84dc5d7a445b354b32656f050e6ed1389eb9e006
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258 int cpu;
259
260 if (mddev == NULL || mddev->pers == NULL
261 || !mddev->ready) {
262 bio_io_error(bio);
263 return;
264 }
265 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267 return;
268 }
269 smp_rmb(); /* Ensure implications of 'active' are visible */
270 rcu_read_lock();
271 if (mddev->suspended) {
272 DEFINE_WAIT(__wait);
273 for (;;) {
274 prepare_to_wait(&mddev->sb_wait, &__wait,
275 TASK_UNINTERRUPTIBLE);
276 if (!mddev->suspended)
277 break;
278 rcu_read_unlock();
279 schedule();
280 rcu_read_lock();
281 }
282 finish_wait(&mddev->sb_wait, &__wait);
283 }
284 atomic_inc(&mddev->active_io);
285 rcu_read_unlock();
286
287 /*
288 * save the sectors now since our bio can
289 * go away inside make_request
290 */
291 sectors = bio_sectors(bio);
292 mddev->pers->make_request(mddev, bio);
293
294 cpu = part_stat_lock();
295 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297 part_stat_unlock();
298
299 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300 wake_up(&mddev->sb_wait);
301 }
302
303 /* mddev_suspend makes sure no new requests are submitted
304 * to the device, and that any requests that have been submitted
305 * are completely handled.
306 * Once mddev_detach() is called and completes, the module will be
307 * completely unused.
308 */
309 void mddev_suspend(struct mddev *mddev)
310 {
311 BUG_ON(mddev->suspended);
312 mddev->suspended = 1;
313 synchronize_rcu();
314 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 mddev->pers->quiesce(mddev, 1);
316
317 del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323 mddev->suspended = 0;
324 wake_up(&mddev->sb_wait);
325 mddev->pers->quiesce(mddev, 0);
326
327 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328 md_wakeup_thread(mddev->thread);
329 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335 struct md_personality *pers = mddev->pers;
336 int ret = 0;
337
338 rcu_read_lock();
339 if (mddev->suspended)
340 ret = 1;
341 else if (pers && pers->congested)
342 ret = pers->congested(mddev, bits);
343 rcu_read_unlock();
344 return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349 struct mddev *mddev = data;
350 return mddev_congested(mddev, bits);
351 }
352
353 static int md_mergeable_bvec(struct request_queue *q,
354 struct bvec_merge_data *bvm,
355 struct bio_vec *biovec)
356 {
357 struct mddev *mddev = q->queuedata;
358 int ret;
359 rcu_read_lock();
360 if (mddev->suspended) {
361 /* Must always allow one vec */
362 if (bvm->bi_size == 0)
363 ret = biovec->bv_len;
364 else
365 ret = 0;
366 } else {
367 struct md_personality *pers = mddev->pers;
368 if (pers && pers->mergeable_bvec)
369 ret = pers->mergeable_bvec(mddev, bvm, biovec);
370 else
371 ret = biovec->bv_len;
372 }
373 rcu_read_unlock();
374 return ret;
375 }
376 /*
377 * Generic flush handling for md
378 */
379
380 static void md_end_flush(struct bio *bio, int err)
381 {
382 struct md_rdev *rdev = bio->bi_private;
383 struct mddev *mddev = rdev->mddev;
384
385 rdev_dec_pending(rdev, mddev);
386
387 if (atomic_dec_and_test(&mddev->flush_pending)) {
388 /* The pre-request flush has finished */
389 queue_work(md_wq, &mddev->flush_work);
390 }
391 bio_put(bio);
392 }
393
394 static void md_submit_flush_data(struct work_struct *ws);
395
396 static void submit_flushes(struct work_struct *ws)
397 {
398 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399 struct md_rdev *rdev;
400
401 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402 atomic_set(&mddev->flush_pending, 1);
403 rcu_read_lock();
404 rdev_for_each_rcu(rdev, mddev)
405 if (rdev->raid_disk >= 0 &&
406 !test_bit(Faulty, &rdev->flags)) {
407 /* Take two references, one is dropped
408 * when request finishes, one after
409 * we reclaim rcu_read_lock
410 */
411 struct bio *bi;
412 atomic_inc(&rdev->nr_pending);
413 atomic_inc(&rdev->nr_pending);
414 rcu_read_unlock();
415 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416 bi->bi_end_io = md_end_flush;
417 bi->bi_private = rdev;
418 bi->bi_bdev = rdev->bdev;
419 atomic_inc(&mddev->flush_pending);
420 submit_bio(WRITE_FLUSH, bi);
421 rcu_read_lock();
422 rdev_dec_pending(rdev, mddev);
423 }
424 rcu_read_unlock();
425 if (atomic_dec_and_test(&mddev->flush_pending))
426 queue_work(md_wq, &mddev->flush_work);
427 }
428
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432 struct bio *bio = mddev->flush_bio;
433
434 if (bio->bi_iter.bi_size == 0)
435 /* an empty barrier - all done */
436 bio_endio(bio, 0);
437 else {
438 bio->bi_rw &= ~REQ_FLUSH;
439 mddev->pers->make_request(mddev, bio);
440 }
441
442 mddev->flush_bio = NULL;
443 wake_up(&mddev->sb_wait);
444 }
445
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448 spin_lock_irq(&mddev->lock);
449 wait_event_lock_irq(mddev->sb_wait,
450 !mddev->flush_bio,
451 mddev->lock);
452 mddev->flush_bio = bio;
453 spin_unlock_irq(&mddev->lock);
454
455 INIT_WORK(&mddev->flush_work, submit_flushes);
456 queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462 struct mddev *mddev = cb->data;
463 md_wakeup_thread(mddev->thread);
464 kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470 atomic_inc(&mddev->active);
471 return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478 struct bio_set *bs = NULL;
479
480 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481 return;
482 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483 mddev->ctime == 0 && !mddev->hold_active) {
484 /* Array is not configured at all, and not held active,
485 * so destroy it */
486 list_del_init(&mddev->all_mddevs);
487 bs = mddev->bio_set;
488 mddev->bio_set = NULL;
489 if (mddev->gendisk) {
490 /* We did a probe so need to clean up. Call
491 * queue_work inside the spinlock so that
492 * flush_workqueue() after mddev_find will
493 * succeed in waiting for the work to be done.
494 */
495 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496 queue_work(md_misc_wq, &mddev->del_work);
497 } else
498 kfree(mddev);
499 }
500 spin_unlock(&all_mddevs_lock);
501 if (bs)
502 bioset_free(bs);
503 }
504
505 void mddev_init(struct mddev *mddev)
506 {
507 mutex_init(&mddev->open_mutex);
508 mutex_init(&mddev->reconfig_mutex);
509 mutex_init(&mddev->bitmap_info.mutex);
510 INIT_LIST_HEAD(&mddev->disks);
511 INIT_LIST_HEAD(&mddev->all_mddevs);
512 init_timer(&mddev->safemode_timer);
513 atomic_set(&mddev->active, 1);
514 atomic_set(&mddev->openers, 0);
515 atomic_set(&mddev->active_io, 0);
516 spin_lock_init(&mddev->lock);
517 atomic_set(&mddev->flush_pending, 0);
518 init_waitqueue_head(&mddev->sb_wait);
519 init_waitqueue_head(&mddev->recovery_wait);
520 mddev->reshape_position = MaxSector;
521 mddev->reshape_backwards = 0;
522 mddev->last_sync_action = "none";
523 mddev->resync_min = 0;
524 mddev->resync_max = MaxSector;
525 mddev->level = LEVEL_NONE;
526 }
527 EXPORT_SYMBOL_GPL(mddev_init);
528
529 static struct mddev *mddev_find(dev_t unit)
530 {
531 struct mddev *mddev, *new = NULL;
532
533 if (unit && MAJOR(unit) != MD_MAJOR)
534 unit &= ~((1<<MdpMinorShift)-1);
535
536 retry:
537 spin_lock(&all_mddevs_lock);
538
539 if (unit) {
540 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
541 if (mddev->unit == unit) {
542 mddev_get(mddev);
543 spin_unlock(&all_mddevs_lock);
544 kfree(new);
545 return mddev;
546 }
547
548 if (new) {
549 list_add(&new->all_mddevs, &all_mddevs);
550 spin_unlock(&all_mddevs_lock);
551 new->hold_active = UNTIL_IOCTL;
552 return new;
553 }
554 } else if (new) {
555 /* find an unused unit number */
556 static int next_minor = 512;
557 int start = next_minor;
558 int is_free = 0;
559 int dev = 0;
560 while (!is_free) {
561 dev = MKDEV(MD_MAJOR, next_minor);
562 next_minor++;
563 if (next_minor > MINORMASK)
564 next_minor = 0;
565 if (next_minor == start) {
566 /* Oh dear, all in use. */
567 spin_unlock(&all_mddevs_lock);
568 kfree(new);
569 return NULL;
570 }
571
572 is_free = 1;
573 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
574 if (mddev->unit == dev) {
575 is_free = 0;
576 break;
577 }
578 }
579 new->unit = dev;
580 new->md_minor = MINOR(dev);
581 new->hold_active = UNTIL_STOP;
582 list_add(&new->all_mddevs, &all_mddevs);
583 spin_unlock(&all_mddevs_lock);
584 return new;
585 }
586 spin_unlock(&all_mddevs_lock);
587
588 new = kzalloc(sizeof(*new), GFP_KERNEL);
589 if (!new)
590 return NULL;
591
592 new->unit = unit;
593 if (MAJOR(unit) == MD_MAJOR)
594 new->md_minor = MINOR(unit);
595 else
596 new->md_minor = MINOR(unit) >> MdpMinorShift;
597
598 mddev_init(new);
599
600 goto retry;
601 }
602
603 static struct attribute_group md_redundancy_group;
604
605 void mddev_unlock(struct mddev *mddev)
606 {
607 if (mddev->to_remove) {
608 /* These cannot be removed under reconfig_mutex as
609 * an access to the files will try to take reconfig_mutex
610 * while holding the file unremovable, which leads to
611 * a deadlock.
612 * So hold set sysfs_active while the remove in happeing,
613 * and anything else which might set ->to_remove or my
614 * otherwise change the sysfs namespace will fail with
615 * -EBUSY if sysfs_active is still set.
616 * We set sysfs_active under reconfig_mutex and elsewhere
617 * test it under the same mutex to ensure its correct value
618 * is seen.
619 */
620 struct attribute_group *to_remove = mddev->to_remove;
621 mddev->to_remove = NULL;
622 mddev->sysfs_active = 1;
623 mutex_unlock(&mddev->reconfig_mutex);
624
625 if (mddev->kobj.sd) {
626 if (to_remove != &md_redundancy_group)
627 sysfs_remove_group(&mddev->kobj, to_remove);
628 if (mddev->pers == NULL ||
629 mddev->pers->sync_request == NULL) {
630 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
631 if (mddev->sysfs_action)
632 sysfs_put(mddev->sysfs_action);
633 mddev->sysfs_action = NULL;
634 }
635 }
636 mddev->sysfs_active = 0;
637 } else
638 mutex_unlock(&mddev->reconfig_mutex);
639
640 /* As we've dropped the mutex we need a spinlock to
641 * make sure the thread doesn't disappear
642 */
643 spin_lock(&pers_lock);
644 md_wakeup_thread(mddev->thread);
645 spin_unlock(&pers_lock);
646 }
647 EXPORT_SYMBOL_GPL(mddev_unlock);
648
649 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
650 {
651 struct md_rdev *rdev;
652
653 rdev_for_each_rcu(rdev, mddev)
654 if (rdev->desc_nr == nr)
655 return rdev;
656
657 return NULL;
658 }
659 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
660
661 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
662 {
663 struct md_rdev *rdev;
664
665 rdev_for_each(rdev, mddev)
666 if (rdev->bdev->bd_dev == dev)
667 return rdev;
668
669 return NULL;
670 }
671
672 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
673 {
674 struct md_rdev *rdev;
675
676 rdev_for_each_rcu(rdev, mddev)
677 if (rdev->bdev->bd_dev == dev)
678 return rdev;
679
680 return NULL;
681 }
682
683 static struct md_personality *find_pers(int level, char *clevel)
684 {
685 struct md_personality *pers;
686 list_for_each_entry(pers, &pers_list, list) {
687 if (level != LEVEL_NONE && pers->level == level)
688 return pers;
689 if (strcmp(pers->name, clevel)==0)
690 return pers;
691 }
692 return NULL;
693 }
694
695 /* return the offset of the super block in 512byte sectors */
696 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
697 {
698 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
699 return MD_NEW_SIZE_SECTORS(num_sectors);
700 }
701
702 static int alloc_disk_sb(struct md_rdev *rdev)
703 {
704 rdev->sb_page = alloc_page(GFP_KERNEL);
705 if (!rdev->sb_page) {
706 printk(KERN_ALERT "md: out of memory.\n");
707 return -ENOMEM;
708 }
709
710 return 0;
711 }
712
713 void md_rdev_clear(struct md_rdev *rdev)
714 {
715 if (rdev->sb_page) {
716 put_page(rdev->sb_page);
717 rdev->sb_loaded = 0;
718 rdev->sb_page = NULL;
719 rdev->sb_start = 0;
720 rdev->sectors = 0;
721 }
722 if (rdev->bb_page) {
723 put_page(rdev->bb_page);
724 rdev->bb_page = NULL;
725 }
726 kfree(rdev->badblocks.page);
727 rdev->badblocks.page = NULL;
728 }
729 EXPORT_SYMBOL_GPL(md_rdev_clear);
730
731 static void super_written(struct bio *bio, int error)
732 {
733 struct md_rdev *rdev = bio->bi_private;
734 struct mddev *mddev = rdev->mddev;
735
736 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
737 printk("md: super_written gets error=%d, uptodate=%d\n",
738 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
739 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
740 md_error(mddev, rdev);
741 }
742
743 if (atomic_dec_and_test(&mddev->pending_writes))
744 wake_up(&mddev->sb_wait);
745 bio_put(bio);
746 }
747
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749 sector_t sector, int size, struct page *page)
750 {
751 /* write first size bytes of page to sector of rdev
752 * Increment mddev->pending_writes before returning
753 * and decrement it on completion, waking up sb_wait
754 * if zero is reached.
755 * If an error occurred, call md_error
756 */
757 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758
759 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760 bio->bi_iter.bi_sector = sector;
761 bio_add_page(bio, page, size, 0);
762 bio->bi_private = rdev;
763 bio->bi_end_io = super_written;
764
765 atomic_inc(&mddev->pending_writes);
766 submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768
769 void md_super_wait(struct mddev *mddev)
770 {
771 /* wait for all superblock writes that were scheduled to complete */
772 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776 struct page *page, int rw, bool metadata_op)
777 {
778 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779 int ret;
780
781 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782 rdev->meta_bdev : rdev->bdev;
783 if (metadata_op)
784 bio->bi_iter.bi_sector = sector + rdev->sb_start;
785 else if (rdev->mddev->reshape_position != MaxSector &&
786 (rdev->mddev->reshape_backwards ==
787 (sector >= rdev->mddev->reshape_position)))
788 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789 else
790 bio->bi_iter.bi_sector = sector + rdev->data_offset;
791 bio_add_page(bio, page, size, 0);
792 submit_bio_wait(rw, bio);
793
794 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
795 bio_put(bio);
796 return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802 char b[BDEVNAME_SIZE];
803
804 if (rdev->sb_loaded)
805 return 0;
806
807 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808 goto fail;
809 rdev->sb_loaded = 1;
810 return 0;
811
812 fail:
813 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814 bdevname(rdev->bdev,b));
815 return -EINVAL;
816 }
817
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820 return sb1->set_uuid0 == sb2->set_uuid0 &&
821 sb1->set_uuid1 == sb2->set_uuid1 &&
822 sb1->set_uuid2 == sb2->set_uuid2 &&
823 sb1->set_uuid3 == sb2->set_uuid3;
824 }
825
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828 int ret;
829 mdp_super_t *tmp1, *tmp2;
830
831 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833
834 if (!tmp1 || !tmp2) {
835 ret = 0;
836 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837 goto abort;
838 }
839
840 *tmp1 = *sb1;
841 *tmp2 = *sb2;
842
843 /*
844 * nr_disks is not constant
845 */
846 tmp1->nr_disks = 0;
847 tmp2->nr_disks = 0;
848
849 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851 kfree(tmp1);
852 kfree(tmp2);
853 return ret;
854 }
855
856 static u32 md_csum_fold(u32 csum)
857 {
858 csum = (csum & 0xffff) + (csum >> 16);
859 return (csum & 0xffff) + (csum >> 16);
860 }
861
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864 u64 newcsum = 0;
865 u32 *sb32 = (u32*)sb;
866 int i;
867 unsigned int disk_csum, csum;
868
869 disk_csum = sb->sb_csum;
870 sb->sb_csum = 0;
871
872 for (i = 0; i < MD_SB_BYTES/4 ; i++)
873 newcsum += sb32[i];
874 csum = (newcsum & 0xffffffff) + (newcsum>>32);
875
876 #ifdef CONFIG_ALPHA
877 /* This used to use csum_partial, which was wrong for several
878 * reasons including that different results are returned on
879 * different architectures. It isn't critical that we get exactly
880 * the same return value as before (we always csum_fold before
881 * testing, and that removes any differences). However as we
882 * know that csum_partial always returned a 16bit value on
883 * alphas, do a fold to maximise conformity to previous behaviour.
884 */
885 sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887 sb->sb_csum = disk_csum;
888 #endif
889 return csum;
890 }
891
892 /*
893 * Handle superblock details.
894 * We want to be able to handle multiple superblock formats
895 * so we have a common interface to them all, and an array of
896 * different handlers.
897 * We rely on user-space to write the initial superblock, and support
898 * reading and updating of superblocks.
899 * Interface methods are:
900 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901 * loads and validates a superblock on dev.
902 * if refdev != NULL, compare superblocks on both devices
903 * Return:
904 * 0 - dev has a superblock that is compatible with refdev
905 * 1 - dev has a superblock that is compatible and newer than refdev
906 * so dev should be used as the refdev in future
907 * -EINVAL superblock incompatible or invalid
908 * -othererror e.g. -EIO
909 *
910 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
911 * Verify that dev is acceptable into mddev.
912 * The first time, mddev->raid_disks will be 0, and data from
913 * dev should be merged in. Subsequent calls check that dev
914 * is new enough. Return 0 or -EINVAL
915 *
916 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
917 * Update the superblock for rdev with data in mddev
918 * This does not write to disc.
919 *
920 */
921
922 struct super_type {
923 char *name;
924 struct module *owner;
925 int (*load_super)(struct md_rdev *rdev,
926 struct md_rdev *refdev,
927 int minor_version);
928 int (*validate_super)(struct mddev *mddev,
929 struct md_rdev *rdev);
930 void (*sync_super)(struct mddev *mddev,
931 struct md_rdev *rdev);
932 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
933 sector_t num_sectors);
934 int (*allow_new_offset)(struct md_rdev *rdev,
935 unsigned long long new_offset);
936 };
937
938 /*
939 * Check that the given mddev has no bitmap.
940 *
941 * This function is called from the run method of all personalities that do not
942 * support bitmaps. It prints an error message and returns non-zero if mddev
943 * has a bitmap. Otherwise, it returns 0.
944 *
945 */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949 return 0;
950 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951 mdname(mddev), mddev->pers->name);
952 return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955
956 /*
957 * load_super for 0.90.0
958 */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 mdp_super_t *sb;
963 int ret;
964
965 /*
966 * Calculate the position of the superblock (512byte sectors),
967 * it's at the end of the disk.
968 *
969 * It also happens to be a multiple of 4Kb.
970 */
971 rdev->sb_start = calc_dev_sboffset(rdev);
972
973 ret = read_disk_sb(rdev, MD_SB_BYTES);
974 if (ret) return ret;
975
976 ret = -EINVAL;
977
978 bdevname(rdev->bdev, b);
979 sb = page_address(rdev->sb_page);
980
981 if (sb->md_magic != MD_SB_MAGIC) {
982 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983 b);
984 goto abort;
985 }
986
987 if (sb->major_version != 0 ||
988 sb->minor_version < 90 ||
989 sb->minor_version > 91) {
990 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991 sb->major_version, sb->minor_version,
992 b);
993 goto abort;
994 }
995
996 if (sb->raid_disks <= 0)
997 goto abort;
998
999 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001 b);
1002 goto abort;
1003 }
1004
1005 rdev->preferred_minor = sb->md_minor;
1006 rdev->data_offset = 0;
1007 rdev->new_data_offset = 0;
1008 rdev->sb_size = MD_SB_BYTES;
1009 rdev->badblocks.shift = -1;
1010
1011 if (sb->level == LEVEL_MULTIPATH)
1012 rdev->desc_nr = -1;
1013 else
1014 rdev->desc_nr = sb->this_disk.number;
1015
1016 if (!refdev) {
1017 ret = 1;
1018 } else {
1019 __u64 ev1, ev2;
1020 mdp_super_t *refsb = page_address(refdev->sb_page);
1021 if (!uuid_equal(refsb, sb)) {
1022 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023 b, bdevname(refdev->bdev,b2));
1024 goto abort;
1025 }
1026 if (!sb_equal(refsb, sb)) {
1027 printk(KERN_WARNING "md: %s has same UUID"
1028 " but different superblock to %s\n",
1029 b, bdevname(refdev->bdev, b2));
1030 goto abort;
1031 }
1032 ev1 = md_event(sb);
1033 ev2 = md_event(refsb);
1034 if (ev1 > ev2)
1035 ret = 1;
1036 else
1037 ret = 0;
1038 }
1039 rdev->sectors = rdev->sb_start;
1040 /* Limit to 4TB as metadata cannot record more than that.
1041 * (not needed for Linear and RAID0 as metadata doesn't
1042 * record this size)
1043 */
1044 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045 rdev->sectors = (2ULL << 32) - 2;
1046
1047 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048 /* "this cannot possibly happen" ... */
1049 ret = -EINVAL;
1050
1051 abort:
1052 return ret;
1053 }
1054
1055 /*
1056 * validate_super for 0.90.0
1057 */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060 mdp_disk_t *desc;
1061 mdp_super_t *sb = page_address(rdev->sb_page);
1062 __u64 ev1 = md_event(sb);
1063
1064 rdev->raid_disk = -1;
1065 clear_bit(Faulty, &rdev->flags);
1066 clear_bit(In_sync, &rdev->flags);
1067 clear_bit(Bitmap_sync, &rdev->flags);
1068 clear_bit(WriteMostly, &rdev->flags);
1069
1070 if (mddev->raid_disks == 0) {
1071 mddev->major_version = 0;
1072 mddev->minor_version = sb->minor_version;
1073 mddev->patch_version = sb->patch_version;
1074 mddev->external = 0;
1075 mddev->chunk_sectors = sb->chunk_size >> 9;
1076 mddev->ctime = sb->ctime;
1077 mddev->utime = sb->utime;
1078 mddev->level = sb->level;
1079 mddev->clevel[0] = 0;
1080 mddev->layout = sb->layout;
1081 mddev->raid_disks = sb->raid_disks;
1082 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083 mddev->events = ev1;
1084 mddev->bitmap_info.offset = 0;
1085 mddev->bitmap_info.space = 0;
1086 /* bitmap can use 60 K after the 4K superblocks */
1087 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089 mddev->reshape_backwards = 0;
1090
1091 if (mddev->minor_version >= 91) {
1092 mddev->reshape_position = sb->reshape_position;
1093 mddev->delta_disks = sb->delta_disks;
1094 mddev->new_level = sb->new_level;
1095 mddev->new_layout = sb->new_layout;
1096 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097 if (mddev->delta_disks < 0)
1098 mddev->reshape_backwards = 1;
1099 } else {
1100 mddev->reshape_position = MaxSector;
1101 mddev->delta_disks = 0;
1102 mddev->new_level = mddev->level;
1103 mddev->new_layout = mddev->layout;
1104 mddev->new_chunk_sectors = mddev->chunk_sectors;
1105 }
1106
1107 if (sb->state & (1<<MD_SB_CLEAN))
1108 mddev->recovery_cp = MaxSector;
1109 else {
1110 if (sb->events_hi == sb->cp_events_hi &&
1111 sb->events_lo == sb->cp_events_lo) {
1112 mddev->recovery_cp = sb->recovery_cp;
1113 } else
1114 mddev->recovery_cp = 0;
1115 }
1116
1117 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121
1122 mddev->max_disks = MD_SB_DISKS;
1123
1124 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125 mddev->bitmap_info.file == NULL) {
1126 mddev->bitmap_info.offset =
1127 mddev->bitmap_info.default_offset;
1128 mddev->bitmap_info.space =
1129 mddev->bitmap_info.default_space;
1130 }
1131
1132 } else if (mddev->pers == NULL) {
1133 /* Insist on good event counter while assembling, except
1134 * for spares (which don't need an event count) */
1135 ++ev1;
1136 if (sb->disks[rdev->desc_nr].state & (
1137 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138 if (ev1 < mddev->events)
1139 return -EINVAL;
1140 } else if (mddev->bitmap) {
1141 /* if adding to array with a bitmap, then we can accept an
1142 * older device ... but not too old.
1143 */
1144 if (ev1 < mddev->bitmap->events_cleared)
1145 return 0;
1146 if (ev1 < mddev->events)
1147 set_bit(Bitmap_sync, &rdev->flags);
1148 } else {
1149 if (ev1 < mddev->events)
1150 /* just a hot-add of a new device, leave raid_disk at -1 */
1151 return 0;
1152 }
1153
1154 if (mddev->level != LEVEL_MULTIPATH) {
1155 desc = sb->disks + rdev->desc_nr;
1156
1157 if (desc->state & (1<<MD_DISK_FAULTY))
1158 set_bit(Faulty, &rdev->flags);
1159 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160 desc->raid_disk < mddev->raid_disks */) {
1161 set_bit(In_sync, &rdev->flags);
1162 rdev->raid_disk = desc->raid_disk;
1163 rdev->saved_raid_disk = desc->raid_disk;
1164 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165 /* active but not in sync implies recovery up to
1166 * reshape position. We don't know exactly where
1167 * that is, so set to zero for now */
1168 if (mddev->minor_version >= 91) {
1169 rdev->recovery_offset = 0;
1170 rdev->raid_disk = desc->raid_disk;
1171 }
1172 }
1173 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174 set_bit(WriteMostly, &rdev->flags);
1175 } else /* MULTIPATH are always insync */
1176 set_bit(In_sync, &rdev->flags);
1177 return 0;
1178 }
1179
1180 /*
1181 * sync_super for 0.90.0
1182 */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185 mdp_super_t *sb;
1186 struct md_rdev *rdev2;
1187 int next_spare = mddev->raid_disks;
1188
1189 /* make rdev->sb match mddev data..
1190 *
1191 * 1/ zero out disks
1192 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193 * 3/ any empty disks < next_spare become removed
1194 *
1195 * disks[0] gets initialised to REMOVED because
1196 * we cannot be sure from other fields if it has
1197 * been initialised or not.
1198 */
1199 int i;
1200 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201
1202 rdev->sb_size = MD_SB_BYTES;
1203
1204 sb = page_address(rdev->sb_page);
1205
1206 memset(sb, 0, sizeof(*sb));
1207
1208 sb->md_magic = MD_SB_MAGIC;
1209 sb->major_version = mddev->major_version;
1210 sb->patch_version = mddev->patch_version;
1211 sb->gvalid_words = 0; /* ignored */
1212 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216
1217 sb->ctime = mddev->ctime;
1218 sb->level = mddev->level;
1219 sb->size = mddev->dev_sectors / 2;
1220 sb->raid_disks = mddev->raid_disks;
1221 sb->md_minor = mddev->md_minor;
1222 sb->not_persistent = 0;
1223 sb->utime = mddev->utime;
1224 sb->state = 0;
1225 sb->events_hi = (mddev->events>>32);
1226 sb->events_lo = (u32)mddev->events;
1227
1228 if (mddev->reshape_position == MaxSector)
1229 sb->minor_version = 90;
1230 else {
1231 sb->minor_version = 91;
1232 sb->reshape_position = mddev->reshape_position;
1233 sb->new_level = mddev->new_level;
1234 sb->delta_disks = mddev->delta_disks;
1235 sb->new_layout = mddev->new_layout;
1236 sb->new_chunk = mddev->new_chunk_sectors << 9;
1237 }
1238 mddev->minor_version = sb->minor_version;
1239 if (mddev->in_sync)
1240 {
1241 sb->recovery_cp = mddev->recovery_cp;
1242 sb->cp_events_hi = (mddev->events>>32);
1243 sb->cp_events_lo = (u32)mddev->events;
1244 if (mddev->recovery_cp == MaxSector)
1245 sb->state = (1<< MD_SB_CLEAN);
1246 } else
1247 sb->recovery_cp = 0;
1248
1249 sb->layout = mddev->layout;
1250 sb->chunk_size = mddev->chunk_sectors << 9;
1251
1252 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254
1255 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256 rdev_for_each(rdev2, mddev) {
1257 mdp_disk_t *d;
1258 int desc_nr;
1259 int is_active = test_bit(In_sync, &rdev2->flags);
1260
1261 if (rdev2->raid_disk >= 0 &&
1262 sb->minor_version >= 91)
1263 /* we have nowhere to store the recovery_offset,
1264 * but if it is not below the reshape_position,
1265 * we can piggy-back on that.
1266 */
1267 is_active = 1;
1268 if (rdev2->raid_disk < 0 ||
1269 test_bit(Faulty, &rdev2->flags))
1270 is_active = 0;
1271 if (is_active)
1272 desc_nr = rdev2->raid_disk;
1273 else
1274 desc_nr = next_spare++;
1275 rdev2->desc_nr = desc_nr;
1276 d = &sb->disks[rdev2->desc_nr];
1277 nr_disks++;
1278 d->number = rdev2->desc_nr;
1279 d->major = MAJOR(rdev2->bdev->bd_dev);
1280 d->minor = MINOR(rdev2->bdev->bd_dev);
1281 if (is_active)
1282 d->raid_disk = rdev2->raid_disk;
1283 else
1284 d->raid_disk = rdev2->desc_nr; /* compatibility */
1285 if (test_bit(Faulty, &rdev2->flags))
1286 d->state = (1<<MD_DISK_FAULTY);
1287 else if (is_active) {
1288 d->state = (1<<MD_DISK_ACTIVE);
1289 if (test_bit(In_sync, &rdev2->flags))
1290 d->state |= (1<<MD_DISK_SYNC);
1291 active++;
1292 working++;
1293 } else {
1294 d->state = 0;
1295 spare++;
1296 working++;
1297 }
1298 if (test_bit(WriteMostly, &rdev2->flags))
1299 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300 }
1301 /* now set the "removed" and "faulty" bits on any missing devices */
1302 for (i=0 ; i < mddev->raid_disks ; i++) {
1303 mdp_disk_t *d = &sb->disks[i];
1304 if (d->state == 0 && d->number == 0) {
1305 d->number = i;
1306 d->raid_disk = i;
1307 d->state = (1<<MD_DISK_REMOVED);
1308 d->state |= (1<<MD_DISK_FAULTY);
1309 failed++;
1310 }
1311 }
1312 sb->nr_disks = nr_disks;
1313 sb->active_disks = active;
1314 sb->working_disks = working;
1315 sb->failed_disks = failed;
1316 sb->spare_disks = spare;
1317
1318 sb->this_disk = sb->disks[rdev->desc_nr];
1319 sb->sb_csum = calc_sb_csum(sb);
1320 }
1321
1322 /*
1323 * rdev_size_change for 0.90.0
1324 */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329 return 0; /* component must fit device */
1330 if (rdev->mddev->bitmap_info.offset)
1331 return 0; /* can't move bitmap */
1332 rdev->sb_start = calc_dev_sboffset(rdev);
1333 if (!num_sectors || num_sectors > rdev->sb_start)
1334 num_sectors = rdev->sb_start;
1335 /* Limit to 4TB as metadata cannot record more than that.
1336 * 4TB == 2^32 KB, or 2*2^32 sectors.
1337 */
1338 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339 num_sectors = (2ULL << 32) - 2;
1340 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341 rdev->sb_page);
1342 md_super_wait(rdev->mddev);
1343 return num_sectors;
1344 }
1345
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349 /* non-zero offset changes not possible with v0.90 */
1350 return new_offset == 0;
1351 }
1352
1353 /*
1354 * version 1 superblock
1355 */
1356
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359 __le32 disk_csum;
1360 u32 csum;
1361 unsigned long long newcsum;
1362 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363 __le32 *isuper = (__le32*)sb;
1364
1365 disk_csum = sb->sb_csum;
1366 sb->sb_csum = 0;
1367 newcsum = 0;
1368 for (; size >= 4; size -= 4)
1369 newcsum += le32_to_cpu(*isuper++);
1370
1371 if (size == 2)
1372 newcsum += le16_to_cpu(*(__le16*) isuper);
1373
1374 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375 sb->sb_csum = disk_csum;
1376 return cpu_to_le32(csum);
1377 }
1378
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380 int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383 struct mdp_superblock_1 *sb;
1384 int ret;
1385 sector_t sb_start;
1386 sector_t sectors;
1387 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388 int bmask;
1389
1390 /*
1391 * Calculate the position of the superblock in 512byte sectors.
1392 * It is always aligned to a 4K boundary and
1393 * depeding on minor_version, it can be:
1394 * 0: At least 8K, but less than 12K, from end of device
1395 * 1: At start of device
1396 * 2: 4K from start of device.
1397 */
1398 switch(minor_version) {
1399 case 0:
1400 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401 sb_start -= 8*2;
1402 sb_start &= ~(sector_t)(4*2-1);
1403 break;
1404 case 1:
1405 sb_start = 0;
1406 break;
1407 case 2:
1408 sb_start = 8;
1409 break;
1410 default:
1411 return -EINVAL;
1412 }
1413 rdev->sb_start = sb_start;
1414
1415 /* superblock is rarely larger than 1K, but it can be larger,
1416 * and it is safe to read 4k, so we do that
1417 */
1418 ret = read_disk_sb(rdev, 4096);
1419 if (ret) return ret;
1420
1421 sb = page_address(rdev->sb_page);
1422
1423 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424 sb->major_version != cpu_to_le32(1) ||
1425 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428 return -EINVAL;
1429
1430 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431 printk("md: invalid superblock checksum on %s\n",
1432 bdevname(rdev->bdev,b));
1433 return -EINVAL;
1434 }
1435 if (le64_to_cpu(sb->data_size) < 10) {
1436 printk("md: data_size too small on %s\n",
1437 bdevname(rdev->bdev,b));
1438 return -EINVAL;
1439 }
1440 if (sb->pad0 ||
1441 sb->pad3[0] ||
1442 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443 /* Some padding is non-zero, might be a new feature */
1444 return -EINVAL;
1445
1446 rdev->preferred_minor = 0xffff;
1447 rdev->data_offset = le64_to_cpu(sb->data_offset);
1448 rdev->new_data_offset = rdev->data_offset;
1449 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453
1454 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456 if (rdev->sb_size & bmask)
1457 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458
1459 if (minor_version
1460 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461 return -EINVAL;
1462 if (minor_version
1463 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464 return -EINVAL;
1465
1466 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467 rdev->desc_nr = -1;
1468 else
1469 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470
1471 if (!rdev->bb_page) {
1472 rdev->bb_page = alloc_page(GFP_KERNEL);
1473 if (!rdev->bb_page)
1474 return -ENOMEM;
1475 }
1476 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477 rdev->badblocks.count == 0) {
1478 /* need to load the bad block list.
1479 * Currently we limit it to one page.
1480 */
1481 s32 offset;
1482 sector_t bb_sector;
1483 u64 *bbp;
1484 int i;
1485 int sectors = le16_to_cpu(sb->bblog_size);
1486 if (sectors > (PAGE_SIZE / 512))
1487 return -EINVAL;
1488 offset = le32_to_cpu(sb->bblog_offset);
1489 if (offset == 0)
1490 return -EINVAL;
1491 bb_sector = (long long)offset;
1492 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493 rdev->bb_page, READ, true))
1494 return -EIO;
1495 bbp = (u64 *)page_address(rdev->bb_page);
1496 rdev->badblocks.shift = sb->bblog_shift;
1497 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498 u64 bb = le64_to_cpu(*bbp);
1499 int count = bb & (0x3ff);
1500 u64 sector = bb >> 10;
1501 sector <<= sb->bblog_shift;
1502 count <<= sb->bblog_shift;
1503 if (bb + 1 == 0)
1504 break;
1505 if (md_set_badblocks(&rdev->badblocks,
1506 sector, count, 1) == 0)
1507 return -EINVAL;
1508 }
1509 } else if (sb->bblog_offset != 0)
1510 rdev->badblocks.shift = 0;
1511
1512 if (!refdev) {
1513 ret = 1;
1514 } else {
1515 __u64 ev1, ev2;
1516 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517
1518 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519 sb->level != refsb->level ||
1520 sb->layout != refsb->layout ||
1521 sb->chunksize != refsb->chunksize) {
1522 printk(KERN_WARNING "md: %s has strangely different"
1523 " superblock to %s\n",
1524 bdevname(rdev->bdev,b),
1525 bdevname(refdev->bdev,b2));
1526 return -EINVAL;
1527 }
1528 ev1 = le64_to_cpu(sb->events);
1529 ev2 = le64_to_cpu(refsb->events);
1530
1531 if (ev1 > ev2)
1532 ret = 1;
1533 else
1534 ret = 0;
1535 }
1536 if (minor_version) {
1537 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538 sectors -= rdev->data_offset;
1539 } else
1540 sectors = rdev->sb_start;
1541 if (sectors < le64_to_cpu(sb->data_size))
1542 return -EINVAL;
1543 rdev->sectors = le64_to_cpu(sb->data_size);
1544 return ret;
1545 }
1546
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550 __u64 ev1 = le64_to_cpu(sb->events);
1551
1552 rdev->raid_disk = -1;
1553 clear_bit(Faulty, &rdev->flags);
1554 clear_bit(In_sync, &rdev->flags);
1555 clear_bit(Bitmap_sync, &rdev->flags);
1556 clear_bit(WriteMostly, &rdev->flags);
1557
1558 if (mddev->raid_disks == 0) {
1559 mddev->major_version = 1;
1560 mddev->patch_version = 0;
1561 mddev->external = 0;
1562 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565 mddev->level = le32_to_cpu(sb->level);
1566 mddev->clevel[0] = 0;
1567 mddev->layout = le32_to_cpu(sb->layout);
1568 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569 mddev->dev_sectors = le64_to_cpu(sb->size);
1570 mddev->events = ev1;
1571 mddev->bitmap_info.offset = 0;
1572 mddev->bitmap_info.space = 0;
1573 /* Default location for bitmap is 1K after superblock
1574 * using 3K - total of 4K
1575 */
1576 mddev->bitmap_info.default_offset = 1024 >> 9;
1577 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578 mddev->reshape_backwards = 0;
1579
1580 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581 memcpy(mddev->uuid, sb->set_uuid, 16);
1582
1583 mddev->max_disks = (4096-256)/2;
1584
1585 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586 mddev->bitmap_info.file == NULL) {
1587 mddev->bitmap_info.offset =
1588 (__s32)le32_to_cpu(sb->bitmap_offset);
1589 /* Metadata doesn't record how much space is available.
1590 * For 1.0, we assume we can use up to the superblock
1591 * if before, else to 4K beyond superblock.
1592 * For others, assume no change is possible.
1593 */
1594 if (mddev->minor_version > 0)
1595 mddev->bitmap_info.space = 0;
1596 else if (mddev->bitmap_info.offset > 0)
1597 mddev->bitmap_info.space =
1598 8 - mddev->bitmap_info.offset;
1599 else
1600 mddev->bitmap_info.space =
1601 -mddev->bitmap_info.offset;
1602 }
1603
1604 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607 mddev->new_level = le32_to_cpu(sb->new_level);
1608 mddev->new_layout = le32_to_cpu(sb->new_layout);
1609 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610 if (mddev->delta_disks < 0 ||
1611 (mddev->delta_disks == 0 &&
1612 (le32_to_cpu(sb->feature_map)
1613 & MD_FEATURE_RESHAPE_BACKWARDS)))
1614 mddev->reshape_backwards = 1;
1615 } else {
1616 mddev->reshape_position = MaxSector;
1617 mddev->delta_disks = 0;
1618 mddev->new_level = mddev->level;
1619 mddev->new_layout = mddev->layout;
1620 mddev->new_chunk_sectors = mddev->chunk_sectors;
1621 }
1622
1623 } else if (mddev->pers == NULL) {
1624 /* Insist of good event counter while assembling, except for
1625 * spares (which don't need an event count) */
1626 ++ev1;
1627 if (rdev->desc_nr >= 0 &&
1628 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630 if (ev1 < mddev->events)
1631 return -EINVAL;
1632 } else if (mddev->bitmap) {
1633 /* If adding to array with a bitmap, then we can accept an
1634 * older device, but not too old.
1635 */
1636 if (ev1 < mddev->bitmap->events_cleared)
1637 return 0;
1638 if (ev1 < mddev->events)
1639 set_bit(Bitmap_sync, &rdev->flags);
1640 } else {
1641 if (ev1 < mddev->events)
1642 /* just a hot-add of a new device, leave raid_disk at -1 */
1643 return 0;
1644 }
1645 if (mddev->level != LEVEL_MULTIPATH) {
1646 int role;
1647 if (rdev->desc_nr < 0 ||
1648 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649 role = 0xffff;
1650 rdev->desc_nr = -1;
1651 } else
1652 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653 switch(role) {
1654 case 0xffff: /* spare */
1655 break;
1656 case 0xfffe: /* faulty */
1657 set_bit(Faulty, &rdev->flags);
1658 break;
1659 default:
1660 rdev->saved_raid_disk = role;
1661 if ((le32_to_cpu(sb->feature_map) &
1662 MD_FEATURE_RECOVERY_OFFSET)) {
1663 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664 if (!(le32_to_cpu(sb->feature_map) &
1665 MD_FEATURE_RECOVERY_BITMAP))
1666 rdev->saved_raid_disk = -1;
1667 } else
1668 set_bit(In_sync, &rdev->flags);
1669 rdev->raid_disk = role;
1670 break;
1671 }
1672 if (sb->devflags & WriteMostly1)
1673 set_bit(WriteMostly, &rdev->flags);
1674 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675 set_bit(Replacement, &rdev->flags);
1676 } else /* MULTIPATH are always insync */
1677 set_bit(In_sync, &rdev->flags);
1678
1679 return 0;
1680 }
1681
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 struct mdp_superblock_1 *sb;
1685 struct md_rdev *rdev2;
1686 int max_dev, i;
1687 /* make rdev->sb match mddev and rdev data. */
1688
1689 sb = page_address(rdev->sb_page);
1690
1691 sb->feature_map = 0;
1692 sb->pad0 = 0;
1693 sb->recovery_offset = cpu_to_le64(0);
1694 memset(sb->pad3, 0, sizeof(sb->pad3));
1695
1696 sb->utime = cpu_to_le64((__u64)mddev->utime);
1697 sb->events = cpu_to_le64(mddev->events);
1698 if (mddev->in_sync)
1699 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700 else
1701 sb->resync_offset = cpu_to_le64(0);
1702
1703 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706 sb->size = cpu_to_le64(mddev->dev_sectors);
1707 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708 sb->level = cpu_to_le32(mddev->level);
1709 sb->layout = cpu_to_le32(mddev->layout);
1710
1711 if (test_bit(WriteMostly, &rdev->flags))
1712 sb->devflags |= WriteMostly1;
1713 else
1714 sb->devflags &= ~WriteMostly1;
1715 sb->data_offset = cpu_to_le64(rdev->data_offset);
1716 sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721 }
1722
1723 if (rdev->raid_disk >= 0 &&
1724 !test_bit(In_sync, &rdev->flags)) {
1725 sb->feature_map |=
1726 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727 sb->recovery_offset =
1728 cpu_to_le64(rdev->recovery_offset);
1729 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730 sb->feature_map |=
1731 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732 }
1733 if (test_bit(Replacement, &rdev->flags))
1734 sb->feature_map |=
1735 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736
1737 if (mddev->reshape_position != MaxSector) {
1738 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740 sb->new_layout = cpu_to_le32(mddev->new_layout);
1741 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742 sb->new_level = cpu_to_le32(mddev->new_level);
1743 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744 if (mddev->delta_disks == 0 &&
1745 mddev->reshape_backwards)
1746 sb->feature_map
1747 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748 if (rdev->new_data_offset != rdev->data_offset) {
1749 sb->feature_map
1750 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752 - rdev->data_offset));
1753 }
1754 }
1755
1756 if (rdev->badblocks.count == 0)
1757 /* Nothing to do for bad blocks*/ ;
1758 else if (sb->bblog_offset == 0)
1759 /* Cannot record bad blocks on this device */
1760 md_error(mddev, rdev);
1761 else {
1762 struct badblocks *bb = &rdev->badblocks;
1763 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764 u64 *p = bb->page;
1765 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766 if (bb->changed) {
1767 unsigned seq;
1768
1769 retry:
1770 seq = read_seqbegin(&bb->lock);
1771
1772 memset(bbp, 0xff, PAGE_SIZE);
1773
1774 for (i = 0 ; i < bb->count ; i++) {
1775 u64 internal_bb = p[i];
1776 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777 | BB_LEN(internal_bb));
1778 bbp[i] = cpu_to_le64(store_bb);
1779 }
1780 bb->changed = 0;
1781 if (read_seqretry(&bb->lock, seq))
1782 goto retry;
1783
1784 bb->sector = (rdev->sb_start +
1785 (int)le32_to_cpu(sb->bblog_offset));
1786 bb->size = le16_to_cpu(sb->bblog_size);
1787 }
1788 }
1789
1790 max_dev = 0;
1791 rdev_for_each(rdev2, mddev)
1792 if (rdev2->desc_nr+1 > max_dev)
1793 max_dev = rdev2->desc_nr+1;
1794
1795 if (max_dev > le32_to_cpu(sb->max_dev)) {
1796 int bmask;
1797 sb->max_dev = cpu_to_le32(max_dev);
1798 rdev->sb_size = max_dev * 2 + 256;
1799 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800 if (rdev->sb_size & bmask)
1801 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802 } else
1803 max_dev = le32_to_cpu(sb->max_dev);
1804
1805 for (i=0; i<max_dev;i++)
1806 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807
1808 rdev_for_each(rdev2, mddev) {
1809 i = rdev2->desc_nr;
1810 if (test_bit(Faulty, &rdev2->flags))
1811 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812 else if (test_bit(In_sync, &rdev2->flags))
1813 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814 else if (rdev2->raid_disk >= 0)
1815 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816 else
1817 sb->dev_roles[i] = cpu_to_le16(0xffff);
1818 }
1819
1820 sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826 struct mdp_superblock_1 *sb;
1827 sector_t max_sectors;
1828 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829 return 0; /* component must fit device */
1830 if (rdev->data_offset != rdev->new_data_offset)
1831 return 0; /* too confusing */
1832 if (rdev->sb_start < rdev->data_offset) {
1833 /* minor versions 1 and 2; superblock before data */
1834 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835 max_sectors -= rdev->data_offset;
1836 if (!num_sectors || num_sectors > max_sectors)
1837 num_sectors = max_sectors;
1838 } else if (rdev->mddev->bitmap_info.offset) {
1839 /* minor version 0 with bitmap we can't move */
1840 return 0;
1841 } else {
1842 /* minor version 0; superblock after data */
1843 sector_t sb_start;
1844 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845 sb_start &= ~(sector_t)(4*2 - 1);
1846 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847 if (!num_sectors || num_sectors > max_sectors)
1848 num_sectors = max_sectors;
1849 rdev->sb_start = sb_start;
1850 }
1851 sb = page_address(rdev->sb_page);
1852 sb->data_size = cpu_to_le64(num_sectors);
1853 sb->super_offset = rdev->sb_start;
1854 sb->sb_csum = calc_sb_1_csum(sb);
1855 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856 rdev->sb_page);
1857 md_super_wait(rdev->mddev);
1858 return num_sectors;
1859
1860 }
1861
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864 unsigned long long new_offset)
1865 {
1866 /* All necessary checks on new >= old have been done */
1867 struct bitmap *bitmap;
1868 if (new_offset >= rdev->data_offset)
1869 return 1;
1870
1871 /* with 1.0 metadata, there is no metadata to tread on
1872 * so we can always move back */
1873 if (rdev->mddev->minor_version == 0)
1874 return 1;
1875
1876 /* otherwise we must be sure not to step on
1877 * any metadata, so stay:
1878 * 36K beyond start of superblock
1879 * beyond end of badblocks
1880 * beyond write-intent bitmap
1881 */
1882 if (rdev->sb_start + (32+4)*2 > new_offset)
1883 return 0;
1884 bitmap = rdev->mddev->bitmap;
1885 if (bitmap && !rdev->mddev->bitmap_info.file &&
1886 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888 return 0;
1889 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890 return 0;
1891
1892 return 1;
1893 }
1894
1895 static struct super_type super_types[] = {
1896 [0] = {
1897 .name = "0.90.0",
1898 .owner = THIS_MODULE,
1899 .load_super = super_90_load,
1900 .validate_super = super_90_validate,
1901 .sync_super = super_90_sync,
1902 .rdev_size_change = super_90_rdev_size_change,
1903 .allow_new_offset = super_90_allow_new_offset,
1904 },
1905 [1] = {
1906 .name = "md-1",
1907 .owner = THIS_MODULE,
1908 .load_super = super_1_load,
1909 .validate_super = super_1_validate,
1910 .sync_super = super_1_sync,
1911 .rdev_size_change = super_1_rdev_size_change,
1912 .allow_new_offset = super_1_allow_new_offset,
1913 },
1914 };
1915
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918 if (mddev->sync_super) {
1919 mddev->sync_super(mddev, rdev);
1920 return;
1921 }
1922
1923 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924
1925 super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930 struct md_rdev *rdev, *rdev2;
1931
1932 rcu_read_lock();
1933 rdev_for_each_rcu(rdev, mddev1)
1934 rdev_for_each_rcu(rdev2, mddev2)
1935 if (rdev->bdev->bd_contains ==
1936 rdev2->bdev->bd_contains) {
1937 rcu_read_unlock();
1938 return 1;
1939 }
1940 rcu_read_unlock();
1941 return 0;
1942 }
1943
1944 static LIST_HEAD(pending_raid_disks);
1945
1946 /*
1947 * Try to register data integrity profile for an mddev
1948 *
1949 * This is called when an array is started and after a disk has been kicked
1950 * from the array. It only succeeds if all working and active component devices
1951 * are integrity capable with matching profiles.
1952 */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955 struct md_rdev *rdev, *reference = NULL;
1956
1957 if (list_empty(&mddev->disks))
1958 return 0; /* nothing to do */
1959 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960 return 0; /* shouldn't register, or already is */
1961 rdev_for_each(rdev, mddev) {
1962 /* skip spares and non-functional disks */
1963 if (test_bit(Faulty, &rdev->flags))
1964 continue;
1965 if (rdev->raid_disk < 0)
1966 continue;
1967 if (!reference) {
1968 /* Use the first rdev as the reference */
1969 reference = rdev;
1970 continue;
1971 }
1972 /* does this rdev's profile match the reference profile? */
1973 if (blk_integrity_compare(reference->bdev->bd_disk,
1974 rdev->bdev->bd_disk) < 0)
1975 return -EINVAL;
1976 }
1977 if (!reference || !bdev_get_integrity(reference->bdev))
1978 return 0;
1979 /*
1980 * All component devices are integrity capable and have matching
1981 * profiles, register the common profile for the md device.
1982 */
1983 if (blk_integrity_register(mddev->gendisk,
1984 bdev_get_integrity(reference->bdev)) != 0) {
1985 printk(KERN_ERR "md: failed to register integrity for %s\n",
1986 mdname(mddev));
1987 return -EINVAL;
1988 }
1989 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992 mdname(mddev));
1993 return -EINVAL;
1994 }
1995 return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002 struct blk_integrity *bi_rdev;
2003 struct blk_integrity *bi_mddev;
2004
2005 if (!mddev->gendisk)
2006 return;
2007
2008 bi_rdev = bdev_get_integrity(rdev->bdev);
2009 bi_mddev = blk_get_integrity(mddev->gendisk);
2010
2011 if (!bi_mddev) /* nothing to do */
2012 return;
2013 if (rdev->raid_disk < 0) /* skip spares */
2014 return;
2015 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016 rdev->bdev->bd_disk) >= 0)
2017 return;
2018 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019 blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025 char b[BDEVNAME_SIZE];
2026 struct kobject *ko;
2027 int err;
2028
2029 /* prevent duplicates */
2030 if (find_rdev(mddev, rdev->bdev->bd_dev))
2031 return -EEXIST;
2032
2033 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2034 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2035 rdev->sectors < mddev->dev_sectors)) {
2036 if (mddev->pers) {
2037 /* Cannot change size, so fail
2038 * If mddev->level <= 0, then we don't care
2039 * about aligning sizes (e.g. linear)
2040 */
2041 if (mddev->level > 0)
2042 return -ENOSPC;
2043 } else
2044 mddev->dev_sectors = rdev->sectors;
2045 }
2046
2047 /* Verify rdev->desc_nr is unique.
2048 * If it is -1, assign a free number, else
2049 * check number is not in use
2050 */
2051 rcu_read_lock();
2052 if (rdev->desc_nr < 0) {
2053 int choice = 0;
2054 if (mddev->pers)
2055 choice = mddev->raid_disks;
2056 while (md_find_rdev_nr_rcu(mddev, choice))
2057 choice++;
2058 rdev->desc_nr = choice;
2059 } else {
2060 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2061 rcu_read_unlock();
2062 return -EBUSY;
2063 }
2064 }
2065 rcu_read_unlock();
2066 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2067 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2068 mdname(mddev), mddev->max_disks);
2069 return -EBUSY;
2070 }
2071 bdevname(rdev->bdev,b);
2072 strreplace(b, '/', '!');
2073
2074 rdev->mddev = mddev;
2075 printk(KERN_INFO "md: bind<%s>\n", b);
2076
2077 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2078 goto fail;
2079
2080 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2081 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2082 /* failure here is OK */;
2083 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2084
2085 list_add_rcu(&rdev->same_set, &mddev->disks);
2086 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2087
2088 /* May as well allow recovery to be retried once */
2089 mddev->recovery_disabled++;
2090
2091 return 0;
2092
2093 fail:
2094 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2095 b, mdname(mddev));
2096 return err;
2097 }
2098
2099 static void md_delayed_delete(struct work_struct *ws)
2100 {
2101 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2102 kobject_del(&rdev->kobj);
2103 kobject_put(&rdev->kobj);
2104 }
2105
2106 static void unbind_rdev_from_array(struct md_rdev *rdev)
2107 {
2108 char b[BDEVNAME_SIZE];
2109
2110 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2111 list_del_rcu(&rdev->same_set);
2112 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2113 rdev->mddev = NULL;
2114 sysfs_remove_link(&rdev->kobj, "block");
2115 sysfs_put(rdev->sysfs_state);
2116 rdev->sysfs_state = NULL;
2117 rdev->badblocks.count = 0;
2118 /* We need to delay this, otherwise we can deadlock when
2119 * writing to 'remove' to "dev/state". We also need
2120 * to delay it due to rcu usage.
2121 */
2122 synchronize_rcu();
2123 INIT_WORK(&rdev->del_work, md_delayed_delete);
2124 kobject_get(&rdev->kobj);
2125 queue_work(md_misc_wq, &rdev->del_work);
2126 }
2127
2128 /*
2129 * prevent the device from being mounted, repartitioned or
2130 * otherwise reused by a RAID array (or any other kernel
2131 * subsystem), by bd_claiming the device.
2132 */
2133 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2134 {
2135 int err = 0;
2136 struct block_device *bdev;
2137 char b[BDEVNAME_SIZE];
2138
2139 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2140 shared ? (struct md_rdev *)lock_rdev : rdev);
2141 if (IS_ERR(bdev)) {
2142 printk(KERN_ERR "md: could not open %s.\n",
2143 __bdevname(dev, b));
2144 return PTR_ERR(bdev);
2145 }
2146 rdev->bdev = bdev;
2147 return err;
2148 }
2149
2150 static void unlock_rdev(struct md_rdev *rdev)
2151 {
2152 struct block_device *bdev = rdev->bdev;
2153 rdev->bdev = NULL;
2154 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2155 }
2156
2157 void md_autodetect_dev(dev_t dev);
2158
2159 static void export_rdev(struct md_rdev *rdev)
2160 {
2161 char b[BDEVNAME_SIZE];
2162
2163 printk(KERN_INFO "md: export_rdev(%s)\n",
2164 bdevname(rdev->bdev,b));
2165 md_rdev_clear(rdev);
2166 #ifndef MODULE
2167 if (test_bit(AutoDetected, &rdev->flags))
2168 md_autodetect_dev(rdev->bdev->bd_dev);
2169 #endif
2170 unlock_rdev(rdev);
2171 kobject_put(&rdev->kobj);
2172 }
2173
2174 void md_kick_rdev_from_array(struct md_rdev *rdev)
2175 {
2176 unbind_rdev_from_array(rdev);
2177 export_rdev(rdev);
2178 }
2179 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2180
2181 static void export_array(struct mddev *mddev)
2182 {
2183 struct md_rdev *rdev;
2184
2185 while (!list_empty(&mddev->disks)) {
2186 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2187 same_set);
2188 md_kick_rdev_from_array(rdev);
2189 }
2190 mddev->raid_disks = 0;
2191 mddev->major_version = 0;
2192 }
2193
2194 static void sync_sbs(struct mddev *mddev, int nospares)
2195 {
2196 /* Update each superblock (in-memory image), but
2197 * if we are allowed to, skip spares which already
2198 * have the right event counter, or have one earlier
2199 * (which would mean they aren't being marked as dirty
2200 * with the rest of the array)
2201 */
2202 struct md_rdev *rdev;
2203 rdev_for_each(rdev, mddev) {
2204 if (rdev->sb_events == mddev->events ||
2205 (nospares &&
2206 rdev->raid_disk < 0 &&
2207 rdev->sb_events+1 == mddev->events)) {
2208 /* Don't update this superblock */
2209 rdev->sb_loaded = 2;
2210 } else {
2211 sync_super(mddev, rdev);
2212 rdev->sb_loaded = 1;
2213 }
2214 }
2215 }
2216
2217 void md_update_sb(struct mddev *mddev, int force_change)
2218 {
2219 struct md_rdev *rdev;
2220 int sync_req;
2221 int nospares = 0;
2222 int any_badblocks_changed = 0;
2223
2224 if (mddev->ro) {
2225 if (force_change)
2226 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2227 return;
2228 }
2229 repeat:
2230 /* First make sure individual recovery_offsets are correct */
2231 rdev_for_each(rdev, mddev) {
2232 if (rdev->raid_disk >= 0 &&
2233 mddev->delta_disks >= 0 &&
2234 !test_bit(In_sync, &rdev->flags) &&
2235 mddev->curr_resync_completed > rdev->recovery_offset)
2236 rdev->recovery_offset = mddev->curr_resync_completed;
2237
2238 }
2239 if (!mddev->persistent) {
2240 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2241 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2242 if (!mddev->external) {
2243 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2244 rdev_for_each(rdev, mddev) {
2245 if (rdev->badblocks.changed) {
2246 rdev->badblocks.changed = 0;
2247 md_ack_all_badblocks(&rdev->badblocks);
2248 md_error(mddev, rdev);
2249 }
2250 clear_bit(Blocked, &rdev->flags);
2251 clear_bit(BlockedBadBlocks, &rdev->flags);
2252 wake_up(&rdev->blocked_wait);
2253 }
2254 }
2255 wake_up(&mddev->sb_wait);
2256 return;
2257 }
2258
2259 spin_lock(&mddev->lock);
2260
2261 mddev->utime = get_seconds();
2262
2263 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2264 force_change = 1;
2265 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2266 /* just a clean<-> dirty transition, possibly leave spares alone,
2267 * though if events isn't the right even/odd, we will have to do
2268 * spares after all
2269 */
2270 nospares = 1;
2271 if (force_change)
2272 nospares = 0;
2273 if (mddev->degraded)
2274 /* If the array is degraded, then skipping spares is both
2275 * dangerous and fairly pointless.
2276 * Dangerous because a device that was removed from the array
2277 * might have a event_count that still looks up-to-date,
2278 * so it can be re-added without a resync.
2279 * Pointless because if there are any spares to skip,
2280 * then a recovery will happen and soon that array won't
2281 * be degraded any more and the spare can go back to sleep then.
2282 */
2283 nospares = 0;
2284
2285 sync_req = mddev->in_sync;
2286
2287 /* If this is just a dirty<->clean transition, and the array is clean
2288 * and 'events' is odd, we can roll back to the previous clean state */
2289 if (nospares
2290 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2291 && mddev->can_decrease_events
2292 && mddev->events != 1) {
2293 mddev->events--;
2294 mddev->can_decrease_events = 0;
2295 } else {
2296 /* otherwise we have to go forward and ... */
2297 mddev->events ++;
2298 mddev->can_decrease_events = nospares;
2299 }
2300
2301 /*
2302 * This 64-bit counter should never wrap.
2303 * Either we are in around ~1 trillion A.C., assuming
2304 * 1 reboot per second, or we have a bug...
2305 */
2306 WARN_ON(mddev->events == 0);
2307
2308 rdev_for_each(rdev, mddev) {
2309 if (rdev->badblocks.changed)
2310 any_badblocks_changed++;
2311 if (test_bit(Faulty, &rdev->flags))
2312 set_bit(FaultRecorded, &rdev->flags);
2313 }
2314
2315 sync_sbs(mddev, nospares);
2316 spin_unlock(&mddev->lock);
2317
2318 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2319 mdname(mddev), mddev->in_sync);
2320
2321 bitmap_update_sb(mddev->bitmap);
2322 rdev_for_each(rdev, mddev) {
2323 char b[BDEVNAME_SIZE];
2324
2325 if (rdev->sb_loaded != 1)
2326 continue; /* no noise on spare devices */
2327
2328 if (!test_bit(Faulty, &rdev->flags)) {
2329 md_super_write(mddev,rdev,
2330 rdev->sb_start, rdev->sb_size,
2331 rdev->sb_page);
2332 pr_debug("md: (write) %s's sb offset: %llu\n",
2333 bdevname(rdev->bdev, b),
2334 (unsigned long long)rdev->sb_start);
2335 rdev->sb_events = mddev->events;
2336 if (rdev->badblocks.size) {
2337 md_super_write(mddev, rdev,
2338 rdev->badblocks.sector,
2339 rdev->badblocks.size << 9,
2340 rdev->bb_page);
2341 rdev->badblocks.size = 0;
2342 }
2343
2344 } else
2345 pr_debug("md: %s (skipping faulty)\n",
2346 bdevname(rdev->bdev, b));
2347
2348 if (mddev->level == LEVEL_MULTIPATH)
2349 /* only need to write one superblock... */
2350 break;
2351 }
2352 md_super_wait(mddev);
2353 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2354
2355 spin_lock(&mddev->lock);
2356 if (mddev->in_sync != sync_req ||
2357 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2358 /* have to write it out again */
2359 spin_unlock(&mddev->lock);
2360 goto repeat;
2361 }
2362 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363 spin_unlock(&mddev->lock);
2364 wake_up(&mddev->sb_wait);
2365 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2366 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2367
2368 rdev_for_each(rdev, mddev) {
2369 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2370 clear_bit(Blocked, &rdev->flags);
2371
2372 if (any_badblocks_changed)
2373 md_ack_all_badblocks(&rdev->badblocks);
2374 clear_bit(BlockedBadBlocks, &rdev->flags);
2375 wake_up(&rdev->blocked_wait);
2376 }
2377 }
2378 EXPORT_SYMBOL(md_update_sb);
2379
2380 static int add_bound_rdev(struct md_rdev *rdev)
2381 {
2382 struct mddev *mddev = rdev->mddev;
2383 int err = 0;
2384
2385 if (!mddev->pers->hot_remove_disk) {
2386 /* If there is hot_add_disk but no hot_remove_disk
2387 * then added disks for geometry changes,
2388 * and should be added immediately.
2389 */
2390 super_types[mddev->major_version].
2391 validate_super(mddev, rdev);
2392 err = mddev->pers->hot_add_disk(mddev, rdev);
2393 if (err) {
2394 unbind_rdev_from_array(rdev);
2395 export_rdev(rdev);
2396 return err;
2397 }
2398 }
2399 sysfs_notify_dirent_safe(rdev->sysfs_state);
2400
2401 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2402 if (mddev->degraded)
2403 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2404 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2405 md_new_event(mddev);
2406 md_wakeup_thread(mddev->thread);
2407 return 0;
2408 }
2409
2410 /* words written to sysfs files may, or may not, be \n terminated.
2411 * We want to accept with case. For this we use cmd_match.
2412 */
2413 static int cmd_match(const char *cmd, const char *str)
2414 {
2415 /* See if cmd, written into a sysfs file, matches
2416 * str. They must either be the same, or cmd can
2417 * have a trailing newline
2418 */
2419 while (*cmd && *str && *cmd == *str) {
2420 cmd++;
2421 str++;
2422 }
2423 if (*cmd == '\n')
2424 cmd++;
2425 if (*str || *cmd)
2426 return 0;
2427 return 1;
2428 }
2429
2430 struct rdev_sysfs_entry {
2431 struct attribute attr;
2432 ssize_t (*show)(struct md_rdev *, char *);
2433 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2434 };
2435
2436 static ssize_t
2437 state_show(struct md_rdev *rdev, char *page)
2438 {
2439 char *sep = "";
2440 size_t len = 0;
2441 unsigned long flags = ACCESS_ONCE(rdev->flags);
2442
2443 if (test_bit(Faulty, &flags) ||
2444 rdev->badblocks.unacked_exist) {
2445 len+= sprintf(page+len, "%sfaulty",sep);
2446 sep = ",";
2447 }
2448 if (test_bit(In_sync, &flags)) {
2449 len += sprintf(page+len, "%sin_sync",sep);
2450 sep = ",";
2451 }
2452 if (test_bit(WriteMostly, &flags)) {
2453 len += sprintf(page+len, "%swrite_mostly",sep);
2454 sep = ",";
2455 }
2456 if (test_bit(Blocked, &flags) ||
2457 (rdev->badblocks.unacked_exist
2458 && !test_bit(Faulty, &flags))) {
2459 len += sprintf(page+len, "%sblocked", sep);
2460 sep = ",";
2461 }
2462 if (!test_bit(Faulty, &flags) &&
2463 !test_bit(In_sync, &flags)) {
2464 len += sprintf(page+len, "%sspare", sep);
2465 sep = ",";
2466 }
2467 if (test_bit(WriteErrorSeen, &flags)) {
2468 len += sprintf(page+len, "%swrite_error", sep);
2469 sep = ",";
2470 }
2471 if (test_bit(WantReplacement, &flags)) {
2472 len += sprintf(page+len, "%swant_replacement", sep);
2473 sep = ",";
2474 }
2475 if (test_bit(Replacement, &flags)) {
2476 len += sprintf(page+len, "%sreplacement", sep);
2477 sep = ",";
2478 }
2479
2480 return len+sprintf(page+len, "\n");
2481 }
2482
2483 static ssize_t
2484 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2485 {
2486 /* can write
2487 * faulty - simulates an error
2488 * remove - disconnects the device
2489 * writemostly - sets write_mostly
2490 * -writemostly - clears write_mostly
2491 * blocked - sets the Blocked flags
2492 * -blocked - clears the Blocked and possibly simulates an error
2493 * insync - sets Insync providing device isn't active
2494 * -insync - clear Insync for a device with a slot assigned,
2495 * so that it gets rebuilt based on bitmap
2496 * write_error - sets WriteErrorSeen
2497 * -write_error - clears WriteErrorSeen
2498 */
2499 int err = -EINVAL;
2500 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2501 md_error(rdev->mddev, rdev);
2502 if (test_bit(Faulty, &rdev->flags))
2503 err = 0;
2504 else
2505 err = -EBUSY;
2506 } else if (cmd_match(buf, "remove")) {
2507 if (rdev->raid_disk >= 0)
2508 err = -EBUSY;
2509 else {
2510 struct mddev *mddev = rdev->mddev;
2511 if (mddev_is_clustered(mddev))
2512 md_cluster_ops->remove_disk(mddev, rdev);
2513 md_kick_rdev_from_array(rdev);
2514 if (mddev_is_clustered(mddev))
2515 md_cluster_ops->metadata_update_start(mddev);
2516 if (mddev->pers)
2517 md_update_sb(mddev, 1);
2518 md_new_event(mddev);
2519 if (mddev_is_clustered(mddev))
2520 md_cluster_ops->metadata_update_finish(mddev);
2521 err = 0;
2522 }
2523 } else if (cmd_match(buf, "writemostly")) {
2524 set_bit(WriteMostly, &rdev->flags);
2525 err = 0;
2526 } else if (cmd_match(buf, "-writemostly")) {
2527 clear_bit(WriteMostly, &rdev->flags);
2528 err = 0;
2529 } else if (cmd_match(buf, "blocked")) {
2530 set_bit(Blocked, &rdev->flags);
2531 err = 0;
2532 } else if (cmd_match(buf, "-blocked")) {
2533 if (!test_bit(Faulty, &rdev->flags) &&
2534 rdev->badblocks.unacked_exist) {
2535 /* metadata handler doesn't understand badblocks,
2536 * so we need to fail the device
2537 */
2538 md_error(rdev->mddev, rdev);
2539 }
2540 clear_bit(Blocked, &rdev->flags);
2541 clear_bit(BlockedBadBlocks, &rdev->flags);
2542 wake_up(&rdev->blocked_wait);
2543 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2544 md_wakeup_thread(rdev->mddev->thread);
2545
2546 err = 0;
2547 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2548 set_bit(In_sync, &rdev->flags);
2549 err = 0;
2550 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2551 if (rdev->mddev->pers == NULL) {
2552 clear_bit(In_sync, &rdev->flags);
2553 rdev->saved_raid_disk = rdev->raid_disk;
2554 rdev->raid_disk = -1;
2555 err = 0;
2556 }
2557 } else if (cmd_match(buf, "write_error")) {
2558 set_bit(WriteErrorSeen, &rdev->flags);
2559 err = 0;
2560 } else if (cmd_match(buf, "-write_error")) {
2561 clear_bit(WriteErrorSeen, &rdev->flags);
2562 err = 0;
2563 } else if (cmd_match(buf, "want_replacement")) {
2564 /* Any non-spare device that is not a replacement can
2565 * become want_replacement at any time, but we then need to
2566 * check if recovery is needed.
2567 */
2568 if (rdev->raid_disk >= 0 &&
2569 !test_bit(Replacement, &rdev->flags))
2570 set_bit(WantReplacement, &rdev->flags);
2571 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2572 md_wakeup_thread(rdev->mddev->thread);
2573 err = 0;
2574 } else if (cmd_match(buf, "-want_replacement")) {
2575 /* Clearing 'want_replacement' is always allowed.
2576 * Once replacements starts it is too late though.
2577 */
2578 err = 0;
2579 clear_bit(WantReplacement, &rdev->flags);
2580 } else if (cmd_match(buf, "replacement")) {
2581 /* Can only set a device as a replacement when array has not
2582 * yet been started. Once running, replacement is automatic
2583 * from spares, or by assigning 'slot'.
2584 */
2585 if (rdev->mddev->pers)
2586 err = -EBUSY;
2587 else {
2588 set_bit(Replacement, &rdev->flags);
2589 err = 0;
2590 }
2591 } else if (cmd_match(buf, "-replacement")) {
2592 /* Similarly, can only clear Replacement before start */
2593 if (rdev->mddev->pers)
2594 err = -EBUSY;
2595 else {
2596 clear_bit(Replacement, &rdev->flags);
2597 err = 0;
2598 }
2599 } else if (cmd_match(buf, "re-add")) {
2600 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2601 /* clear_bit is performed _after_ all the devices
2602 * have their local Faulty bit cleared. If any writes
2603 * happen in the meantime in the local node, they
2604 * will land in the local bitmap, which will be synced
2605 * by this node eventually
2606 */
2607 if (!mddev_is_clustered(rdev->mddev) ||
2608 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2609 clear_bit(Faulty, &rdev->flags);
2610 err = add_bound_rdev(rdev);
2611 }
2612 } else
2613 err = -EBUSY;
2614 }
2615 if (!err)
2616 sysfs_notify_dirent_safe(rdev->sysfs_state);
2617 return err ? err : len;
2618 }
2619 static struct rdev_sysfs_entry rdev_state =
2620 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2621
2622 static ssize_t
2623 errors_show(struct md_rdev *rdev, char *page)
2624 {
2625 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2626 }
2627
2628 static ssize_t
2629 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2630 {
2631 unsigned int n;
2632 int rv;
2633
2634 rv = kstrtouint(buf, 10, &n);
2635 if (rv < 0)
2636 return rv;
2637 atomic_set(&rdev->corrected_errors, n);
2638 return len;
2639 }
2640 static struct rdev_sysfs_entry rdev_errors =
2641 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2642
2643 static ssize_t
2644 slot_show(struct md_rdev *rdev, char *page)
2645 {
2646 if (rdev->raid_disk < 0)
2647 return sprintf(page, "none\n");
2648 else
2649 return sprintf(page, "%d\n", rdev->raid_disk);
2650 }
2651
2652 static ssize_t
2653 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2654 {
2655 int slot;
2656 int err;
2657
2658 if (strncmp(buf, "none", 4)==0)
2659 slot = -1;
2660 else {
2661 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2662 if (err < 0)
2663 return err;
2664 }
2665 if (rdev->mddev->pers && slot == -1) {
2666 /* Setting 'slot' on an active array requires also
2667 * updating the 'rd%d' link, and communicating
2668 * with the personality with ->hot_*_disk.
2669 * For now we only support removing
2670 * failed/spare devices. This normally happens automatically,
2671 * but not when the metadata is externally managed.
2672 */
2673 if (rdev->raid_disk == -1)
2674 return -EEXIST;
2675 /* personality does all needed checks */
2676 if (rdev->mddev->pers->hot_remove_disk == NULL)
2677 return -EINVAL;
2678 clear_bit(Blocked, &rdev->flags);
2679 remove_and_add_spares(rdev->mddev, rdev);
2680 if (rdev->raid_disk >= 0)
2681 return -EBUSY;
2682 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2683 md_wakeup_thread(rdev->mddev->thread);
2684 } else if (rdev->mddev->pers) {
2685 /* Activating a spare .. or possibly reactivating
2686 * if we ever get bitmaps working here.
2687 */
2688
2689 if (rdev->raid_disk != -1)
2690 return -EBUSY;
2691
2692 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2693 return -EBUSY;
2694
2695 if (rdev->mddev->pers->hot_add_disk == NULL)
2696 return -EINVAL;
2697
2698 if (slot >= rdev->mddev->raid_disks &&
2699 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2700 return -ENOSPC;
2701
2702 rdev->raid_disk = slot;
2703 if (test_bit(In_sync, &rdev->flags))
2704 rdev->saved_raid_disk = slot;
2705 else
2706 rdev->saved_raid_disk = -1;
2707 clear_bit(In_sync, &rdev->flags);
2708 clear_bit(Bitmap_sync, &rdev->flags);
2709 err = rdev->mddev->pers->
2710 hot_add_disk(rdev->mddev, rdev);
2711 if (err) {
2712 rdev->raid_disk = -1;
2713 return err;
2714 } else
2715 sysfs_notify_dirent_safe(rdev->sysfs_state);
2716 if (sysfs_link_rdev(rdev->mddev, rdev))
2717 /* failure here is OK */;
2718 /* don't wakeup anyone, leave that to userspace. */
2719 } else {
2720 if (slot >= rdev->mddev->raid_disks &&
2721 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2722 return -ENOSPC;
2723 rdev->raid_disk = slot;
2724 /* assume it is working */
2725 clear_bit(Faulty, &rdev->flags);
2726 clear_bit(WriteMostly, &rdev->flags);
2727 set_bit(In_sync, &rdev->flags);
2728 sysfs_notify_dirent_safe(rdev->sysfs_state);
2729 }
2730 return len;
2731 }
2732
2733 static struct rdev_sysfs_entry rdev_slot =
2734 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2735
2736 static ssize_t
2737 offset_show(struct md_rdev *rdev, char *page)
2738 {
2739 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2740 }
2741
2742 static ssize_t
2743 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2744 {
2745 unsigned long long offset;
2746 if (kstrtoull(buf, 10, &offset) < 0)
2747 return -EINVAL;
2748 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2749 return -EBUSY;
2750 if (rdev->sectors && rdev->mddev->external)
2751 /* Must set offset before size, so overlap checks
2752 * can be sane */
2753 return -EBUSY;
2754 rdev->data_offset = offset;
2755 rdev->new_data_offset = offset;
2756 return len;
2757 }
2758
2759 static struct rdev_sysfs_entry rdev_offset =
2760 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2761
2762 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2763 {
2764 return sprintf(page, "%llu\n",
2765 (unsigned long long)rdev->new_data_offset);
2766 }
2767
2768 static ssize_t new_offset_store(struct md_rdev *rdev,
2769 const char *buf, size_t len)
2770 {
2771 unsigned long long new_offset;
2772 struct mddev *mddev = rdev->mddev;
2773
2774 if (kstrtoull(buf, 10, &new_offset) < 0)
2775 return -EINVAL;
2776
2777 if (mddev->sync_thread ||
2778 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2779 return -EBUSY;
2780 if (new_offset == rdev->data_offset)
2781 /* reset is always permitted */
2782 ;
2783 else if (new_offset > rdev->data_offset) {
2784 /* must not push array size beyond rdev_sectors */
2785 if (new_offset - rdev->data_offset
2786 + mddev->dev_sectors > rdev->sectors)
2787 return -E2BIG;
2788 }
2789 /* Metadata worries about other space details. */
2790
2791 /* decreasing the offset is inconsistent with a backwards
2792 * reshape.
2793 */
2794 if (new_offset < rdev->data_offset &&
2795 mddev->reshape_backwards)
2796 return -EINVAL;
2797 /* Increasing offset is inconsistent with forwards
2798 * reshape. reshape_direction should be set to
2799 * 'backwards' first.
2800 */
2801 if (new_offset > rdev->data_offset &&
2802 !mddev->reshape_backwards)
2803 return -EINVAL;
2804
2805 if (mddev->pers && mddev->persistent &&
2806 !super_types[mddev->major_version]
2807 .allow_new_offset(rdev, new_offset))
2808 return -E2BIG;
2809 rdev->new_data_offset = new_offset;
2810 if (new_offset > rdev->data_offset)
2811 mddev->reshape_backwards = 1;
2812 else if (new_offset < rdev->data_offset)
2813 mddev->reshape_backwards = 0;
2814
2815 return len;
2816 }
2817 static struct rdev_sysfs_entry rdev_new_offset =
2818 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2819
2820 static ssize_t
2821 rdev_size_show(struct md_rdev *rdev, char *page)
2822 {
2823 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2824 }
2825
2826 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2827 {
2828 /* check if two start/length pairs overlap */
2829 if (s1+l1 <= s2)
2830 return 0;
2831 if (s2+l2 <= s1)
2832 return 0;
2833 return 1;
2834 }
2835
2836 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2837 {
2838 unsigned long long blocks;
2839 sector_t new;
2840
2841 if (kstrtoull(buf, 10, &blocks) < 0)
2842 return -EINVAL;
2843
2844 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2845 return -EINVAL; /* sector conversion overflow */
2846
2847 new = blocks * 2;
2848 if (new != blocks * 2)
2849 return -EINVAL; /* unsigned long long to sector_t overflow */
2850
2851 *sectors = new;
2852 return 0;
2853 }
2854
2855 static ssize_t
2856 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2857 {
2858 struct mddev *my_mddev = rdev->mddev;
2859 sector_t oldsectors = rdev->sectors;
2860 sector_t sectors;
2861
2862 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2863 return -EINVAL;
2864 if (rdev->data_offset != rdev->new_data_offset)
2865 return -EINVAL; /* too confusing */
2866 if (my_mddev->pers && rdev->raid_disk >= 0) {
2867 if (my_mddev->persistent) {
2868 sectors = super_types[my_mddev->major_version].
2869 rdev_size_change(rdev, sectors);
2870 if (!sectors)
2871 return -EBUSY;
2872 } else if (!sectors)
2873 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2874 rdev->data_offset;
2875 if (!my_mddev->pers->resize)
2876 /* Cannot change size for RAID0 or Linear etc */
2877 return -EINVAL;
2878 }
2879 if (sectors < my_mddev->dev_sectors)
2880 return -EINVAL; /* component must fit device */
2881
2882 rdev->sectors = sectors;
2883 if (sectors > oldsectors && my_mddev->external) {
2884 /* Need to check that all other rdevs with the same
2885 * ->bdev do not overlap. 'rcu' is sufficient to walk
2886 * the rdev lists safely.
2887 * This check does not provide a hard guarantee, it
2888 * just helps avoid dangerous mistakes.
2889 */
2890 struct mddev *mddev;
2891 int overlap = 0;
2892 struct list_head *tmp;
2893
2894 rcu_read_lock();
2895 for_each_mddev(mddev, tmp) {
2896 struct md_rdev *rdev2;
2897
2898 rdev_for_each(rdev2, mddev)
2899 if (rdev->bdev == rdev2->bdev &&
2900 rdev != rdev2 &&
2901 overlaps(rdev->data_offset, rdev->sectors,
2902 rdev2->data_offset,
2903 rdev2->sectors)) {
2904 overlap = 1;
2905 break;
2906 }
2907 if (overlap) {
2908 mddev_put(mddev);
2909 break;
2910 }
2911 }
2912 rcu_read_unlock();
2913 if (overlap) {
2914 /* Someone else could have slipped in a size
2915 * change here, but doing so is just silly.
2916 * We put oldsectors back because we *know* it is
2917 * safe, and trust userspace not to race with
2918 * itself
2919 */
2920 rdev->sectors = oldsectors;
2921 return -EBUSY;
2922 }
2923 }
2924 return len;
2925 }
2926
2927 static struct rdev_sysfs_entry rdev_size =
2928 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2929
2930 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2931 {
2932 unsigned long long recovery_start = rdev->recovery_offset;
2933
2934 if (test_bit(In_sync, &rdev->flags) ||
2935 recovery_start == MaxSector)
2936 return sprintf(page, "none\n");
2937
2938 return sprintf(page, "%llu\n", recovery_start);
2939 }
2940
2941 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2942 {
2943 unsigned long long recovery_start;
2944
2945 if (cmd_match(buf, "none"))
2946 recovery_start = MaxSector;
2947 else if (kstrtoull(buf, 10, &recovery_start))
2948 return -EINVAL;
2949
2950 if (rdev->mddev->pers &&
2951 rdev->raid_disk >= 0)
2952 return -EBUSY;
2953
2954 rdev->recovery_offset = recovery_start;
2955 if (recovery_start == MaxSector)
2956 set_bit(In_sync, &rdev->flags);
2957 else
2958 clear_bit(In_sync, &rdev->flags);
2959 return len;
2960 }
2961
2962 static struct rdev_sysfs_entry rdev_recovery_start =
2963 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2964
2965 static ssize_t
2966 badblocks_show(struct badblocks *bb, char *page, int unack);
2967 static ssize_t
2968 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2969
2970 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2971 {
2972 return badblocks_show(&rdev->badblocks, page, 0);
2973 }
2974 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2975 {
2976 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2977 /* Maybe that ack was all we needed */
2978 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2979 wake_up(&rdev->blocked_wait);
2980 return rv;
2981 }
2982 static struct rdev_sysfs_entry rdev_bad_blocks =
2983 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2984
2985 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2986 {
2987 return badblocks_show(&rdev->badblocks, page, 1);
2988 }
2989 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2990 {
2991 return badblocks_store(&rdev->badblocks, page, len, 1);
2992 }
2993 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2994 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2995
2996 static struct attribute *rdev_default_attrs[] = {
2997 &rdev_state.attr,
2998 &rdev_errors.attr,
2999 &rdev_slot.attr,
3000 &rdev_offset.attr,
3001 &rdev_new_offset.attr,
3002 &rdev_size.attr,
3003 &rdev_recovery_start.attr,
3004 &rdev_bad_blocks.attr,
3005 &rdev_unack_bad_blocks.attr,
3006 NULL,
3007 };
3008 static ssize_t
3009 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3010 {
3011 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3012 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3013
3014 if (!entry->show)
3015 return -EIO;
3016 if (!rdev->mddev)
3017 return -EBUSY;
3018 return entry->show(rdev, page);
3019 }
3020
3021 static ssize_t
3022 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3023 const char *page, size_t length)
3024 {
3025 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3026 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3027 ssize_t rv;
3028 struct mddev *mddev = rdev->mddev;
3029
3030 if (!entry->store)
3031 return -EIO;
3032 if (!capable(CAP_SYS_ADMIN))
3033 return -EACCES;
3034 rv = mddev ? mddev_lock(mddev): -EBUSY;
3035 if (!rv) {
3036 if (rdev->mddev == NULL)
3037 rv = -EBUSY;
3038 else
3039 rv = entry->store(rdev, page, length);
3040 mddev_unlock(mddev);
3041 }
3042 return rv;
3043 }
3044
3045 static void rdev_free(struct kobject *ko)
3046 {
3047 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3048 kfree(rdev);
3049 }
3050 static const struct sysfs_ops rdev_sysfs_ops = {
3051 .show = rdev_attr_show,
3052 .store = rdev_attr_store,
3053 };
3054 static struct kobj_type rdev_ktype = {
3055 .release = rdev_free,
3056 .sysfs_ops = &rdev_sysfs_ops,
3057 .default_attrs = rdev_default_attrs,
3058 };
3059
3060 int md_rdev_init(struct md_rdev *rdev)
3061 {
3062 rdev->desc_nr = -1;
3063 rdev->saved_raid_disk = -1;
3064 rdev->raid_disk = -1;
3065 rdev->flags = 0;
3066 rdev->data_offset = 0;
3067 rdev->new_data_offset = 0;
3068 rdev->sb_events = 0;
3069 rdev->last_read_error.tv_sec = 0;
3070 rdev->last_read_error.tv_nsec = 0;
3071 rdev->sb_loaded = 0;
3072 rdev->bb_page = NULL;
3073 atomic_set(&rdev->nr_pending, 0);
3074 atomic_set(&rdev->read_errors, 0);
3075 atomic_set(&rdev->corrected_errors, 0);
3076
3077 INIT_LIST_HEAD(&rdev->same_set);
3078 init_waitqueue_head(&rdev->blocked_wait);
3079
3080 /* Add space to store bad block list.
3081 * This reserves the space even on arrays where it cannot
3082 * be used - I wonder if that matters
3083 */
3084 rdev->badblocks.count = 0;
3085 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3086 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3087 seqlock_init(&rdev->badblocks.lock);
3088 if (rdev->badblocks.page == NULL)
3089 return -ENOMEM;
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(md_rdev_init);
3094 /*
3095 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3096 *
3097 * mark the device faulty if:
3098 *
3099 * - the device is nonexistent (zero size)
3100 * - the device has no valid superblock
3101 *
3102 * a faulty rdev _never_ has rdev->sb set.
3103 */
3104 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3105 {
3106 char b[BDEVNAME_SIZE];
3107 int err;
3108 struct md_rdev *rdev;
3109 sector_t size;
3110
3111 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3112 if (!rdev) {
3113 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3114 return ERR_PTR(-ENOMEM);
3115 }
3116
3117 err = md_rdev_init(rdev);
3118 if (err)
3119 goto abort_free;
3120 err = alloc_disk_sb(rdev);
3121 if (err)
3122 goto abort_free;
3123
3124 err = lock_rdev(rdev, newdev, super_format == -2);
3125 if (err)
3126 goto abort_free;
3127
3128 kobject_init(&rdev->kobj, &rdev_ktype);
3129
3130 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3131 if (!size) {
3132 printk(KERN_WARNING
3133 "md: %s has zero or unknown size, marking faulty!\n",
3134 bdevname(rdev->bdev,b));
3135 err = -EINVAL;
3136 goto abort_free;
3137 }
3138
3139 if (super_format >= 0) {
3140 err = super_types[super_format].
3141 load_super(rdev, NULL, super_minor);
3142 if (err == -EINVAL) {
3143 printk(KERN_WARNING
3144 "md: %s does not have a valid v%d.%d "
3145 "superblock, not importing!\n",
3146 bdevname(rdev->bdev,b),
3147 super_format, super_minor);
3148 goto abort_free;
3149 }
3150 if (err < 0) {
3151 printk(KERN_WARNING
3152 "md: could not read %s's sb, not importing!\n",
3153 bdevname(rdev->bdev,b));
3154 goto abort_free;
3155 }
3156 }
3157
3158 return rdev;
3159
3160 abort_free:
3161 if (rdev->bdev)
3162 unlock_rdev(rdev);
3163 md_rdev_clear(rdev);
3164 kfree(rdev);
3165 return ERR_PTR(err);
3166 }
3167
3168 /*
3169 * Check a full RAID array for plausibility
3170 */
3171
3172 static void analyze_sbs(struct mddev *mddev)
3173 {
3174 int i;
3175 struct md_rdev *rdev, *freshest, *tmp;
3176 char b[BDEVNAME_SIZE];
3177
3178 freshest = NULL;
3179 rdev_for_each_safe(rdev, tmp, mddev)
3180 switch (super_types[mddev->major_version].
3181 load_super(rdev, freshest, mddev->minor_version)) {
3182 case 1:
3183 freshest = rdev;
3184 break;
3185 case 0:
3186 break;
3187 default:
3188 printk( KERN_ERR \
3189 "md: fatal superblock inconsistency in %s"
3190 " -- removing from array\n",
3191 bdevname(rdev->bdev,b));
3192 md_kick_rdev_from_array(rdev);
3193 }
3194
3195 super_types[mddev->major_version].
3196 validate_super(mddev, freshest);
3197
3198 i = 0;
3199 rdev_for_each_safe(rdev, tmp, mddev) {
3200 if (mddev->max_disks &&
3201 (rdev->desc_nr >= mddev->max_disks ||
3202 i > mddev->max_disks)) {
3203 printk(KERN_WARNING
3204 "md: %s: %s: only %d devices permitted\n",
3205 mdname(mddev), bdevname(rdev->bdev, b),
3206 mddev->max_disks);
3207 md_kick_rdev_from_array(rdev);
3208 continue;
3209 }
3210 if (rdev != freshest) {
3211 if (super_types[mddev->major_version].
3212 validate_super(mddev, rdev)) {
3213 printk(KERN_WARNING "md: kicking non-fresh %s"
3214 " from array!\n",
3215 bdevname(rdev->bdev,b));
3216 md_kick_rdev_from_array(rdev);
3217 continue;
3218 }
3219 /* No device should have a Candidate flag
3220 * when reading devices
3221 */
3222 if (test_bit(Candidate, &rdev->flags)) {
3223 pr_info("md: kicking Cluster Candidate %s from array!\n",
3224 bdevname(rdev->bdev, b));
3225 md_kick_rdev_from_array(rdev);
3226 }
3227 }
3228 if (mddev->level == LEVEL_MULTIPATH) {
3229 rdev->desc_nr = i++;
3230 rdev->raid_disk = rdev->desc_nr;
3231 set_bit(In_sync, &rdev->flags);
3232 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3233 rdev->raid_disk = -1;
3234 clear_bit(In_sync, &rdev->flags);
3235 }
3236 }
3237 }
3238
3239 /* Read a fixed-point number.
3240 * Numbers in sysfs attributes should be in "standard" units where
3241 * possible, so time should be in seconds.
3242 * However we internally use a a much smaller unit such as
3243 * milliseconds or jiffies.
3244 * This function takes a decimal number with a possible fractional
3245 * component, and produces an integer which is the result of
3246 * multiplying that number by 10^'scale'.
3247 * all without any floating-point arithmetic.
3248 */
3249 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3250 {
3251 unsigned long result = 0;
3252 long decimals = -1;
3253 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3254 if (*cp == '.')
3255 decimals = 0;
3256 else if (decimals < scale) {
3257 unsigned int value;
3258 value = *cp - '0';
3259 result = result * 10 + value;
3260 if (decimals >= 0)
3261 decimals++;
3262 }
3263 cp++;
3264 }
3265 if (*cp == '\n')
3266 cp++;
3267 if (*cp)
3268 return -EINVAL;
3269 if (decimals < 0)
3270 decimals = 0;
3271 while (decimals < scale) {
3272 result *= 10;
3273 decimals ++;
3274 }
3275 *res = result;
3276 return 0;
3277 }
3278
3279 static void md_safemode_timeout(unsigned long data);
3280
3281 static ssize_t
3282 safe_delay_show(struct mddev *mddev, char *page)
3283 {
3284 int msec = (mddev->safemode_delay*1000)/HZ;
3285 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3286 }
3287 static ssize_t
3288 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3289 {
3290 unsigned long msec;
3291
3292 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3293 return -EINVAL;
3294 if (msec == 0)
3295 mddev->safemode_delay = 0;
3296 else {
3297 unsigned long old_delay = mddev->safemode_delay;
3298 unsigned long new_delay = (msec*HZ)/1000;
3299
3300 if (new_delay == 0)
3301 new_delay = 1;
3302 mddev->safemode_delay = new_delay;
3303 if (new_delay < old_delay || old_delay == 0)
3304 mod_timer(&mddev->safemode_timer, jiffies+1);
3305 }
3306 return len;
3307 }
3308 static struct md_sysfs_entry md_safe_delay =
3309 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3310
3311 static ssize_t
3312 level_show(struct mddev *mddev, char *page)
3313 {
3314 struct md_personality *p;
3315 int ret;
3316 spin_lock(&mddev->lock);
3317 p = mddev->pers;
3318 if (p)
3319 ret = sprintf(page, "%s\n", p->name);
3320 else if (mddev->clevel[0])
3321 ret = sprintf(page, "%s\n", mddev->clevel);
3322 else if (mddev->level != LEVEL_NONE)
3323 ret = sprintf(page, "%d\n", mddev->level);
3324 else
3325 ret = 0;
3326 spin_unlock(&mddev->lock);
3327 return ret;
3328 }
3329
3330 static ssize_t
3331 level_store(struct mddev *mddev, const char *buf, size_t len)
3332 {
3333 char clevel[16];
3334 ssize_t rv;
3335 size_t slen = len;
3336 struct md_personality *pers, *oldpers;
3337 long level;
3338 void *priv, *oldpriv;
3339 struct md_rdev *rdev;
3340
3341 if (slen == 0 || slen >= sizeof(clevel))
3342 return -EINVAL;
3343
3344 rv = mddev_lock(mddev);
3345 if (rv)
3346 return rv;
3347
3348 if (mddev->pers == NULL) {
3349 strncpy(mddev->clevel, buf, slen);
3350 if (mddev->clevel[slen-1] == '\n')
3351 slen--;
3352 mddev->clevel[slen] = 0;
3353 mddev->level = LEVEL_NONE;
3354 rv = len;
3355 goto out_unlock;
3356 }
3357 rv = -EROFS;
3358 if (mddev->ro)
3359 goto out_unlock;
3360
3361 /* request to change the personality. Need to ensure:
3362 * - array is not engaged in resync/recovery/reshape
3363 * - old personality can be suspended
3364 * - new personality will access other array.
3365 */
3366
3367 rv = -EBUSY;
3368 if (mddev->sync_thread ||
3369 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3370 mddev->reshape_position != MaxSector ||
3371 mddev->sysfs_active)
3372 goto out_unlock;
3373
3374 rv = -EINVAL;
3375 if (!mddev->pers->quiesce) {
3376 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3377 mdname(mddev), mddev->pers->name);
3378 goto out_unlock;
3379 }
3380
3381 /* Now find the new personality */
3382 strncpy(clevel, buf, slen);
3383 if (clevel[slen-1] == '\n')
3384 slen--;
3385 clevel[slen] = 0;
3386 if (kstrtol(clevel, 10, &level))
3387 level = LEVEL_NONE;
3388
3389 if (request_module("md-%s", clevel) != 0)
3390 request_module("md-level-%s", clevel);
3391 spin_lock(&pers_lock);
3392 pers = find_pers(level, clevel);
3393 if (!pers || !try_module_get(pers->owner)) {
3394 spin_unlock(&pers_lock);
3395 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3396 rv = -EINVAL;
3397 goto out_unlock;
3398 }
3399 spin_unlock(&pers_lock);
3400
3401 if (pers == mddev->pers) {
3402 /* Nothing to do! */
3403 module_put(pers->owner);
3404 rv = len;
3405 goto out_unlock;
3406 }
3407 if (!pers->takeover) {
3408 module_put(pers->owner);
3409 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3410 mdname(mddev), clevel);
3411 rv = -EINVAL;
3412 goto out_unlock;
3413 }
3414
3415 rdev_for_each(rdev, mddev)
3416 rdev->new_raid_disk = rdev->raid_disk;
3417
3418 /* ->takeover must set new_* and/or delta_disks
3419 * if it succeeds, and may set them when it fails.
3420 */
3421 priv = pers->takeover(mddev);
3422 if (IS_ERR(priv)) {
3423 mddev->new_level = mddev->level;
3424 mddev->new_layout = mddev->layout;
3425 mddev->new_chunk_sectors = mddev->chunk_sectors;
3426 mddev->raid_disks -= mddev->delta_disks;
3427 mddev->delta_disks = 0;
3428 mddev->reshape_backwards = 0;
3429 module_put(pers->owner);
3430 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3431 mdname(mddev), clevel);
3432 rv = PTR_ERR(priv);
3433 goto out_unlock;
3434 }
3435
3436 /* Looks like we have a winner */
3437 mddev_suspend(mddev);
3438 mddev_detach(mddev);
3439
3440 spin_lock(&mddev->lock);
3441 oldpers = mddev->pers;
3442 oldpriv = mddev->private;
3443 mddev->pers = pers;
3444 mddev->private = priv;
3445 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3446 mddev->level = mddev->new_level;
3447 mddev->layout = mddev->new_layout;
3448 mddev->chunk_sectors = mddev->new_chunk_sectors;
3449 mddev->delta_disks = 0;
3450 mddev->reshape_backwards = 0;
3451 mddev->degraded = 0;
3452 spin_unlock(&mddev->lock);
3453
3454 if (oldpers->sync_request == NULL &&
3455 mddev->external) {
3456 /* We are converting from a no-redundancy array
3457 * to a redundancy array and metadata is managed
3458 * externally so we need to be sure that writes
3459 * won't block due to a need to transition
3460 * clean->dirty
3461 * until external management is started.
3462 */
3463 mddev->in_sync = 0;
3464 mddev->safemode_delay = 0;
3465 mddev->safemode = 0;
3466 }
3467
3468 oldpers->free(mddev, oldpriv);
3469
3470 if (oldpers->sync_request == NULL &&
3471 pers->sync_request != NULL) {
3472 /* need to add the md_redundancy_group */
3473 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3474 printk(KERN_WARNING
3475 "md: cannot register extra attributes for %s\n",
3476 mdname(mddev));
3477 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3478 }
3479 if (oldpers->sync_request != NULL &&
3480 pers->sync_request == NULL) {
3481 /* need to remove the md_redundancy_group */
3482 if (mddev->to_remove == NULL)
3483 mddev->to_remove = &md_redundancy_group;
3484 }
3485
3486 rdev_for_each(rdev, mddev) {
3487 if (rdev->raid_disk < 0)
3488 continue;
3489 if (rdev->new_raid_disk >= mddev->raid_disks)
3490 rdev->new_raid_disk = -1;
3491 if (rdev->new_raid_disk == rdev->raid_disk)
3492 continue;
3493 sysfs_unlink_rdev(mddev, rdev);
3494 }
3495 rdev_for_each(rdev, mddev) {
3496 if (rdev->raid_disk < 0)
3497 continue;
3498 if (rdev->new_raid_disk == rdev->raid_disk)
3499 continue;
3500 rdev->raid_disk = rdev->new_raid_disk;
3501 if (rdev->raid_disk < 0)
3502 clear_bit(In_sync, &rdev->flags);
3503 else {
3504 if (sysfs_link_rdev(mddev, rdev))
3505 printk(KERN_WARNING "md: cannot register rd%d"
3506 " for %s after level change\n",
3507 rdev->raid_disk, mdname(mddev));
3508 }
3509 }
3510
3511 if (pers->sync_request == NULL) {
3512 /* this is now an array without redundancy, so
3513 * it must always be in_sync
3514 */
3515 mddev->in_sync = 1;
3516 del_timer_sync(&mddev->safemode_timer);
3517 }
3518 blk_set_stacking_limits(&mddev->queue->limits);
3519 pers->run(mddev);
3520 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3521 mddev_resume(mddev);
3522 if (!mddev->thread)
3523 md_update_sb(mddev, 1);
3524 sysfs_notify(&mddev->kobj, NULL, "level");
3525 md_new_event(mddev);
3526 rv = len;
3527 out_unlock:
3528 mddev_unlock(mddev);
3529 return rv;
3530 }
3531
3532 static struct md_sysfs_entry md_level =
3533 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3534
3535 static ssize_t
3536 layout_show(struct mddev *mddev, char *page)
3537 {
3538 /* just a number, not meaningful for all levels */
3539 if (mddev->reshape_position != MaxSector &&
3540 mddev->layout != mddev->new_layout)
3541 return sprintf(page, "%d (%d)\n",
3542 mddev->new_layout, mddev->layout);
3543 return sprintf(page, "%d\n", mddev->layout);
3544 }
3545
3546 static ssize_t
3547 layout_store(struct mddev *mddev, const char *buf, size_t len)
3548 {
3549 unsigned int n;
3550 int err;
3551
3552 err = kstrtouint(buf, 10, &n);
3553 if (err < 0)
3554 return err;
3555 err = mddev_lock(mddev);
3556 if (err)
3557 return err;
3558
3559 if (mddev->pers) {
3560 if (mddev->pers->check_reshape == NULL)
3561 err = -EBUSY;
3562 else if (mddev->ro)
3563 err = -EROFS;
3564 else {
3565 mddev->new_layout = n;
3566 err = mddev->pers->check_reshape(mddev);
3567 if (err)
3568 mddev->new_layout = mddev->layout;
3569 }
3570 } else {
3571 mddev->new_layout = n;
3572 if (mddev->reshape_position == MaxSector)
3573 mddev->layout = n;
3574 }
3575 mddev_unlock(mddev);
3576 return err ?: len;
3577 }
3578 static struct md_sysfs_entry md_layout =
3579 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3580
3581 static ssize_t
3582 raid_disks_show(struct mddev *mddev, char *page)
3583 {
3584 if (mddev->raid_disks == 0)
3585 return 0;
3586 if (mddev->reshape_position != MaxSector &&
3587 mddev->delta_disks != 0)
3588 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3589 mddev->raid_disks - mddev->delta_disks);
3590 return sprintf(page, "%d\n", mddev->raid_disks);
3591 }
3592
3593 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3594
3595 static ssize_t
3596 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3597 {
3598 unsigned int n;
3599 int err;
3600
3601 err = kstrtouint(buf, 10, &n);
3602 if (err < 0)
3603 return err;
3604
3605 err = mddev_lock(mddev);
3606 if (err)
3607 return err;
3608 if (mddev->pers)
3609 err = update_raid_disks(mddev, n);
3610 else if (mddev->reshape_position != MaxSector) {
3611 struct md_rdev *rdev;
3612 int olddisks = mddev->raid_disks - mddev->delta_disks;
3613
3614 err = -EINVAL;
3615 rdev_for_each(rdev, mddev) {
3616 if (olddisks < n &&
3617 rdev->data_offset < rdev->new_data_offset)
3618 goto out_unlock;
3619 if (olddisks > n &&
3620 rdev->data_offset > rdev->new_data_offset)
3621 goto out_unlock;
3622 }
3623 err = 0;
3624 mddev->delta_disks = n - olddisks;
3625 mddev->raid_disks = n;
3626 mddev->reshape_backwards = (mddev->delta_disks < 0);
3627 } else
3628 mddev->raid_disks = n;
3629 out_unlock:
3630 mddev_unlock(mddev);
3631 return err ? err : len;
3632 }
3633 static struct md_sysfs_entry md_raid_disks =
3634 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3635
3636 static ssize_t
3637 chunk_size_show(struct mddev *mddev, char *page)
3638 {
3639 if (mddev->reshape_position != MaxSector &&
3640 mddev->chunk_sectors != mddev->new_chunk_sectors)
3641 return sprintf(page, "%d (%d)\n",
3642 mddev->new_chunk_sectors << 9,
3643 mddev->chunk_sectors << 9);
3644 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3645 }
3646
3647 static ssize_t
3648 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3649 {
3650 unsigned long n;
3651 int err;
3652
3653 err = kstrtoul(buf, 10, &n);
3654 if (err < 0)
3655 return err;
3656
3657 err = mddev_lock(mddev);
3658 if (err)
3659 return err;
3660 if (mddev->pers) {
3661 if (mddev->pers->check_reshape == NULL)
3662 err = -EBUSY;
3663 else if (mddev->ro)
3664 err = -EROFS;
3665 else {
3666 mddev->new_chunk_sectors = n >> 9;
3667 err = mddev->pers->check_reshape(mddev);
3668 if (err)
3669 mddev->new_chunk_sectors = mddev->chunk_sectors;
3670 }
3671 } else {
3672 mddev->new_chunk_sectors = n >> 9;
3673 if (mddev->reshape_position == MaxSector)
3674 mddev->chunk_sectors = n >> 9;
3675 }
3676 mddev_unlock(mddev);
3677 return err ?: len;
3678 }
3679 static struct md_sysfs_entry md_chunk_size =
3680 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3681
3682 static ssize_t
3683 resync_start_show(struct mddev *mddev, char *page)
3684 {
3685 if (mddev->recovery_cp == MaxSector)
3686 return sprintf(page, "none\n");
3687 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3688 }
3689
3690 static ssize_t
3691 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 unsigned long long n;
3694 int err;
3695
3696 if (cmd_match(buf, "none"))
3697 n = MaxSector;
3698 else {
3699 err = kstrtoull(buf, 10, &n);
3700 if (err < 0)
3701 return err;
3702 if (n != (sector_t)n)
3703 return -EINVAL;
3704 }
3705
3706 err = mddev_lock(mddev);
3707 if (err)
3708 return err;
3709 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3710 err = -EBUSY;
3711
3712 if (!err) {
3713 mddev->recovery_cp = n;
3714 if (mddev->pers)
3715 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3716 }
3717 mddev_unlock(mddev);
3718 return err ?: len;
3719 }
3720 static struct md_sysfs_entry md_resync_start =
3721 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3722 resync_start_show, resync_start_store);
3723
3724 /*
3725 * The array state can be:
3726 *
3727 * clear
3728 * No devices, no size, no level
3729 * Equivalent to STOP_ARRAY ioctl
3730 * inactive
3731 * May have some settings, but array is not active
3732 * all IO results in error
3733 * When written, doesn't tear down array, but just stops it
3734 * suspended (not supported yet)
3735 * All IO requests will block. The array can be reconfigured.
3736 * Writing this, if accepted, will block until array is quiescent
3737 * readonly
3738 * no resync can happen. no superblocks get written.
3739 * write requests fail
3740 * read-auto
3741 * like readonly, but behaves like 'clean' on a write request.
3742 *
3743 * clean - no pending writes, but otherwise active.
3744 * When written to inactive array, starts without resync
3745 * If a write request arrives then
3746 * if metadata is known, mark 'dirty' and switch to 'active'.
3747 * if not known, block and switch to write-pending
3748 * If written to an active array that has pending writes, then fails.
3749 * active
3750 * fully active: IO and resync can be happening.
3751 * When written to inactive array, starts with resync
3752 *
3753 * write-pending
3754 * clean, but writes are blocked waiting for 'active' to be written.
3755 *
3756 * active-idle
3757 * like active, but no writes have been seen for a while (100msec).
3758 *
3759 */
3760 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3761 write_pending, active_idle, bad_word};
3762 static char *array_states[] = {
3763 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3764 "write-pending", "active-idle", NULL };
3765
3766 static int match_word(const char *word, char **list)
3767 {
3768 int n;
3769 for (n=0; list[n]; n++)
3770 if (cmd_match(word, list[n]))
3771 break;
3772 return n;
3773 }
3774
3775 static ssize_t
3776 array_state_show(struct mddev *mddev, char *page)
3777 {
3778 enum array_state st = inactive;
3779
3780 if (mddev->pers)
3781 switch(mddev->ro) {
3782 case 1:
3783 st = readonly;
3784 break;
3785 case 2:
3786 st = read_auto;
3787 break;
3788 case 0:
3789 if (mddev->in_sync)
3790 st = clean;
3791 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3792 st = write_pending;
3793 else if (mddev->safemode)
3794 st = active_idle;
3795 else
3796 st = active;
3797 }
3798 else {
3799 if (list_empty(&mddev->disks) &&
3800 mddev->raid_disks == 0 &&
3801 mddev->dev_sectors == 0)
3802 st = clear;
3803 else
3804 st = inactive;
3805 }
3806 return sprintf(page, "%s\n", array_states[st]);
3807 }
3808
3809 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3810 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3811 static int do_md_run(struct mddev *mddev);
3812 static int restart_array(struct mddev *mddev);
3813
3814 static ssize_t
3815 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3816 {
3817 int err;
3818 enum array_state st = match_word(buf, array_states);
3819
3820 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3821 /* don't take reconfig_mutex when toggling between
3822 * clean and active
3823 */
3824 spin_lock(&mddev->lock);
3825 if (st == active) {
3826 restart_array(mddev);
3827 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3828 wake_up(&mddev->sb_wait);
3829 err = 0;
3830 } else /* st == clean */ {
3831 restart_array(mddev);
3832 if (atomic_read(&mddev->writes_pending) == 0) {
3833 if (mddev->in_sync == 0) {
3834 mddev->in_sync = 1;
3835 if (mddev->safemode == 1)
3836 mddev->safemode = 0;
3837 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3838 }
3839 err = 0;
3840 } else
3841 err = -EBUSY;
3842 }
3843 spin_unlock(&mddev->lock);
3844 return err ?: len;
3845 }
3846 err = mddev_lock(mddev);
3847 if (err)
3848 return err;
3849 err = -EINVAL;
3850 switch(st) {
3851 case bad_word:
3852 break;
3853 case clear:
3854 /* stopping an active array */
3855 err = do_md_stop(mddev, 0, NULL);
3856 break;
3857 case inactive:
3858 /* stopping an active array */
3859 if (mddev->pers)
3860 err = do_md_stop(mddev, 2, NULL);
3861 else
3862 err = 0; /* already inactive */
3863 break;
3864 case suspended:
3865 break; /* not supported yet */
3866 case readonly:
3867 if (mddev->pers)
3868 err = md_set_readonly(mddev, NULL);
3869 else {
3870 mddev->ro = 1;
3871 set_disk_ro(mddev->gendisk, 1);
3872 err = do_md_run(mddev);
3873 }
3874 break;
3875 case read_auto:
3876 if (mddev->pers) {
3877 if (mddev->ro == 0)
3878 err = md_set_readonly(mddev, NULL);
3879 else if (mddev->ro == 1)
3880 err = restart_array(mddev);
3881 if (err == 0) {
3882 mddev->ro = 2;
3883 set_disk_ro(mddev->gendisk, 0);
3884 }
3885 } else {
3886 mddev->ro = 2;
3887 err = do_md_run(mddev);
3888 }
3889 break;
3890 case clean:
3891 if (mddev->pers) {
3892 restart_array(mddev);
3893 spin_lock(&mddev->lock);
3894 if (atomic_read(&mddev->writes_pending) == 0) {
3895 if (mddev->in_sync == 0) {
3896 mddev->in_sync = 1;
3897 if (mddev->safemode == 1)
3898 mddev->safemode = 0;
3899 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3900 }
3901 err = 0;
3902 } else
3903 err = -EBUSY;
3904 spin_unlock(&mddev->lock);
3905 } else
3906 err = -EINVAL;
3907 break;
3908 case active:
3909 if (mddev->pers) {
3910 restart_array(mddev);
3911 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3912 wake_up(&mddev->sb_wait);
3913 err = 0;
3914 } else {
3915 mddev->ro = 0;
3916 set_disk_ro(mddev->gendisk, 0);
3917 err = do_md_run(mddev);
3918 }
3919 break;
3920 case write_pending:
3921 case active_idle:
3922 /* these cannot be set */
3923 break;
3924 }
3925
3926 if (!err) {
3927 if (mddev->hold_active == UNTIL_IOCTL)
3928 mddev->hold_active = 0;
3929 sysfs_notify_dirent_safe(mddev->sysfs_state);
3930 }
3931 mddev_unlock(mddev);
3932 return err ?: len;
3933 }
3934 static struct md_sysfs_entry md_array_state =
3935 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3936
3937 static ssize_t
3938 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3939 return sprintf(page, "%d\n",
3940 atomic_read(&mddev->max_corr_read_errors));
3941 }
3942
3943 static ssize_t
3944 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3945 {
3946 unsigned int n;
3947 int rv;
3948
3949 rv = kstrtouint(buf, 10, &n);
3950 if (rv < 0)
3951 return rv;
3952 atomic_set(&mddev->max_corr_read_errors, n);
3953 return len;
3954 }
3955
3956 static struct md_sysfs_entry max_corr_read_errors =
3957 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3958 max_corrected_read_errors_store);
3959
3960 static ssize_t
3961 null_show(struct mddev *mddev, char *page)
3962 {
3963 return -EINVAL;
3964 }
3965
3966 static ssize_t
3967 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3968 {
3969 /* buf must be %d:%d\n? giving major and minor numbers */
3970 /* The new device is added to the array.
3971 * If the array has a persistent superblock, we read the
3972 * superblock to initialise info and check validity.
3973 * Otherwise, only checking done is that in bind_rdev_to_array,
3974 * which mainly checks size.
3975 */
3976 char *e;
3977 int major = simple_strtoul(buf, &e, 10);
3978 int minor;
3979 dev_t dev;
3980 struct md_rdev *rdev;
3981 int err;
3982
3983 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3984 return -EINVAL;
3985 minor = simple_strtoul(e+1, &e, 10);
3986 if (*e && *e != '\n')
3987 return -EINVAL;
3988 dev = MKDEV(major, minor);
3989 if (major != MAJOR(dev) ||
3990 minor != MINOR(dev))
3991 return -EOVERFLOW;
3992
3993 flush_workqueue(md_misc_wq);
3994
3995 err = mddev_lock(mddev);
3996 if (err)
3997 return err;
3998 if (mddev->persistent) {
3999 rdev = md_import_device(dev, mddev->major_version,
4000 mddev->minor_version);
4001 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4002 struct md_rdev *rdev0
4003 = list_entry(mddev->disks.next,
4004 struct md_rdev, same_set);
4005 err = super_types[mddev->major_version]
4006 .load_super(rdev, rdev0, mddev->minor_version);
4007 if (err < 0)
4008 goto out;
4009 }
4010 } else if (mddev->external)
4011 rdev = md_import_device(dev, -2, -1);
4012 else
4013 rdev = md_import_device(dev, -1, -1);
4014
4015 if (IS_ERR(rdev)) {
4016 mddev_unlock(mddev);
4017 return PTR_ERR(rdev);
4018 }
4019 err = bind_rdev_to_array(rdev, mddev);
4020 out:
4021 if (err)
4022 export_rdev(rdev);
4023 mddev_unlock(mddev);
4024 return err ? err : len;
4025 }
4026
4027 static struct md_sysfs_entry md_new_device =
4028 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4029
4030 static ssize_t
4031 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4032 {
4033 char *end;
4034 unsigned long chunk, end_chunk;
4035 int err;
4036
4037 err = mddev_lock(mddev);
4038 if (err)
4039 return err;
4040 if (!mddev->bitmap)
4041 goto out;
4042 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4043 while (*buf) {
4044 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4045 if (buf == end) break;
4046 if (*end == '-') { /* range */
4047 buf = end + 1;
4048 end_chunk = simple_strtoul(buf, &end, 0);
4049 if (buf == end) break;
4050 }
4051 if (*end && !isspace(*end)) break;
4052 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4053 buf = skip_spaces(end);
4054 }
4055 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4056 out:
4057 mddev_unlock(mddev);
4058 return len;
4059 }
4060
4061 static struct md_sysfs_entry md_bitmap =
4062 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4063
4064 static ssize_t
4065 size_show(struct mddev *mddev, char *page)
4066 {
4067 return sprintf(page, "%llu\n",
4068 (unsigned long long)mddev->dev_sectors / 2);
4069 }
4070
4071 static int update_size(struct mddev *mddev, sector_t num_sectors);
4072
4073 static ssize_t
4074 size_store(struct mddev *mddev, const char *buf, size_t len)
4075 {
4076 /* If array is inactive, we can reduce the component size, but
4077 * not increase it (except from 0).
4078 * If array is active, we can try an on-line resize
4079 */
4080 sector_t sectors;
4081 int err = strict_blocks_to_sectors(buf, &sectors);
4082
4083 if (err < 0)
4084 return err;
4085 err = mddev_lock(mddev);
4086 if (err)
4087 return err;
4088 if (mddev->pers) {
4089 if (mddev_is_clustered(mddev))
4090 md_cluster_ops->metadata_update_start(mddev);
4091 err = update_size(mddev, sectors);
4092 md_update_sb(mddev, 1);
4093 if (mddev_is_clustered(mddev))
4094 md_cluster_ops->metadata_update_finish(mddev);
4095 } else {
4096 if (mddev->dev_sectors == 0 ||
4097 mddev->dev_sectors > sectors)
4098 mddev->dev_sectors = sectors;
4099 else
4100 err = -ENOSPC;
4101 }
4102 mddev_unlock(mddev);
4103 return err ? err : len;
4104 }
4105
4106 static struct md_sysfs_entry md_size =
4107 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4108
4109 /* Metadata version.
4110 * This is one of
4111 * 'none' for arrays with no metadata (good luck...)
4112 * 'external' for arrays with externally managed metadata,
4113 * or N.M for internally known formats
4114 */
4115 static ssize_t
4116 metadata_show(struct mddev *mddev, char *page)
4117 {
4118 if (mddev->persistent)
4119 return sprintf(page, "%d.%d\n",
4120 mddev->major_version, mddev->minor_version);
4121 else if (mddev->external)
4122 return sprintf(page, "external:%s\n", mddev->metadata_type);
4123 else
4124 return sprintf(page, "none\n");
4125 }
4126
4127 static ssize_t
4128 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4129 {
4130 int major, minor;
4131 char *e;
4132 int err;
4133 /* Changing the details of 'external' metadata is
4134 * always permitted. Otherwise there must be
4135 * no devices attached to the array.
4136 */
4137
4138 err = mddev_lock(mddev);
4139 if (err)
4140 return err;
4141 err = -EBUSY;
4142 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4143 ;
4144 else if (!list_empty(&mddev->disks))
4145 goto out_unlock;
4146
4147 err = 0;
4148 if (cmd_match(buf, "none")) {
4149 mddev->persistent = 0;
4150 mddev->external = 0;
4151 mddev->major_version = 0;
4152 mddev->minor_version = 90;
4153 goto out_unlock;
4154 }
4155 if (strncmp(buf, "external:", 9) == 0) {
4156 size_t namelen = len-9;
4157 if (namelen >= sizeof(mddev->metadata_type))
4158 namelen = sizeof(mddev->metadata_type)-1;
4159 strncpy(mddev->metadata_type, buf+9, namelen);
4160 mddev->metadata_type[namelen] = 0;
4161 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4162 mddev->metadata_type[--namelen] = 0;
4163 mddev->persistent = 0;
4164 mddev->external = 1;
4165 mddev->major_version = 0;
4166 mddev->minor_version = 90;
4167 goto out_unlock;
4168 }
4169 major = simple_strtoul(buf, &e, 10);
4170 err = -EINVAL;
4171 if (e==buf || *e != '.')
4172 goto out_unlock;
4173 buf = e+1;
4174 minor = simple_strtoul(buf, &e, 10);
4175 if (e==buf || (*e && *e != '\n') )
4176 goto out_unlock;
4177 err = -ENOENT;
4178 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4179 goto out_unlock;
4180 mddev->major_version = major;
4181 mddev->minor_version = minor;
4182 mddev->persistent = 1;
4183 mddev->external = 0;
4184 err = 0;
4185 out_unlock:
4186 mddev_unlock(mddev);
4187 return err ?: len;
4188 }
4189
4190 static struct md_sysfs_entry md_metadata =
4191 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4192
4193 static ssize_t
4194 action_show(struct mddev *mddev, char *page)
4195 {
4196 char *type = "idle";
4197 unsigned long recovery = mddev->recovery;
4198 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4199 type = "frozen";
4200 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4201 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4202 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4203 type = "reshape";
4204 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4205 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4206 type = "resync";
4207 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4208 type = "check";
4209 else
4210 type = "repair";
4211 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4212 type = "recover";
4213 else if (mddev->reshape_position != MaxSector)
4214 type = "reshape";
4215 }
4216 return sprintf(page, "%s\n", type);
4217 }
4218
4219 static ssize_t
4220 action_store(struct mddev *mddev, const char *page, size_t len)
4221 {
4222 if (!mddev->pers || !mddev->pers->sync_request)
4223 return -EINVAL;
4224
4225
4226 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4227 if (cmd_match(page, "frozen"))
4228 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4229 else
4230 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4231 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4232 mddev_lock(mddev) == 0) {
4233 flush_workqueue(md_misc_wq);
4234 if (mddev->sync_thread) {
4235 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4236 md_reap_sync_thread(mddev);
4237 }
4238 mddev_unlock(mddev);
4239 }
4240 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4241 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4242 return -EBUSY;
4243 else if (cmd_match(page, "resync"))
4244 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4245 else if (cmd_match(page, "recover")) {
4246 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4247 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4248 } else if (cmd_match(page, "reshape")) {
4249 int err;
4250 if (mddev->pers->start_reshape == NULL)
4251 return -EINVAL;
4252 err = mddev_lock(mddev);
4253 if (!err) {
4254 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4255 err = mddev->pers->start_reshape(mddev);
4256 mddev_unlock(mddev);
4257 }
4258 if (err)
4259 return err;
4260 sysfs_notify(&mddev->kobj, NULL, "degraded");
4261 } else {
4262 if (cmd_match(page, "check"))
4263 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4264 else if (!cmd_match(page, "repair"))
4265 return -EINVAL;
4266 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4267 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4268 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4269 }
4270 if (mddev->ro == 2) {
4271 /* A write to sync_action is enough to justify
4272 * canceling read-auto mode
4273 */
4274 mddev->ro = 0;
4275 md_wakeup_thread(mddev->sync_thread);
4276 }
4277 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4278 md_wakeup_thread(mddev->thread);
4279 sysfs_notify_dirent_safe(mddev->sysfs_action);
4280 return len;
4281 }
4282
4283 static struct md_sysfs_entry md_scan_mode =
4284 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4285
4286 static ssize_t
4287 last_sync_action_show(struct mddev *mddev, char *page)
4288 {
4289 return sprintf(page, "%s\n", mddev->last_sync_action);
4290 }
4291
4292 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4293
4294 static ssize_t
4295 mismatch_cnt_show(struct mddev *mddev, char *page)
4296 {
4297 return sprintf(page, "%llu\n",
4298 (unsigned long long)
4299 atomic64_read(&mddev->resync_mismatches));
4300 }
4301
4302 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4303
4304 static ssize_t
4305 sync_min_show(struct mddev *mddev, char *page)
4306 {
4307 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4308 mddev->sync_speed_min ? "local": "system");
4309 }
4310
4311 static ssize_t
4312 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4313 {
4314 unsigned int min;
4315 int rv;
4316
4317 if (strncmp(buf, "system", 6)==0) {
4318 min = 0;
4319 } else {
4320 rv = kstrtouint(buf, 10, &min);
4321 if (rv < 0)
4322 return rv;
4323 if (min == 0)
4324 return -EINVAL;
4325 }
4326 mddev->sync_speed_min = min;
4327 return len;
4328 }
4329
4330 static struct md_sysfs_entry md_sync_min =
4331 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4332
4333 static ssize_t
4334 sync_max_show(struct mddev *mddev, char *page)
4335 {
4336 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4337 mddev->sync_speed_max ? "local": "system");
4338 }
4339
4340 static ssize_t
4341 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4342 {
4343 unsigned int max;
4344 int rv;
4345
4346 if (strncmp(buf, "system", 6)==0) {
4347 max = 0;
4348 } else {
4349 rv = kstrtouint(buf, 10, &max);
4350 if (rv < 0)
4351 return rv;
4352 if (max == 0)
4353 return -EINVAL;
4354 }
4355 mddev->sync_speed_max = max;
4356 return len;
4357 }
4358
4359 static struct md_sysfs_entry md_sync_max =
4360 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4361
4362 static ssize_t
4363 degraded_show(struct mddev *mddev, char *page)
4364 {
4365 return sprintf(page, "%d\n", mddev->degraded);
4366 }
4367 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4368
4369 static ssize_t
4370 sync_force_parallel_show(struct mddev *mddev, char *page)
4371 {
4372 return sprintf(page, "%d\n", mddev->parallel_resync);
4373 }
4374
4375 static ssize_t
4376 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4377 {
4378 long n;
4379
4380 if (kstrtol(buf, 10, &n))
4381 return -EINVAL;
4382
4383 if (n != 0 && n != 1)
4384 return -EINVAL;
4385
4386 mddev->parallel_resync = n;
4387
4388 if (mddev->sync_thread)
4389 wake_up(&resync_wait);
4390
4391 return len;
4392 }
4393
4394 /* force parallel resync, even with shared block devices */
4395 static struct md_sysfs_entry md_sync_force_parallel =
4396 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4397 sync_force_parallel_show, sync_force_parallel_store);
4398
4399 static ssize_t
4400 sync_speed_show(struct mddev *mddev, char *page)
4401 {
4402 unsigned long resync, dt, db;
4403 if (mddev->curr_resync == 0)
4404 return sprintf(page, "none\n");
4405 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4406 dt = (jiffies - mddev->resync_mark) / HZ;
4407 if (!dt) dt++;
4408 db = resync - mddev->resync_mark_cnt;
4409 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4410 }
4411
4412 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4413
4414 static ssize_t
4415 sync_completed_show(struct mddev *mddev, char *page)
4416 {
4417 unsigned long long max_sectors, resync;
4418
4419 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4420 return sprintf(page, "none\n");
4421
4422 if (mddev->curr_resync == 1 ||
4423 mddev->curr_resync == 2)
4424 return sprintf(page, "delayed\n");
4425
4426 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4427 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4428 max_sectors = mddev->resync_max_sectors;
4429 else
4430 max_sectors = mddev->dev_sectors;
4431
4432 resync = mddev->curr_resync_completed;
4433 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4434 }
4435
4436 static struct md_sysfs_entry md_sync_completed =
4437 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4438
4439 static ssize_t
4440 min_sync_show(struct mddev *mddev, char *page)
4441 {
4442 return sprintf(page, "%llu\n",
4443 (unsigned long long)mddev->resync_min);
4444 }
4445 static ssize_t
4446 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4447 {
4448 unsigned long long min;
4449 int err;
4450
4451 if (kstrtoull(buf, 10, &min))
4452 return -EINVAL;
4453
4454 spin_lock(&mddev->lock);
4455 err = -EINVAL;
4456 if (min > mddev->resync_max)
4457 goto out_unlock;
4458
4459 err = -EBUSY;
4460 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4461 goto out_unlock;
4462
4463 /* Round down to multiple of 4K for safety */
4464 mddev->resync_min = round_down(min, 8);
4465 err = 0;
4466
4467 out_unlock:
4468 spin_unlock(&mddev->lock);
4469 return err ?: len;
4470 }
4471
4472 static struct md_sysfs_entry md_min_sync =
4473 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4474
4475 static ssize_t
4476 max_sync_show(struct mddev *mddev, char *page)
4477 {
4478 if (mddev->resync_max == MaxSector)
4479 return sprintf(page, "max\n");
4480 else
4481 return sprintf(page, "%llu\n",
4482 (unsigned long long)mddev->resync_max);
4483 }
4484 static ssize_t
4485 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4486 {
4487 int err;
4488 spin_lock(&mddev->lock);
4489 if (strncmp(buf, "max", 3) == 0)
4490 mddev->resync_max = MaxSector;
4491 else {
4492 unsigned long long max;
4493 int chunk;
4494
4495 err = -EINVAL;
4496 if (kstrtoull(buf, 10, &max))
4497 goto out_unlock;
4498 if (max < mddev->resync_min)
4499 goto out_unlock;
4500
4501 err = -EBUSY;
4502 if (max < mddev->resync_max &&
4503 mddev->ro == 0 &&
4504 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4505 goto out_unlock;
4506
4507 /* Must be a multiple of chunk_size */
4508 chunk = mddev->chunk_sectors;
4509 if (chunk) {
4510 sector_t temp = max;
4511
4512 err = -EINVAL;
4513 if (sector_div(temp, chunk))
4514 goto out_unlock;
4515 }
4516 mddev->resync_max = max;
4517 }
4518 wake_up(&mddev->recovery_wait);
4519 err = 0;
4520 out_unlock:
4521 spin_unlock(&mddev->lock);
4522 return err ?: len;
4523 }
4524
4525 static struct md_sysfs_entry md_max_sync =
4526 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4527
4528 static ssize_t
4529 suspend_lo_show(struct mddev *mddev, char *page)
4530 {
4531 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4532 }
4533
4534 static ssize_t
4535 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4536 {
4537 unsigned long long old, new;
4538 int err;
4539
4540 err = kstrtoull(buf, 10, &new);
4541 if (err < 0)
4542 return err;
4543 if (new != (sector_t)new)
4544 return -EINVAL;
4545
4546 err = mddev_lock(mddev);
4547 if (err)
4548 return err;
4549 err = -EINVAL;
4550 if (mddev->pers == NULL ||
4551 mddev->pers->quiesce == NULL)
4552 goto unlock;
4553 old = mddev->suspend_lo;
4554 mddev->suspend_lo = new;
4555 if (new >= old)
4556 /* Shrinking suspended region */
4557 mddev->pers->quiesce(mddev, 2);
4558 else {
4559 /* Expanding suspended region - need to wait */
4560 mddev->pers->quiesce(mddev, 1);
4561 mddev->pers->quiesce(mddev, 0);
4562 }
4563 err = 0;
4564 unlock:
4565 mddev_unlock(mddev);
4566 return err ?: len;
4567 }
4568 static struct md_sysfs_entry md_suspend_lo =
4569 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4570
4571 static ssize_t
4572 suspend_hi_show(struct mddev *mddev, char *page)
4573 {
4574 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4575 }
4576
4577 static ssize_t
4578 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4579 {
4580 unsigned long long old, new;
4581 int err;
4582
4583 err = kstrtoull(buf, 10, &new);
4584 if (err < 0)
4585 return err;
4586 if (new != (sector_t)new)
4587 return -EINVAL;
4588
4589 err = mddev_lock(mddev);
4590 if (err)
4591 return err;
4592 err = -EINVAL;
4593 if (mddev->pers == NULL ||
4594 mddev->pers->quiesce == NULL)
4595 goto unlock;
4596 old = mddev->suspend_hi;
4597 mddev->suspend_hi = new;
4598 if (new <= old)
4599 /* Shrinking suspended region */
4600 mddev->pers->quiesce(mddev, 2);
4601 else {
4602 /* Expanding suspended region - need to wait */
4603 mddev->pers->quiesce(mddev, 1);
4604 mddev->pers->quiesce(mddev, 0);
4605 }
4606 err = 0;
4607 unlock:
4608 mddev_unlock(mddev);
4609 return err ?: len;
4610 }
4611 static struct md_sysfs_entry md_suspend_hi =
4612 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4613
4614 static ssize_t
4615 reshape_position_show(struct mddev *mddev, char *page)
4616 {
4617 if (mddev->reshape_position != MaxSector)
4618 return sprintf(page, "%llu\n",
4619 (unsigned long long)mddev->reshape_position);
4620 strcpy(page, "none\n");
4621 return 5;
4622 }
4623
4624 static ssize_t
4625 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4626 {
4627 struct md_rdev *rdev;
4628 unsigned long long new;
4629 int err;
4630
4631 err = kstrtoull(buf, 10, &new);
4632 if (err < 0)
4633 return err;
4634 if (new != (sector_t)new)
4635 return -EINVAL;
4636 err = mddev_lock(mddev);
4637 if (err)
4638 return err;
4639 err = -EBUSY;
4640 if (mddev->pers)
4641 goto unlock;
4642 mddev->reshape_position = new;
4643 mddev->delta_disks = 0;
4644 mddev->reshape_backwards = 0;
4645 mddev->new_level = mddev->level;
4646 mddev->new_layout = mddev->layout;
4647 mddev->new_chunk_sectors = mddev->chunk_sectors;
4648 rdev_for_each(rdev, mddev)
4649 rdev->new_data_offset = rdev->data_offset;
4650 err = 0;
4651 unlock:
4652 mddev_unlock(mddev);
4653 return err ?: len;
4654 }
4655
4656 static struct md_sysfs_entry md_reshape_position =
4657 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4658 reshape_position_store);
4659
4660 static ssize_t
4661 reshape_direction_show(struct mddev *mddev, char *page)
4662 {
4663 return sprintf(page, "%s\n",
4664 mddev->reshape_backwards ? "backwards" : "forwards");
4665 }
4666
4667 static ssize_t
4668 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4669 {
4670 int backwards = 0;
4671 int err;
4672
4673 if (cmd_match(buf, "forwards"))
4674 backwards = 0;
4675 else if (cmd_match(buf, "backwards"))
4676 backwards = 1;
4677 else
4678 return -EINVAL;
4679 if (mddev->reshape_backwards == backwards)
4680 return len;
4681
4682 err = mddev_lock(mddev);
4683 if (err)
4684 return err;
4685 /* check if we are allowed to change */
4686 if (mddev->delta_disks)
4687 err = -EBUSY;
4688 else if (mddev->persistent &&
4689 mddev->major_version == 0)
4690 err = -EINVAL;
4691 else
4692 mddev->reshape_backwards = backwards;
4693 mddev_unlock(mddev);
4694 return err ?: len;
4695 }
4696
4697 static struct md_sysfs_entry md_reshape_direction =
4698 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4699 reshape_direction_store);
4700
4701 static ssize_t
4702 array_size_show(struct mddev *mddev, char *page)
4703 {
4704 if (mddev->external_size)
4705 return sprintf(page, "%llu\n",
4706 (unsigned long long)mddev->array_sectors/2);
4707 else
4708 return sprintf(page, "default\n");
4709 }
4710
4711 static ssize_t
4712 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4713 {
4714 sector_t sectors;
4715 int err;
4716
4717 err = mddev_lock(mddev);
4718 if (err)
4719 return err;
4720
4721 if (strncmp(buf, "default", 7) == 0) {
4722 if (mddev->pers)
4723 sectors = mddev->pers->size(mddev, 0, 0);
4724 else
4725 sectors = mddev->array_sectors;
4726
4727 mddev->external_size = 0;
4728 } else {
4729 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4730 err = -EINVAL;
4731 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4732 err = -E2BIG;
4733 else
4734 mddev->external_size = 1;
4735 }
4736
4737 if (!err) {
4738 mddev->array_sectors = sectors;
4739 if (mddev->pers) {
4740 set_capacity(mddev->gendisk, mddev->array_sectors);
4741 revalidate_disk(mddev->gendisk);
4742 }
4743 }
4744 mddev_unlock(mddev);
4745 return err ?: len;
4746 }
4747
4748 static struct md_sysfs_entry md_array_size =
4749 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4750 array_size_store);
4751
4752 static struct attribute *md_default_attrs[] = {
4753 &md_level.attr,
4754 &md_layout.attr,
4755 &md_raid_disks.attr,
4756 &md_chunk_size.attr,
4757 &md_size.attr,
4758 &md_resync_start.attr,
4759 &md_metadata.attr,
4760 &md_new_device.attr,
4761 &md_safe_delay.attr,
4762 &md_array_state.attr,
4763 &md_reshape_position.attr,
4764 &md_reshape_direction.attr,
4765 &md_array_size.attr,
4766 &max_corr_read_errors.attr,
4767 NULL,
4768 };
4769
4770 static struct attribute *md_redundancy_attrs[] = {
4771 &md_scan_mode.attr,
4772 &md_last_scan_mode.attr,
4773 &md_mismatches.attr,
4774 &md_sync_min.attr,
4775 &md_sync_max.attr,
4776 &md_sync_speed.attr,
4777 &md_sync_force_parallel.attr,
4778 &md_sync_completed.attr,
4779 &md_min_sync.attr,
4780 &md_max_sync.attr,
4781 &md_suspend_lo.attr,
4782 &md_suspend_hi.attr,
4783 &md_bitmap.attr,
4784 &md_degraded.attr,
4785 NULL,
4786 };
4787 static struct attribute_group md_redundancy_group = {
4788 .name = NULL,
4789 .attrs = md_redundancy_attrs,
4790 };
4791
4792 static ssize_t
4793 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4794 {
4795 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4796 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4797 ssize_t rv;
4798
4799 if (!entry->show)
4800 return -EIO;
4801 spin_lock(&all_mddevs_lock);
4802 if (list_empty(&mddev->all_mddevs)) {
4803 spin_unlock(&all_mddevs_lock);
4804 return -EBUSY;
4805 }
4806 mddev_get(mddev);
4807 spin_unlock(&all_mddevs_lock);
4808
4809 rv = entry->show(mddev, page);
4810 mddev_put(mddev);
4811 return rv;
4812 }
4813
4814 static ssize_t
4815 md_attr_store(struct kobject *kobj, struct attribute *attr,
4816 const char *page, size_t length)
4817 {
4818 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4819 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4820 ssize_t rv;
4821
4822 if (!entry->store)
4823 return -EIO;
4824 if (!capable(CAP_SYS_ADMIN))
4825 return -EACCES;
4826 spin_lock(&all_mddevs_lock);
4827 if (list_empty(&mddev->all_mddevs)) {
4828 spin_unlock(&all_mddevs_lock);
4829 return -EBUSY;
4830 }
4831 mddev_get(mddev);
4832 spin_unlock(&all_mddevs_lock);
4833 rv = entry->store(mddev, page, length);
4834 mddev_put(mddev);
4835 return rv;
4836 }
4837
4838 static void md_free(struct kobject *ko)
4839 {
4840 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4841
4842 if (mddev->sysfs_state)
4843 sysfs_put(mddev->sysfs_state);
4844
4845 if (mddev->queue)
4846 blk_cleanup_queue(mddev->queue);
4847 if (mddev->gendisk) {
4848 del_gendisk(mddev->gendisk);
4849 put_disk(mddev->gendisk);
4850 }
4851
4852 kfree(mddev);
4853 }
4854
4855 static const struct sysfs_ops md_sysfs_ops = {
4856 .show = md_attr_show,
4857 .store = md_attr_store,
4858 };
4859 static struct kobj_type md_ktype = {
4860 .release = md_free,
4861 .sysfs_ops = &md_sysfs_ops,
4862 .default_attrs = md_default_attrs,
4863 };
4864
4865 int mdp_major = 0;
4866
4867 static void mddev_delayed_delete(struct work_struct *ws)
4868 {
4869 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4870
4871 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4872 kobject_del(&mddev->kobj);
4873 kobject_put(&mddev->kobj);
4874 }
4875
4876 static int md_alloc(dev_t dev, char *name)
4877 {
4878 static DEFINE_MUTEX(disks_mutex);
4879 struct mddev *mddev = mddev_find(dev);
4880 struct gendisk *disk;
4881 int partitioned;
4882 int shift;
4883 int unit;
4884 int error;
4885
4886 if (!mddev)
4887 return -ENODEV;
4888
4889 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4890 shift = partitioned ? MdpMinorShift : 0;
4891 unit = MINOR(mddev->unit) >> shift;
4892
4893 /* wait for any previous instance of this device to be
4894 * completely removed (mddev_delayed_delete).
4895 */
4896 flush_workqueue(md_misc_wq);
4897
4898 mutex_lock(&disks_mutex);
4899 error = -EEXIST;
4900 if (mddev->gendisk)
4901 goto abort;
4902
4903 if (name) {
4904 /* Need to ensure that 'name' is not a duplicate.
4905 */
4906 struct mddev *mddev2;
4907 spin_lock(&all_mddevs_lock);
4908
4909 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4910 if (mddev2->gendisk &&
4911 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4912 spin_unlock(&all_mddevs_lock);
4913 goto abort;
4914 }
4915 spin_unlock(&all_mddevs_lock);
4916 }
4917
4918 error = -ENOMEM;
4919 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4920 if (!mddev->queue)
4921 goto abort;
4922 mddev->queue->queuedata = mddev;
4923
4924 blk_queue_make_request(mddev->queue, md_make_request);
4925 blk_set_stacking_limits(&mddev->queue->limits);
4926
4927 disk = alloc_disk(1 << shift);
4928 if (!disk) {
4929 blk_cleanup_queue(mddev->queue);
4930 mddev->queue = NULL;
4931 goto abort;
4932 }
4933 disk->major = MAJOR(mddev->unit);
4934 disk->first_minor = unit << shift;
4935 if (name)
4936 strcpy(disk->disk_name, name);
4937 else if (partitioned)
4938 sprintf(disk->disk_name, "md_d%d", unit);
4939 else
4940 sprintf(disk->disk_name, "md%d", unit);
4941 disk->fops = &md_fops;
4942 disk->private_data = mddev;
4943 disk->queue = mddev->queue;
4944 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4945 /* Allow extended partitions. This makes the
4946 * 'mdp' device redundant, but we can't really
4947 * remove it now.
4948 */
4949 disk->flags |= GENHD_FL_EXT_DEVT;
4950 mddev->gendisk = disk;
4951 /* As soon as we call add_disk(), another thread could get
4952 * through to md_open, so make sure it doesn't get too far
4953 */
4954 mutex_lock(&mddev->open_mutex);
4955 add_disk(disk);
4956
4957 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4958 &disk_to_dev(disk)->kobj, "%s", "md");
4959 if (error) {
4960 /* This isn't possible, but as kobject_init_and_add is marked
4961 * __must_check, we must do something with the result
4962 */
4963 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4964 disk->disk_name);
4965 error = 0;
4966 }
4967 if (mddev->kobj.sd &&
4968 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4969 printk(KERN_DEBUG "pointless warning\n");
4970 mutex_unlock(&mddev->open_mutex);
4971 abort:
4972 mutex_unlock(&disks_mutex);
4973 if (!error && mddev->kobj.sd) {
4974 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4975 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4976 }
4977 mddev_put(mddev);
4978 return error;
4979 }
4980
4981 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4982 {
4983 md_alloc(dev, NULL);
4984 return NULL;
4985 }
4986
4987 static int add_named_array(const char *val, struct kernel_param *kp)
4988 {
4989 /* val must be "md_*" where * is not all digits.
4990 * We allocate an array with a large free minor number, and
4991 * set the name to val. val must not already be an active name.
4992 */
4993 int len = strlen(val);
4994 char buf[DISK_NAME_LEN];
4995
4996 while (len && val[len-1] == '\n')
4997 len--;
4998 if (len >= DISK_NAME_LEN)
4999 return -E2BIG;
5000 strlcpy(buf, val, len+1);
5001 if (strncmp(buf, "md_", 3) != 0)
5002 return -EINVAL;
5003 return md_alloc(0, buf);
5004 }
5005
5006 static void md_safemode_timeout(unsigned long data)
5007 {
5008 struct mddev *mddev = (struct mddev *) data;
5009
5010 if (!atomic_read(&mddev->writes_pending)) {
5011 mddev->safemode = 1;
5012 if (mddev->external)
5013 sysfs_notify_dirent_safe(mddev->sysfs_state);
5014 }
5015 md_wakeup_thread(mddev->thread);
5016 }
5017
5018 static int start_dirty_degraded;
5019
5020 int md_run(struct mddev *mddev)
5021 {
5022 int err;
5023 struct md_rdev *rdev;
5024 struct md_personality *pers;
5025
5026 if (list_empty(&mddev->disks))
5027 /* cannot run an array with no devices.. */
5028 return -EINVAL;
5029
5030 if (mddev->pers)
5031 return -EBUSY;
5032 /* Cannot run until previous stop completes properly */
5033 if (mddev->sysfs_active)
5034 return -EBUSY;
5035
5036 /*
5037 * Analyze all RAID superblock(s)
5038 */
5039 if (!mddev->raid_disks) {
5040 if (!mddev->persistent)
5041 return -EINVAL;
5042 analyze_sbs(mddev);
5043 }
5044
5045 if (mddev->level != LEVEL_NONE)
5046 request_module("md-level-%d", mddev->level);
5047 else if (mddev->clevel[0])
5048 request_module("md-%s", mddev->clevel);
5049
5050 /*
5051 * Drop all container device buffers, from now on
5052 * the only valid external interface is through the md
5053 * device.
5054 */
5055 rdev_for_each(rdev, mddev) {
5056 if (test_bit(Faulty, &rdev->flags))
5057 continue;
5058 sync_blockdev(rdev->bdev);
5059 invalidate_bdev(rdev->bdev);
5060
5061 /* perform some consistency tests on the device.
5062 * We don't want the data to overlap the metadata,
5063 * Internal Bitmap issues have been handled elsewhere.
5064 */
5065 if (rdev->meta_bdev) {
5066 /* Nothing to check */;
5067 } else if (rdev->data_offset < rdev->sb_start) {
5068 if (mddev->dev_sectors &&
5069 rdev->data_offset + mddev->dev_sectors
5070 > rdev->sb_start) {
5071 printk("md: %s: data overlaps metadata\n",
5072 mdname(mddev));
5073 return -EINVAL;
5074 }
5075 } else {
5076 if (rdev->sb_start + rdev->sb_size/512
5077 > rdev->data_offset) {
5078 printk("md: %s: metadata overlaps data\n",
5079 mdname(mddev));
5080 return -EINVAL;
5081 }
5082 }
5083 sysfs_notify_dirent_safe(rdev->sysfs_state);
5084 }
5085
5086 if (mddev->bio_set == NULL)
5087 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5088
5089 spin_lock(&pers_lock);
5090 pers = find_pers(mddev->level, mddev->clevel);
5091 if (!pers || !try_module_get(pers->owner)) {
5092 spin_unlock(&pers_lock);
5093 if (mddev->level != LEVEL_NONE)
5094 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5095 mddev->level);
5096 else
5097 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5098 mddev->clevel);
5099 return -EINVAL;
5100 }
5101 spin_unlock(&pers_lock);
5102 if (mddev->level != pers->level) {
5103 mddev->level = pers->level;
5104 mddev->new_level = pers->level;
5105 }
5106 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5107
5108 if (mddev->reshape_position != MaxSector &&
5109 pers->start_reshape == NULL) {
5110 /* This personality cannot handle reshaping... */
5111 module_put(pers->owner);
5112 return -EINVAL;
5113 }
5114
5115 if (pers->sync_request) {
5116 /* Warn if this is a potentially silly
5117 * configuration.
5118 */
5119 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5120 struct md_rdev *rdev2;
5121 int warned = 0;
5122
5123 rdev_for_each(rdev, mddev)
5124 rdev_for_each(rdev2, mddev) {
5125 if (rdev < rdev2 &&
5126 rdev->bdev->bd_contains ==
5127 rdev2->bdev->bd_contains) {
5128 printk(KERN_WARNING
5129 "%s: WARNING: %s appears to be"
5130 " on the same physical disk as"
5131 " %s.\n",
5132 mdname(mddev),
5133 bdevname(rdev->bdev,b),
5134 bdevname(rdev2->bdev,b2));
5135 warned = 1;
5136 }
5137 }
5138
5139 if (warned)
5140 printk(KERN_WARNING
5141 "True protection against single-disk"
5142 " failure might be compromised.\n");
5143 }
5144
5145 mddev->recovery = 0;
5146 /* may be over-ridden by personality */
5147 mddev->resync_max_sectors = mddev->dev_sectors;
5148
5149 mddev->ok_start_degraded = start_dirty_degraded;
5150
5151 if (start_readonly && mddev->ro == 0)
5152 mddev->ro = 2; /* read-only, but switch on first write */
5153
5154 err = pers->run(mddev);
5155 if (err)
5156 printk(KERN_ERR "md: pers->run() failed ...\n");
5157 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5158 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5159 " but 'external_size' not in effect?\n", __func__);
5160 printk(KERN_ERR
5161 "md: invalid array_size %llu > default size %llu\n",
5162 (unsigned long long)mddev->array_sectors / 2,
5163 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5164 err = -EINVAL;
5165 }
5166 if (err == 0 && pers->sync_request &&
5167 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5168 struct bitmap *bitmap;
5169
5170 bitmap = bitmap_create(mddev, -1);
5171 if (IS_ERR(bitmap)) {
5172 err = PTR_ERR(bitmap);
5173 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5174 mdname(mddev), err);
5175 } else
5176 mddev->bitmap = bitmap;
5177
5178 }
5179 if (err) {
5180 mddev_detach(mddev);
5181 if (mddev->private)
5182 pers->free(mddev, mddev->private);
5183 mddev->private = NULL;
5184 module_put(pers->owner);
5185 bitmap_destroy(mddev);
5186 return err;
5187 }
5188 if (mddev->queue) {
5189 mddev->queue->backing_dev_info.congested_data = mddev;
5190 mddev->queue->backing_dev_info.congested_fn = md_congested;
5191 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5192 }
5193 if (pers->sync_request) {
5194 if (mddev->kobj.sd &&
5195 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5196 printk(KERN_WARNING
5197 "md: cannot register extra attributes for %s\n",
5198 mdname(mddev));
5199 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5200 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5201 mddev->ro = 0;
5202
5203 atomic_set(&mddev->writes_pending,0);
5204 atomic_set(&mddev->max_corr_read_errors,
5205 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5206 mddev->safemode = 0;
5207 mddev->safemode_timer.function = md_safemode_timeout;
5208 mddev->safemode_timer.data = (unsigned long) mddev;
5209 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5210 mddev->in_sync = 1;
5211 smp_wmb();
5212 spin_lock(&mddev->lock);
5213 mddev->pers = pers;
5214 mddev->ready = 1;
5215 spin_unlock(&mddev->lock);
5216 rdev_for_each(rdev, mddev)
5217 if (rdev->raid_disk >= 0)
5218 if (sysfs_link_rdev(mddev, rdev))
5219 /* failure here is OK */;
5220
5221 if (mddev->degraded && !mddev->ro)
5222 /* This ensures that recovering status is reported immediately
5223 * via sysfs - until a lack of spares is confirmed.
5224 */
5225 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5226 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5227
5228 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5229 md_update_sb(mddev, 0);
5230
5231 md_new_event(mddev);
5232 sysfs_notify_dirent_safe(mddev->sysfs_state);
5233 sysfs_notify_dirent_safe(mddev->sysfs_action);
5234 sysfs_notify(&mddev->kobj, NULL, "degraded");
5235 return 0;
5236 }
5237 EXPORT_SYMBOL_GPL(md_run);
5238
5239 static int do_md_run(struct mddev *mddev)
5240 {
5241 int err;
5242
5243 err = md_run(mddev);
5244 if (err)
5245 goto out;
5246 err = bitmap_load(mddev);
5247 if (err) {
5248 bitmap_destroy(mddev);
5249 goto out;
5250 }
5251
5252 md_wakeup_thread(mddev->thread);
5253 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5254
5255 set_capacity(mddev->gendisk, mddev->array_sectors);
5256 revalidate_disk(mddev->gendisk);
5257 mddev->changed = 1;
5258 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5259 out:
5260 return err;
5261 }
5262
5263 static int restart_array(struct mddev *mddev)
5264 {
5265 struct gendisk *disk = mddev->gendisk;
5266
5267 /* Complain if it has no devices */
5268 if (list_empty(&mddev->disks))
5269 return -ENXIO;
5270 if (!mddev->pers)
5271 return -EINVAL;
5272 if (!mddev->ro)
5273 return -EBUSY;
5274 mddev->safemode = 0;
5275 mddev->ro = 0;
5276 set_disk_ro(disk, 0);
5277 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5278 mdname(mddev));
5279 /* Kick recovery or resync if necessary */
5280 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5281 md_wakeup_thread(mddev->thread);
5282 md_wakeup_thread(mddev->sync_thread);
5283 sysfs_notify_dirent_safe(mddev->sysfs_state);
5284 return 0;
5285 }
5286
5287 static void md_clean(struct mddev *mddev)
5288 {
5289 mddev->array_sectors = 0;
5290 mddev->external_size = 0;
5291 mddev->dev_sectors = 0;
5292 mddev->raid_disks = 0;
5293 mddev->recovery_cp = 0;
5294 mddev->resync_min = 0;
5295 mddev->resync_max = MaxSector;
5296 mddev->reshape_position = MaxSector;
5297 mddev->external = 0;
5298 mddev->persistent = 0;
5299 mddev->level = LEVEL_NONE;
5300 mddev->clevel[0] = 0;
5301 mddev->flags = 0;
5302 mddev->ro = 0;
5303 mddev->metadata_type[0] = 0;
5304 mddev->chunk_sectors = 0;
5305 mddev->ctime = mddev->utime = 0;
5306 mddev->layout = 0;
5307 mddev->max_disks = 0;
5308 mddev->events = 0;
5309 mddev->can_decrease_events = 0;
5310 mddev->delta_disks = 0;
5311 mddev->reshape_backwards = 0;
5312 mddev->new_level = LEVEL_NONE;
5313 mddev->new_layout = 0;
5314 mddev->new_chunk_sectors = 0;
5315 mddev->curr_resync = 0;
5316 atomic64_set(&mddev->resync_mismatches, 0);
5317 mddev->suspend_lo = mddev->suspend_hi = 0;
5318 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5319 mddev->recovery = 0;
5320 mddev->in_sync = 0;
5321 mddev->changed = 0;
5322 mddev->degraded = 0;
5323 mddev->safemode = 0;
5324 mddev->private = NULL;
5325 mddev->merge_check_needed = 0;
5326 mddev->bitmap_info.offset = 0;
5327 mddev->bitmap_info.default_offset = 0;
5328 mddev->bitmap_info.default_space = 0;
5329 mddev->bitmap_info.chunksize = 0;
5330 mddev->bitmap_info.daemon_sleep = 0;
5331 mddev->bitmap_info.max_write_behind = 0;
5332 }
5333
5334 static void __md_stop_writes(struct mddev *mddev)
5335 {
5336 if (mddev_is_clustered(mddev))
5337 md_cluster_ops->metadata_update_start(mddev);
5338 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5339 flush_workqueue(md_misc_wq);
5340 if (mddev->sync_thread) {
5341 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5342 md_reap_sync_thread(mddev);
5343 }
5344
5345 del_timer_sync(&mddev->safemode_timer);
5346
5347 bitmap_flush(mddev);
5348 md_super_wait(mddev);
5349
5350 if (mddev->ro == 0 &&
5351 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5352 /* mark array as shutdown cleanly */
5353 mddev->in_sync = 1;
5354 md_update_sb(mddev, 1);
5355 }
5356 if (mddev_is_clustered(mddev))
5357 md_cluster_ops->metadata_update_finish(mddev);
5358 }
5359
5360 void md_stop_writes(struct mddev *mddev)
5361 {
5362 mddev_lock_nointr(mddev);
5363 __md_stop_writes(mddev);
5364 mddev_unlock(mddev);
5365 }
5366 EXPORT_SYMBOL_GPL(md_stop_writes);
5367
5368 static void mddev_detach(struct mddev *mddev)
5369 {
5370 struct bitmap *bitmap = mddev->bitmap;
5371 /* wait for behind writes to complete */
5372 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5373 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5374 mdname(mddev));
5375 /* need to kick something here to make sure I/O goes? */
5376 wait_event(bitmap->behind_wait,
5377 atomic_read(&bitmap->behind_writes) == 0);
5378 }
5379 if (mddev->pers && mddev->pers->quiesce) {
5380 mddev->pers->quiesce(mddev, 1);
5381 mddev->pers->quiesce(mddev, 0);
5382 }
5383 md_unregister_thread(&mddev->thread);
5384 if (mddev->queue)
5385 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5386 }
5387
5388 static void __md_stop(struct mddev *mddev)
5389 {
5390 struct md_personality *pers = mddev->pers;
5391 mddev_detach(mddev);
5392 /* Ensure ->event_work is done */
5393 flush_workqueue(md_misc_wq);
5394 spin_lock(&mddev->lock);
5395 mddev->ready = 0;
5396 mddev->pers = NULL;
5397 spin_unlock(&mddev->lock);
5398 pers->free(mddev, mddev->private);
5399 mddev->private = NULL;
5400 if (pers->sync_request && mddev->to_remove == NULL)
5401 mddev->to_remove = &md_redundancy_group;
5402 module_put(pers->owner);
5403 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5404 }
5405
5406 void md_stop(struct mddev *mddev)
5407 {
5408 /* stop the array and free an attached data structures.
5409 * This is called from dm-raid
5410 */
5411 __md_stop(mddev);
5412 bitmap_destroy(mddev);
5413 if (mddev->bio_set)
5414 bioset_free(mddev->bio_set);
5415 }
5416
5417 EXPORT_SYMBOL_GPL(md_stop);
5418
5419 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5420 {
5421 int err = 0;
5422 int did_freeze = 0;
5423
5424 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5425 did_freeze = 1;
5426 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5427 md_wakeup_thread(mddev->thread);
5428 }
5429 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5430 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5431 if (mddev->sync_thread)
5432 /* Thread might be blocked waiting for metadata update
5433 * which will now never happen */
5434 wake_up_process(mddev->sync_thread->tsk);
5435
5436 mddev_unlock(mddev);
5437 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5438 &mddev->recovery));
5439 mddev_lock_nointr(mddev);
5440
5441 mutex_lock(&mddev->open_mutex);
5442 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5443 mddev->sync_thread ||
5444 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5445 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5446 printk("md: %s still in use.\n",mdname(mddev));
5447 if (did_freeze) {
5448 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5449 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5450 md_wakeup_thread(mddev->thread);
5451 }
5452 err = -EBUSY;
5453 goto out;
5454 }
5455 if (mddev->pers) {
5456 __md_stop_writes(mddev);
5457
5458 err = -ENXIO;
5459 if (mddev->ro==1)
5460 goto out;
5461 mddev->ro = 1;
5462 set_disk_ro(mddev->gendisk, 1);
5463 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5464 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5465 md_wakeup_thread(mddev->thread);
5466 sysfs_notify_dirent_safe(mddev->sysfs_state);
5467 err = 0;
5468 }
5469 out:
5470 mutex_unlock(&mddev->open_mutex);
5471 return err;
5472 }
5473
5474 /* mode:
5475 * 0 - completely stop and dis-assemble array
5476 * 2 - stop but do not disassemble array
5477 */
5478 static int do_md_stop(struct mddev *mddev, int mode,
5479 struct block_device *bdev)
5480 {
5481 struct gendisk *disk = mddev->gendisk;
5482 struct md_rdev *rdev;
5483 int did_freeze = 0;
5484
5485 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5486 did_freeze = 1;
5487 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5488 md_wakeup_thread(mddev->thread);
5489 }
5490 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5491 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5492 if (mddev->sync_thread)
5493 /* Thread might be blocked waiting for metadata update
5494 * which will now never happen */
5495 wake_up_process(mddev->sync_thread->tsk);
5496
5497 mddev_unlock(mddev);
5498 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5499 !test_bit(MD_RECOVERY_RUNNING,
5500 &mddev->recovery)));
5501 mddev_lock_nointr(mddev);
5502
5503 mutex_lock(&mddev->open_mutex);
5504 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5505 mddev->sysfs_active ||
5506 mddev->sync_thread ||
5507 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5508 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5509 printk("md: %s still in use.\n",mdname(mddev));
5510 mutex_unlock(&mddev->open_mutex);
5511 if (did_freeze) {
5512 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5514 md_wakeup_thread(mddev->thread);
5515 }
5516 return -EBUSY;
5517 }
5518 if (mddev->pers) {
5519 if (mddev->ro)
5520 set_disk_ro(disk, 0);
5521
5522 __md_stop_writes(mddev);
5523 __md_stop(mddev);
5524 mddev->queue->merge_bvec_fn = NULL;
5525 mddev->queue->backing_dev_info.congested_fn = NULL;
5526
5527 /* tell userspace to handle 'inactive' */
5528 sysfs_notify_dirent_safe(mddev->sysfs_state);
5529
5530 rdev_for_each(rdev, mddev)
5531 if (rdev->raid_disk >= 0)
5532 sysfs_unlink_rdev(mddev, rdev);
5533
5534 set_capacity(disk, 0);
5535 mutex_unlock(&mddev->open_mutex);
5536 mddev->changed = 1;
5537 revalidate_disk(disk);
5538
5539 if (mddev->ro)
5540 mddev->ro = 0;
5541 } else
5542 mutex_unlock(&mddev->open_mutex);
5543 /*
5544 * Free resources if final stop
5545 */
5546 if (mode == 0) {
5547 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5548
5549 bitmap_destroy(mddev);
5550 if (mddev->bitmap_info.file) {
5551 struct file *f = mddev->bitmap_info.file;
5552 spin_lock(&mddev->lock);
5553 mddev->bitmap_info.file = NULL;
5554 spin_unlock(&mddev->lock);
5555 fput(f);
5556 }
5557 mddev->bitmap_info.offset = 0;
5558
5559 export_array(mddev);
5560
5561 md_clean(mddev);
5562 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5563 if (mddev->hold_active == UNTIL_STOP)
5564 mddev->hold_active = 0;
5565 }
5566 blk_integrity_unregister(disk);
5567 md_new_event(mddev);
5568 sysfs_notify_dirent_safe(mddev->sysfs_state);
5569 return 0;
5570 }
5571
5572 #ifndef MODULE
5573 static void autorun_array(struct mddev *mddev)
5574 {
5575 struct md_rdev *rdev;
5576 int err;
5577
5578 if (list_empty(&mddev->disks))
5579 return;
5580
5581 printk(KERN_INFO "md: running: ");
5582
5583 rdev_for_each(rdev, mddev) {
5584 char b[BDEVNAME_SIZE];
5585 printk("<%s>", bdevname(rdev->bdev,b));
5586 }
5587 printk("\n");
5588
5589 err = do_md_run(mddev);
5590 if (err) {
5591 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5592 do_md_stop(mddev, 0, NULL);
5593 }
5594 }
5595
5596 /*
5597 * lets try to run arrays based on all disks that have arrived
5598 * until now. (those are in pending_raid_disks)
5599 *
5600 * the method: pick the first pending disk, collect all disks with
5601 * the same UUID, remove all from the pending list and put them into
5602 * the 'same_array' list. Then order this list based on superblock
5603 * update time (freshest comes first), kick out 'old' disks and
5604 * compare superblocks. If everything's fine then run it.
5605 *
5606 * If "unit" is allocated, then bump its reference count
5607 */
5608 static void autorun_devices(int part)
5609 {
5610 struct md_rdev *rdev0, *rdev, *tmp;
5611 struct mddev *mddev;
5612 char b[BDEVNAME_SIZE];
5613
5614 printk(KERN_INFO "md: autorun ...\n");
5615 while (!list_empty(&pending_raid_disks)) {
5616 int unit;
5617 dev_t dev;
5618 LIST_HEAD(candidates);
5619 rdev0 = list_entry(pending_raid_disks.next,
5620 struct md_rdev, same_set);
5621
5622 printk(KERN_INFO "md: considering %s ...\n",
5623 bdevname(rdev0->bdev,b));
5624 INIT_LIST_HEAD(&candidates);
5625 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5626 if (super_90_load(rdev, rdev0, 0) >= 0) {
5627 printk(KERN_INFO "md: adding %s ...\n",
5628 bdevname(rdev->bdev,b));
5629 list_move(&rdev->same_set, &candidates);
5630 }
5631 /*
5632 * now we have a set of devices, with all of them having
5633 * mostly sane superblocks. It's time to allocate the
5634 * mddev.
5635 */
5636 if (part) {
5637 dev = MKDEV(mdp_major,
5638 rdev0->preferred_minor << MdpMinorShift);
5639 unit = MINOR(dev) >> MdpMinorShift;
5640 } else {
5641 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5642 unit = MINOR(dev);
5643 }
5644 if (rdev0->preferred_minor != unit) {
5645 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5646 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5647 break;
5648 }
5649
5650 md_probe(dev, NULL, NULL);
5651 mddev = mddev_find(dev);
5652 if (!mddev || !mddev->gendisk) {
5653 if (mddev)
5654 mddev_put(mddev);
5655 printk(KERN_ERR
5656 "md: cannot allocate memory for md drive.\n");
5657 break;
5658 }
5659 if (mddev_lock(mddev))
5660 printk(KERN_WARNING "md: %s locked, cannot run\n",
5661 mdname(mddev));
5662 else if (mddev->raid_disks || mddev->major_version
5663 || !list_empty(&mddev->disks)) {
5664 printk(KERN_WARNING
5665 "md: %s already running, cannot run %s\n",
5666 mdname(mddev), bdevname(rdev0->bdev,b));
5667 mddev_unlock(mddev);
5668 } else {
5669 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5670 mddev->persistent = 1;
5671 rdev_for_each_list(rdev, tmp, &candidates) {
5672 list_del_init(&rdev->same_set);
5673 if (bind_rdev_to_array(rdev, mddev))
5674 export_rdev(rdev);
5675 }
5676 autorun_array(mddev);
5677 mddev_unlock(mddev);
5678 }
5679 /* on success, candidates will be empty, on error
5680 * it won't...
5681 */
5682 rdev_for_each_list(rdev, tmp, &candidates) {
5683 list_del_init(&rdev->same_set);
5684 export_rdev(rdev);
5685 }
5686 mddev_put(mddev);
5687 }
5688 printk(KERN_INFO "md: ... autorun DONE.\n");
5689 }
5690 #endif /* !MODULE */
5691
5692 static int get_version(void __user *arg)
5693 {
5694 mdu_version_t ver;
5695
5696 ver.major = MD_MAJOR_VERSION;
5697 ver.minor = MD_MINOR_VERSION;
5698 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5699
5700 if (copy_to_user(arg, &ver, sizeof(ver)))
5701 return -EFAULT;
5702
5703 return 0;
5704 }
5705
5706 static int get_array_info(struct mddev *mddev, void __user *arg)
5707 {
5708 mdu_array_info_t info;
5709 int nr,working,insync,failed,spare;
5710 struct md_rdev *rdev;
5711
5712 nr = working = insync = failed = spare = 0;
5713 rcu_read_lock();
5714 rdev_for_each_rcu(rdev, mddev) {
5715 nr++;
5716 if (test_bit(Faulty, &rdev->flags))
5717 failed++;
5718 else {
5719 working++;
5720 if (test_bit(In_sync, &rdev->flags))
5721 insync++;
5722 else
5723 spare++;
5724 }
5725 }
5726 rcu_read_unlock();
5727
5728 info.major_version = mddev->major_version;
5729 info.minor_version = mddev->minor_version;
5730 info.patch_version = MD_PATCHLEVEL_VERSION;
5731 info.ctime = mddev->ctime;
5732 info.level = mddev->level;
5733 info.size = mddev->dev_sectors / 2;
5734 if (info.size != mddev->dev_sectors / 2) /* overflow */
5735 info.size = -1;
5736 info.nr_disks = nr;
5737 info.raid_disks = mddev->raid_disks;
5738 info.md_minor = mddev->md_minor;
5739 info.not_persistent= !mddev->persistent;
5740
5741 info.utime = mddev->utime;
5742 info.state = 0;
5743 if (mddev->in_sync)
5744 info.state = (1<<MD_SB_CLEAN);
5745 if (mddev->bitmap && mddev->bitmap_info.offset)
5746 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5747 if (mddev_is_clustered(mddev))
5748 info.state |= (1<<MD_SB_CLUSTERED);
5749 info.active_disks = insync;
5750 info.working_disks = working;
5751 info.failed_disks = failed;
5752 info.spare_disks = spare;
5753
5754 info.layout = mddev->layout;
5755 info.chunk_size = mddev->chunk_sectors << 9;
5756
5757 if (copy_to_user(arg, &info, sizeof(info)))
5758 return -EFAULT;
5759
5760 return 0;
5761 }
5762
5763 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5764 {
5765 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5766 char *ptr;
5767 int err;
5768
5769 file = kzalloc(sizeof(*file), GFP_NOIO);
5770 if (!file)
5771 return -ENOMEM;
5772
5773 err = 0;
5774 spin_lock(&mddev->lock);
5775 /* bitmap enabled */
5776 if (mddev->bitmap_info.file) {
5777 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5778 sizeof(file->pathname));
5779 if (IS_ERR(ptr))
5780 err = PTR_ERR(ptr);
5781 else
5782 memmove(file->pathname, ptr,
5783 sizeof(file->pathname)-(ptr-file->pathname));
5784 }
5785 spin_unlock(&mddev->lock);
5786
5787 if (err == 0 &&
5788 copy_to_user(arg, file, sizeof(*file)))
5789 err = -EFAULT;
5790
5791 kfree(file);
5792 return err;
5793 }
5794
5795 static int get_disk_info(struct mddev *mddev, void __user * arg)
5796 {
5797 mdu_disk_info_t info;
5798 struct md_rdev *rdev;
5799
5800 if (copy_from_user(&info, arg, sizeof(info)))
5801 return -EFAULT;
5802
5803 rcu_read_lock();
5804 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5805 if (rdev) {
5806 info.major = MAJOR(rdev->bdev->bd_dev);
5807 info.minor = MINOR(rdev->bdev->bd_dev);
5808 info.raid_disk = rdev->raid_disk;
5809 info.state = 0;
5810 if (test_bit(Faulty, &rdev->flags))
5811 info.state |= (1<<MD_DISK_FAULTY);
5812 else if (test_bit(In_sync, &rdev->flags)) {
5813 info.state |= (1<<MD_DISK_ACTIVE);
5814 info.state |= (1<<MD_DISK_SYNC);
5815 }
5816 if (test_bit(WriteMostly, &rdev->flags))
5817 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5818 } else {
5819 info.major = info.minor = 0;
5820 info.raid_disk = -1;
5821 info.state = (1<<MD_DISK_REMOVED);
5822 }
5823 rcu_read_unlock();
5824
5825 if (copy_to_user(arg, &info, sizeof(info)))
5826 return -EFAULT;
5827
5828 return 0;
5829 }
5830
5831 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5832 {
5833 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5834 struct md_rdev *rdev;
5835 dev_t dev = MKDEV(info->major,info->minor);
5836
5837 if (mddev_is_clustered(mddev) &&
5838 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5839 pr_err("%s: Cannot add to clustered mddev.\n",
5840 mdname(mddev));
5841 return -EINVAL;
5842 }
5843
5844 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5845 return -EOVERFLOW;
5846
5847 if (!mddev->raid_disks) {
5848 int err;
5849 /* expecting a device which has a superblock */
5850 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5851 if (IS_ERR(rdev)) {
5852 printk(KERN_WARNING
5853 "md: md_import_device returned %ld\n",
5854 PTR_ERR(rdev));
5855 return PTR_ERR(rdev);
5856 }
5857 if (!list_empty(&mddev->disks)) {
5858 struct md_rdev *rdev0
5859 = list_entry(mddev->disks.next,
5860 struct md_rdev, same_set);
5861 err = super_types[mddev->major_version]
5862 .load_super(rdev, rdev0, mddev->minor_version);
5863 if (err < 0) {
5864 printk(KERN_WARNING
5865 "md: %s has different UUID to %s\n",
5866 bdevname(rdev->bdev,b),
5867 bdevname(rdev0->bdev,b2));
5868 export_rdev(rdev);
5869 return -EINVAL;
5870 }
5871 }
5872 err = bind_rdev_to_array(rdev, mddev);
5873 if (err)
5874 export_rdev(rdev);
5875 return err;
5876 }
5877
5878 /*
5879 * add_new_disk can be used once the array is assembled
5880 * to add "hot spares". They must already have a superblock
5881 * written
5882 */
5883 if (mddev->pers) {
5884 int err;
5885 if (!mddev->pers->hot_add_disk) {
5886 printk(KERN_WARNING
5887 "%s: personality does not support diskops!\n",
5888 mdname(mddev));
5889 return -EINVAL;
5890 }
5891 if (mddev->persistent)
5892 rdev = md_import_device(dev, mddev->major_version,
5893 mddev->minor_version);
5894 else
5895 rdev = md_import_device(dev, -1, -1);
5896 if (IS_ERR(rdev)) {
5897 printk(KERN_WARNING
5898 "md: md_import_device returned %ld\n",
5899 PTR_ERR(rdev));
5900 return PTR_ERR(rdev);
5901 }
5902 /* set saved_raid_disk if appropriate */
5903 if (!mddev->persistent) {
5904 if (info->state & (1<<MD_DISK_SYNC) &&
5905 info->raid_disk < mddev->raid_disks) {
5906 rdev->raid_disk = info->raid_disk;
5907 set_bit(In_sync, &rdev->flags);
5908 clear_bit(Bitmap_sync, &rdev->flags);
5909 } else
5910 rdev->raid_disk = -1;
5911 rdev->saved_raid_disk = rdev->raid_disk;
5912 } else
5913 super_types[mddev->major_version].
5914 validate_super(mddev, rdev);
5915 if ((info->state & (1<<MD_DISK_SYNC)) &&
5916 rdev->raid_disk != info->raid_disk) {
5917 /* This was a hot-add request, but events doesn't
5918 * match, so reject it.
5919 */
5920 export_rdev(rdev);
5921 return -EINVAL;
5922 }
5923
5924 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5925 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5926 set_bit(WriteMostly, &rdev->flags);
5927 else
5928 clear_bit(WriteMostly, &rdev->flags);
5929
5930 /*
5931 * check whether the device shows up in other nodes
5932 */
5933 if (mddev_is_clustered(mddev)) {
5934 if (info->state & (1 << MD_DISK_CANDIDATE)) {
5935 /* Through --cluster-confirm */
5936 set_bit(Candidate, &rdev->flags);
5937 err = md_cluster_ops->new_disk_ack(mddev, true);
5938 if (err) {
5939 export_rdev(rdev);
5940 return err;
5941 }
5942 } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5943 /* --add initiated by this node */
5944 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5945 if (err) {
5946 md_cluster_ops->add_new_disk_finish(mddev);
5947 export_rdev(rdev);
5948 return err;
5949 }
5950 }
5951 }
5952
5953 rdev->raid_disk = -1;
5954 err = bind_rdev_to_array(rdev, mddev);
5955 if (err)
5956 export_rdev(rdev);
5957 else
5958 err = add_bound_rdev(rdev);
5959 if (mddev_is_clustered(mddev) &&
5960 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5961 md_cluster_ops->add_new_disk_finish(mddev);
5962 return err;
5963 }
5964
5965 /* otherwise, add_new_disk is only allowed
5966 * for major_version==0 superblocks
5967 */
5968 if (mddev->major_version != 0) {
5969 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5970 mdname(mddev));
5971 return -EINVAL;
5972 }
5973
5974 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5975 int err;
5976 rdev = md_import_device(dev, -1, 0);
5977 if (IS_ERR(rdev)) {
5978 printk(KERN_WARNING
5979 "md: error, md_import_device() returned %ld\n",
5980 PTR_ERR(rdev));
5981 return PTR_ERR(rdev);
5982 }
5983 rdev->desc_nr = info->number;
5984 if (info->raid_disk < mddev->raid_disks)
5985 rdev->raid_disk = info->raid_disk;
5986 else
5987 rdev->raid_disk = -1;
5988
5989 if (rdev->raid_disk < mddev->raid_disks)
5990 if (info->state & (1<<MD_DISK_SYNC))
5991 set_bit(In_sync, &rdev->flags);
5992
5993 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5994 set_bit(WriteMostly, &rdev->flags);
5995
5996 if (!mddev->persistent) {
5997 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5998 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5999 } else
6000 rdev->sb_start = calc_dev_sboffset(rdev);
6001 rdev->sectors = rdev->sb_start;
6002
6003 err = bind_rdev_to_array(rdev, mddev);
6004 if (err) {
6005 export_rdev(rdev);
6006 return err;
6007 }
6008 }
6009
6010 return 0;
6011 }
6012
6013 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6014 {
6015 char b[BDEVNAME_SIZE];
6016 struct md_rdev *rdev;
6017
6018 rdev = find_rdev(mddev, dev);
6019 if (!rdev)
6020 return -ENXIO;
6021
6022 if (mddev_is_clustered(mddev))
6023 md_cluster_ops->metadata_update_start(mddev);
6024
6025 clear_bit(Blocked, &rdev->flags);
6026 remove_and_add_spares(mddev, rdev);
6027
6028 if (rdev->raid_disk >= 0)
6029 goto busy;
6030
6031 if (mddev_is_clustered(mddev))
6032 md_cluster_ops->remove_disk(mddev, rdev);
6033
6034 md_kick_rdev_from_array(rdev);
6035 md_update_sb(mddev, 1);
6036 md_new_event(mddev);
6037
6038 if (mddev_is_clustered(mddev))
6039 md_cluster_ops->metadata_update_finish(mddev);
6040
6041 return 0;
6042 busy:
6043 if (mddev_is_clustered(mddev))
6044 md_cluster_ops->metadata_update_cancel(mddev);
6045 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6046 bdevname(rdev->bdev,b), mdname(mddev));
6047 return -EBUSY;
6048 }
6049
6050 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6051 {
6052 char b[BDEVNAME_SIZE];
6053 int err;
6054 struct md_rdev *rdev;
6055
6056 if (!mddev->pers)
6057 return -ENODEV;
6058
6059 if (mddev->major_version != 0) {
6060 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6061 " version-0 superblocks.\n",
6062 mdname(mddev));
6063 return -EINVAL;
6064 }
6065 if (!mddev->pers->hot_add_disk) {
6066 printk(KERN_WARNING
6067 "%s: personality does not support diskops!\n",
6068 mdname(mddev));
6069 return -EINVAL;
6070 }
6071
6072 rdev = md_import_device(dev, -1, 0);
6073 if (IS_ERR(rdev)) {
6074 printk(KERN_WARNING
6075 "md: error, md_import_device() returned %ld\n",
6076 PTR_ERR(rdev));
6077 return -EINVAL;
6078 }
6079
6080 if (mddev->persistent)
6081 rdev->sb_start = calc_dev_sboffset(rdev);
6082 else
6083 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6084
6085 rdev->sectors = rdev->sb_start;
6086
6087 if (test_bit(Faulty, &rdev->flags)) {
6088 printk(KERN_WARNING
6089 "md: can not hot-add faulty %s disk to %s!\n",
6090 bdevname(rdev->bdev,b), mdname(mddev));
6091 err = -EINVAL;
6092 goto abort_export;
6093 }
6094
6095 if (mddev_is_clustered(mddev))
6096 md_cluster_ops->metadata_update_start(mddev);
6097 clear_bit(In_sync, &rdev->flags);
6098 rdev->desc_nr = -1;
6099 rdev->saved_raid_disk = -1;
6100 err = bind_rdev_to_array(rdev, mddev);
6101 if (err)
6102 goto abort_clustered;
6103
6104 /*
6105 * The rest should better be atomic, we can have disk failures
6106 * noticed in interrupt contexts ...
6107 */
6108
6109 rdev->raid_disk = -1;
6110
6111 md_update_sb(mddev, 1);
6112
6113 if (mddev_is_clustered(mddev))
6114 md_cluster_ops->metadata_update_finish(mddev);
6115 /*
6116 * Kick recovery, maybe this spare has to be added to the
6117 * array immediately.
6118 */
6119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6120 md_wakeup_thread(mddev->thread);
6121 md_new_event(mddev);
6122 return 0;
6123
6124 abort_clustered:
6125 if (mddev_is_clustered(mddev))
6126 md_cluster_ops->metadata_update_cancel(mddev);
6127 abort_export:
6128 export_rdev(rdev);
6129 return err;
6130 }
6131
6132 static int set_bitmap_file(struct mddev *mddev, int fd)
6133 {
6134 int err = 0;
6135
6136 if (mddev->pers) {
6137 if (!mddev->pers->quiesce || !mddev->thread)
6138 return -EBUSY;
6139 if (mddev->recovery || mddev->sync_thread)
6140 return -EBUSY;
6141 /* we should be able to change the bitmap.. */
6142 }
6143
6144 if (fd >= 0) {
6145 struct inode *inode;
6146 struct file *f;
6147
6148 if (mddev->bitmap || mddev->bitmap_info.file)
6149 return -EEXIST; /* cannot add when bitmap is present */
6150 f = fget(fd);
6151
6152 if (f == NULL) {
6153 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6154 mdname(mddev));
6155 return -EBADF;
6156 }
6157
6158 inode = f->f_mapping->host;
6159 if (!S_ISREG(inode->i_mode)) {
6160 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6161 mdname(mddev));
6162 err = -EBADF;
6163 } else if (!(f->f_mode & FMODE_WRITE)) {
6164 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6165 mdname(mddev));
6166 err = -EBADF;
6167 } else if (atomic_read(&inode->i_writecount) != 1) {
6168 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6169 mdname(mddev));
6170 err = -EBUSY;
6171 }
6172 if (err) {
6173 fput(f);
6174 return err;
6175 }
6176 mddev->bitmap_info.file = f;
6177 mddev->bitmap_info.offset = 0; /* file overrides offset */
6178 } else if (mddev->bitmap == NULL)
6179 return -ENOENT; /* cannot remove what isn't there */
6180 err = 0;
6181 if (mddev->pers) {
6182 mddev->pers->quiesce(mddev, 1);
6183 if (fd >= 0) {
6184 struct bitmap *bitmap;
6185
6186 bitmap = bitmap_create(mddev, -1);
6187 if (!IS_ERR(bitmap)) {
6188 mddev->bitmap = bitmap;
6189 err = bitmap_load(mddev);
6190 } else
6191 err = PTR_ERR(bitmap);
6192 }
6193 if (fd < 0 || err) {
6194 bitmap_destroy(mddev);
6195 fd = -1; /* make sure to put the file */
6196 }
6197 mddev->pers->quiesce(mddev, 0);
6198 }
6199 if (fd < 0) {
6200 struct file *f = mddev->bitmap_info.file;
6201 if (f) {
6202 spin_lock(&mddev->lock);
6203 mddev->bitmap_info.file = NULL;
6204 spin_unlock(&mddev->lock);
6205 fput(f);
6206 }
6207 }
6208
6209 return err;
6210 }
6211
6212 /*
6213 * set_array_info is used two different ways
6214 * The original usage is when creating a new array.
6215 * In this usage, raid_disks is > 0 and it together with
6216 * level, size, not_persistent,layout,chunksize determine the
6217 * shape of the array.
6218 * This will always create an array with a type-0.90.0 superblock.
6219 * The newer usage is when assembling an array.
6220 * In this case raid_disks will be 0, and the major_version field is
6221 * use to determine which style super-blocks are to be found on the devices.
6222 * The minor and patch _version numbers are also kept incase the
6223 * super_block handler wishes to interpret them.
6224 */
6225 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6226 {
6227
6228 if (info->raid_disks == 0) {
6229 /* just setting version number for superblock loading */
6230 if (info->major_version < 0 ||
6231 info->major_version >= ARRAY_SIZE(super_types) ||
6232 super_types[info->major_version].name == NULL) {
6233 /* maybe try to auto-load a module? */
6234 printk(KERN_INFO
6235 "md: superblock version %d not known\n",
6236 info->major_version);
6237 return -EINVAL;
6238 }
6239 mddev->major_version = info->major_version;
6240 mddev->minor_version = info->minor_version;
6241 mddev->patch_version = info->patch_version;
6242 mddev->persistent = !info->not_persistent;
6243 /* ensure mddev_put doesn't delete this now that there
6244 * is some minimal configuration.
6245 */
6246 mddev->ctime = get_seconds();
6247 return 0;
6248 }
6249 mddev->major_version = MD_MAJOR_VERSION;
6250 mddev->minor_version = MD_MINOR_VERSION;
6251 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6252 mddev->ctime = get_seconds();
6253
6254 mddev->level = info->level;
6255 mddev->clevel[0] = 0;
6256 mddev->dev_sectors = 2 * (sector_t)info->size;
6257 mddev->raid_disks = info->raid_disks;
6258 /* don't set md_minor, it is determined by which /dev/md* was
6259 * openned
6260 */
6261 if (info->state & (1<<MD_SB_CLEAN))
6262 mddev->recovery_cp = MaxSector;
6263 else
6264 mddev->recovery_cp = 0;
6265 mddev->persistent = ! info->not_persistent;
6266 mddev->external = 0;
6267
6268 mddev->layout = info->layout;
6269 mddev->chunk_sectors = info->chunk_size >> 9;
6270
6271 mddev->max_disks = MD_SB_DISKS;
6272
6273 if (mddev->persistent)
6274 mddev->flags = 0;
6275 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6276
6277 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6278 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6279 mddev->bitmap_info.offset = 0;
6280
6281 mddev->reshape_position = MaxSector;
6282
6283 /*
6284 * Generate a 128 bit UUID
6285 */
6286 get_random_bytes(mddev->uuid, 16);
6287
6288 mddev->new_level = mddev->level;
6289 mddev->new_chunk_sectors = mddev->chunk_sectors;
6290 mddev->new_layout = mddev->layout;
6291 mddev->delta_disks = 0;
6292 mddev->reshape_backwards = 0;
6293
6294 return 0;
6295 }
6296
6297 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6298 {
6299 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6300
6301 if (mddev->external_size)
6302 return;
6303
6304 mddev->array_sectors = array_sectors;
6305 }
6306 EXPORT_SYMBOL(md_set_array_sectors);
6307
6308 static int update_size(struct mddev *mddev, sector_t num_sectors)
6309 {
6310 struct md_rdev *rdev;
6311 int rv;
6312 int fit = (num_sectors == 0);
6313
6314 if (mddev->pers->resize == NULL)
6315 return -EINVAL;
6316 /* The "num_sectors" is the number of sectors of each device that
6317 * is used. This can only make sense for arrays with redundancy.
6318 * linear and raid0 always use whatever space is available. We can only
6319 * consider changing this number if no resync or reconstruction is
6320 * happening, and if the new size is acceptable. It must fit before the
6321 * sb_start or, if that is <data_offset, it must fit before the size
6322 * of each device. If num_sectors is zero, we find the largest size
6323 * that fits.
6324 */
6325 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6326 mddev->sync_thread)
6327 return -EBUSY;
6328 if (mddev->ro)
6329 return -EROFS;
6330
6331 rdev_for_each(rdev, mddev) {
6332 sector_t avail = rdev->sectors;
6333
6334 if (fit && (num_sectors == 0 || num_sectors > avail))
6335 num_sectors = avail;
6336 if (avail < num_sectors)
6337 return -ENOSPC;
6338 }
6339 rv = mddev->pers->resize(mddev, num_sectors);
6340 if (!rv)
6341 revalidate_disk(mddev->gendisk);
6342 return rv;
6343 }
6344
6345 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6346 {
6347 int rv;
6348 struct md_rdev *rdev;
6349 /* change the number of raid disks */
6350 if (mddev->pers->check_reshape == NULL)
6351 return -EINVAL;
6352 if (mddev->ro)
6353 return -EROFS;
6354 if (raid_disks <= 0 ||
6355 (mddev->max_disks && raid_disks >= mddev->max_disks))
6356 return -EINVAL;
6357 if (mddev->sync_thread ||
6358 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6359 mddev->reshape_position != MaxSector)
6360 return -EBUSY;
6361
6362 rdev_for_each(rdev, mddev) {
6363 if (mddev->raid_disks < raid_disks &&
6364 rdev->data_offset < rdev->new_data_offset)
6365 return -EINVAL;
6366 if (mddev->raid_disks > raid_disks &&
6367 rdev->data_offset > rdev->new_data_offset)
6368 return -EINVAL;
6369 }
6370
6371 mddev->delta_disks = raid_disks - mddev->raid_disks;
6372 if (mddev->delta_disks < 0)
6373 mddev->reshape_backwards = 1;
6374 else if (mddev->delta_disks > 0)
6375 mddev->reshape_backwards = 0;
6376
6377 rv = mddev->pers->check_reshape(mddev);
6378 if (rv < 0) {
6379 mddev->delta_disks = 0;
6380 mddev->reshape_backwards = 0;
6381 }
6382 return rv;
6383 }
6384
6385 /*
6386 * update_array_info is used to change the configuration of an
6387 * on-line array.
6388 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6389 * fields in the info are checked against the array.
6390 * Any differences that cannot be handled will cause an error.
6391 * Normally, only one change can be managed at a time.
6392 */
6393 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6394 {
6395 int rv = 0;
6396 int cnt = 0;
6397 int state = 0;
6398
6399 /* calculate expected state,ignoring low bits */
6400 if (mddev->bitmap && mddev->bitmap_info.offset)
6401 state |= (1 << MD_SB_BITMAP_PRESENT);
6402
6403 if (mddev->major_version != info->major_version ||
6404 mddev->minor_version != info->minor_version ||
6405 /* mddev->patch_version != info->patch_version || */
6406 mddev->ctime != info->ctime ||
6407 mddev->level != info->level ||
6408 /* mddev->layout != info->layout || */
6409 mddev->persistent != !info->not_persistent ||
6410 mddev->chunk_sectors != info->chunk_size >> 9 ||
6411 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6412 ((state^info->state) & 0xfffffe00)
6413 )
6414 return -EINVAL;
6415 /* Check there is only one change */
6416 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6417 cnt++;
6418 if (mddev->raid_disks != info->raid_disks)
6419 cnt++;
6420 if (mddev->layout != info->layout)
6421 cnt++;
6422 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6423 cnt++;
6424 if (cnt == 0)
6425 return 0;
6426 if (cnt > 1)
6427 return -EINVAL;
6428
6429 if (mddev->layout != info->layout) {
6430 /* Change layout
6431 * we don't need to do anything at the md level, the
6432 * personality will take care of it all.
6433 */
6434 if (mddev->pers->check_reshape == NULL)
6435 return -EINVAL;
6436 else {
6437 mddev->new_layout = info->layout;
6438 rv = mddev->pers->check_reshape(mddev);
6439 if (rv)
6440 mddev->new_layout = mddev->layout;
6441 return rv;
6442 }
6443 }
6444 if (mddev_is_clustered(mddev))
6445 md_cluster_ops->metadata_update_start(mddev);
6446 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6447 rv = update_size(mddev, (sector_t)info->size * 2);
6448
6449 if (mddev->raid_disks != info->raid_disks)
6450 rv = update_raid_disks(mddev, info->raid_disks);
6451
6452 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6453 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6454 rv = -EINVAL;
6455 goto err;
6456 }
6457 if (mddev->recovery || mddev->sync_thread) {
6458 rv = -EBUSY;
6459 goto err;
6460 }
6461 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6462 struct bitmap *bitmap;
6463 /* add the bitmap */
6464 if (mddev->bitmap) {
6465 rv = -EEXIST;
6466 goto err;
6467 }
6468 if (mddev->bitmap_info.default_offset == 0) {
6469 rv = -EINVAL;
6470 goto err;
6471 }
6472 mddev->bitmap_info.offset =
6473 mddev->bitmap_info.default_offset;
6474 mddev->bitmap_info.space =
6475 mddev->bitmap_info.default_space;
6476 mddev->pers->quiesce(mddev, 1);
6477 bitmap = bitmap_create(mddev, -1);
6478 if (!IS_ERR(bitmap)) {
6479 mddev->bitmap = bitmap;
6480 rv = bitmap_load(mddev);
6481 } else
6482 rv = PTR_ERR(bitmap);
6483 if (rv)
6484 bitmap_destroy(mddev);
6485 mddev->pers->quiesce(mddev, 0);
6486 } else {
6487 /* remove the bitmap */
6488 if (!mddev->bitmap) {
6489 rv = -ENOENT;
6490 goto err;
6491 }
6492 if (mddev->bitmap->storage.file) {
6493 rv = -EINVAL;
6494 goto err;
6495 }
6496 mddev->pers->quiesce(mddev, 1);
6497 bitmap_destroy(mddev);
6498 mddev->pers->quiesce(mddev, 0);
6499 mddev->bitmap_info.offset = 0;
6500 }
6501 }
6502 md_update_sb(mddev, 1);
6503 if (mddev_is_clustered(mddev))
6504 md_cluster_ops->metadata_update_finish(mddev);
6505 return rv;
6506 err:
6507 if (mddev_is_clustered(mddev))
6508 md_cluster_ops->metadata_update_cancel(mddev);
6509 return rv;
6510 }
6511
6512 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6513 {
6514 struct md_rdev *rdev;
6515 int err = 0;
6516
6517 if (mddev->pers == NULL)
6518 return -ENODEV;
6519
6520 rcu_read_lock();
6521 rdev = find_rdev_rcu(mddev, dev);
6522 if (!rdev)
6523 err = -ENODEV;
6524 else {
6525 md_error(mddev, rdev);
6526 if (!test_bit(Faulty, &rdev->flags))
6527 err = -EBUSY;
6528 }
6529 rcu_read_unlock();
6530 return err;
6531 }
6532
6533 /*
6534 * We have a problem here : there is no easy way to give a CHS
6535 * virtual geometry. We currently pretend that we have a 2 heads
6536 * 4 sectors (with a BIG number of cylinders...). This drives
6537 * dosfs just mad... ;-)
6538 */
6539 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6540 {
6541 struct mddev *mddev = bdev->bd_disk->private_data;
6542
6543 geo->heads = 2;
6544 geo->sectors = 4;
6545 geo->cylinders = mddev->array_sectors / 8;
6546 return 0;
6547 }
6548
6549 static inline bool md_ioctl_valid(unsigned int cmd)
6550 {
6551 switch (cmd) {
6552 case ADD_NEW_DISK:
6553 case BLKROSET:
6554 case GET_ARRAY_INFO:
6555 case GET_BITMAP_FILE:
6556 case GET_DISK_INFO:
6557 case HOT_ADD_DISK:
6558 case HOT_REMOVE_DISK:
6559 case RAID_AUTORUN:
6560 case RAID_VERSION:
6561 case RESTART_ARRAY_RW:
6562 case RUN_ARRAY:
6563 case SET_ARRAY_INFO:
6564 case SET_BITMAP_FILE:
6565 case SET_DISK_FAULTY:
6566 case STOP_ARRAY:
6567 case STOP_ARRAY_RO:
6568 case CLUSTERED_DISK_NACK:
6569 return true;
6570 default:
6571 return false;
6572 }
6573 }
6574
6575 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6576 unsigned int cmd, unsigned long arg)
6577 {
6578 int err = 0;
6579 void __user *argp = (void __user *)arg;
6580 struct mddev *mddev = NULL;
6581 int ro;
6582
6583 if (!md_ioctl_valid(cmd))
6584 return -ENOTTY;
6585
6586 switch (cmd) {
6587 case RAID_VERSION:
6588 case GET_ARRAY_INFO:
6589 case GET_DISK_INFO:
6590 break;
6591 default:
6592 if (!capable(CAP_SYS_ADMIN))
6593 return -EACCES;
6594 }
6595
6596 /*
6597 * Commands dealing with the RAID driver but not any
6598 * particular array:
6599 */
6600 switch (cmd) {
6601 case RAID_VERSION:
6602 err = get_version(argp);
6603 goto out;
6604
6605 #ifndef MODULE
6606 case RAID_AUTORUN:
6607 err = 0;
6608 autostart_arrays(arg);
6609 goto out;
6610 #endif
6611 default:;
6612 }
6613
6614 /*
6615 * Commands creating/starting a new array:
6616 */
6617
6618 mddev = bdev->bd_disk->private_data;
6619
6620 if (!mddev) {
6621 BUG();
6622 goto out;
6623 }
6624
6625 /* Some actions do not requires the mutex */
6626 switch (cmd) {
6627 case GET_ARRAY_INFO:
6628 if (!mddev->raid_disks && !mddev->external)
6629 err = -ENODEV;
6630 else
6631 err = get_array_info(mddev, argp);
6632 goto out;
6633
6634 case GET_DISK_INFO:
6635 if (!mddev->raid_disks && !mddev->external)
6636 err = -ENODEV;
6637 else
6638 err = get_disk_info(mddev, argp);
6639 goto out;
6640
6641 case SET_DISK_FAULTY:
6642 err = set_disk_faulty(mddev, new_decode_dev(arg));
6643 goto out;
6644
6645 case GET_BITMAP_FILE:
6646 err = get_bitmap_file(mddev, argp);
6647 goto out;
6648
6649 }
6650
6651 if (cmd == ADD_NEW_DISK)
6652 /* need to ensure md_delayed_delete() has completed */
6653 flush_workqueue(md_misc_wq);
6654
6655 if (cmd == HOT_REMOVE_DISK)
6656 /* need to ensure recovery thread has run */
6657 wait_event_interruptible_timeout(mddev->sb_wait,
6658 !test_bit(MD_RECOVERY_NEEDED,
6659 &mddev->flags),
6660 msecs_to_jiffies(5000));
6661 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6662 /* Need to flush page cache, and ensure no-one else opens
6663 * and writes
6664 */
6665 mutex_lock(&mddev->open_mutex);
6666 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6667 mutex_unlock(&mddev->open_mutex);
6668 err = -EBUSY;
6669 goto out;
6670 }
6671 set_bit(MD_STILL_CLOSED, &mddev->flags);
6672 mutex_unlock(&mddev->open_mutex);
6673 sync_blockdev(bdev);
6674 }
6675 err = mddev_lock(mddev);
6676 if (err) {
6677 printk(KERN_INFO
6678 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6679 err, cmd);
6680 goto out;
6681 }
6682
6683 if (cmd == SET_ARRAY_INFO) {
6684 mdu_array_info_t info;
6685 if (!arg)
6686 memset(&info, 0, sizeof(info));
6687 else if (copy_from_user(&info, argp, sizeof(info))) {
6688 err = -EFAULT;
6689 goto unlock;
6690 }
6691 if (mddev->pers) {
6692 err = update_array_info(mddev, &info);
6693 if (err) {
6694 printk(KERN_WARNING "md: couldn't update"
6695 " array info. %d\n", err);
6696 goto unlock;
6697 }
6698 goto unlock;
6699 }
6700 if (!list_empty(&mddev->disks)) {
6701 printk(KERN_WARNING
6702 "md: array %s already has disks!\n",
6703 mdname(mddev));
6704 err = -EBUSY;
6705 goto unlock;
6706 }
6707 if (mddev->raid_disks) {
6708 printk(KERN_WARNING
6709 "md: array %s already initialised!\n",
6710 mdname(mddev));
6711 err = -EBUSY;
6712 goto unlock;
6713 }
6714 err = set_array_info(mddev, &info);
6715 if (err) {
6716 printk(KERN_WARNING "md: couldn't set"
6717 " array info. %d\n", err);
6718 goto unlock;
6719 }
6720 goto unlock;
6721 }
6722
6723 /*
6724 * Commands querying/configuring an existing array:
6725 */
6726 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6727 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6728 if ((!mddev->raid_disks && !mddev->external)
6729 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6730 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6731 && cmd != GET_BITMAP_FILE) {
6732 err = -ENODEV;
6733 goto unlock;
6734 }
6735
6736 /*
6737 * Commands even a read-only array can execute:
6738 */
6739 switch (cmd) {
6740 case RESTART_ARRAY_RW:
6741 err = restart_array(mddev);
6742 goto unlock;
6743
6744 case STOP_ARRAY:
6745 err = do_md_stop(mddev, 0, bdev);
6746 goto unlock;
6747
6748 case STOP_ARRAY_RO:
6749 err = md_set_readonly(mddev, bdev);
6750 goto unlock;
6751
6752 case HOT_REMOVE_DISK:
6753 err = hot_remove_disk(mddev, new_decode_dev(arg));
6754 goto unlock;
6755
6756 case ADD_NEW_DISK:
6757 /* We can support ADD_NEW_DISK on read-only arrays
6758 * on if we are re-adding a preexisting device.
6759 * So require mddev->pers and MD_DISK_SYNC.
6760 */
6761 if (mddev->pers) {
6762 mdu_disk_info_t info;
6763 if (copy_from_user(&info, argp, sizeof(info)))
6764 err = -EFAULT;
6765 else if (!(info.state & (1<<MD_DISK_SYNC)))
6766 /* Need to clear read-only for this */
6767 break;
6768 else
6769 err = add_new_disk(mddev, &info);
6770 goto unlock;
6771 }
6772 break;
6773
6774 case BLKROSET:
6775 if (get_user(ro, (int __user *)(arg))) {
6776 err = -EFAULT;
6777 goto unlock;
6778 }
6779 err = -EINVAL;
6780
6781 /* if the bdev is going readonly the value of mddev->ro
6782 * does not matter, no writes are coming
6783 */
6784 if (ro)
6785 goto unlock;
6786
6787 /* are we are already prepared for writes? */
6788 if (mddev->ro != 1)
6789 goto unlock;
6790
6791 /* transitioning to readauto need only happen for
6792 * arrays that call md_write_start
6793 */
6794 if (mddev->pers) {
6795 err = restart_array(mddev);
6796 if (err == 0) {
6797 mddev->ro = 2;
6798 set_disk_ro(mddev->gendisk, 0);
6799 }
6800 }
6801 goto unlock;
6802 }
6803
6804 /*
6805 * The remaining ioctls are changing the state of the
6806 * superblock, so we do not allow them on read-only arrays.
6807 */
6808 if (mddev->ro && mddev->pers) {
6809 if (mddev->ro == 2) {
6810 mddev->ro = 0;
6811 sysfs_notify_dirent_safe(mddev->sysfs_state);
6812 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6813 /* mddev_unlock will wake thread */
6814 /* If a device failed while we were read-only, we
6815 * need to make sure the metadata is updated now.
6816 */
6817 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6818 mddev_unlock(mddev);
6819 wait_event(mddev->sb_wait,
6820 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6821 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6822 mddev_lock_nointr(mddev);
6823 }
6824 } else {
6825 err = -EROFS;
6826 goto unlock;
6827 }
6828 }
6829
6830 switch (cmd) {
6831 case ADD_NEW_DISK:
6832 {
6833 mdu_disk_info_t info;
6834 if (copy_from_user(&info, argp, sizeof(info)))
6835 err = -EFAULT;
6836 else
6837 err = add_new_disk(mddev, &info);
6838 goto unlock;
6839 }
6840
6841 case CLUSTERED_DISK_NACK:
6842 if (mddev_is_clustered(mddev))
6843 md_cluster_ops->new_disk_ack(mddev, false);
6844 else
6845 err = -EINVAL;
6846 goto unlock;
6847
6848 case HOT_ADD_DISK:
6849 err = hot_add_disk(mddev, new_decode_dev(arg));
6850 goto unlock;
6851
6852 case RUN_ARRAY:
6853 err = do_md_run(mddev);
6854 goto unlock;
6855
6856 case SET_BITMAP_FILE:
6857 err = set_bitmap_file(mddev, (int)arg);
6858 goto unlock;
6859
6860 default:
6861 err = -EINVAL;
6862 goto unlock;
6863 }
6864
6865 unlock:
6866 if (mddev->hold_active == UNTIL_IOCTL &&
6867 err != -EINVAL)
6868 mddev->hold_active = 0;
6869 mddev_unlock(mddev);
6870 out:
6871 return err;
6872 }
6873 #ifdef CONFIG_COMPAT
6874 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6875 unsigned int cmd, unsigned long arg)
6876 {
6877 switch (cmd) {
6878 case HOT_REMOVE_DISK:
6879 case HOT_ADD_DISK:
6880 case SET_DISK_FAULTY:
6881 case SET_BITMAP_FILE:
6882 /* These take in integer arg, do not convert */
6883 break;
6884 default:
6885 arg = (unsigned long)compat_ptr(arg);
6886 break;
6887 }
6888
6889 return md_ioctl(bdev, mode, cmd, arg);
6890 }
6891 #endif /* CONFIG_COMPAT */
6892
6893 static int md_open(struct block_device *bdev, fmode_t mode)
6894 {
6895 /*
6896 * Succeed if we can lock the mddev, which confirms that
6897 * it isn't being stopped right now.
6898 */
6899 struct mddev *mddev = mddev_find(bdev->bd_dev);
6900 int err;
6901
6902 if (!mddev)
6903 return -ENODEV;
6904
6905 if (mddev->gendisk != bdev->bd_disk) {
6906 /* we are racing with mddev_put which is discarding this
6907 * bd_disk.
6908 */
6909 mddev_put(mddev);
6910 /* Wait until bdev->bd_disk is definitely gone */
6911 flush_workqueue(md_misc_wq);
6912 /* Then retry the open from the top */
6913 return -ERESTARTSYS;
6914 }
6915 BUG_ON(mddev != bdev->bd_disk->private_data);
6916
6917 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6918 goto out;
6919
6920 err = 0;
6921 atomic_inc(&mddev->openers);
6922 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6923 mutex_unlock(&mddev->open_mutex);
6924
6925 check_disk_change(bdev);
6926 out:
6927 return err;
6928 }
6929
6930 static void md_release(struct gendisk *disk, fmode_t mode)
6931 {
6932 struct mddev *mddev = disk->private_data;
6933
6934 BUG_ON(!mddev);
6935 atomic_dec(&mddev->openers);
6936 mddev_put(mddev);
6937 }
6938
6939 static int md_media_changed(struct gendisk *disk)
6940 {
6941 struct mddev *mddev = disk->private_data;
6942
6943 return mddev->changed;
6944 }
6945
6946 static int md_revalidate(struct gendisk *disk)
6947 {
6948 struct mddev *mddev = disk->private_data;
6949
6950 mddev->changed = 0;
6951 return 0;
6952 }
6953 static const struct block_device_operations md_fops =
6954 {
6955 .owner = THIS_MODULE,
6956 .open = md_open,
6957 .release = md_release,
6958 .ioctl = md_ioctl,
6959 #ifdef CONFIG_COMPAT
6960 .compat_ioctl = md_compat_ioctl,
6961 #endif
6962 .getgeo = md_getgeo,
6963 .media_changed = md_media_changed,
6964 .revalidate_disk= md_revalidate,
6965 };
6966
6967 static int md_thread(void *arg)
6968 {
6969 struct md_thread *thread = arg;
6970
6971 /*
6972 * md_thread is a 'system-thread', it's priority should be very
6973 * high. We avoid resource deadlocks individually in each
6974 * raid personality. (RAID5 does preallocation) We also use RR and
6975 * the very same RT priority as kswapd, thus we will never get
6976 * into a priority inversion deadlock.
6977 *
6978 * we definitely have to have equal or higher priority than
6979 * bdflush, otherwise bdflush will deadlock if there are too
6980 * many dirty RAID5 blocks.
6981 */
6982
6983 allow_signal(SIGKILL);
6984 while (!kthread_should_stop()) {
6985
6986 /* We need to wait INTERRUPTIBLE so that
6987 * we don't add to the load-average.
6988 * That means we need to be sure no signals are
6989 * pending
6990 */
6991 if (signal_pending(current))
6992 flush_signals(current);
6993
6994 wait_event_interruptible_timeout
6995 (thread->wqueue,
6996 test_bit(THREAD_WAKEUP, &thread->flags)
6997 || kthread_should_stop(),
6998 thread->timeout);
6999
7000 clear_bit(THREAD_WAKEUP, &thread->flags);
7001 if (!kthread_should_stop())
7002 thread->run(thread);
7003 }
7004
7005 return 0;
7006 }
7007
7008 void md_wakeup_thread(struct md_thread *thread)
7009 {
7010 if (thread) {
7011 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7012 set_bit(THREAD_WAKEUP, &thread->flags);
7013 wake_up(&thread->wqueue);
7014 }
7015 }
7016 EXPORT_SYMBOL(md_wakeup_thread);
7017
7018 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7019 struct mddev *mddev, const char *name)
7020 {
7021 struct md_thread *thread;
7022
7023 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7024 if (!thread)
7025 return NULL;
7026
7027 init_waitqueue_head(&thread->wqueue);
7028
7029 thread->run = run;
7030 thread->mddev = mddev;
7031 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7032 thread->tsk = kthread_run(md_thread, thread,
7033 "%s_%s",
7034 mdname(thread->mddev),
7035 name);
7036 if (IS_ERR(thread->tsk)) {
7037 kfree(thread);
7038 return NULL;
7039 }
7040 return thread;
7041 }
7042 EXPORT_SYMBOL(md_register_thread);
7043
7044 void md_unregister_thread(struct md_thread **threadp)
7045 {
7046 struct md_thread *thread = *threadp;
7047 if (!thread)
7048 return;
7049 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7050 /* Locking ensures that mddev_unlock does not wake_up a
7051 * non-existent thread
7052 */
7053 spin_lock(&pers_lock);
7054 *threadp = NULL;
7055 spin_unlock(&pers_lock);
7056
7057 kthread_stop(thread->tsk);
7058 kfree(thread);
7059 }
7060 EXPORT_SYMBOL(md_unregister_thread);
7061
7062 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7063 {
7064 if (!rdev || test_bit(Faulty, &rdev->flags))
7065 return;
7066
7067 if (!mddev->pers || !mddev->pers->error_handler)
7068 return;
7069 mddev->pers->error_handler(mddev,rdev);
7070 if (mddev->degraded)
7071 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7072 sysfs_notify_dirent_safe(rdev->sysfs_state);
7073 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7074 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7075 md_wakeup_thread(mddev->thread);
7076 if (mddev->event_work.func)
7077 queue_work(md_misc_wq, &mddev->event_work);
7078 md_new_event_inintr(mddev);
7079 }
7080 EXPORT_SYMBOL(md_error);
7081
7082 /* seq_file implementation /proc/mdstat */
7083
7084 static void status_unused(struct seq_file *seq)
7085 {
7086 int i = 0;
7087 struct md_rdev *rdev;
7088
7089 seq_printf(seq, "unused devices: ");
7090
7091 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7092 char b[BDEVNAME_SIZE];
7093 i++;
7094 seq_printf(seq, "%s ",
7095 bdevname(rdev->bdev,b));
7096 }
7097 if (!i)
7098 seq_printf(seq, "<none>");
7099
7100 seq_printf(seq, "\n");
7101 }
7102
7103 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7104 {
7105 sector_t max_sectors, resync, res;
7106 unsigned long dt, db;
7107 sector_t rt;
7108 int scale;
7109 unsigned int per_milli;
7110
7111 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7112 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7113 max_sectors = mddev->resync_max_sectors;
7114 else
7115 max_sectors = mddev->dev_sectors;
7116
7117 resync = mddev->curr_resync;
7118 if (resync <= 3) {
7119 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7120 /* Still cleaning up */
7121 resync = max_sectors;
7122 } else
7123 resync -= atomic_read(&mddev->recovery_active);
7124
7125 if (resync == 0) {
7126 if (mddev->recovery_cp < MaxSector) {
7127 seq_printf(seq, "\tresync=PENDING");
7128 return 1;
7129 }
7130 return 0;
7131 }
7132 if (resync < 3) {
7133 seq_printf(seq, "\tresync=DELAYED");
7134 return 1;
7135 }
7136
7137 WARN_ON(max_sectors == 0);
7138 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7139 * in a sector_t, and (max_sectors>>scale) will fit in a
7140 * u32, as those are the requirements for sector_div.
7141 * Thus 'scale' must be at least 10
7142 */
7143 scale = 10;
7144 if (sizeof(sector_t) > sizeof(unsigned long)) {
7145 while ( max_sectors/2 > (1ULL<<(scale+32)))
7146 scale++;
7147 }
7148 res = (resync>>scale)*1000;
7149 sector_div(res, (u32)((max_sectors>>scale)+1));
7150
7151 per_milli = res;
7152 {
7153 int i, x = per_milli/50, y = 20-x;
7154 seq_printf(seq, "[");
7155 for (i = 0; i < x; i++)
7156 seq_printf(seq, "=");
7157 seq_printf(seq, ">");
7158 for (i = 0; i < y; i++)
7159 seq_printf(seq, ".");
7160 seq_printf(seq, "] ");
7161 }
7162 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7163 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7164 "reshape" :
7165 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7166 "check" :
7167 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7168 "resync" : "recovery"))),
7169 per_milli/10, per_milli % 10,
7170 (unsigned long long) resync/2,
7171 (unsigned long long) max_sectors/2);
7172
7173 /*
7174 * dt: time from mark until now
7175 * db: blocks written from mark until now
7176 * rt: remaining time
7177 *
7178 * rt is a sector_t, so could be 32bit or 64bit.
7179 * So we divide before multiply in case it is 32bit and close
7180 * to the limit.
7181 * We scale the divisor (db) by 32 to avoid losing precision
7182 * near the end of resync when the number of remaining sectors
7183 * is close to 'db'.
7184 * We then divide rt by 32 after multiplying by db to compensate.
7185 * The '+1' avoids division by zero if db is very small.
7186 */
7187 dt = ((jiffies - mddev->resync_mark) / HZ);
7188 if (!dt) dt++;
7189 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7190 - mddev->resync_mark_cnt;
7191
7192 rt = max_sectors - resync; /* number of remaining sectors */
7193 sector_div(rt, db/32+1);
7194 rt *= dt;
7195 rt >>= 5;
7196
7197 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7198 ((unsigned long)rt % 60)/6);
7199
7200 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7201 return 1;
7202 }
7203
7204 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7205 {
7206 struct list_head *tmp;
7207 loff_t l = *pos;
7208 struct mddev *mddev;
7209
7210 if (l >= 0x10000)
7211 return NULL;
7212 if (!l--)
7213 /* header */
7214 return (void*)1;
7215
7216 spin_lock(&all_mddevs_lock);
7217 list_for_each(tmp,&all_mddevs)
7218 if (!l--) {
7219 mddev = list_entry(tmp, struct mddev, all_mddevs);
7220 mddev_get(mddev);
7221 spin_unlock(&all_mddevs_lock);
7222 return mddev;
7223 }
7224 spin_unlock(&all_mddevs_lock);
7225 if (!l--)
7226 return (void*)2;/* tail */
7227 return NULL;
7228 }
7229
7230 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7231 {
7232 struct list_head *tmp;
7233 struct mddev *next_mddev, *mddev = v;
7234
7235 ++*pos;
7236 if (v == (void*)2)
7237 return NULL;
7238
7239 spin_lock(&all_mddevs_lock);
7240 if (v == (void*)1)
7241 tmp = all_mddevs.next;
7242 else
7243 tmp = mddev->all_mddevs.next;
7244 if (tmp != &all_mddevs)
7245 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7246 else {
7247 next_mddev = (void*)2;
7248 *pos = 0x10000;
7249 }
7250 spin_unlock(&all_mddevs_lock);
7251
7252 if (v != (void*)1)
7253 mddev_put(mddev);
7254 return next_mddev;
7255
7256 }
7257
7258 static void md_seq_stop(struct seq_file *seq, void *v)
7259 {
7260 struct mddev *mddev = v;
7261
7262 if (mddev && v != (void*)1 && v != (void*)2)
7263 mddev_put(mddev);
7264 }
7265
7266 static int md_seq_show(struct seq_file *seq, void *v)
7267 {
7268 struct mddev *mddev = v;
7269 sector_t sectors;
7270 struct md_rdev *rdev;
7271
7272 if (v == (void*)1) {
7273 struct md_personality *pers;
7274 seq_printf(seq, "Personalities : ");
7275 spin_lock(&pers_lock);
7276 list_for_each_entry(pers, &pers_list, list)
7277 seq_printf(seq, "[%s] ", pers->name);
7278
7279 spin_unlock(&pers_lock);
7280 seq_printf(seq, "\n");
7281 seq->poll_event = atomic_read(&md_event_count);
7282 return 0;
7283 }
7284 if (v == (void*)2) {
7285 status_unused(seq);
7286 return 0;
7287 }
7288
7289 spin_lock(&mddev->lock);
7290 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7291 seq_printf(seq, "%s : %sactive", mdname(mddev),
7292 mddev->pers ? "" : "in");
7293 if (mddev->pers) {
7294 if (mddev->ro==1)
7295 seq_printf(seq, " (read-only)");
7296 if (mddev->ro==2)
7297 seq_printf(seq, " (auto-read-only)");
7298 seq_printf(seq, " %s", mddev->pers->name);
7299 }
7300
7301 sectors = 0;
7302 rcu_read_lock();
7303 rdev_for_each_rcu(rdev, mddev) {
7304 char b[BDEVNAME_SIZE];
7305 seq_printf(seq, " %s[%d]",
7306 bdevname(rdev->bdev,b), rdev->desc_nr);
7307 if (test_bit(WriteMostly, &rdev->flags))
7308 seq_printf(seq, "(W)");
7309 if (test_bit(Faulty, &rdev->flags)) {
7310 seq_printf(seq, "(F)");
7311 continue;
7312 }
7313 if (rdev->raid_disk < 0)
7314 seq_printf(seq, "(S)"); /* spare */
7315 if (test_bit(Replacement, &rdev->flags))
7316 seq_printf(seq, "(R)");
7317 sectors += rdev->sectors;
7318 }
7319 rcu_read_unlock();
7320
7321 if (!list_empty(&mddev->disks)) {
7322 if (mddev->pers)
7323 seq_printf(seq, "\n %llu blocks",
7324 (unsigned long long)
7325 mddev->array_sectors / 2);
7326 else
7327 seq_printf(seq, "\n %llu blocks",
7328 (unsigned long long)sectors / 2);
7329 }
7330 if (mddev->persistent) {
7331 if (mddev->major_version != 0 ||
7332 mddev->minor_version != 90) {
7333 seq_printf(seq," super %d.%d",
7334 mddev->major_version,
7335 mddev->minor_version);
7336 }
7337 } else if (mddev->external)
7338 seq_printf(seq, " super external:%s",
7339 mddev->metadata_type);
7340 else
7341 seq_printf(seq, " super non-persistent");
7342
7343 if (mddev->pers) {
7344 mddev->pers->status(seq, mddev);
7345 seq_printf(seq, "\n ");
7346 if (mddev->pers->sync_request) {
7347 if (status_resync(seq, mddev))
7348 seq_printf(seq, "\n ");
7349 }
7350 } else
7351 seq_printf(seq, "\n ");
7352
7353 bitmap_status(seq, mddev->bitmap);
7354
7355 seq_printf(seq, "\n");
7356 }
7357 spin_unlock(&mddev->lock);
7358
7359 return 0;
7360 }
7361
7362 static const struct seq_operations md_seq_ops = {
7363 .start = md_seq_start,
7364 .next = md_seq_next,
7365 .stop = md_seq_stop,
7366 .show = md_seq_show,
7367 };
7368
7369 static int md_seq_open(struct inode *inode, struct file *file)
7370 {
7371 struct seq_file *seq;
7372 int error;
7373
7374 error = seq_open(file, &md_seq_ops);
7375 if (error)
7376 return error;
7377
7378 seq = file->private_data;
7379 seq->poll_event = atomic_read(&md_event_count);
7380 return error;
7381 }
7382
7383 static int md_unloading;
7384 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7385 {
7386 struct seq_file *seq = filp->private_data;
7387 int mask;
7388
7389 if (md_unloading)
7390 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7391 poll_wait(filp, &md_event_waiters, wait);
7392
7393 /* always allow read */
7394 mask = POLLIN | POLLRDNORM;
7395
7396 if (seq->poll_event != atomic_read(&md_event_count))
7397 mask |= POLLERR | POLLPRI;
7398 return mask;
7399 }
7400
7401 static const struct file_operations md_seq_fops = {
7402 .owner = THIS_MODULE,
7403 .open = md_seq_open,
7404 .read = seq_read,
7405 .llseek = seq_lseek,
7406 .release = seq_release_private,
7407 .poll = mdstat_poll,
7408 };
7409
7410 int register_md_personality(struct md_personality *p)
7411 {
7412 printk(KERN_INFO "md: %s personality registered for level %d\n",
7413 p->name, p->level);
7414 spin_lock(&pers_lock);
7415 list_add_tail(&p->list, &pers_list);
7416 spin_unlock(&pers_lock);
7417 return 0;
7418 }
7419 EXPORT_SYMBOL(register_md_personality);
7420
7421 int unregister_md_personality(struct md_personality *p)
7422 {
7423 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7424 spin_lock(&pers_lock);
7425 list_del_init(&p->list);
7426 spin_unlock(&pers_lock);
7427 return 0;
7428 }
7429 EXPORT_SYMBOL(unregister_md_personality);
7430
7431 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7432 {
7433 if (md_cluster_ops != NULL)
7434 return -EALREADY;
7435 spin_lock(&pers_lock);
7436 md_cluster_ops = ops;
7437 md_cluster_mod = module;
7438 spin_unlock(&pers_lock);
7439 return 0;
7440 }
7441 EXPORT_SYMBOL(register_md_cluster_operations);
7442
7443 int unregister_md_cluster_operations(void)
7444 {
7445 spin_lock(&pers_lock);
7446 md_cluster_ops = NULL;
7447 spin_unlock(&pers_lock);
7448 return 0;
7449 }
7450 EXPORT_SYMBOL(unregister_md_cluster_operations);
7451
7452 int md_setup_cluster(struct mddev *mddev, int nodes)
7453 {
7454 int err;
7455
7456 err = request_module("md-cluster");
7457 if (err) {
7458 pr_err("md-cluster module not found.\n");
7459 return -ENOENT;
7460 }
7461
7462 spin_lock(&pers_lock);
7463 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7464 spin_unlock(&pers_lock);
7465 return -ENOENT;
7466 }
7467 spin_unlock(&pers_lock);
7468
7469 return md_cluster_ops->join(mddev, nodes);
7470 }
7471
7472 void md_cluster_stop(struct mddev *mddev)
7473 {
7474 if (!md_cluster_ops)
7475 return;
7476 md_cluster_ops->leave(mddev);
7477 module_put(md_cluster_mod);
7478 }
7479
7480 static int is_mddev_idle(struct mddev *mddev, int init)
7481 {
7482 struct md_rdev *rdev;
7483 int idle;
7484 int curr_events;
7485
7486 idle = 1;
7487 rcu_read_lock();
7488 rdev_for_each_rcu(rdev, mddev) {
7489 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7490 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7491 (int)part_stat_read(&disk->part0, sectors[1]) -
7492 atomic_read(&disk->sync_io);
7493 /* sync IO will cause sync_io to increase before the disk_stats
7494 * as sync_io is counted when a request starts, and
7495 * disk_stats is counted when it completes.
7496 * So resync activity will cause curr_events to be smaller than
7497 * when there was no such activity.
7498 * non-sync IO will cause disk_stat to increase without
7499 * increasing sync_io so curr_events will (eventually)
7500 * be larger than it was before. Once it becomes
7501 * substantially larger, the test below will cause
7502 * the array to appear non-idle, and resync will slow
7503 * down.
7504 * If there is a lot of outstanding resync activity when
7505 * we set last_event to curr_events, then all that activity
7506 * completing might cause the array to appear non-idle
7507 * and resync will be slowed down even though there might
7508 * not have been non-resync activity. This will only
7509 * happen once though. 'last_events' will soon reflect
7510 * the state where there is little or no outstanding
7511 * resync requests, and further resync activity will
7512 * always make curr_events less than last_events.
7513 *
7514 */
7515 if (init || curr_events - rdev->last_events > 64) {
7516 rdev->last_events = curr_events;
7517 idle = 0;
7518 }
7519 }
7520 rcu_read_unlock();
7521 return idle;
7522 }
7523
7524 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7525 {
7526 /* another "blocks" (512byte) blocks have been synced */
7527 atomic_sub(blocks, &mddev->recovery_active);
7528 wake_up(&mddev->recovery_wait);
7529 if (!ok) {
7530 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7531 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7532 md_wakeup_thread(mddev->thread);
7533 // stop recovery, signal do_sync ....
7534 }
7535 }
7536 EXPORT_SYMBOL(md_done_sync);
7537
7538 /* md_write_start(mddev, bi)
7539 * If we need to update some array metadata (e.g. 'active' flag
7540 * in superblock) before writing, schedule a superblock update
7541 * and wait for it to complete.
7542 */
7543 void md_write_start(struct mddev *mddev, struct bio *bi)
7544 {
7545 int did_change = 0;
7546 if (bio_data_dir(bi) != WRITE)
7547 return;
7548
7549 BUG_ON(mddev->ro == 1);
7550 if (mddev->ro == 2) {
7551 /* need to switch to read/write */
7552 mddev->ro = 0;
7553 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7554 md_wakeup_thread(mddev->thread);
7555 md_wakeup_thread(mddev->sync_thread);
7556 did_change = 1;
7557 }
7558 atomic_inc(&mddev->writes_pending);
7559 if (mddev->safemode == 1)
7560 mddev->safemode = 0;
7561 if (mddev->in_sync) {
7562 spin_lock(&mddev->lock);
7563 if (mddev->in_sync) {
7564 mddev->in_sync = 0;
7565 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7566 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7567 md_wakeup_thread(mddev->thread);
7568 did_change = 1;
7569 }
7570 spin_unlock(&mddev->lock);
7571 }
7572 if (did_change)
7573 sysfs_notify_dirent_safe(mddev->sysfs_state);
7574 wait_event(mddev->sb_wait,
7575 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7576 }
7577 EXPORT_SYMBOL(md_write_start);
7578
7579 void md_write_end(struct mddev *mddev)
7580 {
7581 if (atomic_dec_and_test(&mddev->writes_pending)) {
7582 if (mddev->safemode == 2)
7583 md_wakeup_thread(mddev->thread);
7584 else if (mddev->safemode_delay)
7585 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7586 }
7587 }
7588 EXPORT_SYMBOL(md_write_end);
7589
7590 /* md_allow_write(mddev)
7591 * Calling this ensures that the array is marked 'active' so that writes
7592 * may proceed without blocking. It is important to call this before
7593 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7594 * Must be called with mddev_lock held.
7595 *
7596 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7597 * is dropped, so return -EAGAIN after notifying userspace.
7598 */
7599 int md_allow_write(struct mddev *mddev)
7600 {
7601 if (!mddev->pers)
7602 return 0;
7603 if (mddev->ro)
7604 return 0;
7605 if (!mddev->pers->sync_request)
7606 return 0;
7607
7608 spin_lock(&mddev->lock);
7609 if (mddev->in_sync) {
7610 mddev->in_sync = 0;
7611 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7612 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7613 if (mddev->safemode_delay &&
7614 mddev->safemode == 0)
7615 mddev->safemode = 1;
7616 spin_unlock(&mddev->lock);
7617 if (mddev_is_clustered(mddev))
7618 md_cluster_ops->metadata_update_start(mddev);
7619 md_update_sb(mddev, 0);
7620 if (mddev_is_clustered(mddev))
7621 md_cluster_ops->metadata_update_finish(mddev);
7622 sysfs_notify_dirent_safe(mddev->sysfs_state);
7623 } else
7624 spin_unlock(&mddev->lock);
7625
7626 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7627 return -EAGAIN;
7628 else
7629 return 0;
7630 }
7631 EXPORT_SYMBOL_GPL(md_allow_write);
7632
7633 #define SYNC_MARKS 10
7634 #define SYNC_MARK_STEP (3*HZ)
7635 #define UPDATE_FREQUENCY (5*60*HZ)
7636 void md_do_sync(struct md_thread *thread)
7637 {
7638 struct mddev *mddev = thread->mddev;
7639 struct mddev *mddev2;
7640 unsigned int currspeed = 0,
7641 window;
7642 sector_t max_sectors,j, io_sectors, recovery_done;
7643 unsigned long mark[SYNC_MARKS];
7644 unsigned long update_time;
7645 sector_t mark_cnt[SYNC_MARKS];
7646 int last_mark,m;
7647 struct list_head *tmp;
7648 sector_t last_check;
7649 int skipped = 0;
7650 struct md_rdev *rdev;
7651 char *desc, *action = NULL;
7652 struct blk_plug plug;
7653
7654 /* just incase thread restarts... */
7655 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7656 return;
7657 if (mddev->ro) {/* never try to sync a read-only array */
7658 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7659 return;
7660 }
7661
7662 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7663 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7664 desc = "data-check";
7665 action = "check";
7666 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7667 desc = "requested-resync";
7668 action = "repair";
7669 } else
7670 desc = "resync";
7671 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7672 desc = "reshape";
7673 else
7674 desc = "recovery";
7675
7676 mddev->last_sync_action = action ?: desc;
7677
7678 /* we overload curr_resync somewhat here.
7679 * 0 == not engaged in resync at all
7680 * 2 == checking that there is no conflict with another sync
7681 * 1 == like 2, but have yielded to allow conflicting resync to
7682 * commense
7683 * other == active in resync - this many blocks
7684 *
7685 * Before starting a resync we must have set curr_resync to
7686 * 2, and then checked that every "conflicting" array has curr_resync
7687 * less than ours. When we find one that is the same or higher
7688 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7689 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7690 * This will mean we have to start checking from the beginning again.
7691 *
7692 */
7693
7694 do {
7695 mddev->curr_resync = 2;
7696
7697 try_again:
7698 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7699 goto skip;
7700 for_each_mddev(mddev2, tmp) {
7701 if (mddev2 == mddev)
7702 continue;
7703 if (!mddev->parallel_resync
7704 && mddev2->curr_resync
7705 && match_mddev_units(mddev, mddev2)) {
7706 DEFINE_WAIT(wq);
7707 if (mddev < mddev2 && mddev->curr_resync == 2) {
7708 /* arbitrarily yield */
7709 mddev->curr_resync = 1;
7710 wake_up(&resync_wait);
7711 }
7712 if (mddev > mddev2 && mddev->curr_resync == 1)
7713 /* no need to wait here, we can wait the next
7714 * time 'round when curr_resync == 2
7715 */
7716 continue;
7717 /* We need to wait 'interruptible' so as not to
7718 * contribute to the load average, and not to
7719 * be caught by 'softlockup'
7720 */
7721 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7722 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7723 mddev2->curr_resync >= mddev->curr_resync) {
7724 printk(KERN_INFO "md: delaying %s of %s"
7725 " until %s has finished (they"
7726 " share one or more physical units)\n",
7727 desc, mdname(mddev), mdname(mddev2));
7728 mddev_put(mddev2);
7729 if (signal_pending(current))
7730 flush_signals(current);
7731 schedule();
7732 finish_wait(&resync_wait, &wq);
7733 goto try_again;
7734 }
7735 finish_wait(&resync_wait, &wq);
7736 }
7737 }
7738 } while (mddev->curr_resync < 2);
7739
7740 j = 0;
7741 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7742 /* resync follows the size requested by the personality,
7743 * which defaults to physical size, but can be virtual size
7744 */
7745 max_sectors = mddev->resync_max_sectors;
7746 atomic64_set(&mddev->resync_mismatches, 0);
7747 /* we don't use the checkpoint if there's a bitmap */
7748 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7749 j = mddev->resync_min;
7750 else if (!mddev->bitmap)
7751 j = mddev->recovery_cp;
7752
7753 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7754 max_sectors = mddev->resync_max_sectors;
7755 else {
7756 /* recovery follows the physical size of devices */
7757 max_sectors = mddev->dev_sectors;
7758 j = MaxSector;
7759 rcu_read_lock();
7760 rdev_for_each_rcu(rdev, mddev)
7761 if (rdev->raid_disk >= 0 &&
7762 !test_bit(Faulty, &rdev->flags) &&
7763 !test_bit(In_sync, &rdev->flags) &&
7764 rdev->recovery_offset < j)
7765 j = rdev->recovery_offset;
7766 rcu_read_unlock();
7767
7768 /* If there is a bitmap, we need to make sure all
7769 * writes that started before we added a spare
7770 * complete before we start doing a recovery.
7771 * Otherwise the write might complete and (via
7772 * bitmap_endwrite) set a bit in the bitmap after the
7773 * recovery has checked that bit and skipped that
7774 * region.
7775 */
7776 if (mddev->bitmap) {
7777 mddev->pers->quiesce(mddev, 1);
7778 mddev->pers->quiesce(mddev, 0);
7779 }
7780 }
7781
7782 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7783 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7784 " %d KB/sec/disk.\n", speed_min(mddev));
7785 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7786 "(but not more than %d KB/sec) for %s.\n",
7787 speed_max(mddev), desc);
7788
7789 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7790
7791 io_sectors = 0;
7792 for (m = 0; m < SYNC_MARKS; m++) {
7793 mark[m] = jiffies;
7794 mark_cnt[m] = io_sectors;
7795 }
7796 last_mark = 0;
7797 mddev->resync_mark = mark[last_mark];
7798 mddev->resync_mark_cnt = mark_cnt[last_mark];
7799
7800 /*
7801 * Tune reconstruction:
7802 */
7803 window = 32*(PAGE_SIZE/512);
7804 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7805 window/2, (unsigned long long)max_sectors/2);
7806
7807 atomic_set(&mddev->recovery_active, 0);
7808 last_check = 0;
7809
7810 if (j>2) {
7811 printk(KERN_INFO
7812 "md: resuming %s of %s from checkpoint.\n",
7813 desc, mdname(mddev));
7814 mddev->curr_resync = j;
7815 } else
7816 mddev->curr_resync = 3; /* no longer delayed */
7817 mddev->curr_resync_completed = j;
7818 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7819 md_new_event(mddev);
7820 update_time = jiffies;
7821
7822 if (mddev_is_clustered(mddev))
7823 md_cluster_ops->resync_start(mddev, j, max_sectors);
7824
7825 blk_start_plug(&plug);
7826 while (j < max_sectors) {
7827 sector_t sectors;
7828
7829 skipped = 0;
7830
7831 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7832 ((mddev->curr_resync > mddev->curr_resync_completed &&
7833 (mddev->curr_resync - mddev->curr_resync_completed)
7834 > (max_sectors >> 4)) ||
7835 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7836 (j - mddev->curr_resync_completed)*2
7837 >= mddev->resync_max - mddev->curr_resync_completed ||
7838 mddev->curr_resync_completed > mddev->resync_max
7839 )) {
7840 /* time to update curr_resync_completed */
7841 wait_event(mddev->recovery_wait,
7842 atomic_read(&mddev->recovery_active) == 0);
7843 mddev->curr_resync_completed = j;
7844 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7845 j > mddev->recovery_cp)
7846 mddev->recovery_cp = j;
7847 update_time = jiffies;
7848 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7849 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7850 }
7851
7852 while (j >= mddev->resync_max &&
7853 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7854 /* As this condition is controlled by user-space,
7855 * we can block indefinitely, so use '_interruptible'
7856 * to avoid triggering warnings.
7857 */
7858 flush_signals(current); /* just in case */
7859 wait_event_interruptible(mddev->recovery_wait,
7860 mddev->resync_max > j
7861 || test_bit(MD_RECOVERY_INTR,
7862 &mddev->recovery));
7863 }
7864
7865 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7866 break;
7867
7868 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7869 if (sectors == 0) {
7870 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7871 break;
7872 }
7873
7874 if (!skipped) { /* actual IO requested */
7875 io_sectors += sectors;
7876 atomic_add(sectors, &mddev->recovery_active);
7877 }
7878
7879 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7880 break;
7881
7882 j += sectors;
7883 if (j > max_sectors)
7884 /* when skipping, extra large numbers can be returned. */
7885 j = max_sectors;
7886 if (j > 2)
7887 mddev->curr_resync = j;
7888 if (mddev_is_clustered(mddev))
7889 md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7890 mddev->curr_mark_cnt = io_sectors;
7891 if (last_check == 0)
7892 /* this is the earliest that rebuild will be
7893 * visible in /proc/mdstat
7894 */
7895 md_new_event(mddev);
7896
7897 if (last_check + window > io_sectors || j == max_sectors)
7898 continue;
7899
7900 last_check = io_sectors;
7901 repeat:
7902 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7903 /* step marks */
7904 int next = (last_mark+1) % SYNC_MARKS;
7905
7906 mddev->resync_mark = mark[next];
7907 mddev->resync_mark_cnt = mark_cnt[next];
7908 mark[next] = jiffies;
7909 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7910 last_mark = next;
7911 }
7912
7913 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7914 break;
7915
7916 /*
7917 * this loop exits only if either when we are slower than
7918 * the 'hard' speed limit, or the system was IO-idle for
7919 * a jiffy.
7920 * the system might be non-idle CPU-wise, but we only care
7921 * about not overloading the IO subsystem. (things like an
7922 * e2fsck being done on the RAID array should execute fast)
7923 */
7924 cond_resched();
7925
7926 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7927 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7928 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7929
7930 if (currspeed > speed_min(mddev)) {
7931 if (currspeed > speed_max(mddev)) {
7932 msleep(500);
7933 goto repeat;
7934 }
7935 if (!is_mddev_idle(mddev, 0)) {
7936 /*
7937 * Give other IO more of a chance.
7938 * The faster the devices, the less we wait.
7939 */
7940 wait_event(mddev->recovery_wait,
7941 !atomic_read(&mddev->recovery_active));
7942 }
7943 }
7944 }
7945 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7946 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7947 ? "interrupted" : "done");
7948 /*
7949 * this also signals 'finished resyncing' to md_stop
7950 */
7951 blk_finish_plug(&plug);
7952 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7953
7954 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7955 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7956 mddev->curr_resync > 2) {
7957 mddev->curr_resync_completed = mddev->curr_resync;
7958 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7959 }
7960 /* tell personality that we are finished */
7961 mddev->pers->sync_request(mddev, max_sectors, &skipped);
7962
7963 if (mddev_is_clustered(mddev))
7964 md_cluster_ops->resync_finish(mddev);
7965
7966 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7967 mddev->curr_resync > 2) {
7968 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7969 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7970 if (mddev->curr_resync >= mddev->recovery_cp) {
7971 printk(KERN_INFO
7972 "md: checkpointing %s of %s.\n",
7973 desc, mdname(mddev));
7974 if (test_bit(MD_RECOVERY_ERROR,
7975 &mddev->recovery))
7976 mddev->recovery_cp =
7977 mddev->curr_resync_completed;
7978 else
7979 mddev->recovery_cp =
7980 mddev->curr_resync;
7981 }
7982 } else
7983 mddev->recovery_cp = MaxSector;
7984 } else {
7985 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7986 mddev->curr_resync = MaxSector;
7987 rcu_read_lock();
7988 rdev_for_each_rcu(rdev, mddev)
7989 if (rdev->raid_disk >= 0 &&
7990 mddev->delta_disks >= 0 &&
7991 !test_bit(Faulty, &rdev->flags) &&
7992 !test_bit(In_sync, &rdev->flags) &&
7993 rdev->recovery_offset < mddev->curr_resync)
7994 rdev->recovery_offset = mddev->curr_resync;
7995 rcu_read_unlock();
7996 }
7997 }
7998 skip:
7999 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8000
8001 spin_lock(&mddev->lock);
8002 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8003 /* We completed so min/max setting can be forgotten if used. */
8004 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8005 mddev->resync_min = 0;
8006 mddev->resync_max = MaxSector;
8007 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8008 mddev->resync_min = mddev->curr_resync_completed;
8009 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8010 mddev->curr_resync = 0;
8011 spin_unlock(&mddev->lock);
8012
8013 wake_up(&resync_wait);
8014 md_wakeup_thread(mddev->thread);
8015 return;
8016 }
8017 EXPORT_SYMBOL_GPL(md_do_sync);
8018
8019 static int remove_and_add_spares(struct mddev *mddev,
8020 struct md_rdev *this)
8021 {
8022 struct md_rdev *rdev;
8023 int spares = 0;
8024 int removed = 0;
8025
8026 rdev_for_each(rdev, mddev)
8027 if ((this == NULL || rdev == this) &&
8028 rdev->raid_disk >= 0 &&
8029 !test_bit(Blocked, &rdev->flags) &&
8030 (test_bit(Faulty, &rdev->flags) ||
8031 ! test_bit(In_sync, &rdev->flags)) &&
8032 atomic_read(&rdev->nr_pending)==0) {
8033 if (mddev->pers->hot_remove_disk(
8034 mddev, rdev) == 0) {
8035 sysfs_unlink_rdev(mddev, rdev);
8036 rdev->raid_disk = -1;
8037 removed++;
8038 }
8039 }
8040 if (removed && mddev->kobj.sd)
8041 sysfs_notify(&mddev->kobj, NULL, "degraded");
8042
8043 if (this)
8044 goto no_add;
8045
8046 rdev_for_each(rdev, mddev) {
8047 if (rdev->raid_disk >= 0 &&
8048 !test_bit(In_sync, &rdev->flags) &&
8049 !test_bit(Faulty, &rdev->flags))
8050 spares++;
8051 if (rdev->raid_disk >= 0)
8052 continue;
8053 if (test_bit(Faulty, &rdev->flags))
8054 continue;
8055 if (mddev->ro &&
8056 ! (rdev->saved_raid_disk >= 0 &&
8057 !test_bit(Bitmap_sync, &rdev->flags)))
8058 continue;
8059
8060 if (rdev->saved_raid_disk < 0)
8061 rdev->recovery_offset = 0;
8062 if (mddev->pers->
8063 hot_add_disk(mddev, rdev) == 0) {
8064 if (sysfs_link_rdev(mddev, rdev))
8065 /* failure here is OK */;
8066 spares++;
8067 md_new_event(mddev);
8068 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8069 }
8070 }
8071 no_add:
8072 if (removed)
8073 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8074 return spares;
8075 }
8076
8077 static void md_start_sync(struct work_struct *ws)
8078 {
8079 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8080
8081 mddev->sync_thread = md_register_thread(md_do_sync,
8082 mddev,
8083 "resync");
8084 if (!mddev->sync_thread) {
8085 printk(KERN_ERR "%s: could not start resync"
8086 " thread...\n",
8087 mdname(mddev));
8088 /* leave the spares where they are, it shouldn't hurt */
8089 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8090 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8091 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8092 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8093 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8094 wake_up(&resync_wait);
8095 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8096 &mddev->recovery))
8097 if (mddev->sysfs_action)
8098 sysfs_notify_dirent_safe(mddev->sysfs_action);
8099 } else
8100 md_wakeup_thread(mddev->sync_thread);
8101 sysfs_notify_dirent_safe(mddev->sysfs_action);
8102 md_new_event(mddev);
8103 }
8104
8105 /*
8106 * This routine is regularly called by all per-raid-array threads to
8107 * deal with generic issues like resync and super-block update.
8108 * Raid personalities that don't have a thread (linear/raid0) do not
8109 * need this as they never do any recovery or update the superblock.
8110 *
8111 * It does not do any resync itself, but rather "forks" off other threads
8112 * to do that as needed.
8113 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8114 * "->recovery" and create a thread at ->sync_thread.
8115 * When the thread finishes it sets MD_RECOVERY_DONE
8116 * and wakeups up this thread which will reap the thread and finish up.
8117 * This thread also removes any faulty devices (with nr_pending == 0).
8118 *
8119 * The overall approach is:
8120 * 1/ if the superblock needs updating, update it.
8121 * 2/ If a recovery thread is running, don't do anything else.
8122 * 3/ If recovery has finished, clean up, possibly marking spares active.
8123 * 4/ If there are any faulty devices, remove them.
8124 * 5/ If array is degraded, try to add spares devices
8125 * 6/ If array has spares or is not in-sync, start a resync thread.
8126 */
8127 void md_check_recovery(struct mddev *mddev)
8128 {
8129 if (mddev->suspended)
8130 return;
8131
8132 if (mddev->bitmap)
8133 bitmap_daemon_work(mddev);
8134
8135 if (signal_pending(current)) {
8136 if (mddev->pers->sync_request && !mddev->external) {
8137 printk(KERN_INFO "md: %s in immediate safe mode\n",
8138 mdname(mddev));
8139 mddev->safemode = 2;
8140 }
8141 flush_signals(current);
8142 }
8143
8144 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8145 return;
8146 if ( ! (
8147 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8148 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8149 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8150 (mddev->external == 0 && mddev->safemode == 1) ||
8151 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8152 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8153 ))
8154 return;
8155
8156 if (mddev_trylock(mddev)) {
8157 int spares = 0;
8158
8159 if (mddev->ro) {
8160 struct md_rdev *rdev;
8161 if (!mddev->external && mddev->in_sync)
8162 /* 'Blocked' flag not needed as failed devices
8163 * will be recorded if array switched to read/write.
8164 * Leaving it set will prevent the device
8165 * from being removed.
8166 */
8167 rdev_for_each(rdev, mddev)
8168 clear_bit(Blocked, &rdev->flags);
8169 /* On a read-only array we can:
8170 * - remove failed devices
8171 * - add already-in_sync devices if the array itself
8172 * is in-sync.
8173 * As we only add devices that are already in-sync,
8174 * we can activate the spares immediately.
8175 */
8176 remove_and_add_spares(mddev, NULL);
8177 /* There is no thread, but we need to call
8178 * ->spare_active and clear saved_raid_disk
8179 */
8180 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8181 md_reap_sync_thread(mddev);
8182 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8183 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8184 goto unlock;
8185 }
8186
8187 if (!mddev->external) {
8188 int did_change = 0;
8189 spin_lock(&mddev->lock);
8190 if (mddev->safemode &&
8191 !atomic_read(&mddev->writes_pending) &&
8192 !mddev->in_sync &&
8193 mddev->recovery_cp == MaxSector) {
8194 mddev->in_sync = 1;
8195 did_change = 1;
8196 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8197 }
8198 if (mddev->safemode == 1)
8199 mddev->safemode = 0;
8200 spin_unlock(&mddev->lock);
8201 if (did_change)
8202 sysfs_notify_dirent_safe(mddev->sysfs_state);
8203 }
8204
8205 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8206 if (mddev_is_clustered(mddev))
8207 md_cluster_ops->metadata_update_start(mddev);
8208 md_update_sb(mddev, 0);
8209 if (mddev_is_clustered(mddev))
8210 md_cluster_ops->metadata_update_finish(mddev);
8211 }
8212
8213 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8214 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8215 /* resync/recovery still happening */
8216 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8217 goto unlock;
8218 }
8219 if (mddev->sync_thread) {
8220 md_reap_sync_thread(mddev);
8221 goto unlock;
8222 }
8223 /* Set RUNNING before clearing NEEDED to avoid
8224 * any transients in the value of "sync_action".
8225 */
8226 mddev->curr_resync_completed = 0;
8227 spin_lock(&mddev->lock);
8228 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8229 spin_unlock(&mddev->lock);
8230 /* Clear some bits that don't mean anything, but
8231 * might be left set
8232 */
8233 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8234 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8235
8236 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8237 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8238 goto not_running;
8239 /* no recovery is running.
8240 * remove any failed drives, then
8241 * add spares if possible.
8242 * Spares are also removed and re-added, to allow
8243 * the personality to fail the re-add.
8244 */
8245
8246 if (mddev->reshape_position != MaxSector) {
8247 if (mddev->pers->check_reshape == NULL ||
8248 mddev->pers->check_reshape(mddev) != 0)
8249 /* Cannot proceed */
8250 goto not_running;
8251 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8252 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8253 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8254 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8255 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8256 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8257 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8258 } else if (mddev->recovery_cp < MaxSector) {
8259 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8260 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8261 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8262 /* nothing to be done ... */
8263 goto not_running;
8264
8265 if (mddev->pers->sync_request) {
8266 if (spares) {
8267 /* We are adding a device or devices to an array
8268 * which has the bitmap stored on all devices.
8269 * So make sure all bitmap pages get written
8270 */
8271 bitmap_write_all(mddev->bitmap);
8272 }
8273 INIT_WORK(&mddev->del_work, md_start_sync);
8274 queue_work(md_misc_wq, &mddev->del_work);
8275 goto unlock;
8276 }
8277 not_running:
8278 if (!mddev->sync_thread) {
8279 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8280 wake_up(&resync_wait);
8281 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8282 &mddev->recovery))
8283 if (mddev->sysfs_action)
8284 sysfs_notify_dirent_safe(mddev->sysfs_action);
8285 }
8286 unlock:
8287 wake_up(&mddev->sb_wait);
8288 mddev_unlock(mddev);
8289 }
8290 }
8291 EXPORT_SYMBOL(md_check_recovery);
8292
8293 void md_reap_sync_thread(struct mddev *mddev)
8294 {
8295 struct md_rdev *rdev;
8296
8297 /* resync has finished, collect result */
8298 md_unregister_thread(&mddev->sync_thread);
8299 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8300 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8301 /* success...*/
8302 /* activate any spares */
8303 if (mddev->pers->spare_active(mddev)) {
8304 sysfs_notify(&mddev->kobj, NULL,
8305 "degraded");
8306 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8307 }
8308 }
8309 if (mddev_is_clustered(mddev))
8310 md_cluster_ops->metadata_update_start(mddev);
8311 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8312 mddev->pers->finish_reshape)
8313 mddev->pers->finish_reshape(mddev);
8314
8315 /* If array is no-longer degraded, then any saved_raid_disk
8316 * information must be scrapped.
8317 */
8318 if (!mddev->degraded)
8319 rdev_for_each(rdev, mddev)
8320 rdev->saved_raid_disk = -1;
8321
8322 md_update_sb(mddev, 1);
8323 if (mddev_is_clustered(mddev))
8324 md_cluster_ops->metadata_update_finish(mddev);
8325 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8326 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8327 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8328 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8329 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8330 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8331 wake_up(&resync_wait);
8332 /* flag recovery needed just to double check */
8333 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8334 sysfs_notify_dirent_safe(mddev->sysfs_action);
8335 md_new_event(mddev);
8336 if (mddev->event_work.func)
8337 queue_work(md_misc_wq, &mddev->event_work);
8338 }
8339 EXPORT_SYMBOL(md_reap_sync_thread);
8340
8341 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8342 {
8343 sysfs_notify_dirent_safe(rdev->sysfs_state);
8344 wait_event_timeout(rdev->blocked_wait,
8345 !test_bit(Blocked, &rdev->flags) &&
8346 !test_bit(BlockedBadBlocks, &rdev->flags),
8347 msecs_to_jiffies(5000));
8348 rdev_dec_pending(rdev, mddev);
8349 }
8350 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8351
8352 void md_finish_reshape(struct mddev *mddev)
8353 {
8354 /* called be personality module when reshape completes. */
8355 struct md_rdev *rdev;
8356
8357 rdev_for_each(rdev, mddev) {
8358 if (rdev->data_offset > rdev->new_data_offset)
8359 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8360 else
8361 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8362 rdev->data_offset = rdev->new_data_offset;
8363 }
8364 }
8365 EXPORT_SYMBOL(md_finish_reshape);
8366
8367 /* Bad block management.
8368 * We can record which blocks on each device are 'bad' and so just
8369 * fail those blocks, or that stripe, rather than the whole device.
8370 * Entries in the bad-block table are 64bits wide. This comprises:
8371 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8372 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8373 * A 'shift' can be set so that larger blocks are tracked and
8374 * consequently larger devices can be covered.
8375 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8376 *
8377 * Locking of the bad-block table uses a seqlock so md_is_badblock
8378 * might need to retry if it is very unlucky.
8379 * We will sometimes want to check for bad blocks in a bi_end_io function,
8380 * so we use the write_seqlock_irq variant.
8381 *
8382 * When looking for a bad block we specify a range and want to
8383 * know if any block in the range is bad. So we binary-search
8384 * to the last range that starts at-or-before the given endpoint,
8385 * (or "before the sector after the target range")
8386 * then see if it ends after the given start.
8387 * We return
8388 * 0 if there are no known bad blocks in the range
8389 * 1 if there are known bad block which are all acknowledged
8390 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8391 * plus the start/length of the first bad section we overlap.
8392 */
8393 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8394 sector_t *first_bad, int *bad_sectors)
8395 {
8396 int hi;
8397 int lo;
8398 u64 *p = bb->page;
8399 int rv;
8400 sector_t target = s + sectors;
8401 unsigned seq;
8402
8403 if (bb->shift > 0) {
8404 /* round the start down, and the end up */
8405 s >>= bb->shift;
8406 target += (1<<bb->shift) - 1;
8407 target >>= bb->shift;
8408 sectors = target - s;
8409 }
8410 /* 'target' is now the first block after the bad range */
8411
8412 retry:
8413 seq = read_seqbegin(&bb->lock);
8414 lo = 0;
8415 rv = 0;
8416 hi = bb->count;
8417
8418 /* Binary search between lo and hi for 'target'
8419 * i.e. for the last range that starts before 'target'
8420 */
8421 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8422 * are known not to be the last range before target.
8423 * VARIANT: hi-lo is the number of possible
8424 * ranges, and decreases until it reaches 1
8425 */
8426 while (hi - lo > 1) {
8427 int mid = (lo + hi) / 2;
8428 sector_t a = BB_OFFSET(p[mid]);
8429 if (a < target)
8430 /* This could still be the one, earlier ranges
8431 * could not. */
8432 lo = mid;
8433 else
8434 /* This and later ranges are definitely out. */
8435 hi = mid;
8436 }
8437 /* 'lo' might be the last that started before target, but 'hi' isn't */
8438 if (hi > lo) {
8439 /* need to check all range that end after 's' to see if
8440 * any are unacknowledged.
8441 */
8442 while (lo >= 0 &&
8443 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8444 if (BB_OFFSET(p[lo]) < target) {
8445 /* starts before the end, and finishes after
8446 * the start, so they must overlap
8447 */
8448 if (rv != -1 && BB_ACK(p[lo]))
8449 rv = 1;
8450 else
8451 rv = -1;
8452 *first_bad = BB_OFFSET(p[lo]);
8453 *bad_sectors = BB_LEN(p[lo]);
8454 }
8455 lo--;
8456 }
8457 }
8458
8459 if (read_seqretry(&bb->lock, seq))
8460 goto retry;
8461
8462 return rv;
8463 }
8464 EXPORT_SYMBOL_GPL(md_is_badblock);
8465
8466 /*
8467 * Add a range of bad blocks to the table.
8468 * This might extend the table, or might contract it
8469 * if two adjacent ranges can be merged.
8470 * We binary-search to find the 'insertion' point, then
8471 * decide how best to handle it.
8472 */
8473 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8474 int acknowledged)
8475 {
8476 u64 *p;
8477 int lo, hi;
8478 int rv = 1;
8479 unsigned long flags;
8480
8481 if (bb->shift < 0)
8482 /* badblocks are disabled */
8483 return 0;
8484
8485 if (bb->shift) {
8486 /* round the start down, and the end up */
8487 sector_t next = s + sectors;
8488 s >>= bb->shift;
8489 next += (1<<bb->shift) - 1;
8490 next >>= bb->shift;
8491 sectors = next - s;
8492 }
8493
8494 write_seqlock_irqsave(&bb->lock, flags);
8495
8496 p = bb->page;
8497 lo = 0;
8498 hi = bb->count;
8499 /* Find the last range that starts at-or-before 's' */
8500 while (hi - lo > 1) {
8501 int mid = (lo + hi) / 2;
8502 sector_t a = BB_OFFSET(p[mid]);
8503 if (a <= s)
8504 lo = mid;
8505 else
8506 hi = mid;
8507 }
8508 if (hi > lo && BB_OFFSET(p[lo]) > s)
8509 hi = lo;
8510
8511 if (hi > lo) {
8512 /* we found a range that might merge with the start
8513 * of our new range
8514 */
8515 sector_t a = BB_OFFSET(p[lo]);
8516 sector_t e = a + BB_LEN(p[lo]);
8517 int ack = BB_ACK(p[lo]);
8518 if (e >= s) {
8519 /* Yes, we can merge with a previous range */
8520 if (s == a && s + sectors >= e)
8521 /* new range covers old */
8522 ack = acknowledged;
8523 else
8524 ack = ack && acknowledged;
8525
8526 if (e < s + sectors)
8527 e = s + sectors;
8528 if (e - a <= BB_MAX_LEN) {
8529 p[lo] = BB_MAKE(a, e-a, ack);
8530 s = e;
8531 } else {
8532 /* does not all fit in one range,
8533 * make p[lo] maximal
8534 */
8535 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8536 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8537 s = a + BB_MAX_LEN;
8538 }
8539 sectors = e - s;
8540 }
8541 }
8542 if (sectors && hi < bb->count) {
8543 /* 'hi' points to the first range that starts after 's'.
8544 * Maybe we can merge with the start of that range */
8545 sector_t a = BB_OFFSET(p[hi]);
8546 sector_t e = a + BB_LEN(p[hi]);
8547 int ack = BB_ACK(p[hi]);
8548 if (a <= s + sectors) {
8549 /* merging is possible */
8550 if (e <= s + sectors) {
8551 /* full overlap */
8552 e = s + sectors;
8553 ack = acknowledged;
8554 } else
8555 ack = ack && acknowledged;
8556
8557 a = s;
8558 if (e - a <= BB_MAX_LEN) {
8559 p[hi] = BB_MAKE(a, e-a, ack);
8560 s = e;
8561 } else {
8562 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8563 s = a + BB_MAX_LEN;
8564 }
8565 sectors = e - s;
8566 lo = hi;
8567 hi++;
8568 }
8569 }
8570 if (sectors == 0 && hi < bb->count) {
8571 /* we might be able to combine lo and hi */
8572 /* Note: 's' is at the end of 'lo' */
8573 sector_t a = BB_OFFSET(p[hi]);
8574 int lolen = BB_LEN(p[lo]);
8575 int hilen = BB_LEN(p[hi]);
8576 int newlen = lolen + hilen - (s - a);
8577 if (s >= a && newlen < BB_MAX_LEN) {
8578 /* yes, we can combine them */
8579 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8580 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8581 memmove(p + hi, p + hi + 1,
8582 (bb->count - hi - 1) * 8);
8583 bb->count--;
8584 }
8585 }
8586 while (sectors) {
8587 /* didn't merge (it all).
8588 * Need to add a range just before 'hi' */
8589 if (bb->count >= MD_MAX_BADBLOCKS) {
8590 /* No room for more */
8591 rv = 0;
8592 break;
8593 } else {
8594 int this_sectors = sectors;
8595 memmove(p + hi + 1, p + hi,
8596 (bb->count - hi) * 8);
8597 bb->count++;
8598
8599 if (this_sectors > BB_MAX_LEN)
8600 this_sectors = BB_MAX_LEN;
8601 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8602 sectors -= this_sectors;
8603 s += this_sectors;
8604 }
8605 }
8606
8607 bb->changed = 1;
8608 if (!acknowledged)
8609 bb->unacked_exist = 1;
8610 write_sequnlock_irqrestore(&bb->lock, flags);
8611
8612 return rv;
8613 }
8614
8615 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8616 int is_new)
8617 {
8618 int rv;
8619 if (is_new)
8620 s += rdev->new_data_offset;
8621 else
8622 s += rdev->data_offset;
8623 rv = md_set_badblocks(&rdev->badblocks,
8624 s, sectors, 0);
8625 if (rv) {
8626 /* Make sure they get written out promptly */
8627 sysfs_notify_dirent_safe(rdev->sysfs_state);
8628 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8629 md_wakeup_thread(rdev->mddev->thread);
8630 }
8631 return rv;
8632 }
8633 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8634
8635 /*
8636 * Remove a range of bad blocks from the table.
8637 * This may involve extending the table if we spilt a region,
8638 * but it must not fail. So if the table becomes full, we just
8639 * drop the remove request.
8640 */
8641 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8642 {
8643 u64 *p;
8644 int lo, hi;
8645 sector_t target = s + sectors;
8646 int rv = 0;
8647
8648 if (bb->shift > 0) {
8649 /* When clearing we round the start up and the end down.
8650 * This should not matter as the shift should align with
8651 * the block size and no rounding should ever be needed.
8652 * However it is better the think a block is bad when it
8653 * isn't than to think a block is not bad when it is.
8654 */
8655 s += (1<<bb->shift) - 1;
8656 s >>= bb->shift;
8657 target >>= bb->shift;
8658 sectors = target - s;
8659 }
8660
8661 write_seqlock_irq(&bb->lock);
8662
8663 p = bb->page;
8664 lo = 0;
8665 hi = bb->count;
8666 /* Find the last range that starts before 'target' */
8667 while (hi - lo > 1) {
8668 int mid = (lo + hi) / 2;
8669 sector_t a = BB_OFFSET(p[mid]);
8670 if (a < target)
8671 lo = mid;
8672 else
8673 hi = mid;
8674 }
8675 if (hi > lo) {
8676 /* p[lo] is the last range that could overlap the
8677 * current range. Earlier ranges could also overlap,
8678 * but only this one can overlap the end of the range.
8679 */
8680 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8681 /* Partial overlap, leave the tail of this range */
8682 int ack = BB_ACK(p[lo]);
8683 sector_t a = BB_OFFSET(p[lo]);
8684 sector_t end = a + BB_LEN(p[lo]);
8685
8686 if (a < s) {
8687 /* we need to split this range */
8688 if (bb->count >= MD_MAX_BADBLOCKS) {
8689 rv = -ENOSPC;
8690 goto out;
8691 }
8692 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8693 bb->count++;
8694 p[lo] = BB_MAKE(a, s-a, ack);
8695 lo++;
8696 }
8697 p[lo] = BB_MAKE(target, end - target, ack);
8698 /* there is no longer an overlap */
8699 hi = lo;
8700 lo--;
8701 }
8702 while (lo >= 0 &&
8703 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8704 /* This range does overlap */
8705 if (BB_OFFSET(p[lo]) < s) {
8706 /* Keep the early parts of this range. */
8707 int ack = BB_ACK(p[lo]);
8708 sector_t start = BB_OFFSET(p[lo]);
8709 p[lo] = BB_MAKE(start, s - start, ack);
8710 /* now low doesn't overlap, so.. */
8711 break;
8712 }
8713 lo--;
8714 }
8715 /* 'lo' is strictly before, 'hi' is strictly after,
8716 * anything between needs to be discarded
8717 */
8718 if (hi - lo > 1) {
8719 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8720 bb->count -= (hi - lo - 1);
8721 }
8722 }
8723
8724 bb->changed = 1;
8725 out:
8726 write_sequnlock_irq(&bb->lock);
8727 return rv;
8728 }
8729
8730 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8731 int is_new)
8732 {
8733 if (is_new)
8734 s += rdev->new_data_offset;
8735 else
8736 s += rdev->data_offset;
8737 return md_clear_badblocks(&rdev->badblocks,
8738 s, sectors);
8739 }
8740 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8741
8742 /*
8743 * Acknowledge all bad blocks in a list.
8744 * This only succeeds if ->changed is clear. It is used by
8745 * in-kernel metadata updates
8746 */
8747 void md_ack_all_badblocks(struct badblocks *bb)
8748 {
8749 if (bb->page == NULL || bb->changed)
8750 /* no point even trying */
8751 return;
8752 write_seqlock_irq(&bb->lock);
8753
8754 if (bb->changed == 0 && bb->unacked_exist) {
8755 u64 *p = bb->page;
8756 int i;
8757 for (i = 0; i < bb->count ; i++) {
8758 if (!BB_ACK(p[i])) {
8759 sector_t start = BB_OFFSET(p[i]);
8760 int len = BB_LEN(p[i]);
8761 p[i] = BB_MAKE(start, len, 1);
8762 }
8763 }
8764 bb->unacked_exist = 0;
8765 }
8766 write_sequnlock_irq(&bb->lock);
8767 }
8768 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8769
8770 /* sysfs access to bad-blocks list.
8771 * We present two files.
8772 * 'bad-blocks' lists sector numbers and lengths of ranges that
8773 * are recorded as bad. The list is truncated to fit within
8774 * the one-page limit of sysfs.
8775 * Writing "sector length" to this file adds an acknowledged
8776 * bad block list.
8777 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8778 * been acknowledged. Writing to this file adds bad blocks
8779 * without acknowledging them. This is largely for testing.
8780 */
8781
8782 static ssize_t
8783 badblocks_show(struct badblocks *bb, char *page, int unack)
8784 {
8785 size_t len;
8786 int i;
8787 u64 *p = bb->page;
8788 unsigned seq;
8789
8790 if (bb->shift < 0)
8791 return 0;
8792
8793 retry:
8794 seq = read_seqbegin(&bb->lock);
8795
8796 len = 0;
8797 i = 0;
8798
8799 while (len < PAGE_SIZE && i < bb->count) {
8800 sector_t s = BB_OFFSET(p[i]);
8801 unsigned int length = BB_LEN(p[i]);
8802 int ack = BB_ACK(p[i]);
8803 i++;
8804
8805 if (unack && ack)
8806 continue;
8807
8808 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8809 (unsigned long long)s << bb->shift,
8810 length << bb->shift);
8811 }
8812 if (unack && len == 0)
8813 bb->unacked_exist = 0;
8814
8815 if (read_seqretry(&bb->lock, seq))
8816 goto retry;
8817
8818 return len;
8819 }
8820
8821 #define DO_DEBUG 1
8822
8823 static ssize_t
8824 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8825 {
8826 unsigned long long sector;
8827 int length;
8828 char newline;
8829 #ifdef DO_DEBUG
8830 /* Allow clearing via sysfs *only* for testing/debugging.
8831 * Normally only a successful write may clear a badblock
8832 */
8833 int clear = 0;
8834 if (page[0] == '-') {
8835 clear = 1;
8836 page++;
8837 }
8838 #endif /* DO_DEBUG */
8839
8840 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8841 case 3:
8842 if (newline != '\n')
8843 return -EINVAL;
8844 case 2:
8845 if (length <= 0)
8846 return -EINVAL;
8847 break;
8848 default:
8849 return -EINVAL;
8850 }
8851
8852 #ifdef DO_DEBUG
8853 if (clear) {
8854 md_clear_badblocks(bb, sector, length);
8855 return len;
8856 }
8857 #endif /* DO_DEBUG */
8858 if (md_set_badblocks(bb, sector, length, !unack))
8859 return len;
8860 else
8861 return -ENOSPC;
8862 }
8863
8864 static int md_notify_reboot(struct notifier_block *this,
8865 unsigned long code, void *x)
8866 {
8867 struct list_head *tmp;
8868 struct mddev *mddev;
8869 int need_delay = 0;
8870
8871 for_each_mddev(mddev, tmp) {
8872 if (mddev_trylock(mddev)) {
8873 if (mddev->pers)
8874 __md_stop_writes(mddev);
8875 if (mddev->persistent)
8876 mddev->safemode = 2;
8877 mddev_unlock(mddev);
8878 }
8879 need_delay = 1;
8880 }
8881 /*
8882 * certain more exotic SCSI devices are known to be
8883 * volatile wrt too early system reboots. While the
8884 * right place to handle this issue is the given
8885 * driver, we do want to have a safe RAID driver ...
8886 */
8887 if (need_delay)
8888 mdelay(1000*1);
8889
8890 return NOTIFY_DONE;
8891 }
8892
8893 static struct notifier_block md_notifier = {
8894 .notifier_call = md_notify_reboot,
8895 .next = NULL,
8896 .priority = INT_MAX, /* before any real devices */
8897 };
8898
8899 static void md_geninit(void)
8900 {
8901 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8902
8903 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8904 }
8905
8906 static int __init md_init(void)
8907 {
8908 int ret = -ENOMEM;
8909
8910 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8911 if (!md_wq)
8912 goto err_wq;
8913
8914 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8915 if (!md_misc_wq)
8916 goto err_misc_wq;
8917
8918 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8919 goto err_md;
8920
8921 if ((ret = register_blkdev(0, "mdp")) < 0)
8922 goto err_mdp;
8923 mdp_major = ret;
8924
8925 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8926 md_probe, NULL, NULL);
8927 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8928 md_probe, NULL, NULL);
8929
8930 register_reboot_notifier(&md_notifier);
8931 raid_table_header = register_sysctl_table(raid_root_table);
8932
8933 md_geninit();
8934 return 0;
8935
8936 err_mdp:
8937 unregister_blkdev(MD_MAJOR, "md");
8938 err_md:
8939 destroy_workqueue(md_misc_wq);
8940 err_misc_wq:
8941 destroy_workqueue(md_wq);
8942 err_wq:
8943 return ret;
8944 }
8945
8946 void md_reload_sb(struct mddev *mddev)
8947 {
8948 struct md_rdev *rdev, *tmp;
8949
8950 rdev_for_each_safe(rdev, tmp, mddev) {
8951 rdev->sb_loaded = 0;
8952 ClearPageUptodate(rdev->sb_page);
8953 }
8954 mddev->raid_disks = 0;
8955 analyze_sbs(mddev);
8956 rdev_for_each_safe(rdev, tmp, mddev) {
8957 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8958 /* since we don't write to faulty devices, we figure out if the
8959 * disk is faulty by comparing events
8960 */
8961 if (mddev->events > sb->events)
8962 set_bit(Faulty, &rdev->flags);
8963 }
8964
8965 }
8966 EXPORT_SYMBOL(md_reload_sb);
8967
8968 #ifndef MODULE
8969
8970 /*
8971 * Searches all registered partitions for autorun RAID arrays
8972 * at boot time.
8973 */
8974
8975 static LIST_HEAD(all_detected_devices);
8976 struct detected_devices_node {
8977 struct list_head list;
8978 dev_t dev;
8979 };
8980
8981 void md_autodetect_dev(dev_t dev)
8982 {
8983 struct detected_devices_node *node_detected_dev;
8984
8985 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8986 if (node_detected_dev) {
8987 node_detected_dev->dev = dev;
8988 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8989 } else {
8990 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8991 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8992 }
8993 }
8994
8995 static void autostart_arrays(int part)
8996 {
8997 struct md_rdev *rdev;
8998 struct detected_devices_node *node_detected_dev;
8999 dev_t dev;
9000 int i_scanned, i_passed;
9001
9002 i_scanned = 0;
9003 i_passed = 0;
9004
9005 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9006
9007 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9008 i_scanned++;
9009 node_detected_dev = list_entry(all_detected_devices.next,
9010 struct detected_devices_node, list);
9011 list_del(&node_detected_dev->list);
9012 dev = node_detected_dev->dev;
9013 kfree(node_detected_dev);
9014 rdev = md_import_device(dev,0, 90);
9015 if (IS_ERR(rdev))
9016 continue;
9017
9018 if (test_bit(Faulty, &rdev->flags))
9019 continue;
9020
9021 set_bit(AutoDetected, &rdev->flags);
9022 list_add(&rdev->same_set, &pending_raid_disks);
9023 i_passed++;
9024 }
9025
9026 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9027 i_scanned, i_passed);
9028
9029 autorun_devices(part);
9030 }
9031
9032 #endif /* !MODULE */
9033
9034 static __exit void md_exit(void)
9035 {
9036 struct mddev *mddev;
9037 struct list_head *tmp;
9038 int delay = 1;
9039
9040 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9041 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9042
9043 unregister_blkdev(MD_MAJOR,"md");
9044 unregister_blkdev(mdp_major, "mdp");
9045 unregister_reboot_notifier(&md_notifier);
9046 unregister_sysctl_table(raid_table_header);
9047
9048 /* We cannot unload the modules while some process is
9049 * waiting for us in select() or poll() - wake them up
9050 */
9051 md_unloading = 1;
9052 while (waitqueue_active(&md_event_waiters)) {
9053 /* not safe to leave yet */
9054 wake_up(&md_event_waiters);
9055 msleep(delay);
9056 delay += delay;
9057 }
9058 remove_proc_entry("mdstat", NULL);
9059
9060 for_each_mddev(mddev, tmp) {
9061 export_array(mddev);
9062 mddev->hold_active = 0;
9063 }
9064 destroy_workqueue(md_misc_wq);
9065 destroy_workqueue(md_wq);
9066 }
9067
9068 subsys_initcall(md_init);
9069 module_exit(md_exit)
9070
9071 static int get_ro(char *buffer, struct kernel_param *kp)
9072 {
9073 return sprintf(buffer, "%d", start_readonly);
9074 }
9075 static int set_ro(const char *val, struct kernel_param *kp)
9076 {
9077 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9078 }
9079
9080 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9081 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9082 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9083
9084 MODULE_LICENSE("GPL");
9085 MODULE_DESCRIPTION("MD RAID framework");
9086 MODULE_ALIAS("md");
9087 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.206039 seconds and 4 git commands to generate.