md: clean up do_md_stop
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/reboot.h>
47 #include <linux/file.h>
48 #include <linux/compat.h>
49 #include <linux/delay.h>
50 #include <linux/raid/md_p.h>
51 #include <linux/raid/md_u.h>
52 #include <linux/slab.h>
53 #include "md.h"
54 #include "bitmap.h"
55
56 #define DEBUG 0
57 #define dprintk(x...) ((void)(DEBUG && printk(x)))
58
59
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66
67 static void md_print_devices(void);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70
71 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
72
73 /*
74 * Default number of read corrections we'll attempt on an rdev
75 * before ejecting it from the array. We divide the read error
76 * count by 2 for every hour elapsed between read errors.
77 */
78 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
79 /*
80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81 * is 1000 KB/sec, so the extra system load does not show up that much.
82 * Increase it if you want to have more _guaranteed_ speed. Note that
83 * the RAID driver will use the maximum available bandwidth if the IO
84 * subsystem is idle. There is also an 'absolute maximum' reconstruction
85 * speed limit - in case reconstruction slows down your system despite
86 * idle IO detection.
87 *
88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89 * or /sys/block/mdX/md/sync_speed_{min,max}
90 */
91
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 return mddev->sync_speed_min ?
97 mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99
100 static inline int speed_max(mddev_t *mddev)
101 {
102 return mddev->sync_speed_max ?
103 mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105
106 static struct ctl_table_header *raid_table_header;
107
108 static ctl_table raid_table[] = {
109 {
110 .procname = "speed_limit_min",
111 .data = &sysctl_speed_limit_min,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = proc_dointvec,
115 },
116 {
117 .procname = "speed_limit_max",
118 .data = &sysctl_speed_limit_max,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 { }
124 };
125
126 static ctl_table raid_dir_table[] = {
127 {
128 .procname = "raid",
129 .maxlen = 0,
130 .mode = S_IRUGO|S_IXUGO,
131 .child = raid_table,
132 },
133 { }
134 };
135
136 static ctl_table raid_root_table[] = {
137 {
138 .procname = "dev",
139 .maxlen = 0,
140 .mode = 0555,
141 .child = raid_dir_table,
142 },
143 { }
144 };
145
146 static const struct block_device_operations md_fops;
147
148 static int start_readonly;
149
150 /*
151 * We have a system wide 'event count' that is incremented
152 * on any 'interesting' event, and readers of /proc/mdstat
153 * can use 'poll' or 'select' to find out when the event
154 * count increases.
155 *
156 * Events are:
157 * start array, stop array, error, add device, remove device,
158 * start build, activate spare
159 */
160 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
161 static atomic_t md_event_count;
162 void md_new_event(mddev_t *mddev)
163 {
164 atomic_inc(&md_event_count);
165 wake_up(&md_event_waiters);
166 }
167 EXPORT_SYMBOL_GPL(md_new_event);
168
169 /* Alternate version that can be called from interrupts
170 * when calling sysfs_notify isn't needed.
171 */
172 static void md_new_event_inintr(mddev_t *mddev)
173 {
174 atomic_inc(&md_event_count);
175 wake_up(&md_event_waiters);
176 }
177
178 /*
179 * Enables to iterate over all existing md arrays
180 * all_mddevs_lock protects this list.
181 */
182 static LIST_HEAD(all_mddevs);
183 static DEFINE_SPINLOCK(all_mddevs_lock);
184
185
186 /*
187 * iterates through all used mddevs in the system.
188 * We take care to grab the all_mddevs_lock whenever navigating
189 * the list, and to always hold a refcount when unlocked.
190 * Any code which breaks out of this loop while own
191 * a reference to the current mddev and must mddev_put it.
192 */
193 #define for_each_mddev(mddev,tmp) \
194 \
195 for (({ spin_lock(&all_mddevs_lock); \
196 tmp = all_mddevs.next; \
197 mddev = NULL;}); \
198 ({ if (tmp != &all_mddevs) \
199 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
200 spin_unlock(&all_mddevs_lock); \
201 if (mddev) mddev_put(mddev); \
202 mddev = list_entry(tmp, mddev_t, all_mddevs); \
203 tmp != &all_mddevs;}); \
204 ({ spin_lock(&all_mddevs_lock); \
205 tmp = tmp->next;}) \
206 )
207
208
209 /* Rather than calling directly into the personality make_request function,
210 * IO requests come here first so that we can check if the device is
211 * being suspended pending a reconfiguration.
212 * We hold a refcount over the call to ->make_request. By the time that
213 * call has finished, the bio has been linked into some internal structure
214 * and so is visible to ->quiesce(), so we don't need the refcount any more.
215 */
216 static int md_make_request(struct request_queue *q, struct bio *bio)
217 {
218 const int rw = bio_data_dir(bio);
219 mddev_t *mddev = q->queuedata;
220 int rv;
221 int cpu;
222
223 if (mddev == NULL || mddev->pers == NULL) {
224 bio_io_error(bio);
225 return 0;
226 }
227 rcu_read_lock();
228 if (mddev->suspended || mddev->barrier) {
229 DEFINE_WAIT(__wait);
230 for (;;) {
231 prepare_to_wait(&mddev->sb_wait, &__wait,
232 TASK_UNINTERRUPTIBLE);
233 if (!mddev->suspended && !mddev->barrier)
234 break;
235 rcu_read_unlock();
236 schedule();
237 rcu_read_lock();
238 }
239 finish_wait(&mddev->sb_wait, &__wait);
240 }
241 atomic_inc(&mddev->active_io);
242 rcu_read_unlock();
243
244 rv = mddev->pers->make_request(mddev, bio);
245
246 cpu = part_stat_lock();
247 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
248 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
249 bio_sectors(bio));
250 part_stat_unlock();
251
252 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
253 wake_up(&mddev->sb_wait);
254
255 return rv;
256 }
257
258 /* mddev_suspend makes sure no new requests are submitted
259 * to the device, and that any requests that have been submitted
260 * are completely handled.
261 * Once ->stop is called and completes, the module will be completely
262 * unused.
263 */
264 void mddev_suspend(mddev_t *mddev)
265 {
266 BUG_ON(mddev->suspended);
267 mddev->suspended = 1;
268 synchronize_rcu();
269 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
270 mddev->pers->quiesce(mddev, 1);
271 }
272 EXPORT_SYMBOL_GPL(mddev_suspend);
273
274 void mddev_resume(mddev_t *mddev)
275 {
276 mddev->suspended = 0;
277 wake_up(&mddev->sb_wait);
278 mddev->pers->quiesce(mddev, 0);
279 }
280 EXPORT_SYMBOL_GPL(mddev_resume);
281
282 int mddev_congested(mddev_t *mddev, int bits)
283 {
284 if (mddev->barrier)
285 return 1;
286 return mddev->suspended;
287 }
288 EXPORT_SYMBOL(mddev_congested);
289
290 /*
291 * Generic barrier handling for md
292 */
293
294 #define POST_REQUEST_BARRIER ((void*)1)
295
296 static void md_end_barrier(struct bio *bio, int err)
297 {
298 mdk_rdev_t *rdev = bio->bi_private;
299 mddev_t *mddev = rdev->mddev;
300 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
301 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
302
303 rdev_dec_pending(rdev, mddev);
304
305 if (atomic_dec_and_test(&mddev->flush_pending)) {
306 if (mddev->barrier == POST_REQUEST_BARRIER) {
307 /* This was a post-request barrier */
308 mddev->barrier = NULL;
309 wake_up(&mddev->sb_wait);
310 } else
311 /* The pre-request barrier has finished */
312 schedule_work(&mddev->barrier_work);
313 }
314 bio_put(bio);
315 }
316
317 static void submit_barriers(mddev_t *mddev)
318 {
319 mdk_rdev_t *rdev;
320
321 rcu_read_lock();
322 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
323 if (rdev->raid_disk >= 0 &&
324 !test_bit(Faulty, &rdev->flags)) {
325 /* Take two references, one is dropped
326 * when request finishes, one after
327 * we reclaim rcu_read_lock
328 */
329 struct bio *bi;
330 atomic_inc(&rdev->nr_pending);
331 atomic_inc(&rdev->nr_pending);
332 rcu_read_unlock();
333 bi = bio_alloc(GFP_KERNEL, 0);
334 bi->bi_end_io = md_end_barrier;
335 bi->bi_private = rdev;
336 bi->bi_bdev = rdev->bdev;
337 atomic_inc(&mddev->flush_pending);
338 submit_bio(WRITE_BARRIER, bi);
339 rcu_read_lock();
340 rdev_dec_pending(rdev, mddev);
341 }
342 rcu_read_unlock();
343 }
344
345 static void md_submit_barrier(struct work_struct *ws)
346 {
347 mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
348 struct bio *bio = mddev->barrier;
349
350 atomic_set(&mddev->flush_pending, 1);
351
352 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
353 bio_endio(bio, -EOPNOTSUPP);
354 else if (bio->bi_size == 0)
355 /* an empty barrier - all done */
356 bio_endio(bio, 0);
357 else {
358 bio->bi_rw &= ~(1<<BIO_RW_BARRIER);
359 if (mddev->pers->make_request(mddev, bio))
360 generic_make_request(bio);
361 mddev->barrier = POST_REQUEST_BARRIER;
362 submit_barriers(mddev);
363 }
364 if (atomic_dec_and_test(&mddev->flush_pending)) {
365 mddev->barrier = NULL;
366 wake_up(&mddev->sb_wait);
367 }
368 }
369
370 void md_barrier_request(mddev_t *mddev, struct bio *bio)
371 {
372 spin_lock_irq(&mddev->write_lock);
373 wait_event_lock_irq(mddev->sb_wait,
374 !mddev->barrier,
375 mddev->write_lock, /*nothing*/);
376 mddev->barrier = bio;
377 spin_unlock_irq(&mddev->write_lock);
378
379 atomic_set(&mddev->flush_pending, 1);
380 INIT_WORK(&mddev->barrier_work, md_submit_barrier);
381
382 submit_barriers(mddev);
383
384 if (atomic_dec_and_test(&mddev->flush_pending))
385 schedule_work(&mddev->barrier_work);
386 }
387 EXPORT_SYMBOL(md_barrier_request);
388
389 /* Support for plugging.
390 * This mirrors the plugging support in request_queue, but does not
391 * require having a whole queue
392 */
393 static void plugger_work(struct work_struct *work)
394 {
395 struct plug_handle *plug =
396 container_of(work, struct plug_handle, unplug_work);
397 plug->unplug_fn(plug);
398 }
399 static void plugger_timeout(unsigned long data)
400 {
401 struct plug_handle *plug = (void *)data;
402 kblockd_schedule_work(NULL, &plug->unplug_work);
403 }
404 void plugger_init(struct plug_handle *plug,
405 void (*unplug_fn)(struct plug_handle *))
406 {
407 plug->unplug_flag = 0;
408 plug->unplug_fn = unplug_fn;
409 init_timer(&plug->unplug_timer);
410 plug->unplug_timer.function = plugger_timeout;
411 plug->unplug_timer.data = (unsigned long)plug;
412 INIT_WORK(&plug->unplug_work, plugger_work);
413 }
414 EXPORT_SYMBOL_GPL(plugger_init);
415
416 void plugger_set_plug(struct plug_handle *plug)
417 {
418 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
419 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
420 }
421 EXPORT_SYMBOL_GPL(plugger_set_plug);
422
423 int plugger_remove_plug(struct plug_handle *plug)
424 {
425 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
426 del_timer(&plug->unplug_timer);
427 return 1;
428 } else
429 return 0;
430 }
431 EXPORT_SYMBOL_GPL(plugger_remove_plug);
432
433
434 static inline mddev_t *mddev_get(mddev_t *mddev)
435 {
436 atomic_inc(&mddev->active);
437 return mddev;
438 }
439
440 static void mddev_delayed_delete(struct work_struct *ws);
441
442 static void mddev_put(mddev_t *mddev)
443 {
444 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
445 return;
446 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
447 mddev->ctime == 0 && !mddev->hold_active) {
448 /* Array is not configured at all, and not held active,
449 * so destroy it */
450 list_del(&mddev->all_mddevs);
451 if (mddev->gendisk) {
452 /* we did a probe so need to clean up.
453 * Call schedule_work inside the spinlock
454 * so that flush_scheduled_work() after
455 * mddev_find will succeed in waiting for the
456 * work to be done.
457 */
458 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
459 schedule_work(&mddev->del_work);
460 } else
461 kfree(mddev);
462 }
463 spin_unlock(&all_mddevs_lock);
464 }
465
466 void mddev_init(mddev_t *mddev)
467 {
468 mutex_init(&mddev->open_mutex);
469 mutex_init(&mddev->reconfig_mutex);
470 mutex_init(&mddev->bitmap_info.mutex);
471 INIT_LIST_HEAD(&mddev->disks);
472 INIT_LIST_HEAD(&mddev->all_mddevs);
473 init_timer(&mddev->safemode_timer);
474 atomic_set(&mddev->active, 1);
475 atomic_set(&mddev->openers, 0);
476 atomic_set(&mddev->active_io, 0);
477 spin_lock_init(&mddev->write_lock);
478 atomic_set(&mddev->flush_pending, 0);
479 init_waitqueue_head(&mddev->sb_wait);
480 init_waitqueue_head(&mddev->recovery_wait);
481 mddev->reshape_position = MaxSector;
482 mddev->resync_min = 0;
483 mddev->resync_max = MaxSector;
484 mddev->level = LEVEL_NONE;
485 }
486 EXPORT_SYMBOL_GPL(mddev_init);
487
488 static mddev_t * mddev_find(dev_t unit)
489 {
490 mddev_t *mddev, *new = NULL;
491
492 retry:
493 spin_lock(&all_mddevs_lock);
494
495 if (unit) {
496 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
497 if (mddev->unit == unit) {
498 mddev_get(mddev);
499 spin_unlock(&all_mddevs_lock);
500 kfree(new);
501 return mddev;
502 }
503
504 if (new) {
505 list_add(&new->all_mddevs, &all_mddevs);
506 spin_unlock(&all_mddevs_lock);
507 new->hold_active = UNTIL_IOCTL;
508 return new;
509 }
510 } else if (new) {
511 /* find an unused unit number */
512 static int next_minor = 512;
513 int start = next_minor;
514 int is_free = 0;
515 int dev = 0;
516 while (!is_free) {
517 dev = MKDEV(MD_MAJOR, next_minor);
518 next_minor++;
519 if (next_minor > MINORMASK)
520 next_minor = 0;
521 if (next_minor == start) {
522 /* Oh dear, all in use. */
523 spin_unlock(&all_mddevs_lock);
524 kfree(new);
525 return NULL;
526 }
527
528 is_free = 1;
529 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
530 if (mddev->unit == dev) {
531 is_free = 0;
532 break;
533 }
534 }
535 new->unit = dev;
536 new->md_minor = MINOR(dev);
537 new->hold_active = UNTIL_STOP;
538 list_add(&new->all_mddevs, &all_mddevs);
539 spin_unlock(&all_mddevs_lock);
540 return new;
541 }
542 spin_unlock(&all_mddevs_lock);
543
544 new = kzalloc(sizeof(*new), GFP_KERNEL);
545 if (!new)
546 return NULL;
547
548 new->unit = unit;
549 if (MAJOR(unit) == MD_MAJOR)
550 new->md_minor = MINOR(unit);
551 else
552 new->md_minor = MINOR(unit) >> MdpMinorShift;
553
554 mddev_init(new);
555
556 goto retry;
557 }
558
559 static inline int mddev_lock(mddev_t * mddev)
560 {
561 return mutex_lock_interruptible(&mddev->reconfig_mutex);
562 }
563
564 static inline int mddev_is_locked(mddev_t *mddev)
565 {
566 return mutex_is_locked(&mddev->reconfig_mutex);
567 }
568
569 static inline int mddev_trylock(mddev_t * mddev)
570 {
571 return mutex_trylock(&mddev->reconfig_mutex);
572 }
573
574 static struct attribute_group md_redundancy_group;
575
576 static void mddev_unlock(mddev_t * mddev)
577 {
578 if (mddev->to_remove) {
579 /* These cannot be removed under reconfig_mutex as
580 * an access to the files will try to take reconfig_mutex
581 * while holding the file unremovable, which leads to
582 * a deadlock.
583 * So hold set sysfs_active while the remove in happeing,
584 * and anything else which might set ->to_remove or my
585 * otherwise change the sysfs namespace will fail with
586 * -EBUSY if sysfs_active is still set.
587 * We set sysfs_active under reconfig_mutex and elsewhere
588 * test it under the same mutex to ensure its correct value
589 * is seen.
590 */
591 struct attribute_group *to_remove = mddev->to_remove;
592 mddev->to_remove = NULL;
593 mddev->sysfs_active = 1;
594 mutex_unlock(&mddev->reconfig_mutex);
595
596 if (mddev->kobj.sd) {
597 if (to_remove != &md_redundancy_group)
598 sysfs_remove_group(&mddev->kobj, to_remove);
599 if (mddev->pers == NULL ||
600 mddev->pers->sync_request == NULL) {
601 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
602 if (mddev->sysfs_action)
603 sysfs_put(mddev->sysfs_action);
604 mddev->sysfs_action = NULL;
605 }
606 }
607 mddev->sysfs_active = 0;
608 } else
609 mutex_unlock(&mddev->reconfig_mutex);
610
611 md_wakeup_thread(mddev->thread);
612 }
613
614 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
615 {
616 mdk_rdev_t *rdev;
617
618 list_for_each_entry(rdev, &mddev->disks, same_set)
619 if (rdev->desc_nr == nr)
620 return rdev;
621
622 return NULL;
623 }
624
625 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
626 {
627 mdk_rdev_t *rdev;
628
629 list_for_each_entry(rdev, &mddev->disks, same_set)
630 if (rdev->bdev->bd_dev == dev)
631 return rdev;
632
633 return NULL;
634 }
635
636 static struct mdk_personality *find_pers(int level, char *clevel)
637 {
638 struct mdk_personality *pers;
639 list_for_each_entry(pers, &pers_list, list) {
640 if (level != LEVEL_NONE && pers->level == level)
641 return pers;
642 if (strcmp(pers->name, clevel)==0)
643 return pers;
644 }
645 return NULL;
646 }
647
648 /* return the offset of the super block in 512byte sectors */
649 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
650 {
651 sector_t num_sectors = bdev->bd_inode->i_size / 512;
652 return MD_NEW_SIZE_SECTORS(num_sectors);
653 }
654
655 static int alloc_disk_sb(mdk_rdev_t * rdev)
656 {
657 if (rdev->sb_page)
658 MD_BUG();
659
660 rdev->sb_page = alloc_page(GFP_KERNEL);
661 if (!rdev->sb_page) {
662 printk(KERN_ALERT "md: out of memory.\n");
663 return -ENOMEM;
664 }
665
666 return 0;
667 }
668
669 static void free_disk_sb(mdk_rdev_t * rdev)
670 {
671 if (rdev->sb_page) {
672 put_page(rdev->sb_page);
673 rdev->sb_loaded = 0;
674 rdev->sb_page = NULL;
675 rdev->sb_start = 0;
676 rdev->sectors = 0;
677 }
678 }
679
680
681 static void super_written(struct bio *bio, int error)
682 {
683 mdk_rdev_t *rdev = bio->bi_private;
684 mddev_t *mddev = rdev->mddev;
685
686 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
687 printk("md: super_written gets error=%d, uptodate=%d\n",
688 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
689 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
690 md_error(mddev, rdev);
691 }
692
693 if (atomic_dec_and_test(&mddev->pending_writes))
694 wake_up(&mddev->sb_wait);
695 bio_put(bio);
696 }
697
698 static void super_written_barrier(struct bio *bio, int error)
699 {
700 struct bio *bio2 = bio->bi_private;
701 mdk_rdev_t *rdev = bio2->bi_private;
702 mddev_t *mddev = rdev->mddev;
703
704 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
705 error == -EOPNOTSUPP) {
706 unsigned long flags;
707 /* barriers don't appear to be supported :-( */
708 set_bit(BarriersNotsupp, &rdev->flags);
709 mddev->barriers_work = 0;
710 spin_lock_irqsave(&mddev->write_lock, flags);
711 bio2->bi_next = mddev->biolist;
712 mddev->biolist = bio2;
713 spin_unlock_irqrestore(&mddev->write_lock, flags);
714 wake_up(&mddev->sb_wait);
715 bio_put(bio);
716 } else {
717 bio_put(bio2);
718 bio->bi_private = rdev;
719 super_written(bio, error);
720 }
721 }
722
723 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
724 sector_t sector, int size, struct page *page)
725 {
726 /* write first size bytes of page to sector of rdev
727 * Increment mddev->pending_writes before returning
728 * and decrement it on completion, waking up sb_wait
729 * if zero is reached.
730 * If an error occurred, call md_error
731 *
732 * As we might need to resubmit the request if BIO_RW_BARRIER
733 * causes ENOTSUPP, we allocate a spare bio...
734 */
735 struct bio *bio = bio_alloc(GFP_NOIO, 1);
736 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
737
738 bio->bi_bdev = rdev->bdev;
739 bio->bi_sector = sector;
740 bio_add_page(bio, page, size, 0);
741 bio->bi_private = rdev;
742 bio->bi_end_io = super_written;
743 bio->bi_rw = rw;
744
745 atomic_inc(&mddev->pending_writes);
746 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
747 struct bio *rbio;
748 rw |= (1<<BIO_RW_BARRIER);
749 rbio = bio_clone(bio, GFP_NOIO);
750 rbio->bi_private = bio;
751 rbio->bi_end_io = super_written_barrier;
752 submit_bio(rw, rbio);
753 } else
754 submit_bio(rw, bio);
755 }
756
757 void md_super_wait(mddev_t *mddev)
758 {
759 /* wait for all superblock writes that were scheduled to complete.
760 * if any had to be retried (due to BARRIER problems), retry them
761 */
762 DEFINE_WAIT(wq);
763 for(;;) {
764 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
765 if (atomic_read(&mddev->pending_writes)==0)
766 break;
767 while (mddev->biolist) {
768 struct bio *bio;
769 spin_lock_irq(&mddev->write_lock);
770 bio = mddev->biolist;
771 mddev->biolist = bio->bi_next ;
772 bio->bi_next = NULL;
773 spin_unlock_irq(&mddev->write_lock);
774 submit_bio(bio->bi_rw, bio);
775 }
776 schedule();
777 }
778 finish_wait(&mddev->sb_wait, &wq);
779 }
780
781 static void bi_complete(struct bio *bio, int error)
782 {
783 complete((struct completion*)bio->bi_private);
784 }
785
786 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
787 struct page *page, int rw)
788 {
789 struct bio *bio = bio_alloc(GFP_NOIO, 1);
790 struct completion event;
791 int ret;
792
793 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
794
795 bio->bi_bdev = bdev;
796 bio->bi_sector = sector;
797 bio_add_page(bio, page, size, 0);
798 init_completion(&event);
799 bio->bi_private = &event;
800 bio->bi_end_io = bi_complete;
801 submit_bio(rw, bio);
802 wait_for_completion(&event);
803
804 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
805 bio_put(bio);
806 return ret;
807 }
808 EXPORT_SYMBOL_GPL(sync_page_io);
809
810 static int read_disk_sb(mdk_rdev_t * rdev, int size)
811 {
812 char b[BDEVNAME_SIZE];
813 if (!rdev->sb_page) {
814 MD_BUG();
815 return -EINVAL;
816 }
817 if (rdev->sb_loaded)
818 return 0;
819
820
821 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
822 goto fail;
823 rdev->sb_loaded = 1;
824 return 0;
825
826 fail:
827 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
828 bdevname(rdev->bdev,b));
829 return -EINVAL;
830 }
831
832 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
833 {
834 return sb1->set_uuid0 == sb2->set_uuid0 &&
835 sb1->set_uuid1 == sb2->set_uuid1 &&
836 sb1->set_uuid2 == sb2->set_uuid2 &&
837 sb1->set_uuid3 == sb2->set_uuid3;
838 }
839
840 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
841 {
842 int ret;
843 mdp_super_t *tmp1, *tmp2;
844
845 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
846 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
847
848 if (!tmp1 || !tmp2) {
849 ret = 0;
850 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
851 goto abort;
852 }
853
854 *tmp1 = *sb1;
855 *tmp2 = *sb2;
856
857 /*
858 * nr_disks is not constant
859 */
860 tmp1->nr_disks = 0;
861 tmp2->nr_disks = 0;
862
863 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
864 abort:
865 kfree(tmp1);
866 kfree(tmp2);
867 return ret;
868 }
869
870
871 static u32 md_csum_fold(u32 csum)
872 {
873 csum = (csum & 0xffff) + (csum >> 16);
874 return (csum & 0xffff) + (csum >> 16);
875 }
876
877 static unsigned int calc_sb_csum(mdp_super_t * sb)
878 {
879 u64 newcsum = 0;
880 u32 *sb32 = (u32*)sb;
881 int i;
882 unsigned int disk_csum, csum;
883
884 disk_csum = sb->sb_csum;
885 sb->sb_csum = 0;
886
887 for (i = 0; i < MD_SB_BYTES/4 ; i++)
888 newcsum += sb32[i];
889 csum = (newcsum & 0xffffffff) + (newcsum>>32);
890
891
892 #ifdef CONFIG_ALPHA
893 /* This used to use csum_partial, which was wrong for several
894 * reasons including that different results are returned on
895 * different architectures. It isn't critical that we get exactly
896 * the same return value as before (we always csum_fold before
897 * testing, and that removes any differences). However as we
898 * know that csum_partial always returned a 16bit value on
899 * alphas, do a fold to maximise conformity to previous behaviour.
900 */
901 sb->sb_csum = md_csum_fold(disk_csum);
902 #else
903 sb->sb_csum = disk_csum;
904 #endif
905 return csum;
906 }
907
908
909 /*
910 * Handle superblock details.
911 * We want to be able to handle multiple superblock formats
912 * so we have a common interface to them all, and an array of
913 * different handlers.
914 * We rely on user-space to write the initial superblock, and support
915 * reading and updating of superblocks.
916 * Interface methods are:
917 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
918 * loads and validates a superblock on dev.
919 * if refdev != NULL, compare superblocks on both devices
920 * Return:
921 * 0 - dev has a superblock that is compatible with refdev
922 * 1 - dev has a superblock that is compatible and newer than refdev
923 * so dev should be used as the refdev in future
924 * -EINVAL superblock incompatible or invalid
925 * -othererror e.g. -EIO
926 *
927 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
928 * Verify that dev is acceptable into mddev.
929 * The first time, mddev->raid_disks will be 0, and data from
930 * dev should be merged in. Subsequent calls check that dev
931 * is new enough. Return 0 or -EINVAL
932 *
933 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
934 * Update the superblock for rdev with data in mddev
935 * This does not write to disc.
936 *
937 */
938
939 struct super_type {
940 char *name;
941 struct module *owner;
942 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
943 int minor_version);
944 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
945 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
946 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
947 sector_t num_sectors);
948 };
949
950 /*
951 * Check that the given mddev has no bitmap.
952 *
953 * This function is called from the run method of all personalities that do not
954 * support bitmaps. It prints an error message and returns non-zero if mddev
955 * has a bitmap. Otherwise, it returns 0.
956 *
957 */
958 int md_check_no_bitmap(mddev_t *mddev)
959 {
960 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
961 return 0;
962 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
963 mdname(mddev), mddev->pers->name);
964 return 1;
965 }
966 EXPORT_SYMBOL(md_check_no_bitmap);
967
968 /*
969 * load_super for 0.90.0
970 */
971 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
972 {
973 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
974 mdp_super_t *sb;
975 int ret;
976
977 /*
978 * Calculate the position of the superblock (512byte sectors),
979 * it's at the end of the disk.
980 *
981 * It also happens to be a multiple of 4Kb.
982 */
983 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
984
985 ret = read_disk_sb(rdev, MD_SB_BYTES);
986 if (ret) return ret;
987
988 ret = -EINVAL;
989
990 bdevname(rdev->bdev, b);
991 sb = (mdp_super_t*)page_address(rdev->sb_page);
992
993 if (sb->md_magic != MD_SB_MAGIC) {
994 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
995 b);
996 goto abort;
997 }
998
999 if (sb->major_version != 0 ||
1000 sb->minor_version < 90 ||
1001 sb->minor_version > 91) {
1002 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1003 sb->major_version, sb->minor_version,
1004 b);
1005 goto abort;
1006 }
1007
1008 if (sb->raid_disks <= 0)
1009 goto abort;
1010
1011 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1012 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1013 b);
1014 goto abort;
1015 }
1016
1017 rdev->preferred_minor = sb->md_minor;
1018 rdev->data_offset = 0;
1019 rdev->sb_size = MD_SB_BYTES;
1020
1021 if (sb->level == LEVEL_MULTIPATH)
1022 rdev->desc_nr = -1;
1023 else
1024 rdev->desc_nr = sb->this_disk.number;
1025
1026 if (!refdev) {
1027 ret = 1;
1028 } else {
1029 __u64 ev1, ev2;
1030 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1031 if (!uuid_equal(refsb, sb)) {
1032 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1033 b, bdevname(refdev->bdev,b2));
1034 goto abort;
1035 }
1036 if (!sb_equal(refsb, sb)) {
1037 printk(KERN_WARNING "md: %s has same UUID"
1038 " but different superblock to %s\n",
1039 b, bdevname(refdev->bdev, b2));
1040 goto abort;
1041 }
1042 ev1 = md_event(sb);
1043 ev2 = md_event(refsb);
1044 if (ev1 > ev2)
1045 ret = 1;
1046 else
1047 ret = 0;
1048 }
1049 rdev->sectors = rdev->sb_start;
1050
1051 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1052 /* "this cannot possibly happen" ... */
1053 ret = -EINVAL;
1054
1055 abort:
1056 return ret;
1057 }
1058
1059 /*
1060 * validate_super for 0.90.0
1061 */
1062 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1063 {
1064 mdp_disk_t *desc;
1065 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1066 __u64 ev1 = md_event(sb);
1067
1068 rdev->raid_disk = -1;
1069 clear_bit(Faulty, &rdev->flags);
1070 clear_bit(In_sync, &rdev->flags);
1071 clear_bit(WriteMostly, &rdev->flags);
1072 clear_bit(BarriersNotsupp, &rdev->flags);
1073
1074 if (mddev->raid_disks == 0) {
1075 mddev->major_version = 0;
1076 mddev->minor_version = sb->minor_version;
1077 mddev->patch_version = sb->patch_version;
1078 mddev->external = 0;
1079 mddev->chunk_sectors = sb->chunk_size >> 9;
1080 mddev->ctime = sb->ctime;
1081 mddev->utime = sb->utime;
1082 mddev->level = sb->level;
1083 mddev->clevel[0] = 0;
1084 mddev->layout = sb->layout;
1085 mddev->raid_disks = sb->raid_disks;
1086 mddev->dev_sectors = sb->size * 2;
1087 mddev->events = ev1;
1088 mddev->bitmap_info.offset = 0;
1089 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1090
1091 if (mddev->minor_version >= 91) {
1092 mddev->reshape_position = sb->reshape_position;
1093 mddev->delta_disks = sb->delta_disks;
1094 mddev->new_level = sb->new_level;
1095 mddev->new_layout = sb->new_layout;
1096 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097 } else {
1098 mddev->reshape_position = MaxSector;
1099 mddev->delta_disks = 0;
1100 mddev->new_level = mddev->level;
1101 mddev->new_layout = mddev->layout;
1102 mddev->new_chunk_sectors = mddev->chunk_sectors;
1103 }
1104
1105 if (sb->state & (1<<MD_SB_CLEAN))
1106 mddev->recovery_cp = MaxSector;
1107 else {
1108 if (sb->events_hi == sb->cp_events_hi &&
1109 sb->events_lo == sb->cp_events_lo) {
1110 mddev->recovery_cp = sb->recovery_cp;
1111 } else
1112 mddev->recovery_cp = 0;
1113 }
1114
1115 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1116 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1117 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1118 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1119
1120 mddev->max_disks = MD_SB_DISKS;
1121
1122 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1123 mddev->bitmap_info.file == NULL)
1124 mddev->bitmap_info.offset =
1125 mddev->bitmap_info.default_offset;
1126
1127 } else if (mddev->pers == NULL) {
1128 /* Insist on good event counter while assembling, except
1129 * for spares (which don't need an event count) */
1130 ++ev1;
1131 if (sb->disks[rdev->desc_nr].state & (
1132 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1133 if (ev1 < mddev->events)
1134 return -EINVAL;
1135 } else if (mddev->bitmap) {
1136 /* if adding to array with a bitmap, then we can accept an
1137 * older device ... but not too old.
1138 */
1139 if (ev1 < mddev->bitmap->events_cleared)
1140 return 0;
1141 } else {
1142 if (ev1 < mddev->events)
1143 /* just a hot-add of a new device, leave raid_disk at -1 */
1144 return 0;
1145 }
1146
1147 if (mddev->level != LEVEL_MULTIPATH) {
1148 desc = sb->disks + rdev->desc_nr;
1149
1150 if (desc->state & (1<<MD_DISK_FAULTY))
1151 set_bit(Faulty, &rdev->flags);
1152 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1153 desc->raid_disk < mddev->raid_disks */) {
1154 set_bit(In_sync, &rdev->flags);
1155 rdev->raid_disk = desc->raid_disk;
1156 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1157 /* active but not in sync implies recovery up to
1158 * reshape position. We don't know exactly where
1159 * that is, so set to zero for now */
1160 if (mddev->minor_version >= 91) {
1161 rdev->recovery_offset = 0;
1162 rdev->raid_disk = desc->raid_disk;
1163 }
1164 }
1165 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1166 set_bit(WriteMostly, &rdev->flags);
1167 } else /* MULTIPATH are always insync */
1168 set_bit(In_sync, &rdev->flags);
1169 return 0;
1170 }
1171
1172 /*
1173 * sync_super for 0.90.0
1174 */
1175 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1176 {
1177 mdp_super_t *sb;
1178 mdk_rdev_t *rdev2;
1179 int next_spare = mddev->raid_disks;
1180
1181
1182 /* make rdev->sb match mddev data..
1183 *
1184 * 1/ zero out disks
1185 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1186 * 3/ any empty disks < next_spare become removed
1187 *
1188 * disks[0] gets initialised to REMOVED because
1189 * we cannot be sure from other fields if it has
1190 * been initialised or not.
1191 */
1192 int i;
1193 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1194
1195 rdev->sb_size = MD_SB_BYTES;
1196
1197 sb = (mdp_super_t*)page_address(rdev->sb_page);
1198
1199 memset(sb, 0, sizeof(*sb));
1200
1201 sb->md_magic = MD_SB_MAGIC;
1202 sb->major_version = mddev->major_version;
1203 sb->patch_version = mddev->patch_version;
1204 sb->gvalid_words = 0; /* ignored */
1205 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1206 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1207 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1208 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1209
1210 sb->ctime = mddev->ctime;
1211 sb->level = mddev->level;
1212 sb->size = mddev->dev_sectors / 2;
1213 sb->raid_disks = mddev->raid_disks;
1214 sb->md_minor = mddev->md_minor;
1215 sb->not_persistent = 0;
1216 sb->utime = mddev->utime;
1217 sb->state = 0;
1218 sb->events_hi = (mddev->events>>32);
1219 sb->events_lo = (u32)mddev->events;
1220
1221 if (mddev->reshape_position == MaxSector)
1222 sb->minor_version = 90;
1223 else {
1224 sb->minor_version = 91;
1225 sb->reshape_position = mddev->reshape_position;
1226 sb->new_level = mddev->new_level;
1227 sb->delta_disks = mddev->delta_disks;
1228 sb->new_layout = mddev->new_layout;
1229 sb->new_chunk = mddev->new_chunk_sectors << 9;
1230 }
1231 mddev->minor_version = sb->minor_version;
1232 if (mddev->in_sync)
1233 {
1234 sb->recovery_cp = mddev->recovery_cp;
1235 sb->cp_events_hi = (mddev->events>>32);
1236 sb->cp_events_lo = (u32)mddev->events;
1237 if (mddev->recovery_cp == MaxSector)
1238 sb->state = (1<< MD_SB_CLEAN);
1239 } else
1240 sb->recovery_cp = 0;
1241
1242 sb->layout = mddev->layout;
1243 sb->chunk_size = mddev->chunk_sectors << 9;
1244
1245 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1246 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1247
1248 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1249 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1250 mdp_disk_t *d;
1251 int desc_nr;
1252 int is_active = test_bit(In_sync, &rdev2->flags);
1253
1254 if (rdev2->raid_disk >= 0 &&
1255 sb->minor_version >= 91)
1256 /* we have nowhere to store the recovery_offset,
1257 * but if it is not below the reshape_position,
1258 * we can piggy-back on that.
1259 */
1260 is_active = 1;
1261 if (rdev2->raid_disk < 0 ||
1262 test_bit(Faulty, &rdev2->flags))
1263 is_active = 0;
1264 if (is_active)
1265 desc_nr = rdev2->raid_disk;
1266 else
1267 desc_nr = next_spare++;
1268 rdev2->desc_nr = desc_nr;
1269 d = &sb->disks[rdev2->desc_nr];
1270 nr_disks++;
1271 d->number = rdev2->desc_nr;
1272 d->major = MAJOR(rdev2->bdev->bd_dev);
1273 d->minor = MINOR(rdev2->bdev->bd_dev);
1274 if (is_active)
1275 d->raid_disk = rdev2->raid_disk;
1276 else
1277 d->raid_disk = rdev2->desc_nr; /* compatibility */
1278 if (test_bit(Faulty, &rdev2->flags))
1279 d->state = (1<<MD_DISK_FAULTY);
1280 else if (is_active) {
1281 d->state = (1<<MD_DISK_ACTIVE);
1282 if (test_bit(In_sync, &rdev2->flags))
1283 d->state |= (1<<MD_DISK_SYNC);
1284 active++;
1285 working++;
1286 } else {
1287 d->state = 0;
1288 spare++;
1289 working++;
1290 }
1291 if (test_bit(WriteMostly, &rdev2->flags))
1292 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1293 }
1294 /* now set the "removed" and "faulty" bits on any missing devices */
1295 for (i=0 ; i < mddev->raid_disks ; i++) {
1296 mdp_disk_t *d = &sb->disks[i];
1297 if (d->state == 0 && d->number == 0) {
1298 d->number = i;
1299 d->raid_disk = i;
1300 d->state = (1<<MD_DISK_REMOVED);
1301 d->state |= (1<<MD_DISK_FAULTY);
1302 failed++;
1303 }
1304 }
1305 sb->nr_disks = nr_disks;
1306 sb->active_disks = active;
1307 sb->working_disks = working;
1308 sb->failed_disks = failed;
1309 sb->spare_disks = spare;
1310
1311 sb->this_disk = sb->disks[rdev->desc_nr];
1312 sb->sb_csum = calc_sb_csum(sb);
1313 }
1314
1315 /*
1316 * rdev_size_change for 0.90.0
1317 */
1318 static unsigned long long
1319 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1320 {
1321 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1322 return 0; /* component must fit device */
1323 if (rdev->mddev->bitmap_info.offset)
1324 return 0; /* can't move bitmap */
1325 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1326 if (!num_sectors || num_sectors > rdev->sb_start)
1327 num_sectors = rdev->sb_start;
1328 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1329 rdev->sb_page);
1330 md_super_wait(rdev->mddev);
1331 return num_sectors / 2; /* kB for sysfs */
1332 }
1333
1334
1335 /*
1336 * version 1 superblock
1337 */
1338
1339 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1340 {
1341 __le32 disk_csum;
1342 u32 csum;
1343 unsigned long long newcsum;
1344 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1345 __le32 *isuper = (__le32*)sb;
1346 int i;
1347
1348 disk_csum = sb->sb_csum;
1349 sb->sb_csum = 0;
1350 newcsum = 0;
1351 for (i=0; size>=4; size -= 4 )
1352 newcsum += le32_to_cpu(*isuper++);
1353
1354 if (size == 2)
1355 newcsum += le16_to_cpu(*(__le16*) isuper);
1356
1357 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1358 sb->sb_csum = disk_csum;
1359 return cpu_to_le32(csum);
1360 }
1361
1362 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1363 {
1364 struct mdp_superblock_1 *sb;
1365 int ret;
1366 sector_t sb_start;
1367 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1368 int bmask;
1369
1370 /*
1371 * Calculate the position of the superblock in 512byte sectors.
1372 * It is always aligned to a 4K boundary and
1373 * depeding on minor_version, it can be:
1374 * 0: At least 8K, but less than 12K, from end of device
1375 * 1: At start of device
1376 * 2: 4K from start of device.
1377 */
1378 switch(minor_version) {
1379 case 0:
1380 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1381 sb_start -= 8*2;
1382 sb_start &= ~(sector_t)(4*2-1);
1383 break;
1384 case 1:
1385 sb_start = 0;
1386 break;
1387 case 2:
1388 sb_start = 8;
1389 break;
1390 default:
1391 return -EINVAL;
1392 }
1393 rdev->sb_start = sb_start;
1394
1395 /* superblock is rarely larger than 1K, but it can be larger,
1396 * and it is safe to read 4k, so we do that
1397 */
1398 ret = read_disk_sb(rdev, 4096);
1399 if (ret) return ret;
1400
1401
1402 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1403
1404 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1405 sb->major_version != cpu_to_le32(1) ||
1406 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1407 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1408 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1409 return -EINVAL;
1410
1411 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1412 printk("md: invalid superblock checksum on %s\n",
1413 bdevname(rdev->bdev,b));
1414 return -EINVAL;
1415 }
1416 if (le64_to_cpu(sb->data_size) < 10) {
1417 printk("md: data_size too small on %s\n",
1418 bdevname(rdev->bdev,b));
1419 return -EINVAL;
1420 }
1421
1422 rdev->preferred_minor = 0xffff;
1423 rdev->data_offset = le64_to_cpu(sb->data_offset);
1424 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1425
1426 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1427 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1428 if (rdev->sb_size & bmask)
1429 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1430
1431 if (minor_version
1432 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1433 return -EINVAL;
1434
1435 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1436 rdev->desc_nr = -1;
1437 else
1438 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1439
1440 if (!refdev) {
1441 ret = 1;
1442 } else {
1443 __u64 ev1, ev2;
1444 struct mdp_superblock_1 *refsb =
1445 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1446
1447 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1448 sb->level != refsb->level ||
1449 sb->layout != refsb->layout ||
1450 sb->chunksize != refsb->chunksize) {
1451 printk(KERN_WARNING "md: %s has strangely different"
1452 " superblock to %s\n",
1453 bdevname(rdev->bdev,b),
1454 bdevname(refdev->bdev,b2));
1455 return -EINVAL;
1456 }
1457 ev1 = le64_to_cpu(sb->events);
1458 ev2 = le64_to_cpu(refsb->events);
1459
1460 if (ev1 > ev2)
1461 ret = 1;
1462 else
1463 ret = 0;
1464 }
1465 if (minor_version)
1466 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1467 le64_to_cpu(sb->data_offset);
1468 else
1469 rdev->sectors = rdev->sb_start;
1470 if (rdev->sectors < le64_to_cpu(sb->data_size))
1471 return -EINVAL;
1472 rdev->sectors = le64_to_cpu(sb->data_size);
1473 if (le64_to_cpu(sb->size) > rdev->sectors)
1474 return -EINVAL;
1475 return ret;
1476 }
1477
1478 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1479 {
1480 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1481 __u64 ev1 = le64_to_cpu(sb->events);
1482
1483 rdev->raid_disk = -1;
1484 clear_bit(Faulty, &rdev->flags);
1485 clear_bit(In_sync, &rdev->flags);
1486 clear_bit(WriteMostly, &rdev->flags);
1487 clear_bit(BarriersNotsupp, &rdev->flags);
1488
1489 if (mddev->raid_disks == 0) {
1490 mddev->major_version = 1;
1491 mddev->patch_version = 0;
1492 mddev->external = 0;
1493 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1494 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1495 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1496 mddev->level = le32_to_cpu(sb->level);
1497 mddev->clevel[0] = 0;
1498 mddev->layout = le32_to_cpu(sb->layout);
1499 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1500 mddev->dev_sectors = le64_to_cpu(sb->size);
1501 mddev->events = ev1;
1502 mddev->bitmap_info.offset = 0;
1503 mddev->bitmap_info.default_offset = 1024 >> 9;
1504
1505 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1506 memcpy(mddev->uuid, sb->set_uuid, 16);
1507
1508 mddev->max_disks = (4096-256)/2;
1509
1510 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1511 mddev->bitmap_info.file == NULL )
1512 mddev->bitmap_info.offset =
1513 (__s32)le32_to_cpu(sb->bitmap_offset);
1514
1515 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1516 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1517 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1518 mddev->new_level = le32_to_cpu(sb->new_level);
1519 mddev->new_layout = le32_to_cpu(sb->new_layout);
1520 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1521 } else {
1522 mddev->reshape_position = MaxSector;
1523 mddev->delta_disks = 0;
1524 mddev->new_level = mddev->level;
1525 mddev->new_layout = mddev->layout;
1526 mddev->new_chunk_sectors = mddev->chunk_sectors;
1527 }
1528
1529 } else if (mddev->pers == NULL) {
1530 /* Insist of good event counter while assembling, except for
1531 * spares (which don't need an event count) */
1532 ++ev1;
1533 if (rdev->desc_nr >= 0 &&
1534 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1535 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1536 if (ev1 < mddev->events)
1537 return -EINVAL;
1538 } else if (mddev->bitmap) {
1539 /* If adding to array with a bitmap, then we can accept an
1540 * older device, but not too old.
1541 */
1542 if (ev1 < mddev->bitmap->events_cleared)
1543 return 0;
1544 } else {
1545 if (ev1 < mddev->events)
1546 /* just a hot-add of a new device, leave raid_disk at -1 */
1547 return 0;
1548 }
1549 if (mddev->level != LEVEL_MULTIPATH) {
1550 int role;
1551 if (rdev->desc_nr < 0 ||
1552 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1553 role = 0xffff;
1554 rdev->desc_nr = -1;
1555 } else
1556 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1557 switch(role) {
1558 case 0xffff: /* spare */
1559 break;
1560 case 0xfffe: /* faulty */
1561 set_bit(Faulty, &rdev->flags);
1562 break;
1563 default:
1564 if ((le32_to_cpu(sb->feature_map) &
1565 MD_FEATURE_RECOVERY_OFFSET))
1566 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1567 else
1568 set_bit(In_sync, &rdev->flags);
1569 rdev->raid_disk = role;
1570 break;
1571 }
1572 if (sb->devflags & WriteMostly1)
1573 set_bit(WriteMostly, &rdev->flags);
1574 } else /* MULTIPATH are always insync */
1575 set_bit(In_sync, &rdev->flags);
1576
1577 return 0;
1578 }
1579
1580 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1581 {
1582 struct mdp_superblock_1 *sb;
1583 mdk_rdev_t *rdev2;
1584 int max_dev, i;
1585 /* make rdev->sb match mddev and rdev data. */
1586
1587 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1588
1589 sb->feature_map = 0;
1590 sb->pad0 = 0;
1591 sb->recovery_offset = cpu_to_le64(0);
1592 memset(sb->pad1, 0, sizeof(sb->pad1));
1593 memset(sb->pad2, 0, sizeof(sb->pad2));
1594 memset(sb->pad3, 0, sizeof(sb->pad3));
1595
1596 sb->utime = cpu_to_le64((__u64)mddev->utime);
1597 sb->events = cpu_to_le64(mddev->events);
1598 if (mddev->in_sync)
1599 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1600 else
1601 sb->resync_offset = cpu_to_le64(0);
1602
1603 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1604
1605 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1606 sb->size = cpu_to_le64(mddev->dev_sectors);
1607 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1608 sb->level = cpu_to_le32(mddev->level);
1609 sb->layout = cpu_to_le32(mddev->layout);
1610
1611 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1612 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1613 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1614 }
1615
1616 if (rdev->raid_disk >= 0 &&
1617 !test_bit(In_sync, &rdev->flags)) {
1618 sb->feature_map |=
1619 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1620 sb->recovery_offset =
1621 cpu_to_le64(rdev->recovery_offset);
1622 }
1623
1624 if (mddev->reshape_position != MaxSector) {
1625 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1626 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1627 sb->new_layout = cpu_to_le32(mddev->new_layout);
1628 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1629 sb->new_level = cpu_to_le32(mddev->new_level);
1630 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1631 }
1632
1633 max_dev = 0;
1634 list_for_each_entry(rdev2, &mddev->disks, same_set)
1635 if (rdev2->desc_nr+1 > max_dev)
1636 max_dev = rdev2->desc_nr+1;
1637
1638 if (max_dev > le32_to_cpu(sb->max_dev)) {
1639 int bmask;
1640 sb->max_dev = cpu_to_le32(max_dev);
1641 rdev->sb_size = max_dev * 2 + 256;
1642 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1643 if (rdev->sb_size & bmask)
1644 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1645 }
1646 for (i=0; i<max_dev;i++)
1647 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1648
1649 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1650 i = rdev2->desc_nr;
1651 if (test_bit(Faulty, &rdev2->flags))
1652 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1653 else if (test_bit(In_sync, &rdev2->flags))
1654 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1655 else if (rdev2->raid_disk >= 0)
1656 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1657 else
1658 sb->dev_roles[i] = cpu_to_le16(0xffff);
1659 }
1660
1661 sb->sb_csum = calc_sb_1_csum(sb);
1662 }
1663
1664 static unsigned long long
1665 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1666 {
1667 struct mdp_superblock_1 *sb;
1668 sector_t max_sectors;
1669 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1670 return 0; /* component must fit device */
1671 if (rdev->sb_start < rdev->data_offset) {
1672 /* minor versions 1 and 2; superblock before data */
1673 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1674 max_sectors -= rdev->data_offset;
1675 if (!num_sectors || num_sectors > max_sectors)
1676 num_sectors = max_sectors;
1677 } else if (rdev->mddev->bitmap_info.offset) {
1678 /* minor version 0 with bitmap we can't move */
1679 return 0;
1680 } else {
1681 /* minor version 0; superblock after data */
1682 sector_t sb_start;
1683 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1684 sb_start &= ~(sector_t)(4*2 - 1);
1685 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1686 if (!num_sectors || num_sectors > max_sectors)
1687 num_sectors = max_sectors;
1688 rdev->sb_start = sb_start;
1689 }
1690 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1691 sb->data_size = cpu_to_le64(num_sectors);
1692 sb->super_offset = rdev->sb_start;
1693 sb->sb_csum = calc_sb_1_csum(sb);
1694 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1695 rdev->sb_page);
1696 md_super_wait(rdev->mddev);
1697 return num_sectors / 2; /* kB for sysfs */
1698 }
1699
1700 static struct super_type super_types[] = {
1701 [0] = {
1702 .name = "0.90.0",
1703 .owner = THIS_MODULE,
1704 .load_super = super_90_load,
1705 .validate_super = super_90_validate,
1706 .sync_super = super_90_sync,
1707 .rdev_size_change = super_90_rdev_size_change,
1708 },
1709 [1] = {
1710 .name = "md-1",
1711 .owner = THIS_MODULE,
1712 .load_super = super_1_load,
1713 .validate_super = super_1_validate,
1714 .sync_super = super_1_sync,
1715 .rdev_size_change = super_1_rdev_size_change,
1716 },
1717 };
1718
1719 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1720 {
1721 mdk_rdev_t *rdev, *rdev2;
1722
1723 rcu_read_lock();
1724 rdev_for_each_rcu(rdev, mddev1)
1725 rdev_for_each_rcu(rdev2, mddev2)
1726 if (rdev->bdev->bd_contains ==
1727 rdev2->bdev->bd_contains) {
1728 rcu_read_unlock();
1729 return 1;
1730 }
1731 rcu_read_unlock();
1732 return 0;
1733 }
1734
1735 static LIST_HEAD(pending_raid_disks);
1736
1737 /*
1738 * Try to register data integrity profile for an mddev
1739 *
1740 * This is called when an array is started and after a disk has been kicked
1741 * from the array. It only succeeds if all working and active component devices
1742 * are integrity capable with matching profiles.
1743 */
1744 int md_integrity_register(mddev_t *mddev)
1745 {
1746 mdk_rdev_t *rdev, *reference = NULL;
1747
1748 if (list_empty(&mddev->disks))
1749 return 0; /* nothing to do */
1750 if (blk_get_integrity(mddev->gendisk))
1751 return 0; /* already registered */
1752 list_for_each_entry(rdev, &mddev->disks, same_set) {
1753 /* skip spares and non-functional disks */
1754 if (test_bit(Faulty, &rdev->flags))
1755 continue;
1756 if (rdev->raid_disk < 0)
1757 continue;
1758 /*
1759 * If at least one rdev is not integrity capable, we can not
1760 * enable data integrity for the md device.
1761 */
1762 if (!bdev_get_integrity(rdev->bdev))
1763 return -EINVAL;
1764 if (!reference) {
1765 /* Use the first rdev as the reference */
1766 reference = rdev;
1767 continue;
1768 }
1769 /* does this rdev's profile match the reference profile? */
1770 if (blk_integrity_compare(reference->bdev->bd_disk,
1771 rdev->bdev->bd_disk) < 0)
1772 return -EINVAL;
1773 }
1774 /*
1775 * All component devices are integrity capable and have matching
1776 * profiles, register the common profile for the md device.
1777 */
1778 if (blk_integrity_register(mddev->gendisk,
1779 bdev_get_integrity(reference->bdev)) != 0) {
1780 printk(KERN_ERR "md: failed to register integrity for %s\n",
1781 mdname(mddev));
1782 return -EINVAL;
1783 }
1784 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1785 mdname(mddev));
1786 return 0;
1787 }
1788 EXPORT_SYMBOL(md_integrity_register);
1789
1790 /* Disable data integrity if non-capable/non-matching disk is being added */
1791 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1792 {
1793 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1794 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1795
1796 if (!bi_mddev) /* nothing to do */
1797 return;
1798 if (rdev->raid_disk < 0) /* skip spares */
1799 return;
1800 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1801 rdev->bdev->bd_disk) >= 0)
1802 return;
1803 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1804 blk_integrity_unregister(mddev->gendisk);
1805 }
1806 EXPORT_SYMBOL(md_integrity_add_rdev);
1807
1808 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1809 {
1810 char b[BDEVNAME_SIZE];
1811 struct kobject *ko;
1812 char *s;
1813 int err;
1814
1815 if (rdev->mddev) {
1816 MD_BUG();
1817 return -EINVAL;
1818 }
1819
1820 /* prevent duplicates */
1821 if (find_rdev(mddev, rdev->bdev->bd_dev))
1822 return -EEXIST;
1823
1824 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1825 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1826 rdev->sectors < mddev->dev_sectors)) {
1827 if (mddev->pers) {
1828 /* Cannot change size, so fail
1829 * If mddev->level <= 0, then we don't care
1830 * about aligning sizes (e.g. linear)
1831 */
1832 if (mddev->level > 0)
1833 return -ENOSPC;
1834 } else
1835 mddev->dev_sectors = rdev->sectors;
1836 }
1837
1838 /* Verify rdev->desc_nr is unique.
1839 * If it is -1, assign a free number, else
1840 * check number is not in use
1841 */
1842 if (rdev->desc_nr < 0) {
1843 int choice = 0;
1844 if (mddev->pers) choice = mddev->raid_disks;
1845 while (find_rdev_nr(mddev, choice))
1846 choice++;
1847 rdev->desc_nr = choice;
1848 } else {
1849 if (find_rdev_nr(mddev, rdev->desc_nr))
1850 return -EBUSY;
1851 }
1852 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1853 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1854 mdname(mddev), mddev->max_disks);
1855 return -EBUSY;
1856 }
1857 bdevname(rdev->bdev,b);
1858 while ( (s=strchr(b, '/')) != NULL)
1859 *s = '!';
1860
1861 rdev->mddev = mddev;
1862 printk(KERN_INFO "md: bind<%s>\n", b);
1863
1864 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1865 goto fail;
1866
1867 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1868 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1869 /* failure here is OK */;
1870 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1871
1872 list_add_rcu(&rdev->same_set, &mddev->disks);
1873 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1874
1875 /* May as well allow recovery to be retried once */
1876 mddev->recovery_disabled = 0;
1877
1878 return 0;
1879
1880 fail:
1881 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1882 b, mdname(mddev));
1883 return err;
1884 }
1885
1886 static void md_delayed_delete(struct work_struct *ws)
1887 {
1888 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1889 kobject_del(&rdev->kobj);
1890 kobject_put(&rdev->kobj);
1891 }
1892
1893 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1894 {
1895 char b[BDEVNAME_SIZE];
1896 if (!rdev->mddev) {
1897 MD_BUG();
1898 return;
1899 }
1900 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1901 list_del_rcu(&rdev->same_set);
1902 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1903 rdev->mddev = NULL;
1904 sysfs_remove_link(&rdev->kobj, "block");
1905 sysfs_put(rdev->sysfs_state);
1906 rdev->sysfs_state = NULL;
1907 /* We need to delay this, otherwise we can deadlock when
1908 * writing to 'remove' to "dev/state". We also need
1909 * to delay it due to rcu usage.
1910 */
1911 synchronize_rcu();
1912 INIT_WORK(&rdev->del_work, md_delayed_delete);
1913 kobject_get(&rdev->kobj);
1914 schedule_work(&rdev->del_work);
1915 }
1916
1917 /*
1918 * prevent the device from being mounted, repartitioned or
1919 * otherwise reused by a RAID array (or any other kernel
1920 * subsystem), by bd_claiming the device.
1921 */
1922 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1923 {
1924 int err = 0;
1925 struct block_device *bdev;
1926 char b[BDEVNAME_SIZE];
1927
1928 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1929 if (IS_ERR(bdev)) {
1930 printk(KERN_ERR "md: could not open %s.\n",
1931 __bdevname(dev, b));
1932 return PTR_ERR(bdev);
1933 }
1934 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1935 if (err) {
1936 printk(KERN_ERR "md: could not bd_claim %s.\n",
1937 bdevname(bdev, b));
1938 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1939 return err;
1940 }
1941 if (!shared)
1942 set_bit(AllReserved, &rdev->flags);
1943 rdev->bdev = bdev;
1944 return err;
1945 }
1946
1947 static void unlock_rdev(mdk_rdev_t *rdev)
1948 {
1949 struct block_device *bdev = rdev->bdev;
1950 rdev->bdev = NULL;
1951 if (!bdev)
1952 MD_BUG();
1953 bd_release(bdev);
1954 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1955 }
1956
1957 void md_autodetect_dev(dev_t dev);
1958
1959 static void export_rdev(mdk_rdev_t * rdev)
1960 {
1961 char b[BDEVNAME_SIZE];
1962 printk(KERN_INFO "md: export_rdev(%s)\n",
1963 bdevname(rdev->bdev,b));
1964 if (rdev->mddev)
1965 MD_BUG();
1966 free_disk_sb(rdev);
1967 #ifndef MODULE
1968 if (test_bit(AutoDetected, &rdev->flags))
1969 md_autodetect_dev(rdev->bdev->bd_dev);
1970 #endif
1971 unlock_rdev(rdev);
1972 kobject_put(&rdev->kobj);
1973 }
1974
1975 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1976 {
1977 unbind_rdev_from_array(rdev);
1978 export_rdev(rdev);
1979 }
1980
1981 static void export_array(mddev_t *mddev)
1982 {
1983 mdk_rdev_t *rdev, *tmp;
1984
1985 rdev_for_each(rdev, tmp, mddev) {
1986 if (!rdev->mddev) {
1987 MD_BUG();
1988 continue;
1989 }
1990 kick_rdev_from_array(rdev);
1991 }
1992 if (!list_empty(&mddev->disks))
1993 MD_BUG();
1994 mddev->raid_disks = 0;
1995 mddev->major_version = 0;
1996 }
1997
1998 static void print_desc(mdp_disk_t *desc)
1999 {
2000 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2001 desc->major,desc->minor,desc->raid_disk,desc->state);
2002 }
2003
2004 static void print_sb_90(mdp_super_t *sb)
2005 {
2006 int i;
2007
2008 printk(KERN_INFO
2009 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2010 sb->major_version, sb->minor_version, sb->patch_version,
2011 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2012 sb->ctime);
2013 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2014 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2015 sb->md_minor, sb->layout, sb->chunk_size);
2016 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2017 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2018 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2019 sb->failed_disks, sb->spare_disks,
2020 sb->sb_csum, (unsigned long)sb->events_lo);
2021
2022 printk(KERN_INFO);
2023 for (i = 0; i < MD_SB_DISKS; i++) {
2024 mdp_disk_t *desc;
2025
2026 desc = sb->disks + i;
2027 if (desc->number || desc->major || desc->minor ||
2028 desc->raid_disk || (desc->state && (desc->state != 4))) {
2029 printk(" D %2d: ", i);
2030 print_desc(desc);
2031 }
2032 }
2033 printk(KERN_INFO "md: THIS: ");
2034 print_desc(&sb->this_disk);
2035 }
2036
2037 static void print_sb_1(struct mdp_superblock_1 *sb)
2038 {
2039 __u8 *uuid;
2040
2041 uuid = sb->set_uuid;
2042 printk(KERN_INFO
2043 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2044 "md: Name: \"%s\" CT:%llu\n",
2045 le32_to_cpu(sb->major_version),
2046 le32_to_cpu(sb->feature_map),
2047 uuid,
2048 sb->set_name,
2049 (unsigned long long)le64_to_cpu(sb->ctime)
2050 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2051
2052 uuid = sb->device_uuid;
2053 printk(KERN_INFO
2054 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2055 " RO:%llu\n"
2056 "md: Dev:%08x UUID: %pU\n"
2057 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2058 "md: (MaxDev:%u) \n",
2059 le32_to_cpu(sb->level),
2060 (unsigned long long)le64_to_cpu(sb->size),
2061 le32_to_cpu(sb->raid_disks),
2062 le32_to_cpu(sb->layout),
2063 le32_to_cpu(sb->chunksize),
2064 (unsigned long long)le64_to_cpu(sb->data_offset),
2065 (unsigned long long)le64_to_cpu(sb->data_size),
2066 (unsigned long long)le64_to_cpu(sb->super_offset),
2067 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2068 le32_to_cpu(sb->dev_number),
2069 uuid,
2070 sb->devflags,
2071 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2072 (unsigned long long)le64_to_cpu(sb->events),
2073 (unsigned long long)le64_to_cpu(sb->resync_offset),
2074 le32_to_cpu(sb->sb_csum),
2075 le32_to_cpu(sb->max_dev)
2076 );
2077 }
2078
2079 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2080 {
2081 char b[BDEVNAME_SIZE];
2082 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2083 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2084 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2085 rdev->desc_nr);
2086 if (rdev->sb_loaded) {
2087 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2088 switch (major_version) {
2089 case 0:
2090 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2091 break;
2092 case 1:
2093 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2094 break;
2095 }
2096 } else
2097 printk(KERN_INFO "md: no rdev superblock!\n");
2098 }
2099
2100 static void md_print_devices(void)
2101 {
2102 struct list_head *tmp;
2103 mdk_rdev_t *rdev;
2104 mddev_t *mddev;
2105 char b[BDEVNAME_SIZE];
2106
2107 printk("\n");
2108 printk("md: **********************************\n");
2109 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2110 printk("md: **********************************\n");
2111 for_each_mddev(mddev, tmp) {
2112
2113 if (mddev->bitmap)
2114 bitmap_print_sb(mddev->bitmap);
2115 else
2116 printk("%s: ", mdname(mddev));
2117 list_for_each_entry(rdev, &mddev->disks, same_set)
2118 printk("<%s>", bdevname(rdev->bdev,b));
2119 printk("\n");
2120
2121 list_for_each_entry(rdev, &mddev->disks, same_set)
2122 print_rdev(rdev, mddev->major_version);
2123 }
2124 printk("md: **********************************\n");
2125 printk("\n");
2126 }
2127
2128
2129 static void sync_sbs(mddev_t * mddev, int nospares)
2130 {
2131 /* Update each superblock (in-memory image), but
2132 * if we are allowed to, skip spares which already
2133 * have the right event counter, or have one earlier
2134 * (which would mean they aren't being marked as dirty
2135 * with the rest of the array)
2136 */
2137 mdk_rdev_t *rdev;
2138
2139 /* First make sure individual recovery_offsets are correct */
2140 list_for_each_entry(rdev, &mddev->disks, same_set) {
2141 if (rdev->raid_disk >= 0 &&
2142 mddev->delta_disks >= 0 &&
2143 !test_bit(In_sync, &rdev->flags) &&
2144 mddev->curr_resync_completed > rdev->recovery_offset)
2145 rdev->recovery_offset = mddev->curr_resync_completed;
2146
2147 }
2148 list_for_each_entry(rdev, &mddev->disks, same_set) {
2149 if (rdev->sb_events == mddev->events ||
2150 (nospares &&
2151 rdev->raid_disk < 0 &&
2152 rdev->sb_events+1 == mddev->events)) {
2153 /* Don't update this superblock */
2154 rdev->sb_loaded = 2;
2155 } else {
2156 super_types[mddev->major_version].
2157 sync_super(mddev, rdev);
2158 rdev->sb_loaded = 1;
2159 }
2160 }
2161 }
2162
2163 static void md_update_sb(mddev_t * mddev, int force_change)
2164 {
2165 mdk_rdev_t *rdev;
2166 int sync_req;
2167 int nospares = 0;
2168
2169 mddev->utime = get_seconds();
2170 if (mddev->external)
2171 return;
2172 repeat:
2173 spin_lock_irq(&mddev->write_lock);
2174
2175 set_bit(MD_CHANGE_PENDING, &mddev->flags);
2176 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2177 force_change = 1;
2178 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2179 /* just a clean<-> dirty transition, possibly leave spares alone,
2180 * though if events isn't the right even/odd, we will have to do
2181 * spares after all
2182 */
2183 nospares = 1;
2184 if (force_change)
2185 nospares = 0;
2186 if (mddev->degraded)
2187 /* If the array is degraded, then skipping spares is both
2188 * dangerous and fairly pointless.
2189 * Dangerous because a device that was removed from the array
2190 * might have a event_count that still looks up-to-date,
2191 * so it can be re-added without a resync.
2192 * Pointless because if there are any spares to skip,
2193 * then a recovery will happen and soon that array won't
2194 * be degraded any more and the spare can go back to sleep then.
2195 */
2196 nospares = 0;
2197
2198 sync_req = mddev->in_sync;
2199
2200 /* If this is just a dirty<->clean transition, and the array is clean
2201 * and 'events' is odd, we can roll back to the previous clean state */
2202 if (nospares
2203 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2204 && mddev->can_decrease_events
2205 && mddev->events != 1) {
2206 mddev->events--;
2207 mddev->can_decrease_events = 0;
2208 } else {
2209 /* otherwise we have to go forward and ... */
2210 mddev->events ++;
2211 mddev->can_decrease_events = nospares;
2212 }
2213
2214 if (!mddev->events) {
2215 /*
2216 * oops, this 64-bit counter should never wrap.
2217 * Either we are in around ~1 trillion A.C., assuming
2218 * 1 reboot per second, or we have a bug:
2219 */
2220 MD_BUG();
2221 mddev->events --;
2222 }
2223
2224 /*
2225 * do not write anything to disk if using
2226 * nonpersistent superblocks
2227 */
2228 if (!mddev->persistent) {
2229 if (!mddev->external)
2230 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2231
2232 spin_unlock_irq(&mddev->write_lock);
2233 wake_up(&mddev->sb_wait);
2234 return;
2235 }
2236 sync_sbs(mddev, nospares);
2237 spin_unlock_irq(&mddev->write_lock);
2238
2239 dprintk(KERN_INFO
2240 "md: updating %s RAID superblock on device (in sync %d)\n",
2241 mdname(mddev),mddev->in_sync);
2242
2243 bitmap_update_sb(mddev->bitmap);
2244 list_for_each_entry(rdev, &mddev->disks, same_set) {
2245 char b[BDEVNAME_SIZE];
2246 dprintk(KERN_INFO "md: ");
2247 if (rdev->sb_loaded != 1)
2248 continue; /* no noise on spare devices */
2249 if (test_bit(Faulty, &rdev->flags))
2250 dprintk("(skipping faulty ");
2251
2252 dprintk("%s ", bdevname(rdev->bdev,b));
2253 if (!test_bit(Faulty, &rdev->flags)) {
2254 md_super_write(mddev,rdev,
2255 rdev->sb_start, rdev->sb_size,
2256 rdev->sb_page);
2257 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2258 bdevname(rdev->bdev,b),
2259 (unsigned long long)rdev->sb_start);
2260 rdev->sb_events = mddev->events;
2261
2262 } else
2263 dprintk(")\n");
2264 if (mddev->level == LEVEL_MULTIPATH)
2265 /* only need to write one superblock... */
2266 break;
2267 }
2268 md_super_wait(mddev);
2269 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2270
2271 spin_lock_irq(&mddev->write_lock);
2272 if (mddev->in_sync != sync_req ||
2273 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2274 /* have to write it out again */
2275 spin_unlock_irq(&mddev->write_lock);
2276 goto repeat;
2277 }
2278 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2279 spin_unlock_irq(&mddev->write_lock);
2280 wake_up(&mddev->sb_wait);
2281 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2282 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2283
2284 }
2285
2286 /* words written to sysfs files may, or may not, be \n terminated.
2287 * We want to accept with case. For this we use cmd_match.
2288 */
2289 static int cmd_match(const char *cmd, const char *str)
2290 {
2291 /* See if cmd, written into a sysfs file, matches
2292 * str. They must either be the same, or cmd can
2293 * have a trailing newline
2294 */
2295 while (*cmd && *str && *cmd == *str) {
2296 cmd++;
2297 str++;
2298 }
2299 if (*cmd == '\n')
2300 cmd++;
2301 if (*str || *cmd)
2302 return 0;
2303 return 1;
2304 }
2305
2306 struct rdev_sysfs_entry {
2307 struct attribute attr;
2308 ssize_t (*show)(mdk_rdev_t *, char *);
2309 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2310 };
2311
2312 static ssize_t
2313 state_show(mdk_rdev_t *rdev, char *page)
2314 {
2315 char *sep = "";
2316 size_t len = 0;
2317
2318 if (test_bit(Faulty, &rdev->flags)) {
2319 len+= sprintf(page+len, "%sfaulty",sep);
2320 sep = ",";
2321 }
2322 if (test_bit(In_sync, &rdev->flags)) {
2323 len += sprintf(page+len, "%sin_sync",sep);
2324 sep = ",";
2325 }
2326 if (test_bit(WriteMostly, &rdev->flags)) {
2327 len += sprintf(page+len, "%swrite_mostly",sep);
2328 sep = ",";
2329 }
2330 if (test_bit(Blocked, &rdev->flags)) {
2331 len += sprintf(page+len, "%sblocked", sep);
2332 sep = ",";
2333 }
2334 if (!test_bit(Faulty, &rdev->flags) &&
2335 !test_bit(In_sync, &rdev->flags)) {
2336 len += sprintf(page+len, "%sspare", sep);
2337 sep = ",";
2338 }
2339 return len+sprintf(page+len, "\n");
2340 }
2341
2342 static ssize_t
2343 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2344 {
2345 /* can write
2346 * faulty - simulates and error
2347 * remove - disconnects the device
2348 * writemostly - sets write_mostly
2349 * -writemostly - clears write_mostly
2350 * blocked - sets the Blocked flag
2351 * -blocked - clears the Blocked flag
2352 * insync - sets Insync providing device isn't active
2353 */
2354 int err = -EINVAL;
2355 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2356 md_error(rdev->mddev, rdev);
2357 err = 0;
2358 } else if (cmd_match(buf, "remove")) {
2359 if (rdev->raid_disk >= 0)
2360 err = -EBUSY;
2361 else {
2362 mddev_t *mddev = rdev->mddev;
2363 kick_rdev_from_array(rdev);
2364 if (mddev->pers)
2365 md_update_sb(mddev, 1);
2366 md_new_event(mddev);
2367 err = 0;
2368 }
2369 } else if (cmd_match(buf, "writemostly")) {
2370 set_bit(WriteMostly, &rdev->flags);
2371 err = 0;
2372 } else if (cmd_match(buf, "-writemostly")) {
2373 clear_bit(WriteMostly, &rdev->flags);
2374 err = 0;
2375 } else if (cmd_match(buf, "blocked")) {
2376 set_bit(Blocked, &rdev->flags);
2377 err = 0;
2378 } else if (cmd_match(buf, "-blocked")) {
2379 clear_bit(Blocked, &rdev->flags);
2380 wake_up(&rdev->blocked_wait);
2381 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2382 md_wakeup_thread(rdev->mddev->thread);
2383
2384 err = 0;
2385 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2386 set_bit(In_sync, &rdev->flags);
2387 err = 0;
2388 }
2389 if (!err)
2390 sysfs_notify_dirent_safe(rdev->sysfs_state);
2391 return err ? err : len;
2392 }
2393 static struct rdev_sysfs_entry rdev_state =
2394 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2395
2396 static ssize_t
2397 errors_show(mdk_rdev_t *rdev, char *page)
2398 {
2399 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2400 }
2401
2402 static ssize_t
2403 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2404 {
2405 char *e;
2406 unsigned long n = simple_strtoul(buf, &e, 10);
2407 if (*buf && (*e == 0 || *e == '\n')) {
2408 atomic_set(&rdev->corrected_errors, n);
2409 return len;
2410 }
2411 return -EINVAL;
2412 }
2413 static struct rdev_sysfs_entry rdev_errors =
2414 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2415
2416 static ssize_t
2417 slot_show(mdk_rdev_t *rdev, char *page)
2418 {
2419 if (rdev->raid_disk < 0)
2420 return sprintf(page, "none\n");
2421 else
2422 return sprintf(page, "%d\n", rdev->raid_disk);
2423 }
2424
2425 static ssize_t
2426 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2427 {
2428 char *e;
2429 int err;
2430 char nm[20];
2431 int slot = simple_strtoul(buf, &e, 10);
2432 if (strncmp(buf, "none", 4)==0)
2433 slot = -1;
2434 else if (e==buf || (*e && *e!= '\n'))
2435 return -EINVAL;
2436 if (rdev->mddev->pers && slot == -1) {
2437 /* Setting 'slot' on an active array requires also
2438 * updating the 'rd%d' link, and communicating
2439 * with the personality with ->hot_*_disk.
2440 * For now we only support removing
2441 * failed/spare devices. This normally happens automatically,
2442 * but not when the metadata is externally managed.
2443 */
2444 if (rdev->raid_disk == -1)
2445 return -EEXIST;
2446 /* personality does all needed checks */
2447 if (rdev->mddev->pers->hot_add_disk == NULL)
2448 return -EINVAL;
2449 err = rdev->mddev->pers->
2450 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2451 if (err)
2452 return err;
2453 sprintf(nm, "rd%d", rdev->raid_disk);
2454 sysfs_remove_link(&rdev->mddev->kobj, nm);
2455 rdev->raid_disk = -1;
2456 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2457 md_wakeup_thread(rdev->mddev->thread);
2458 } else if (rdev->mddev->pers) {
2459 mdk_rdev_t *rdev2;
2460 /* Activating a spare .. or possibly reactivating
2461 * if we ever get bitmaps working here.
2462 */
2463
2464 if (rdev->raid_disk != -1)
2465 return -EBUSY;
2466
2467 if (rdev->mddev->pers->hot_add_disk == NULL)
2468 return -EINVAL;
2469
2470 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2471 if (rdev2->raid_disk == slot)
2472 return -EEXIST;
2473
2474 rdev->raid_disk = slot;
2475 if (test_bit(In_sync, &rdev->flags))
2476 rdev->saved_raid_disk = slot;
2477 else
2478 rdev->saved_raid_disk = -1;
2479 err = rdev->mddev->pers->
2480 hot_add_disk(rdev->mddev, rdev);
2481 if (err) {
2482 rdev->raid_disk = -1;
2483 return err;
2484 } else
2485 sysfs_notify_dirent_safe(rdev->sysfs_state);
2486 sprintf(nm, "rd%d", rdev->raid_disk);
2487 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2488 /* failure here is OK */;
2489 /* don't wakeup anyone, leave that to userspace. */
2490 } else {
2491 if (slot >= rdev->mddev->raid_disks)
2492 return -ENOSPC;
2493 rdev->raid_disk = slot;
2494 /* assume it is working */
2495 clear_bit(Faulty, &rdev->flags);
2496 clear_bit(WriteMostly, &rdev->flags);
2497 set_bit(In_sync, &rdev->flags);
2498 sysfs_notify_dirent_safe(rdev->sysfs_state);
2499 }
2500 return len;
2501 }
2502
2503
2504 static struct rdev_sysfs_entry rdev_slot =
2505 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2506
2507 static ssize_t
2508 offset_show(mdk_rdev_t *rdev, char *page)
2509 {
2510 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2511 }
2512
2513 static ssize_t
2514 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2515 {
2516 char *e;
2517 unsigned long long offset = simple_strtoull(buf, &e, 10);
2518 if (e==buf || (*e && *e != '\n'))
2519 return -EINVAL;
2520 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2521 return -EBUSY;
2522 if (rdev->sectors && rdev->mddev->external)
2523 /* Must set offset before size, so overlap checks
2524 * can be sane */
2525 return -EBUSY;
2526 rdev->data_offset = offset;
2527 return len;
2528 }
2529
2530 static struct rdev_sysfs_entry rdev_offset =
2531 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2532
2533 static ssize_t
2534 rdev_size_show(mdk_rdev_t *rdev, char *page)
2535 {
2536 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2537 }
2538
2539 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2540 {
2541 /* check if two start/length pairs overlap */
2542 if (s1+l1 <= s2)
2543 return 0;
2544 if (s2+l2 <= s1)
2545 return 0;
2546 return 1;
2547 }
2548
2549 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2550 {
2551 unsigned long long blocks;
2552 sector_t new;
2553
2554 if (strict_strtoull(buf, 10, &blocks) < 0)
2555 return -EINVAL;
2556
2557 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2558 return -EINVAL; /* sector conversion overflow */
2559
2560 new = blocks * 2;
2561 if (new != blocks * 2)
2562 return -EINVAL; /* unsigned long long to sector_t overflow */
2563
2564 *sectors = new;
2565 return 0;
2566 }
2567
2568 static ssize_t
2569 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2570 {
2571 mddev_t *my_mddev = rdev->mddev;
2572 sector_t oldsectors = rdev->sectors;
2573 sector_t sectors;
2574
2575 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2576 return -EINVAL;
2577 if (my_mddev->pers && rdev->raid_disk >= 0) {
2578 if (my_mddev->persistent) {
2579 sectors = super_types[my_mddev->major_version].
2580 rdev_size_change(rdev, sectors);
2581 if (!sectors)
2582 return -EBUSY;
2583 } else if (!sectors)
2584 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2585 rdev->data_offset;
2586 }
2587 if (sectors < my_mddev->dev_sectors)
2588 return -EINVAL; /* component must fit device */
2589
2590 rdev->sectors = sectors;
2591 if (sectors > oldsectors && my_mddev->external) {
2592 /* need to check that all other rdevs with the same ->bdev
2593 * do not overlap. We need to unlock the mddev to avoid
2594 * a deadlock. We have already changed rdev->sectors, and if
2595 * we have to change it back, we will have the lock again.
2596 */
2597 mddev_t *mddev;
2598 int overlap = 0;
2599 struct list_head *tmp;
2600
2601 mddev_unlock(my_mddev);
2602 for_each_mddev(mddev, tmp) {
2603 mdk_rdev_t *rdev2;
2604
2605 mddev_lock(mddev);
2606 list_for_each_entry(rdev2, &mddev->disks, same_set)
2607 if (test_bit(AllReserved, &rdev2->flags) ||
2608 (rdev->bdev == rdev2->bdev &&
2609 rdev != rdev2 &&
2610 overlaps(rdev->data_offset, rdev->sectors,
2611 rdev2->data_offset,
2612 rdev2->sectors))) {
2613 overlap = 1;
2614 break;
2615 }
2616 mddev_unlock(mddev);
2617 if (overlap) {
2618 mddev_put(mddev);
2619 break;
2620 }
2621 }
2622 mddev_lock(my_mddev);
2623 if (overlap) {
2624 /* Someone else could have slipped in a size
2625 * change here, but doing so is just silly.
2626 * We put oldsectors back because we *know* it is
2627 * safe, and trust userspace not to race with
2628 * itself
2629 */
2630 rdev->sectors = oldsectors;
2631 return -EBUSY;
2632 }
2633 }
2634 return len;
2635 }
2636
2637 static struct rdev_sysfs_entry rdev_size =
2638 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2639
2640
2641 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2642 {
2643 unsigned long long recovery_start = rdev->recovery_offset;
2644
2645 if (test_bit(In_sync, &rdev->flags) ||
2646 recovery_start == MaxSector)
2647 return sprintf(page, "none\n");
2648
2649 return sprintf(page, "%llu\n", recovery_start);
2650 }
2651
2652 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2653 {
2654 unsigned long long recovery_start;
2655
2656 if (cmd_match(buf, "none"))
2657 recovery_start = MaxSector;
2658 else if (strict_strtoull(buf, 10, &recovery_start))
2659 return -EINVAL;
2660
2661 if (rdev->mddev->pers &&
2662 rdev->raid_disk >= 0)
2663 return -EBUSY;
2664
2665 rdev->recovery_offset = recovery_start;
2666 if (recovery_start == MaxSector)
2667 set_bit(In_sync, &rdev->flags);
2668 else
2669 clear_bit(In_sync, &rdev->flags);
2670 return len;
2671 }
2672
2673 static struct rdev_sysfs_entry rdev_recovery_start =
2674 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2675
2676 static struct attribute *rdev_default_attrs[] = {
2677 &rdev_state.attr,
2678 &rdev_errors.attr,
2679 &rdev_slot.attr,
2680 &rdev_offset.attr,
2681 &rdev_size.attr,
2682 &rdev_recovery_start.attr,
2683 NULL,
2684 };
2685 static ssize_t
2686 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2687 {
2688 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2689 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2690 mddev_t *mddev = rdev->mddev;
2691 ssize_t rv;
2692
2693 if (!entry->show)
2694 return -EIO;
2695
2696 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2697 if (!rv) {
2698 if (rdev->mddev == NULL)
2699 rv = -EBUSY;
2700 else
2701 rv = entry->show(rdev, page);
2702 mddev_unlock(mddev);
2703 }
2704 return rv;
2705 }
2706
2707 static ssize_t
2708 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2709 const char *page, size_t length)
2710 {
2711 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2712 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2713 ssize_t rv;
2714 mddev_t *mddev = rdev->mddev;
2715
2716 if (!entry->store)
2717 return -EIO;
2718 if (!capable(CAP_SYS_ADMIN))
2719 return -EACCES;
2720 rv = mddev ? mddev_lock(mddev): -EBUSY;
2721 if (!rv) {
2722 if (rdev->mddev == NULL)
2723 rv = -EBUSY;
2724 else
2725 rv = entry->store(rdev, page, length);
2726 mddev_unlock(mddev);
2727 }
2728 return rv;
2729 }
2730
2731 static void rdev_free(struct kobject *ko)
2732 {
2733 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2734 kfree(rdev);
2735 }
2736 static const struct sysfs_ops rdev_sysfs_ops = {
2737 .show = rdev_attr_show,
2738 .store = rdev_attr_store,
2739 };
2740 static struct kobj_type rdev_ktype = {
2741 .release = rdev_free,
2742 .sysfs_ops = &rdev_sysfs_ops,
2743 .default_attrs = rdev_default_attrs,
2744 };
2745
2746 void md_rdev_init(mdk_rdev_t *rdev)
2747 {
2748 rdev->desc_nr = -1;
2749 rdev->saved_raid_disk = -1;
2750 rdev->raid_disk = -1;
2751 rdev->flags = 0;
2752 rdev->data_offset = 0;
2753 rdev->sb_events = 0;
2754 rdev->last_read_error.tv_sec = 0;
2755 rdev->last_read_error.tv_nsec = 0;
2756 atomic_set(&rdev->nr_pending, 0);
2757 atomic_set(&rdev->read_errors, 0);
2758 atomic_set(&rdev->corrected_errors, 0);
2759
2760 INIT_LIST_HEAD(&rdev->same_set);
2761 init_waitqueue_head(&rdev->blocked_wait);
2762 }
2763 EXPORT_SYMBOL_GPL(md_rdev_init);
2764 /*
2765 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2766 *
2767 * mark the device faulty if:
2768 *
2769 * - the device is nonexistent (zero size)
2770 * - the device has no valid superblock
2771 *
2772 * a faulty rdev _never_ has rdev->sb set.
2773 */
2774 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2775 {
2776 char b[BDEVNAME_SIZE];
2777 int err;
2778 mdk_rdev_t *rdev;
2779 sector_t size;
2780
2781 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2782 if (!rdev) {
2783 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2784 return ERR_PTR(-ENOMEM);
2785 }
2786
2787 md_rdev_init(rdev);
2788 if ((err = alloc_disk_sb(rdev)))
2789 goto abort_free;
2790
2791 err = lock_rdev(rdev, newdev, super_format == -2);
2792 if (err)
2793 goto abort_free;
2794
2795 kobject_init(&rdev->kobj, &rdev_ktype);
2796
2797 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2798 if (!size) {
2799 printk(KERN_WARNING
2800 "md: %s has zero or unknown size, marking faulty!\n",
2801 bdevname(rdev->bdev,b));
2802 err = -EINVAL;
2803 goto abort_free;
2804 }
2805
2806 if (super_format >= 0) {
2807 err = super_types[super_format].
2808 load_super(rdev, NULL, super_minor);
2809 if (err == -EINVAL) {
2810 printk(KERN_WARNING
2811 "md: %s does not have a valid v%d.%d "
2812 "superblock, not importing!\n",
2813 bdevname(rdev->bdev,b),
2814 super_format, super_minor);
2815 goto abort_free;
2816 }
2817 if (err < 0) {
2818 printk(KERN_WARNING
2819 "md: could not read %s's sb, not importing!\n",
2820 bdevname(rdev->bdev,b));
2821 goto abort_free;
2822 }
2823 }
2824
2825 return rdev;
2826
2827 abort_free:
2828 if (rdev->sb_page) {
2829 if (rdev->bdev)
2830 unlock_rdev(rdev);
2831 free_disk_sb(rdev);
2832 }
2833 kfree(rdev);
2834 return ERR_PTR(err);
2835 }
2836
2837 /*
2838 * Check a full RAID array for plausibility
2839 */
2840
2841
2842 static void analyze_sbs(mddev_t * mddev)
2843 {
2844 int i;
2845 mdk_rdev_t *rdev, *freshest, *tmp;
2846 char b[BDEVNAME_SIZE];
2847
2848 freshest = NULL;
2849 rdev_for_each(rdev, tmp, mddev)
2850 switch (super_types[mddev->major_version].
2851 load_super(rdev, freshest, mddev->minor_version)) {
2852 case 1:
2853 freshest = rdev;
2854 break;
2855 case 0:
2856 break;
2857 default:
2858 printk( KERN_ERR \
2859 "md: fatal superblock inconsistency in %s"
2860 " -- removing from array\n",
2861 bdevname(rdev->bdev,b));
2862 kick_rdev_from_array(rdev);
2863 }
2864
2865
2866 super_types[mddev->major_version].
2867 validate_super(mddev, freshest);
2868
2869 i = 0;
2870 rdev_for_each(rdev, tmp, mddev) {
2871 if (mddev->max_disks &&
2872 (rdev->desc_nr >= mddev->max_disks ||
2873 i > mddev->max_disks)) {
2874 printk(KERN_WARNING
2875 "md: %s: %s: only %d devices permitted\n",
2876 mdname(mddev), bdevname(rdev->bdev, b),
2877 mddev->max_disks);
2878 kick_rdev_from_array(rdev);
2879 continue;
2880 }
2881 if (rdev != freshest)
2882 if (super_types[mddev->major_version].
2883 validate_super(mddev, rdev)) {
2884 printk(KERN_WARNING "md: kicking non-fresh %s"
2885 " from array!\n",
2886 bdevname(rdev->bdev,b));
2887 kick_rdev_from_array(rdev);
2888 continue;
2889 }
2890 if (mddev->level == LEVEL_MULTIPATH) {
2891 rdev->desc_nr = i++;
2892 rdev->raid_disk = rdev->desc_nr;
2893 set_bit(In_sync, &rdev->flags);
2894 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2895 rdev->raid_disk = -1;
2896 clear_bit(In_sync, &rdev->flags);
2897 }
2898 }
2899 }
2900
2901 /* Read a fixed-point number.
2902 * Numbers in sysfs attributes should be in "standard" units where
2903 * possible, so time should be in seconds.
2904 * However we internally use a a much smaller unit such as
2905 * milliseconds or jiffies.
2906 * This function takes a decimal number with a possible fractional
2907 * component, and produces an integer which is the result of
2908 * multiplying that number by 10^'scale'.
2909 * all without any floating-point arithmetic.
2910 */
2911 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2912 {
2913 unsigned long result = 0;
2914 long decimals = -1;
2915 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2916 if (*cp == '.')
2917 decimals = 0;
2918 else if (decimals < scale) {
2919 unsigned int value;
2920 value = *cp - '0';
2921 result = result * 10 + value;
2922 if (decimals >= 0)
2923 decimals++;
2924 }
2925 cp++;
2926 }
2927 if (*cp == '\n')
2928 cp++;
2929 if (*cp)
2930 return -EINVAL;
2931 if (decimals < 0)
2932 decimals = 0;
2933 while (decimals < scale) {
2934 result *= 10;
2935 decimals ++;
2936 }
2937 *res = result;
2938 return 0;
2939 }
2940
2941
2942 static void md_safemode_timeout(unsigned long data);
2943
2944 static ssize_t
2945 safe_delay_show(mddev_t *mddev, char *page)
2946 {
2947 int msec = (mddev->safemode_delay*1000)/HZ;
2948 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2949 }
2950 static ssize_t
2951 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2952 {
2953 unsigned long msec;
2954
2955 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2956 return -EINVAL;
2957 if (msec == 0)
2958 mddev->safemode_delay = 0;
2959 else {
2960 unsigned long old_delay = mddev->safemode_delay;
2961 mddev->safemode_delay = (msec*HZ)/1000;
2962 if (mddev->safemode_delay == 0)
2963 mddev->safemode_delay = 1;
2964 if (mddev->safemode_delay < old_delay)
2965 md_safemode_timeout((unsigned long)mddev);
2966 }
2967 return len;
2968 }
2969 static struct md_sysfs_entry md_safe_delay =
2970 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2971
2972 static ssize_t
2973 level_show(mddev_t *mddev, char *page)
2974 {
2975 struct mdk_personality *p = mddev->pers;
2976 if (p)
2977 return sprintf(page, "%s\n", p->name);
2978 else if (mddev->clevel[0])
2979 return sprintf(page, "%s\n", mddev->clevel);
2980 else if (mddev->level != LEVEL_NONE)
2981 return sprintf(page, "%d\n", mddev->level);
2982 else
2983 return 0;
2984 }
2985
2986 static ssize_t
2987 level_store(mddev_t *mddev, const char *buf, size_t len)
2988 {
2989 char clevel[16];
2990 ssize_t rv = len;
2991 struct mdk_personality *pers;
2992 long level;
2993 void *priv;
2994 mdk_rdev_t *rdev;
2995
2996 if (mddev->pers == NULL) {
2997 if (len == 0)
2998 return 0;
2999 if (len >= sizeof(mddev->clevel))
3000 return -ENOSPC;
3001 strncpy(mddev->clevel, buf, len);
3002 if (mddev->clevel[len-1] == '\n')
3003 len--;
3004 mddev->clevel[len] = 0;
3005 mddev->level = LEVEL_NONE;
3006 return rv;
3007 }
3008
3009 /* request to change the personality. Need to ensure:
3010 * - array is not engaged in resync/recovery/reshape
3011 * - old personality can be suspended
3012 * - new personality will access other array.
3013 */
3014
3015 if (mddev->sync_thread ||
3016 mddev->reshape_position != MaxSector ||
3017 mddev->sysfs_active)
3018 return -EBUSY;
3019
3020 if (!mddev->pers->quiesce) {
3021 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3022 mdname(mddev), mddev->pers->name);
3023 return -EINVAL;
3024 }
3025
3026 /* Now find the new personality */
3027 if (len == 0 || len >= sizeof(clevel))
3028 return -EINVAL;
3029 strncpy(clevel, buf, len);
3030 if (clevel[len-1] == '\n')
3031 len--;
3032 clevel[len] = 0;
3033 if (strict_strtol(clevel, 10, &level))
3034 level = LEVEL_NONE;
3035
3036 if (request_module("md-%s", clevel) != 0)
3037 request_module("md-level-%s", clevel);
3038 spin_lock(&pers_lock);
3039 pers = find_pers(level, clevel);
3040 if (!pers || !try_module_get(pers->owner)) {
3041 spin_unlock(&pers_lock);
3042 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3043 return -EINVAL;
3044 }
3045 spin_unlock(&pers_lock);
3046
3047 if (pers == mddev->pers) {
3048 /* Nothing to do! */
3049 module_put(pers->owner);
3050 return rv;
3051 }
3052 if (!pers->takeover) {
3053 module_put(pers->owner);
3054 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3055 mdname(mddev), clevel);
3056 return -EINVAL;
3057 }
3058
3059 list_for_each_entry(rdev, &mddev->disks, same_set)
3060 rdev->new_raid_disk = rdev->raid_disk;
3061
3062 /* ->takeover must set new_* and/or delta_disks
3063 * if it succeeds, and may set them when it fails.
3064 */
3065 priv = pers->takeover(mddev);
3066 if (IS_ERR(priv)) {
3067 mddev->new_level = mddev->level;
3068 mddev->new_layout = mddev->layout;
3069 mddev->new_chunk_sectors = mddev->chunk_sectors;
3070 mddev->raid_disks -= mddev->delta_disks;
3071 mddev->delta_disks = 0;
3072 module_put(pers->owner);
3073 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3074 mdname(mddev), clevel);
3075 return PTR_ERR(priv);
3076 }
3077
3078 /* Looks like we have a winner */
3079 mddev_suspend(mddev);
3080 mddev->pers->stop(mddev);
3081
3082 if (mddev->pers->sync_request == NULL &&
3083 pers->sync_request != NULL) {
3084 /* need to add the md_redundancy_group */
3085 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3086 printk(KERN_WARNING
3087 "md: cannot register extra attributes for %s\n",
3088 mdname(mddev));
3089 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3090 }
3091 if (mddev->pers->sync_request != NULL &&
3092 pers->sync_request == NULL) {
3093 /* need to remove the md_redundancy_group */
3094 if (mddev->to_remove == NULL)
3095 mddev->to_remove = &md_redundancy_group;
3096 }
3097
3098 if (mddev->pers->sync_request == NULL &&
3099 mddev->external) {
3100 /* We are converting from a no-redundancy array
3101 * to a redundancy array and metadata is managed
3102 * externally so we need to be sure that writes
3103 * won't block due to a need to transition
3104 * clean->dirty
3105 * until external management is started.
3106 */
3107 mddev->in_sync = 0;
3108 mddev->safemode_delay = 0;
3109 mddev->safemode = 0;
3110 }
3111
3112 list_for_each_entry(rdev, &mddev->disks, same_set) {
3113 char nm[20];
3114 if (rdev->raid_disk < 0)
3115 continue;
3116 if (rdev->new_raid_disk > mddev->raid_disks)
3117 rdev->new_raid_disk = -1;
3118 if (rdev->new_raid_disk == rdev->raid_disk)
3119 continue;
3120 sprintf(nm, "rd%d", rdev->raid_disk);
3121 sysfs_remove_link(&mddev->kobj, nm);
3122 }
3123 list_for_each_entry(rdev, &mddev->disks, same_set) {
3124 if (rdev->raid_disk < 0)
3125 continue;
3126 if (rdev->new_raid_disk == rdev->raid_disk)
3127 continue;
3128 rdev->raid_disk = rdev->new_raid_disk;
3129 if (rdev->raid_disk < 0)
3130 clear_bit(In_sync, &rdev->flags);
3131 else {
3132 char nm[20];
3133 sprintf(nm, "rd%d", rdev->raid_disk);
3134 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3135 printk("md: cannot register %s for %s after level change\n",
3136 nm, mdname(mddev));
3137 }
3138 }
3139
3140 module_put(mddev->pers->owner);
3141 mddev->pers = pers;
3142 mddev->private = priv;
3143 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3144 mddev->level = mddev->new_level;
3145 mddev->layout = mddev->new_layout;
3146 mddev->chunk_sectors = mddev->new_chunk_sectors;
3147 mddev->delta_disks = 0;
3148 if (mddev->pers->sync_request == NULL) {
3149 /* this is now an array without redundancy, so
3150 * it must always be in_sync
3151 */
3152 mddev->in_sync = 1;
3153 del_timer_sync(&mddev->safemode_timer);
3154 }
3155 pers->run(mddev);
3156 mddev_resume(mddev);
3157 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3158 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3159 md_wakeup_thread(mddev->thread);
3160 sysfs_notify(&mddev->kobj, NULL, "level");
3161 md_new_event(mddev);
3162 return rv;
3163 }
3164
3165 static struct md_sysfs_entry md_level =
3166 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3167
3168
3169 static ssize_t
3170 layout_show(mddev_t *mddev, char *page)
3171 {
3172 /* just a number, not meaningful for all levels */
3173 if (mddev->reshape_position != MaxSector &&
3174 mddev->layout != mddev->new_layout)
3175 return sprintf(page, "%d (%d)\n",
3176 mddev->new_layout, mddev->layout);
3177 return sprintf(page, "%d\n", mddev->layout);
3178 }
3179
3180 static ssize_t
3181 layout_store(mddev_t *mddev, const char *buf, size_t len)
3182 {
3183 char *e;
3184 unsigned long n = simple_strtoul(buf, &e, 10);
3185
3186 if (!*buf || (*e && *e != '\n'))
3187 return -EINVAL;
3188
3189 if (mddev->pers) {
3190 int err;
3191 if (mddev->pers->check_reshape == NULL)
3192 return -EBUSY;
3193 mddev->new_layout = n;
3194 err = mddev->pers->check_reshape(mddev);
3195 if (err) {
3196 mddev->new_layout = mddev->layout;
3197 return err;
3198 }
3199 } else {
3200 mddev->new_layout = n;
3201 if (mddev->reshape_position == MaxSector)
3202 mddev->layout = n;
3203 }
3204 return len;
3205 }
3206 static struct md_sysfs_entry md_layout =
3207 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3208
3209
3210 static ssize_t
3211 raid_disks_show(mddev_t *mddev, char *page)
3212 {
3213 if (mddev->raid_disks == 0)
3214 return 0;
3215 if (mddev->reshape_position != MaxSector &&
3216 mddev->delta_disks != 0)
3217 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3218 mddev->raid_disks - mddev->delta_disks);
3219 return sprintf(page, "%d\n", mddev->raid_disks);
3220 }
3221
3222 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3223
3224 static ssize_t
3225 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3226 {
3227 char *e;
3228 int rv = 0;
3229 unsigned long n = simple_strtoul(buf, &e, 10);
3230
3231 if (!*buf || (*e && *e != '\n'))
3232 return -EINVAL;
3233
3234 if (mddev->pers)
3235 rv = update_raid_disks(mddev, n);
3236 else if (mddev->reshape_position != MaxSector) {
3237 int olddisks = mddev->raid_disks - mddev->delta_disks;
3238 mddev->delta_disks = n - olddisks;
3239 mddev->raid_disks = n;
3240 } else
3241 mddev->raid_disks = n;
3242 return rv ? rv : len;
3243 }
3244 static struct md_sysfs_entry md_raid_disks =
3245 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3246
3247 static ssize_t
3248 chunk_size_show(mddev_t *mddev, char *page)
3249 {
3250 if (mddev->reshape_position != MaxSector &&
3251 mddev->chunk_sectors != mddev->new_chunk_sectors)
3252 return sprintf(page, "%d (%d)\n",
3253 mddev->new_chunk_sectors << 9,
3254 mddev->chunk_sectors << 9);
3255 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3256 }
3257
3258 static ssize_t
3259 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3260 {
3261 char *e;
3262 unsigned long n = simple_strtoul(buf, &e, 10);
3263
3264 if (!*buf || (*e && *e != '\n'))
3265 return -EINVAL;
3266
3267 if (mddev->pers) {
3268 int err;
3269 if (mddev->pers->check_reshape == NULL)
3270 return -EBUSY;
3271 mddev->new_chunk_sectors = n >> 9;
3272 err = mddev->pers->check_reshape(mddev);
3273 if (err) {
3274 mddev->new_chunk_sectors = mddev->chunk_sectors;
3275 return err;
3276 }
3277 } else {
3278 mddev->new_chunk_sectors = n >> 9;
3279 if (mddev->reshape_position == MaxSector)
3280 mddev->chunk_sectors = n >> 9;
3281 }
3282 return len;
3283 }
3284 static struct md_sysfs_entry md_chunk_size =
3285 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3286
3287 static ssize_t
3288 resync_start_show(mddev_t *mddev, char *page)
3289 {
3290 if (mddev->recovery_cp == MaxSector)
3291 return sprintf(page, "none\n");
3292 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3293 }
3294
3295 static ssize_t
3296 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3297 {
3298 char *e;
3299 unsigned long long n = simple_strtoull(buf, &e, 10);
3300
3301 if (mddev->pers)
3302 return -EBUSY;
3303 if (cmd_match(buf, "none"))
3304 n = MaxSector;
3305 else if (!*buf || (*e && *e != '\n'))
3306 return -EINVAL;
3307
3308 mddev->recovery_cp = n;
3309 return len;
3310 }
3311 static struct md_sysfs_entry md_resync_start =
3312 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3313
3314 /*
3315 * The array state can be:
3316 *
3317 * clear
3318 * No devices, no size, no level
3319 * Equivalent to STOP_ARRAY ioctl
3320 * inactive
3321 * May have some settings, but array is not active
3322 * all IO results in error
3323 * When written, doesn't tear down array, but just stops it
3324 * suspended (not supported yet)
3325 * All IO requests will block. The array can be reconfigured.
3326 * Writing this, if accepted, will block until array is quiescent
3327 * readonly
3328 * no resync can happen. no superblocks get written.
3329 * write requests fail
3330 * read-auto
3331 * like readonly, but behaves like 'clean' on a write request.
3332 *
3333 * clean - no pending writes, but otherwise active.
3334 * When written to inactive array, starts without resync
3335 * If a write request arrives then
3336 * if metadata is known, mark 'dirty' and switch to 'active'.
3337 * if not known, block and switch to write-pending
3338 * If written to an active array that has pending writes, then fails.
3339 * active
3340 * fully active: IO and resync can be happening.
3341 * When written to inactive array, starts with resync
3342 *
3343 * write-pending
3344 * clean, but writes are blocked waiting for 'active' to be written.
3345 *
3346 * active-idle
3347 * like active, but no writes have been seen for a while (100msec).
3348 *
3349 */
3350 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3351 write_pending, active_idle, bad_word};
3352 static char *array_states[] = {
3353 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3354 "write-pending", "active-idle", NULL };
3355
3356 static int match_word(const char *word, char **list)
3357 {
3358 int n;
3359 for (n=0; list[n]; n++)
3360 if (cmd_match(word, list[n]))
3361 break;
3362 return n;
3363 }
3364
3365 static ssize_t
3366 array_state_show(mddev_t *mddev, char *page)
3367 {
3368 enum array_state st = inactive;
3369
3370 if (mddev->pers)
3371 switch(mddev->ro) {
3372 case 1:
3373 st = readonly;
3374 break;
3375 case 2:
3376 st = read_auto;
3377 break;
3378 case 0:
3379 if (mddev->in_sync)
3380 st = clean;
3381 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3382 st = write_pending;
3383 else if (mddev->safemode)
3384 st = active_idle;
3385 else
3386 st = active;
3387 }
3388 else {
3389 if (list_empty(&mddev->disks) &&
3390 mddev->raid_disks == 0 &&
3391 mddev->dev_sectors == 0)
3392 st = clear;
3393 else
3394 st = inactive;
3395 }
3396 return sprintf(page, "%s\n", array_states[st]);
3397 }
3398
3399 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3400 static int md_set_readonly(mddev_t * mddev, int is_open);
3401 static int do_md_run(mddev_t * mddev);
3402 static int restart_array(mddev_t *mddev);
3403
3404 static ssize_t
3405 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3406 {
3407 int err = -EINVAL;
3408 enum array_state st = match_word(buf, array_states);
3409 switch(st) {
3410 case bad_word:
3411 break;
3412 case clear:
3413 /* stopping an active array */
3414 if (atomic_read(&mddev->openers) > 0)
3415 return -EBUSY;
3416 err = do_md_stop(mddev, 0, 0);
3417 break;
3418 case inactive:
3419 /* stopping an active array */
3420 if (mddev->pers) {
3421 if (atomic_read(&mddev->openers) > 0)
3422 return -EBUSY;
3423 err = do_md_stop(mddev, 2, 0);
3424 } else
3425 err = 0; /* already inactive */
3426 break;
3427 case suspended:
3428 break; /* not supported yet */
3429 case readonly:
3430 if (mddev->pers)
3431 err = md_set_readonly(mddev, 0);
3432 else {
3433 mddev->ro = 1;
3434 set_disk_ro(mddev->gendisk, 1);
3435 err = do_md_run(mddev);
3436 }
3437 break;
3438 case read_auto:
3439 if (mddev->pers) {
3440 if (mddev->ro == 0)
3441 err = md_set_readonly(mddev, 0);
3442 else if (mddev->ro == 1)
3443 err = restart_array(mddev);
3444 if (err == 0) {
3445 mddev->ro = 2;
3446 set_disk_ro(mddev->gendisk, 0);
3447 }
3448 } else {
3449 mddev->ro = 2;
3450 err = do_md_run(mddev);
3451 }
3452 break;
3453 case clean:
3454 if (mddev->pers) {
3455 restart_array(mddev);
3456 spin_lock_irq(&mddev->write_lock);
3457 if (atomic_read(&mddev->writes_pending) == 0) {
3458 if (mddev->in_sync == 0) {
3459 mddev->in_sync = 1;
3460 if (mddev->safemode == 1)
3461 mddev->safemode = 0;
3462 if (mddev->persistent)
3463 set_bit(MD_CHANGE_CLEAN,
3464 &mddev->flags);
3465 }
3466 err = 0;
3467 } else
3468 err = -EBUSY;
3469 spin_unlock_irq(&mddev->write_lock);
3470 } else
3471 err = -EINVAL;
3472 break;
3473 case active:
3474 if (mddev->pers) {
3475 restart_array(mddev);
3476 if (mddev->external)
3477 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3478 wake_up(&mddev->sb_wait);
3479 err = 0;
3480 } else {
3481 mddev->ro = 0;
3482 set_disk_ro(mddev->gendisk, 0);
3483 err = do_md_run(mddev);
3484 }
3485 break;
3486 case write_pending:
3487 case active_idle:
3488 /* these cannot be set */
3489 break;
3490 }
3491 if (err)
3492 return err;
3493 else {
3494 sysfs_notify_dirent_safe(mddev->sysfs_state);
3495 return len;
3496 }
3497 }
3498 static struct md_sysfs_entry md_array_state =
3499 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3500
3501 static ssize_t
3502 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3503 return sprintf(page, "%d\n",
3504 atomic_read(&mddev->max_corr_read_errors));
3505 }
3506
3507 static ssize_t
3508 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3509 {
3510 char *e;
3511 unsigned long n = simple_strtoul(buf, &e, 10);
3512
3513 if (*buf && (*e == 0 || *e == '\n')) {
3514 atomic_set(&mddev->max_corr_read_errors, n);
3515 return len;
3516 }
3517 return -EINVAL;
3518 }
3519
3520 static struct md_sysfs_entry max_corr_read_errors =
3521 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3522 max_corrected_read_errors_store);
3523
3524 static ssize_t
3525 null_show(mddev_t *mddev, char *page)
3526 {
3527 return -EINVAL;
3528 }
3529
3530 static ssize_t
3531 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3532 {
3533 /* buf must be %d:%d\n? giving major and minor numbers */
3534 /* The new device is added to the array.
3535 * If the array has a persistent superblock, we read the
3536 * superblock to initialise info and check validity.
3537 * Otherwise, only checking done is that in bind_rdev_to_array,
3538 * which mainly checks size.
3539 */
3540 char *e;
3541 int major = simple_strtoul(buf, &e, 10);
3542 int minor;
3543 dev_t dev;
3544 mdk_rdev_t *rdev;
3545 int err;
3546
3547 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3548 return -EINVAL;
3549 minor = simple_strtoul(e+1, &e, 10);
3550 if (*e && *e != '\n')
3551 return -EINVAL;
3552 dev = MKDEV(major, minor);
3553 if (major != MAJOR(dev) ||
3554 minor != MINOR(dev))
3555 return -EOVERFLOW;
3556
3557
3558 if (mddev->persistent) {
3559 rdev = md_import_device(dev, mddev->major_version,
3560 mddev->minor_version);
3561 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3562 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3563 mdk_rdev_t, same_set);
3564 err = super_types[mddev->major_version]
3565 .load_super(rdev, rdev0, mddev->minor_version);
3566 if (err < 0)
3567 goto out;
3568 }
3569 } else if (mddev->external)
3570 rdev = md_import_device(dev, -2, -1);
3571 else
3572 rdev = md_import_device(dev, -1, -1);
3573
3574 if (IS_ERR(rdev))
3575 return PTR_ERR(rdev);
3576 err = bind_rdev_to_array(rdev, mddev);
3577 out:
3578 if (err)
3579 export_rdev(rdev);
3580 return err ? err : len;
3581 }
3582
3583 static struct md_sysfs_entry md_new_device =
3584 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3585
3586 static ssize_t
3587 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3588 {
3589 char *end;
3590 unsigned long chunk, end_chunk;
3591
3592 if (!mddev->bitmap)
3593 goto out;
3594 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3595 while (*buf) {
3596 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3597 if (buf == end) break;
3598 if (*end == '-') { /* range */
3599 buf = end + 1;
3600 end_chunk = simple_strtoul(buf, &end, 0);
3601 if (buf == end) break;
3602 }
3603 if (*end && !isspace(*end)) break;
3604 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3605 buf = skip_spaces(end);
3606 }
3607 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3608 out:
3609 return len;
3610 }
3611
3612 static struct md_sysfs_entry md_bitmap =
3613 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3614
3615 static ssize_t
3616 size_show(mddev_t *mddev, char *page)
3617 {
3618 return sprintf(page, "%llu\n",
3619 (unsigned long long)mddev->dev_sectors / 2);
3620 }
3621
3622 static int update_size(mddev_t *mddev, sector_t num_sectors);
3623
3624 static ssize_t
3625 size_store(mddev_t *mddev, const char *buf, size_t len)
3626 {
3627 /* If array is inactive, we can reduce the component size, but
3628 * not increase it (except from 0).
3629 * If array is active, we can try an on-line resize
3630 */
3631 sector_t sectors;
3632 int err = strict_blocks_to_sectors(buf, &sectors);
3633
3634 if (err < 0)
3635 return err;
3636 if (mddev->pers) {
3637 err = update_size(mddev, sectors);
3638 md_update_sb(mddev, 1);
3639 } else {
3640 if (mddev->dev_sectors == 0 ||
3641 mddev->dev_sectors > sectors)
3642 mddev->dev_sectors = sectors;
3643 else
3644 err = -ENOSPC;
3645 }
3646 return err ? err : len;
3647 }
3648
3649 static struct md_sysfs_entry md_size =
3650 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3651
3652
3653 /* Metdata version.
3654 * This is one of
3655 * 'none' for arrays with no metadata (good luck...)
3656 * 'external' for arrays with externally managed metadata,
3657 * or N.M for internally known formats
3658 */
3659 static ssize_t
3660 metadata_show(mddev_t *mddev, char *page)
3661 {
3662 if (mddev->persistent)
3663 return sprintf(page, "%d.%d\n",
3664 mddev->major_version, mddev->minor_version);
3665 else if (mddev->external)
3666 return sprintf(page, "external:%s\n", mddev->metadata_type);
3667 else
3668 return sprintf(page, "none\n");
3669 }
3670
3671 static ssize_t
3672 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3673 {
3674 int major, minor;
3675 char *e;
3676 /* Changing the details of 'external' metadata is
3677 * always permitted. Otherwise there must be
3678 * no devices attached to the array.
3679 */
3680 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3681 ;
3682 else if (!list_empty(&mddev->disks))
3683 return -EBUSY;
3684
3685 if (cmd_match(buf, "none")) {
3686 mddev->persistent = 0;
3687 mddev->external = 0;
3688 mddev->major_version = 0;
3689 mddev->minor_version = 90;
3690 return len;
3691 }
3692 if (strncmp(buf, "external:", 9) == 0) {
3693 size_t namelen = len-9;
3694 if (namelen >= sizeof(mddev->metadata_type))
3695 namelen = sizeof(mddev->metadata_type)-1;
3696 strncpy(mddev->metadata_type, buf+9, namelen);
3697 mddev->metadata_type[namelen] = 0;
3698 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3699 mddev->metadata_type[--namelen] = 0;
3700 mddev->persistent = 0;
3701 mddev->external = 1;
3702 mddev->major_version = 0;
3703 mddev->minor_version = 90;
3704 return len;
3705 }
3706 major = simple_strtoul(buf, &e, 10);
3707 if (e==buf || *e != '.')
3708 return -EINVAL;
3709 buf = e+1;
3710 minor = simple_strtoul(buf, &e, 10);
3711 if (e==buf || (*e && *e != '\n') )
3712 return -EINVAL;
3713 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3714 return -ENOENT;
3715 mddev->major_version = major;
3716 mddev->minor_version = minor;
3717 mddev->persistent = 1;
3718 mddev->external = 0;
3719 return len;
3720 }
3721
3722 static struct md_sysfs_entry md_metadata =
3723 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3724
3725 static ssize_t
3726 action_show(mddev_t *mddev, char *page)
3727 {
3728 char *type = "idle";
3729 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3730 type = "frozen";
3731 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3732 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3733 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3734 type = "reshape";
3735 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3736 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3737 type = "resync";
3738 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3739 type = "check";
3740 else
3741 type = "repair";
3742 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3743 type = "recover";
3744 }
3745 return sprintf(page, "%s\n", type);
3746 }
3747
3748 static ssize_t
3749 action_store(mddev_t *mddev, const char *page, size_t len)
3750 {
3751 if (!mddev->pers || !mddev->pers->sync_request)
3752 return -EINVAL;
3753
3754 if (cmd_match(page, "frozen"))
3755 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3756 else
3757 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3758
3759 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3760 if (mddev->sync_thread) {
3761 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3762 md_unregister_thread(mddev->sync_thread);
3763 mddev->sync_thread = NULL;
3764 mddev->recovery = 0;
3765 }
3766 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3767 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3768 return -EBUSY;
3769 else if (cmd_match(page, "resync"))
3770 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3771 else if (cmd_match(page, "recover")) {
3772 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3773 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3774 } else if (cmd_match(page, "reshape")) {
3775 int err;
3776 if (mddev->pers->start_reshape == NULL)
3777 return -EINVAL;
3778 err = mddev->pers->start_reshape(mddev);
3779 if (err)
3780 return err;
3781 sysfs_notify(&mddev->kobj, NULL, "degraded");
3782 } else {
3783 if (cmd_match(page, "check"))
3784 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3785 else if (!cmd_match(page, "repair"))
3786 return -EINVAL;
3787 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3788 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3789 }
3790 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3791 md_wakeup_thread(mddev->thread);
3792 sysfs_notify_dirent_safe(mddev->sysfs_action);
3793 return len;
3794 }
3795
3796 static ssize_t
3797 mismatch_cnt_show(mddev_t *mddev, char *page)
3798 {
3799 return sprintf(page, "%llu\n",
3800 (unsigned long long) mddev->resync_mismatches);
3801 }
3802
3803 static struct md_sysfs_entry md_scan_mode =
3804 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3805
3806
3807 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3808
3809 static ssize_t
3810 sync_min_show(mddev_t *mddev, char *page)
3811 {
3812 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3813 mddev->sync_speed_min ? "local": "system");
3814 }
3815
3816 static ssize_t
3817 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3818 {
3819 int min;
3820 char *e;
3821 if (strncmp(buf, "system", 6)==0) {
3822 mddev->sync_speed_min = 0;
3823 return len;
3824 }
3825 min = simple_strtoul(buf, &e, 10);
3826 if (buf == e || (*e && *e != '\n') || min <= 0)
3827 return -EINVAL;
3828 mddev->sync_speed_min = min;
3829 return len;
3830 }
3831
3832 static struct md_sysfs_entry md_sync_min =
3833 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3834
3835 static ssize_t
3836 sync_max_show(mddev_t *mddev, char *page)
3837 {
3838 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3839 mddev->sync_speed_max ? "local": "system");
3840 }
3841
3842 static ssize_t
3843 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3844 {
3845 int max;
3846 char *e;
3847 if (strncmp(buf, "system", 6)==0) {
3848 mddev->sync_speed_max = 0;
3849 return len;
3850 }
3851 max = simple_strtoul(buf, &e, 10);
3852 if (buf == e || (*e && *e != '\n') || max <= 0)
3853 return -EINVAL;
3854 mddev->sync_speed_max = max;
3855 return len;
3856 }
3857
3858 static struct md_sysfs_entry md_sync_max =
3859 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3860
3861 static ssize_t
3862 degraded_show(mddev_t *mddev, char *page)
3863 {
3864 return sprintf(page, "%d\n", mddev->degraded);
3865 }
3866 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3867
3868 static ssize_t
3869 sync_force_parallel_show(mddev_t *mddev, char *page)
3870 {
3871 return sprintf(page, "%d\n", mddev->parallel_resync);
3872 }
3873
3874 static ssize_t
3875 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3876 {
3877 long n;
3878
3879 if (strict_strtol(buf, 10, &n))
3880 return -EINVAL;
3881
3882 if (n != 0 && n != 1)
3883 return -EINVAL;
3884
3885 mddev->parallel_resync = n;
3886
3887 if (mddev->sync_thread)
3888 wake_up(&resync_wait);
3889
3890 return len;
3891 }
3892
3893 /* force parallel resync, even with shared block devices */
3894 static struct md_sysfs_entry md_sync_force_parallel =
3895 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3896 sync_force_parallel_show, sync_force_parallel_store);
3897
3898 static ssize_t
3899 sync_speed_show(mddev_t *mddev, char *page)
3900 {
3901 unsigned long resync, dt, db;
3902 if (mddev->curr_resync == 0)
3903 return sprintf(page, "none\n");
3904 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3905 dt = (jiffies - mddev->resync_mark) / HZ;
3906 if (!dt) dt++;
3907 db = resync - mddev->resync_mark_cnt;
3908 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3909 }
3910
3911 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3912
3913 static ssize_t
3914 sync_completed_show(mddev_t *mddev, char *page)
3915 {
3916 unsigned long max_sectors, resync;
3917
3918 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3919 return sprintf(page, "none\n");
3920
3921 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3922 max_sectors = mddev->resync_max_sectors;
3923 else
3924 max_sectors = mddev->dev_sectors;
3925
3926 resync = mddev->curr_resync_completed;
3927 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3928 }
3929
3930 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3931
3932 static ssize_t
3933 min_sync_show(mddev_t *mddev, char *page)
3934 {
3935 return sprintf(page, "%llu\n",
3936 (unsigned long long)mddev->resync_min);
3937 }
3938 static ssize_t
3939 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3940 {
3941 unsigned long long min;
3942 if (strict_strtoull(buf, 10, &min))
3943 return -EINVAL;
3944 if (min > mddev->resync_max)
3945 return -EINVAL;
3946 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3947 return -EBUSY;
3948
3949 /* Must be a multiple of chunk_size */
3950 if (mddev->chunk_sectors) {
3951 sector_t temp = min;
3952 if (sector_div(temp, mddev->chunk_sectors))
3953 return -EINVAL;
3954 }
3955 mddev->resync_min = min;
3956
3957 return len;
3958 }
3959
3960 static struct md_sysfs_entry md_min_sync =
3961 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3962
3963 static ssize_t
3964 max_sync_show(mddev_t *mddev, char *page)
3965 {
3966 if (mddev->resync_max == MaxSector)
3967 return sprintf(page, "max\n");
3968 else
3969 return sprintf(page, "%llu\n",
3970 (unsigned long long)mddev->resync_max);
3971 }
3972 static ssize_t
3973 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3974 {
3975 if (strncmp(buf, "max", 3) == 0)
3976 mddev->resync_max = MaxSector;
3977 else {
3978 unsigned long long max;
3979 if (strict_strtoull(buf, 10, &max))
3980 return -EINVAL;
3981 if (max < mddev->resync_min)
3982 return -EINVAL;
3983 if (max < mddev->resync_max &&
3984 mddev->ro == 0 &&
3985 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3986 return -EBUSY;
3987
3988 /* Must be a multiple of chunk_size */
3989 if (mddev->chunk_sectors) {
3990 sector_t temp = max;
3991 if (sector_div(temp, mddev->chunk_sectors))
3992 return -EINVAL;
3993 }
3994 mddev->resync_max = max;
3995 }
3996 wake_up(&mddev->recovery_wait);
3997 return len;
3998 }
3999
4000 static struct md_sysfs_entry md_max_sync =
4001 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4002
4003 static ssize_t
4004 suspend_lo_show(mddev_t *mddev, char *page)
4005 {
4006 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4007 }
4008
4009 static ssize_t
4010 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4011 {
4012 char *e;
4013 unsigned long long new = simple_strtoull(buf, &e, 10);
4014
4015 if (mddev->pers == NULL ||
4016 mddev->pers->quiesce == NULL)
4017 return -EINVAL;
4018 if (buf == e || (*e && *e != '\n'))
4019 return -EINVAL;
4020 if (new >= mddev->suspend_hi ||
4021 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4022 mddev->suspend_lo = new;
4023 mddev->pers->quiesce(mddev, 2);
4024 return len;
4025 } else
4026 return -EINVAL;
4027 }
4028 static struct md_sysfs_entry md_suspend_lo =
4029 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4030
4031
4032 static ssize_t
4033 suspend_hi_show(mddev_t *mddev, char *page)
4034 {
4035 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4036 }
4037
4038 static ssize_t
4039 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4040 {
4041 char *e;
4042 unsigned long long new = simple_strtoull(buf, &e, 10);
4043
4044 if (mddev->pers == NULL ||
4045 mddev->pers->quiesce == NULL)
4046 return -EINVAL;
4047 if (buf == e || (*e && *e != '\n'))
4048 return -EINVAL;
4049 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4050 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4051 mddev->suspend_hi = new;
4052 mddev->pers->quiesce(mddev, 1);
4053 mddev->pers->quiesce(mddev, 0);
4054 return len;
4055 } else
4056 return -EINVAL;
4057 }
4058 static struct md_sysfs_entry md_suspend_hi =
4059 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4060
4061 static ssize_t
4062 reshape_position_show(mddev_t *mddev, char *page)
4063 {
4064 if (mddev->reshape_position != MaxSector)
4065 return sprintf(page, "%llu\n",
4066 (unsigned long long)mddev->reshape_position);
4067 strcpy(page, "none\n");
4068 return 5;
4069 }
4070
4071 static ssize_t
4072 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4073 {
4074 char *e;
4075 unsigned long long new = simple_strtoull(buf, &e, 10);
4076 if (mddev->pers)
4077 return -EBUSY;
4078 if (buf == e || (*e && *e != '\n'))
4079 return -EINVAL;
4080 mddev->reshape_position = new;
4081 mddev->delta_disks = 0;
4082 mddev->new_level = mddev->level;
4083 mddev->new_layout = mddev->layout;
4084 mddev->new_chunk_sectors = mddev->chunk_sectors;
4085 return len;
4086 }
4087
4088 static struct md_sysfs_entry md_reshape_position =
4089 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4090 reshape_position_store);
4091
4092 static ssize_t
4093 array_size_show(mddev_t *mddev, char *page)
4094 {
4095 if (mddev->external_size)
4096 return sprintf(page, "%llu\n",
4097 (unsigned long long)mddev->array_sectors/2);
4098 else
4099 return sprintf(page, "default\n");
4100 }
4101
4102 static ssize_t
4103 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4104 {
4105 sector_t sectors;
4106
4107 if (strncmp(buf, "default", 7) == 0) {
4108 if (mddev->pers)
4109 sectors = mddev->pers->size(mddev, 0, 0);
4110 else
4111 sectors = mddev->array_sectors;
4112
4113 mddev->external_size = 0;
4114 } else {
4115 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4116 return -EINVAL;
4117 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4118 return -E2BIG;
4119
4120 mddev->external_size = 1;
4121 }
4122
4123 mddev->array_sectors = sectors;
4124 set_capacity(mddev->gendisk, mddev->array_sectors);
4125 if (mddev->pers)
4126 revalidate_disk(mddev->gendisk);
4127
4128 return len;
4129 }
4130
4131 static struct md_sysfs_entry md_array_size =
4132 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4133 array_size_store);
4134
4135 static struct attribute *md_default_attrs[] = {
4136 &md_level.attr,
4137 &md_layout.attr,
4138 &md_raid_disks.attr,
4139 &md_chunk_size.attr,
4140 &md_size.attr,
4141 &md_resync_start.attr,
4142 &md_metadata.attr,
4143 &md_new_device.attr,
4144 &md_safe_delay.attr,
4145 &md_array_state.attr,
4146 &md_reshape_position.attr,
4147 &md_array_size.attr,
4148 &max_corr_read_errors.attr,
4149 NULL,
4150 };
4151
4152 static struct attribute *md_redundancy_attrs[] = {
4153 &md_scan_mode.attr,
4154 &md_mismatches.attr,
4155 &md_sync_min.attr,
4156 &md_sync_max.attr,
4157 &md_sync_speed.attr,
4158 &md_sync_force_parallel.attr,
4159 &md_sync_completed.attr,
4160 &md_min_sync.attr,
4161 &md_max_sync.attr,
4162 &md_suspend_lo.attr,
4163 &md_suspend_hi.attr,
4164 &md_bitmap.attr,
4165 &md_degraded.attr,
4166 NULL,
4167 };
4168 static struct attribute_group md_redundancy_group = {
4169 .name = NULL,
4170 .attrs = md_redundancy_attrs,
4171 };
4172
4173
4174 static ssize_t
4175 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4176 {
4177 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4178 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4179 ssize_t rv;
4180
4181 if (!entry->show)
4182 return -EIO;
4183 rv = mddev_lock(mddev);
4184 if (!rv) {
4185 rv = entry->show(mddev, page);
4186 mddev_unlock(mddev);
4187 }
4188 return rv;
4189 }
4190
4191 static ssize_t
4192 md_attr_store(struct kobject *kobj, struct attribute *attr,
4193 const char *page, size_t length)
4194 {
4195 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4196 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4197 ssize_t rv;
4198
4199 if (!entry->store)
4200 return -EIO;
4201 if (!capable(CAP_SYS_ADMIN))
4202 return -EACCES;
4203 rv = mddev_lock(mddev);
4204 if (mddev->hold_active == UNTIL_IOCTL)
4205 mddev->hold_active = 0;
4206 if (!rv) {
4207 rv = entry->store(mddev, page, length);
4208 mddev_unlock(mddev);
4209 }
4210 return rv;
4211 }
4212
4213 static void md_free(struct kobject *ko)
4214 {
4215 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4216
4217 if (mddev->sysfs_state)
4218 sysfs_put(mddev->sysfs_state);
4219
4220 if (mddev->gendisk) {
4221 del_gendisk(mddev->gendisk);
4222 put_disk(mddev->gendisk);
4223 }
4224 if (mddev->queue)
4225 blk_cleanup_queue(mddev->queue);
4226
4227 kfree(mddev);
4228 }
4229
4230 static const struct sysfs_ops md_sysfs_ops = {
4231 .show = md_attr_show,
4232 .store = md_attr_store,
4233 };
4234 static struct kobj_type md_ktype = {
4235 .release = md_free,
4236 .sysfs_ops = &md_sysfs_ops,
4237 .default_attrs = md_default_attrs,
4238 };
4239
4240 int mdp_major = 0;
4241
4242 static void mddev_delayed_delete(struct work_struct *ws)
4243 {
4244 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4245
4246 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4247 kobject_del(&mddev->kobj);
4248 kobject_put(&mddev->kobj);
4249 }
4250
4251 static int md_alloc(dev_t dev, char *name)
4252 {
4253 static DEFINE_MUTEX(disks_mutex);
4254 mddev_t *mddev = mddev_find(dev);
4255 struct gendisk *disk;
4256 int partitioned;
4257 int shift;
4258 int unit;
4259 int error;
4260
4261 if (!mddev)
4262 return -ENODEV;
4263
4264 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4265 shift = partitioned ? MdpMinorShift : 0;
4266 unit = MINOR(mddev->unit) >> shift;
4267
4268 /* wait for any previous instance if this device
4269 * to be completed removed (mddev_delayed_delete).
4270 */
4271 flush_scheduled_work();
4272
4273 mutex_lock(&disks_mutex);
4274 error = -EEXIST;
4275 if (mddev->gendisk)
4276 goto abort;
4277
4278 if (name) {
4279 /* Need to ensure that 'name' is not a duplicate.
4280 */
4281 mddev_t *mddev2;
4282 spin_lock(&all_mddevs_lock);
4283
4284 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4285 if (mddev2->gendisk &&
4286 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4287 spin_unlock(&all_mddevs_lock);
4288 goto abort;
4289 }
4290 spin_unlock(&all_mddevs_lock);
4291 }
4292
4293 error = -ENOMEM;
4294 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4295 if (!mddev->queue)
4296 goto abort;
4297 mddev->queue->queuedata = mddev;
4298
4299 /* Can be unlocked because the queue is new: no concurrency */
4300 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4301
4302 blk_queue_make_request(mddev->queue, md_make_request);
4303
4304 disk = alloc_disk(1 << shift);
4305 if (!disk) {
4306 blk_cleanup_queue(mddev->queue);
4307 mddev->queue = NULL;
4308 goto abort;
4309 }
4310 disk->major = MAJOR(mddev->unit);
4311 disk->first_minor = unit << shift;
4312 if (name)
4313 strcpy(disk->disk_name, name);
4314 else if (partitioned)
4315 sprintf(disk->disk_name, "md_d%d", unit);
4316 else
4317 sprintf(disk->disk_name, "md%d", unit);
4318 disk->fops = &md_fops;
4319 disk->private_data = mddev;
4320 disk->queue = mddev->queue;
4321 /* Allow extended partitions. This makes the
4322 * 'mdp' device redundant, but we can't really
4323 * remove it now.
4324 */
4325 disk->flags |= GENHD_FL_EXT_DEVT;
4326 add_disk(disk);
4327 mddev->gendisk = disk;
4328 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4329 &disk_to_dev(disk)->kobj, "%s", "md");
4330 if (error) {
4331 /* This isn't possible, but as kobject_init_and_add is marked
4332 * __must_check, we must do something with the result
4333 */
4334 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4335 disk->disk_name);
4336 error = 0;
4337 }
4338 if (mddev->kobj.sd &&
4339 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4340 printk(KERN_DEBUG "pointless warning\n");
4341 abort:
4342 mutex_unlock(&disks_mutex);
4343 if (!error && mddev->kobj.sd) {
4344 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4345 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4346 }
4347 mddev_put(mddev);
4348 return error;
4349 }
4350
4351 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4352 {
4353 md_alloc(dev, NULL);
4354 return NULL;
4355 }
4356
4357 static int add_named_array(const char *val, struct kernel_param *kp)
4358 {
4359 /* val must be "md_*" where * is not all digits.
4360 * We allocate an array with a large free minor number, and
4361 * set the name to val. val must not already be an active name.
4362 */
4363 int len = strlen(val);
4364 char buf[DISK_NAME_LEN];
4365
4366 while (len && val[len-1] == '\n')
4367 len--;
4368 if (len >= DISK_NAME_LEN)
4369 return -E2BIG;
4370 strlcpy(buf, val, len+1);
4371 if (strncmp(buf, "md_", 3) != 0)
4372 return -EINVAL;
4373 return md_alloc(0, buf);
4374 }
4375
4376 static void md_safemode_timeout(unsigned long data)
4377 {
4378 mddev_t *mddev = (mddev_t *) data;
4379
4380 if (!atomic_read(&mddev->writes_pending)) {
4381 mddev->safemode = 1;
4382 if (mddev->external)
4383 sysfs_notify_dirent_safe(mddev->sysfs_state);
4384 }
4385 md_wakeup_thread(mddev->thread);
4386 }
4387
4388 static int start_dirty_degraded;
4389
4390 int md_run(mddev_t *mddev)
4391 {
4392 int err;
4393 mdk_rdev_t *rdev;
4394 struct mdk_personality *pers;
4395
4396 if (list_empty(&mddev->disks))
4397 /* cannot run an array with no devices.. */
4398 return -EINVAL;
4399
4400 if (mddev->pers)
4401 return -EBUSY;
4402 /* Cannot run until previous stop completes properly */
4403 if (mddev->sysfs_active)
4404 return -EBUSY;
4405
4406 /*
4407 * Analyze all RAID superblock(s)
4408 */
4409 if (!mddev->raid_disks) {
4410 if (!mddev->persistent)
4411 return -EINVAL;
4412 analyze_sbs(mddev);
4413 }
4414
4415 if (mddev->level != LEVEL_NONE)
4416 request_module("md-level-%d", mddev->level);
4417 else if (mddev->clevel[0])
4418 request_module("md-%s", mddev->clevel);
4419
4420 /*
4421 * Drop all container device buffers, from now on
4422 * the only valid external interface is through the md
4423 * device.
4424 */
4425 list_for_each_entry(rdev, &mddev->disks, same_set) {
4426 if (test_bit(Faulty, &rdev->flags))
4427 continue;
4428 sync_blockdev(rdev->bdev);
4429 invalidate_bdev(rdev->bdev);
4430
4431 /* perform some consistency tests on the device.
4432 * We don't want the data to overlap the metadata,
4433 * Internal Bitmap issues have been handled elsewhere.
4434 */
4435 if (rdev->data_offset < rdev->sb_start) {
4436 if (mddev->dev_sectors &&
4437 rdev->data_offset + mddev->dev_sectors
4438 > rdev->sb_start) {
4439 printk("md: %s: data overlaps metadata\n",
4440 mdname(mddev));
4441 return -EINVAL;
4442 }
4443 } else {
4444 if (rdev->sb_start + rdev->sb_size/512
4445 > rdev->data_offset) {
4446 printk("md: %s: metadata overlaps data\n",
4447 mdname(mddev));
4448 return -EINVAL;
4449 }
4450 }
4451 sysfs_notify_dirent_safe(rdev->sysfs_state);
4452 }
4453
4454 spin_lock(&pers_lock);
4455 pers = find_pers(mddev->level, mddev->clevel);
4456 if (!pers || !try_module_get(pers->owner)) {
4457 spin_unlock(&pers_lock);
4458 if (mddev->level != LEVEL_NONE)
4459 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4460 mddev->level);
4461 else
4462 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4463 mddev->clevel);
4464 return -EINVAL;
4465 }
4466 mddev->pers = pers;
4467 spin_unlock(&pers_lock);
4468 if (mddev->level != pers->level) {
4469 mddev->level = pers->level;
4470 mddev->new_level = pers->level;
4471 }
4472 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4473
4474 if (mddev->reshape_position != MaxSector &&
4475 pers->start_reshape == NULL) {
4476 /* This personality cannot handle reshaping... */
4477 mddev->pers = NULL;
4478 module_put(pers->owner);
4479 return -EINVAL;
4480 }
4481
4482 if (pers->sync_request) {
4483 /* Warn if this is a potentially silly
4484 * configuration.
4485 */
4486 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4487 mdk_rdev_t *rdev2;
4488 int warned = 0;
4489
4490 list_for_each_entry(rdev, &mddev->disks, same_set)
4491 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4492 if (rdev < rdev2 &&
4493 rdev->bdev->bd_contains ==
4494 rdev2->bdev->bd_contains) {
4495 printk(KERN_WARNING
4496 "%s: WARNING: %s appears to be"
4497 " on the same physical disk as"
4498 " %s.\n",
4499 mdname(mddev),
4500 bdevname(rdev->bdev,b),
4501 bdevname(rdev2->bdev,b2));
4502 warned = 1;
4503 }
4504 }
4505
4506 if (warned)
4507 printk(KERN_WARNING
4508 "True protection against single-disk"
4509 " failure might be compromised.\n");
4510 }
4511
4512 mddev->recovery = 0;
4513 /* may be over-ridden by personality */
4514 mddev->resync_max_sectors = mddev->dev_sectors;
4515
4516 mddev->barriers_work = 1;
4517 mddev->ok_start_degraded = start_dirty_degraded;
4518
4519 if (start_readonly && mddev->ro == 0)
4520 mddev->ro = 2; /* read-only, but switch on first write */
4521
4522 err = mddev->pers->run(mddev);
4523 if (err)
4524 printk(KERN_ERR "md: pers->run() failed ...\n");
4525 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4526 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4527 " but 'external_size' not in effect?\n", __func__);
4528 printk(KERN_ERR
4529 "md: invalid array_size %llu > default size %llu\n",
4530 (unsigned long long)mddev->array_sectors / 2,
4531 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4532 err = -EINVAL;
4533 mddev->pers->stop(mddev);
4534 }
4535 if (err == 0 && mddev->pers->sync_request) {
4536 err = bitmap_create(mddev);
4537 if (err) {
4538 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4539 mdname(mddev), err);
4540 mddev->pers->stop(mddev);
4541 }
4542 }
4543 if (err) {
4544 module_put(mddev->pers->owner);
4545 mddev->pers = NULL;
4546 bitmap_destroy(mddev);
4547 return err;
4548 }
4549 if (mddev->pers->sync_request) {
4550 if (mddev->kobj.sd &&
4551 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4552 printk(KERN_WARNING
4553 "md: cannot register extra attributes for %s\n",
4554 mdname(mddev));
4555 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4556 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4557 mddev->ro = 0;
4558
4559 atomic_set(&mddev->writes_pending,0);
4560 atomic_set(&mddev->max_corr_read_errors,
4561 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4562 mddev->safemode = 0;
4563 mddev->safemode_timer.function = md_safemode_timeout;
4564 mddev->safemode_timer.data = (unsigned long) mddev;
4565 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4566 mddev->in_sync = 1;
4567
4568 list_for_each_entry(rdev, &mddev->disks, same_set)
4569 if (rdev->raid_disk >= 0) {
4570 char nm[20];
4571 sprintf(nm, "rd%d", rdev->raid_disk);
4572 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4573 /* failure here is OK */;
4574 }
4575
4576 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4577
4578 if (mddev->flags)
4579 md_update_sb(mddev, 0);
4580
4581 md_wakeup_thread(mddev->thread);
4582 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4583
4584 md_new_event(mddev);
4585 sysfs_notify_dirent_safe(mddev->sysfs_state);
4586 sysfs_notify_dirent_safe(mddev->sysfs_action);
4587 sysfs_notify(&mddev->kobj, NULL, "degraded");
4588 return 0;
4589 }
4590 EXPORT_SYMBOL_GPL(md_run);
4591
4592 static int do_md_run(mddev_t *mddev)
4593 {
4594 int err;
4595
4596 err = md_run(mddev);
4597 if (err)
4598 goto out;
4599 err = bitmap_load(mddev);
4600 if (err) {
4601 bitmap_destroy(mddev);
4602 goto out;
4603 }
4604 set_capacity(mddev->gendisk, mddev->array_sectors);
4605 revalidate_disk(mddev->gendisk);
4606 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4607 out:
4608 return err;
4609 }
4610
4611 static int restart_array(mddev_t *mddev)
4612 {
4613 struct gendisk *disk = mddev->gendisk;
4614
4615 /* Complain if it has no devices */
4616 if (list_empty(&mddev->disks))
4617 return -ENXIO;
4618 if (!mddev->pers)
4619 return -EINVAL;
4620 if (!mddev->ro)
4621 return -EBUSY;
4622 mddev->safemode = 0;
4623 mddev->ro = 0;
4624 set_disk_ro(disk, 0);
4625 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4626 mdname(mddev));
4627 /* Kick recovery or resync if necessary */
4628 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4629 md_wakeup_thread(mddev->thread);
4630 md_wakeup_thread(mddev->sync_thread);
4631 sysfs_notify_dirent_safe(mddev->sysfs_state);
4632 return 0;
4633 }
4634
4635 /* similar to deny_write_access, but accounts for our holding a reference
4636 * to the file ourselves */
4637 static int deny_bitmap_write_access(struct file * file)
4638 {
4639 struct inode *inode = file->f_mapping->host;
4640
4641 spin_lock(&inode->i_lock);
4642 if (atomic_read(&inode->i_writecount) > 1) {
4643 spin_unlock(&inode->i_lock);
4644 return -ETXTBSY;
4645 }
4646 atomic_set(&inode->i_writecount, -1);
4647 spin_unlock(&inode->i_lock);
4648
4649 return 0;
4650 }
4651
4652 void restore_bitmap_write_access(struct file *file)
4653 {
4654 struct inode *inode = file->f_mapping->host;
4655
4656 spin_lock(&inode->i_lock);
4657 atomic_set(&inode->i_writecount, 1);
4658 spin_unlock(&inode->i_lock);
4659 }
4660
4661 static void md_clean(mddev_t *mddev)
4662 {
4663 mddev->array_sectors = 0;
4664 mddev->external_size = 0;
4665 mddev->dev_sectors = 0;
4666 mddev->raid_disks = 0;
4667 mddev->recovery_cp = 0;
4668 mddev->resync_min = 0;
4669 mddev->resync_max = MaxSector;
4670 mddev->reshape_position = MaxSector;
4671 mddev->external = 0;
4672 mddev->persistent = 0;
4673 mddev->level = LEVEL_NONE;
4674 mddev->clevel[0] = 0;
4675 mddev->flags = 0;
4676 mddev->ro = 0;
4677 mddev->metadata_type[0] = 0;
4678 mddev->chunk_sectors = 0;
4679 mddev->ctime = mddev->utime = 0;
4680 mddev->layout = 0;
4681 mddev->max_disks = 0;
4682 mddev->events = 0;
4683 mddev->can_decrease_events = 0;
4684 mddev->delta_disks = 0;
4685 mddev->new_level = LEVEL_NONE;
4686 mddev->new_layout = 0;
4687 mddev->new_chunk_sectors = 0;
4688 mddev->curr_resync = 0;
4689 mddev->resync_mismatches = 0;
4690 mddev->suspend_lo = mddev->suspend_hi = 0;
4691 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4692 mddev->recovery = 0;
4693 mddev->in_sync = 0;
4694 mddev->degraded = 0;
4695 mddev->barriers_work = 0;
4696 mddev->safemode = 0;
4697 mddev->bitmap_info.offset = 0;
4698 mddev->bitmap_info.default_offset = 0;
4699 mddev->bitmap_info.chunksize = 0;
4700 mddev->bitmap_info.daemon_sleep = 0;
4701 mddev->bitmap_info.max_write_behind = 0;
4702 mddev->plug = NULL;
4703 }
4704
4705 void md_stop_writes(mddev_t *mddev)
4706 {
4707 if (mddev->sync_thread) {
4708 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4709 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4710 md_unregister_thread(mddev->sync_thread);
4711 mddev->sync_thread = NULL;
4712 }
4713
4714 del_timer_sync(&mddev->safemode_timer);
4715
4716 bitmap_flush(mddev);
4717 md_super_wait(mddev);
4718
4719 if (!mddev->in_sync || mddev->flags) {
4720 /* mark array as shutdown cleanly */
4721 mddev->in_sync = 1;
4722 md_update_sb(mddev, 1);
4723 }
4724 }
4725 EXPORT_SYMBOL_GPL(md_stop_writes);
4726
4727 void md_stop(mddev_t *mddev)
4728 {
4729 mddev->pers->stop(mddev);
4730 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4731 mddev->to_remove = &md_redundancy_group;
4732 module_put(mddev->pers->owner);
4733 mddev->pers = NULL;
4734 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4735 }
4736 EXPORT_SYMBOL_GPL(md_stop);
4737
4738 static int md_set_readonly(mddev_t *mddev, int is_open)
4739 {
4740 int err = 0;
4741 mutex_lock(&mddev->open_mutex);
4742 if (atomic_read(&mddev->openers) > is_open) {
4743 printk("md: %s still in use.\n",mdname(mddev));
4744 err = -EBUSY;
4745 goto out;
4746 }
4747 if (mddev->pers) {
4748 md_stop_writes(mddev);
4749
4750 err = -ENXIO;
4751 if (mddev->ro==1)
4752 goto out;
4753 mddev->ro = 1;
4754 set_disk_ro(mddev->gendisk, 1);
4755 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4756 sysfs_notify_dirent_safe(mddev->sysfs_state);
4757 err = 0;
4758 }
4759 out:
4760 mutex_unlock(&mddev->open_mutex);
4761 return err;
4762 }
4763
4764 /* mode:
4765 * 0 - completely stop and dis-assemble array
4766 * 2 - stop but do not disassemble array
4767 */
4768 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4769 {
4770 struct gendisk *disk = mddev->gendisk;
4771 mdk_rdev_t *rdev;
4772
4773 mutex_lock(&mddev->open_mutex);
4774 if (atomic_read(&mddev->openers) > is_open ||
4775 mddev->sysfs_active) {
4776 printk("md: %s still in use.\n",mdname(mddev));
4777 mutex_unlock(&mddev->open_mutex);
4778 return -EBUSY;
4779 }
4780
4781 if (mddev->pers) {
4782 if (mddev->ro)
4783 set_disk_ro(disk, 0);
4784
4785 md_stop_writes(mddev);
4786 md_stop(mddev);
4787 mddev->queue->merge_bvec_fn = NULL;
4788 mddev->queue->unplug_fn = NULL;
4789 mddev->queue->backing_dev_info.congested_fn = NULL;
4790
4791 /* tell userspace to handle 'inactive' */
4792 sysfs_notify_dirent_safe(mddev->sysfs_state);
4793
4794 list_for_each_entry(rdev, &mddev->disks, same_set)
4795 if (rdev->raid_disk >= 0) {
4796 char nm[20];
4797 sprintf(nm, "rd%d", rdev->raid_disk);
4798 sysfs_remove_link(&mddev->kobj, nm);
4799 }
4800
4801 set_capacity(disk, 0);
4802 mutex_unlock(&mddev->open_mutex);
4803 revalidate_disk(disk);
4804
4805 if (mddev->ro)
4806 mddev->ro = 0;
4807 } else
4808 mutex_unlock(&mddev->open_mutex);
4809 /*
4810 * Free resources if final stop
4811 */
4812 if (mode == 0) {
4813 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4814
4815 bitmap_destroy(mddev);
4816 if (mddev->bitmap_info.file) {
4817 restore_bitmap_write_access(mddev->bitmap_info.file);
4818 fput(mddev->bitmap_info.file);
4819 mddev->bitmap_info.file = NULL;
4820 }
4821 mddev->bitmap_info.offset = 0;
4822
4823 export_array(mddev);
4824
4825 md_clean(mddev);
4826 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4827 if (mddev->hold_active == UNTIL_STOP)
4828 mddev->hold_active = 0;
4829 }
4830 blk_integrity_unregister(disk);
4831 md_new_event(mddev);
4832 sysfs_notify_dirent_safe(mddev->sysfs_state);
4833 return 0;
4834 }
4835
4836 #ifndef MODULE
4837 static void autorun_array(mddev_t *mddev)
4838 {
4839 mdk_rdev_t *rdev;
4840 int err;
4841
4842 if (list_empty(&mddev->disks))
4843 return;
4844
4845 printk(KERN_INFO "md: running: ");
4846
4847 list_for_each_entry(rdev, &mddev->disks, same_set) {
4848 char b[BDEVNAME_SIZE];
4849 printk("<%s>", bdevname(rdev->bdev,b));
4850 }
4851 printk("\n");
4852
4853 err = do_md_run(mddev);
4854 if (err) {
4855 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4856 do_md_stop(mddev, 0, 0);
4857 }
4858 }
4859
4860 /*
4861 * lets try to run arrays based on all disks that have arrived
4862 * until now. (those are in pending_raid_disks)
4863 *
4864 * the method: pick the first pending disk, collect all disks with
4865 * the same UUID, remove all from the pending list and put them into
4866 * the 'same_array' list. Then order this list based on superblock
4867 * update time (freshest comes first), kick out 'old' disks and
4868 * compare superblocks. If everything's fine then run it.
4869 *
4870 * If "unit" is allocated, then bump its reference count
4871 */
4872 static void autorun_devices(int part)
4873 {
4874 mdk_rdev_t *rdev0, *rdev, *tmp;
4875 mddev_t *mddev;
4876 char b[BDEVNAME_SIZE];
4877
4878 printk(KERN_INFO "md: autorun ...\n");
4879 while (!list_empty(&pending_raid_disks)) {
4880 int unit;
4881 dev_t dev;
4882 LIST_HEAD(candidates);
4883 rdev0 = list_entry(pending_raid_disks.next,
4884 mdk_rdev_t, same_set);
4885
4886 printk(KERN_INFO "md: considering %s ...\n",
4887 bdevname(rdev0->bdev,b));
4888 INIT_LIST_HEAD(&candidates);
4889 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4890 if (super_90_load(rdev, rdev0, 0) >= 0) {
4891 printk(KERN_INFO "md: adding %s ...\n",
4892 bdevname(rdev->bdev,b));
4893 list_move(&rdev->same_set, &candidates);
4894 }
4895 /*
4896 * now we have a set of devices, with all of them having
4897 * mostly sane superblocks. It's time to allocate the
4898 * mddev.
4899 */
4900 if (part) {
4901 dev = MKDEV(mdp_major,
4902 rdev0->preferred_minor << MdpMinorShift);
4903 unit = MINOR(dev) >> MdpMinorShift;
4904 } else {
4905 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4906 unit = MINOR(dev);
4907 }
4908 if (rdev0->preferred_minor != unit) {
4909 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4910 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4911 break;
4912 }
4913
4914 md_probe(dev, NULL, NULL);
4915 mddev = mddev_find(dev);
4916 if (!mddev || !mddev->gendisk) {
4917 if (mddev)
4918 mddev_put(mddev);
4919 printk(KERN_ERR
4920 "md: cannot allocate memory for md drive.\n");
4921 break;
4922 }
4923 if (mddev_lock(mddev))
4924 printk(KERN_WARNING "md: %s locked, cannot run\n",
4925 mdname(mddev));
4926 else if (mddev->raid_disks || mddev->major_version
4927 || !list_empty(&mddev->disks)) {
4928 printk(KERN_WARNING
4929 "md: %s already running, cannot run %s\n",
4930 mdname(mddev), bdevname(rdev0->bdev,b));
4931 mddev_unlock(mddev);
4932 } else {
4933 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4934 mddev->persistent = 1;
4935 rdev_for_each_list(rdev, tmp, &candidates) {
4936 list_del_init(&rdev->same_set);
4937 if (bind_rdev_to_array(rdev, mddev))
4938 export_rdev(rdev);
4939 }
4940 autorun_array(mddev);
4941 mddev_unlock(mddev);
4942 }
4943 /* on success, candidates will be empty, on error
4944 * it won't...
4945 */
4946 rdev_for_each_list(rdev, tmp, &candidates) {
4947 list_del_init(&rdev->same_set);
4948 export_rdev(rdev);
4949 }
4950 mddev_put(mddev);
4951 }
4952 printk(KERN_INFO "md: ... autorun DONE.\n");
4953 }
4954 #endif /* !MODULE */
4955
4956 static int get_version(void __user * arg)
4957 {
4958 mdu_version_t ver;
4959
4960 ver.major = MD_MAJOR_VERSION;
4961 ver.minor = MD_MINOR_VERSION;
4962 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4963
4964 if (copy_to_user(arg, &ver, sizeof(ver)))
4965 return -EFAULT;
4966
4967 return 0;
4968 }
4969
4970 static int get_array_info(mddev_t * mddev, void __user * arg)
4971 {
4972 mdu_array_info_t info;
4973 int nr,working,insync,failed,spare;
4974 mdk_rdev_t *rdev;
4975
4976 nr=working=insync=failed=spare=0;
4977 list_for_each_entry(rdev, &mddev->disks, same_set) {
4978 nr++;
4979 if (test_bit(Faulty, &rdev->flags))
4980 failed++;
4981 else {
4982 working++;
4983 if (test_bit(In_sync, &rdev->flags))
4984 insync++;
4985 else
4986 spare++;
4987 }
4988 }
4989
4990 info.major_version = mddev->major_version;
4991 info.minor_version = mddev->minor_version;
4992 info.patch_version = MD_PATCHLEVEL_VERSION;
4993 info.ctime = mddev->ctime;
4994 info.level = mddev->level;
4995 info.size = mddev->dev_sectors / 2;
4996 if (info.size != mddev->dev_sectors / 2) /* overflow */
4997 info.size = -1;
4998 info.nr_disks = nr;
4999 info.raid_disks = mddev->raid_disks;
5000 info.md_minor = mddev->md_minor;
5001 info.not_persistent= !mddev->persistent;
5002
5003 info.utime = mddev->utime;
5004 info.state = 0;
5005 if (mddev->in_sync)
5006 info.state = (1<<MD_SB_CLEAN);
5007 if (mddev->bitmap && mddev->bitmap_info.offset)
5008 info.state = (1<<MD_SB_BITMAP_PRESENT);
5009 info.active_disks = insync;
5010 info.working_disks = working;
5011 info.failed_disks = failed;
5012 info.spare_disks = spare;
5013
5014 info.layout = mddev->layout;
5015 info.chunk_size = mddev->chunk_sectors << 9;
5016
5017 if (copy_to_user(arg, &info, sizeof(info)))
5018 return -EFAULT;
5019
5020 return 0;
5021 }
5022
5023 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5024 {
5025 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5026 char *ptr, *buf = NULL;
5027 int err = -ENOMEM;
5028
5029 if (md_allow_write(mddev))
5030 file = kmalloc(sizeof(*file), GFP_NOIO);
5031 else
5032 file = kmalloc(sizeof(*file), GFP_KERNEL);
5033
5034 if (!file)
5035 goto out;
5036
5037 /* bitmap disabled, zero the first byte and copy out */
5038 if (!mddev->bitmap || !mddev->bitmap->file) {
5039 file->pathname[0] = '\0';
5040 goto copy_out;
5041 }
5042
5043 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5044 if (!buf)
5045 goto out;
5046
5047 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5048 if (IS_ERR(ptr))
5049 goto out;
5050
5051 strcpy(file->pathname, ptr);
5052
5053 copy_out:
5054 err = 0;
5055 if (copy_to_user(arg, file, sizeof(*file)))
5056 err = -EFAULT;
5057 out:
5058 kfree(buf);
5059 kfree(file);
5060 return err;
5061 }
5062
5063 static int get_disk_info(mddev_t * mddev, void __user * arg)
5064 {
5065 mdu_disk_info_t info;
5066 mdk_rdev_t *rdev;
5067
5068 if (copy_from_user(&info, arg, sizeof(info)))
5069 return -EFAULT;
5070
5071 rdev = find_rdev_nr(mddev, info.number);
5072 if (rdev) {
5073 info.major = MAJOR(rdev->bdev->bd_dev);
5074 info.minor = MINOR(rdev->bdev->bd_dev);
5075 info.raid_disk = rdev->raid_disk;
5076 info.state = 0;
5077 if (test_bit(Faulty, &rdev->flags))
5078 info.state |= (1<<MD_DISK_FAULTY);
5079 else if (test_bit(In_sync, &rdev->flags)) {
5080 info.state |= (1<<MD_DISK_ACTIVE);
5081 info.state |= (1<<MD_DISK_SYNC);
5082 }
5083 if (test_bit(WriteMostly, &rdev->flags))
5084 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5085 } else {
5086 info.major = info.minor = 0;
5087 info.raid_disk = -1;
5088 info.state = (1<<MD_DISK_REMOVED);
5089 }
5090
5091 if (copy_to_user(arg, &info, sizeof(info)))
5092 return -EFAULT;
5093
5094 return 0;
5095 }
5096
5097 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5098 {
5099 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5100 mdk_rdev_t *rdev;
5101 dev_t dev = MKDEV(info->major,info->minor);
5102
5103 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5104 return -EOVERFLOW;
5105
5106 if (!mddev->raid_disks) {
5107 int err;
5108 /* expecting a device which has a superblock */
5109 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5110 if (IS_ERR(rdev)) {
5111 printk(KERN_WARNING
5112 "md: md_import_device returned %ld\n",
5113 PTR_ERR(rdev));
5114 return PTR_ERR(rdev);
5115 }
5116 if (!list_empty(&mddev->disks)) {
5117 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5118 mdk_rdev_t, same_set);
5119 err = super_types[mddev->major_version]
5120 .load_super(rdev, rdev0, mddev->minor_version);
5121 if (err < 0) {
5122 printk(KERN_WARNING
5123 "md: %s has different UUID to %s\n",
5124 bdevname(rdev->bdev,b),
5125 bdevname(rdev0->bdev,b2));
5126 export_rdev(rdev);
5127 return -EINVAL;
5128 }
5129 }
5130 err = bind_rdev_to_array(rdev, mddev);
5131 if (err)
5132 export_rdev(rdev);
5133 return err;
5134 }
5135
5136 /*
5137 * add_new_disk can be used once the array is assembled
5138 * to add "hot spares". They must already have a superblock
5139 * written
5140 */
5141 if (mddev->pers) {
5142 int err;
5143 if (!mddev->pers->hot_add_disk) {
5144 printk(KERN_WARNING
5145 "%s: personality does not support diskops!\n",
5146 mdname(mddev));
5147 return -EINVAL;
5148 }
5149 if (mddev->persistent)
5150 rdev = md_import_device(dev, mddev->major_version,
5151 mddev->minor_version);
5152 else
5153 rdev = md_import_device(dev, -1, -1);
5154 if (IS_ERR(rdev)) {
5155 printk(KERN_WARNING
5156 "md: md_import_device returned %ld\n",
5157 PTR_ERR(rdev));
5158 return PTR_ERR(rdev);
5159 }
5160 /* set save_raid_disk if appropriate */
5161 if (!mddev->persistent) {
5162 if (info->state & (1<<MD_DISK_SYNC) &&
5163 info->raid_disk < mddev->raid_disks)
5164 rdev->raid_disk = info->raid_disk;
5165 else
5166 rdev->raid_disk = -1;
5167 } else
5168 super_types[mddev->major_version].
5169 validate_super(mddev, rdev);
5170 rdev->saved_raid_disk = rdev->raid_disk;
5171
5172 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5173 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5174 set_bit(WriteMostly, &rdev->flags);
5175 else
5176 clear_bit(WriteMostly, &rdev->flags);
5177
5178 rdev->raid_disk = -1;
5179 err = bind_rdev_to_array(rdev, mddev);
5180 if (!err && !mddev->pers->hot_remove_disk) {
5181 /* If there is hot_add_disk but no hot_remove_disk
5182 * then added disks for geometry changes,
5183 * and should be added immediately.
5184 */
5185 super_types[mddev->major_version].
5186 validate_super(mddev, rdev);
5187 err = mddev->pers->hot_add_disk(mddev, rdev);
5188 if (err)
5189 unbind_rdev_from_array(rdev);
5190 }
5191 if (err)
5192 export_rdev(rdev);
5193 else
5194 sysfs_notify_dirent_safe(rdev->sysfs_state);
5195
5196 md_update_sb(mddev, 1);
5197 if (mddev->degraded)
5198 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5200 md_wakeup_thread(mddev->thread);
5201 return err;
5202 }
5203
5204 /* otherwise, add_new_disk is only allowed
5205 * for major_version==0 superblocks
5206 */
5207 if (mddev->major_version != 0) {
5208 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5209 mdname(mddev));
5210 return -EINVAL;
5211 }
5212
5213 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5214 int err;
5215 rdev = md_import_device(dev, -1, 0);
5216 if (IS_ERR(rdev)) {
5217 printk(KERN_WARNING
5218 "md: error, md_import_device() returned %ld\n",
5219 PTR_ERR(rdev));
5220 return PTR_ERR(rdev);
5221 }
5222 rdev->desc_nr = info->number;
5223 if (info->raid_disk < mddev->raid_disks)
5224 rdev->raid_disk = info->raid_disk;
5225 else
5226 rdev->raid_disk = -1;
5227
5228 if (rdev->raid_disk < mddev->raid_disks)
5229 if (info->state & (1<<MD_DISK_SYNC))
5230 set_bit(In_sync, &rdev->flags);
5231
5232 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5233 set_bit(WriteMostly, &rdev->flags);
5234
5235 if (!mddev->persistent) {
5236 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5237 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5238 } else
5239 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5240 rdev->sectors = rdev->sb_start;
5241
5242 err = bind_rdev_to_array(rdev, mddev);
5243 if (err) {
5244 export_rdev(rdev);
5245 return err;
5246 }
5247 }
5248
5249 return 0;
5250 }
5251
5252 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5253 {
5254 char b[BDEVNAME_SIZE];
5255 mdk_rdev_t *rdev;
5256
5257 rdev = find_rdev(mddev, dev);
5258 if (!rdev)
5259 return -ENXIO;
5260
5261 if (rdev->raid_disk >= 0)
5262 goto busy;
5263
5264 kick_rdev_from_array(rdev);
5265 md_update_sb(mddev, 1);
5266 md_new_event(mddev);
5267
5268 return 0;
5269 busy:
5270 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5271 bdevname(rdev->bdev,b), mdname(mddev));
5272 return -EBUSY;
5273 }
5274
5275 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5276 {
5277 char b[BDEVNAME_SIZE];
5278 int err;
5279 mdk_rdev_t *rdev;
5280
5281 if (!mddev->pers)
5282 return -ENODEV;
5283
5284 if (mddev->major_version != 0) {
5285 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5286 " version-0 superblocks.\n",
5287 mdname(mddev));
5288 return -EINVAL;
5289 }
5290 if (!mddev->pers->hot_add_disk) {
5291 printk(KERN_WARNING
5292 "%s: personality does not support diskops!\n",
5293 mdname(mddev));
5294 return -EINVAL;
5295 }
5296
5297 rdev = md_import_device(dev, -1, 0);
5298 if (IS_ERR(rdev)) {
5299 printk(KERN_WARNING
5300 "md: error, md_import_device() returned %ld\n",
5301 PTR_ERR(rdev));
5302 return -EINVAL;
5303 }
5304
5305 if (mddev->persistent)
5306 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5307 else
5308 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5309
5310 rdev->sectors = rdev->sb_start;
5311
5312 if (test_bit(Faulty, &rdev->flags)) {
5313 printk(KERN_WARNING
5314 "md: can not hot-add faulty %s disk to %s!\n",
5315 bdevname(rdev->bdev,b), mdname(mddev));
5316 err = -EINVAL;
5317 goto abort_export;
5318 }
5319 clear_bit(In_sync, &rdev->flags);
5320 rdev->desc_nr = -1;
5321 rdev->saved_raid_disk = -1;
5322 err = bind_rdev_to_array(rdev, mddev);
5323 if (err)
5324 goto abort_export;
5325
5326 /*
5327 * The rest should better be atomic, we can have disk failures
5328 * noticed in interrupt contexts ...
5329 */
5330
5331 rdev->raid_disk = -1;
5332
5333 md_update_sb(mddev, 1);
5334
5335 /*
5336 * Kick recovery, maybe this spare has to be added to the
5337 * array immediately.
5338 */
5339 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5340 md_wakeup_thread(mddev->thread);
5341 md_new_event(mddev);
5342 return 0;
5343
5344 abort_export:
5345 export_rdev(rdev);
5346 return err;
5347 }
5348
5349 static int set_bitmap_file(mddev_t *mddev, int fd)
5350 {
5351 int err;
5352
5353 if (mddev->pers) {
5354 if (!mddev->pers->quiesce)
5355 return -EBUSY;
5356 if (mddev->recovery || mddev->sync_thread)
5357 return -EBUSY;
5358 /* we should be able to change the bitmap.. */
5359 }
5360
5361
5362 if (fd >= 0) {
5363 if (mddev->bitmap)
5364 return -EEXIST; /* cannot add when bitmap is present */
5365 mddev->bitmap_info.file = fget(fd);
5366
5367 if (mddev->bitmap_info.file == NULL) {
5368 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5369 mdname(mddev));
5370 return -EBADF;
5371 }
5372
5373 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5374 if (err) {
5375 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5376 mdname(mddev));
5377 fput(mddev->bitmap_info.file);
5378 mddev->bitmap_info.file = NULL;
5379 return err;
5380 }
5381 mddev->bitmap_info.offset = 0; /* file overrides offset */
5382 } else if (mddev->bitmap == NULL)
5383 return -ENOENT; /* cannot remove what isn't there */
5384 err = 0;
5385 if (mddev->pers) {
5386 mddev->pers->quiesce(mddev, 1);
5387 if (fd >= 0) {
5388 err = bitmap_create(mddev);
5389 if (!err)
5390 err = bitmap_load(mddev);
5391 }
5392 if (fd < 0 || err) {
5393 bitmap_destroy(mddev);
5394 fd = -1; /* make sure to put the file */
5395 }
5396 mddev->pers->quiesce(mddev, 0);
5397 }
5398 if (fd < 0) {
5399 if (mddev->bitmap_info.file) {
5400 restore_bitmap_write_access(mddev->bitmap_info.file);
5401 fput(mddev->bitmap_info.file);
5402 }
5403 mddev->bitmap_info.file = NULL;
5404 }
5405
5406 return err;
5407 }
5408
5409 /*
5410 * set_array_info is used two different ways
5411 * The original usage is when creating a new array.
5412 * In this usage, raid_disks is > 0 and it together with
5413 * level, size, not_persistent,layout,chunksize determine the
5414 * shape of the array.
5415 * This will always create an array with a type-0.90.0 superblock.
5416 * The newer usage is when assembling an array.
5417 * In this case raid_disks will be 0, and the major_version field is
5418 * use to determine which style super-blocks are to be found on the devices.
5419 * The minor and patch _version numbers are also kept incase the
5420 * super_block handler wishes to interpret them.
5421 */
5422 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5423 {
5424
5425 if (info->raid_disks == 0) {
5426 /* just setting version number for superblock loading */
5427 if (info->major_version < 0 ||
5428 info->major_version >= ARRAY_SIZE(super_types) ||
5429 super_types[info->major_version].name == NULL) {
5430 /* maybe try to auto-load a module? */
5431 printk(KERN_INFO
5432 "md: superblock version %d not known\n",
5433 info->major_version);
5434 return -EINVAL;
5435 }
5436 mddev->major_version = info->major_version;
5437 mddev->minor_version = info->minor_version;
5438 mddev->patch_version = info->patch_version;
5439 mddev->persistent = !info->not_persistent;
5440 /* ensure mddev_put doesn't delete this now that there
5441 * is some minimal configuration.
5442 */
5443 mddev->ctime = get_seconds();
5444 return 0;
5445 }
5446 mddev->major_version = MD_MAJOR_VERSION;
5447 mddev->minor_version = MD_MINOR_VERSION;
5448 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5449 mddev->ctime = get_seconds();
5450
5451 mddev->level = info->level;
5452 mddev->clevel[0] = 0;
5453 mddev->dev_sectors = 2 * (sector_t)info->size;
5454 mddev->raid_disks = info->raid_disks;
5455 /* don't set md_minor, it is determined by which /dev/md* was
5456 * openned
5457 */
5458 if (info->state & (1<<MD_SB_CLEAN))
5459 mddev->recovery_cp = MaxSector;
5460 else
5461 mddev->recovery_cp = 0;
5462 mddev->persistent = ! info->not_persistent;
5463 mddev->external = 0;
5464
5465 mddev->layout = info->layout;
5466 mddev->chunk_sectors = info->chunk_size >> 9;
5467
5468 mddev->max_disks = MD_SB_DISKS;
5469
5470 if (mddev->persistent)
5471 mddev->flags = 0;
5472 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5473
5474 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5475 mddev->bitmap_info.offset = 0;
5476
5477 mddev->reshape_position = MaxSector;
5478
5479 /*
5480 * Generate a 128 bit UUID
5481 */
5482 get_random_bytes(mddev->uuid, 16);
5483
5484 mddev->new_level = mddev->level;
5485 mddev->new_chunk_sectors = mddev->chunk_sectors;
5486 mddev->new_layout = mddev->layout;
5487 mddev->delta_disks = 0;
5488
5489 return 0;
5490 }
5491
5492 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5493 {
5494 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5495
5496 if (mddev->external_size)
5497 return;
5498
5499 mddev->array_sectors = array_sectors;
5500 }
5501 EXPORT_SYMBOL(md_set_array_sectors);
5502
5503 static int update_size(mddev_t *mddev, sector_t num_sectors)
5504 {
5505 mdk_rdev_t *rdev;
5506 int rv;
5507 int fit = (num_sectors == 0);
5508
5509 if (mddev->pers->resize == NULL)
5510 return -EINVAL;
5511 /* The "num_sectors" is the number of sectors of each device that
5512 * is used. This can only make sense for arrays with redundancy.
5513 * linear and raid0 always use whatever space is available. We can only
5514 * consider changing this number if no resync or reconstruction is
5515 * happening, and if the new size is acceptable. It must fit before the
5516 * sb_start or, if that is <data_offset, it must fit before the size
5517 * of each device. If num_sectors is zero, we find the largest size
5518 * that fits.
5519
5520 */
5521 if (mddev->sync_thread)
5522 return -EBUSY;
5523 if (mddev->bitmap)
5524 /* Sorry, cannot grow a bitmap yet, just remove it,
5525 * grow, and re-add.
5526 */
5527 return -EBUSY;
5528 list_for_each_entry(rdev, &mddev->disks, same_set) {
5529 sector_t avail = rdev->sectors;
5530
5531 if (fit && (num_sectors == 0 || num_sectors > avail))
5532 num_sectors = avail;
5533 if (avail < num_sectors)
5534 return -ENOSPC;
5535 }
5536 rv = mddev->pers->resize(mddev, num_sectors);
5537 if (!rv)
5538 revalidate_disk(mddev->gendisk);
5539 return rv;
5540 }
5541
5542 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5543 {
5544 int rv;
5545 /* change the number of raid disks */
5546 if (mddev->pers->check_reshape == NULL)
5547 return -EINVAL;
5548 if (raid_disks <= 0 ||
5549 (mddev->max_disks && raid_disks >= mddev->max_disks))
5550 return -EINVAL;
5551 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5552 return -EBUSY;
5553 mddev->delta_disks = raid_disks - mddev->raid_disks;
5554
5555 rv = mddev->pers->check_reshape(mddev);
5556 return rv;
5557 }
5558
5559
5560 /*
5561 * update_array_info is used to change the configuration of an
5562 * on-line array.
5563 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5564 * fields in the info are checked against the array.
5565 * Any differences that cannot be handled will cause an error.
5566 * Normally, only one change can be managed at a time.
5567 */
5568 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5569 {
5570 int rv = 0;
5571 int cnt = 0;
5572 int state = 0;
5573
5574 /* calculate expected state,ignoring low bits */
5575 if (mddev->bitmap && mddev->bitmap_info.offset)
5576 state |= (1 << MD_SB_BITMAP_PRESENT);
5577
5578 if (mddev->major_version != info->major_version ||
5579 mddev->minor_version != info->minor_version ||
5580 /* mddev->patch_version != info->patch_version || */
5581 mddev->ctime != info->ctime ||
5582 mddev->level != info->level ||
5583 /* mddev->layout != info->layout || */
5584 !mddev->persistent != info->not_persistent||
5585 mddev->chunk_sectors != info->chunk_size >> 9 ||
5586 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5587 ((state^info->state) & 0xfffffe00)
5588 )
5589 return -EINVAL;
5590 /* Check there is only one change */
5591 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5592 cnt++;
5593 if (mddev->raid_disks != info->raid_disks)
5594 cnt++;
5595 if (mddev->layout != info->layout)
5596 cnt++;
5597 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5598 cnt++;
5599 if (cnt == 0)
5600 return 0;
5601 if (cnt > 1)
5602 return -EINVAL;
5603
5604 if (mddev->layout != info->layout) {
5605 /* Change layout
5606 * we don't need to do anything at the md level, the
5607 * personality will take care of it all.
5608 */
5609 if (mddev->pers->check_reshape == NULL)
5610 return -EINVAL;
5611 else {
5612 mddev->new_layout = info->layout;
5613 rv = mddev->pers->check_reshape(mddev);
5614 if (rv)
5615 mddev->new_layout = mddev->layout;
5616 return rv;
5617 }
5618 }
5619 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5620 rv = update_size(mddev, (sector_t)info->size * 2);
5621
5622 if (mddev->raid_disks != info->raid_disks)
5623 rv = update_raid_disks(mddev, info->raid_disks);
5624
5625 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5626 if (mddev->pers->quiesce == NULL)
5627 return -EINVAL;
5628 if (mddev->recovery || mddev->sync_thread)
5629 return -EBUSY;
5630 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5631 /* add the bitmap */
5632 if (mddev->bitmap)
5633 return -EEXIST;
5634 if (mddev->bitmap_info.default_offset == 0)
5635 return -EINVAL;
5636 mddev->bitmap_info.offset =
5637 mddev->bitmap_info.default_offset;
5638 mddev->pers->quiesce(mddev, 1);
5639 rv = bitmap_create(mddev);
5640 if (!rv)
5641 rv = bitmap_load(mddev);
5642 if (rv)
5643 bitmap_destroy(mddev);
5644 mddev->pers->quiesce(mddev, 0);
5645 } else {
5646 /* remove the bitmap */
5647 if (!mddev->bitmap)
5648 return -ENOENT;
5649 if (mddev->bitmap->file)
5650 return -EINVAL;
5651 mddev->pers->quiesce(mddev, 1);
5652 bitmap_destroy(mddev);
5653 mddev->pers->quiesce(mddev, 0);
5654 mddev->bitmap_info.offset = 0;
5655 }
5656 }
5657 md_update_sb(mddev, 1);
5658 return rv;
5659 }
5660
5661 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5662 {
5663 mdk_rdev_t *rdev;
5664
5665 if (mddev->pers == NULL)
5666 return -ENODEV;
5667
5668 rdev = find_rdev(mddev, dev);
5669 if (!rdev)
5670 return -ENODEV;
5671
5672 md_error(mddev, rdev);
5673 return 0;
5674 }
5675
5676 /*
5677 * We have a problem here : there is no easy way to give a CHS
5678 * virtual geometry. We currently pretend that we have a 2 heads
5679 * 4 sectors (with a BIG number of cylinders...). This drives
5680 * dosfs just mad... ;-)
5681 */
5682 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5683 {
5684 mddev_t *mddev = bdev->bd_disk->private_data;
5685
5686 geo->heads = 2;
5687 geo->sectors = 4;
5688 geo->cylinders = mddev->array_sectors / 8;
5689 return 0;
5690 }
5691
5692 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5693 unsigned int cmd, unsigned long arg)
5694 {
5695 int err = 0;
5696 void __user *argp = (void __user *)arg;
5697 mddev_t *mddev = NULL;
5698 int ro;
5699
5700 if (!capable(CAP_SYS_ADMIN))
5701 return -EACCES;
5702
5703 /*
5704 * Commands dealing with the RAID driver but not any
5705 * particular array:
5706 */
5707 switch (cmd)
5708 {
5709 case RAID_VERSION:
5710 err = get_version(argp);
5711 goto done;
5712
5713 case PRINT_RAID_DEBUG:
5714 err = 0;
5715 md_print_devices();
5716 goto done;
5717
5718 #ifndef MODULE
5719 case RAID_AUTORUN:
5720 err = 0;
5721 autostart_arrays(arg);
5722 goto done;
5723 #endif
5724 default:;
5725 }
5726
5727 /*
5728 * Commands creating/starting a new array:
5729 */
5730
5731 mddev = bdev->bd_disk->private_data;
5732
5733 if (!mddev) {
5734 BUG();
5735 goto abort;
5736 }
5737
5738 err = mddev_lock(mddev);
5739 if (err) {
5740 printk(KERN_INFO
5741 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5742 err, cmd);
5743 goto abort;
5744 }
5745
5746 switch (cmd)
5747 {
5748 case SET_ARRAY_INFO:
5749 {
5750 mdu_array_info_t info;
5751 if (!arg)
5752 memset(&info, 0, sizeof(info));
5753 else if (copy_from_user(&info, argp, sizeof(info))) {
5754 err = -EFAULT;
5755 goto abort_unlock;
5756 }
5757 if (mddev->pers) {
5758 err = update_array_info(mddev, &info);
5759 if (err) {
5760 printk(KERN_WARNING "md: couldn't update"
5761 " array info. %d\n", err);
5762 goto abort_unlock;
5763 }
5764 goto done_unlock;
5765 }
5766 if (!list_empty(&mddev->disks)) {
5767 printk(KERN_WARNING
5768 "md: array %s already has disks!\n",
5769 mdname(mddev));
5770 err = -EBUSY;
5771 goto abort_unlock;
5772 }
5773 if (mddev->raid_disks) {
5774 printk(KERN_WARNING
5775 "md: array %s already initialised!\n",
5776 mdname(mddev));
5777 err = -EBUSY;
5778 goto abort_unlock;
5779 }
5780 err = set_array_info(mddev, &info);
5781 if (err) {
5782 printk(KERN_WARNING "md: couldn't set"
5783 " array info. %d\n", err);
5784 goto abort_unlock;
5785 }
5786 }
5787 goto done_unlock;
5788
5789 default:;
5790 }
5791
5792 /*
5793 * Commands querying/configuring an existing array:
5794 */
5795 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5796 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5797 if ((!mddev->raid_disks && !mddev->external)
5798 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5799 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5800 && cmd != GET_BITMAP_FILE) {
5801 err = -ENODEV;
5802 goto abort_unlock;
5803 }
5804
5805 /*
5806 * Commands even a read-only array can execute:
5807 */
5808 switch (cmd)
5809 {
5810 case GET_ARRAY_INFO:
5811 err = get_array_info(mddev, argp);
5812 goto done_unlock;
5813
5814 case GET_BITMAP_FILE:
5815 err = get_bitmap_file(mddev, argp);
5816 goto done_unlock;
5817
5818 case GET_DISK_INFO:
5819 err = get_disk_info(mddev, argp);
5820 goto done_unlock;
5821
5822 case RESTART_ARRAY_RW:
5823 err = restart_array(mddev);
5824 goto done_unlock;
5825
5826 case STOP_ARRAY:
5827 err = do_md_stop(mddev, 0, 1);
5828 goto done_unlock;
5829
5830 case STOP_ARRAY_RO:
5831 err = md_set_readonly(mddev, 1);
5832 goto done_unlock;
5833
5834 case BLKROSET:
5835 if (get_user(ro, (int __user *)(arg))) {
5836 err = -EFAULT;
5837 goto done_unlock;
5838 }
5839 err = -EINVAL;
5840
5841 /* if the bdev is going readonly the value of mddev->ro
5842 * does not matter, no writes are coming
5843 */
5844 if (ro)
5845 goto done_unlock;
5846
5847 /* are we are already prepared for writes? */
5848 if (mddev->ro != 1)
5849 goto done_unlock;
5850
5851 /* transitioning to readauto need only happen for
5852 * arrays that call md_write_start
5853 */
5854 if (mddev->pers) {
5855 err = restart_array(mddev);
5856 if (err == 0) {
5857 mddev->ro = 2;
5858 set_disk_ro(mddev->gendisk, 0);
5859 }
5860 }
5861 goto done_unlock;
5862 }
5863
5864 /*
5865 * The remaining ioctls are changing the state of the
5866 * superblock, so we do not allow them on read-only arrays.
5867 * However non-MD ioctls (e.g. get-size) will still come through
5868 * here and hit the 'default' below, so only disallow
5869 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5870 */
5871 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5872 if (mddev->ro == 2) {
5873 mddev->ro = 0;
5874 sysfs_notify_dirent_safe(mddev->sysfs_state);
5875 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5876 md_wakeup_thread(mddev->thread);
5877 } else {
5878 err = -EROFS;
5879 goto abort_unlock;
5880 }
5881 }
5882
5883 switch (cmd)
5884 {
5885 case ADD_NEW_DISK:
5886 {
5887 mdu_disk_info_t info;
5888 if (copy_from_user(&info, argp, sizeof(info)))
5889 err = -EFAULT;
5890 else
5891 err = add_new_disk(mddev, &info);
5892 goto done_unlock;
5893 }
5894
5895 case HOT_REMOVE_DISK:
5896 err = hot_remove_disk(mddev, new_decode_dev(arg));
5897 goto done_unlock;
5898
5899 case HOT_ADD_DISK:
5900 err = hot_add_disk(mddev, new_decode_dev(arg));
5901 goto done_unlock;
5902
5903 case SET_DISK_FAULTY:
5904 err = set_disk_faulty(mddev, new_decode_dev(arg));
5905 goto done_unlock;
5906
5907 case RUN_ARRAY:
5908 err = do_md_run(mddev);
5909 goto done_unlock;
5910
5911 case SET_BITMAP_FILE:
5912 err = set_bitmap_file(mddev, (int)arg);
5913 goto done_unlock;
5914
5915 default:
5916 err = -EINVAL;
5917 goto abort_unlock;
5918 }
5919
5920 done_unlock:
5921 abort_unlock:
5922 if (mddev->hold_active == UNTIL_IOCTL &&
5923 err != -EINVAL)
5924 mddev->hold_active = 0;
5925 mddev_unlock(mddev);
5926
5927 return err;
5928 done:
5929 if (err)
5930 MD_BUG();
5931 abort:
5932 return err;
5933 }
5934 #ifdef CONFIG_COMPAT
5935 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5936 unsigned int cmd, unsigned long arg)
5937 {
5938 switch (cmd) {
5939 case HOT_REMOVE_DISK:
5940 case HOT_ADD_DISK:
5941 case SET_DISK_FAULTY:
5942 case SET_BITMAP_FILE:
5943 /* These take in integer arg, do not convert */
5944 break;
5945 default:
5946 arg = (unsigned long)compat_ptr(arg);
5947 break;
5948 }
5949
5950 return md_ioctl(bdev, mode, cmd, arg);
5951 }
5952 #endif /* CONFIG_COMPAT */
5953
5954 static int md_open(struct block_device *bdev, fmode_t mode)
5955 {
5956 /*
5957 * Succeed if we can lock the mddev, which confirms that
5958 * it isn't being stopped right now.
5959 */
5960 mddev_t *mddev = mddev_find(bdev->bd_dev);
5961 int err;
5962
5963 if (mddev->gendisk != bdev->bd_disk) {
5964 /* we are racing with mddev_put which is discarding this
5965 * bd_disk.
5966 */
5967 mddev_put(mddev);
5968 /* Wait until bdev->bd_disk is definitely gone */
5969 flush_scheduled_work();
5970 /* Then retry the open from the top */
5971 return -ERESTARTSYS;
5972 }
5973 BUG_ON(mddev != bdev->bd_disk->private_data);
5974
5975 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5976 goto out;
5977
5978 err = 0;
5979 atomic_inc(&mddev->openers);
5980 mutex_unlock(&mddev->open_mutex);
5981
5982 check_disk_size_change(mddev->gendisk, bdev);
5983 out:
5984 return err;
5985 }
5986
5987 static int md_release(struct gendisk *disk, fmode_t mode)
5988 {
5989 mddev_t *mddev = disk->private_data;
5990
5991 BUG_ON(!mddev);
5992 atomic_dec(&mddev->openers);
5993 mddev_put(mddev);
5994
5995 return 0;
5996 }
5997 static const struct block_device_operations md_fops =
5998 {
5999 .owner = THIS_MODULE,
6000 .open = md_open,
6001 .release = md_release,
6002 .ioctl = md_ioctl,
6003 #ifdef CONFIG_COMPAT
6004 .compat_ioctl = md_compat_ioctl,
6005 #endif
6006 .getgeo = md_getgeo,
6007 };
6008
6009 static int md_thread(void * arg)
6010 {
6011 mdk_thread_t *thread = arg;
6012
6013 /*
6014 * md_thread is a 'system-thread', it's priority should be very
6015 * high. We avoid resource deadlocks individually in each
6016 * raid personality. (RAID5 does preallocation) We also use RR and
6017 * the very same RT priority as kswapd, thus we will never get
6018 * into a priority inversion deadlock.
6019 *
6020 * we definitely have to have equal or higher priority than
6021 * bdflush, otherwise bdflush will deadlock if there are too
6022 * many dirty RAID5 blocks.
6023 */
6024
6025 allow_signal(SIGKILL);
6026 while (!kthread_should_stop()) {
6027
6028 /* We need to wait INTERRUPTIBLE so that
6029 * we don't add to the load-average.
6030 * That means we need to be sure no signals are
6031 * pending
6032 */
6033 if (signal_pending(current))
6034 flush_signals(current);
6035
6036 wait_event_interruptible_timeout
6037 (thread->wqueue,
6038 test_bit(THREAD_WAKEUP, &thread->flags)
6039 || kthread_should_stop(),
6040 thread->timeout);
6041
6042 clear_bit(THREAD_WAKEUP, &thread->flags);
6043
6044 thread->run(thread->mddev);
6045 }
6046
6047 return 0;
6048 }
6049
6050 void md_wakeup_thread(mdk_thread_t *thread)
6051 {
6052 if (thread) {
6053 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6054 set_bit(THREAD_WAKEUP, &thread->flags);
6055 wake_up(&thread->wqueue);
6056 }
6057 }
6058
6059 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6060 const char *name)
6061 {
6062 mdk_thread_t *thread;
6063
6064 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6065 if (!thread)
6066 return NULL;
6067
6068 init_waitqueue_head(&thread->wqueue);
6069
6070 thread->run = run;
6071 thread->mddev = mddev;
6072 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6073 thread->tsk = kthread_run(md_thread, thread,
6074 "%s_%s",
6075 mdname(thread->mddev),
6076 name ?: mddev->pers->name);
6077 if (IS_ERR(thread->tsk)) {
6078 kfree(thread);
6079 return NULL;
6080 }
6081 return thread;
6082 }
6083
6084 void md_unregister_thread(mdk_thread_t *thread)
6085 {
6086 if (!thread)
6087 return;
6088 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6089
6090 kthread_stop(thread->tsk);
6091 kfree(thread);
6092 }
6093
6094 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6095 {
6096 if (!mddev) {
6097 MD_BUG();
6098 return;
6099 }
6100
6101 if (!rdev || test_bit(Faulty, &rdev->flags))
6102 return;
6103
6104 if (mddev->external)
6105 set_bit(Blocked, &rdev->flags);
6106 /*
6107 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6108 mdname(mddev),
6109 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6110 __builtin_return_address(0),__builtin_return_address(1),
6111 __builtin_return_address(2),__builtin_return_address(3));
6112 */
6113 if (!mddev->pers)
6114 return;
6115 if (!mddev->pers->error_handler)
6116 return;
6117 mddev->pers->error_handler(mddev,rdev);
6118 if (mddev->degraded)
6119 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6120 sysfs_notify_dirent_safe(rdev->sysfs_state);
6121 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6122 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6123 md_wakeup_thread(mddev->thread);
6124 if (mddev->event_work.func)
6125 schedule_work(&mddev->event_work);
6126 md_new_event_inintr(mddev);
6127 }
6128
6129 /* seq_file implementation /proc/mdstat */
6130
6131 static void status_unused(struct seq_file *seq)
6132 {
6133 int i = 0;
6134 mdk_rdev_t *rdev;
6135
6136 seq_printf(seq, "unused devices: ");
6137
6138 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6139 char b[BDEVNAME_SIZE];
6140 i++;
6141 seq_printf(seq, "%s ",
6142 bdevname(rdev->bdev,b));
6143 }
6144 if (!i)
6145 seq_printf(seq, "<none>");
6146
6147 seq_printf(seq, "\n");
6148 }
6149
6150
6151 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6152 {
6153 sector_t max_sectors, resync, res;
6154 unsigned long dt, db;
6155 sector_t rt;
6156 int scale;
6157 unsigned int per_milli;
6158
6159 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6160
6161 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6162 max_sectors = mddev->resync_max_sectors;
6163 else
6164 max_sectors = mddev->dev_sectors;
6165
6166 /*
6167 * Should not happen.
6168 */
6169 if (!max_sectors) {
6170 MD_BUG();
6171 return;
6172 }
6173 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6174 * in a sector_t, and (max_sectors>>scale) will fit in a
6175 * u32, as those are the requirements for sector_div.
6176 * Thus 'scale' must be at least 10
6177 */
6178 scale = 10;
6179 if (sizeof(sector_t) > sizeof(unsigned long)) {
6180 while ( max_sectors/2 > (1ULL<<(scale+32)))
6181 scale++;
6182 }
6183 res = (resync>>scale)*1000;
6184 sector_div(res, (u32)((max_sectors>>scale)+1));
6185
6186 per_milli = res;
6187 {
6188 int i, x = per_milli/50, y = 20-x;
6189 seq_printf(seq, "[");
6190 for (i = 0; i < x; i++)
6191 seq_printf(seq, "=");
6192 seq_printf(seq, ">");
6193 for (i = 0; i < y; i++)
6194 seq_printf(seq, ".");
6195 seq_printf(seq, "] ");
6196 }
6197 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6198 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6199 "reshape" :
6200 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6201 "check" :
6202 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6203 "resync" : "recovery"))),
6204 per_milli/10, per_milli % 10,
6205 (unsigned long long) resync/2,
6206 (unsigned long long) max_sectors/2);
6207
6208 /*
6209 * dt: time from mark until now
6210 * db: blocks written from mark until now
6211 * rt: remaining time
6212 *
6213 * rt is a sector_t, so could be 32bit or 64bit.
6214 * So we divide before multiply in case it is 32bit and close
6215 * to the limit.
6216 * We scale the divisor (db) by 32 to avoid loosing precision
6217 * near the end of resync when the number of remaining sectors
6218 * is close to 'db'.
6219 * We then divide rt by 32 after multiplying by db to compensate.
6220 * The '+1' avoids division by zero if db is very small.
6221 */
6222 dt = ((jiffies - mddev->resync_mark) / HZ);
6223 if (!dt) dt++;
6224 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6225 - mddev->resync_mark_cnt;
6226
6227 rt = max_sectors - resync; /* number of remaining sectors */
6228 sector_div(rt, db/32+1);
6229 rt *= dt;
6230 rt >>= 5;
6231
6232 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6233 ((unsigned long)rt % 60)/6);
6234
6235 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6236 }
6237
6238 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6239 {
6240 struct list_head *tmp;
6241 loff_t l = *pos;
6242 mddev_t *mddev;
6243
6244 if (l >= 0x10000)
6245 return NULL;
6246 if (!l--)
6247 /* header */
6248 return (void*)1;
6249
6250 spin_lock(&all_mddevs_lock);
6251 list_for_each(tmp,&all_mddevs)
6252 if (!l--) {
6253 mddev = list_entry(tmp, mddev_t, all_mddevs);
6254 mddev_get(mddev);
6255 spin_unlock(&all_mddevs_lock);
6256 return mddev;
6257 }
6258 spin_unlock(&all_mddevs_lock);
6259 if (!l--)
6260 return (void*)2;/* tail */
6261 return NULL;
6262 }
6263
6264 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6265 {
6266 struct list_head *tmp;
6267 mddev_t *next_mddev, *mddev = v;
6268
6269 ++*pos;
6270 if (v == (void*)2)
6271 return NULL;
6272
6273 spin_lock(&all_mddevs_lock);
6274 if (v == (void*)1)
6275 tmp = all_mddevs.next;
6276 else
6277 tmp = mddev->all_mddevs.next;
6278 if (tmp != &all_mddevs)
6279 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6280 else {
6281 next_mddev = (void*)2;
6282 *pos = 0x10000;
6283 }
6284 spin_unlock(&all_mddevs_lock);
6285
6286 if (v != (void*)1)
6287 mddev_put(mddev);
6288 return next_mddev;
6289
6290 }
6291
6292 static void md_seq_stop(struct seq_file *seq, void *v)
6293 {
6294 mddev_t *mddev = v;
6295
6296 if (mddev && v != (void*)1 && v != (void*)2)
6297 mddev_put(mddev);
6298 }
6299
6300 struct mdstat_info {
6301 int event;
6302 };
6303
6304 static int md_seq_show(struct seq_file *seq, void *v)
6305 {
6306 mddev_t *mddev = v;
6307 sector_t sectors;
6308 mdk_rdev_t *rdev;
6309 struct mdstat_info *mi = seq->private;
6310 struct bitmap *bitmap;
6311
6312 if (v == (void*)1) {
6313 struct mdk_personality *pers;
6314 seq_printf(seq, "Personalities : ");
6315 spin_lock(&pers_lock);
6316 list_for_each_entry(pers, &pers_list, list)
6317 seq_printf(seq, "[%s] ", pers->name);
6318
6319 spin_unlock(&pers_lock);
6320 seq_printf(seq, "\n");
6321 mi->event = atomic_read(&md_event_count);
6322 return 0;
6323 }
6324 if (v == (void*)2) {
6325 status_unused(seq);
6326 return 0;
6327 }
6328
6329 if (mddev_lock(mddev) < 0)
6330 return -EINTR;
6331
6332 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6333 seq_printf(seq, "%s : %sactive", mdname(mddev),
6334 mddev->pers ? "" : "in");
6335 if (mddev->pers) {
6336 if (mddev->ro==1)
6337 seq_printf(seq, " (read-only)");
6338 if (mddev->ro==2)
6339 seq_printf(seq, " (auto-read-only)");
6340 seq_printf(seq, " %s", mddev->pers->name);
6341 }
6342
6343 sectors = 0;
6344 list_for_each_entry(rdev, &mddev->disks, same_set) {
6345 char b[BDEVNAME_SIZE];
6346 seq_printf(seq, " %s[%d]",
6347 bdevname(rdev->bdev,b), rdev->desc_nr);
6348 if (test_bit(WriteMostly, &rdev->flags))
6349 seq_printf(seq, "(W)");
6350 if (test_bit(Faulty, &rdev->flags)) {
6351 seq_printf(seq, "(F)");
6352 continue;
6353 } else if (rdev->raid_disk < 0)
6354 seq_printf(seq, "(S)"); /* spare */
6355 sectors += rdev->sectors;
6356 }
6357
6358 if (!list_empty(&mddev->disks)) {
6359 if (mddev->pers)
6360 seq_printf(seq, "\n %llu blocks",
6361 (unsigned long long)
6362 mddev->array_sectors / 2);
6363 else
6364 seq_printf(seq, "\n %llu blocks",
6365 (unsigned long long)sectors / 2);
6366 }
6367 if (mddev->persistent) {
6368 if (mddev->major_version != 0 ||
6369 mddev->minor_version != 90) {
6370 seq_printf(seq," super %d.%d",
6371 mddev->major_version,
6372 mddev->minor_version);
6373 }
6374 } else if (mddev->external)
6375 seq_printf(seq, " super external:%s",
6376 mddev->metadata_type);
6377 else
6378 seq_printf(seq, " super non-persistent");
6379
6380 if (mddev->pers) {
6381 mddev->pers->status(seq, mddev);
6382 seq_printf(seq, "\n ");
6383 if (mddev->pers->sync_request) {
6384 if (mddev->curr_resync > 2) {
6385 status_resync(seq, mddev);
6386 seq_printf(seq, "\n ");
6387 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6388 seq_printf(seq, "\tresync=DELAYED\n ");
6389 else if (mddev->recovery_cp < MaxSector)
6390 seq_printf(seq, "\tresync=PENDING\n ");
6391 }
6392 } else
6393 seq_printf(seq, "\n ");
6394
6395 if ((bitmap = mddev->bitmap)) {
6396 unsigned long chunk_kb;
6397 unsigned long flags;
6398 spin_lock_irqsave(&bitmap->lock, flags);
6399 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6400 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6401 "%lu%s chunk",
6402 bitmap->pages - bitmap->missing_pages,
6403 bitmap->pages,
6404 (bitmap->pages - bitmap->missing_pages)
6405 << (PAGE_SHIFT - 10),
6406 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6407 chunk_kb ? "KB" : "B");
6408 if (bitmap->file) {
6409 seq_printf(seq, ", file: ");
6410 seq_path(seq, &bitmap->file->f_path, " \t\n");
6411 }
6412
6413 seq_printf(seq, "\n");
6414 spin_unlock_irqrestore(&bitmap->lock, flags);
6415 }
6416
6417 seq_printf(seq, "\n");
6418 }
6419 mddev_unlock(mddev);
6420
6421 return 0;
6422 }
6423
6424 static const struct seq_operations md_seq_ops = {
6425 .start = md_seq_start,
6426 .next = md_seq_next,
6427 .stop = md_seq_stop,
6428 .show = md_seq_show,
6429 };
6430
6431 static int md_seq_open(struct inode *inode, struct file *file)
6432 {
6433 int error;
6434 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6435 if (mi == NULL)
6436 return -ENOMEM;
6437
6438 error = seq_open(file, &md_seq_ops);
6439 if (error)
6440 kfree(mi);
6441 else {
6442 struct seq_file *p = file->private_data;
6443 p->private = mi;
6444 mi->event = atomic_read(&md_event_count);
6445 }
6446 return error;
6447 }
6448
6449 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6450 {
6451 struct seq_file *m = filp->private_data;
6452 struct mdstat_info *mi = m->private;
6453 int mask;
6454
6455 poll_wait(filp, &md_event_waiters, wait);
6456
6457 /* always allow read */
6458 mask = POLLIN | POLLRDNORM;
6459
6460 if (mi->event != atomic_read(&md_event_count))
6461 mask |= POLLERR | POLLPRI;
6462 return mask;
6463 }
6464
6465 static const struct file_operations md_seq_fops = {
6466 .owner = THIS_MODULE,
6467 .open = md_seq_open,
6468 .read = seq_read,
6469 .llseek = seq_lseek,
6470 .release = seq_release_private,
6471 .poll = mdstat_poll,
6472 };
6473
6474 int register_md_personality(struct mdk_personality *p)
6475 {
6476 spin_lock(&pers_lock);
6477 list_add_tail(&p->list, &pers_list);
6478 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6479 spin_unlock(&pers_lock);
6480 return 0;
6481 }
6482
6483 int unregister_md_personality(struct mdk_personality *p)
6484 {
6485 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6486 spin_lock(&pers_lock);
6487 list_del_init(&p->list);
6488 spin_unlock(&pers_lock);
6489 return 0;
6490 }
6491
6492 static int is_mddev_idle(mddev_t *mddev, int init)
6493 {
6494 mdk_rdev_t * rdev;
6495 int idle;
6496 int curr_events;
6497
6498 idle = 1;
6499 rcu_read_lock();
6500 rdev_for_each_rcu(rdev, mddev) {
6501 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6502 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6503 (int)part_stat_read(&disk->part0, sectors[1]) -
6504 atomic_read(&disk->sync_io);
6505 /* sync IO will cause sync_io to increase before the disk_stats
6506 * as sync_io is counted when a request starts, and
6507 * disk_stats is counted when it completes.
6508 * So resync activity will cause curr_events to be smaller than
6509 * when there was no such activity.
6510 * non-sync IO will cause disk_stat to increase without
6511 * increasing sync_io so curr_events will (eventually)
6512 * be larger than it was before. Once it becomes
6513 * substantially larger, the test below will cause
6514 * the array to appear non-idle, and resync will slow
6515 * down.
6516 * If there is a lot of outstanding resync activity when
6517 * we set last_event to curr_events, then all that activity
6518 * completing might cause the array to appear non-idle
6519 * and resync will be slowed down even though there might
6520 * not have been non-resync activity. This will only
6521 * happen once though. 'last_events' will soon reflect
6522 * the state where there is little or no outstanding
6523 * resync requests, and further resync activity will
6524 * always make curr_events less than last_events.
6525 *
6526 */
6527 if (init || curr_events - rdev->last_events > 64) {
6528 rdev->last_events = curr_events;
6529 idle = 0;
6530 }
6531 }
6532 rcu_read_unlock();
6533 return idle;
6534 }
6535
6536 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6537 {
6538 /* another "blocks" (512byte) blocks have been synced */
6539 atomic_sub(blocks, &mddev->recovery_active);
6540 wake_up(&mddev->recovery_wait);
6541 if (!ok) {
6542 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6543 md_wakeup_thread(mddev->thread);
6544 // stop recovery, signal do_sync ....
6545 }
6546 }
6547
6548
6549 /* md_write_start(mddev, bi)
6550 * If we need to update some array metadata (e.g. 'active' flag
6551 * in superblock) before writing, schedule a superblock update
6552 * and wait for it to complete.
6553 */
6554 void md_write_start(mddev_t *mddev, struct bio *bi)
6555 {
6556 int did_change = 0;
6557 if (bio_data_dir(bi) != WRITE)
6558 return;
6559
6560 BUG_ON(mddev->ro == 1);
6561 if (mddev->ro == 2) {
6562 /* need to switch to read/write */
6563 mddev->ro = 0;
6564 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6565 md_wakeup_thread(mddev->thread);
6566 md_wakeup_thread(mddev->sync_thread);
6567 did_change = 1;
6568 }
6569 atomic_inc(&mddev->writes_pending);
6570 if (mddev->safemode == 1)
6571 mddev->safemode = 0;
6572 if (mddev->in_sync) {
6573 spin_lock_irq(&mddev->write_lock);
6574 if (mddev->in_sync) {
6575 mddev->in_sync = 0;
6576 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6577 md_wakeup_thread(mddev->thread);
6578 did_change = 1;
6579 }
6580 spin_unlock_irq(&mddev->write_lock);
6581 }
6582 if (did_change)
6583 sysfs_notify_dirent_safe(mddev->sysfs_state);
6584 wait_event(mddev->sb_wait,
6585 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6586 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6587 }
6588
6589 void md_write_end(mddev_t *mddev)
6590 {
6591 if (atomic_dec_and_test(&mddev->writes_pending)) {
6592 if (mddev->safemode == 2)
6593 md_wakeup_thread(mddev->thread);
6594 else if (mddev->safemode_delay)
6595 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6596 }
6597 }
6598
6599 /* md_allow_write(mddev)
6600 * Calling this ensures that the array is marked 'active' so that writes
6601 * may proceed without blocking. It is important to call this before
6602 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6603 * Must be called with mddev_lock held.
6604 *
6605 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6606 * is dropped, so return -EAGAIN after notifying userspace.
6607 */
6608 int md_allow_write(mddev_t *mddev)
6609 {
6610 if (!mddev->pers)
6611 return 0;
6612 if (mddev->ro)
6613 return 0;
6614 if (!mddev->pers->sync_request)
6615 return 0;
6616
6617 spin_lock_irq(&mddev->write_lock);
6618 if (mddev->in_sync) {
6619 mddev->in_sync = 0;
6620 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6621 if (mddev->safemode_delay &&
6622 mddev->safemode == 0)
6623 mddev->safemode = 1;
6624 spin_unlock_irq(&mddev->write_lock);
6625 md_update_sb(mddev, 0);
6626 sysfs_notify_dirent_safe(mddev->sysfs_state);
6627 } else
6628 spin_unlock_irq(&mddev->write_lock);
6629
6630 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6631 return -EAGAIN;
6632 else
6633 return 0;
6634 }
6635 EXPORT_SYMBOL_GPL(md_allow_write);
6636
6637 void md_unplug(mddev_t *mddev)
6638 {
6639 if (mddev->queue)
6640 blk_unplug(mddev->queue);
6641 if (mddev->plug)
6642 mddev->plug->unplug_fn(mddev->plug);
6643 }
6644
6645 #define SYNC_MARKS 10
6646 #define SYNC_MARK_STEP (3*HZ)
6647 void md_do_sync(mddev_t *mddev)
6648 {
6649 mddev_t *mddev2;
6650 unsigned int currspeed = 0,
6651 window;
6652 sector_t max_sectors,j, io_sectors;
6653 unsigned long mark[SYNC_MARKS];
6654 sector_t mark_cnt[SYNC_MARKS];
6655 int last_mark,m;
6656 struct list_head *tmp;
6657 sector_t last_check;
6658 int skipped = 0;
6659 mdk_rdev_t *rdev;
6660 char *desc;
6661
6662 /* just incase thread restarts... */
6663 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6664 return;
6665 if (mddev->ro) /* never try to sync a read-only array */
6666 return;
6667
6668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6669 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6670 desc = "data-check";
6671 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6672 desc = "requested-resync";
6673 else
6674 desc = "resync";
6675 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6676 desc = "reshape";
6677 else
6678 desc = "recovery";
6679
6680 /* we overload curr_resync somewhat here.
6681 * 0 == not engaged in resync at all
6682 * 2 == checking that there is no conflict with another sync
6683 * 1 == like 2, but have yielded to allow conflicting resync to
6684 * commense
6685 * other == active in resync - this many blocks
6686 *
6687 * Before starting a resync we must have set curr_resync to
6688 * 2, and then checked that every "conflicting" array has curr_resync
6689 * less than ours. When we find one that is the same or higher
6690 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6691 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6692 * This will mean we have to start checking from the beginning again.
6693 *
6694 */
6695
6696 do {
6697 mddev->curr_resync = 2;
6698
6699 try_again:
6700 if (kthread_should_stop())
6701 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6702
6703 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6704 goto skip;
6705 for_each_mddev(mddev2, tmp) {
6706 if (mddev2 == mddev)
6707 continue;
6708 if (!mddev->parallel_resync
6709 && mddev2->curr_resync
6710 && match_mddev_units(mddev, mddev2)) {
6711 DEFINE_WAIT(wq);
6712 if (mddev < mddev2 && mddev->curr_resync == 2) {
6713 /* arbitrarily yield */
6714 mddev->curr_resync = 1;
6715 wake_up(&resync_wait);
6716 }
6717 if (mddev > mddev2 && mddev->curr_resync == 1)
6718 /* no need to wait here, we can wait the next
6719 * time 'round when curr_resync == 2
6720 */
6721 continue;
6722 /* We need to wait 'interruptible' so as not to
6723 * contribute to the load average, and not to
6724 * be caught by 'softlockup'
6725 */
6726 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6727 if (!kthread_should_stop() &&
6728 mddev2->curr_resync >= mddev->curr_resync) {
6729 printk(KERN_INFO "md: delaying %s of %s"
6730 " until %s has finished (they"
6731 " share one or more physical units)\n",
6732 desc, mdname(mddev), mdname(mddev2));
6733 mddev_put(mddev2);
6734 if (signal_pending(current))
6735 flush_signals(current);
6736 schedule();
6737 finish_wait(&resync_wait, &wq);
6738 goto try_again;
6739 }
6740 finish_wait(&resync_wait, &wq);
6741 }
6742 }
6743 } while (mddev->curr_resync < 2);
6744
6745 j = 0;
6746 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6747 /* resync follows the size requested by the personality,
6748 * which defaults to physical size, but can be virtual size
6749 */
6750 max_sectors = mddev->resync_max_sectors;
6751 mddev->resync_mismatches = 0;
6752 /* we don't use the checkpoint if there's a bitmap */
6753 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6754 j = mddev->resync_min;
6755 else if (!mddev->bitmap)
6756 j = mddev->recovery_cp;
6757
6758 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6759 max_sectors = mddev->dev_sectors;
6760 else {
6761 /* recovery follows the physical size of devices */
6762 max_sectors = mddev->dev_sectors;
6763 j = MaxSector;
6764 rcu_read_lock();
6765 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6766 if (rdev->raid_disk >= 0 &&
6767 !test_bit(Faulty, &rdev->flags) &&
6768 !test_bit(In_sync, &rdev->flags) &&
6769 rdev->recovery_offset < j)
6770 j = rdev->recovery_offset;
6771 rcu_read_unlock();
6772 }
6773
6774 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6775 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6776 " %d KB/sec/disk.\n", speed_min(mddev));
6777 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6778 "(but not more than %d KB/sec) for %s.\n",
6779 speed_max(mddev), desc);
6780
6781 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6782
6783 io_sectors = 0;
6784 for (m = 0; m < SYNC_MARKS; m++) {
6785 mark[m] = jiffies;
6786 mark_cnt[m] = io_sectors;
6787 }
6788 last_mark = 0;
6789 mddev->resync_mark = mark[last_mark];
6790 mddev->resync_mark_cnt = mark_cnt[last_mark];
6791
6792 /*
6793 * Tune reconstruction:
6794 */
6795 window = 32*(PAGE_SIZE/512);
6796 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6797 window/2,(unsigned long long) max_sectors/2);
6798
6799 atomic_set(&mddev->recovery_active, 0);
6800 last_check = 0;
6801
6802 if (j>2) {
6803 printk(KERN_INFO
6804 "md: resuming %s of %s from checkpoint.\n",
6805 desc, mdname(mddev));
6806 mddev->curr_resync = j;
6807 }
6808 mddev->curr_resync_completed = mddev->curr_resync;
6809
6810 while (j < max_sectors) {
6811 sector_t sectors;
6812
6813 skipped = 0;
6814
6815 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6816 ((mddev->curr_resync > mddev->curr_resync_completed &&
6817 (mddev->curr_resync - mddev->curr_resync_completed)
6818 > (max_sectors >> 4)) ||
6819 (j - mddev->curr_resync_completed)*2
6820 >= mddev->resync_max - mddev->curr_resync_completed
6821 )) {
6822 /* time to update curr_resync_completed */
6823 md_unplug(mddev);
6824 wait_event(mddev->recovery_wait,
6825 atomic_read(&mddev->recovery_active) == 0);
6826 mddev->curr_resync_completed =
6827 mddev->curr_resync;
6828 if (mddev->persistent)
6829 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6830 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6831 }
6832
6833 while (j >= mddev->resync_max && !kthread_should_stop()) {
6834 /* As this condition is controlled by user-space,
6835 * we can block indefinitely, so use '_interruptible'
6836 * to avoid triggering warnings.
6837 */
6838 flush_signals(current); /* just in case */
6839 wait_event_interruptible(mddev->recovery_wait,
6840 mddev->resync_max > j
6841 || kthread_should_stop());
6842 }
6843
6844 if (kthread_should_stop())
6845 goto interrupted;
6846
6847 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6848 currspeed < speed_min(mddev));
6849 if (sectors == 0) {
6850 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6851 goto out;
6852 }
6853
6854 if (!skipped) { /* actual IO requested */
6855 io_sectors += sectors;
6856 atomic_add(sectors, &mddev->recovery_active);
6857 }
6858
6859 j += sectors;
6860 if (j>1) mddev->curr_resync = j;
6861 mddev->curr_mark_cnt = io_sectors;
6862 if (last_check == 0)
6863 /* this is the earliers that rebuilt will be
6864 * visible in /proc/mdstat
6865 */
6866 md_new_event(mddev);
6867
6868 if (last_check + window > io_sectors || j == max_sectors)
6869 continue;
6870
6871 last_check = io_sectors;
6872
6873 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6874 break;
6875
6876 repeat:
6877 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6878 /* step marks */
6879 int next = (last_mark+1) % SYNC_MARKS;
6880
6881 mddev->resync_mark = mark[next];
6882 mddev->resync_mark_cnt = mark_cnt[next];
6883 mark[next] = jiffies;
6884 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6885 last_mark = next;
6886 }
6887
6888
6889 if (kthread_should_stop())
6890 goto interrupted;
6891
6892
6893 /*
6894 * this loop exits only if either when we are slower than
6895 * the 'hard' speed limit, or the system was IO-idle for
6896 * a jiffy.
6897 * the system might be non-idle CPU-wise, but we only care
6898 * about not overloading the IO subsystem. (things like an
6899 * e2fsck being done on the RAID array should execute fast)
6900 */
6901 md_unplug(mddev);
6902 cond_resched();
6903
6904 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6905 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6906
6907 if (currspeed > speed_min(mddev)) {
6908 if ((currspeed > speed_max(mddev)) ||
6909 !is_mddev_idle(mddev, 0)) {
6910 msleep(500);
6911 goto repeat;
6912 }
6913 }
6914 }
6915 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6916 /*
6917 * this also signals 'finished resyncing' to md_stop
6918 */
6919 out:
6920 md_unplug(mddev);
6921
6922 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6923
6924 /* tell personality that we are finished */
6925 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6926
6927 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6928 mddev->curr_resync > 2) {
6929 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6930 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6931 if (mddev->curr_resync >= mddev->recovery_cp) {
6932 printk(KERN_INFO
6933 "md: checkpointing %s of %s.\n",
6934 desc, mdname(mddev));
6935 mddev->recovery_cp = mddev->curr_resync;
6936 }
6937 } else
6938 mddev->recovery_cp = MaxSector;
6939 } else {
6940 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6941 mddev->curr_resync = MaxSector;
6942 rcu_read_lock();
6943 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6944 if (rdev->raid_disk >= 0 &&
6945 mddev->delta_disks >= 0 &&
6946 !test_bit(Faulty, &rdev->flags) &&
6947 !test_bit(In_sync, &rdev->flags) &&
6948 rdev->recovery_offset < mddev->curr_resync)
6949 rdev->recovery_offset = mddev->curr_resync;
6950 rcu_read_unlock();
6951 }
6952 }
6953 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6954
6955 skip:
6956 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6957 /* We completed so min/max setting can be forgotten if used. */
6958 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6959 mddev->resync_min = 0;
6960 mddev->resync_max = MaxSector;
6961 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6962 mddev->resync_min = mddev->curr_resync_completed;
6963 mddev->curr_resync = 0;
6964 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6965 mddev->curr_resync_completed = 0;
6966 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6967 wake_up(&resync_wait);
6968 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6969 md_wakeup_thread(mddev->thread);
6970 return;
6971
6972 interrupted:
6973 /*
6974 * got a signal, exit.
6975 */
6976 printk(KERN_INFO
6977 "md: md_do_sync() got signal ... exiting\n");
6978 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6979 goto out;
6980
6981 }
6982 EXPORT_SYMBOL_GPL(md_do_sync);
6983
6984
6985 static int remove_and_add_spares(mddev_t *mddev)
6986 {
6987 mdk_rdev_t *rdev;
6988 int spares = 0;
6989
6990 mddev->curr_resync_completed = 0;
6991
6992 list_for_each_entry(rdev, &mddev->disks, same_set)
6993 if (rdev->raid_disk >= 0 &&
6994 !test_bit(Blocked, &rdev->flags) &&
6995 (test_bit(Faulty, &rdev->flags) ||
6996 ! test_bit(In_sync, &rdev->flags)) &&
6997 atomic_read(&rdev->nr_pending)==0) {
6998 if (mddev->pers->hot_remove_disk(
6999 mddev, rdev->raid_disk)==0) {
7000 char nm[20];
7001 sprintf(nm,"rd%d", rdev->raid_disk);
7002 sysfs_remove_link(&mddev->kobj, nm);
7003 rdev->raid_disk = -1;
7004 }
7005 }
7006
7007 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7008 list_for_each_entry(rdev, &mddev->disks, same_set) {
7009 if (rdev->raid_disk >= 0 &&
7010 !test_bit(In_sync, &rdev->flags) &&
7011 !test_bit(Blocked, &rdev->flags))
7012 spares++;
7013 if (rdev->raid_disk < 0
7014 && !test_bit(Faulty, &rdev->flags)) {
7015 rdev->recovery_offset = 0;
7016 if (mddev->pers->
7017 hot_add_disk(mddev, rdev) == 0) {
7018 char nm[20];
7019 sprintf(nm, "rd%d", rdev->raid_disk);
7020 if (sysfs_create_link(&mddev->kobj,
7021 &rdev->kobj, nm))
7022 /* failure here is OK */;
7023 spares++;
7024 md_new_event(mddev);
7025 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7026 } else
7027 break;
7028 }
7029 }
7030 }
7031 return spares;
7032 }
7033 /*
7034 * This routine is regularly called by all per-raid-array threads to
7035 * deal with generic issues like resync and super-block update.
7036 * Raid personalities that don't have a thread (linear/raid0) do not
7037 * need this as they never do any recovery or update the superblock.
7038 *
7039 * It does not do any resync itself, but rather "forks" off other threads
7040 * to do that as needed.
7041 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7042 * "->recovery" and create a thread at ->sync_thread.
7043 * When the thread finishes it sets MD_RECOVERY_DONE
7044 * and wakeups up this thread which will reap the thread and finish up.
7045 * This thread also removes any faulty devices (with nr_pending == 0).
7046 *
7047 * The overall approach is:
7048 * 1/ if the superblock needs updating, update it.
7049 * 2/ If a recovery thread is running, don't do anything else.
7050 * 3/ If recovery has finished, clean up, possibly marking spares active.
7051 * 4/ If there are any faulty devices, remove them.
7052 * 5/ If array is degraded, try to add spares devices
7053 * 6/ If array has spares or is not in-sync, start a resync thread.
7054 */
7055 void md_check_recovery(mddev_t *mddev)
7056 {
7057 mdk_rdev_t *rdev;
7058
7059
7060 if (mddev->bitmap)
7061 bitmap_daemon_work(mddev);
7062
7063 if (mddev->ro)
7064 return;
7065
7066 if (signal_pending(current)) {
7067 if (mddev->pers->sync_request && !mddev->external) {
7068 printk(KERN_INFO "md: %s in immediate safe mode\n",
7069 mdname(mddev));
7070 mddev->safemode = 2;
7071 }
7072 flush_signals(current);
7073 }
7074
7075 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7076 return;
7077 if ( ! (
7078 (mddev->flags && !mddev->external) ||
7079 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7080 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7081 (mddev->external == 0 && mddev->safemode == 1) ||
7082 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7083 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7084 ))
7085 return;
7086
7087 if (mddev_trylock(mddev)) {
7088 int spares = 0;
7089
7090 if (mddev->ro) {
7091 /* Only thing we do on a ro array is remove
7092 * failed devices.
7093 */
7094 remove_and_add_spares(mddev);
7095 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7096 goto unlock;
7097 }
7098
7099 if (!mddev->external) {
7100 int did_change = 0;
7101 spin_lock_irq(&mddev->write_lock);
7102 if (mddev->safemode &&
7103 !atomic_read(&mddev->writes_pending) &&
7104 !mddev->in_sync &&
7105 mddev->recovery_cp == MaxSector) {
7106 mddev->in_sync = 1;
7107 did_change = 1;
7108 if (mddev->persistent)
7109 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7110 }
7111 if (mddev->safemode == 1)
7112 mddev->safemode = 0;
7113 spin_unlock_irq(&mddev->write_lock);
7114 if (did_change)
7115 sysfs_notify_dirent_safe(mddev->sysfs_state);
7116 }
7117
7118 if (mddev->flags)
7119 md_update_sb(mddev, 0);
7120
7121 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7122 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7123 /* resync/recovery still happening */
7124 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7125 goto unlock;
7126 }
7127 if (mddev->sync_thread) {
7128 /* resync has finished, collect result */
7129 md_unregister_thread(mddev->sync_thread);
7130 mddev->sync_thread = NULL;
7131 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7132 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7133 /* success...*/
7134 /* activate any spares */
7135 if (mddev->pers->spare_active(mddev))
7136 sysfs_notify(&mddev->kobj, NULL,
7137 "degraded");
7138 }
7139 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7140 mddev->pers->finish_reshape)
7141 mddev->pers->finish_reshape(mddev);
7142 md_update_sb(mddev, 1);
7143
7144 /* if array is no-longer degraded, then any saved_raid_disk
7145 * information must be scrapped
7146 */
7147 if (!mddev->degraded)
7148 list_for_each_entry(rdev, &mddev->disks, same_set)
7149 rdev->saved_raid_disk = -1;
7150
7151 mddev->recovery = 0;
7152 /* flag recovery needed just to double check */
7153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7154 sysfs_notify_dirent_safe(mddev->sysfs_action);
7155 md_new_event(mddev);
7156 goto unlock;
7157 }
7158 /* Set RUNNING before clearing NEEDED to avoid
7159 * any transients in the value of "sync_action".
7160 */
7161 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7162 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7163 /* Clear some bits that don't mean anything, but
7164 * might be left set
7165 */
7166 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7167 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7168
7169 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7170 goto unlock;
7171 /* no recovery is running.
7172 * remove any failed drives, then
7173 * add spares if possible.
7174 * Spare are also removed and re-added, to allow
7175 * the personality to fail the re-add.
7176 */
7177
7178 if (mddev->reshape_position != MaxSector) {
7179 if (mddev->pers->check_reshape == NULL ||
7180 mddev->pers->check_reshape(mddev) != 0)
7181 /* Cannot proceed */
7182 goto unlock;
7183 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7184 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7185 } else if ((spares = remove_and_add_spares(mddev))) {
7186 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7187 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7188 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7189 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7190 } else if (mddev->recovery_cp < MaxSector) {
7191 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7192 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7193 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7194 /* nothing to be done ... */
7195 goto unlock;
7196
7197 if (mddev->pers->sync_request) {
7198 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7199 /* We are adding a device or devices to an array
7200 * which has the bitmap stored on all devices.
7201 * So make sure all bitmap pages get written
7202 */
7203 bitmap_write_all(mddev->bitmap);
7204 }
7205 mddev->sync_thread = md_register_thread(md_do_sync,
7206 mddev,
7207 "resync");
7208 if (!mddev->sync_thread) {
7209 printk(KERN_ERR "%s: could not start resync"
7210 " thread...\n",
7211 mdname(mddev));
7212 /* leave the spares where they are, it shouldn't hurt */
7213 mddev->recovery = 0;
7214 } else
7215 md_wakeup_thread(mddev->sync_thread);
7216 sysfs_notify_dirent_safe(mddev->sysfs_action);
7217 md_new_event(mddev);
7218 }
7219 unlock:
7220 if (!mddev->sync_thread) {
7221 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7222 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7223 &mddev->recovery))
7224 if (mddev->sysfs_action)
7225 sysfs_notify_dirent_safe(mddev->sysfs_action);
7226 }
7227 mddev_unlock(mddev);
7228 }
7229 }
7230
7231 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7232 {
7233 sysfs_notify_dirent_safe(rdev->sysfs_state);
7234 wait_event_timeout(rdev->blocked_wait,
7235 !test_bit(Blocked, &rdev->flags),
7236 msecs_to_jiffies(5000));
7237 rdev_dec_pending(rdev, mddev);
7238 }
7239 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7240
7241 static int md_notify_reboot(struct notifier_block *this,
7242 unsigned long code, void *x)
7243 {
7244 struct list_head *tmp;
7245 mddev_t *mddev;
7246
7247 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7248
7249 printk(KERN_INFO "md: stopping all md devices.\n");
7250
7251 for_each_mddev(mddev, tmp)
7252 if (mddev_trylock(mddev)) {
7253 /* Force a switch to readonly even array
7254 * appears to still be in use. Hence
7255 * the '100'.
7256 */
7257 md_set_readonly(mddev, 100);
7258 mddev_unlock(mddev);
7259 }
7260 /*
7261 * certain more exotic SCSI devices are known to be
7262 * volatile wrt too early system reboots. While the
7263 * right place to handle this issue is the given
7264 * driver, we do want to have a safe RAID driver ...
7265 */
7266 mdelay(1000*1);
7267 }
7268 return NOTIFY_DONE;
7269 }
7270
7271 static struct notifier_block md_notifier = {
7272 .notifier_call = md_notify_reboot,
7273 .next = NULL,
7274 .priority = INT_MAX, /* before any real devices */
7275 };
7276
7277 static void md_geninit(void)
7278 {
7279 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7280
7281 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7282 }
7283
7284 static int __init md_init(void)
7285 {
7286 if (register_blkdev(MD_MAJOR, "md"))
7287 return -1;
7288 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7289 unregister_blkdev(MD_MAJOR, "md");
7290 return -1;
7291 }
7292 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7293 md_probe, NULL, NULL);
7294 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7295 md_probe, NULL, NULL);
7296
7297 register_reboot_notifier(&md_notifier);
7298 raid_table_header = register_sysctl_table(raid_root_table);
7299
7300 md_geninit();
7301 return 0;
7302 }
7303
7304
7305 #ifndef MODULE
7306
7307 /*
7308 * Searches all registered partitions for autorun RAID arrays
7309 * at boot time.
7310 */
7311
7312 static LIST_HEAD(all_detected_devices);
7313 struct detected_devices_node {
7314 struct list_head list;
7315 dev_t dev;
7316 };
7317
7318 void md_autodetect_dev(dev_t dev)
7319 {
7320 struct detected_devices_node *node_detected_dev;
7321
7322 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7323 if (node_detected_dev) {
7324 node_detected_dev->dev = dev;
7325 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7326 } else {
7327 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7328 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7329 }
7330 }
7331
7332
7333 static void autostart_arrays(int part)
7334 {
7335 mdk_rdev_t *rdev;
7336 struct detected_devices_node *node_detected_dev;
7337 dev_t dev;
7338 int i_scanned, i_passed;
7339
7340 i_scanned = 0;
7341 i_passed = 0;
7342
7343 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7344
7345 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7346 i_scanned++;
7347 node_detected_dev = list_entry(all_detected_devices.next,
7348 struct detected_devices_node, list);
7349 list_del(&node_detected_dev->list);
7350 dev = node_detected_dev->dev;
7351 kfree(node_detected_dev);
7352 rdev = md_import_device(dev,0, 90);
7353 if (IS_ERR(rdev))
7354 continue;
7355
7356 if (test_bit(Faulty, &rdev->flags)) {
7357 MD_BUG();
7358 continue;
7359 }
7360 set_bit(AutoDetected, &rdev->flags);
7361 list_add(&rdev->same_set, &pending_raid_disks);
7362 i_passed++;
7363 }
7364
7365 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7366 i_scanned, i_passed);
7367
7368 autorun_devices(part);
7369 }
7370
7371 #endif /* !MODULE */
7372
7373 static __exit void md_exit(void)
7374 {
7375 mddev_t *mddev;
7376 struct list_head *tmp;
7377
7378 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7379 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7380
7381 unregister_blkdev(MD_MAJOR,"md");
7382 unregister_blkdev(mdp_major, "mdp");
7383 unregister_reboot_notifier(&md_notifier);
7384 unregister_sysctl_table(raid_table_header);
7385 remove_proc_entry("mdstat", NULL);
7386 for_each_mddev(mddev, tmp) {
7387 export_array(mddev);
7388 mddev->hold_active = 0;
7389 }
7390 }
7391
7392 subsys_initcall(md_init);
7393 module_exit(md_exit)
7394
7395 static int get_ro(char *buffer, struct kernel_param *kp)
7396 {
7397 return sprintf(buffer, "%d", start_readonly);
7398 }
7399 static int set_ro(const char *val, struct kernel_param *kp)
7400 {
7401 char *e;
7402 int num = simple_strtoul(val, &e, 10);
7403 if (*val && (*e == '\0' || *e == '\n')) {
7404 start_readonly = num;
7405 return 0;
7406 }
7407 return -EINVAL;
7408 }
7409
7410 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7411 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7412
7413 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7414
7415 EXPORT_SYMBOL(register_md_personality);
7416 EXPORT_SYMBOL(unregister_md_personality);
7417 EXPORT_SYMBOL(md_error);
7418 EXPORT_SYMBOL(md_done_sync);
7419 EXPORT_SYMBOL(md_write_start);
7420 EXPORT_SYMBOL(md_write_end);
7421 EXPORT_SYMBOL(md_register_thread);
7422 EXPORT_SYMBOL(md_unregister_thread);
7423 EXPORT_SYMBOL(md_wakeup_thread);
7424 EXPORT_SYMBOL(md_check_recovery);
7425 MODULE_LICENSE("GPL");
7426 MODULE_DESCRIPTION("MD RAID framework");
7427 MODULE_ALIAS("md");
7428 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.230385 seconds and 5 git commands to generate.