->level != 5 && mddev->level != 6
798 && mddev->level != 10) {
799 /* FIXME use a better test */
800 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
801 return -EINVAL;
802 }
803 mddev->bitmap_offset = mddev->default_bitmap_offset;
804 }
805
806 } else if (mddev->pers == NULL) {
807 /* Insist on good event counter while assembling */
808 ++ev1;
809 if (ev1 < mddev->events)
810 return -EINVAL;
811 } else if (mddev->bitmap) {
812 /* if adding to array with a bitmap, then we can accept an
813 * older device ... but not too old.
814 */
815 if (ev1 < mddev->bitmap->events_cleared)
816 return 0;
817 } else {
818 if (ev1 < mddev->events)
819 /* just a hot-add of a new device, leave raid_disk at -1 */
820 return 0;
821 }
822
823 if (mddev->level != LEVEL_MULTIPATH) {
824 desc = sb->disks + rdev->desc_nr;
825
826 if (desc->state & (1<<MD_DISK_FAULTY))
827 set_bit(Faulty, &rdev->flags);
828 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
829 desc->raid_disk < mddev->raid_disks */) {
830 set_bit(In_sync, &rdev->flags);
831 rdev->raid_disk = desc->raid_disk;
832 }
833 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
834 set_bit(WriteMostly, &rdev->flags);
835 } else /* MULTIPATH are always insync */
836 set_bit(In_sync, &rdev->flags);
837 return 0;
838 }
839
840 /*
841 * sync_super for 0.90.0
842 */
843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
844 {
845 mdp_super_t *sb;
846 struct list_head *tmp;
847 mdk_rdev_t *rdev2;
848 int next_spare = mddev->raid_disks;
849
850
851 /* make rdev->sb match mddev data..
852 *
853 * 1/ zero out disks
854 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
855 * 3/ any empty disks < next_spare become removed
856 *
857 * disks[0] gets initialised to REMOVED because
858 * we cannot be sure from other fields if it has
859 * been initialised or not.
860 */
861 int i;
862 int active=0, working=0,failed=0,spare=0,nr_disks=0;
863
864 rdev->sb_size = MD_SB_BYTES;
865
866 sb = (mdp_super_t*)page_address(rdev->sb_page);
867
868 memset(sb, 0, sizeof(*sb));
869
870 sb->md_magic = MD_SB_MAGIC;
871 sb->major_version = mddev->major_version;
872 sb->patch_version = mddev->patch_version;
873 sb->gvalid_words = 0; /* ignored */
874 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
875 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
876 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
877 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
878
879 sb->ctime = mddev->ctime;
880 sb->level = mddev->level;
881 sb->size = mddev->size;
882 sb->raid_disks = mddev->raid_disks;
883 sb->md_minor = mddev->md_minor;
884 sb->not_persistent = !mddev->persistent;
885 sb->utime = mddev->utime;
886 sb->state = 0;
887 sb->events_hi = (mddev->events>>32);
888 sb->events_lo = (u32)mddev->events;
889
890 if (mddev->reshape_position == MaxSector)
891 sb->minor_version = 90;
892 else {
893 sb->minor_version = 91;
894 sb->reshape_position = mddev->reshape_position;
895 sb->new_level = mddev->new_level;
896 sb->delta_disks = mddev->delta_disks;
897 sb->new_layout = mddev->new_layout;
898 sb->new_chunk = mddev->new_chunk;
899 }
900 mddev->minor_version = sb->minor_version;
901 if (mddev->in_sync)
902 {
903 sb->recovery_cp = mddev->recovery_cp;
904 sb->cp_events_hi = (mddev->events>>32);
905 sb->cp_events_lo = (u32)mddev->events;
906 if (mddev->recovery_cp == MaxSector)
907 sb->state = (1<< MD_SB_CLEAN);
908 } else
909 sb->recovery_cp = 0;
910
911 sb->layout = mddev->layout;
912 sb->chunk_size = mddev->chunk_size;
913
914 if (mddev->bitmap && mddev->bitmap_file == NULL)
915 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
916
917 sb->disks[0].state = (1<<MD_DISK_REMOVED);
918 ITERATE_RDEV(mddev,rdev2,tmp) {
919 mdp_disk_t *d;
920 int desc_nr;
921 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
922 && !test_bit(Faulty, &rdev2->flags))
923 desc_nr = rdev2->raid_disk;
924 else
925 desc_nr = next_spare++;
926 rdev2->desc_nr = desc_nr;
927 d = &sb->disks[rdev2->desc_nr];
928 nr_disks++;
929 d->number = rdev2->desc_nr;
930 d->major = MAJOR(rdev2->bdev->bd_dev);
931 d->minor = MINOR(rdev2->bdev->bd_dev);
932 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
933 && !test_bit(Faulty, &rdev2->flags))
934 d->raid_disk = rdev2->raid_disk;
935 else
936 d->raid_disk = rdev2->desc_nr; /* compatibility */
937 if (test_bit(Faulty, &rdev2->flags))
938 d->state = (1<<MD_DISK_FAULTY);
939 else if (test_bit(In_sync, &rdev2->flags)) {
940 d->state = (1<<MD_DISK_ACTIVE);
941 d->state |= (1<<MD_DISK_SYNC);
942 active++;
943 working++;
944 } else {
945 d->state = 0;
946 spare++;
947 working++;
948 }
949 if (test_bit(WriteMostly, &rdev2->flags))
950 d->state |= (1<<MD_DISK_WRITEMOSTLY);
951 }
952 /* now set the "removed" and "faulty" bits on any missing devices */
953 for (i=0 ; i < mddev->raid_disks ; i++) {
954 mdp_disk_t *d = &sb->disks[i];
955 if (d->state == 0 && d->number == 0) {
956 d->number = i;
957 d->raid_disk = i;
958 d->state = (1<<MD_DISK_REMOVED);
959 d->state |= (1<<MD_DISK_FAULTY);
960 failed++;
961 }
962 }
963 sb->nr_disks = nr_disks;
964 sb->active_disks = active;
965 sb->working_disks = working;
966 sb->failed_disks = failed;
967 sb->spare_disks = spare;
968
969 sb->this_disk = sb->disks[rdev->desc_nr];
970 sb->sb_csum = calc_sb_csum(sb);
971 }
972
973 /*
974 * version 1 superblock
975 */
976
977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
978 {
979 __le32 disk_csum;
980 u32 csum;
981 unsigned long long newcsum;
982 int size = 256 + le32_to_cpu(sb->max_dev)*2;
983 __le32 *isuper = (__le32*)sb;
984 int i;
985
986 disk_csum = sb->sb_csum;
987 sb->sb_csum = 0;
988 newcsum = 0;
989 for (i=0; size>=4; size -= 4 )
990 newcsum += le32_to_cpu(*isuper++);
991
992 if (size == 2)
993 newcsum += le16_to_cpu(*(__le16*) isuper);
994
995 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
996 sb->sb_csum = disk_csum;
997 return cpu_to_le32(csum);
998 }
999
1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1001 {
1002 struct mdp_superblock_1 *sb;
1003 int ret;
1004 sector_t sb_offset;
1005 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1006 int bmask;
1007
1008 /*
1009 * Calculate the position of the superblock.
1010 * It is always aligned to a 4K boundary and
1011 * depeding on minor_version, it can be:
1012 * 0: At least 8K, but less than 12K, from end of device
1013 * 1: At start of device
1014 * 2: 4K from start of device.
1015 */
1016 switch(minor_version) {
1017 case 0:
1018 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1019 sb_offset -= 8*2;
1020 sb_offset &= ~(sector_t)(4*2-1);
1021 /* convert from sectors to K */
1022 sb_offset /= 2;
1023 break;
1024 case 1:
1025 sb_offset = 0;
1026 break;
1027 case 2:
1028 sb_offset = 4;
1029 break;
1030 default:
1031 return -EINVAL;
1032 }
1033 rdev->sb_offset = sb_offset;
1034
1035 /* superblock is rarely larger than 1K, but it can be larger,
1036 * and it is safe to read 4k, so we do that
1037 */
1038 ret = read_disk_sb(rdev, 4096);
1039 if (ret) return ret;
1040
1041
1042 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1043
1044 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1045 sb->major_version != cpu_to_le32(1) ||
1046 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1047 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1048 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1049 return -EINVAL;
1050
1051 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1052 printk("md: invalid superblock checksum on %s\n",
1053 bdevname(rdev->bdev,b));
1054 return -EINVAL;
1055 }
1056 if (le64_to_cpu(sb->data_size) < 10) {
1057 printk("md: data_size too small on %s\n",
1058 bdevname(rdev->bdev,b));
1059 return -EINVAL;
1060 }
1061 rdev->preferred_minor = 0xffff;
1062 rdev->data_offset = le64_to_cpu(sb->data_offset);
1063 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1064
1065 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1066 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1067 if (rdev->sb_size & bmask)
1068 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1069
1070 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1071 rdev->desc_nr = -1;
1072 else
1073 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1074
1075 if (refdev == 0)
1076 ret = 1;
1077 else {
1078 __u64 ev1, ev2;
1079 struct mdp_superblock_1 *refsb =
1080 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1081
1082 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1083 sb->level != refsb->level ||
1084 sb->layout != refsb->layout ||
1085 sb->chunksize != refsb->chunksize) {
1086 printk(KERN_WARNING "md: %s has strangely different"
1087 " superblock to %s\n",
1088 bdevname(rdev->bdev,b),
1089 bdevname(refdev->bdev,b2));
1090 return -EINVAL;
1091 }
1092 ev1 = le64_to_cpu(sb->events);
1093 ev2 = le64_to_cpu(refsb->events);
1094
1095 if (ev1 > ev2)
1096 ret = 1;
1097 else
1098 ret = 0;
1099 }
1100 if (minor_version)
1101 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1102 else
1103 rdev->size = rdev->sb_offset;
1104 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1105 return -EINVAL;
1106 rdev->size = le64_to_cpu(sb->data_size)/2;
1107 if (le32_to_cpu(sb->chunksize))
1108 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1109
1110 if (le64_to_cpu(sb->size) > rdev->size*2)
1111 return -EINVAL;
1112 return ret;
1113 }
1114
1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1116 {
1117 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1118 __u64 ev1 = le64_to_cpu(sb->events);
1119
1120 rdev->raid_disk = -1;
1121 rdev->flags = 0;
1122 if (mddev->raid_disks == 0) {
1123 mddev->major_version = 1;
1124 mddev->patch_version = 0;
1125 mddev->persistent = 1;
1126 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1127 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1128 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1129 mddev->level = le32_to_cpu(sb->level);
1130 mddev->clevel[0] = 0;
1131 mddev->layout = le32_to_cpu(sb->layout);
1132 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1133 mddev->size = le64_to_cpu(sb->size)/2;
1134 mddev->events = ev1;
1135 mddev->bitmap_offset = 0;
1136 mddev->default_bitmap_offset = 1024 >> 9;
1137
1138 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1139 memcpy(mddev->uuid, sb->set_uuid, 16);
1140
1141 mddev->max_disks = (4096-256)/2;
1142
1143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1144 mddev->bitmap_file == NULL ) {
1145 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1146 && mddev->level != 10) {
1147 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1148 return -EINVAL;
1149 }
1150 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1151 }
1152 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1153 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1154 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1155 mddev->new_level = le32_to_cpu(sb->new_level);
1156 mddev->new_layout = le32_to_cpu(sb->new_layout);
1157 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1158 } else {
1159 mddev->reshape_position = MaxSector;
1160 mddev->delta_disks = 0;
1161 mddev->new_level = mddev->level;
1162 mddev->new_layout = mddev->layout;
1163 mddev->new_chunk = mddev->chunk_size;
1164 }
1165
1166 } else if (mddev->pers == NULL) {
1167 /* Insist of good event counter while assembling */
1168 ++ev1;
1169 if (ev1 < mddev->events)
1170 return -EINVAL;
1171 } else if (mddev->bitmap) {
1172 /* If adding to array with a bitmap, then we can accept an
1173 * older device, but not too old.
1174 */
1175 if (ev1 < mddev->bitmap->events_cleared)
1176 return 0;
1177 } else {
1178 if (ev1 < mddev->events)
1179 /* just a hot-add of a new device, leave raid_disk at -1 */
1180 return 0;
1181 }
1182 if (mddev->level != LEVEL_MULTIPATH) {
1183 int role;
1184 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1185 switch(role) {
1186 case 0xffff: /* spare */
1187 break;
1188 case 0xfffe: /* faulty */
1189 set_bit(Faulty, &rdev->flags);
1190 break;
1191 default:
1192 if ((le32_to_cpu(sb->feature_map) &
1193 MD_FEATURE_RECOVERY_OFFSET))
1194 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1195 else
1196 set_bit(In_sync, &rdev->flags);
1197 rdev->raid_disk = role;
1198 break;
1199 }
1200 if (sb->devflags & WriteMostly1)
1201 set_bit(WriteMostly, &rdev->flags);
1202 } else /* MULTIPATH are always insync */
1203 set_bit(In_sync, &rdev->flags);
1204
1205 return 0;
1206 }
1207
1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1209 {
1210 struct mdp_superblock_1 *sb;
1211 struct list_head *tmp;
1212 mdk_rdev_t *rdev2;
1213 int max_dev, i;
1214 /* make rdev->sb match mddev and rdev data. */
1215
1216 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1217
1218 sb->feature_map = 0;
1219 sb->pad0 = 0;
1220 sb->recovery_offset = cpu_to_le64(0);
1221 memset(sb->pad1, 0, sizeof(sb->pad1));
1222 memset(sb->pad2, 0, sizeof(sb->pad2));
1223 memset(sb->pad3, 0, sizeof(sb->pad3));
1224
1225 sb->utime = cpu_to_le64((__u64)mddev->utime);
1226 sb->events = cpu_to_le64(mddev->events);
1227 if (mddev->in_sync)
1228 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1229 else
1230 sb->resync_offset = cpu_to_le64(0);
1231
1232 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1233
1234 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1235 sb->size = cpu_to_le64(mddev->size<<1);
1236
1237 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1238 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1239 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1240 }
1241
1242 if (rdev->raid_disk >= 0 &&
1243 !test_bit(In_sync, &rdev->flags) &&
1244 rdev->recovery_offset > 0) {
1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1246 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1247 }
1248
1249 if (mddev->reshape_position != MaxSector) {
1250 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1251 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1252 sb->new_layout = cpu_to_le32(mddev->new_layout);
1253 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1254 sb->new_level = cpu_to_le32(mddev->new_level);
1255 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1256 }
1257
1258 max_dev = 0;
1259 ITERATE_RDEV(mddev,rdev2,tmp)
1260 if (rdev2->desc_nr+1 > max_dev)
1261 max_dev = rdev2->desc_nr+1;
1262
1263 sb->max_dev = cpu_to_le32(max_dev);
1264 for (i=0; i<max_dev;i++)
1265 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1266
1267 ITERATE_RDEV(mddev,rdev2,tmp) {
1268 i = rdev2->desc_nr;
1269 if (test_bit(Faulty, &rdev2->flags))
1270 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1271 else if (test_bit(In_sync, &rdev2->flags))
1272 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1273 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1274 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1275 else
1276 sb->dev_roles[i] = cpu_to_le16(0xffff);
1277 }
1278
1279 sb->sb_csum = calc_sb_1_csum(sb);
1280 }
1281
1282
1283 static struct super_type super_types[] = {
1284 [0] = {
1285 .name = "0.90.0",
1286 .owner = THIS_MODULE,
1287 .load_super = super_90_load,
1288 .validate_super = super_90_validate,
1289 .sync_super = super_90_sync,
1290 },
1291 [1] = {
1292 .name = "md-1",
1293 .owner = THIS_MODULE,
1294 .load_super = super_1_load,
1295 .validate_super = super_1_validate,
1296 .sync_super = super_1_sync,
1297 },
1298 };
1299
1300 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1301 {
1302 struct list_head *tmp;
1303 mdk_rdev_t *rdev;
1304
1305 ITERATE_RDEV(mddev,rdev,tmp)
1306 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1307 return rdev;
1308
1309 return NULL;
1310 }
1311
1312 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1313 {
1314 struct list_head *tmp;
1315 mdk_rdev_t *rdev;
1316
1317 ITERATE_RDEV(mddev1,rdev,tmp)
1318 if (match_dev_unit(mddev2, rdev))
1319 return 1;
1320
1321 return 0;
1322 }
1323
1324 static LIST_HEAD(pending_raid_disks);
1325
1326 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1327 {
1328 mdk_rdev_t *same_pdev;
1329 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1330 struct kobject *ko;
1331 char *s;
1332
1333 if (rdev->mddev) {
1334 MD_BUG();
1335 return -EINVAL;
1336 }
1337 /* make sure rdev->size exceeds mddev->size */
1338 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1339 if (mddev->pers)
1340 /* Cannot change size, so fail */
1341 return -ENOSPC;
1342 else
1343 mddev->size = rdev->size;
1344 }
1345 same_pdev = match_dev_unit(mddev, rdev);
1346 if (same_pdev)
1347 printk(KERN_WARNING
1348 "%s: WARNING: %s appears to be on the same physical"
1349 " disk as %s. True\n protection against single-disk"
1350 " failure might be compromised.\n",
1351 mdname(mddev), bdevname(rdev->bdev,b),
1352 bdevname(same_pdev->bdev,b2));
1353
1354 /* Verify rdev->desc_nr is unique.
1355 * If it is -1, assign a free number, else
1356 * check number is not in use
1357 */
1358 if (rdev->desc_nr < 0) {
1359 int choice = 0;
1360 if (mddev->pers) choice = mddev->raid_disks;
1361 while (find_rdev_nr(mddev, choice))
1362 choice++;
1363 rdev->desc_nr = choice;
1364 } else {
1365 if (find_rdev_nr(mddev, rdev->desc_nr))
1366 return -EBUSY;
1367 }
1368 bdevname(rdev->bdev,b);
1369 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1370 return -ENOMEM;
1371 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1372 *s = '!';
1373
1374 list_add(&rdev->same_set, &mddev->disks);
1375 rdev->mddev = mddev;
1376 printk(KERN_INFO "md: bind<%s>\n", b);
1377
1378 rdev->kobj.parent = &mddev->kobj;
1379 kobject_add(&rdev->kobj);
1380
1381 if (rdev->bdev->bd_part)
1382 ko = &rdev->bdev->bd_part->kobj;
1383 else
1384 ko = &rdev->bdev->bd_disk->kobj;
1385 sysfs_create_link(&rdev->kobj, ko, "block");
1386 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1387 return 0;
1388 }
1389
1390 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1391 {
1392 char b[BDEVNAME_SIZE];
1393 if (!rdev->mddev) {
1394 MD_BUG();
1395 return;
1396 }
1397 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1398 list_del_init(&rdev->same_set);
1399 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1400 rdev->mddev = NULL;
1401 sysfs_remove_link(&rdev->kobj, "block");
1402 kobject_del(&rdev->kobj);
1403 }
1404
1405 /*
1406 * prevent the device from being mounted, repartitioned or
1407 * otherwise reused by a RAID array (or any other kernel
1408 * subsystem), by bd_claiming the device.
1409 */
1410 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1411 {
1412 int err = 0;
1413 struct block_device *bdev;
1414 char b[BDEVNAME_SIZE];
1415
1416 bdev = open_partition_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1417 if (IS_ERR(bdev)) {
1418 printk(KERN_ERR "md: could not open %s.\n",
1419 __bdevname(dev, b));
1420 return PTR_ERR(bdev);
1421 }
1422 err = bd_claim(bdev, rdev);
1423 if (err) {
1424 printk(KERN_ERR "md: could not bd_claim %s.\n",
1425 bdevname(bdev, b));
1426 blkdev_put_partition(bdev);
1427 return err;
1428 }
1429 rdev->bdev = bdev;
1430 return err;
1431 }
1432
1433 static void unlock_rdev(mdk_rdev_t *rdev)
1434 {
1435 struct block_device *bdev = rdev->bdev;
1436 rdev->bdev = NULL;
1437 if (!bdev)
1438 MD_BUG();
1439 bd_release(bdev);
1440 blkdev_put_partition(bdev);
1441 }
1442
1443 void md_autodetect_dev(dev_t dev);
1444
1445 static void export_rdev(mdk_rdev_t * rdev)
1446 {
1447 char b[BDEVNAME_SIZE];
1448 printk(KERN_INFO "md: export_rdev(%s)\n",
1449 bdevname(rdev->bdev,b));
1450 if (rdev->mddev)
1451 MD_BUG();
1452 free_disk_sb(rdev);
1453 list_del_init(&rdev->same_set);
1454 #ifndef MODULE
1455 md_autodetect_dev(rdev->bdev->bd_dev);
1456 #endif
1457 unlock_rdev(rdev);
1458 kobject_put(&rdev->kobj);
1459 }
1460
1461 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1462 {
1463 unbind_rdev_from_array(rdev);
1464 export_rdev(rdev);
1465 }
1466
1467 static void export_array(mddev_t *mddev)
1468 {
1469 struct list_head *tmp;
1470 mdk_rdev_t *rdev;
1471
1472 ITERATE_RDEV(mddev,rdev,tmp) {
1473 if (!rdev->mddev) {
1474 MD_BUG();
1475 continue;
1476 }
1477 kick_rdev_from_array(rdev);
1478 }
1479 if (!list_empty(&mddev->disks))
1480 MD_BUG();
1481 mddev->raid_disks = 0;
1482 mddev->major_version = 0;
1483 }
1484
1485 static void print_desc(mdp_disk_t *desc)
1486 {
1487 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1488 desc->major,desc->minor,desc->raid_disk,desc->state);
1489 }
1490
1491 static void print_sb(mdp_super_t *sb)
1492 {
1493 int i;
1494
1495 printk(KERN_INFO
1496 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1497 sb->major_version, sb->minor_version, sb->patch_version,
1498 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1499 sb->ctime);
1500 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1501 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1502 sb->md_minor, sb->layout, sb->chunk_size);
1503 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1504 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1505 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1506 sb->failed_disks, sb->spare_disks,
1507 sb->sb_csum, (unsigned long)sb->events_lo);
1508
1509 printk(KERN_INFO);
1510 for (i = 0; i < MD_SB_DISKS; i++) {
1511 mdp_disk_t *desc;
1512
1513 desc = sb->disks + i;
1514 if (desc->number || desc->major || desc->minor ||
1515 desc->raid_disk || (desc->state && (desc->state != 4))) {
1516 printk(" D %2d: ", i);
1517 print_desc(desc);
1518 }
1519 }
1520 printk(KERN_INFO "md: THIS: ");
1521 print_desc(&sb->this_disk);
1522
1523 }
1524
1525 static void print_rdev(mdk_rdev_t *rdev)
1526 {
1527 char b[BDEVNAME_SIZE];
1528 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1529 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1530 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1531 rdev->desc_nr);
1532 if (rdev->sb_loaded) {
1533 printk(KERN_INFO "md: rdev superblock:\n");
1534 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1535 } else
1536 printk(KERN_INFO "md: no rdev superblock!\n");
1537 }
1538
1539 static void md_print_devices(void)
1540 {
1541 struct list_head *tmp, *tmp2;
1542 mdk_rdev_t *rdev;
1543 mddev_t *mddev;
1544 char b[BDEVNAME_SIZE];
1545
1546 printk("\n");
1547 printk("md: **********************************\n");
1548 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1549 printk("md: **********************************\n");
1550 ITERATE_MDDEV(mddev,tmp) {
1551
1552 if (mddev->bitmap)
1553 bitmap_print_sb(mddev->bitmap);
1554 else
1555 printk("%s: ", mdname(mddev));
1556 ITERATE_RDEV(mddev,rdev,tmp2)
1557 printk("<%s>", bdevname(rdev->bdev,b));
1558 printk("\n");
1559
1560 ITERATE_RDEV(mddev,rdev,tmp2)
1561 print_rdev(rdev);
1562 }
1563 printk("md: **********************************\n");
1564 printk("\n");
1565 }
1566
1567
1568 static void sync_sbs(mddev_t * mddev, int nospares)
1569 {
1570 /* Update each superblock (in-memory image), but
1571 * if we are allowed to, skip spares which already
1572 * have the right event counter, or have one earlier
1573 * (which would mean they aren't being marked as dirty
1574 * with the rest of the array)
1575 */
1576 mdk_rdev_t *rdev;
1577 struct list_head *tmp;
1578
1579 ITERATE_RDEV(mddev,rdev,tmp) {
1580 if (rdev->sb_events == mddev->events ||
1581 (nospares &&
1582 rdev->raid_disk < 0 &&
1583 (rdev->sb_events&1)==0 &&
1584 rdev->sb_events+1 == mddev->events)) {
1585 /* Don't update this superblock */
1586 rdev->sb_loaded = 2;
1587 } else {
1588 super_types[mddev->major_version].
1589 sync_super(mddev, rdev);
1590 rdev->sb_loaded = 1;
1591 }
1592 }
1593 }
1594
1595 static void md_update_sb(mddev_t * mddev, int force_change)
1596 {
1597 int err;
1598 struct list_head *tmp;
1599 mdk_rdev_t *rdev;
1600 int sync_req;
1601 int nospares = 0;
1602
1603 repeat:
1604 spin_lock_irq(&mddev->write_lock);
1605
1606 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1607 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1608 force_change = 1;
1609 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1610 /* just a clean<-> dirty transition, possibly leave spares alone,
1611 * though if events isn't the right even/odd, we will have to do
1612 * spares after all
1613 */
1614 nospares = 1;
1615 if (force_change)
1616 nospares = 0;
1617 if (mddev->degraded)
1618 /* If the array is degraded, then skipping spares is both
1619 * dangerous and fairly pointless.
1620 * Dangerous because a device that was removed from the array
1621 * might have a event_count that still looks up-to-date,
1622 * so it can be re-added without a resync.
1623 * Pointless because if there are any spares to skip,
1624 * then a recovery will happen and soon that array won't
1625 * be degraded any more and the spare can go back to sleep then.
1626 */
1627 nospares = 0;
1628
1629 sync_req = mddev->in_sync;
1630 mddev->utime = get_seconds();
1631
1632 /* If this is just a dirty<->clean transition, and the array is clean
1633 * and 'events' is odd, we can roll back to the previous clean state */
1634 if (nospares
1635 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1636 && (mddev->events & 1))
1637 mddev->events--;
1638 else {
1639 /* otherwise we have to go forward and ... */
1640 mddev->events ++;
1641 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1642 /* .. if the array isn't clean, insist on an odd 'events' */
1643 if ((mddev->events&1)==0) {
1644 mddev->events++;
1645 nospares = 0;
1646 }
1647 } else {
1648 /* otherwise insist on an even 'events' (for clean states) */
1649 if ((mddev->events&1)) {
1650 mddev->events++;
1651 nospares = 0;
1652 }
1653 }
1654 }
1655
1656 if (!mddev->events) {
1657 /*
1658 * oops, this 64-bit counter should never wrap.
1659 * Either we are in around ~1 trillion A.C., assuming
1660 * 1 reboot per second, or we have a bug:
1661 */
1662 MD_BUG();
1663 mddev->events --;
1664 }
1665 sync_sbs(mddev, nospares);
1666
1667 /*
1668 * do not write anything to disk if using
1669 * nonpersistent superblocks
1670 */
1671 if (!mddev->persistent) {
1672 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1673 spin_unlock_irq(&mddev->write_lock);
1674 wake_up(&mddev->sb_wait);
1675 return;
1676 }
1677 spin_unlock_irq(&mddev->write_lock);
1678
1679 dprintk(KERN_INFO
1680 "md: updating %s RAID superblock on device (in sync %d)\n",
1681 mdname(mddev),mddev->in_sync);
1682
1683 err = bitmap_update_sb(mddev->bitmap);
1684 ITERATE_RDEV(mddev,rdev,tmp) {
1685 char b[BDEVNAME_SIZE];
1686 dprintk(KERN_INFO "md: ");
1687 if (rdev->sb_loaded != 1)
1688 continue; /* no noise on spare devices */
1689 if (test_bit(Faulty, &rdev->flags))
1690 dprintk("(skipping faulty ");
1691
1692 dprintk("%s ", bdevname(rdev->bdev,b));
1693 if (!test_bit(Faulty, &rdev->flags)) {
1694 md_super_write(mddev,rdev,
1695 rdev->sb_offset<<1, rdev->sb_size,
1696 rdev->sb_page);
1697 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1698 bdevname(rdev->bdev,b),
1699 (unsigned long long)rdev->sb_offset);
1700 rdev->sb_events = mddev->events;
1701
1702 } else
1703 dprintk(")\n");
1704 if (mddev->level == LEVEL_MULTIPATH)
1705 /* only need to write one superblock... */
1706 break;
1707 }
1708 md_super_wait(mddev);
1709 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1710
1711 spin_lock_irq(&mddev->write_lock);
1712 if (mddev->in_sync != sync_req ||
1713 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1714 /* have to write it out again */
1715 spin_unlock_irq(&mddev->write_lock);
1716 goto repeat;
1717 }
1718 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1719 spin_unlock_irq(&mddev->write_lock);
1720 wake_up(&mddev->sb_wait);
1721
1722 }
1723
1724 /* words written to sysfs files may, or my not, be \n terminated.
1725 * We want to accept with case. For this we use cmd_match.
1726 */
1727 static int cmd_match(const char *cmd, const char *str)
1728 {
1729 /* See if cmd, written into a sysfs file, matches
1730 * str. They must either be the same, or cmd can
1731 * have a trailing newline
1732 */
1733 while (*cmd && *str && *cmd == *str) {
1734 cmd++;
1735 str++;
1736 }
1737 if (*cmd == '\n')
1738 cmd++;
1739 if (*str || *cmd)
1740 return 0;
1741 return 1;
1742 }
1743
1744 struct rdev_sysfs_entry {
1745 struct attribute attr;
1746 ssize_t (*show)(mdk_rdev_t *, char *);
1747 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1748 };
1749
1750 static ssize_t
1751 state_show(mdk_rdev_t *rdev, char *page)
1752 {
1753 char *sep = "";
1754 int len=0;
1755
1756 if (test_bit(Faulty, &rdev->flags)) {
1757 len+= sprintf(page+len, "%sfaulty",sep);
1758 sep = ",";
1759 }
1760 if (test_bit(In_sync, &rdev->flags)) {
1761 len += sprintf(page+len, "%sin_sync",sep);
1762 sep = ",";
1763 }
1764 if (test_bit(WriteMostly, &rdev->flags)) {
1765 len += sprintf(page+len, "%swrite_mostly",sep);
1766 sep = ",";
1767 }
1768 if (!test_bit(Faulty, &rdev->flags) &&
1769 !test_bit(In_sync, &rdev->flags)) {
1770 len += sprintf(page+len, "%sspare", sep);
1771 sep = ",";
1772 }
1773 return len+sprintf(page+len, "\n");
1774 }
1775
1776 static ssize_t
1777 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1778 {
1779 /* can write
1780 * faulty - simulates and error
1781 * remove - disconnects the device
1782 * writemostly - sets write_mostly
1783 * -writemostly - clears write_mostly
1784 */
1785 int err = -EINVAL;
1786 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1787 md_error(rdev->mddev, rdev);
1788 err = 0;
1789 } else if (cmd_match(buf, "remove")) {
1790 if (rdev->raid_disk >= 0)
1791 err = -EBUSY;
1792 else {
1793 mddev_t *mddev = rdev->mddev;
1794 kick_rdev_from_array(rdev);
1795 md_update_sb(mddev, 1);
1796 md_new_event(mddev);
1797 err = 0;
1798 }
1799 } else if (cmd_match(buf, "writemostly")) {
1800 set_bit(WriteMostly, &rdev->flags);
1801 err = 0;
1802 } else if (cmd_match(buf, "-writemostly")) {
1803 clear_bit(WriteMostly, &rdev->flags);
1804 err = 0;
1805 }
1806 return err ? err : len;
1807 }
1808 static struct rdev_sysfs_entry rdev_state =
1809 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1810
1811 static ssize_t
1812 super_show(mdk_rdev_t *rdev, char *page)
1813 {
1814 if (rdev->sb_loaded && rdev->sb_size) {
1815 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1816 return rdev->sb_size;
1817 } else
1818 return 0;
1819 }
1820 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1821
1822 static ssize_t
1823 errors_show(mdk_rdev_t *rdev, char *page)
1824 {
1825 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1826 }
1827
1828 static ssize_t
1829 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1830 {
1831 char *e;
1832 unsigned long n = simple_strtoul(buf, &e, 10);
1833 if (*buf && (*e == 0 || *e == '\n')) {
1834 atomic_set(&rdev->corrected_errors, n);
1835 return len;
1836 }
1837 return -EINVAL;
1838 }
1839 static struct rdev_sysfs_entry rdev_errors =
1840 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1841
1842 static ssize_t
1843 slot_show(mdk_rdev_t *rdev, char *page)
1844 {
1845 if (rdev->raid_disk < 0)
1846 return sprintf(page, "none\n");
1847 else
1848 return sprintf(page, "%d\n", rdev->raid_disk);
1849 }
1850
1851 static ssize_t
1852 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1853 {
1854 char *e;
1855 int slot = simple_strtoul(buf, &e, 10);
1856 if (strncmp(buf, "none", 4)==0)
1857 slot = -1;
1858 else if (e==buf || (*e && *e!= '\n'))
1859 return -EINVAL;
1860 if (rdev->mddev->pers)
1861 /* Cannot set slot in active array (yet) */
1862 return -EBUSY;
1863 if (slot >= rdev->mddev->raid_disks)
1864 return -ENOSPC;
1865 rdev->raid_disk = slot;
1866 /* assume it is working */
1867 rdev->flags = 0;
1868 set_bit(In_sync, &rdev->flags);
1869 return len;
1870 }
1871
1872
1873 static struct rdev_sysfs_entry rdev_slot =
1874 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1875
1876 static ssize_t
1877 offset_show(mdk_rdev_t *rdev, char *page)
1878 {
1879 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1880 }
1881
1882 static ssize_t
1883 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1884 {
1885 char *e;
1886 unsigned long long offset = simple_strtoull(buf, &e, 10);
1887 if (e==buf || (*e && *e != '\n'))
1888 return -EINVAL;
1889 if (rdev->mddev->pers)
1890 return -EBUSY;
1891 rdev->data_offset = offset;
1892 return len;
1893 }
1894
1895 static struct rdev_sysfs_entry rdev_offset =
1896 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1897
1898 static ssize_t
1899 rdev_size_show(mdk_rdev_t *rdev, char *page)
1900 {
1901 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1902 }
1903
1904 static ssize_t
1905 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1906 {
1907 char *e;
1908 unsigned long long size = simple_strtoull(buf, &e, 10);
1909 if (e==buf || (*e && *e != '\n'))
1910 return -EINVAL;
1911 if (rdev->mddev->pers)
1912 return -EBUSY;
1913 rdev->size = size;
1914 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1915 rdev->mddev->size = size;
1916 return len;
1917 }
1918
1919 static struct rdev_sysfs_entry rdev_size =
1920 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1921
1922 static struct attribute *rdev_default_attrs[] = {
1923 &rdev_state.attr,
1924 &rdev_super.attr,
1925 &rdev_errors.attr,
1926 &rdev_slot.attr,
1927 &rdev_offset.attr,
1928 &rdev_size.attr,
1929 NULL,
1930 };
1931 static ssize_t
1932 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1933 {
1934 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1935 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1936
1937 if (!entry->show)
1938 return -EIO;
1939 return entry->show(rdev, page);
1940 }
1941
1942 static ssize_t
1943 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1944 const char *page, size_t length)
1945 {
1946 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1947 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1948
1949 if (!entry->store)
1950 return -EIO;
1951 if (!capable(CAP_SYS_ADMIN))
1952 return -EACCES;
1953 return entry->store(rdev, page, length);
1954 }
1955
1956 static void rdev_free(struct kobject *ko)
1957 {
1958 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1959 kfree(rdev);
1960 }
1961 static struct sysfs_ops rdev_sysfs_ops = {
1962 .show = rdev_attr_show,
1963 .store = rdev_attr_store,
1964 };
1965 static struct kobj_type rdev_ktype = {
1966 .release = rdev_free,
1967 .sysfs_ops = &rdev_sysfs_ops,
1968 .default_attrs = rdev_default_attrs,
1969 };
1970
1971 /*
1972 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1973 *
1974 * mark the device faulty if:
1975 *
1976 * - the device is nonexistent (zero size)
1977 * - the device has no valid superblock
1978 *
1979 * a faulty rdev _never_ has rdev->sb set.
1980 */
1981 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1982 {
1983 char b[BDEVNAME_SIZE];
1984 int err;
1985 mdk_rdev_t *rdev;
1986 sector_t size;
1987
1988 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1989 if (!rdev) {
1990 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1991 return ERR_PTR(-ENOMEM);
1992 }
1993
1994 if ((err = alloc_disk_sb(rdev)))
1995 goto abort_free;
1996
1997 err = lock_rdev(rdev, newdev);
1998 if (err)
1999 goto abort_free;
2000
2001 rdev->kobj.parent = NULL;
2002 rdev->kobj.ktype = &rdev_ktype;
2003 kobject_init(&rdev->kobj);
2004
2005 rdev->desc_nr = -1;
2006 rdev->flags = 0;
2007 rdev->data_offset = 0;
2008 rdev->sb_events = 0;
2009 atomic_set(&rdev->nr_pending, 0);
2010 atomic_set(&rdev->read_errors, 0);
2011 atomic_set(&rdev->corrected_errors, 0);
2012
2013 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2014 if (!size) {
2015 printk(KERN_WARNING
2016 "md: %s has zero or unknown size, marking faulty!\n",
2017 bdevname(rdev->bdev,b));
2018 err = -EINVAL;
2019 goto abort_free;
2020 }
2021
2022 if (super_format >= 0) {
2023 err = super_types[super_format].
2024 load_super(rdev, NULL, super_minor);
2025 if (err == -EINVAL) {
2026 printk(KERN_WARNING
2027 "md: %s has invalid sb, not importing!\n",
2028 bdevname(rdev->bdev,b));
2029 goto abort_free;
2030 }
2031 if (err < 0) {
2032 printk(KERN_WARNING
2033 "md: could not read %s's sb, not importing!\n",
2034 bdevname(rdev->bdev,b));
2035 goto abort_free;
2036 }
2037 }
2038 INIT_LIST_HEAD(&rdev->same_set);
2039
2040 return rdev;
2041
2042 abort_free:
2043 if (rdev->sb_page) {
2044 if (rdev->bdev)
2045 unlock_rdev(rdev);
2046 free_disk_sb(rdev);
2047 }
2048 kfree(rdev);
2049 return ERR_PTR(err);
2050 }
2051
2052 /*
2053 * Check a full RAID array for plausibility
2054 */
2055
2056
2057 static void analyze_sbs(mddev_t * mddev)
2058 {
2059 int i;
2060 struct list_head *tmp;
2061 mdk_rdev_t *rdev, *freshest;
2062 char b[BDEVNAME_SIZE];
2063
2064 freshest = NULL;
2065 ITERATE_RDEV(mddev,rdev,tmp)
2066 switch (super_types[mddev->major_version].
2067 load_super(rdev, freshest, mddev->minor_version)) {
2068 case 1:
2069 freshest = rdev;
2070 break;
2071 case 0:
2072 break;
2073 default:
2074 printk( KERN_ERR \
2075 "md: fatal superblock inconsistency in %s"
2076 " -- removing from array\n",
2077 bdevname(rdev->bdev,b));
2078 kick_rdev_from_array(rdev);
2079 }
2080
2081
2082 super_types[mddev->major_version].
2083 validate_super(mddev, freshest);
2084
2085 i = 0;
2086 ITERATE_RDEV(mddev,rdev,tmp) {
2087 if (rdev != freshest)
2088 if (super_types[mddev->major_version].
2089 validate_super(mddev, rdev)) {
2090 printk(KERN_WARNING "md: kicking non-fresh %s"
2091 " from array!\n",
2092 bdevname(rdev->bdev,b));
2093 kick_rdev_from_array(rdev);
2094 continue;
2095 }
2096 if (mddev->level == LEVEL_MULTIPATH) {
2097 rdev->desc_nr = i++;
2098 rdev->raid_disk = rdev->desc_nr;
2099 set_bit(In_sync, &rdev->flags);
2100 }
2101 }
2102
2103
2104
2105 if (mddev->recovery_cp != MaxSector &&
2106 mddev->level >= 1)
2107 printk(KERN_ERR "md: %s: raid array is not clean"
2108 " -- starting background reconstruction\n",
2109 mdname(mddev));
2110
2111 }
2112
2113 static ssize_t
2114 safe_delay_show(mddev_t *mddev, char *page)
2115 {
2116 int msec = (mddev->safemode_delay*1000)/HZ;
2117 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2118 }
2119 static ssize_t
2120 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2121 {
2122 int scale=1;
2123 int dot=0;
2124 int i;
2125 unsigned long msec;
2126 char buf[30];
2127 char *e;
2128 /* remove a period, and count digits after it */
2129 if (len >= sizeof(buf))
2130 return -EINVAL;
2131 strlcpy(buf, cbuf, len);
2132 buf[len] = 0;
2133 for (i=0; i<len; i++) {
2134 if (dot) {
2135 if (isdigit(buf[i])) {
2136 buf[i-1] = buf[i];
2137 scale *= 10;
2138 }
2139 buf[i] = 0;
2140 } else if (buf[i] == '.') {
2141 dot=1;
2142 buf[i] = 0;
2143 }
2144 }
2145 msec = simple_strtoul(buf, &e, 10);
2146 if (e == buf || (*e && *e != '\n'))
2147 return -EINVAL;
2148 msec = (msec * 1000) / scale;
2149 if (msec == 0)
2150 mddev->safemode_delay = 0;
2151 else {
2152 mddev->safemode_delay = (msec*HZ)/1000;
2153 if (mddev->safemode_delay == 0)
2154 mddev->safemode_delay = 1;
2155 }
2156 return len;
2157 }
2158 static struct md_sysfs_entry md_safe_delay =
2159 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2160
2161 static ssize_t
2162 level_show(mddev_t *mddev, char *page)
2163 {
2164 struct mdk_personality *p = mddev->pers;
2165 if (p)
2166 return sprintf(page, "%s\n", p->name);
2167 else if (mddev->clevel[0])
2168 return sprintf(page, "%s\n", mddev->clevel);
2169 else if (mddev->level != LEVEL_NONE)
2170 return sprintf(page, "%d\n", mddev->level);
2171 else
2172 return 0;
2173 }
2174
2175 static ssize_t
2176 level_store(mddev_t *mddev, const char *buf, size_t len)
2177 {
2178 int rv = len;
2179 if (mddev->pers)
2180 return -EBUSY;
2181 if (len == 0)
2182 return 0;
2183 if (len >= sizeof(mddev->clevel))
2184 return -ENOSPC;
2185 strncpy(mddev->clevel, buf, len);
2186 if (mddev->clevel[len-1] == '\n')
2187 len--;
2188 mddev->clevel[len] = 0;
2189 mddev->level = LEVEL_NONE;
2190 return rv;
2191 }
2192
2193 static struct md_sysfs_entry md_level =
2194 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2195
2196
2197 static ssize_t
2198 layout_show(mddev_t *mddev, char *page)
2199 {
2200 /* just a number, not meaningful for all levels */
2201 return sprintf(page, "%d\n", mddev->layout);
2202 }
2203
2204 static ssize_t
2205 layout_store(mddev_t *mddev, const char *buf, size_t len)
2206 {
2207 char *e;
2208 unsigned long n = simple_strtoul(buf, &e, 10);
2209 if (mddev->pers)
2210 return -EBUSY;
2211
2212 if (!*buf || (*e && *e != '\n'))
2213 return -EINVAL;
2214
2215 mddev->layout = n;
2216 return len;
2217 }
2218 static struct md_sysfs_entry md_layout =
2219 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2220
2221
2222 static ssize_t
2223 raid_disks_show(mddev_t *mddev, char *page)
2224 {
2225 if (mddev->raid_disks == 0)
2226 return 0;
2227 return sprintf(page, "%d\n", mddev->raid_disks);
2228 }
2229
2230 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2231
2232 static ssize_t
2233 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2234 {
2235 /* can only set raid_disks if array is not yet active */
2236 char *e;
2237 int rv = 0;
2238 unsigned long n = simple_strtoul(buf, &e, 10);
2239
2240 if (!*buf || (*e && *e != '\n'))
2241 return -EINVAL;
2242
2243 if (mddev->pers)
2244 rv = update_raid_disks(mddev, n);
2245 else
2246 mddev->raid_disks = n;
2247 return rv ? rv : len;
2248 }
2249 static struct md_sysfs_entry md_raid_disks =
2250 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2251
2252 static ssize_t
2253 chunk_size_show(mddev_t *mddev, char *page)
2254 {
2255 return sprintf(page, "%d\n", mddev->chunk_size);
2256 }
2257
2258 static ssize_t
2259 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2260 {
2261 /* can only set chunk_size if array is not yet active */
2262 char *e;
2263 unsigned long n = simple_strtoul(buf, &e, 10);
2264
2265 if (mddev->pers)
2266 return -EBUSY;
2267 if (!*buf || (*e && *e != '\n'))
2268 return -EINVAL;
2269
2270 mddev->chunk_size = n;
2271 return len;
2272 }
2273 static struct md_sysfs_entry md_chunk_size =
2274 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2275
2276 static ssize_t
2277 resync_start_show(mddev_t *mddev, char *page)
2278 {
2279 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2280 }
2281
2282 static ssize_t
2283 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2284 {
2285 /* can only set chunk_size if array is not yet active */
2286 char *e;
2287 unsigned long long n = simple_strtoull(buf, &e, 10);
2288
2289 if (mddev->pers)
2290 return -EBUSY;
2291 if (!*buf || (*e && *e != '\n'))
2292 return -EINVAL;
2293
2294 mddev->recovery_cp = n;
2295 return len;
2296 }
2297 static struct md_sysfs_entry md_resync_start =
2298 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2299
2300 /*
2301 * The array state can be:
2302 *
2303 * clear
2304 * No devices, no size, no level
2305 * Equivalent to STOP_ARRAY ioctl
2306 * inactive
2307 * May have some settings, but array is not active
2308 * all IO results in error
2309 * When written, doesn't tear down array, but just stops it
2310 * suspended (not supported yet)
2311 * All IO requests will block. The array can be reconfigured.
2312 * Writing this, if accepted, will block until array is quiessent
2313 * readonly
2314 * no resync can happen. no superblocks get written.
2315 * write requests fail
2316 * read-auto
2317 * like readonly, but behaves like 'clean' on a write request.
2318 *
2319 * clean - no pending writes, but otherwise active.
2320 * When written to inactive array, starts without resync
2321 * If a write request arrives then
2322 * if metadata is known, mark 'dirty' and switch to 'active'.
2323 * if not known, block and switch to write-pending
2324 * If written to an active array that has pending writes, then fails.
2325 * active
2326 * fully active: IO and resync can be happening.
2327 * When written to inactive array, starts with resync
2328 *
2329 * write-pending
2330 * clean, but writes are blocked waiting for 'active' to be written.
2331 *
2332 * active-idle
2333 * like active, but no writes have been seen for a while (100msec).
2334 *
2335 */
2336 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2337 write_pending, active_idle, bad_word};
2338 static char *array_states[] = {
2339 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2340 "write-pending", "active-idle", NULL };
2341
2342 static int match_word(const char *word, char **list)
2343 {
2344 int n;
2345 for (n=0; list[n]; n++)
2346 if (cmd_match(word, list[n]))
2347 break;
2348 return n;
2349 }
2350
2351 static ssize_t
2352 array_state_show(mddev_t *mddev, char *page)
2353 {
2354 enum array_state st = inactive;
2355
2356 if (mddev->pers)
2357 switch(mddev->ro) {
2358 case 1:
2359 st = readonly;
2360 break;
2361 case 2:
2362 st = read_auto;
2363 break;
2364 case 0:
2365 if (mddev->in_sync)
2366 st = clean;
2367 else if (mddev->safemode)
2368 st = active_idle;
2369 else
2370 st = active;
2371 }
2372 else {
2373 if (list_empty(&mddev->disks) &&
2374 mddev->raid_disks == 0 &&
2375 mddev->size == 0)
2376 st = clear;
2377 else
2378 st = inactive;
2379 }
2380 return sprintf(page, "%s\n", array_states[st]);
2381 }
2382
2383 static int do_md_stop(mddev_t * mddev, int ro);
2384 static int do_md_run(mddev_t * mddev);
2385 static int restart_array(mddev_t *mddev);
2386
2387 static ssize_t
2388 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2389 {
2390 int err = -EINVAL;
2391 enum array_state st = match_word(buf, array_states);
2392 switch(st) {
2393 case bad_word:
2394 break;
2395 case clear:
2396 /* stopping an active array */
2397 if (mddev->pers) {
2398 if (atomic_read(&mddev->active) > 1)
2399 return -EBUSY;
2400 err = do_md_stop(mddev, 0);
2401 }
2402 break;
2403 case inactive:
2404 /* stopping an active array */
2405 if (mddev->pers) {
2406 if (atomic_read(&mddev->active) > 1)
2407 return -EBUSY;
2408 err = do_md_stop(mddev, 2);
2409 }
2410 break;
2411 case suspended:
2412 break; /* not supported yet */
2413 case readonly:
2414 if (mddev->pers)
2415 err = do_md_stop(mddev, 1);
2416 else {
2417 mddev->ro = 1;
2418 err = do_md_run(mddev);
2419 }
2420 break;
2421 case read_auto:
2422 /* stopping an active array */
2423 if (mddev->pers) {
2424 err = do_md_stop(mddev, 1);
2425 if (err == 0)
2426 mddev->ro = 2; /* FIXME mark devices writable */
2427 } else {
2428 mddev->ro = 2;
2429 err = do_md_run(mddev);
2430 }
2431 break;
2432 case clean:
2433 if (mddev->pers) {
2434 restart_array(mddev);
2435 spin_lock_irq(&mddev->write_lock);
2436 if (atomic_read(&mddev->writes_pending) == 0) {
2437 mddev->in_sync = 1;
2438 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2439 }
2440 spin_unlock_irq(&mddev->write_lock);
2441 } else {
2442 mddev->ro = 0;
2443 mddev->recovery_cp = MaxSector;
2444 err = do_md_run(mddev);
2445 }
2446 break;
2447 case active:
2448 if (mddev->pers) {
2449 restart_array(mddev);
2450 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2451 wake_up(&mddev->sb_wait);
2452 err = 0;
2453 } else {
2454 mddev->ro = 0;
2455 err = do_md_run(mddev);
2456 }
2457 break;
2458 case write_pending:
2459 case active_idle:
2460 /* these cannot be set */
2461 break;
2462 }
2463 if (err)
2464 return err;
2465 else
2466 return len;
2467 }
2468 static struct md_sysfs_entry md_array_state =
2469 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2470
2471 static ssize_t
2472 null_show(mddev_t *mddev, char *page)
2473 {
2474 return -EINVAL;
2475 }
2476
2477 static ssize_t
2478 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2479 {
2480 /* buf must be %d:%d\n? giving major and minor numbers */
2481 /* The new device is added to the array.
2482 * If the array has a persistent superblock, we read the
2483 * superblock to initialise info and check validity.
2484 * Otherwise, only checking done is that in bind_rdev_to_array,
2485 * which mainly checks size.
2486 */
2487 char *e;
2488 int major = simple_strtoul(buf, &e, 10);
2489 int minor;
2490 dev_t dev;
2491 mdk_rdev_t *rdev;
2492 int err;
2493
2494 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2495 return -EINVAL;
2496 minor = simple_strtoul(e+1, &e, 10);
2497 if (*e && *e != '\n')
2498 return -EINVAL;
2499 dev = MKDEV(major, minor);
2500 if (major != MAJOR(dev) ||
2501 minor != MINOR(dev))
2502 return -EOVERFLOW;
2503
2504
2505 if (mddev->persistent) {
2506 rdev = md_import_device(dev, mddev->major_version,
2507 mddev->minor_version);
2508 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2509 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2510 mdk_rdev_t, same_set);
2511 err = super_types[mddev->major_version]
2512 .load_super(rdev, rdev0, mddev->minor_version);
2513 if (err < 0)
2514 goto out;
2515 }
2516 } else
2517 rdev = md_import_device(dev, -1, -1);
2518
2519 if (IS_ERR(rdev))
2520 return PTR_ERR(rdev);
2521 err = bind_rdev_to_array(rdev, mddev);
2522 out:
2523 if (err)
2524 export_rdev(rdev);
2525 return err ? err : len;
2526 }
2527
2528 static struct md_sysfs_entry md_new_device =
2529 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2530
2531 static ssize_t
2532 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2533 {
2534 char *end;
2535 unsigned long chunk, end_chunk;
2536
2537 if (!mddev->bitmap)
2538 goto out;
2539 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2540 while (*buf) {
2541 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2542 if (buf == end) break;
2543 if (*end == '-') { /* range */
2544 buf = end + 1;
2545 end_chunk = simple_strtoul(buf, &end, 0);
2546 if (buf == end) break;
2547 }
2548 if (*end && !isspace(*end)) break;
2549 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2550 buf = end;
2551 while (isspace(*buf)) buf++;
2552 }
2553 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2554 out:
2555 return len;
2556 }
2557
2558 static struct md_sysfs_entry md_bitmap =
2559 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2560
2561 static ssize_t
2562 size_show(mddev_t *mddev, char *page)
2563 {
2564 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2565 }
2566
2567 static int update_size(mddev_t *mddev, unsigned long size);
2568
2569 static ssize_t
2570 size_store(mddev_t *mddev, const char *buf, size_t len)
2571 {
2572 /* If array is inactive, we can reduce the component size, but
2573 * not increase it (except from 0).
2574 * If array is active, we can try an on-line resize
2575 */
2576 char *e;
2577 int err = 0;
2578 unsigned long long size = simple_strtoull(buf, &e, 10);
2579 if (!*buf || *buf == '\n' ||
2580 (*e && *e != '\n'))
2581 return -EINVAL;
2582
2583 if (mddev->pers) {
2584 err = update_size(mddev, size);
2585 md_update_sb(mddev, 1);
2586 } else {
2587 if (mddev->size == 0 ||
2588 mddev->size > size)
2589 mddev->size = size;
2590 else
2591 err = -ENOSPC;
2592 }
2593 return err ? err : len;
2594 }
2595
2596 static struct md_sysfs_entry md_size =
2597 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2598
2599
2600 /* Metdata version.
2601 * This is either 'none' for arrays with externally managed metadata,
2602 * or N.M for internally known formats
2603 */
2604 static ssize_t
2605 metadata_show(mddev_t *mddev, char *page)
2606 {
2607 if (mddev->persistent)
2608 return sprintf(page, "%d.%d\n",
2609 mddev->major_version, mddev->minor_version);
2610 else
2611 return sprintf(page, "none\n");
2612 }
2613
2614 static ssize_t
2615 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2616 {
2617 int major, minor;
2618 char *e;
2619 if (!list_empty(&mddev->disks))
2620 return -EBUSY;
2621
2622 if (cmd_match(buf, "none")) {
2623 mddev->persistent = 0;
2624 mddev->major_version = 0;
2625 mddev->minor_version = 90;
2626 return len;
2627 }
2628 major = simple_strtoul(buf, &e, 10);
2629 if (e==buf || *e != '.')
2630 return -EINVAL;
2631 buf = e+1;
2632 minor = simple_strtoul(buf, &e, 10);
2633 if (e==buf || *e != '\n')
2634 return -EINVAL;
2635 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2636 super_types[major].name == NULL)
2637 return -ENOENT;
2638 mddev->major_version = major;
2639 mddev->minor_version = minor;
2640 mddev->persistent = 1;
2641 return len;
2642 }
2643
2644 static struct md_sysfs_entry md_metadata =
2645 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2646
2647 static ssize_t
2648 action_show(mddev_t *mddev, char *page)
2649 {
2650 char *type = "idle";
2651 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2652 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2653 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2654 type = "reshape";
2655 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2656 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2657 type = "resync";
2658 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2659 type = "check";
2660 else
2661 type = "repair";
2662 } else
2663 type = "recover";
2664 }
2665 return sprintf(page, "%s\n", type);
2666 }
2667
2668 static ssize_t
2669 action_store(mddev_t *mddev, const char *page, size_t len)
2670 {
2671 if (!mddev->pers || !mddev->pers->sync_request)
2672 return -EINVAL;
2673
2674 if (cmd_match(page, "idle")) {
2675 if (mddev->sync_thread) {
2676 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2677 md_unregister_thread(mddev->sync_thread);
2678 mddev->sync_thread = NULL;
2679 mddev->recovery = 0;
2680 }
2681 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2682 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2683 return -EBUSY;
2684 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2685 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2686 else if (cmd_match(page, "reshape")) {
2687 int err;
2688 if (mddev->pers->start_reshape == NULL)
2689 return -EINVAL;
2690 err = mddev->pers->start_reshape(mddev);
2691 if (err)
2692 return err;
2693 } else {
2694 if (cmd_match(page, "check"))
2695 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2696 else if (!cmd_match(page, "repair"))
2697 return -EINVAL;
2698 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2699 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2700 }
2701 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2702 md_wakeup_thread(mddev->thread);
2703 return len;
2704 }
2705
2706 static ssize_t
2707 mismatch_cnt_show(mddev_t *mddev, char *page)
2708 {
2709 return sprintf(page, "%llu\n",
2710 (unsigned long long) mddev->resync_mismatches);
2711 }
2712
2713 static struct md_sysfs_entry md_scan_mode =
2714 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2715
2716
2717 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2718
2719 static ssize_t
2720 sync_min_show(mddev_t *mddev, char *page)
2721 {
2722 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2723 mddev->sync_speed_min ? "local": "system");
2724 }
2725
2726 static ssize_t
2727 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2728 {
2729 int min;
2730 char *e;
2731 if (strncmp(buf, "system", 6)==0) {
2732 mddev->sync_speed_min = 0;
2733 return len;
2734 }
2735 min = simple_strtoul(buf, &e, 10);
2736 if (buf == e || (*e && *e != '\n') || min <= 0)
2737 return -EINVAL;
2738 mddev->sync_speed_min = min;
2739 return len;
2740 }
2741
2742 static struct md_sysfs_entry md_sync_min =
2743 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2744
2745 static ssize_t
2746 sync_max_show(mddev_t *mddev, char *page)
2747 {
2748 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2749 mddev->sync_speed_max ? "local": "system");
2750 }
2751
2752 static ssize_t
2753 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2754 {
2755 int max;
2756 char *e;
2757 if (strncmp(buf, "system", 6)==0) {
2758 mddev->sync_speed_max = 0;
2759 return len;
2760 }
2761 max = simple_strtoul(buf, &e, 10);
2762 if (buf == e || (*e && *e != '\n') || max <= 0)
2763 return -EINVAL;
2764 mddev->sync_speed_max = max;
2765 return len;
2766 }
2767
2768 static struct md_sysfs_entry md_sync_max =
2769 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2770
2771
2772 static ssize_t
2773 sync_speed_show(mddev_t *mddev, char *page)
2774 {
2775 unsigned long resync, dt, db;
2776 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2777 dt = ((jiffies - mddev->resync_mark) / HZ);
2778 if (!dt) dt++;
2779 db = resync - (mddev->resync_mark_cnt);
2780 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2781 }
2782
2783 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2784
2785 static ssize_t
2786 sync_completed_show(mddev_t *mddev, char *page)
2787 {
2788 unsigned long max_blocks, resync;
2789
2790 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2791 max_blocks = mddev->resync_max_sectors;
2792 else
2793 max_blocks = mddev->size << 1;
2794
2795 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2796 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2797 }
2798
2799 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2800
2801 static ssize_t
2802 suspend_lo_show(mddev_t *mddev, char *page)
2803 {
2804 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2805 }
2806
2807 static ssize_t
2808 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2809 {
2810 char *e;
2811 unsigned long long new = simple_strtoull(buf, &e, 10);
2812
2813 if (mddev->pers->quiesce == NULL)
2814 return -EINVAL;
2815 if (buf == e || (*e && *e != '\n'))
2816 return -EINVAL;
2817 if (new >= mddev->suspend_hi ||
2818 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2819 mddev->suspend_lo = new;
2820 mddev->pers->quiesce(mddev, 2);
2821 return len;
2822 } else
2823 return -EINVAL;
2824 }
2825 static struct md_sysfs_entry md_suspend_lo =
2826 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2827
2828
2829 static ssize_t
2830 suspend_hi_show(mddev_t *mddev, char *page)
2831 {
2832 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2833 }
2834
2835 static ssize_t
2836 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2837 {
2838 char *e;
2839 unsigned long long new = simple_strtoull(buf, &e, 10);
2840
2841 if (mddev->pers->quiesce == NULL)
2842 return -EINVAL;
2843 if (buf == e || (*e && *e != '\n'))
2844 return -EINVAL;
2845 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2846 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2847 mddev->suspend_hi = new;
2848 mddev->pers->quiesce(mddev, 1);
2849 mddev->pers->quiesce(mddev, 0);
2850 return len;
2851 } else
2852 return -EINVAL;
2853 }
2854 static struct md_sysfs_entry md_suspend_hi =
2855 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2856
2857
2858 static struct attribute *md_default_attrs[] = {
2859 &md_level.attr,
2860 &md_layout.attr,
2861 &md_raid_disks.attr,
2862 &md_chunk_size.attr,
2863 &md_size.attr,
2864 &md_resync_start.attr,
2865 &md_metadata.attr,
2866 &md_new_device.attr,
2867 &md_safe_delay.attr,
2868 &md_array_state.attr,
2869 NULL,
2870 };
2871
2872 static struct attribute *md_redundancy_attrs[] = {
2873 &md_scan_mode.attr,
2874 &md_mismatches.attr,
2875 &md_sync_min.attr,
2876 &md_sync_max.attr,
2877 &md_sync_speed.attr,
2878 &md_sync_completed.attr,
2879 &md_suspend_lo.attr,
2880 &md_suspend_hi.attr,
2881 &md_bitmap.attr,
2882 NULL,
2883 };
2884 static struct attribute_group md_redundancy_group = {
2885 .name = NULL,
2886 .attrs = md_redundancy_attrs,
2887 };
2888
2889
2890 static ssize_t
2891 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2892 {
2893 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2894 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2895 ssize_t rv;
2896
2897 if (!entry->show)
2898 return -EIO;
2899 rv = mddev_lock(mddev);
2900 if (!rv) {
2901 rv = entry->show(mddev, page);
2902 mddev_unlock(mddev);
2903 }
2904 return rv;
2905 }
2906
2907 static ssize_t
2908 md_attr_store(struct kobject *kobj, struct attribute *attr,
2909 const char *page, size_t length)
2910 {
2911 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2912 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2913 ssize_t rv;
2914
2915 if (!entry->store)
2916 return -EIO;
2917 if (!capable(CAP_SYS_ADMIN))
2918 return -EACCES;
2919 rv = mddev_lock(mddev);
2920 if (!rv) {
2921 rv = entry->store(mddev, page, length);
2922 mddev_unlock(mddev);
2923 }
2924 return rv;
2925 }
2926
2927 static void md_free(struct kobject *ko)
2928 {
2929 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2930 kfree(mddev);
2931 }
2932
2933 static struct sysfs_ops md_sysfs_ops = {
2934 .show = md_attr_show,
2935 .store = md_attr_store,
2936 };
2937 static struct kobj_type md_ktype = {
2938 .release = md_free,
2939 .sysfs_ops = &md_sysfs_ops,
2940 .default_attrs = md_default_attrs,
2941 };
2942
2943 int mdp_major = 0;
2944
2945 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2946 {
2947 static DEFINE_MUTEX(disks_mutex);
2948 mddev_t *mddev = mddev_find(dev);
2949 struct gendisk *disk;
2950 int partitioned = (MAJOR(dev) != MD_MAJOR);
2951 int shift = partitioned ? MdpMinorShift : 0;
2952 int unit = MINOR(dev) >> shift;
2953
2954 if (!mddev)
2955 return NULL;
2956
2957 mutex_lock(&disks_mutex);
2958 if (mddev->gendisk) {
2959 mutex_unlock(&disks_mutex);
2960 mddev_put(mddev);
2961 return NULL;
2962 }
2963 disk = alloc_disk(1 << shift);
2964 if (!disk) {
2965 mutex_unlock(&disks_mutex);
2966 mddev_put(mddev);
2967 return NULL;
2968 }
2969 disk->major = MAJOR(dev);
2970 disk->first_minor = unit << shift;
2971 if (partitioned)
2972 sprintf(disk->disk_name, "md_d%d", unit);
2973 else
2974 sprintf(disk->disk_name, "md%d", unit);
2975 disk->fops = &md_fops;
2976 disk->private_data = mddev;
2977 disk->queue = mddev->queue;
2978 add_disk(disk);
2979 mddev->gendisk = disk;
2980 mutex_unlock(&disks_mutex);
2981 mddev->kobj.parent = &disk->kobj;
2982 mddev->kobj.k_name = NULL;
2983 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2984 mddev->kobj.ktype = &md_ktype;
2985 kobject_register(&mddev->kobj);
2986 return NULL;
2987 }
2988
2989 static void md_safemode_timeout(unsigned long data)
2990 {
2991 mddev_t *mddev = (mddev_t *) data;
2992
2993 mddev->safemode = 1;
2994 md_wakeup_thread(mddev->thread);
2995 }
2996
2997 static int start_dirty_degraded;
2998
2999 static int do_md_run(mddev_t * mddev)
3000 {
3001 int err;
3002 int chunk_size;
3003 struct list_head *tmp;
3004 mdk_rdev_t *rdev;
3005 struct gendisk *disk;
3006 struct mdk_personality *pers;
3007 char b[BDEVNAME_SIZE];
3008
3009 if (list_empty(&mddev->disks))
3010 /* cannot run an array with no devices.. */
3011 return -EINVAL;
3012
3013 if (mddev->pers)
3014 return -EBUSY;
3015
3016 /*
3017 * Analyze all RAID superblock(s)
3018 */
3019 if (!mddev->raid_disks)
3020 analyze_sbs(mddev);
3021
3022 chunk_size = mddev->chunk_size;
3023
3024 if (chunk_size) {
3025 if (chunk_size > MAX_CHUNK_SIZE) {
3026 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3027 chunk_size, MAX_CHUNK_SIZE);
3028 return -EINVAL;
3029 }
3030 /*
3031 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3032 */
3033 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3034 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3035 return -EINVAL;
3036 }
3037 if (chunk_size < PAGE_SIZE) {
3038 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3039 chunk_size, PAGE_SIZE);
3040 return -EINVAL;
3041 }
3042
3043 /* devices must have minimum size of one chunk */
3044 ITERATE_RDEV(mddev,rdev,tmp) {
3045 if (test_bit(Faulty, &rdev->flags))
3046 continue;
3047 if (rdev->size < chunk_size / 1024) {
3048 printk(KERN_WARNING
3049 "md: Dev %s smaller than chunk_size:"
3050 " %lluk < %dk\n",
3051 bdevname(rdev->bdev,b),
3052 (unsigned long long)rdev->size,
3053 chunk_size / 1024);
3054 return -EINVAL;
3055 }
3056 }
3057 }
3058
3059 #ifdef CONFIG_KMOD
3060 if (mddev->level != LEVEL_NONE)
3061 request_module("md-level-%d", mddev->level);
3062 else if (mddev->clevel[0])
3063 request_module("md-%s", mddev->clevel);
3064 #endif
3065
3066 /*
3067 * Drop all container device buffers, from now on
3068 * the only valid external interface is through the md
3069 * device.
3070 * Also find largest hardsector size
3071 */
3072 ITERATE_RDEV(mddev,rdev,tmp) {
3073 if (test_bit(Faulty, &rdev->flags))
3074 continue;
3075 sync_blockdev(rdev->bdev);
3076 invalidate_bdev(rdev->bdev, 0);
3077 }
3078
3079 md_probe(mddev->unit, NULL, NULL);
3080 disk = mddev->gendisk;
3081 if (!disk)
3082 return -ENOMEM;
3083
3084 spin_lock(&pers_lock);
3085 pers = find_pers(mddev->level, mddev->clevel);
3086 if (!pers || !try_module_get(pers->owner)) {
3087 spin_unlock(&pers_lock);
3088 if (mddev->level != LEVEL_NONE)
3089 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3090 mddev->level);
3091 else
3092 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3093 mddev->clevel);
3094 return -EINVAL;
3095 }
3096 mddev->pers = pers;
3097 spin_unlock(&pers_lock);
3098 mddev->level = pers->level;
3099 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3100
3101 if (mddev->reshape_position != MaxSector &&
3102 pers->start_reshape == NULL) {
3103 /* This personality cannot handle reshaping... */
3104 mddev->pers = NULL;
3105 module_put(pers->owner);
3106 return -EINVAL;
3107 }
3108
3109 mddev->recovery = 0;
3110 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3111 mddev->barriers_work = 1;
3112 mddev->ok_start_degraded = start_dirty_degraded;
3113
3114 if (start_readonly)
3115 mddev->ro = 2; /* read-only, but switch on first write */
3116
3117 err = mddev->pers->run(mddev);
3118 if (!err && mddev->pers->sync_request) {
3119 err = bitmap_create(mddev);
3120 if (err) {
3121 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3122 mdname(mddev), err);
3123 mddev->pers->stop(mddev);
3124 }
3125 }
3126 if (err) {
3127 printk(KERN_ERR "md: pers->run() failed ...\n");
3128 module_put(mddev->pers->owner);
3129 mddev->pers = NULL;
3130 bitmap_destroy(mddev);
3131 return err;
3132 }
3133 if (mddev->pers->sync_request)
3134 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3135 else if (mddev->ro == 2) /* auto-readonly not meaningful */
3136 mddev->ro = 0;
3137
3138 atomic_set(&mddev->writes_pending,0);
3139 mddev->safemode = 0;
3140 mddev->safemode_timer.function = md_safemode_timeout;
3141 mddev->safemode_timer.data = (unsigned long) mddev;
3142 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3143 mddev->in_sync = 1;
3144
3145 ITERATE_RDEV(mddev,rdev,tmp)
3146 if (rdev->raid_disk >= 0) {
3147 char nm[20];
3148 sprintf(nm, "rd%d", rdev->raid_disk);
3149 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3150 }
3151
3152 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3153
3154 if (mddev->flags)
3155 md_update_sb(mddev, 0);
3156
3157 set_capacity(disk, mddev->array_size<<1);
3158
3159 /* If we call blk_queue_make_request here, it will
3160 * re-initialise max_sectors etc which may have been
3161 * refined inside -> run. So just set the bits we need to set.
3162 * Most initialisation happended when we called
3163 * blk_queue_make_request(..., md_fail_request)
3164 * earlier.
3165 */
3166 mddev->queue->queuedata = mddev;
3167 mddev->queue->make_request_fn = mddev->pers->make_request;
3168
3169 /* If there is a partially-recovered drive we need to
3170 * start recovery here. If we leave it to md_check_recovery,
3171 * it will remove the drives and not do the right thing
3172 */
3173 if (mddev->degraded && !mddev->sync_thread) {
3174 struct list_head *rtmp;
3175 int spares = 0;
3176 ITERATE_RDEV(mddev,rdev,rtmp)
3177 if (rdev->raid_disk >= 0 &&
3178 !test_bit(In_sync, &rdev->flags) &&
3179 !test_bit(Faulty, &rdev->flags))
3180 /* complete an interrupted recovery */
3181 spares++;
3182 if (spares && mddev->pers->sync_request) {
3183 mddev->recovery = 0;
3184 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3185 mddev->sync_thread = md_register_thread(md_do_sync,
3186 mddev,
3187 "%s_resync");
3188 if (!mddev->sync_thread) {
3189 printk(KERN_ERR "%s: could not start resync"
3190 " thread...\n",
3191 mdname(mddev));
3192 /* leave the spares where they are, it shouldn't hurt */
3193 mddev->recovery = 0;
3194 }
3195 }
3196 }
3197 md_wakeup_thread(mddev->thread);
3198 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3199
3200 mddev->changed = 1;
3201 md_new_event(mddev);
3202 return 0;
3203 }
3204
3205 static int restart_array(mddev_t *mddev)
3206 {
3207 struct gendisk *disk = mddev->gendisk;
3208 int err;
3209
3210 /*
3211 * Complain if it has no devices
3212 */
3213 err = -ENXIO;
3214 if (list_empty(&mddev->disks))
3215 goto out;
3216
3217 if (mddev->pers) {
3218 err = -EBUSY;
3219 if (!mddev->ro)
3220 goto out;
3221
3222 mddev->safemode = 0;
3223 mddev->ro = 0;
3224 set_disk_ro(disk, 0);
3225
3226 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3227 mdname(mddev));
3228 /*
3229 * Kick recovery or resync if necessary
3230 */
3231 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3232 md_wakeup_thread(mddev->thread);
3233 md_wakeup_thread(mddev->sync_thread);
3234 err = 0;
3235 } else
3236 err = -EINVAL;
3237
3238 out:
3239 return err;
3240 }
3241
3242 /* similar to deny_write_access, but accounts for our holding a reference
3243 * to the file ourselves */
3244 static int deny_bitmap_write_access(struct file * file)
3245 {
3246 struct inode *inode = file->f_mapping->host;
3247
3248 spin_lock(&inode->i_lock);
3249 if (atomic_read(&inode->i_writecount) > 1) {
3250 spin_unlock(&inode->i_lock);
3251 return -ETXTBSY;
3252 }
3253 atomic_set(&inode->i_writecount, -1);
3254 spin_unlock(&inode->i_lock);
3255
3256 return 0;
3257 }
3258
3259 static void restore_bitmap_write_access(struct file *file)
3260 {
3261 struct inode *inode = file->f_mapping->host;
3262
3263 spin_lock(&inode->i_lock);
3264 atomic_set(&inode->i_writecount, 1);
3265 spin_unlock(&inode->i_lock);
3266 }
3267
3268 /* mode:
3269 * 0 - completely stop and dis-assemble array
3270 * 1 - switch to readonly
3271 * 2 - stop but do not disassemble array
3272 */
3273 static int do_md_stop(mddev_t * mddev, int mode)
3274 {
3275 int err = 0;
3276 struct gendisk *disk = mddev->gendisk;
3277
3278 if (mddev->pers) {
3279 if (atomic_read(&mddev->active)>2) {
3280 printk("md: %s still in use.\n",mdname(mddev));
3281 return -EBUSY;
3282 }
3283
3284 if (mddev->sync_thread) {
3285 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3286 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3287 md_unregister_thread(mddev->sync_thread);
3288 mddev->sync_thread = NULL;
3289 }
3290
3291 del_timer_sync(&mddev->safemode_timer);
3292
3293 invalidate_partition(disk, 0);
3294
3295 switch(mode) {
3296 case 1: /* readonly */
3297 err = -ENXIO;
3298 if (mddev->ro==1)
3299 goto out;
3300 mddev->ro = 1;
3301 break;
3302 case 0: /* disassemble */
3303 case 2: /* stop */
3304 bitmap_flush(mddev);
3305 md_super_wait(mddev);
3306 if (mddev->ro)
3307 set_disk_ro(disk, 0);
3308 blk_queue_make_request(mddev->queue, md_fail_request);
3309 mddev->pers->stop(mddev);
3310 if (mddev->pers->sync_request)
3311 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3312
3313 module_put(mddev->pers->owner);
3314 mddev->pers = NULL;
3315 if (mddev->ro)
3316 mddev->ro = 0;
3317 }
3318 if (!mddev->in_sync || mddev->flags) {
3319 /* mark array as shutdown cleanly */
3320 mddev->in_sync = 1;
3321 md_update_sb(mddev, 1);
3322 }
3323 if (mode == 1)
3324 set_disk_ro(disk, 1);
3325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3326 }
3327
3328 /*
3329 * Free resources if final stop
3330 */
3331 if (mode == 0) {
3332 mdk_rdev_t *rdev;
3333 struct list_head *tmp;
3334 struct gendisk *disk;
3335 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3336
3337 bitmap_destroy(mddev);
3338 if (mddev->bitmap_file) {
3339 restore_bitmap_write_access(mddev->bitmap_file);
3340 fput(mddev->bitmap_file);
3341 mddev->bitmap_file = NULL;
3342 }
3343 mddev->bitmap_offset = 0;
3344
3345 ITERATE_RDEV(mddev,rdev,tmp)
3346 if (rdev->raid_disk >= 0) {
3347 char nm[20];
3348 sprintf(nm, "rd%d", rdev->raid_disk);
3349 sysfs_remove_link(&mddev->kobj, nm);
3350 }
3351
3352 export_array(mddev);
3353
3354 mddev->array_size = 0;
3355 mddev->size = 0;
3356 mddev->raid_disks = 0;
3357 mddev->recovery_cp = 0;
3358
3359 disk = mddev->gendisk;
3360 if (disk)
3361 set_capacity(disk, 0);
3362 mddev->changed = 1;
3363 } else if (mddev->pers)
3364 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3365 mdname(mddev));
3366 err = 0;
3367 md_new_event(mddev);
3368 out:
3369 return err;
3370 }
3371
3372 static void autorun_array(mddev_t *mddev)
3373 {
3374 mdk_rdev_t *rdev;
3375 struct list_head *tmp;
3376 int err;
3377
3378 if (list_empty(&mddev->disks))
3379 return;
3380
3381 printk(KERN_INFO "md: running: ");
3382
3383 ITERATE_RDEV(mddev,rdev,tmp) {
3384 char b[BDEVNAME_SIZE];
3385 printk("<%s>", bdevname(rdev->bdev,b));
3386 }
3387 printk("\n");
3388
3389 err = do_md_run (mddev);
3390 if (err) {
3391 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3392 do_md_stop (mddev, 0);
3393 }
3394 }
3395
3396 /*
3397 * lets try to run arrays based on all disks that have arrived
3398 * until now. (those are in pending_raid_disks)
3399 *
3400 * the method: pick the first pending disk, collect all disks with
3401 * the same UUID, remove all from the pending list and put them into
3402 * the 'same_array' list. Then order this list based on superblock
3403 * update time (freshest comes first), kick out 'old' disks and
3404 * compare superblocks. If everything's fine then run it.
3405 *
3406 * If "unit" is allocated, then bump its reference count
3407 */
3408 static void autorun_devices(int part)
3409 {
3410 struct list_head *tmp;
3411 mdk_rdev_t *rdev0, *rdev;
3412 mddev_t *mddev;
3413 char b[BDEVNAME_SIZE];
3414
3415 printk(KERN_INFO "md: autorun ...\n");
3416 while (!list_empty(&pending_raid_disks)) {
3417 int unit;
3418 dev_t dev;
3419 LIST_HEAD(candidates);
3420 rdev0 = list_entry(pending_raid_disks.next,
3421 mdk_rdev_t, same_set);
3422
3423 printk(KERN_INFO "md: considering %s ...\n",
3424 bdevname(rdev0->bdev,b));
3425 INIT_LIST_HEAD(&candidates);
3426 ITERATE_RDEV_PENDING(rdev,tmp)
3427 if (super_90_load(rdev, rdev0, 0) >= 0) {
3428 printk(KERN_INFO "md: adding %s ...\n",
3429 bdevname(rdev->bdev,b));
3430 list_move(&rdev->same_set, &candidates);
3431 }
3432 /*
3433 * now we have a set of devices, with all of them having
3434 * mostly sane superblocks. It's time to allocate the
3435 * mddev.
3436 */
3437 if (part) {
3438 dev = MKDEV(mdp_major,
3439 rdev0->preferred_minor << MdpMinorShift);
3440 unit = MINOR(dev) >> MdpMinorShift;
3441 } else {
3442 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3443 unit = MINOR(dev);
3444 }
3445 if (rdev0->preferred_minor != unit) {
3446 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3447 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3448 break;
3449 }
3450
3451 md_probe(dev, NULL, NULL);
3452 mddev = mddev_find(dev);
3453 if (!mddev) {
3454 printk(KERN_ERR
3455 "md: cannot allocate memory for md drive.\n");
3456 break;
3457 }
3458 if (mddev_lock(mddev))
3459 printk(KERN_WARNING "md: %s locked, cannot run\n",
3460 mdname(mddev));
3461 else if (mddev->raid_disks || mddev->major_version
3462 || !list_empty(&mddev->disks)) {
3463 printk(KERN_WARNING
3464 "md: %s already running, cannot run %s\n",
3465 mdname(mddev), bdevname(rdev0->bdev,b));
3466 mddev_unlock(mddev);
3467 } else {
3468 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3469 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3470 list_del_init(&rdev->same_set);
3471 if (bind_rdev_to_array(rdev, mddev))
3472 export_rdev(rdev);
3473 }
3474 autorun_array(mddev);
3475 mddev_unlock(mddev);
3476 }
3477 /* on success, candidates will be empty, on error
3478 * it won't...
3479 */
3480 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3481 export_rdev(rdev);
3482 mddev_put(mddev);
3483 }
3484 printk(KERN_INFO "md: ... autorun DONE.\n");
3485 }
3486
3487 static int get_version(void __user * arg)
3488 {
3489 mdu_version_t ver;
3490
3491 ver.major = MD_MAJOR_VERSION;
3492 ver.minor = MD_MINOR_VERSION;
3493 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3494
3495 if (copy_to_user(arg, &ver, sizeof(ver)))
3496 return -EFAULT;
3497
3498 return 0;
3499 }
3500
3501 static int get_array_info(mddev_t * mddev, void __user * arg)
3502 {
3503 mdu_array_info_t info;
3504 int nr,working,active,failed,spare;
3505 mdk_rdev_t *rdev;
3506 struct list_head *tmp;
3507
3508 nr=working=active=failed=spare=0;
3509 ITERATE_RDEV(mddev,rdev,tmp) {
3510 nr++;
3511 if (test_bit(Faulty, &rdev->flags))
3512 failed++;
3513 else {
3514 working++;
3515 if (test_bit(In_sync, &rdev->flags))
3516 active++;
3517 else
3518 spare++;
3519 }
3520 }
3521
3522 info.major_version = mddev->major_version;
3523 info.minor_version = mddev->minor_version;
3524 info.patch_version = MD_PATCHLEVEL_VERSION;
3525 info.ctime = mddev->ctime;
3526 info.level = mddev->level;
3527 info.size = mddev->size;
3528 if (info.size != mddev->size) /* overflow */
3529 info.size = -1;
3530 info.nr_disks = nr;
3531 info.raid_disks = mddev->raid_disks;
3532 info.md_minor = mddev->md_minor;
3533 info.not_persistent= !mddev->persistent;
3534
3535 info.utime = mddev->utime;
3536 info.state = 0;
3537 if (mddev->in_sync)
3538 info.state = (1<<MD_SB_CLEAN);
3539 if (mddev->bitmap && mddev->bitmap_offset)
3540 info.state = (1<<MD_SB_BITMAP_PRESENT);
3541 info.active_disks = active;
3542 info.working_disks = working;
3543 info.failed_disks = failed;
3544 info.spare_disks = spare;
3545
3546 info.layout = mddev->layout;
3547 info.chunk_size = mddev->chunk_size;
3548
3549 if (copy_to_user(arg, &info, sizeof(info)))
3550 return -EFAULT;
3551
3552 return 0;
3553 }
3554
3555 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3556 {
3557 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3558 char *ptr, *buf = NULL;
3559 int err = -ENOMEM;
3560
3561 file = kmalloc(sizeof(*file), GFP_KERNEL);
3562 if (!file)
3563 goto out;
3564
3565 /* bitmap disabled, zero the first byte and copy out */
3566 if (!mddev->bitmap || !mddev->bitmap->file) {
3567 file->pathname[0] = '\0';
3568 goto copy_out;
3569 }
3570
3571 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3572 if (!buf)
3573 goto out;
3574
3575 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3576 if (!ptr)
3577 goto out;
3578
3579 strcpy(file->pathname, ptr);
3580
3581 copy_out:
3582 err = 0;
3583 if (copy_to_user(arg, file, sizeof(*file)))
3584 err = -EFAULT;
3585 out:
3586 kfree(buf);
3587 kfree(file);
3588 return err;
3589 }
3590
3591 static int get_disk_info(mddev_t * mddev, void __user * arg)
3592 {
3593 mdu_disk_info_t info;
3594 unsigned int nr;
3595 mdk_rdev_t *rdev;
3596
3597 if (copy_from_user(&info, arg, sizeof(info)))
3598 return -EFAULT;
3599
3600 nr = info.number;
3601
3602 rdev = find_rdev_nr(mddev, nr);
3603 if (rdev) {
3604 info.major = MAJOR(rdev->bdev->bd_dev);
3605 info.minor = MINOR(rdev->bdev->bd_dev);
3606 info.raid_disk = rdev->raid_disk;
3607 info.state = 0;
3608 if (test_bit(Faulty, &rdev->flags))
3609 info.state |= (1<<MD_DISK_FAULTY);
3610 else if (test_bit(In_sync, &rdev->flags)) {
3611 info.state |= (1<<MD_DISK_ACTIVE);
3612 info.state |= (1<<MD_DISK_SYNC);
3613 }
3614 if (test_bit(WriteMostly, &rdev->flags))
3615 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3616 } else {
3617 info.major = info.minor = 0;
3618 info.raid_disk = -1;
3619 info.state = (1<<MD_DISK_REMOVED);
3620 }
3621
3622 if (copy_to_user(arg, &info, sizeof(info)))
3623 return -EFAULT;
3624
3625 return 0;
3626 }
3627
3628 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3629 {
3630 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3631 mdk_rdev_t *rdev;
3632 dev_t dev = MKDEV(info->major,info->minor);
3633
3634 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3635 return -EOVERFLOW;
3636
3637 if (!mddev->raid_disks) {
3638 int err;
3639 /* expecting a device which has a superblock */
3640 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3641 if (IS_ERR(rdev)) {
3642 printk(KERN_WARNING
3643 "md: md_import_device returned %ld\n",
3644 PTR_ERR(rdev));
3645 return PTR_ERR(rdev);
3646 }
3647 if (!list_empty(&mddev->disks)) {
3648 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3649 mdk_rdev_t, same_set);
3650 int err = super_types[mddev->major_version]
3651 .load_super(rdev, rdev0, mddev->minor_version);
3652 if (err < 0) {
3653 printk(KERN_WARNING
3654 "md: %s has different UUID to %s\n",
3655 bdevname(rdev->bdev,b),
3656 bdevname(rdev0->bdev,b2));
3657 export_rdev(rdev);
3658 return -EINVAL;
3659 }
3660 }
3661 err = bind_rdev_to_array(rdev, mddev);
3662 if (err)
3663 export_rdev(rdev);
3664 return err;
3665 }
3666
3667 /*
3668 * add_new_disk can be used once the array is assembled
3669 * to add "hot spares". They must already have a superblock
3670 * written
3671 */
3672 if (mddev->pers) {
3673 int err;
3674 if (!mddev->pers->hot_add_disk) {
3675 printk(KERN_WARNING
3676 "%s: personality does not support diskops!\n",
3677 mdname(mddev));
3678 return -EINVAL;
3679 }
3680 if (mddev->persistent)
3681 rdev = md_import_device(dev, mddev->major_version,
3682 mddev->minor_version);
3683 else
3684 rdev = md_import_device(dev, -1, -1);
3685 if (IS_ERR(rdev)) {
3686 printk(KERN_WARNING
3687 "md: md_import_device returned %ld\n",
3688 PTR_ERR(rdev));
3689 return PTR_ERR(rdev);
3690 }
3691 /* set save_raid_disk if appropriate */
3692 if (!mddev->persistent) {
3693 if (info->state & (1<<MD_DISK_SYNC) &&
3694 info->raid_disk < mddev->raid_disks)
3695 rdev->raid_disk = info->raid_disk;
3696 else
3697 rdev->raid_disk = -1;
3698 } else
3699 super_types[mddev->major_version].
3700 validate_super(mddev, rdev);
3701 rdev->saved_raid_disk = rdev->raid_disk;
3702
3703 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3704 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3705 set_bit(WriteMostly, &rdev->flags);
3706
3707 rdev->raid_disk = -1;
3708 err = bind_rdev_to_array(rdev, mddev);
3709 if (!err && !mddev->pers->hot_remove_disk) {
3710 /* If there is hot_add_disk but no hot_remove_disk
3711 * then added disks for geometry changes,
3712 * and should be added immediately.
3713 */
3714 super_types[mddev->major_version].
3715 validate_super(mddev, rdev);
3716 err = mddev->pers->hot_add_disk(mddev, rdev);
3717 if (err)
3718 unbind_rdev_from_array(rdev);
3719 }
3720 if (err)
3721 export_rdev(rdev);
3722
3723 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3724 md_wakeup_thread(mddev->thread);
3725 return err;
3726 }
3727
3728 /* otherwise, add_new_disk is only allowed
3729 * for major_version==0 superblocks
3730 */
3731 if (mddev->major_version != 0) {
3732 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3733 mdname(mddev));
3734 return -EINVAL;
3735 }
3736
3737 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3738 int err;
3739 rdev = md_import_device (dev, -1, 0);
3740 if (IS_ERR(rdev)) {
3741 printk(KERN_WARNING
3742 "md: error, md_import_device() returned %ld\n",
3743 PTR_ERR(rdev));
3744 return PTR_ERR(rdev);
3745 }
3746 rdev->desc_nr = info->number;
3747 if (info->raid_disk < mddev->raid_disks)
3748 rdev->raid_disk = info->raid_disk;
3749 else
3750 rdev->raid_disk = -1;
3751
3752 rdev->flags = 0;
3753
3754 if (rdev->raid_disk < mddev->raid_disks)
3755 if (info->state & (1<<MD_DISK_SYNC))
3756 set_bit(In_sync, &rdev->flags);
3757
3758 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3759 set_bit(WriteMostly, &rdev->flags);
3760
3761 if (!mddev->persistent) {
3762 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3763 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3764 } else
3765 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3766 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3767
3768 err = bind_rdev_to_array(rdev, mddev);
3769 if (err) {
3770 export_rdev(rdev);
3771 return err;
3772 }
3773 }
3774
3775 return 0;
3776 }
3777
3778 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3779 {
3780 char b[BDEVNAME_SIZE];
3781 mdk_rdev_t *rdev;
3782
3783 if (!mddev->pers)
3784 return -ENODEV;
3785
3786 rdev = find_rdev(mddev, dev);
3787 if (!rdev)
3788 return -ENXIO;
3789
3790 if (rdev->raid_disk >= 0)
3791 goto busy;
3792
3793 kick_rdev_from_array(rdev);
3794 md_update_sb(mddev, 1);
3795 md_new_event(mddev);
3796
3797 return 0;
3798 busy:
3799 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3800 bdevname(rdev->bdev,b), mdname(mddev));
3801 return -EBUSY;
3802 }
3803
3804 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3805 {
3806 char b[BDEVNAME_SIZE];
3807 int err;
3808 unsigned int size;
3809 mdk_rdev_t *rdev;
3810
3811 if (!mddev->pers)
3812 return -ENODEV;
3813
3814 if (mddev->major_version != 0) {
3815 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3816 " version-0 superblocks.\n",
3817 mdname(mddev));
3818 return -EINVAL;
3819 }
3820 if (!mddev->pers->hot_add_disk) {
3821 printk(KERN_WARNING
3822 "%s: personality does not support diskops!\n",
3823 mdname(mddev));
3824 return -EINVAL;
3825 }
3826
3827 rdev = md_import_device (dev, -1, 0);
3828 if (IS_ERR(rdev)) {
3829 printk(KERN_WARNING
3830 "md: error, md_import_device() returned %ld\n",
3831 PTR_ERR(rdev));
3832 return -EINVAL;
3833 }
3834
3835 if (mddev->persistent)
3836 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3837 else
3838 rdev->sb_offset =
3839 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3840
3841 size = calc_dev_size(rdev, mddev->chunk_size);
3842 rdev->size = size;
3843
3844 if (test_bit(Faulty, &rdev->flags)) {
3845 printk(KERN_WARNING
3846 "md: can not hot-add faulty %s disk to %s!\n",
3847 bdevname(rdev->bdev,b), mdname(mddev));
3848 err = -EINVAL;
3849 goto abort_export;
3850 }
3851 clear_bit(In_sync, &rdev->flags);
3852 rdev->desc_nr = -1;
3853 rdev->saved_raid_disk = -1;
3854 err = bind_rdev_to_array(rdev, mddev);
3855 if (err)
3856 goto abort_export;
3857
3858 /*
3859 * The rest should better be atomic, we can have disk failures
3860 * noticed in interrupt contexts ...
3861 */
3862
3863 if (rdev->desc_nr == mddev->max_disks) {
3864 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3865 mdname(mddev));
3866 err = -EBUSY;
3867 goto abort_unbind_export;
3868 }
3869
3870 rdev->raid_disk = -1;
3871
3872 md_update_sb(mddev, 1);
3873
3874 /*
3875 * Kick recovery, maybe this spare has to be added to the
3876 * array immediately.
3877 */
3878 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3879 md_wakeup_thread(mddev->thread);
3880 md_new_event(mddev);
3881 return 0;
3882
3883 abort_unbind_export:
3884 unbind_rdev_from_array(rdev);
3885
3886 abort_export:
3887 export_rdev(rdev);
3888 return err;
3889 }
3890
3891 static int set_bitmap_file(mddev_t *mddev, int fd)
3892 {
3893 int err;
3894
3895 if (mddev->pers) {
3896 if (!mddev->pers->quiesce)
3897 return -EBUSY;
3898 if (mddev->recovery || mddev->sync_thread)
3899 return -EBUSY;
3900 /* we should be able to change the bitmap.. */
3901 }
3902
3903
3904 if (fd >= 0) {
3905 if (mddev->bitmap)
3906 return -EEXIST; /* cannot add when bitmap is present */
3907 mddev->bitmap_file = fget(fd);
3908
3909 if (mddev->bitmap_file == NULL) {
3910 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3911 mdname(mddev));
3912 return -EBADF;
3913 }
3914
3915 err = deny_bitmap_write_access(mddev->bitmap_file);
3916 if (err) {
3917 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3918 mdname(mddev));
3919 fput(mddev->bitmap_file);
3920 mddev->bitmap_file = NULL;
3921 return err;
3922 }
3923 mddev->bitmap_offset = 0; /* file overrides offset */
3924 } else if (mddev->bitmap == NULL)
3925 return -ENOENT; /* cannot remove what isn't there */
3926 err = 0;
3927 if (mddev->pers) {
3928 mddev->pers->quiesce(mddev, 1);
3929 if (fd >= 0)
3930 err = bitmap_create(mddev);
3931 if (fd < 0 || err) {
3932 bitmap_destroy(mddev);
3933 fd = -1; /* make sure to put the file */
3934 }
3935 mddev->pers->quiesce(mddev, 0);
3936 }
3937 if (fd < 0) {
3938 if (mddev->bitmap_file) {
3939 restore_bitmap_write_access(mddev->bitmap_file);
3940 fput(mddev->bitmap_file);
3941 }
3942 mddev->bitmap_file = NULL;
3943 }
3944
3945 return err;
3946 }
3947
3948 /*
3949 * set_array_info is used two different ways
3950 * The original usage is when creating a new array.
3951 * In this usage, raid_disks is > 0 and it together with
3952 * level, size, not_persistent,layout,chunksize determine the
3953 * shape of the array.
3954 * This will always create an array with a type-0.90.0 superblock.
3955 * The newer usage is when assembling an array.
3956 * In this case raid_disks will be 0, and the major_version field is
3957 * use to determine which style super-blocks are to be found on the devices.
3958 * The minor and patch _version numbers are also kept incase the
3959 * super_block handler wishes to interpret them.
3960 */
3961 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3962 {
3963
3964 if (info->raid_disks == 0) {
3965 /* just setting version number for superblock loading */
3966 if (info->major_version < 0 ||
3967 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3968 super_types[info->major_version].name == NULL) {
3969 /* maybe try to auto-load a module? */
3970 printk(KERN_INFO
3971 "md: superblock version %d not known\n",
3972 info->major_version);
3973 return -EINVAL;
3974 }
3975 mddev->major_version = info->major_version;
3976 mddev->minor_version = info->minor_version;
3977 mddev->patch_version = info->patch_version;
3978 return 0;
3979 }
3980 mddev->major_version = MD_MAJOR_VERSION;
3981 mddev->minor_version = MD_MINOR_VERSION;
3982 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3983 mddev->ctime = get_seconds();
3984
3985 mddev->level = info->level;
3986 mddev->clevel[0] = 0;
3987 mddev->size = info->size;
3988 mddev->raid_disks = info->raid_disks;
3989 /* don't set md_minor, it is determined by which /dev/md* was
3990 * openned
3991 */
3992 if (info->state & (1<<MD_SB_CLEAN))
3993 mddev->recovery_cp = MaxSector;
3994 else
3995 mddev->recovery_cp = 0;
3996 mddev->persistent = ! info->not_persistent;
3997
3998 mddev->layout = info->layout;
3999 mddev->chunk_size = info->chunk_size;
4000
4001 mddev->max_disks = MD_SB_DISKS;
4002
4003 mddev->flags = 0;
4004 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4005
4006 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4007 mddev->bitmap_offset = 0;
4008
4009 mddev->reshape_position = MaxSector;
4010
4011 /*
4012 * Generate a 128 bit UUID
4013 */
4014 get_random_bytes(mddev->uuid, 16);
4015
4016 mddev->new_level = mddev->level;
4017 mddev->new_chunk = mddev->chunk_size;
4018 mddev->new_layout = mddev->layout;
4019 mddev->delta_disks = 0;
4020
4021 return 0;
4022 }
4023
4024 static int update_size(mddev_t *mddev, unsigned long size)
4025 {
4026 mdk_rdev_t * rdev;
4027 int rv;
4028 struct list_head *tmp;
4029 int fit = (size == 0);
4030
4031 if (mddev->pers->resize == NULL)
4032 return -EINVAL;
4033 /* The "size" is the amount of each device that is used.
4034 * This can only make sense for arrays with redundancy.
4035 * linear and raid0 always use whatever space is available
4036 * We can only consider changing the size if no resync
4037 * or reconstruction is happening, and if the new size
4038 * is acceptable. It must fit before the sb_offset or,
4039 * if that is <data_offset, it must fit before the
4040 * size of each device.
4041 * If size is zero, we find the largest size that fits.
4042 */
4043 if (mddev->sync_thread)
4044 return -EBUSY;
4045 ITERATE_RDEV(mddev,rdev,tmp) {
4046 sector_t avail;
4047 if (rdev->sb_offset > rdev->data_offset)
4048 avail = (rdev->sb_offset*2) - rdev->data_offset;
4049 else
4050 avail = get_capacity(rdev->bdev->bd_disk)
4051 - rdev->data_offset;
4052 if (fit && (size == 0 || size > avail/2))
4053 size = avail/2;
4054 if (avail < ((sector_t)size << 1))
4055 return -ENOSPC;
4056 }
4057 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4058 if (!rv) {
4059 struct block_device *bdev;
4060
4061 bdev = bdget_disk(mddev->gendisk, 0);
4062 if (bdev) {
4063 mutex_lock(&bdev->bd_inode->i_mutex);
4064 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4065 mutex_unlock(&bdev->bd_inode->i_mutex);
4066 bdput(bdev);
4067 }
4068 }
4069 return rv;
4070 }
4071
4072 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4073 {
4074 int rv;
4075 /* change the number of raid disks */
4076 if (mddev->pers->check_reshape == NULL)
4077 return -EINVAL;
4078 if (raid_disks <= 0 ||
4079 raid_disks >= mddev->max_disks)
4080 return -EINVAL;
4081 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4082 return -EBUSY;
4083 mddev->delta_disks = raid_disks - mddev->raid_disks;
4084
4085 rv = mddev->pers->check_reshape(mddev);
4086 return rv;
4087 }
4088
4089
4090 /*
4091 * update_array_info is used to change the configuration of an
4092 * on-line array.
4093 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4094 * fields in the info are checked against the array.
4095 * Any differences that cannot be handled will cause an error.
4096 * Normally, only one change can be managed at a time.
4097 */
4098 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4099 {
4100 int rv = 0;
4101 int cnt = 0;
4102 int state = 0;
4103
4104 /* calculate expected state,ignoring low bits */
4105 if (mddev->bitmap && mddev->bitmap_offset)
4106 state |= (1 << MD_SB_BITMAP_PRESENT);
4107
4108 if (mddev->major_version != info->major_version ||
4109 mddev->minor_version != info->minor_version ||
4110 /* mddev->patch_version != info->patch_version || */
4111 mddev->ctime != info->ctime ||
4112 mddev->level != info->level ||
4113 /* mddev->layout != info->layout || */
4114 !mddev->persistent != info->not_persistent||
4115 mddev->chunk_size != info->chunk_size ||
4116 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4117 ((state^info->state) & 0xfffffe00)
4118 )
4119 return -EINVAL;
4120 /* Check there is only one change */
4121 if (info->size >= 0 && mddev->size != info->size) cnt++;
4122 if (mddev->raid_disks != info->raid_disks) cnt++;
4123 if (mddev->layout != info->layout) cnt++;
4124 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4125 if (cnt == 0) return 0;
4126 if (cnt > 1) return -EINVAL;
4127
4128 if (mddev->layout != info->layout) {
4129 /* Change layout
4130 * we don't need to do anything at the md level, the
4131 * personality will take care of it all.
4132 */
4133 if (mddev->pers->reconfig == NULL)
4134 return -EINVAL;
4135 else
4136 return mddev->pers->reconfig(mddev, info->layout, -1);
4137 }
4138 if (info->size >= 0 && mddev->size != info->size)
4139 rv = update_size(mddev, info->size);
4140
4141 if (mddev->raid_disks != info->raid_disks)
4142 rv = update_raid_disks(mddev, info->raid_disks);
4143
4144 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4145 if (mddev->pers->quiesce == NULL)
4146 return -EINVAL;
4147 if (mddev->recovery || mddev->sync_thread)
4148 return -EBUSY;
4149 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4150 /* add the bitmap */
4151 if (mddev->bitmap)
4152 return -EEXIST;
4153 if (mddev->default_bitmap_offset == 0)
4154 return -EINVAL;
4155 mddev->bitmap_offset = mddev->default_bitmap_offset;
4156 mddev->pers->quiesce(mddev, 1);
4157 rv = bitmap_create(mddev);
4158 if (rv)
4159 bitmap_destroy(mddev);
4160 mddev->pers->quiesce(mddev, 0);
4161 } else {
4162 /* remove the bitmap */
4163 if (!mddev->bitmap)
4164 return -ENOENT;
4165 if (mddev->bitmap->file)
4166 return -EINVAL;
4167 mddev->pers->quiesce(mddev, 1);
4168 bitmap_destroy(mddev);
4169 mddev->pers->quiesce(mddev, 0);
4170 mddev->bitmap_offset = 0;
4171 }
4172 }
4173 md_update_sb(mddev, 1);
4174 return rv;
4175 }
4176
4177 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4178 {
4179 mdk_rdev_t *rdev;
4180
4181 if (mddev->pers == NULL)
4182 return -ENODEV;
4183
4184 rdev = find_rdev(mddev, dev);
4185 if (!rdev)
4186 return -ENODEV;
4187
4188 md_error(mddev, rdev);
4189 return 0;
4190 }
4191
4192 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4193 {
4194 mddev_t *mddev = bdev->bd_disk->private_data;
4195
4196 geo->heads = 2;
4197 geo->sectors = 4;
4198 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4199 return 0;
4200 }
4201
4202 static int md_ioctl(struct inode *inode, struct file *file,
4203 unsigned int cmd, unsigned long arg)
4204 {
4205 int err = 0;
4206 void __user *argp = (void __user *)arg;
4207 mddev_t *mddev = NULL;
4208
4209 if (!capable(CAP_SYS_ADMIN))
4210 return -EACCES;
4211
4212 /*
4213 * Commands dealing with the RAID driver but not any
4214 * particular array:
4215 */
4216 switch (cmd)
4217 {
4218 case RAID_VERSION:
4219 err = get_version(argp);
4220 goto done;
4221
4222 case PRINT_RAID_DEBUG:
4223 err = 0;
4224 md_print_devices();
4225 goto done;
4226
4227 #ifndef MODULE
4228 case RAID_AUTORUN:
4229 err = 0;
4230 autostart_arrays(arg);
4231 goto done;
4232 #endif
4233 default:;
4234 }
4235
4236 /*
4237 * Commands creating/starting a new array:
4238 */
4239
4240 mddev = inode->i_bdev->bd_disk->private_data;
4241
4242 if (!mddev) {
4243 BUG();
4244 goto abort;
4245 }
4246
4247 err = mddev_lock(mddev);
4248 if (err) {
4249 printk(KERN_INFO
4250 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4251 err, cmd);
4252 goto abort;
4253 }
4254
4255 switch (cmd)
4256 {
4257 case SET_ARRAY_INFO:
4258 {
4259 mdu_array_info_t info;
4260 if (!arg)
4261 memset(&info, 0, sizeof(info));
4262 else if (copy_from_user(&info, argp, sizeof(info))) {
4263 err = -EFAULT;
4264 goto abort_unlock;
4265 }
4266 if (mddev->pers) {
4267 err = update_array_info(mddev, &info);
4268 if (err) {
4269 printk(KERN_WARNING "md: couldn't update"
4270 " array info. %d\n", err);
4271 goto abort_unlock;
4272 }
4273 goto done_unlock;
4274 }
4275 if (!list_empty(&mddev->disks)) {
4276 printk(KERN_WARNING
4277 "md: array %s already has disks!\n",
4278 mdname(mddev));
4279 err = -EBUSY;
4280 goto abort_unlock;
4281 }
4282 if (mddev->raid_disks) {
4283 printk(KERN_WARNING
4284 "md: array %s already initialised!\n",
4285 mdname(mddev));
4286 err = -EBUSY;
4287 goto abort_unlock;
4288 }
4289 err = set_array_info(mddev, &info);
4290 if (err) {
4291 printk(KERN_WARNING "md: couldn't set"
4292 " array info. %d\n", err);
4293 goto abort_unlock;
4294 }
4295 }
4296 goto done_unlock;
4297
4298 default:;
4299 }
4300
4301 /*
4302 * Commands querying/configuring an existing array:
4303 */
4304 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4305 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
4306 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4307 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
4308 err = -ENODEV;
4309 goto abort_unlock;
4310 }
4311
4312 /*
4313 * Commands even a read-only array can execute:
4314 */
4315 switch (cmd)
4316 {
4317 case GET_ARRAY_INFO:
4318 err = get_array_info(mddev, argp);
4319 goto done_unlock;
4320
4321 case GET_BITMAP_FILE:
4322 err = get_bitmap_file(mddev, argp);
4323 goto done_unlock;
4324
4325 case GET_DISK_INFO:
4326 err = get_disk_info(mddev, argp);
4327 goto done_unlock;
4328
4329 case RESTART_ARRAY_RW:
4330 err = restart_array(mddev);
4331 goto done_unlock;
4332
4333 case STOP_ARRAY:
4334 err = do_md_stop (mddev, 0);
4335 goto done_unlock;
4336
4337 case STOP_ARRAY_RO:
4338 err = do_md_stop (mddev, 1);
4339 goto done_unlock;
4340
4341 /*
4342 * We have a problem here : there is no easy way to give a CHS
4343 * virtual geometry. We currently pretend that we have a 2 heads
4344 * 4 sectors (with a BIG number of cylinders...). This drives
4345 * dosfs just mad... ;-)
4346 */
4347 }
4348
4349 /*
4350 * The remaining ioctls are changing the state of the
4351 * superblock, so we do not allow them on read-only arrays.
4352 * However non-MD ioctls (e.g. get-size) will still come through
4353 * here and hit the 'default' below, so only disallow
4354 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4355 */
4356 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4357 mddev->ro && mddev->pers) {
4358 if (mddev->ro == 2) {
4359 mddev->ro = 0;
4360 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4361 md_wakeup_thread(mddev->thread);
4362
4363 } else {
4364 err = -EROFS;
4365 goto abort_unlock;
4366 }
4367 }
4368
4369 switch (cmd)
4370 {
4371 case ADD_NEW_DISK:
4372 {
4373 mdu_disk_info_t info;
4374 if (copy_from_user(&info, argp, sizeof(info)))
4375 err = -EFAULT;
4376 else
4377 err = add_new_disk(mddev, &info);
4378 goto done_unlock;
4379 }
4380
4381 case HOT_REMOVE_DISK:
4382 err = hot_remove_disk(mddev, new_decode_dev(arg));
4383 goto done_unlock;
4384
4385 case HOT_ADD_DISK:
4386 err = hot_add_disk(mddev, new_decode_dev(arg));
4387 goto done_unlock;
4388
4389 case SET_DISK_FAULTY:
4390 err = set_disk_faulty(mddev, new_decode_dev(arg));
4391 goto done_unlock;
4392
4393 case RUN_ARRAY:
4394 err = do_md_run (mddev);
4395 goto done_unlock;
4396
4397 case SET_BITMAP_FILE:
4398 err = set_bitmap_file(mddev, (int)arg);
4399 goto done_unlock;
4400
4401 default:
4402 err = -EINVAL;
4403 goto abort_unlock;
4404 }
4405
4406 done_unlock:
4407 abort_unlock:
4408 mddev_unlock(mddev);
4409
4410 return err;
4411 done:
4412 if (err)
4413 MD_BUG();
4414 abort:
4415 return err;
4416 }
4417
4418 static int md_open(struct inode *inode, struct file *file)
4419 {
4420 /*
4421 * Succeed if we can lock the mddev, which confirms that
4422 * it isn't being stopped right now.
4423 */
4424 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4425 int err;
4426
4427 if ((err = mddev_lock(mddev)))
4428 goto out;
4429
4430 err = 0;
4431 mddev_get(mddev);
4432 mddev_unlock(mddev);
4433
4434 check_disk_change(inode->i_bdev);
4435 out:
4436 return err;
4437 }
4438
4439 static int md_release(struct inode *inode, struct file * file)
4440 {
4441 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4442
4443 BUG_ON(!mddev);
4444 mddev_put(mddev);
4445
4446 return 0;
4447 }
4448
4449 static int md_media_changed(struct gendisk *disk)
4450 {
4451 mddev_t *mddev = disk->private_data;
4452
4453 return mddev->changed;
4454 }
4455
4456 static int md_revalidate(struct gendisk *disk)
4457 {
4458 mddev_t *mddev = disk->private_data;
4459
4460 mddev->changed = 0;
4461 return 0;
4462 }
4463 static struct block_device_operations md_fops =
4464 {
4465 .owner = THIS_MODULE,
4466 .open = md_open,
4467 .release = md_release,
4468 .ioctl = md_ioctl,
4469 .getgeo = md_getgeo,
4470 .media_changed = md_media_changed,
4471 .revalidate_disk= md_revalidate,
4472 };
4473
4474 static int md_thread(void * arg)
4475 {
4476 mdk_thread_t *thread = arg;
4477
4478 /*
4479 * md_thread is a 'system-thread', it's priority should be very
4480 * high. We avoid resource deadlocks individually in each
4481 * raid personality. (RAID5 does preallocation) We also use RR and
4482 * the very same RT priority as kswapd, thus we will never get
4483 * into a priority inversion deadlock.
4484 *
4485 * we definitely have to have equal or higher priority than
4486 * bdflush, otherwise bdflush will deadlock if there are too
4487 * many dirty RAID5 blocks.
4488 */
4489
4490 allow_signal(SIGKILL);
4491 while (!kthread_should_stop()) {
4492
4493 /* We need to wait INTERRUPTIBLE so that
4494 * we don't add to the load-average.
4495 * That means we need to be sure no signals are
4496 * pending
4497 */
4498 if (signal_pending(current))
4499 flush_signals(current);
4500
4501 wait_event_interruptible_timeout
4502 (thread->wqueue,
4503 test_bit(THREAD_WAKEUP, &thread->flags)
4504 || kthread_should_stop(),
4505 thread->timeout);
4506 try_to_freeze();
4507
4508 clear_bit(THREAD_WAKEUP, &thread->flags);
4509
4510 thread->run(thread->mddev);
4511 }
4512
4513 return 0;
4514 }
4515
4516 void md_wakeup_thread(mdk_thread_t *thread)
4517 {
4518 if (thread) {
4519 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4520 set_bit(THREAD_WAKEUP, &thread->flags);
4521 wake_up(&thread->wqueue);
4522 }
4523 }
4524
4525 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4526 const char *name)
4527 {
4528 mdk_thread_t *thread;
4529
4530 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4531 if (!thread)
4532 return NULL;
4533
4534 init_waitqueue_head(&thread->wqueue);
4535
4536 thread->run = run;
4537 thread->mddev = mddev;
4538 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4539 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4540 if (IS_ERR(thread->tsk)) {
4541 kfree(thread);
4542 return NULL;
4543 }
4544 return thread;
4545 }
4546
4547 void md_unregister_thread(mdk_thread_t *thread)
4548 {
4549 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4550
4551 kthread_stop(thread->tsk);
4552 kfree(thread);
4553 }
4554
4555 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4556 {
4557 if (!mddev) {
4558 MD_BUG();
4559 return;
4560 }
4561
4562 if (!rdev || test_bit(Faulty, &rdev->flags))
4563 return;
4564 /*
4565 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4566 mdname(mddev),
4567 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4568 __builtin_return_address(0),__builtin_return_address(1),
4569 __builtin_return_address(2),__builtin_return_address(3));
4570 */
4571 if (!mddev->pers)
4572 return;
4573 if (!mddev->pers->error_handler)
4574 return;
4575 mddev->pers->error_handler(mddev,rdev);
4576 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4577 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4578 md_wakeup_thread(mddev->thread);
4579 md_new_event_inintr(mddev);
4580 }
4581
4582 /* seq_file implementation /proc/mdstat */
4583
4584 static void status_unused(struct seq_file *seq)
4585 {
4586 int i = 0;
4587 mdk_rdev_t *rdev;
4588 struct list_head *tmp;
4589
4590 seq_printf(seq, "unused devices: ");
4591
4592 ITERATE_RDEV_PENDING(rdev,tmp) {
4593 char b[BDEVNAME_SIZE];
4594 i++;
4595 seq_printf(seq, "%s ",
4596 bdevname(rdev->bdev,b));
4597 }
4598 if (!i)
4599 seq_printf(seq, "<none>");
4600
4601 seq_printf(seq, "\n");
4602 }
4603
4604
4605 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4606 {
4607 sector_t max_blocks, resync, res;
4608 unsigned long dt, db, rt;
4609 int scale;
4610 unsigned int per_milli;
4611
4612 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4613
4614 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4615 max_blocks = mddev->resync_max_sectors >> 1;
4616 else
4617 max_blocks = mddev->size;
4618
4619 /*
4620 * Should not happen.
4621 */
4622 if (!max_blocks) {
4623 MD_BUG();
4624 return;
4625 }
4626 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4627 * in a sector_t, and (max_blocks>>scale) will fit in a
4628 * u32, as those are the requirements for sector_div.
4629 * Thus 'scale' must be at least 10
4630 */
4631 scale = 10;
4632 if (sizeof(sector_t) > sizeof(unsigned long)) {
4633 while ( max_blocks/2 > (1ULL<<(scale+32)))
4634 scale++;
4635 }
4636 res = (resync>>scale)*1000;
4637 sector_div(res, (u32)((max_blocks>>scale)+1));
4638
4639 per_milli = res;
4640 {
4641 int i, x = per_milli/50, y = 20-x;
4642 seq_printf(seq, "[");
4643 for (i = 0; i < x; i++)
4644 seq_printf(seq, "=");
4645 seq_printf(seq, ">");
4646 for (i = 0; i < y; i++)
4647 seq_printf(seq, ".");
4648 seq_printf(seq, "] ");
4649 }
4650 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4651 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4652 "reshape" :
4653 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4654 "check" :
4655 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4656 "resync" : "recovery"))),
4657 per_milli/10, per_milli % 10,
4658 (unsigned long long) resync,
4659 (unsigned long long) max_blocks);
4660
4661 /*
4662 * We do not want to overflow, so the order of operands and
4663 * the * 100 / 100 trick are important. We do a +1 to be
4664 * safe against division by zero. We only estimate anyway.
4665 *
4666 * dt: time from mark until now
4667 * db: blocks written from mark until now
4668 * rt: remaining time
4669 */
4670 dt = ((jiffies - mddev->resync_mark) / HZ);
4671 if (!dt) dt++;
4672 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4673 - mddev->resync_mark_cnt;
4674 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4675
4676 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4677
4678 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4679 }
4680
4681 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4682 {
4683 struct list_head *tmp;
4684 loff_t l = *pos;
4685 mddev_t *mddev;
4686
4687 if (l >= 0x10000)
4688 return NULL;
4689 if (!l--)
4690 /* header */
4691 return (void*)1;
4692
4693 spin_lock(&all_mddevs_lock);
4694 list_for_each(tmp,&all_mddevs)
4695 if (!l--) {
4696 mddev = list_entry(tmp, mddev_t, all_mddevs);
4697 mddev_get(mddev);
4698 spin_unlock(&all_mddevs_lock);
4699 return mddev;
4700 }
4701 spin_unlock(&all_mddevs_lock);
4702 if (!l--)
4703 return (void*)2;/* tail */
4704 return NULL;
4705 }
4706
4707 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4708 {
4709 struct list_head *tmp;
4710 mddev_t *next_mddev, *mddev = v;
4711
4712 ++*pos;
4713 if (v == (void*)2)
4714 return NULL;
4715
4716 spin_lock(&all_mddevs_lock);
4717 if (v == (void*)1)
4718 tmp = all_mddevs.next;
4719 else
4720 tmp = mddev->all_mddevs.next;
4721 if (tmp != &all_mddevs)
4722 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4723 else {
4724 next_mddev = (void*)2;
4725 *pos = 0x10000;
4726 }
4727 spin_unlock(&all_mddevs_lock);
4728
4729 if (v != (void*)1)
4730 mddev_put(mddev);
4731 return next_mddev;
4732
4733 }
4734
4735 static void md_seq_stop(struct seq_file *seq, void *v)
4736 {
4737 mddev_t *mddev = v;
4738
4739 if (mddev && v != (void*)1 && v != (void*)2)
4740 mddev_put(mddev);
4741 }
4742
4743 struct mdstat_info {
4744 int event;
4745 };
4746
4747 static int md_seq_show(struct seq_file *seq, void *v)
4748 {
4749 mddev_t *mddev = v;
4750 sector_t size;
4751 struct list_head *tmp2;
4752 mdk_rdev_t *rdev;
4753 struct mdstat_info *mi = seq->private;
4754 struct bitmap *bitmap;
4755
4756 if (v == (void*)1) {
4757 struct mdk_personality *pers;
4758 seq_printf(seq, "Personalities : ");
4759 spin_lock(&pers_lock);
4760 list_for_each_entry(pers, &pers_list, list)
4761 seq_printf(seq, "[%s] ", pers->name);
4762
4763 spin_unlock(&pers_lock);
4764 seq_printf(seq, "\n");
4765 mi->event = atomic_read(&md_event_count);
4766 return 0;
4767 }
4768 if (v == (void*)2) {
4769 status_unused(seq);
4770 return 0;
4771 }
4772
4773 if (mddev_lock(mddev) < 0)
4774 return -EINTR;
4775
4776 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4777 seq_printf(seq, "%s : %sactive", mdname(mddev),
4778 mddev->pers ? "" : "in");
4779 if (mddev->pers) {
4780 if (mddev->ro==1)
4781 seq_printf(seq, " (read-only)");
4782 if (mddev->ro==2)
4783 seq_printf(seq, "(auto-read-only)");
4784 seq_printf(seq, " %s", mddev->pers->name);
4785 }
4786
4787 size = 0;
4788 ITERATE_RDEV(mddev,rdev,tmp2) {
4789 char b[BDEVNAME_SIZE];
4790 seq_printf(seq, " %s[%d]",
4791 bdevname(rdev->bdev,b), rdev->desc_nr);
4792 if (test_bit(WriteMostly, &rdev->flags))
4793 seq_printf(seq, "(W)");
4794 if (test_bit(Faulty, &rdev->flags)) {
4795 seq_printf(seq, "(F)");
4796 continue;
4797 } else if (rdev->raid_disk < 0)
4798 seq_printf(seq, "(S)"); /* spare */
4799 size += rdev->size;
4800 }
4801
4802 if (!list_empty(&mddev->disks)) {
4803 if (mddev->pers)
4804 seq_printf(seq, "\n %llu blocks",
4805 (unsigned long long)mddev->array_size);
4806 else
4807 seq_printf(seq, "\n %llu blocks",
4808 (unsigned long long)size);
4809 }
4810 if (mddev->persistent) {
4811 if (mddev->major_version != 0 ||
4812 mddev->minor_version != 90) {
4813 seq_printf(seq," super %d.%d",
4814 mddev->major_version,
4815 mddev->minor_version);
4816 }
4817 } else
4818 seq_printf(seq, " super non-persistent");
4819
4820 if (mddev->pers) {
4821 mddev->pers->status (seq, mddev);
4822 seq_printf(seq, "\n ");
4823 if (mddev->pers->sync_request) {
4824 if (mddev->curr_resync > 2) {
4825 status_resync (seq, mddev);
4826 seq_printf(seq, "\n ");
4827 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4828 seq_printf(seq, "\tresync=DELAYED\n ");
4829 else if (mddev->recovery_cp < MaxSector)
4830 seq_printf(seq, "\tresync=PENDING\n ");
4831 }
4832 } else
4833 seq_printf(seq, "\n ");
4834
4835 if ((bitmap = mddev->bitmap)) {
4836 unsigned long chunk_kb;
4837 unsigned long flags;
4838 spin_lock_irqsave(&bitmap->lock, flags);
4839 chunk_kb = bitmap->chunksize >> 10;
4840 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4841 "%lu%s chunk",
4842 bitmap->pages - bitmap->missing_pages,
4843 bitmap->pages,
4844 (bitmap->pages - bitmap->missing_pages)
4845 << (PAGE_SHIFT - 10),
4846 chunk_kb ? chunk_kb : bitmap->chunksize,
4847 chunk_kb ? "KB" : "B");
4848 if (bitmap->file) {
4849 seq_printf(seq, ", file: ");
4850 seq_path(seq, bitmap->file->f_vfsmnt,
4851 bitmap->file->f_dentry," \t\n");
4852 }
4853
4854 seq_printf(seq, "\n");
4855 spin_unlock_irqrestore(&bitmap->lock, flags);
4856 }
4857
4858 seq_printf(seq, "\n");
4859 }
4860 mddev_unlock(mddev);
4861
4862 return 0;
4863 }
4864
4865 static struct seq_operations md_seq_ops = {
4866 .start = md_seq_start,
4867 .next = md_seq_next,
4868 .stop = md_seq_stop,
4869 .show = md_seq_show,
4870 };
4871
4872 static int md_seq_open(struct inode *inode, struct file *file)
4873 {
4874 int error;
4875 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4876 if (mi == NULL)
4877 return -ENOMEM;
4878
4879 error = seq_open(file, &md_seq_ops);
4880 if (error)
4881 kfree(mi);
4882 else {
4883 struct seq_file *p = file->private_data;
4884 p->private = mi;
4885 mi->event = atomic_read(&md_event_count);
4886 }
4887 return error;
4888 }
4889
4890 static int md_seq_release(struct inode *inode, struct file *file)
4891 {
4892 struct seq_file *m = file->private_data;
4893 struct mdstat_info *mi = m->private;
4894 m->private = NULL;
4895 kfree(mi);
4896 return seq_release(inode, file);
4897 }
4898
4899 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4900 {
4901 struct seq_file *m = filp->private_data;
4902 struct mdstat_info *mi = m->private;
4903 int mask;
4904
4905 poll_wait(filp, &md_event_waiters, wait);
4906
4907 /* always allow read */
4908 mask = POLLIN | POLLRDNORM;
4909
4910 if (mi->event != atomic_read(&md_event_count))
4911 mask |= POLLERR | POLLPRI;
4912 return mask;
4913 }
4914
4915 static struct file_operations md_seq_fops = {
4916 .owner = THIS_MODULE,
4917 .open = md_seq_open,
4918 .read = seq_read,
4919 .llseek = seq_lseek,
4920 .release = md_seq_release,
4921 .poll = mdstat_poll,
4922 };
4923
4924 int register_md_personality(struct mdk_personality *p)
4925 {
4926 spin_lock(&pers_lock);
4927 list_add_tail(&p->list, &pers_list);
4928 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4929 spin_unlock(&pers_lock);
4930 return 0;
4931 }
4932
4933 int unregister_md_personality(struct mdk_personality *p)
4934 {
4935 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4936 spin_lock(&pers_lock);
4937 list_del_init(&p->list);
4938 spin_unlock(&pers_lock);
4939 return 0;
4940 }
4941
4942 static int is_mddev_idle(mddev_t *mddev)
4943 {
4944 mdk_rdev_t * rdev;
4945 struct list_head *tmp;
4946 int idle;
4947 unsigned long curr_events;
4948
4949 idle = 1;
4950 ITERATE_RDEV(mddev,rdev,tmp) {
4951 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4952 curr_events = disk_stat_read(disk, sectors[0]) +
4953 disk_stat_read(disk, sectors[1]) -
4954 atomic_read(&disk->sync_io);
4955 /* The difference between curr_events and last_events
4956 * will be affected by any new non-sync IO (making
4957 * curr_events bigger) and any difference in the amount of
4958 * in-flight syncio (making current_events bigger or smaller)
4959 * The amount in-flight is currently limited to
4960 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4961 * which is at most 4096 sectors.
4962 * These numbers are fairly fragile and should be made
4963 * more robust, probably by enforcing the
4964 * 'window size' that md_do_sync sort-of uses.
4965 *
4966 * Note: the following is an unsigned comparison.
4967 */
4968 if ((curr_events - rdev->last_events + 4096) > 8192) {
4969 rdev->last_events = curr_events;
4970 idle = 0;
4971 }
4972 }
4973 return idle;
4974 }
4975
4976 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4977 {
4978 /* another "blocks" (512byte) blocks have been synced */
4979 atomic_sub(blocks, &mddev->recovery_active);
4980 wake_up(&mddev->recovery_wait);
4981 if (!ok) {
4982 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4983 md_wakeup_thread(mddev->thread);
4984 // stop recovery, signal do_sync ....
4985 }
4986 }
4987
4988
4989 /* md_write_start(mddev, bi)
4990 * If we need to update some array metadata (e.g. 'active' flag
4991 * in superblock) before writing, schedule a superblock update
4992 * and wait for it to complete.
4993 */
4994 void md_write_start(mddev_t *mddev, struct bio *bi)
4995 {
4996 if (bio_data_dir(bi) != WRITE)
4997 return;
4998
4999 BUG_ON(mddev->ro == 1);
5000 if (mddev->ro == 2) {
5001 /* need to switch to read/write */
5002 mddev->ro = 0;
5003 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5004 md_wakeup_thread(mddev->thread);
5005 }
5006 atomic_inc(&mddev->writes_pending);
5007 if (mddev->in_sync) {
5008 spin_lock_irq(&mddev->write_lock);
5009 if (mddev->in_sync) {
5010 mddev->in_sync = 0;
5011 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5012 md_wakeup_thread(mddev->thread);
5013 }
5014 spin_unlock_irq(&mddev->write_lock);
5015 }
5016 wait_event(mddev->sb_wait, mddev->flags==0);
5017 }
5018
5019 void md_write_end(mddev_t *mddev)
5020 {
5021 if (atomic_dec_and_test(&mddev->writes_pending)) {
5022 if (mddev->safemode == 2)
5023 md_wakeup_thread(mddev->thread);
5024 else if (mddev->safemode_delay)
5025 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5026 }
5027 }
5028
5029 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5030
5031 #define SYNC_MARKS 10
5032 #define SYNC_MARK_STEP (3*HZ)
5033 void md_do_sync(mddev_t *mddev)
5034 {
5035 mddev_t *mddev2;
5036 unsigned int currspeed = 0,
5037 window;
5038 sector_t max_sectors,j, io_sectors;
5039 unsigned long mark[SYNC_MARKS];
5040 sector_t mark_cnt[SYNC_MARKS];
5041 int last_mark,m;
5042 struct list_head *tmp;
5043 sector_t last_check;
5044 int skipped = 0;
5045 struct list_head *rtmp;
5046 mdk_rdev_t *rdev;
5047 char *desc;
5048
5049 /* just incase thread restarts... */
5050 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5051 return;
5052 if (mddev->ro) /* never try to sync a read-only array */
5053 return;
5054
5055 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5056 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5057 desc = "data-check";
5058 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5059 desc = "requested-resync";
5060 else
5061 desc = "resync";
5062 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5063 desc = "reshape";
5064 else
5065 desc = "recovery";
5066
5067 /* we overload curr_resync somewhat here.
5068 * 0 == not engaged in resync at all
5069 * 2 == checking that there is no conflict with another sync
5070 * 1 == like 2, but have yielded to allow conflicting resync to
5071 * commense
5072 * other == active in resync - this many blocks
5073 *
5074 * Before starting a resync we must have set curr_resync to
5075 * 2, and then checked that every "conflicting" array has curr_resync
5076 * less than ours. When we find one that is the same or higher
5077 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5078 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5079 * This will mean we have to start checking from the beginning again.
5080 *
5081 */
5082
5083 do {
5084 mddev->curr_resync = 2;
5085
5086 try_again:
5087 if (kthread_should_stop()) {
5088 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5089 goto skip;
5090 }
5091 ITERATE_MDDEV(mddev2,tmp) {
5092 if (mddev2 == mddev)
5093 continue;
5094 if (mddev2->curr_resync &&
5095 match_mddev_units(mddev,mddev2)) {
5096 DEFINE_WAIT(wq);
5097 if (mddev < mddev2 && mddev->curr_resync == 2) {
5098 /* arbitrarily yield */
5099 mddev->curr_resync = 1;
5100 wake_up(&resync_wait);
5101 }
5102 if (mddev > mddev2 && mddev->curr_resync == 1)
5103 /* no need to wait here, we can wait the next
5104 * time 'round when curr_resync == 2
5105 */
5106 continue;
5107 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5108 if (!kthread_should_stop() &&
5109 mddev2->curr_resync >= mddev->curr_resync) {
5110 printk(KERN_INFO "md: delaying %s of %s"
5111 " until %s has finished (they"
5112 " share one or more physical units)\n",
5113 desc, mdname(mddev), mdname(mddev2));
5114 mddev_put(mddev2);
5115 schedule();
5116 finish_wait(&resync_wait, &wq);
5117 goto try_again;
5118 }
5119 finish_wait(&resync_wait, &wq);
5120 }
5121 }
5122 } while (mddev->curr_resync < 2);
5123
5124 j = 0;
5125 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5126 /* resync follows the size requested by the personality,
5127 * which defaults to physical size, but can be virtual size
5128 */
5129 max_sectors = mddev->resync_max_sectors;
5130 mddev->resync_mismatches = 0;
5131 /* we don't use the checkpoint if there's a bitmap */
5132 if (!mddev->bitmap &&
5133 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5134 j = mddev->recovery_cp;
5135 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5136 max_sectors = mddev->size << 1;
5137 else {
5138 /* recovery follows the physical size of devices */
5139 max_sectors = mddev->size << 1;
5140 j = MaxSector;
5141 ITERATE_RDEV(mddev,rdev,rtmp)
5142 if (rdev->raid_disk >= 0 &&
5143 !test_bit(Faulty, &rdev->flags) &&
5144 !test_bit(In_sync, &rdev->flags) &&
5145 rdev->recovery_offset < j)
5146 j = rdev->recovery_offset;
5147 }
5148
5149 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5150 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5151 " %d KB/sec/disk.\n", speed_min(mddev));
5152 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5153 "(but not more than %d KB/sec) for %s.\n",
5154 speed_max(mddev), desc);
5155
5156 is_mddev_idle(mddev); /* this also initializes IO event counters */
5157
5158 io_sectors = 0;
5159 for (m = 0; m < SYNC_MARKS; m++) {
5160 mark[m] = jiffies;
5161 mark_cnt[m] = io_sectors;
5162 }
5163 last_mark = 0;
5164 mddev->resync_mark = mark[last_mark];
5165 mddev->resync_mark_cnt = mark_cnt[last_mark];
5166
5167 /*
5168 * Tune reconstruction:
5169 */
5170 window = 32*(PAGE_SIZE/512);
5171 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5172 window/2,(unsigned long long) max_sectors/2);
5173
5174 atomic_set(&mddev->recovery_active, 0);
5175 init_waitqueue_head(&mddev->recovery_wait);
5176 last_check = 0;
5177
5178 if (j>2) {
5179 printk(KERN_INFO
5180 "md: resuming %s of %s from checkpoint.\n",
5181 desc, mdname(mddev));
5182 mddev->curr_resync = j;
5183 }
5184
5185 while (j < max_sectors) {
5186 sector_t sectors;
5187
5188 skipped = 0;
5189 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5190 currspeed < speed_min(mddev));
5191 if (sectors == 0) {
5192 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5193 goto out;
5194 }
5195
5196 if (!skipped) { /* actual IO requested */
5197 io_sectors += sectors;
5198 atomic_add(sectors, &mddev->recovery_active);
5199 }
5200
5201 j += sectors;
5202 if (j>1) mddev->curr_resync = j;
5203 mddev->curr_mark_cnt = io_sectors;
5204 if (last_check == 0)
5205 /* this is the earliers that rebuilt will be
5206 * visible in /proc/mdstat
5207 */
5208 md_new_event(mddev);
5209
5210 if (last_check + window > io_sectors || j == max_sectors)
5211 continue;
5212
5213 last_check = io_sectors;
5214
5215 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5216 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5217 break;
5218
5219 repeat:
5220 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5221 /* step marks */
5222 int next = (last_mark+1) % SYNC_MARKS;
5223
5224 mddev->resync_mark = mark[next];
5225 mddev->resync_mark_cnt = mark_cnt[next];
5226 mark[next] = jiffies;
5227 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5228 last_mark = next;
5229 }
5230
5231
5232 if (kthread_should_stop()) {
5233 /*
5234 * got a signal, exit.
5235 */
5236 printk(KERN_INFO
5237 "md: md_do_sync() got signal ... exiting\n");
5238 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5239 goto out;
5240 }
5241
5242 /*
5243 * this loop exits only if either when we are slower than
5244 * the 'hard' speed limit, or the system was IO-idle for
5245 * a jiffy.
5246 * the system might be non-idle CPU-wise, but we only care
5247 * about not overloading the IO subsystem. (things like an
5248 * e2fsck being done on the RAID array should execute fast)
5249 */
5250 mddev->queue->unplug_fn(mddev->queue);
5251 cond_resched();
5252
5253 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5254 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5255
5256 if (currspeed > speed_min(mddev)) {
5257 if ((currspeed > speed_max(mddev)) ||
5258 !is_mddev_idle(mddev)) {
5259 msleep(500);
5260 goto repeat;
5261 }
5262 }
5263 }
5264 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5265 /*
5266 * this also signals 'finished resyncing' to md_stop
5267 */
5268 out:
5269 mddev->queue->unplug_fn(mddev->queue);
5270
5271 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5272
5273 /* tell personality that we are finished */
5274 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5275
5276 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5277 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
5278 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5279 mddev->curr_resync > 2) {
5280 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5281 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5282 if (mddev->curr_resync >= mddev->recovery_cp) {
5283 printk(KERN_INFO
5284 "md: checkpointing %s of %s.\n",
5285 desc, mdname(mddev));
5286 mddev->recovery_cp = mddev->curr_resync;
5287 }
5288 } else
5289 mddev->recovery_cp = MaxSector;
5290 } else {
5291 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5292 mddev->curr_resync = MaxSector;
5293 ITERATE_RDEV(mddev,rdev,rtmp)
5294 if (rdev->raid_disk >= 0 &&
5295 !test_bit(Faulty, &rdev->flags) &&
5296 !test_bit(In_sync, &rdev->flags) &&
5297 rdev->recovery_offset < mddev->curr_resync)
5298 rdev->recovery_offset = mddev->curr_resync;
5299 }
5300 }
5301
5302 skip:
5303 mddev->curr_resync = 0;
5304 wake_up(&resync_wait);
5305 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5306 md_wakeup_thread(mddev->thread);
5307 }
5308 EXPORT_SYMBOL_GPL(md_do_sync);
5309
5310
5311 /*
5312 * This routine is regularly called by all per-raid-array threads to
5313 * deal with generic issues like resync and super-block update.
5314 * Raid personalities that don't have a thread (linear/raid0) do not
5315 * need this as they never do any recovery or update the superblock.
5316 *
5317 * It does not do any resync itself, but rather "forks" off other threads
5318 * to do that as needed.
5319 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5320 * "->recovery" and create a thread at ->sync_thread.
5321 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5322 * and wakeups up this thread which will reap the thread and finish up.
5323 * This thread also removes any faulty devices (with nr_pending == 0).
5324 *
5325 * The overall approach is:
5326 * 1/ if the superblock needs updating, update it.
5327 * 2/ If a recovery thread is running, don't do anything else.
5328 * 3/ If recovery has finished, clean up, possibly marking spares active.
5329 * 4/ If there are any faulty devices, remove them.
5330 * 5/ If array is degraded, try to add spares devices
5331 * 6/ If array has spares or is not in-sync, start a resync thread.
5332 */
5333 void md_check_recovery(mddev_t *mddev)
5334 {
5335 mdk_rdev_t *rdev;
5336 struct list_head *rtmp;
5337
5338
5339 if (mddev->bitmap)
5340 bitmap_daemon_work(mddev->bitmap);
5341
5342 if (mddev->ro)
5343 return;
5344
5345 if (signal_pending(current)) {
5346 if (mddev->pers->sync_request) {
5347 printk(KERN_INFO "md: %s in immediate safe mode\n",
5348 mdname(mddev));
5349 mddev->safemode = 2;
5350 }
5351 flush_signals(current);
5352 }
5353
5354 if ( ! (
5355 mddev->flags ||
5356 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5357 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5358 (mddev->safemode == 1) ||
5359 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5360 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5361 ))
5362 return;
5363
5364 if (mddev_trylock(mddev)) {
5365 int spares =0;
5366
5367 spin_lock_irq(&mddev->write_lock);
5368 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5369 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5370 mddev->in_sync = 1;
5371 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5372 }
5373 if (mddev->safemode == 1)
5374 mddev->safemode = 0;
5375 spin_unlock_irq(&mddev->write_lock);
5376
5377 if (mddev->flags)
5378 md_update_sb(mddev, 0);
5379
5380
5381 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5382 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5383 /* resync/recovery still happening */
5384 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5385 goto unlock;
5386 }
5387 if (mddev->sync_thread) {
5388 /* resync has finished, collect result */
5389 md_unregister_thread(mddev->sync_thread);
5390 mddev->sync_thread = NULL;
5391 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5392 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5393 /* success...*/
5394 /* activate any spares */
5395 mddev->pers->spare_active(mddev);
5396 }
5397 md_update_sb(mddev, 1);
5398
5399 /* if array is no-longer degraded, then any saved_raid_disk
5400 * information must be scrapped
5401 */
5402 if (!mddev->degraded)
5403 ITERATE_RDEV(mddev,rdev,rtmp)
5404 rdev->saved_raid_disk = -1;
5405
5406 mddev->recovery = 0;
5407 /* flag recovery needed just to double check */
5408 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5409 md_new_event(mddev);
5410 goto unlock;
5411 }
5412 /* Clear some bits that don't mean anything, but
5413 * might be left set
5414 */
5415 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5416 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5417 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5418 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5419
5420 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5421 goto unlock;
5422 /* no recovery is running.
5423 * remove any failed drives, then
5424 * add spares if possible.
5425 * Spare are also removed and re-added, to allow
5426 * the personality to fail the re-add.
5427 */
5428 ITERATE_RDEV(mddev,rdev,rtmp)
5429 if (rdev->raid_disk >= 0 &&
5430 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5431 atomic_read(&rdev->nr_pending)==0) {
5432 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5433 char nm[20];
5434 sprintf(nm,"rd%d", rdev->raid_disk);
5435 sysfs_remove_link(&mddev->kobj, nm);
5436 rdev->raid_disk = -1;
5437 }
5438 }
5439
5440 if (mddev->degraded) {
5441 ITERATE_RDEV(mddev,rdev,rtmp)
5442 if (rdev->raid_disk < 0
5443 && !test_bit(Faulty, &rdev->flags)) {
5444 rdev->recovery_offset = 0;
5445 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5446 char nm[20];
5447 sprintf(nm, "rd%d", rdev->raid_disk);
5448 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5449 spares++;
5450 md_new_event(mddev);
5451 } else
5452 break;
5453 }
5454 }
5455
5456 if (spares) {
5457 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5458 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5459 } else if (mddev->recovery_cp < MaxSector) {
5460 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5461 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5462 /* nothing to be done ... */
5463 goto unlock;
5464
5465 if (mddev->pers->sync_request) {
5466 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5467 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5468 /* We are adding a device or devices to an array
5469 * which has the bitmap stored on all devices.
5470 * So make sure all bitmap pages get written
5471 */
5472 bitmap_write_all(mddev->bitmap);
5473 }
5474 mddev->sync_thread = md_register_thread(md_do_sync,
5475 mddev,
5476 "%s_resync");
5477 if (!mddev->sync_thread) {
5478 printk(KERN_ERR "%s: could not start resync"
5479 " thread...\n",
5480 mdname(mddev));
5481 /* leave the spares where they are, it shouldn't hurt */
5482 mddev->recovery = 0;
5483 } else
5484 md_wakeup_thread(mddev->sync_thread);
5485 md_new_event(mddev);
5486 }
5487 unlock:
5488 mddev_unlock(mddev);
5489 }
5490 }
5491
5492 static int md_notify_reboot(struct notifier_block *this,
5493 unsigned long code, void *x)
5494 {
5495 struct list_head *tmp;
5496 mddev_t *mddev;
5497
5498 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5499
5500 printk(KERN_INFO "md: stopping all md devices.\n");
5501
5502 ITERATE_MDDEV(mddev,tmp)
5503 if (mddev_trylock(mddev)) {
5504 do_md_stop (mddev, 1);
5505 mddev_unlock(mddev);
5506 }
5507 /*
5508 * certain more exotic SCSI devices are known to be
5509 * volatile wrt too early system reboots. While the
5510 * right place to handle this issue is the given
5511 * driver, we do want to have a safe RAID driver ...
5512 */
5513 mdelay(1000*1);
5514 }
5515 return NOTIFY_DONE;
5516 }
5517
5518 static struct notifier_block md_notifier = {
5519 .notifier_call = md_notify_reboot,
5520 .next = NULL,
5521 .priority = INT_MAX, /* before any real devices */
5522 };
5523
5524 static void md_geninit(void)
5525 {
5526 struct proc_dir_entry *p;
5527
5528 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5529
5530 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5531 if (p)
5532 p->proc_fops = &md_seq_fops;
5533 }
5534
5535 static int __init md_init(void)
5536 {
5537 if (register_blkdev(MAJOR_NR, "md"))
5538 return -1;
5539 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5540 unregister_blkdev(MAJOR_NR, "md");
5541 return -1;
5542 }
5543 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5544 md_probe, NULL, NULL);
5545 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5546 md_probe, NULL, NULL);
5547
5548 register_reboot_notifier(&md_notifier);
5549 raid_table_header = register_sysctl_table(raid_root_table, 1);
5550
5551 md_geninit();
5552 return (0);
5553 }
5554
5555
5556 #ifndef MODULE
5557
5558 /*
5559 * Searches all registered partitions for autorun RAID arrays
5560 * at boot time.
5561 */
5562 static dev_t detected_devices[128];
5563 static int dev_cnt;
5564
5565 void md_autodetect_dev(dev_t dev)
5566 {
5567 if (dev_cnt >= 0 && dev_cnt < 127)
5568 detected_devices[dev_cnt++] = dev;
5569 }
5570
5571
5572 static void autostart_arrays(int part)
5573 {
5574 mdk_rdev_t *rdev;
5575 int i;
5576
5577 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5578
5579 for (i = 0; i < dev_cnt; i++) {
5580 dev_t dev = detected_devices[i];
5581
5582 rdev = md_import_device(dev,0, 0);
5583 if (IS_ERR(rdev))
5584 continue;
5585
5586 if (test_bit(Faulty, &rdev->flags)) {
5587 MD_BUG();
5588 continue;
5589 }
5590 list_add(&rdev->same_set, &pending_raid_disks);
5591 }
5592 dev_cnt = 0;
5593
5594 autorun_devices(part);
5595 }
5596
5597 #endif
5598
5599 static __exit void md_exit(void)
5600 {
5601 mddev_t *mddev;
5602 struct list_head *tmp;
5603
5604 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5605 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5606
5607 unregister_blkdev(MAJOR_NR,"md");
5608 unregister_blkdev(mdp_major, "mdp");
5609 unregister_reboot_notifier(&md_notifier);
5610 unregister_sysctl_table(raid_table_header);
5611 remove_proc_entry("mdstat", NULL);
5612 ITERATE_MDDEV(mddev,tmp) {
5613 struct gendisk *disk = mddev->gendisk;
5614 if (!disk)
5615 continue;
5616 export_array(mddev);
5617 del_gendisk(disk);
5618 put_disk(disk);
5619 mddev->gendisk = NULL;
5620 mddev_put(mddev);
5621 }
5622 }
5623
5624 module_init(md_init)
5625 module_exit(md_exit)
5626
5627 static int get_ro(char *buffer, struct kernel_param *kp)
5628 {
5629 return sprintf(buffer, "%d", start_readonly);
5630 }
5631 static int set_ro(const char *val, struct kernel_param *kp)
5632 {
5633 char *e;
5634 int num = simple_strtoul(val, &e, 10);
5635 if (*val && (*e == '\0' || *e == '\n')) {
5636 start_readonly = num;
5637 return 0;
5638 }
5639 return -EINVAL;
5640 }
5641
5642 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5643 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5644
5645
5646 EXPORT_SYMBOL(register_md_personality);
5647 EXPORT_SYMBOL(unregister_md_personality);
5648 EXPORT_SYMBOL(md_error);
5649 EXPORT_SYMBOL(md_done_sync);
5650 EXPORT_SYMBOL(md_write_start);
5651 EXPORT_SYMBOL(md_write_end);
5652 EXPORT_SYMBOL(md_register_thread);
5653 EXPORT_SYMBOL(md_unregister_thread);
5654 EXPORT_SYMBOL(md_wakeup_thread);
5655 EXPORT_SYMBOL(md_check_recovery);
5656 MODULE_LICENSE("GPL");
5657 MODULE_ALIAS("md");
5658 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.217072 seconds and 5 git commands to generate.