Merge tag 'blackfin-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/realm...
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 static int remove_and_add_spares(struct mddev *mddev,
74 struct md_rdev *this);
75 static void mddev_detach(struct mddev *mddev);
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static struct ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static struct ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static struct ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 struct mddev *mddev)
160 {
161 struct bio *b;
162
163 if (!mddev || !mddev->bio_set)
164 return bio_alloc(gfp_mask, nr_iovecs);
165
166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 if (!b)
168 return NULL;
169 return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 struct mddev *mddev)
175 {
176 if (!mddev || !mddev->bio_set)
177 return bio_clone(bio, gfp_mask);
178
179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 /*
184 * We have a system wide 'event count' that is incremented
185 * on any 'interesting' event, and readers of /proc/mdstat
186 * can use 'poll' or 'select' to find out when the event
187 * count increases.
188 *
189 * Events are:
190 * start array, stop array, error, add device, remove device,
191 * start build, activate spare
192 */
193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
194 static atomic_t md_event_count;
195 void md_new_event(struct mddev *mddev)
196 {
197 atomic_inc(&md_event_count);
198 wake_up(&md_event_waiters);
199 }
200 EXPORT_SYMBOL_GPL(md_new_event);
201
202 /* Alternate version that can be called from interrupts
203 * when calling sysfs_notify isn't needed.
204 */
205 static void md_new_event_inintr(struct mddev *mddev)
206 {
207 atomic_inc(&md_event_count);
208 wake_up(&md_event_waiters);
209 }
210
211 /*
212 * Enables to iterate over all existing md arrays
213 * all_mddevs_lock protects this list.
214 */
215 static LIST_HEAD(all_mddevs);
216 static DEFINE_SPINLOCK(all_mddevs_lock);
217
218 /*
219 * iterates through all used mddevs in the system.
220 * We take care to grab the all_mddevs_lock whenever navigating
221 * the list, and to always hold a refcount when unlocked.
222 * Any code which breaks out of this loop while own
223 * a reference to the current mddev and must mddev_put it.
224 */
225 #define for_each_mddev(_mddev,_tmp) \
226 \
227 for (({ spin_lock(&all_mddevs_lock); \
228 _tmp = all_mddevs.next; \
229 _mddev = NULL;}); \
230 ({ if (_tmp != &all_mddevs) \
231 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
232 spin_unlock(&all_mddevs_lock); \
233 if (_mddev) mddev_put(_mddev); \
234 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
235 _tmp != &all_mddevs;}); \
236 ({ spin_lock(&all_mddevs_lock); \
237 _tmp = _tmp->next;}) \
238 )
239
240 /* Rather than calling directly into the personality make_request function,
241 * IO requests come here first so that we can check if the device is
242 * being suspended pending a reconfiguration.
243 * We hold a refcount over the call to ->make_request. By the time that
244 * call has finished, the bio has been linked into some internal structure
245 * and so is visible to ->quiesce(), so we don't need the refcount any more.
246 */
247 static void md_make_request(struct request_queue *q, struct bio *bio)
248 {
249 const int rw = bio_data_dir(bio);
250 struct mddev *mddev = q->queuedata;
251 unsigned int sectors;
252 int cpu;
253
254 if (mddev == NULL || mddev->pers == NULL
255 || !mddev->ready) {
256 bio_io_error(bio);
257 return;
258 }
259 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
260 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
261 return;
262 }
263 smp_rmb(); /* Ensure implications of 'active' are visible */
264 rcu_read_lock();
265 if (mddev->suspended) {
266 DEFINE_WAIT(__wait);
267 for (;;) {
268 prepare_to_wait(&mddev->sb_wait, &__wait,
269 TASK_UNINTERRUPTIBLE);
270 if (!mddev->suspended)
271 break;
272 rcu_read_unlock();
273 schedule();
274 rcu_read_lock();
275 }
276 finish_wait(&mddev->sb_wait, &__wait);
277 }
278 atomic_inc(&mddev->active_io);
279 rcu_read_unlock();
280
281 /*
282 * save the sectors now since our bio can
283 * go away inside make_request
284 */
285 sectors = bio_sectors(bio);
286 mddev->pers->make_request(mddev, bio);
287
288 cpu = part_stat_lock();
289 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
290 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
291 part_stat_unlock();
292
293 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
294 wake_up(&mddev->sb_wait);
295 }
296
297 /* mddev_suspend makes sure no new requests are submitted
298 * to the device, and that any requests that have been submitted
299 * are completely handled.
300 * Once mddev_detach() is called and completes, the module will be
301 * completely unused.
302 */
303 void mddev_suspend(struct mddev *mddev)
304 {
305 BUG_ON(mddev->suspended);
306 mddev->suspended = 1;
307 synchronize_rcu();
308 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
309 mddev->pers->quiesce(mddev, 1);
310
311 del_timer_sync(&mddev->safemode_timer);
312 }
313 EXPORT_SYMBOL_GPL(mddev_suspend);
314
315 void mddev_resume(struct mddev *mddev)
316 {
317 mddev->suspended = 0;
318 wake_up(&mddev->sb_wait);
319 mddev->pers->quiesce(mddev, 0);
320
321 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
322 md_wakeup_thread(mddev->thread);
323 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
324 }
325 EXPORT_SYMBOL_GPL(mddev_resume);
326
327 int mddev_congested(struct mddev *mddev, int bits)
328 {
329 struct md_personality *pers = mddev->pers;
330 int ret = 0;
331
332 rcu_read_lock();
333 if (mddev->suspended)
334 ret = 1;
335 else if (pers && pers->congested)
336 ret = pers->congested(mddev, bits);
337 rcu_read_unlock();
338 return ret;
339 }
340 EXPORT_SYMBOL_GPL(mddev_congested);
341 static int md_congested(void *data, int bits)
342 {
343 struct mddev *mddev = data;
344 return mddev_congested(mddev, bits);
345 }
346
347 static int md_mergeable_bvec(struct request_queue *q,
348 struct bvec_merge_data *bvm,
349 struct bio_vec *biovec)
350 {
351 struct mddev *mddev = q->queuedata;
352 int ret;
353 rcu_read_lock();
354 if (mddev->suspended) {
355 /* Must always allow one vec */
356 if (bvm->bi_size == 0)
357 ret = biovec->bv_len;
358 else
359 ret = 0;
360 } else {
361 struct md_personality *pers = mddev->pers;
362 if (pers && pers->mergeable_bvec)
363 ret = pers->mergeable_bvec(mddev, bvm, biovec);
364 else
365 ret = biovec->bv_len;
366 }
367 rcu_read_unlock();
368 return ret;
369 }
370 /*
371 * Generic flush handling for md
372 */
373
374 static void md_end_flush(struct bio *bio, int err)
375 {
376 struct md_rdev *rdev = bio->bi_private;
377 struct mddev *mddev = rdev->mddev;
378
379 rdev_dec_pending(rdev, mddev);
380
381 if (atomic_dec_and_test(&mddev->flush_pending)) {
382 /* The pre-request flush has finished */
383 queue_work(md_wq, &mddev->flush_work);
384 }
385 bio_put(bio);
386 }
387
388 static void md_submit_flush_data(struct work_struct *ws);
389
390 static void submit_flushes(struct work_struct *ws)
391 {
392 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
393 struct md_rdev *rdev;
394
395 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
396 atomic_set(&mddev->flush_pending, 1);
397 rcu_read_lock();
398 rdev_for_each_rcu(rdev, mddev)
399 if (rdev->raid_disk >= 0 &&
400 !test_bit(Faulty, &rdev->flags)) {
401 /* Take two references, one is dropped
402 * when request finishes, one after
403 * we reclaim rcu_read_lock
404 */
405 struct bio *bi;
406 atomic_inc(&rdev->nr_pending);
407 atomic_inc(&rdev->nr_pending);
408 rcu_read_unlock();
409 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
410 bi->bi_end_io = md_end_flush;
411 bi->bi_private = rdev;
412 bi->bi_bdev = rdev->bdev;
413 atomic_inc(&mddev->flush_pending);
414 submit_bio(WRITE_FLUSH, bi);
415 rcu_read_lock();
416 rdev_dec_pending(rdev, mddev);
417 }
418 rcu_read_unlock();
419 if (atomic_dec_and_test(&mddev->flush_pending))
420 queue_work(md_wq, &mddev->flush_work);
421 }
422
423 static void md_submit_flush_data(struct work_struct *ws)
424 {
425 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
426 struct bio *bio = mddev->flush_bio;
427
428 if (bio->bi_iter.bi_size == 0)
429 /* an empty barrier - all done */
430 bio_endio(bio, 0);
431 else {
432 bio->bi_rw &= ~REQ_FLUSH;
433 mddev->pers->make_request(mddev, bio);
434 }
435
436 mddev->flush_bio = NULL;
437 wake_up(&mddev->sb_wait);
438 }
439
440 void md_flush_request(struct mddev *mddev, struct bio *bio)
441 {
442 spin_lock_irq(&mddev->lock);
443 wait_event_lock_irq(mddev->sb_wait,
444 !mddev->flush_bio,
445 mddev->lock);
446 mddev->flush_bio = bio;
447 spin_unlock_irq(&mddev->lock);
448
449 INIT_WORK(&mddev->flush_work, submit_flushes);
450 queue_work(md_wq, &mddev->flush_work);
451 }
452 EXPORT_SYMBOL(md_flush_request);
453
454 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
455 {
456 struct mddev *mddev = cb->data;
457 md_wakeup_thread(mddev->thread);
458 kfree(cb);
459 }
460 EXPORT_SYMBOL(md_unplug);
461
462 static inline struct mddev *mddev_get(struct mddev *mddev)
463 {
464 atomic_inc(&mddev->active);
465 return mddev;
466 }
467
468 static void mddev_delayed_delete(struct work_struct *ws);
469
470 static void mddev_put(struct mddev *mddev)
471 {
472 struct bio_set *bs = NULL;
473
474 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
475 return;
476 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
477 mddev->ctime == 0 && !mddev->hold_active) {
478 /* Array is not configured at all, and not held active,
479 * so destroy it */
480 list_del_init(&mddev->all_mddevs);
481 bs = mddev->bio_set;
482 mddev->bio_set = NULL;
483 if (mddev->gendisk) {
484 /* We did a probe so need to clean up. Call
485 * queue_work inside the spinlock so that
486 * flush_workqueue() after mddev_find will
487 * succeed in waiting for the work to be done.
488 */
489 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
490 queue_work(md_misc_wq, &mddev->del_work);
491 } else
492 kfree(mddev);
493 }
494 spin_unlock(&all_mddevs_lock);
495 if (bs)
496 bioset_free(bs);
497 }
498
499 void mddev_init(struct mddev *mddev)
500 {
501 mutex_init(&mddev->open_mutex);
502 mutex_init(&mddev->reconfig_mutex);
503 mutex_init(&mddev->bitmap_info.mutex);
504 INIT_LIST_HEAD(&mddev->disks);
505 INIT_LIST_HEAD(&mddev->all_mddevs);
506 init_timer(&mddev->safemode_timer);
507 atomic_set(&mddev->active, 1);
508 atomic_set(&mddev->openers, 0);
509 atomic_set(&mddev->active_io, 0);
510 spin_lock_init(&mddev->lock);
511 atomic_set(&mddev->flush_pending, 0);
512 init_waitqueue_head(&mddev->sb_wait);
513 init_waitqueue_head(&mddev->recovery_wait);
514 mddev->reshape_position = MaxSector;
515 mddev->reshape_backwards = 0;
516 mddev->last_sync_action = "none";
517 mddev->resync_min = 0;
518 mddev->resync_max = MaxSector;
519 mddev->level = LEVEL_NONE;
520 }
521 EXPORT_SYMBOL_GPL(mddev_init);
522
523 static struct mddev *mddev_find(dev_t unit)
524 {
525 struct mddev *mddev, *new = NULL;
526
527 if (unit && MAJOR(unit) != MD_MAJOR)
528 unit &= ~((1<<MdpMinorShift)-1);
529
530 retry:
531 spin_lock(&all_mddevs_lock);
532
533 if (unit) {
534 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
535 if (mddev->unit == unit) {
536 mddev_get(mddev);
537 spin_unlock(&all_mddevs_lock);
538 kfree(new);
539 return mddev;
540 }
541
542 if (new) {
543 list_add(&new->all_mddevs, &all_mddevs);
544 spin_unlock(&all_mddevs_lock);
545 new->hold_active = UNTIL_IOCTL;
546 return new;
547 }
548 } else if (new) {
549 /* find an unused unit number */
550 static int next_minor = 512;
551 int start = next_minor;
552 int is_free = 0;
553 int dev = 0;
554 while (!is_free) {
555 dev = MKDEV(MD_MAJOR, next_minor);
556 next_minor++;
557 if (next_minor > MINORMASK)
558 next_minor = 0;
559 if (next_minor == start) {
560 /* Oh dear, all in use. */
561 spin_unlock(&all_mddevs_lock);
562 kfree(new);
563 return NULL;
564 }
565
566 is_free = 1;
567 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
568 if (mddev->unit == dev) {
569 is_free = 0;
570 break;
571 }
572 }
573 new->unit = dev;
574 new->md_minor = MINOR(dev);
575 new->hold_active = UNTIL_STOP;
576 list_add(&new->all_mddevs, &all_mddevs);
577 spin_unlock(&all_mddevs_lock);
578 return new;
579 }
580 spin_unlock(&all_mddevs_lock);
581
582 new = kzalloc(sizeof(*new), GFP_KERNEL);
583 if (!new)
584 return NULL;
585
586 new->unit = unit;
587 if (MAJOR(unit) == MD_MAJOR)
588 new->md_minor = MINOR(unit);
589 else
590 new->md_minor = MINOR(unit) >> MdpMinorShift;
591
592 mddev_init(new);
593
594 goto retry;
595 }
596
597 static struct attribute_group md_redundancy_group;
598
599 void mddev_unlock(struct mddev *mddev)
600 {
601 if (mddev->to_remove) {
602 /* These cannot be removed under reconfig_mutex as
603 * an access to the files will try to take reconfig_mutex
604 * while holding the file unremovable, which leads to
605 * a deadlock.
606 * So hold set sysfs_active while the remove in happeing,
607 * and anything else which might set ->to_remove or my
608 * otherwise change the sysfs namespace will fail with
609 * -EBUSY if sysfs_active is still set.
610 * We set sysfs_active under reconfig_mutex and elsewhere
611 * test it under the same mutex to ensure its correct value
612 * is seen.
613 */
614 struct attribute_group *to_remove = mddev->to_remove;
615 mddev->to_remove = NULL;
616 mddev->sysfs_active = 1;
617 mutex_unlock(&mddev->reconfig_mutex);
618
619 if (mddev->kobj.sd) {
620 if (to_remove != &md_redundancy_group)
621 sysfs_remove_group(&mddev->kobj, to_remove);
622 if (mddev->pers == NULL ||
623 mddev->pers->sync_request == NULL) {
624 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
625 if (mddev->sysfs_action)
626 sysfs_put(mddev->sysfs_action);
627 mddev->sysfs_action = NULL;
628 }
629 }
630 mddev->sysfs_active = 0;
631 } else
632 mutex_unlock(&mddev->reconfig_mutex);
633
634 /* As we've dropped the mutex we need a spinlock to
635 * make sure the thread doesn't disappear
636 */
637 spin_lock(&pers_lock);
638 md_wakeup_thread(mddev->thread);
639 spin_unlock(&pers_lock);
640 }
641 EXPORT_SYMBOL_GPL(mddev_unlock);
642
643 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
644 {
645 struct md_rdev *rdev;
646
647 rdev_for_each_rcu(rdev, mddev)
648 if (rdev->desc_nr == nr)
649 return rdev;
650
651 return NULL;
652 }
653
654 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
655 {
656 struct md_rdev *rdev;
657
658 rdev_for_each(rdev, mddev)
659 if (rdev->bdev->bd_dev == dev)
660 return rdev;
661
662 return NULL;
663 }
664
665 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
666 {
667 struct md_rdev *rdev;
668
669 rdev_for_each_rcu(rdev, mddev)
670 if (rdev->bdev->bd_dev == dev)
671 return rdev;
672
673 return NULL;
674 }
675
676 static struct md_personality *find_pers(int level, char *clevel)
677 {
678 struct md_personality *pers;
679 list_for_each_entry(pers, &pers_list, list) {
680 if (level != LEVEL_NONE && pers->level == level)
681 return pers;
682 if (strcmp(pers->name, clevel)==0)
683 return pers;
684 }
685 return NULL;
686 }
687
688 /* return the offset of the super block in 512byte sectors */
689 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
690 {
691 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
692 return MD_NEW_SIZE_SECTORS(num_sectors);
693 }
694
695 static int alloc_disk_sb(struct md_rdev *rdev)
696 {
697 rdev->sb_page = alloc_page(GFP_KERNEL);
698 if (!rdev->sb_page) {
699 printk(KERN_ALERT "md: out of memory.\n");
700 return -ENOMEM;
701 }
702
703 return 0;
704 }
705
706 void md_rdev_clear(struct md_rdev *rdev)
707 {
708 if (rdev->sb_page) {
709 put_page(rdev->sb_page);
710 rdev->sb_loaded = 0;
711 rdev->sb_page = NULL;
712 rdev->sb_start = 0;
713 rdev->sectors = 0;
714 }
715 if (rdev->bb_page) {
716 put_page(rdev->bb_page);
717 rdev->bb_page = NULL;
718 }
719 kfree(rdev->badblocks.page);
720 rdev->badblocks.page = NULL;
721 }
722 EXPORT_SYMBOL_GPL(md_rdev_clear);
723
724 static void super_written(struct bio *bio, int error)
725 {
726 struct md_rdev *rdev = bio->bi_private;
727 struct mddev *mddev = rdev->mddev;
728
729 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
730 printk("md: super_written gets error=%d, uptodate=%d\n",
731 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
732 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
733 md_error(mddev, rdev);
734 }
735
736 if (atomic_dec_and_test(&mddev->pending_writes))
737 wake_up(&mddev->sb_wait);
738 bio_put(bio);
739 }
740
741 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
742 sector_t sector, int size, struct page *page)
743 {
744 /* write first size bytes of page to sector of rdev
745 * Increment mddev->pending_writes before returning
746 * and decrement it on completion, waking up sb_wait
747 * if zero is reached.
748 * If an error occurred, call md_error
749 */
750 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
751
752 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
753 bio->bi_iter.bi_sector = sector;
754 bio_add_page(bio, page, size, 0);
755 bio->bi_private = rdev;
756 bio->bi_end_io = super_written;
757
758 atomic_inc(&mddev->pending_writes);
759 submit_bio(WRITE_FLUSH_FUA, bio);
760 }
761
762 void md_super_wait(struct mddev *mddev)
763 {
764 /* wait for all superblock writes that were scheduled to complete */
765 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
766 }
767
768 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
769 struct page *page, int rw, bool metadata_op)
770 {
771 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
772 int ret;
773
774 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
775 rdev->meta_bdev : rdev->bdev;
776 if (metadata_op)
777 bio->bi_iter.bi_sector = sector + rdev->sb_start;
778 else if (rdev->mddev->reshape_position != MaxSector &&
779 (rdev->mddev->reshape_backwards ==
780 (sector >= rdev->mddev->reshape_position)))
781 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
782 else
783 bio->bi_iter.bi_sector = sector + rdev->data_offset;
784 bio_add_page(bio, page, size, 0);
785 submit_bio_wait(rw, bio);
786
787 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
788 bio_put(bio);
789 return ret;
790 }
791 EXPORT_SYMBOL_GPL(sync_page_io);
792
793 static int read_disk_sb(struct md_rdev *rdev, int size)
794 {
795 char b[BDEVNAME_SIZE];
796
797 if (rdev->sb_loaded)
798 return 0;
799
800 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
801 goto fail;
802 rdev->sb_loaded = 1;
803 return 0;
804
805 fail:
806 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
807 bdevname(rdev->bdev,b));
808 return -EINVAL;
809 }
810
811 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813 return sb1->set_uuid0 == sb2->set_uuid0 &&
814 sb1->set_uuid1 == sb2->set_uuid1 &&
815 sb1->set_uuid2 == sb2->set_uuid2 &&
816 sb1->set_uuid3 == sb2->set_uuid3;
817 }
818
819 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
820 {
821 int ret;
822 mdp_super_t *tmp1, *tmp2;
823
824 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
825 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
826
827 if (!tmp1 || !tmp2) {
828 ret = 0;
829 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
830 goto abort;
831 }
832
833 *tmp1 = *sb1;
834 *tmp2 = *sb2;
835
836 /*
837 * nr_disks is not constant
838 */
839 tmp1->nr_disks = 0;
840 tmp2->nr_disks = 0;
841
842 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
843 abort:
844 kfree(tmp1);
845 kfree(tmp2);
846 return ret;
847 }
848
849 static u32 md_csum_fold(u32 csum)
850 {
851 csum = (csum & 0xffff) + (csum >> 16);
852 return (csum & 0xffff) + (csum >> 16);
853 }
854
855 static unsigned int calc_sb_csum(mdp_super_t *sb)
856 {
857 u64 newcsum = 0;
858 u32 *sb32 = (u32*)sb;
859 int i;
860 unsigned int disk_csum, csum;
861
862 disk_csum = sb->sb_csum;
863 sb->sb_csum = 0;
864
865 for (i = 0; i < MD_SB_BYTES/4 ; i++)
866 newcsum += sb32[i];
867 csum = (newcsum & 0xffffffff) + (newcsum>>32);
868
869 #ifdef CONFIG_ALPHA
870 /* This used to use csum_partial, which was wrong for several
871 * reasons including that different results are returned on
872 * different architectures. It isn't critical that we get exactly
873 * the same return value as before (we always csum_fold before
874 * testing, and that removes any differences). However as we
875 * know that csum_partial always returned a 16bit value on
876 * alphas, do a fold to maximise conformity to previous behaviour.
877 */
878 sb->sb_csum = md_csum_fold(disk_csum);
879 #else
880 sb->sb_csum = disk_csum;
881 #endif
882 return csum;
883 }
884
885 /*
886 * Handle superblock details.
887 * We want to be able to handle multiple superblock formats
888 * so we have a common interface to them all, and an array of
889 * different handlers.
890 * We rely on user-space to write the initial superblock, and support
891 * reading and updating of superblocks.
892 * Interface methods are:
893 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
894 * loads and validates a superblock on dev.
895 * if refdev != NULL, compare superblocks on both devices
896 * Return:
897 * 0 - dev has a superblock that is compatible with refdev
898 * 1 - dev has a superblock that is compatible and newer than refdev
899 * so dev should be used as the refdev in future
900 * -EINVAL superblock incompatible or invalid
901 * -othererror e.g. -EIO
902 *
903 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
904 * Verify that dev is acceptable into mddev.
905 * The first time, mddev->raid_disks will be 0, and data from
906 * dev should be merged in. Subsequent calls check that dev
907 * is new enough. Return 0 or -EINVAL
908 *
909 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
910 * Update the superblock for rdev with data in mddev
911 * This does not write to disc.
912 *
913 */
914
915 struct super_type {
916 char *name;
917 struct module *owner;
918 int (*load_super)(struct md_rdev *rdev,
919 struct md_rdev *refdev,
920 int minor_version);
921 int (*validate_super)(struct mddev *mddev,
922 struct md_rdev *rdev);
923 void (*sync_super)(struct mddev *mddev,
924 struct md_rdev *rdev);
925 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
926 sector_t num_sectors);
927 int (*allow_new_offset)(struct md_rdev *rdev,
928 unsigned long long new_offset);
929 };
930
931 /*
932 * Check that the given mddev has no bitmap.
933 *
934 * This function is called from the run method of all personalities that do not
935 * support bitmaps. It prints an error message and returns non-zero if mddev
936 * has a bitmap. Otherwise, it returns 0.
937 *
938 */
939 int md_check_no_bitmap(struct mddev *mddev)
940 {
941 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
942 return 0;
943 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
944 mdname(mddev), mddev->pers->name);
945 return 1;
946 }
947 EXPORT_SYMBOL(md_check_no_bitmap);
948
949 /*
950 * load_super for 0.90.0
951 */
952 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
953 {
954 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
955 mdp_super_t *sb;
956 int ret;
957
958 /*
959 * Calculate the position of the superblock (512byte sectors),
960 * it's at the end of the disk.
961 *
962 * It also happens to be a multiple of 4Kb.
963 */
964 rdev->sb_start = calc_dev_sboffset(rdev);
965
966 ret = read_disk_sb(rdev, MD_SB_BYTES);
967 if (ret) return ret;
968
969 ret = -EINVAL;
970
971 bdevname(rdev->bdev, b);
972 sb = page_address(rdev->sb_page);
973
974 if (sb->md_magic != MD_SB_MAGIC) {
975 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
976 b);
977 goto abort;
978 }
979
980 if (sb->major_version != 0 ||
981 sb->minor_version < 90 ||
982 sb->minor_version > 91) {
983 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
984 sb->major_version, sb->minor_version,
985 b);
986 goto abort;
987 }
988
989 if (sb->raid_disks <= 0)
990 goto abort;
991
992 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
993 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
994 b);
995 goto abort;
996 }
997
998 rdev->preferred_minor = sb->md_minor;
999 rdev->data_offset = 0;
1000 rdev->new_data_offset = 0;
1001 rdev->sb_size = MD_SB_BYTES;
1002 rdev->badblocks.shift = -1;
1003
1004 if (sb->level == LEVEL_MULTIPATH)
1005 rdev->desc_nr = -1;
1006 else
1007 rdev->desc_nr = sb->this_disk.number;
1008
1009 if (!refdev) {
1010 ret = 1;
1011 } else {
1012 __u64 ev1, ev2;
1013 mdp_super_t *refsb = page_address(refdev->sb_page);
1014 if (!uuid_equal(refsb, sb)) {
1015 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1016 b, bdevname(refdev->bdev,b2));
1017 goto abort;
1018 }
1019 if (!sb_equal(refsb, sb)) {
1020 printk(KERN_WARNING "md: %s has same UUID"
1021 " but different superblock to %s\n",
1022 b, bdevname(refdev->bdev, b2));
1023 goto abort;
1024 }
1025 ev1 = md_event(sb);
1026 ev2 = md_event(refsb);
1027 if (ev1 > ev2)
1028 ret = 1;
1029 else
1030 ret = 0;
1031 }
1032 rdev->sectors = rdev->sb_start;
1033 /* Limit to 4TB as metadata cannot record more than that.
1034 * (not needed for Linear and RAID0 as metadata doesn't
1035 * record this size)
1036 */
1037 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1038 rdev->sectors = (2ULL << 32) - 2;
1039
1040 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1041 /* "this cannot possibly happen" ... */
1042 ret = -EINVAL;
1043
1044 abort:
1045 return ret;
1046 }
1047
1048 /*
1049 * validate_super for 0.90.0
1050 */
1051 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1052 {
1053 mdp_disk_t *desc;
1054 mdp_super_t *sb = page_address(rdev->sb_page);
1055 __u64 ev1 = md_event(sb);
1056
1057 rdev->raid_disk = -1;
1058 clear_bit(Faulty, &rdev->flags);
1059 clear_bit(In_sync, &rdev->flags);
1060 clear_bit(Bitmap_sync, &rdev->flags);
1061 clear_bit(WriteMostly, &rdev->flags);
1062
1063 if (mddev->raid_disks == 0) {
1064 mddev->major_version = 0;
1065 mddev->minor_version = sb->minor_version;
1066 mddev->patch_version = sb->patch_version;
1067 mddev->external = 0;
1068 mddev->chunk_sectors = sb->chunk_size >> 9;
1069 mddev->ctime = sb->ctime;
1070 mddev->utime = sb->utime;
1071 mddev->level = sb->level;
1072 mddev->clevel[0] = 0;
1073 mddev->layout = sb->layout;
1074 mddev->raid_disks = sb->raid_disks;
1075 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1076 mddev->events = ev1;
1077 mddev->bitmap_info.offset = 0;
1078 mddev->bitmap_info.space = 0;
1079 /* bitmap can use 60 K after the 4K superblocks */
1080 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1081 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1082 mddev->reshape_backwards = 0;
1083
1084 if (mddev->minor_version >= 91) {
1085 mddev->reshape_position = sb->reshape_position;
1086 mddev->delta_disks = sb->delta_disks;
1087 mddev->new_level = sb->new_level;
1088 mddev->new_layout = sb->new_layout;
1089 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1090 if (mddev->delta_disks < 0)
1091 mddev->reshape_backwards = 1;
1092 } else {
1093 mddev->reshape_position = MaxSector;
1094 mddev->delta_disks = 0;
1095 mddev->new_level = mddev->level;
1096 mddev->new_layout = mddev->layout;
1097 mddev->new_chunk_sectors = mddev->chunk_sectors;
1098 }
1099
1100 if (sb->state & (1<<MD_SB_CLEAN))
1101 mddev->recovery_cp = MaxSector;
1102 else {
1103 if (sb->events_hi == sb->cp_events_hi &&
1104 sb->events_lo == sb->cp_events_lo) {
1105 mddev->recovery_cp = sb->recovery_cp;
1106 } else
1107 mddev->recovery_cp = 0;
1108 }
1109
1110 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1111 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1112 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1113 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1114
1115 mddev->max_disks = MD_SB_DISKS;
1116
1117 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1118 mddev->bitmap_info.file == NULL) {
1119 mddev->bitmap_info.offset =
1120 mddev->bitmap_info.default_offset;
1121 mddev->bitmap_info.space =
1122 mddev->bitmap_info.default_space;
1123 }
1124
1125 } else if (mddev->pers == NULL) {
1126 /* Insist on good event counter while assembling, except
1127 * for spares (which don't need an event count) */
1128 ++ev1;
1129 if (sb->disks[rdev->desc_nr].state & (
1130 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1131 if (ev1 < mddev->events)
1132 return -EINVAL;
1133 } else if (mddev->bitmap) {
1134 /* if adding to array with a bitmap, then we can accept an
1135 * older device ... but not too old.
1136 */
1137 if (ev1 < mddev->bitmap->events_cleared)
1138 return 0;
1139 if (ev1 < mddev->events)
1140 set_bit(Bitmap_sync, &rdev->flags);
1141 } else {
1142 if (ev1 < mddev->events)
1143 /* just a hot-add of a new device, leave raid_disk at -1 */
1144 return 0;
1145 }
1146
1147 if (mddev->level != LEVEL_MULTIPATH) {
1148 desc = sb->disks + rdev->desc_nr;
1149
1150 if (desc->state & (1<<MD_DISK_FAULTY))
1151 set_bit(Faulty, &rdev->flags);
1152 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1153 desc->raid_disk < mddev->raid_disks */) {
1154 set_bit(In_sync, &rdev->flags);
1155 rdev->raid_disk = desc->raid_disk;
1156 rdev->saved_raid_disk = desc->raid_disk;
1157 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1158 /* active but not in sync implies recovery up to
1159 * reshape position. We don't know exactly where
1160 * that is, so set to zero for now */
1161 if (mddev->minor_version >= 91) {
1162 rdev->recovery_offset = 0;
1163 rdev->raid_disk = desc->raid_disk;
1164 }
1165 }
1166 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1167 set_bit(WriteMostly, &rdev->flags);
1168 } else /* MULTIPATH are always insync */
1169 set_bit(In_sync, &rdev->flags);
1170 return 0;
1171 }
1172
1173 /*
1174 * sync_super for 0.90.0
1175 */
1176 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1177 {
1178 mdp_super_t *sb;
1179 struct md_rdev *rdev2;
1180 int next_spare = mddev->raid_disks;
1181
1182 /* make rdev->sb match mddev data..
1183 *
1184 * 1/ zero out disks
1185 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1186 * 3/ any empty disks < next_spare become removed
1187 *
1188 * disks[0] gets initialised to REMOVED because
1189 * we cannot be sure from other fields if it has
1190 * been initialised or not.
1191 */
1192 int i;
1193 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1194
1195 rdev->sb_size = MD_SB_BYTES;
1196
1197 sb = page_address(rdev->sb_page);
1198
1199 memset(sb, 0, sizeof(*sb));
1200
1201 sb->md_magic = MD_SB_MAGIC;
1202 sb->major_version = mddev->major_version;
1203 sb->patch_version = mddev->patch_version;
1204 sb->gvalid_words = 0; /* ignored */
1205 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1206 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1207 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1208 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1209
1210 sb->ctime = mddev->ctime;
1211 sb->level = mddev->level;
1212 sb->size = mddev->dev_sectors / 2;
1213 sb->raid_disks = mddev->raid_disks;
1214 sb->md_minor = mddev->md_minor;
1215 sb->not_persistent = 0;
1216 sb->utime = mddev->utime;
1217 sb->state = 0;
1218 sb->events_hi = (mddev->events>>32);
1219 sb->events_lo = (u32)mddev->events;
1220
1221 if (mddev->reshape_position == MaxSector)
1222 sb->minor_version = 90;
1223 else {
1224 sb->minor_version = 91;
1225 sb->reshape_position = mddev->reshape_position;
1226 sb->new_level = mddev->new_level;
1227 sb->delta_disks = mddev->delta_disks;
1228 sb->new_layout = mddev->new_layout;
1229 sb->new_chunk = mddev->new_chunk_sectors << 9;
1230 }
1231 mddev->minor_version = sb->minor_version;
1232 if (mddev->in_sync)
1233 {
1234 sb->recovery_cp = mddev->recovery_cp;
1235 sb->cp_events_hi = (mddev->events>>32);
1236 sb->cp_events_lo = (u32)mddev->events;
1237 if (mddev->recovery_cp == MaxSector)
1238 sb->state = (1<< MD_SB_CLEAN);
1239 } else
1240 sb->recovery_cp = 0;
1241
1242 sb->layout = mddev->layout;
1243 sb->chunk_size = mddev->chunk_sectors << 9;
1244
1245 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1246 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1247
1248 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1249 rdev_for_each(rdev2, mddev) {
1250 mdp_disk_t *d;
1251 int desc_nr;
1252 int is_active = test_bit(In_sync, &rdev2->flags);
1253
1254 if (rdev2->raid_disk >= 0 &&
1255 sb->minor_version >= 91)
1256 /* we have nowhere to store the recovery_offset,
1257 * but if it is not below the reshape_position,
1258 * we can piggy-back on that.
1259 */
1260 is_active = 1;
1261 if (rdev2->raid_disk < 0 ||
1262 test_bit(Faulty, &rdev2->flags))
1263 is_active = 0;
1264 if (is_active)
1265 desc_nr = rdev2->raid_disk;
1266 else
1267 desc_nr = next_spare++;
1268 rdev2->desc_nr = desc_nr;
1269 d = &sb->disks[rdev2->desc_nr];
1270 nr_disks++;
1271 d->number = rdev2->desc_nr;
1272 d->major = MAJOR(rdev2->bdev->bd_dev);
1273 d->minor = MINOR(rdev2->bdev->bd_dev);
1274 if (is_active)
1275 d->raid_disk = rdev2->raid_disk;
1276 else
1277 d->raid_disk = rdev2->desc_nr; /* compatibility */
1278 if (test_bit(Faulty, &rdev2->flags))
1279 d->state = (1<<MD_DISK_FAULTY);
1280 else if (is_active) {
1281 d->state = (1<<MD_DISK_ACTIVE);
1282 if (test_bit(In_sync, &rdev2->flags))
1283 d->state |= (1<<MD_DISK_SYNC);
1284 active++;
1285 working++;
1286 } else {
1287 d->state = 0;
1288 spare++;
1289 working++;
1290 }
1291 if (test_bit(WriteMostly, &rdev2->flags))
1292 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1293 }
1294 /* now set the "removed" and "faulty" bits on any missing devices */
1295 for (i=0 ; i < mddev->raid_disks ; i++) {
1296 mdp_disk_t *d = &sb->disks[i];
1297 if (d->state == 0 && d->number == 0) {
1298 d->number = i;
1299 d->raid_disk = i;
1300 d->state = (1<<MD_DISK_REMOVED);
1301 d->state |= (1<<MD_DISK_FAULTY);
1302 failed++;
1303 }
1304 }
1305 sb->nr_disks = nr_disks;
1306 sb->active_disks = active;
1307 sb->working_disks = working;
1308 sb->failed_disks = failed;
1309 sb->spare_disks = spare;
1310
1311 sb->this_disk = sb->disks[rdev->desc_nr];
1312 sb->sb_csum = calc_sb_csum(sb);
1313 }
1314
1315 /*
1316 * rdev_size_change for 0.90.0
1317 */
1318 static unsigned long long
1319 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1320 {
1321 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1322 return 0; /* component must fit device */
1323 if (rdev->mddev->bitmap_info.offset)
1324 return 0; /* can't move bitmap */
1325 rdev->sb_start = calc_dev_sboffset(rdev);
1326 if (!num_sectors || num_sectors > rdev->sb_start)
1327 num_sectors = rdev->sb_start;
1328 /* Limit to 4TB as metadata cannot record more than that.
1329 * 4TB == 2^32 KB, or 2*2^32 sectors.
1330 */
1331 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1332 num_sectors = (2ULL << 32) - 2;
1333 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1334 rdev->sb_page);
1335 md_super_wait(rdev->mddev);
1336 return num_sectors;
1337 }
1338
1339 static int
1340 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1341 {
1342 /* non-zero offset changes not possible with v0.90 */
1343 return new_offset == 0;
1344 }
1345
1346 /*
1347 * version 1 superblock
1348 */
1349
1350 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1351 {
1352 __le32 disk_csum;
1353 u32 csum;
1354 unsigned long long newcsum;
1355 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1356 __le32 *isuper = (__le32*)sb;
1357
1358 disk_csum = sb->sb_csum;
1359 sb->sb_csum = 0;
1360 newcsum = 0;
1361 for (; size >= 4; size -= 4)
1362 newcsum += le32_to_cpu(*isuper++);
1363
1364 if (size == 2)
1365 newcsum += le16_to_cpu(*(__le16*) isuper);
1366
1367 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1368 sb->sb_csum = disk_csum;
1369 return cpu_to_le32(csum);
1370 }
1371
1372 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1373 int acknowledged);
1374 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1375 {
1376 struct mdp_superblock_1 *sb;
1377 int ret;
1378 sector_t sb_start;
1379 sector_t sectors;
1380 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1381 int bmask;
1382
1383 /*
1384 * Calculate the position of the superblock in 512byte sectors.
1385 * It is always aligned to a 4K boundary and
1386 * depeding on minor_version, it can be:
1387 * 0: At least 8K, but less than 12K, from end of device
1388 * 1: At start of device
1389 * 2: 4K from start of device.
1390 */
1391 switch(minor_version) {
1392 case 0:
1393 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1394 sb_start -= 8*2;
1395 sb_start &= ~(sector_t)(4*2-1);
1396 break;
1397 case 1:
1398 sb_start = 0;
1399 break;
1400 case 2:
1401 sb_start = 8;
1402 break;
1403 default:
1404 return -EINVAL;
1405 }
1406 rdev->sb_start = sb_start;
1407
1408 /* superblock is rarely larger than 1K, but it can be larger,
1409 * and it is safe to read 4k, so we do that
1410 */
1411 ret = read_disk_sb(rdev, 4096);
1412 if (ret) return ret;
1413
1414 sb = page_address(rdev->sb_page);
1415
1416 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1417 sb->major_version != cpu_to_le32(1) ||
1418 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1419 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1420 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1421 return -EINVAL;
1422
1423 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1424 printk("md: invalid superblock checksum on %s\n",
1425 bdevname(rdev->bdev,b));
1426 return -EINVAL;
1427 }
1428 if (le64_to_cpu(sb->data_size) < 10) {
1429 printk("md: data_size too small on %s\n",
1430 bdevname(rdev->bdev,b));
1431 return -EINVAL;
1432 }
1433 if (sb->pad0 ||
1434 sb->pad3[0] ||
1435 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1436 /* Some padding is non-zero, might be a new feature */
1437 return -EINVAL;
1438
1439 rdev->preferred_minor = 0xffff;
1440 rdev->data_offset = le64_to_cpu(sb->data_offset);
1441 rdev->new_data_offset = rdev->data_offset;
1442 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1443 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1444 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1445 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1446
1447 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1448 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1449 if (rdev->sb_size & bmask)
1450 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1451
1452 if (minor_version
1453 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1454 return -EINVAL;
1455 if (minor_version
1456 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1457 return -EINVAL;
1458
1459 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1460 rdev->desc_nr = -1;
1461 else
1462 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1463
1464 if (!rdev->bb_page) {
1465 rdev->bb_page = alloc_page(GFP_KERNEL);
1466 if (!rdev->bb_page)
1467 return -ENOMEM;
1468 }
1469 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1470 rdev->badblocks.count == 0) {
1471 /* need to load the bad block list.
1472 * Currently we limit it to one page.
1473 */
1474 s32 offset;
1475 sector_t bb_sector;
1476 u64 *bbp;
1477 int i;
1478 int sectors = le16_to_cpu(sb->bblog_size);
1479 if (sectors > (PAGE_SIZE / 512))
1480 return -EINVAL;
1481 offset = le32_to_cpu(sb->bblog_offset);
1482 if (offset == 0)
1483 return -EINVAL;
1484 bb_sector = (long long)offset;
1485 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1486 rdev->bb_page, READ, true))
1487 return -EIO;
1488 bbp = (u64 *)page_address(rdev->bb_page);
1489 rdev->badblocks.shift = sb->bblog_shift;
1490 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1491 u64 bb = le64_to_cpu(*bbp);
1492 int count = bb & (0x3ff);
1493 u64 sector = bb >> 10;
1494 sector <<= sb->bblog_shift;
1495 count <<= sb->bblog_shift;
1496 if (bb + 1 == 0)
1497 break;
1498 if (md_set_badblocks(&rdev->badblocks,
1499 sector, count, 1) == 0)
1500 return -EINVAL;
1501 }
1502 } else if (sb->bblog_offset != 0)
1503 rdev->badblocks.shift = 0;
1504
1505 if (!refdev) {
1506 ret = 1;
1507 } else {
1508 __u64 ev1, ev2;
1509 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1510
1511 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1512 sb->level != refsb->level ||
1513 sb->layout != refsb->layout ||
1514 sb->chunksize != refsb->chunksize) {
1515 printk(KERN_WARNING "md: %s has strangely different"
1516 " superblock to %s\n",
1517 bdevname(rdev->bdev,b),
1518 bdevname(refdev->bdev,b2));
1519 return -EINVAL;
1520 }
1521 ev1 = le64_to_cpu(sb->events);
1522 ev2 = le64_to_cpu(refsb->events);
1523
1524 if (ev1 > ev2)
1525 ret = 1;
1526 else
1527 ret = 0;
1528 }
1529 if (minor_version) {
1530 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1531 sectors -= rdev->data_offset;
1532 } else
1533 sectors = rdev->sb_start;
1534 if (sectors < le64_to_cpu(sb->data_size))
1535 return -EINVAL;
1536 rdev->sectors = le64_to_cpu(sb->data_size);
1537 return ret;
1538 }
1539
1540 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1541 {
1542 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1543 __u64 ev1 = le64_to_cpu(sb->events);
1544
1545 rdev->raid_disk = -1;
1546 clear_bit(Faulty, &rdev->flags);
1547 clear_bit(In_sync, &rdev->flags);
1548 clear_bit(Bitmap_sync, &rdev->flags);
1549 clear_bit(WriteMostly, &rdev->flags);
1550
1551 if (mddev->raid_disks == 0) {
1552 mddev->major_version = 1;
1553 mddev->patch_version = 0;
1554 mddev->external = 0;
1555 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1556 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1557 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1558 mddev->level = le32_to_cpu(sb->level);
1559 mddev->clevel[0] = 0;
1560 mddev->layout = le32_to_cpu(sb->layout);
1561 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1562 mddev->dev_sectors = le64_to_cpu(sb->size);
1563 mddev->events = ev1;
1564 mddev->bitmap_info.offset = 0;
1565 mddev->bitmap_info.space = 0;
1566 /* Default location for bitmap is 1K after superblock
1567 * using 3K - total of 4K
1568 */
1569 mddev->bitmap_info.default_offset = 1024 >> 9;
1570 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1571 mddev->reshape_backwards = 0;
1572
1573 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1574 memcpy(mddev->uuid, sb->set_uuid, 16);
1575
1576 mddev->max_disks = (4096-256)/2;
1577
1578 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1579 mddev->bitmap_info.file == NULL) {
1580 mddev->bitmap_info.offset =
1581 (__s32)le32_to_cpu(sb->bitmap_offset);
1582 /* Metadata doesn't record how much space is available.
1583 * For 1.0, we assume we can use up to the superblock
1584 * if before, else to 4K beyond superblock.
1585 * For others, assume no change is possible.
1586 */
1587 if (mddev->minor_version > 0)
1588 mddev->bitmap_info.space = 0;
1589 else if (mddev->bitmap_info.offset > 0)
1590 mddev->bitmap_info.space =
1591 8 - mddev->bitmap_info.offset;
1592 else
1593 mddev->bitmap_info.space =
1594 -mddev->bitmap_info.offset;
1595 }
1596
1597 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1598 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1599 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1600 mddev->new_level = le32_to_cpu(sb->new_level);
1601 mddev->new_layout = le32_to_cpu(sb->new_layout);
1602 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1603 if (mddev->delta_disks < 0 ||
1604 (mddev->delta_disks == 0 &&
1605 (le32_to_cpu(sb->feature_map)
1606 & MD_FEATURE_RESHAPE_BACKWARDS)))
1607 mddev->reshape_backwards = 1;
1608 } else {
1609 mddev->reshape_position = MaxSector;
1610 mddev->delta_disks = 0;
1611 mddev->new_level = mddev->level;
1612 mddev->new_layout = mddev->layout;
1613 mddev->new_chunk_sectors = mddev->chunk_sectors;
1614 }
1615
1616 } else if (mddev->pers == NULL) {
1617 /* Insist of good event counter while assembling, except for
1618 * spares (which don't need an event count) */
1619 ++ev1;
1620 if (rdev->desc_nr >= 0 &&
1621 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1622 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1623 if (ev1 < mddev->events)
1624 return -EINVAL;
1625 } else if (mddev->bitmap) {
1626 /* If adding to array with a bitmap, then we can accept an
1627 * older device, but not too old.
1628 */
1629 if (ev1 < mddev->bitmap->events_cleared)
1630 return 0;
1631 if (ev1 < mddev->events)
1632 set_bit(Bitmap_sync, &rdev->flags);
1633 } else {
1634 if (ev1 < mddev->events)
1635 /* just a hot-add of a new device, leave raid_disk at -1 */
1636 return 0;
1637 }
1638 if (mddev->level != LEVEL_MULTIPATH) {
1639 int role;
1640 if (rdev->desc_nr < 0 ||
1641 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1642 role = 0xffff;
1643 rdev->desc_nr = -1;
1644 } else
1645 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1646 switch(role) {
1647 case 0xffff: /* spare */
1648 break;
1649 case 0xfffe: /* faulty */
1650 set_bit(Faulty, &rdev->flags);
1651 break;
1652 default:
1653 rdev->saved_raid_disk = role;
1654 if ((le32_to_cpu(sb->feature_map) &
1655 MD_FEATURE_RECOVERY_OFFSET)) {
1656 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1657 if (!(le32_to_cpu(sb->feature_map) &
1658 MD_FEATURE_RECOVERY_BITMAP))
1659 rdev->saved_raid_disk = -1;
1660 } else
1661 set_bit(In_sync, &rdev->flags);
1662 rdev->raid_disk = role;
1663 break;
1664 }
1665 if (sb->devflags & WriteMostly1)
1666 set_bit(WriteMostly, &rdev->flags);
1667 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1668 set_bit(Replacement, &rdev->flags);
1669 } else /* MULTIPATH are always insync */
1670 set_bit(In_sync, &rdev->flags);
1671
1672 return 0;
1673 }
1674
1675 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1676 {
1677 struct mdp_superblock_1 *sb;
1678 struct md_rdev *rdev2;
1679 int max_dev, i;
1680 /* make rdev->sb match mddev and rdev data. */
1681
1682 sb = page_address(rdev->sb_page);
1683
1684 sb->feature_map = 0;
1685 sb->pad0 = 0;
1686 sb->recovery_offset = cpu_to_le64(0);
1687 memset(sb->pad3, 0, sizeof(sb->pad3));
1688
1689 sb->utime = cpu_to_le64((__u64)mddev->utime);
1690 sb->events = cpu_to_le64(mddev->events);
1691 if (mddev->in_sync)
1692 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1693 else
1694 sb->resync_offset = cpu_to_le64(0);
1695
1696 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1697
1698 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1699 sb->size = cpu_to_le64(mddev->dev_sectors);
1700 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1701 sb->level = cpu_to_le32(mddev->level);
1702 sb->layout = cpu_to_le32(mddev->layout);
1703
1704 if (test_bit(WriteMostly, &rdev->flags))
1705 sb->devflags |= WriteMostly1;
1706 else
1707 sb->devflags &= ~WriteMostly1;
1708 sb->data_offset = cpu_to_le64(rdev->data_offset);
1709 sb->data_size = cpu_to_le64(rdev->sectors);
1710
1711 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1712 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1713 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1714 }
1715
1716 if (rdev->raid_disk >= 0 &&
1717 !test_bit(In_sync, &rdev->flags)) {
1718 sb->feature_map |=
1719 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1720 sb->recovery_offset =
1721 cpu_to_le64(rdev->recovery_offset);
1722 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1723 sb->feature_map |=
1724 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1725 }
1726 if (test_bit(Replacement, &rdev->flags))
1727 sb->feature_map |=
1728 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1729
1730 if (mddev->reshape_position != MaxSector) {
1731 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1732 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1733 sb->new_layout = cpu_to_le32(mddev->new_layout);
1734 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1735 sb->new_level = cpu_to_le32(mddev->new_level);
1736 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1737 if (mddev->delta_disks == 0 &&
1738 mddev->reshape_backwards)
1739 sb->feature_map
1740 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1741 if (rdev->new_data_offset != rdev->data_offset) {
1742 sb->feature_map
1743 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1744 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1745 - rdev->data_offset));
1746 }
1747 }
1748
1749 if (rdev->badblocks.count == 0)
1750 /* Nothing to do for bad blocks*/ ;
1751 else if (sb->bblog_offset == 0)
1752 /* Cannot record bad blocks on this device */
1753 md_error(mddev, rdev);
1754 else {
1755 struct badblocks *bb = &rdev->badblocks;
1756 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1757 u64 *p = bb->page;
1758 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1759 if (bb->changed) {
1760 unsigned seq;
1761
1762 retry:
1763 seq = read_seqbegin(&bb->lock);
1764
1765 memset(bbp, 0xff, PAGE_SIZE);
1766
1767 for (i = 0 ; i < bb->count ; i++) {
1768 u64 internal_bb = p[i];
1769 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1770 | BB_LEN(internal_bb));
1771 bbp[i] = cpu_to_le64(store_bb);
1772 }
1773 bb->changed = 0;
1774 if (read_seqretry(&bb->lock, seq))
1775 goto retry;
1776
1777 bb->sector = (rdev->sb_start +
1778 (int)le32_to_cpu(sb->bblog_offset));
1779 bb->size = le16_to_cpu(sb->bblog_size);
1780 }
1781 }
1782
1783 max_dev = 0;
1784 rdev_for_each(rdev2, mddev)
1785 if (rdev2->desc_nr+1 > max_dev)
1786 max_dev = rdev2->desc_nr+1;
1787
1788 if (max_dev > le32_to_cpu(sb->max_dev)) {
1789 int bmask;
1790 sb->max_dev = cpu_to_le32(max_dev);
1791 rdev->sb_size = max_dev * 2 + 256;
1792 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1793 if (rdev->sb_size & bmask)
1794 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1795 } else
1796 max_dev = le32_to_cpu(sb->max_dev);
1797
1798 for (i=0; i<max_dev;i++)
1799 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1800
1801 rdev_for_each(rdev2, mddev) {
1802 i = rdev2->desc_nr;
1803 if (test_bit(Faulty, &rdev2->flags))
1804 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1805 else if (test_bit(In_sync, &rdev2->flags))
1806 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1807 else if (rdev2->raid_disk >= 0)
1808 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1809 else
1810 sb->dev_roles[i] = cpu_to_le16(0xffff);
1811 }
1812
1813 sb->sb_csum = calc_sb_1_csum(sb);
1814 }
1815
1816 static unsigned long long
1817 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1818 {
1819 struct mdp_superblock_1 *sb;
1820 sector_t max_sectors;
1821 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1822 return 0; /* component must fit device */
1823 if (rdev->data_offset != rdev->new_data_offset)
1824 return 0; /* too confusing */
1825 if (rdev->sb_start < rdev->data_offset) {
1826 /* minor versions 1 and 2; superblock before data */
1827 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1828 max_sectors -= rdev->data_offset;
1829 if (!num_sectors || num_sectors > max_sectors)
1830 num_sectors = max_sectors;
1831 } else if (rdev->mddev->bitmap_info.offset) {
1832 /* minor version 0 with bitmap we can't move */
1833 return 0;
1834 } else {
1835 /* minor version 0; superblock after data */
1836 sector_t sb_start;
1837 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1838 sb_start &= ~(sector_t)(4*2 - 1);
1839 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1840 if (!num_sectors || num_sectors > max_sectors)
1841 num_sectors = max_sectors;
1842 rdev->sb_start = sb_start;
1843 }
1844 sb = page_address(rdev->sb_page);
1845 sb->data_size = cpu_to_le64(num_sectors);
1846 sb->super_offset = rdev->sb_start;
1847 sb->sb_csum = calc_sb_1_csum(sb);
1848 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1849 rdev->sb_page);
1850 md_super_wait(rdev->mddev);
1851 return num_sectors;
1852
1853 }
1854
1855 static int
1856 super_1_allow_new_offset(struct md_rdev *rdev,
1857 unsigned long long new_offset)
1858 {
1859 /* All necessary checks on new >= old have been done */
1860 struct bitmap *bitmap;
1861 if (new_offset >= rdev->data_offset)
1862 return 1;
1863
1864 /* with 1.0 metadata, there is no metadata to tread on
1865 * so we can always move back */
1866 if (rdev->mddev->minor_version == 0)
1867 return 1;
1868
1869 /* otherwise we must be sure not to step on
1870 * any metadata, so stay:
1871 * 36K beyond start of superblock
1872 * beyond end of badblocks
1873 * beyond write-intent bitmap
1874 */
1875 if (rdev->sb_start + (32+4)*2 > new_offset)
1876 return 0;
1877 bitmap = rdev->mddev->bitmap;
1878 if (bitmap && !rdev->mddev->bitmap_info.file &&
1879 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1880 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1881 return 0;
1882 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1883 return 0;
1884
1885 return 1;
1886 }
1887
1888 static struct super_type super_types[] = {
1889 [0] = {
1890 .name = "0.90.0",
1891 .owner = THIS_MODULE,
1892 .load_super = super_90_load,
1893 .validate_super = super_90_validate,
1894 .sync_super = super_90_sync,
1895 .rdev_size_change = super_90_rdev_size_change,
1896 .allow_new_offset = super_90_allow_new_offset,
1897 },
1898 [1] = {
1899 .name = "md-1",
1900 .owner = THIS_MODULE,
1901 .load_super = super_1_load,
1902 .validate_super = super_1_validate,
1903 .sync_super = super_1_sync,
1904 .rdev_size_change = super_1_rdev_size_change,
1905 .allow_new_offset = super_1_allow_new_offset,
1906 },
1907 };
1908
1909 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1910 {
1911 if (mddev->sync_super) {
1912 mddev->sync_super(mddev, rdev);
1913 return;
1914 }
1915
1916 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1917
1918 super_types[mddev->major_version].sync_super(mddev, rdev);
1919 }
1920
1921 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1922 {
1923 struct md_rdev *rdev, *rdev2;
1924
1925 rcu_read_lock();
1926 rdev_for_each_rcu(rdev, mddev1)
1927 rdev_for_each_rcu(rdev2, mddev2)
1928 if (rdev->bdev->bd_contains ==
1929 rdev2->bdev->bd_contains) {
1930 rcu_read_unlock();
1931 return 1;
1932 }
1933 rcu_read_unlock();
1934 return 0;
1935 }
1936
1937 static LIST_HEAD(pending_raid_disks);
1938
1939 /*
1940 * Try to register data integrity profile for an mddev
1941 *
1942 * This is called when an array is started and after a disk has been kicked
1943 * from the array. It only succeeds if all working and active component devices
1944 * are integrity capable with matching profiles.
1945 */
1946 int md_integrity_register(struct mddev *mddev)
1947 {
1948 struct md_rdev *rdev, *reference = NULL;
1949
1950 if (list_empty(&mddev->disks))
1951 return 0; /* nothing to do */
1952 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1953 return 0; /* shouldn't register, or already is */
1954 rdev_for_each(rdev, mddev) {
1955 /* skip spares and non-functional disks */
1956 if (test_bit(Faulty, &rdev->flags))
1957 continue;
1958 if (rdev->raid_disk < 0)
1959 continue;
1960 if (!reference) {
1961 /* Use the first rdev as the reference */
1962 reference = rdev;
1963 continue;
1964 }
1965 /* does this rdev's profile match the reference profile? */
1966 if (blk_integrity_compare(reference->bdev->bd_disk,
1967 rdev->bdev->bd_disk) < 0)
1968 return -EINVAL;
1969 }
1970 if (!reference || !bdev_get_integrity(reference->bdev))
1971 return 0;
1972 /*
1973 * All component devices are integrity capable and have matching
1974 * profiles, register the common profile for the md device.
1975 */
1976 if (blk_integrity_register(mddev->gendisk,
1977 bdev_get_integrity(reference->bdev)) != 0) {
1978 printk(KERN_ERR "md: failed to register integrity for %s\n",
1979 mdname(mddev));
1980 return -EINVAL;
1981 }
1982 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1983 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1984 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1985 mdname(mddev));
1986 return -EINVAL;
1987 }
1988 return 0;
1989 }
1990 EXPORT_SYMBOL(md_integrity_register);
1991
1992 /* Disable data integrity if non-capable/non-matching disk is being added */
1993 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1994 {
1995 struct blk_integrity *bi_rdev;
1996 struct blk_integrity *bi_mddev;
1997
1998 if (!mddev->gendisk)
1999 return;
2000
2001 bi_rdev = bdev_get_integrity(rdev->bdev);
2002 bi_mddev = blk_get_integrity(mddev->gendisk);
2003
2004 if (!bi_mddev) /* nothing to do */
2005 return;
2006 if (rdev->raid_disk < 0) /* skip spares */
2007 return;
2008 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2009 rdev->bdev->bd_disk) >= 0)
2010 return;
2011 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2012 blk_integrity_unregister(mddev->gendisk);
2013 }
2014 EXPORT_SYMBOL(md_integrity_add_rdev);
2015
2016 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2017 {
2018 char b[BDEVNAME_SIZE];
2019 struct kobject *ko;
2020 char *s;
2021 int err;
2022
2023 /* prevent duplicates */
2024 if (find_rdev(mddev, rdev->bdev->bd_dev))
2025 return -EEXIST;
2026
2027 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2028 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2029 rdev->sectors < mddev->dev_sectors)) {
2030 if (mddev->pers) {
2031 /* Cannot change size, so fail
2032 * If mddev->level <= 0, then we don't care
2033 * about aligning sizes (e.g. linear)
2034 */
2035 if (mddev->level > 0)
2036 return -ENOSPC;
2037 } else
2038 mddev->dev_sectors = rdev->sectors;
2039 }
2040
2041 /* Verify rdev->desc_nr is unique.
2042 * If it is -1, assign a free number, else
2043 * check number is not in use
2044 */
2045 rcu_read_lock();
2046 if (rdev->desc_nr < 0) {
2047 int choice = 0;
2048 if (mddev->pers)
2049 choice = mddev->raid_disks;
2050 while (find_rdev_nr_rcu(mddev, choice))
2051 choice++;
2052 rdev->desc_nr = choice;
2053 } else {
2054 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2055 rcu_read_unlock();
2056 return -EBUSY;
2057 }
2058 }
2059 rcu_read_unlock();
2060 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2061 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2062 mdname(mddev), mddev->max_disks);
2063 return -EBUSY;
2064 }
2065 bdevname(rdev->bdev,b);
2066 while ( (s=strchr(b, '/')) != NULL)
2067 *s = '!';
2068
2069 rdev->mddev = mddev;
2070 printk(KERN_INFO "md: bind<%s>\n", b);
2071
2072 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2073 goto fail;
2074
2075 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2076 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2077 /* failure here is OK */;
2078 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2079
2080 list_add_rcu(&rdev->same_set, &mddev->disks);
2081 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2082
2083 /* May as well allow recovery to be retried once */
2084 mddev->recovery_disabled++;
2085
2086 return 0;
2087
2088 fail:
2089 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2090 b, mdname(mddev));
2091 return err;
2092 }
2093
2094 static void md_delayed_delete(struct work_struct *ws)
2095 {
2096 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2097 kobject_del(&rdev->kobj);
2098 kobject_put(&rdev->kobj);
2099 }
2100
2101 static void unbind_rdev_from_array(struct md_rdev *rdev)
2102 {
2103 char b[BDEVNAME_SIZE];
2104
2105 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2106 list_del_rcu(&rdev->same_set);
2107 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2108 rdev->mddev = NULL;
2109 sysfs_remove_link(&rdev->kobj, "block");
2110 sysfs_put(rdev->sysfs_state);
2111 rdev->sysfs_state = NULL;
2112 rdev->badblocks.count = 0;
2113 /* We need to delay this, otherwise we can deadlock when
2114 * writing to 'remove' to "dev/state". We also need
2115 * to delay it due to rcu usage.
2116 */
2117 synchronize_rcu();
2118 INIT_WORK(&rdev->del_work, md_delayed_delete);
2119 kobject_get(&rdev->kobj);
2120 queue_work(md_misc_wq, &rdev->del_work);
2121 }
2122
2123 /*
2124 * prevent the device from being mounted, repartitioned or
2125 * otherwise reused by a RAID array (or any other kernel
2126 * subsystem), by bd_claiming the device.
2127 */
2128 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2129 {
2130 int err = 0;
2131 struct block_device *bdev;
2132 char b[BDEVNAME_SIZE];
2133
2134 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2135 shared ? (struct md_rdev *)lock_rdev : rdev);
2136 if (IS_ERR(bdev)) {
2137 printk(KERN_ERR "md: could not open %s.\n",
2138 __bdevname(dev, b));
2139 return PTR_ERR(bdev);
2140 }
2141 rdev->bdev = bdev;
2142 return err;
2143 }
2144
2145 static void unlock_rdev(struct md_rdev *rdev)
2146 {
2147 struct block_device *bdev = rdev->bdev;
2148 rdev->bdev = NULL;
2149 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2150 }
2151
2152 void md_autodetect_dev(dev_t dev);
2153
2154 static void export_rdev(struct md_rdev *rdev)
2155 {
2156 char b[BDEVNAME_SIZE];
2157
2158 printk(KERN_INFO "md: export_rdev(%s)\n",
2159 bdevname(rdev->bdev,b));
2160 md_rdev_clear(rdev);
2161 #ifndef MODULE
2162 if (test_bit(AutoDetected, &rdev->flags))
2163 md_autodetect_dev(rdev->bdev->bd_dev);
2164 #endif
2165 unlock_rdev(rdev);
2166 kobject_put(&rdev->kobj);
2167 }
2168
2169 static void kick_rdev_from_array(struct md_rdev *rdev)
2170 {
2171 unbind_rdev_from_array(rdev);
2172 export_rdev(rdev);
2173 }
2174
2175 static void export_array(struct mddev *mddev)
2176 {
2177 struct md_rdev *rdev;
2178
2179 while (!list_empty(&mddev->disks)) {
2180 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2181 same_set);
2182 kick_rdev_from_array(rdev);
2183 }
2184 mddev->raid_disks = 0;
2185 mddev->major_version = 0;
2186 }
2187
2188 static void sync_sbs(struct mddev *mddev, int nospares)
2189 {
2190 /* Update each superblock (in-memory image), but
2191 * if we are allowed to, skip spares which already
2192 * have the right event counter, or have one earlier
2193 * (which would mean they aren't being marked as dirty
2194 * with the rest of the array)
2195 */
2196 struct md_rdev *rdev;
2197 rdev_for_each(rdev, mddev) {
2198 if (rdev->sb_events == mddev->events ||
2199 (nospares &&
2200 rdev->raid_disk < 0 &&
2201 rdev->sb_events+1 == mddev->events)) {
2202 /* Don't update this superblock */
2203 rdev->sb_loaded = 2;
2204 } else {
2205 sync_super(mddev, rdev);
2206 rdev->sb_loaded = 1;
2207 }
2208 }
2209 }
2210
2211 static void md_update_sb(struct mddev *mddev, int force_change)
2212 {
2213 struct md_rdev *rdev;
2214 int sync_req;
2215 int nospares = 0;
2216 int any_badblocks_changed = 0;
2217
2218 if (mddev->ro) {
2219 if (force_change)
2220 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2221 return;
2222 }
2223 repeat:
2224 /* First make sure individual recovery_offsets are correct */
2225 rdev_for_each(rdev, mddev) {
2226 if (rdev->raid_disk >= 0 &&
2227 mddev->delta_disks >= 0 &&
2228 !test_bit(In_sync, &rdev->flags) &&
2229 mddev->curr_resync_completed > rdev->recovery_offset)
2230 rdev->recovery_offset = mddev->curr_resync_completed;
2231
2232 }
2233 if (!mddev->persistent) {
2234 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2235 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2236 if (!mddev->external) {
2237 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2238 rdev_for_each(rdev, mddev) {
2239 if (rdev->badblocks.changed) {
2240 rdev->badblocks.changed = 0;
2241 md_ack_all_badblocks(&rdev->badblocks);
2242 md_error(mddev, rdev);
2243 }
2244 clear_bit(Blocked, &rdev->flags);
2245 clear_bit(BlockedBadBlocks, &rdev->flags);
2246 wake_up(&rdev->blocked_wait);
2247 }
2248 }
2249 wake_up(&mddev->sb_wait);
2250 return;
2251 }
2252
2253 spin_lock(&mddev->lock);
2254
2255 mddev->utime = get_seconds();
2256
2257 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2258 force_change = 1;
2259 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2260 /* just a clean<-> dirty transition, possibly leave spares alone,
2261 * though if events isn't the right even/odd, we will have to do
2262 * spares after all
2263 */
2264 nospares = 1;
2265 if (force_change)
2266 nospares = 0;
2267 if (mddev->degraded)
2268 /* If the array is degraded, then skipping spares is both
2269 * dangerous and fairly pointless.
2270 * Dangerous because a device that was removed from the array
2271 * might have a event_count that still looks up-to-date,
2272 * so it can be re-added without a resync.
2273 * Pointless because if there are any spares to skip,
2274 * then a recovery will happen and soon that array won't
2275 * be degraded any more and the spare can go back to sleep then.
2276 */
2277 nospares = 0;
2278
2279 sync_req = mddev->in_sync;
2280
2281 /* If this is just a dirty<->clean transition, and the array is clean
2282 * and 'events' is odd, we can roll back to the previous clean state */
2283 if (nospares
2284 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2285 && mddev->can_decrease_events
2286 && mddev->events != 1) {
2287 mddev->events--;
2288 mddev->can_decrease_events = 0;
2289 } else {
2290 /* otherwise we have to go forward and ... */
2291 mddev->events ++;
2292 mddev->can_decrease_events = nospares;
2293 }
2294
2295 /*
2296 * This 64-bit counter should never wrap.
2297 * Either we are in around ~1 trillion A.C., assuming
2298 * 1 reboot per second, or we have a bug...
2299 */
2300 WARN_ON(mddev->events == 0);
2301
2302 rdev_for_each(rdev, mddev) {
2303 if (rdev->badblocks.changed)
2304 any_badblocks_changed++;
2305 if (test_bit(Faulty, &rdev->flags))
2306 set_bit(FaultRecorded, &rdev->flags);
2307 }
2308
2309 sync_sbs(mddev, nospares);
2310 spin_unlock(&mddev->lock);
2311
2312 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2313 mdname(mddev), mddev->in_sync);
2314
2315 bitmap_update_sb(mddev->bitmap);
2316 rdev_for_each(rdev, mddev) {
2317 char b[BDEVNAME_SIZE];
2318
2319 if (rdev->sb_loaded != 1)
2320 continue; /* no noise on spare devices */
2321
2322 if (!test_bit(Faulty, &rdev->flags)) {
2323 md_super_write(mddev,rdev,
2324 rdev->sb_start, rdev->sb_size,
2325 rdev->sb_page);
2326 pr_debug("md: (write) %s's sb offset: %llu\n",
2327 bdevname(rdev->bdev, b),
2328 (unsigned long long)rdev->sb_start);
2329 rdev->sb_events = mddev->events;
2330 if (rdev->badblocks.size) {
2331 md_super_write(mddev, rdev,
2332 rdev->badblocks.sector,
2333 rdev->badblocks.size << 9,
2334 rdev->bb_page);
2335 rdev->badblocks.size = 0;
2336 }
2337
2338 } else
2339 pr_debug("md: %s (skipping faulty)\n",
2340 bdevname(rdev->bdev, b));
2341
2342 if (mddev->level == LEVEL_MULTIPATH)
2343 /* only need to write one superblock... */
2344 break;
2345 }
2346 md_super_wait(mddev);
2347 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2348
2349 spin_lock(&mddev->lock);
2350 if (mddev->in_sync != sync_req ||
2351 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2352 /* have to write it out again */
2353 spin_unlock(&mddev->lock);
2354 goto repeat;
2355 }
2356 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2357 spin_unlock(&mddev->lock);
2358 wake_up(&mddev->sb_wait);
2359 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2360 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2361
2362 rdev_for_each(rdev, mddev) {
2363 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2364 clear_bit(Blocked, &rdev->flags);
2365
2366 if (any_badblocks_changed)
2367 md_ack_all_badblocks(&rdev->badblocks);
2368 clear_bit(BlockedBadBlocks, &rdev->flags);
2369 wake_up(&rdev->blocked_wait);
2370 }
2371 }
2372
2373 /* words written to sysfs files may, or may not, be \n terminated.
2374 * We want to accept with case. For this we use cmd_match.
2375 */
2376 static int cmd_match(const char *cmd, const char *str)
2377 {
2378 /* See if cmd, written into a sysfs file, matches
2379 * str. They must either be the same, or cmd can
2380 * have a trailing newline
2381 */
2382 while (*cmd && *str && *cmd == *str) {
2383 cmd++;
2384 str++;
2385 }
2386 if (*cmd == '\n')
2387 cmd++;
2388 if (*str || *cmd)
2389 return 0;
2390 return 1;
2391 }
2392
2393 struct rdev_sysfs_entry {
2394 struct attribute attr;
2395 ssize_t (*show)(struct md_rdev *, char *);
2396 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2397 };
2398
2399 static ssize_t
2400 state_show(struct md_rdev *rdev, char *page)
2401 {
2402 char *sep = "";
2403 size_t len = 0;
2404 unsigned long flags = ACCESS_ONCE(rdev->flags);
2405
2406 if (test_bit(Faulty, &flags) ||
2407 rdev->badblocks.unacked_exist) {
2408 len+= sprintf(page+len, "%sfaulty",sep);
2409 sep = ",";
2410 }
2411 if (test_bit(In_sync, &flags)) {
2412 len += sprintf(page+len, "%sin_sync",sep);
2413 sep = ",";
2414 }
2415 if (test_bit(WriteMostly, &flags)) {
2416 len += sprintf(page+len, "%swrite_mostly",sep);
2417 sep = ",";
2418 }
2419 if (test_bit(Blocked, &flags) ||
2420 (rdev->badblocks.unacked_exist
2421 && !test_bit(Faulty, &flags))) {
2422 len += sprintf(page+len, "%sblocked", sep);
2423 sep = ",";
2424 }
2425 if (!test_bit(Faulty, &flags) &&
2426 !test_bit(In_sync, &flags)) {
2427 len += sprintf(page+len, "%sspare", sep);
2428 sep = ",";
2429 }
2430 if (test_bit(WriteErrorSeen, &flags)) {
2431 len += sprintf(page+len, "%swrite_error", sep);
2432 sep = ",";
2433 }
2434 if (test_bit(WantReplacement, &flags)) {
2435 len += sprintf(page+len, "%swant_replacement", sep);
2436 sep = ",";
2437 }
2438 if (test_bit(Replacement, &flags)) {
2439 len += sprintf(page+len, "%sreplacement", sep);
2440 sep = ",";
2441 }
2442
2443 return len+sprintf(page+len, "\n");
2444 }
2445
2446 static ssize_t
2447 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2448 {
2449 /* can write
2450 * faulty - simulates an error
2451 * remove - disconnects the device
2452 * writemostly - sets write_mostly
2453 * -writemostly - clears write_mostly
2454 * blocked - sets the Blocked flags
2455 * -blocked - clears the Blocked and possibly simulates an error
2456 * insync - sets Insync providing device isn't active
2457 * -insync - clear Insync for a device with a slot assigned,
2458 * so that it gets rebuilt based on bitmap
2459 * write_error - sets WriteErrorSeen
2460 * -write_error - clears WriteErrorSeen
2461 */
2462 int err = -EINVAL;
2463 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2464 md_error(rdev->mddev, rdev);
2465 if (test_bit(Faulty, &rdev->flags))
2466 err = 0;
2467 else
2468 err = -EBUSY;
2469 } else if (cmd_match(buf, "remove")) {
2470 if (rdev->raid_disk >= 0)
2471 err = -EBUSY;
2472 else {
2473 struct mddev *mddev = rdev->mddev;
2474 kick_rdev_from_array(rdev);
2475 if (mddev->pers)
2476 md_update_sb(mddev, 1);
2477 md_new_event(mddev);
2478 err = 0;
2479 }
2480 } else if (cmd_match(buf, "writemostly")) {
2481 set_bit(WriteMostly, &rdev->flags);
2482 err = 0;
2483 } else if (cmd_match(buf, "-writemostly")) {
2484 clear_bit(WriteMostly, &rdev->flags);
2485 err = 0;
2486 } else if (cmd_match(buf, "blocked")) {
2487 set_bit(Blocked, &rdev->flags);
2488 err = 0;
2489 } else if (cmd_match(buf, "-blocked")) {
2490 if (!test_bit(Faulty, &rdev->flags) &&
2491 rdev->badblocks.unacked_exist) {
2492 /* metadata handler doesn't understand badblocks,
2493 * so we need to fail the device
2494 */
2495 md_error(rdev->mddev, rdev);
2496 }
2497 clear_bit(Blocked, &rdev->flags);
2498 clear_bit(BlockedBadBlocks, &rdev->flags);
2499 wake_up(&rdev->blocked_wait);
2500 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2501 md_wakeup_thread(rdev->mddev->thread);
2502
2503 err = 0;
2504 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2505 set_bit(In_sync, &rdev->flags);
2506 err = 0;
2507 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2508 if (rdev->mddev->pers == NULL) {
2509 clear_bit(In_sync, &rdev->flags);
2510 rdev->saved_raid_disk = rdev->raid_disk;
2511 rdev->raid_disk = -1;
2512 err = 0;
2513 }
2514 } else if (cmd_match(buf, "write_error")) {
2515 set_bit(WriteErrorSeen, &rdev->flags);
2516 err = 0;
2517 } else if (cmd_match(buf, "-write_error")) {
2518 clear_bit(WriteErrorSeen, &rdev->flags);
2519 err = 0;
2520 } else if (cmd_match(buf, "want_replacement")) {
2521 /* Any non-spare device that is not a replacement can
2522 * become want_replacement at any time, but we then need to
2523 * check if recovery is needed.
2524 */
2525 if (rdev->raid_disk >= 0 &&
2526 !test_bit(Replacement, &rdev->flags))
2527 set_bit(WantReplacement, &rdev->flags);
2528 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2529 md_wakeup_thread(rdev->mddev->thread);
2530 err = 0;
2531 } else if (cmd_match(buf, "-want_replacement")) {
2532 /* Clearing 'want_replacement' is always allowed.
2533 * Once replacements starts it is too late though.
2534 */
2535 err = 0;
2536 clear_bit(WantReplacement, &rdev->flags);
2537 } else if (cmd_match(buf, "replacement")) {
2538 /* Can only set a device as a replacement when array has not
2539 * yet been started. Once running, replacement is automatic
2540 * from spares, or by assigning 'slot'.
2541 */
2542 if (rdev->mddev->pers)
2543 err = -EBUSY;
2544 else {
2545 set_bit(Replacement, &rdev->flags);
2546 err = 0;
2547 }
2548 } else if (cmd_match(buf, "-replacement")) {
2549 /* Similarly, can only clear Replacement before start */
2550 if (rdev->mddev->pers)
2551 err = -EBUSY;
2552 else {
2553 clear_bit(Replacement, &rdev->flags);
2554 err = 0;
2555 }
2556 }
2557 if (!err)
2558 sysfs_notify_dirent_safe(rdev->sysfs_state);
2559 return err ? err : len;
2560 }
2561 static struct rdev_sysfs_entry rdev_state =
2562 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2563
2564 static ssize_t
2565 errors_show(struct md_rdev *rdev, char *page)
2566 {
2567 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2568 }
2569
2570 static ssize_t
2571 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2572 {
2573 char *e;
2574 unsigned long n = simple_strtoul(buf, &e, 10);
2575 if (*buf && (*e == 0 || *e == '\n')) {
2576 atomic_set(&rdev->corrected_errors, n);
2577 return len;
2578 }
2579 return -EINVAL;
2580 }
2581 static struct rdev_sysfs_entry rdev_errors =
2582 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2583
2584 static ssize_t
2585 slot_show(struct md_rdev *rdev, char *page)
2586 {
2587 if (rdev->raid_disk < 0)
2588 return sprintf(page, "none\n");
2589 else
2590 return sprintf(page, "%d\n", rdev->raid_disk);
2591 }
2592
2593 static ssize_t
2594 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2595 {
2596 char *e;
2597 int err;
2598 int slot = simple_strtoul(buf, &e, 10);
2599 if (strncmp(buf, "none", 4)==0)
2600 slot = -1;
2601 else if (e==buf || (*e && *e!= '\n'))
2602 return -EINVAL;
2603 if (rdev->mddev->pers && slot == -1) {
2604 /* Setting 'slot' on an active array requires also
2605 * updating the 'rd%d' link, and communicating
2606 * with the personality with ->hot_*_disk.
2607 * For now we only support removing
2608 * failed/spare devices. This normally happens automatically,
2609 * but not when the metadata is externally managed.
2610 */
2611 if (rdev->raid_disk == -1)
2612 return -EEXIST;
2613 /* personality does all needed checks */
2614 if (rdev->mddev->pers->hot_remove_disk == NULL)
2615 return -EINVAL;
2616 clear_bit(Blocked, &rdev->flags);
2617 remove_and_add_spares(rdev->mddev, rdev);
2618 if (rdev->raid_disk >= 0)
2619 return -EBUSY;
2620 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2621 md_wakeup_thread(rdev->mddev->thread);
2622 } else if (rdev->mddev->pers) {
2623 /* Activating a spare .. or possibly reactivating
2624 * if we ever get bitmaps working here.
2625 */
2626
2627 if (rdev->raid_disk != -1)
2628 return -EBUSY;
2629
2630 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2631 return -EBUSY;
2632
2633 if (rdev->mddev->pers->hot_add_disk == NULL)
2634 return -EINVAL;
2635
2636 if (slot >= rdev->mddev->raid_disks &&
2637 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2638 return -ENOSPC;
2639
2640 rdev->raid_disk = slot;
2641 if (test_bit(In_sync, &rdev->flags))
2642 rdev->saved_raid_disk = slot;
2643 else
2644 rdev->saved_raid_disk = -1;
2645 clear_bit(In_sync, &rdev->flags);
2646 clear_bit(Bitmap_sync, &rdev->flags);
2647 err = rdev->mddev->pers->
2648 hot_add_disk(rdev->mddev, rdev);
2649 if (err) {
2650 rdev->raid_disk = -1;
2651 return err;
2652 } else
2653 sysfs_notify_dirent_safe(rdev->sysfs_state);
2654 if (sysfs_link_rdev(rdev->mddev, rdev))
2655 /* failure here is OK */;
2656 /* don't wakeup anyone, leave that to userspace. */
2657 } else {
2658 if (slot >= rdev->mddev->raid_disks &&
2659 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2660 return -ENOSPC;
2661 rdev->raid_disk = slot;
2662 /* assume it is working */
2663 clear_bit(Faulty, &rdev->flags);
2664 clear_bit(WriteMostly, &rdev->flags);
2665 set_bit(In_sync, &rdev->flags);
2666 sysfs_notify_dirent_safe(rdev->sysfs_state);
2667 }
2668 return len;
2669 }
2670
2671 static struct rdev_sysfs_entry rdev_slot =
2672 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2673
2674 static ssize_t
2675 offset_show(struct md_rdev *rdev, char *page)
2676 {
2677 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2678 }
2679
2680 static ssize_t
2681 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2682 {
2683 unsigned long long offset;
2684 if (kstrtoull(buf, 10, &offset) < 0)
2685 return -EINVAL;
2686 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2687 return -EBUSY;
2688 if (rdev->sectors && rdev->mddev->external)
2689 /* Must set offset before size, so overlap checks
2690 * can be sane */
2691 return -EBUSY;
2692 rdev->data_offset = offset;
2693 rdev->new_data_offset = offset;
2694 return len;
2695 }
2696
2697 static struct rdev_sysfs_entry rdev_offset =
2698 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2699
2700 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2701 {
2702 return sprintf(page, "%llu\n",
2703 (unsigned long long)rdev->new_data_offset);
2704 }
2705
2706 static ssize_t new_offset_store(struct md_rdev *rdev,
2707 const char *buf, size_t len)
2708 {
2709 unsigned long long new_offset;
2710 struct mddev *mddev = rdev->mddev;
2711
2712 if (kstrtoull(buf, 10, &new_offset) < 0)
2713 return -EINVAL;
2714
2715 if (mddev->sync_thread ||
2716 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2717 return -EBUSY;
2718 if (new_offset == rdev->data_offset)
2719 /* reset is always permitted */
2720 ;
2721 else if (new_offset > rdev->data_offset) {
2722 /* must not push array size beyond rdev_sectors */
2723 if (new_offset - rdev->data_offset
2724 + mddev->dev_sectors > rdev->sectors)
2725 return -E2BIG;
2726 }
2727 /* Metadata worries about other space details. */
2728
2729 /* decreasing the offset is inconsistent with a backwards
2730 * reshape.
2731 */
2732 if (new_offset < rdev->data_offset &&
2733 mddev->reshape_backwards)
2734 return -EINVAL;
2735 /* Increasing offset is inconsistent with forwards
2736 * reshape. reshape_direction should be set to
2737 * 'backwards' first.
2738 */
2739 if (new_offset > rdev->data_offset &&
2740 !mddev->reshape_backwards)
2741 return -EINVAL;
2742
2743 if (mddev->pers && mddev->persistent &&
2744 !super_types[mddev->major_version]
2745 .allow_new_offset(rdev, new_offset))
2746 return -E2BIG;
2747 rdev->new_data_offset = new_offset;
2748 if (new_offset > rdev->data_offset)
2749 mddev->reshape_backwards = 1;
2750 else if (new_offset < rdev->data_offset)
2751 mddev->reshape_backwards = 0;
2752
2753 return len;
2754 }
2755 static struct rdev_sysfs_entry rdev_new_offset =
2756 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2757
2758 static ssize_t
2759 rdev_size_show(struct md_rdev *rdev, char *page)
2760 {
2761 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2762 }
2763
2764 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2765 {
2766 /* check if two start/length pairs overlap */
2767 if (s1+l1 <= s2)
2768 return 0;
2769 if (s2+l2 <= s1)
2770 return 0;
2771 return 1;
2772 }
2773
2774 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2775 {
2776 unsigned long long blocks;
2777 sector_t new;
2778
2779 if (kstrtoull(buf, 10, &blocks) < 0)
2780 return -EINVAL;
2781
2782 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2783 return -EINVAL; /* sector conversion overflow */
2784
2785 new = blocks * 2;
2786 if (new != blocks * 2)
2787 return -EINVAL; /* unsigned long long to sector_t overflow */
2788
2789 *sectors = new;
2790 return 0;
2791 }
2792
2793 static ssize_t
2794 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2795 {
2796 struct mddev *my_mddev = rdev->mddev;
2797 sector_t oldsectors = rdev->sectors;
2798 sector_t sectors;
2799
2800 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2801 return -EINVAL;
2802 if (rdev->data_offset != rdev->new_data_offset)
2803 return -EINVAL; /* too confusing */
2804 if (my_mddev->pers && rdev->raid_disk >= 0) {
2805 if (my_mddev->persistent) {
2806 sectors = super_types[my_mddev->major_version].
2807 rdev_size_change(rdev, sectors);
2808 if (!sectors)
2809 return -EBUSY;
2810 } else if (!sectors)
2811 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2812 rdev->data_offset;
2813 if (!my_mddev->pers->resize)
2814 /* Cannot change size for RAID0 or Linear etc */
2815 return -EINVAL;
2816 }
2817 if (sectors < my_mddev->dev_sectors)
2818 return -EINVAL; /* component must fit device */
2819
2820 rdev->sectors = sectors;
2821 if (sectors > oldsectors && my_mddev->external) {
2822 /* Need to check that all other rdevs with the same
2823 * ->bdev do not overlap. 'rcu' is sufficient to walk
2824 * the rdev lists safely.
2825 * This check does not provide a hard guarantee, it
2826 * just helps avoid dangerous mistakes.
2827 */
2828 struct mddev *mddev;
2829 int overlap = 0;
2830 struct list_head *tmp;
2831
2832 rcu_read_lock();
2833 for_each_mddev(mddev, tmp) {
2834 struct md_rdev *rdev2;
2835
2836 rdev_for_each(rdev2, mddev)
2837 if (rdev->bdev == rdev2->bdev &&
2838 rdev != rdev2 &&
2839 overlaps(rdev->data_offset, rdev->sectors,
2840 rdev2->data_offset,
2841 rdev2->sectors)) {
2842 overlap = 1;
2843 break;
2844 }
2845 if (overlap) {
2846 mddev_put(mddev);
2847 break;
2848 }
2849 }
2850 rcu_read_unlock();
2851 if (overlap) {
2852 /* Someone else could have slipped in a size
2853 * change here, but doing so is just silly.
2854 * We put oldsectors back because we *know* it is
2855 * safe, and trust userspace not to race with
2856 * itself
2857 */
2858 rdev->sectors = oldsectors;
2859 return -EBUSY;
2860 }
2861 }
2862 return len;
2863 }
2864
2865 static struct rdev_sysfs_entry rdev_size =
2866 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2867
2868 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2869 {
2870 unsigned long long recovery_start = rdev->recovery_offset;
2871
2872 if (test_bit(In_sync, &rdev->flags) ||
2873 recovery_start == MaxSector)
2874 return sprintf(page, "none\n");
2875
2876 return sprintf(page, "%llu\n", recovery_start);
2877 }
2878
2879 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2880 {
2881 unsigned long long recovery_start;
2882
2883 if (cmd_match(buf, "none"))
2884 recovery_start = MaxSector;
2885 else if (kstrtoull(buf, 10, &recovery_start))
2886 return -EINVAL;
2887
2888 if (rdev->mddev->pers &&
2889 rdev->raid_disk >= 0)
2890 return -EBUSY;
2891
2892 rdev->recovery_offset = recovery_start;
2893 if (recovery_start == MaxSector)
2894 set_bit(In_sync, &rdev->flags);
2895 else
2896 clear_bit(In_sync, &rdev->flags);
2897 return len;
2898 }
2899
2900 static struct rdev_sysfs_entry rdev_recovery_start =
2901 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2902
2903 static ssize_t
2904 badblocks_show(struct badblocks *bb, char *page, int unack);
2905 static ssize_t
2906 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2907
2908 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2909 {
2910 return badblocks_show(&rdev->badblocks, page, 0);
2911 }
2912 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2913 {
2914 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2915 /* Maybe that ack was all we needed */
2916 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2917 wake_up(&rdev->blocked_wait);
2918 return rv;
2919 }
2920 static struct rdev_sysfs_entry rdev_bad_blocks =
2921 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2922
2923 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2924 {
2925 return badblocks_show(&rdev->badblocks, page, 1);
2926 }
2927 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2928 {
2929 return badblocks_store(&rdev->badblocks, page, len, 1);
2930 }
2931 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2932 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2933
2934 static struct attribute *rdev_default_attrs[] = {
2935 &rdev_state.attr,
2936 &rdev_errors.attr,
2937 &rdev_slot.attr,
2938 &rdev_offset.attr,
2939 &rdev_new_offset.attr,
2940 &rdev_size.attr,
2941 &rdev_recovery_start.attr,
2942 &rdev_bad_blocks.attr,
2943 &rdev_unack_bad_blocks.attr,
2944 NULL,
2945 };
2946 static ssize_t
2947 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2948 {
2949 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2950 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2951
2952 if (!entry->show)
2953 return -EIO;
2954 if (!rdev->mddev)
2955 return -EBUSY;
2956 return entry->show(rdev, page);
2957 }
2958
2959 static ssize_t
2960 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2961 const char *page, size_t length)
2962 {
2963 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2964 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2965 ssize_t rv;
2966 struct mddev *mddev = rdev->mddev;
2967
2968 if (!entry->store)
2969 return -EIO;
2970 if (!capable(CAP_SYS_ADMIN))
2971 return -EACCES;
2972 rv = mddev ? mddev_lock(mddev): -EBUSY;
2973 if (!rv) {
2974 if (rdev->mddev == NULL)
2975 rv = -EBUSY;
2976 else
2977 rv = entry->store(rdev, page, length);
2978 mddev_unlock(mddev);
2979 }
2980 return rv;
2981 }
2982
2983 static void rdev_free(struct kobject *ko)
2984 {
2985 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2986 kfree(rdev);
2987 }
2988 static const struct sysfs_ops rdev_sysfs_ops = {
2989 .show = rdev_attr_show,
2990 .store = rdev_attr_store,
2991 };
2992 static struct kobj_type rdev_ktype = {
2993 .release = rdev_free,
2994 .sysfs_ops = &rdev_sysfs_ops,
2995 .default_attrs = rdev_default_attrs,
2996 };
2997
2998 int md_rdev_init(struct md_rdev *rdev)
2999 {
3000 rdev->desc_nr = -1;
3001 rdev->saved_raid_disk = -1;
3002 rdev->raid_disk = -1;
3003 rdev->flags = 0;
3004 rdev->data_offset = 0;
3005 rdev->new_data_offset = 0;
3006 rdev->sb_events = 0;
3007 rdev->last_read_error.tv_sec = 0;
3008 rdev->last_read_error.tv_nsec = 0;
3009 rdev->sb_loaded = 0;
3010 rdev->bb_page = NULL;
3011 atomic_set(&rdev->nr_pending, 0);
3012 atomic_set(&rdev->read_errors, 0);
3013 atomic_set(&rdev->corrected_errors, 0);
3014
3015 INIT_LIST_HEAD(&rdev->same_set);
3016 init_waitqueue_head(&rdev->blocked_wait);
3017
3018 /* Add space to store bad block list.
3019 * This reserves the space even on arrays where it cannot
3020 * be used - I wonder if that matters
3021 */
3022 rdev->badblocks.count = 0;
3023 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3024 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3025 seqlock_init(&rdev->badblocks.lock);
3026 if (rdev->badblocks.page == NULL)
3027 return -ENOMEM;
3028
3029 return 0;
3030 }
3031 EXPORT_SYMBOL_GPL(md_rdev_init);
3032 /*
3033 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3034 *
3035 * mark the device faulty if:
3036 *
3037 * - the device is nonexistent (zero size)
3038 * - the device has no valid superblock
3039 *
3040 * a faulty rdev _never_ has rdev->sb set.
3041 */
3042 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3043 {
3044 char b[BDEVNAME_SIZE];
3045 int err;
3046 struct md_rdev *rdev;
3047 sector_t size;
3048
3049 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3050 if (!rdev) {
3051 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3052 return ERR_PTR(-ENOMEM);
3053 }
3054
3055 err = md_rdev_init(rdev);
3056 if (err)
3057 goto abort_free;
3058 err = alloc_disk_sb(rdev);
3059 if (err)
3060 goto abort_free;
3061
3062 err = lock_rdev(rdev, newdev, super_format == -2);
3063 if (err)
3064 goto abort_free;
3065
3066 kobject_init(&rdev->kobj, &rdev_ktype);
3067
3068 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3069 if (!size) {
3070 printk(KERN_WARNING
3071 "md: %s has zero or unknown size, marking faulty!\n",
3072 bdevname(rdev->bdev,b));
3073 err = -EINVAL;
3074 goto abort_free;
3075 }
3076
3077 if (super_format >= 0) {
3078 err = super_types[super_format].
3079 load_super(rdev, NULL, super_minor);
3080 if (err == -EINVAL) {
3081 printk(KERN_WARNING
3082 "md: %s does not have a valid v%d.%d "
3083 "superblock, not importing!\n",
3084 bdevname(rdev->bdev,b),
3085 super_format, super_minor);
3086 goto abort_free;
3087 }
3088 if (err < 0) {
3089 printk(KERN_WARNING
3090 "md: could not read %s's sb, not importing!\n",
3091 bdevname(rdev->bdev,b));
3092 goto abort_free;
3093 }
3094 }
3095
3096 return rdev;
3097
3098 abort_free:
3099 if (rdev->bdev)
3100 unlock_rdev(rdev);
3101 md_rdev_clear(rdev);
3102 kfree(rdev);
3103 return ERR_PTR(err);
3104 }
3105
3106 /*
3107 * Check a full RAID array for plausibility
3108 */
3109
3110 static void analyze_sbs(struct mddev *mddev)
3111 {
3112 int i;
3113 struct md_rdev *rdev, *freshest, *tmp;
3114 char b[BDEVNAME_SIZE];
3115
3116 freshest = NULL;
3117 rdev_for_each_safe(rdev, tmp, mddev)
3118 switch (super_types[mddev->major_version].
3119 load_super(rdev, freshest, mddev->minor_version)) {
3120 case 1:
3121 freshest = rdev;
3122 break;
3123 case 0:
3124 break;
3125 default:
3126 printk( KERN_ERR \
3127 "md: fatal superblock inconsistency in %s"
3128 " -- removing from array\n",
3129 bdevname(rdev->bdev,b));
3130 kick_rdev_from_array(rdev);
3131 }
3132
3133 super_types[mddev->major_version].
3134 validate_super(mddev, freshest);
3135
3136 i = 0;
3137 rdev_for_each_safe(rdev, tmp, mddev) {
3138 if (mddev->max_disks &&
3139 (rdev->desc_nr >= mddev->max_disks ||
3140 i > mddev->max_disks)) {
3141 printk(KERN_WARNING
3142 "md: %s: %s: only %d devices permitted\n",
3143 mdname(mddev), bdevname(rdev->bdev, b),
3144 mddev->max_disks);
3145 kick_rdev_from_array(rdev);
3146 continue;
3147 }
3148 if (rdev != freshest)
3149 if (super_types[mddev->major_version].
3150 validate_super(mddev, rdev)) {
3151 printk(KERN_WARNING "md: kicking non-fresh %s"
3152 " from array!\n",
3153 bdevname(rdev->bdev,b));
3154 kick_rdev_from_array(rdev);
3155 continue;
3156 }
3157 if (mddev->level == LEVEL_MULTIPATH) {
3158 rdev->desc_nr = i++;
3159 rdev->raid_disk = rdev->desc_nr;
3160 set_bit(In_sync, &rdev->flags);
3161 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3162 rdev->raid_disk = -1;
3163 clear_bit(In_sync, &rdev->flags);
3164 }
3165 }
3166 }
3167
3168 /* Read a fixed-point number.
3169 * Numbers in sysfs attributes should be in "standard" units where
3170 * possible, so time should be in seconds.
3171 * However we internally use a a much smaller unit such as
3172 * milliseconds or jiffies.
3173 * This function takes a decimal number with a possible fractional
3174 * component, and produces an integer which is the result of
3175 * multiplying that number by 10^'scale'.
3176 * all without any floating-point arithmetic.
3177 */
3178 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3179 {
3180 unsigned long result = 0;
3181 long decimals = -1;
3182 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3183 if (*cp == '.')
3184 decimals = 0;
3185 else if (decimals < scale) {
3186 unsigned int value;
3187 value = *cp - '0';
3188 result = result * 10 + value;
3189 if (decimals >= 0)
3190 decimals++;
3191 }
3192 cp++;
3193 }
3194 if (*cp == '\n')
3195 cp++;
3196 if (*cp)
3197 return -EINVAL;
3198 if (decimals < 0)
3199 decimals = 0;
3200 while (decimals < scale) {
3201 result *= 10;
3202 decimals ++;
3203 }
3204 *res = result;
3205 return 0;
3206 }
3207
3208 static void md_safemode_timeout(unsigned long data);
3209
3210 static ssize_t
3211 safe_delay_show(struct mddev *mddev, char *page)
3212 {
3213 int msec = (mddev->safemode_delay*1000)/HZ;
3214 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3215 }
3216 static ssize_t
3217 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3218 {
3219 unsigned long msec;
3220
3221 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3222 return -EINVAL;
3223 if (msec == 0)
3224 mddev->safemode_delay = 0;
3225 else {
3226 unsigned long old_delay = mddev->safemode_delay;
3227 unsigned long new_delay = (msec*HZ)/1000;
3228
3229 if (new_delay == 0)
3230 new_delay = 1;
3231 mddev->safemode_delay = new_delay;
3232 if (new_delay < old_delay || old_delay == 0)
3233 mod_timer(&mddev->safemode_timer, jiffies+1);
3234 }
3235 return len;
3236 }
3237 static struct md_sysfs_entry md_safe_delay =
3238 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3239
3240 static ssize_t
3241 level_show(struct mddev *mddev, char *page)
3242 {
3243 struct md_personality *p;
3244 int ret;
3245 spin_lock(&mddev->lock);
3246 p = mddev->pers;
3247 if (p)
3248 ret = sprintf(page, "%s\n", p->name);
3249 else if (mddev->clevel[0])
3250 ret = sprintf(page, "%s\n", mddev->clevel);
3251 else if (mddev->level != LEVEL_NONE)
3252 ret = sprintf(page, "%d\n", mddev->level);
3253 else
3254 ret = 0;
3255 spin_unlock(&mddev->lock);
3256 return ret;
3257 }
3258
3259 static ssize_t
3260 level_store(struct mddev *mddev, const char *buf, size_t len)
3261 {
3262 char clevel[16];
3263 ssize_t rv;
3264 size_t slen = len;
3265 struct md_personality *pers, *oldpers;
3266 long level;
3267 void *priv, *oldpriv;
3268 struct md_rdev *rdev;
3269
3270 if (slen == 0 || slen >= sizeof(clevel))
3271 return -EINVAL;
3272
3273 rv = mddev_lock(mddev);
3274 if (rv)
3275 return rv;
3276
3277 if (mddev->pers == NULL) {
3278 strncpy(mddev->clevel, buf, slen);
3279 if (mddev->clevel[slen-1] == '\n')
3280 slen--;
3281 mddev->clevel[slen] = 0;
3282 mddev->level = LEVEL_NONE;
3283 rv = len;
3284 goto out_unlock;
3285 }
3286 rv = -EROFS;
3287 if (mddev->ro)
3288 goto out_unlock;
3289
3290 /* request to change the personality. Need to ensure:
3291 * - array is not engaged in resync/recovery/reshape
3292 * - old personality can be suspended
3293 * - new personality will access other array.
3294 */
3295
3296 rv = -EBUSY;
3297 if (mddev->sync_thread ||
3298 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3299 mddev->reshape_position != MaxSector ||
3300 mddev->sysfs_active)
3301 goto out_unlock;
3302
3303 rv = -EINVAL;
3304 if (!mddev->pers->quiesce) {
3305 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3306 mdname(mddev), mddev->pers->name);
3307 goto out_unlock;
3308 }
3309
3310 /* Now find the new personality */
3311 strncpy(clevel, buf, slen);
3312 if (clevel[slen-1] == '\n')
3313 slen--;
3314 clevel[slen] = 0;
3315 if (kstrtol(clevel, 10, &level))
3316 level = LEVEL_NONE;
3317
3318 if (request_module("md-%s", clevel) != 0)
3319 request_module("md-level-%s", clevel);
3320 spin_lock(&pers_lock);
3321 pers = find_pers(level, clevel);
3322 if (!pers || !try_module_get(pers->owner)) {
3323 spin_unlock(&pers_lock);
3324 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3325 rv = -EINVAL;
3326 goto out_unlock;
3327 }
3328 spin_unlock(&pers_lock);
3329
3330 if (pers == mddev->pers) {
3331 /* Nothing to do! */
3332 module_put(pers->owner);
3333 rv = len;
3334 goto out_unlock;
3335 }
3336 if (!pers->takeover) {
3337 module_put(pers->owner);
3338 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3339 mdname(mddev), clevel);
3340 rv = -EINVAL;
3341 goto out_unlock;
3342 }
3343
3344 rdev_for_each(rdev, mddev)
3345 rdev->new_raid_disk = rdev->raid_disk;
3346
3347 /* ->takeover must set new_* and/or delta_disks
3348 * if it succeeds, and may set them when it fails.
3349 */
3350 priv = pers->takeover(mddev);
3351 if (IS_ERR(priv)) {
3352 mddev->new_level = mddev->level;
3353 mddev->new_layout = mddev->layout;
3354 mddev->new_chunk_sectors = mddev->chunk_sectors;
3355 mddev->raid_disks -= mddev->delta_disks;
3356 mddev->delta_disks = 0;
3357 mddev->reshape_backwards = 0;
3358 module_put(pers->owner);
3359 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3360 mdname(mddev), clevel);
3361 rv = PTR_ERR(priv);
3362 goto out_unlock;
3363 }
3364
3365 /* Looks like we have a winner */
3366 mddev_suspend(mddev);
3367 mddev_detach(mddev);
3368
3369 spin_lock(&mddev->lock);
3370 oldpers = mddev->pers;
3371 oldpriv = mddev->private;
3372 mddev->pers = pers;
3373 mddev->private = priv;
3374 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3375 mddev->level = mddev->new_level;
3376 mddev->layout = mddev->new_layout;
3377 mddev->chunk_sectors = mddev->new_chunk_sectors;
3378 mddev->delta_disks = 0;
3379 mddev->reshape_backwards = 0;
3380 mddev->degraded = 0;
3381 spin_unlock(&mddev->lock);
3382
3383 if (oldpers->sync_request == NULL &&
3384 mddev->external) {
3385 /* We are converting from a no-redundancy array
3386 * to a redundancy array and metadata is managed
3387 * externally so we need to be sure that writes
3388 * won't block due to a need to transition
3389 * clean->dirty
3390 * until external management is started.
3391 */
3392 mddev->in_sync = 0;
3393 mddev->safemode_delay = 0;
3394 mddev->safemode = 0;
3395 }
3396
3397 oldpers->free(mddev, oldpriv);
3398
3399 if (oldpers->sync_request == NULL &&
3400 pers->sync_request != NULL) {
3401 /* need to add the md_redundancy_group */
3402 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3403 printk(KERN_WARNING
3404 "md: cannot register extra attributes for %s\n",
3405 mdname(mddev));
3406 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3407 }
3408 if (oldpers->sync_request != NULL &&
3409 pers->sync_request == NULL) {
3410 /* need to remove the md_redundancy_group */
3411 if (mddev->to_remove == NULL)
3412 mddev->to_remove = &md_redundancy_group;
3413 }
3414
3415 rdev_for_each(rdev, mddev) {
3416 if (rdev->raid_disk < 0)
3417 continue;
3418 if (rdev->new_raid_disk >= mddev->raid_disks)
3419 rdev->new_raid_disk = -1;
3420 if (rdev->new_raid_disk == rdev->raid_disk)
3421 continue;
3422 sysfs_unlink_rdev(mddev, rdev);
3423 }
3424 rdev_for_each(rdev, mddev) {
3425 if (rdev->raid_disk < 0)
3426 continue;
3427 if (rdev->new_raid_disk == rdev->raid_disk)
3428 continue;
3429 rdev->raid_disk = rdev->new_raid_disk;
3430 if (rdev->raid_disk < 0)
3431 clear_bit(In_sync, &rdev->flags);
3432 else {
3433 if (sysfs_link_rdev(mddev, rdev))
3434 printk(KERN_WARNING "md: cannot register rd%d"
3435 " for %s after level change\n",
3436 rdev->raid_disk, mdname(mddev));
3437 }
3438 }
3439
3440 if (pers->sync_request == NULL) {
3441 /* this is now an array without redundancy, so
3442 * it must always be in_sync
3443 */
3444 mddev->in_sync = 1;
3445 del_timer_sync(&mddev->safemode_timer);
3446 }
3447 blk_set_stacking_limits(&mddev->queue->limits);
3448 pers->run(mddev);
3449 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3450 mddev_resume(mddev);
3451 if (!mddev->thread)
3452 md_update_sb(mddev, 1);
3453 sysfs_notify(&mddev->kobj, NULL, "level");
3454 md_new_event(mddev);
3455 rv = len;
3456 out_unlock:
3457 mddev_unlock(mddev);
3458 return rv;
3459 }
3460
3461 static struct md_sysfs_entry md_level =
3462 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3463
3464 static ssize_t
3465 layout_show(struct mddev *mddev, char *page)
3466 {
3467 /* just a number, not meaningful for all levels */
3468 if (mddev->reshape_position != MaxSector &&
3469 mddev->layout != mddev->new_layout)
3470 return sprintf(page, "%d (%d)\n",
3471 mddev->new_layout, mddev->layout);
3472 return sprintf(page, "%d\n", mddev->layout);
3473 }
3474
3475 static ssize_t
3476 layout_store(struct mddev *mddev, const char *buf, size_t len)
3477 {
3478 char *e;
3479 unsigned long n = simple_strtoul(buf, &e, 10);
3480 int err;
3481
3482 if (!*buf || (*e && *e != '\n'))
3483 return -EINVAL;
3484 err = mddev_lock(mddev);
3485 if (err)
3486 return err;
3487
3488 if (mddev->pers) {
3489 if (mddev->pers->check_reshape == NULL)
3490 err = -EBUSY;
3491 else if (mddev->ro)
3492 err = -EROFS;
3493 else {
3494 mddev->new_layout = n;
3495 err = mddev->pers->check_reshape(mddev);
3496 if (err)
3497 mddev->new_layout = mddev->layout;
3498 }
3499 } else {
3500 mddev->new_layout = n;
3501 if (mddev->reshape_position == MaxSector)
3502 mddev->layout = n;
3503 }
3504 mddev_unlock(mddev);
3505 return err ?: len;
3506 }
3507 static struct md_sysfs_entry md_layout =
3508 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3509
3510 static ssize_t
3511 raid_disks_show(struct mddev *mddev, char *page)
3512 {
3513 if (mddev->raid_disks == 0)
3514 return 0;
3515 if (mddev->reshape_position != MaxSector &&
3516 mddev->delta_disks != 0)
3517 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3518 mddev->raid_disks - mddev->delta_disks);
3519 return sprintf(page, "%d\n", mddev->raid_disks);
3520 }
3521
3522 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3523
3524 static ssize_t
3525 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3526 {
3527 char *e;
3528 int err;
3529 unsigned long n = simple_strtoul(buf, &e, 10);
3530
3531 if (!*buf || (*e && *e != '\n'))
3532 return -EINVAL;
3533
3534 err = mddev_lock(mddev);
3535 if (err)
3536 return err;
3537 if (mddev->pers)
3538 err = update_raid_disks(mddev, n);
3539 else if (mddev->reshape_position != MaxSector) {
3540 struct md_rdev *rdev;
3541 int olddisks = mddev->raid_disks - mddev->delta_disks;
3542
3543 err = -EINVAL;
3544 rdev_for_each(rdev, mddev) {
3545 if (olddisks < n &&
3546 rdev->data_offset < rdev->new_data_offset)
3547 goto out_unlock;
3548 if (olddisks > n &&
3549 rdev->data_offset > rdev->new_data_offset)
3550 goto out_unlock;
3551 }
3552 err = 0;
3553 mddev->delta_disks = n - olddisks;
3554 mddev->raid_disks = n;
3555 mddev->reshape_backwards = (mddev->delta_disks < 0);
3556 } else
3557 mddev->raid_disks = n;
3558 out_unlock:
3559 mddev_unlock(mddev);
3560 return err ? err : len;
3561 }
3562 static struct md_sysfs_entry md_raid_disks =
3563 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3564
3565 static ssize_t
3566 chunk_size_show(struct mddev *mddev, char *page)
3567 {
3568 if (mddev->reshape_position != MaxSector &&
3569 mddev->chunk_sectors != mddev->new_chunk_sectors)
3570 return sprintf(page, "%d (%d)\n",
3571 mddev->new_chunk_sectors << 9,
3572 mddev->chunk_sectors << 9);
3573 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3574 }
3575
3576 static ssize_t
3577 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3578 {
3579 int err;
3580 char *e;
3581 unsigned long n = simple_strtoul(buf, &e, 10);
3582
3583 if (!*buf || (*e && *e != '\n'))
3584 return -EINVAL;
3585
3586 err = mddev_lock(mddev);
3587 if (err)
3588 return err;
3589 if (mddev->pers) {
3590 if (mddev->pers->check_reshape == NULL)
3591 err = -EBUSY;
3592 else if (mddev->ro)
3593 err = -EROFS;
3594 else {
3595 mddev->new_chunk_sectors = n >> 9;
3596 err = mddev->pers->check_reshape(mddev);
3597 if (err)
3598 mddev->new_chunk_sectors = mddev->chunk_sectors;
3599 }
3600 } else {
3601 mddev->new_chunk_sectors = n >> 9;
3602 if (mddev->reshape_position == MaxSector)
3603 mddev->chunk_sectors = n >> 9;
3604 }
3605 mddev_unlock(mddev);
3606 return err ?: len;
3607 }
3608 static struct md_sysfs_entry md_chunk_size =
3609 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3610
3611 static ssize_t
3612 resync_start_show(struct mddev *mddev, char *page)
3613 {
3614 if (mddev->recovery_cp == MaxSector)
3615 return sprintf(page, "none\n");
3616 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3617 }
3618
3619 static ssize_t
3620 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3621 {
3622 int err;
3623 char *e;
3624 unsigned long long n = simple_strtoull(buf, &e, 10);
3625
3626 err = mddev_lock(mddev);
3627 if (err)
3628 return err;
3629 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3630 err = -EBUSY;
3631 else if (cmd_match(buf, "none"))
3632 n = MaxSector;
3633 else if (!*buf || (*e && *e != '\n'))
3634 err = -EINVAL;
3635
3636 if (!err) {
3637 mddev->recovery_cp = n;
3638 if (mddev->pers)
3639 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3640 }
3641 mddev_unlock(mddev);
3642 return err ?: len;
3643 }
3644 static struct md_sysfs_entry md_resync_start =
3645 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3646 resync_start_show, resync_start_store);
3647
3648 /*
3649 * The array state can be:
3650 *
3651 * clear
3652 * No devices, no size, no level
3653 * Equivalent to STOP_ARRAY ioctl
3654 * inactive
3655 * May have some settings, but array is not active
3656 * all IO results in error
3657 * When written, doesn't tear down array, but just stops it
3658 * suspended (not supported yet)
3659 * All IO requests will block. The array can be reconfigured.
3660 * Writing this, if accepted, will block until array is quiescent
3661 * readonly
3662 * no resync can happen. no superblocks get written.
3663 * write requests fail
3664 * read-auto
3665 * like readonly, but behaves like 'clean' on a write request.
3666 *
3667 * clean - no pending writes, but otherwise active.
3668 * When written to inactive array, starts without resync
3669 * If a write request arrives then
3670 * if metadata is known, mark 'dirty' and switch to 'active'.
3671 * if not known, block and switch to write-pending
3672 * If written to an active array that has pending writes, then fails.
3673 * active
3674 * fully active: IO and resync can be happening.
3675 * When written to inactive array, starts with resync
3676 *
3677 * write-pending
3678 * clean, but writes are blocked waiting for 'active' to be written.
3679 *
3680 * active-idle
3681 * like active, but no writes have been seen for a while (100msec).
3682 *
3683 */
3684 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3685 write_pending, active_idle, bad_word};
3686 static char *array_states[] = {
3687 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3688 "write-pending", "active-idle", NULL };
3689
3690 static int match_word(const char *word, char **list)
3691 {
3692 int n;
3693 for (n=0; list[n]; n++)
3694 if (cmd_match(word, list[n]))
3695 break;
3696 return n;
3697 }
3698
3699 static ssize_t
3700 array_state_show(struct mddev *mddev, char *page)
3701 {
3702 enum array_state st = inactive;
3703
3704 if (mddev->pers)
3705 switch(mddev->ro) {
3706 case 1:
3707 st = readonly;
3708 break;
3709 case 2:
3710 st = read_auto;
3711 break;
3712 case 0:
3713 if (mddev->in_sync)
3714 st = clean;
3715 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3716 st = write_pending;
3717 else if (mddev->safemode)
3718 st = active_idle;
3719 else
3720 st = active;
3721 }
3722 else {
3723 if (list_empty(&mddev->disks) &&
3724 mddev->raid_disks == 0 &&
3725 mddev->dev_sectors == 0)
3726 st = clear;
3727 else
3728 st = inactive;
3729 }
3730 return sprintf(page, "%s\n", array_states[st]);
3731 }
3732
3733 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3734 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3735 static int do_md_run(struct mddev *mddev);
3736 static int restart_array(struct mddev *mddev);
3737
3738 static ssize_t
3739 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3740 {
3741 int err;
3742 enum array_state st = match_word(buf, array_states);
3743
3744 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3745 /* don't take reconfig_mutex when toggling between
3746 * clean and active
3747 */
3748 spin_lock(&mddev->lock);
3749 if (st == active) {
3750 restart_array(mddev);
3751 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3752 wake_up(&mddev->sb_wait);
3753 err = 0;
3754 } else /* st == clean */ {
3755 restart_array(mddev);
3756 if (atomic_read(&mddev->writes_pending) == 0) {
3757 if (mddev->in_sync == 0) {
3758 mddev->in_sync = 1;
3759 if (mddev->safemode == 1)
3760 mddev->safemode = 0;
3761 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3762 }
3763 err = 0;
3764 } else
3765 err = -EBUSY;
3766 }
3767 spin_unlock(&mddev->lock);
3768 return err;
3769 }
3770 err = mddev_lock(mddev);
3771 if (err)
3772 return err;
3773 err = -EINVAL;
3774 switch(st) {
3775 case bad_word:
3776 break;
3777 case clear:
3778 /* stopping an active array */
3779 err = do_md_stop(mddev, 0, NULL);
3780 break;
3781 case inactive:
3782 /* stopping an active array */
3783 if (mddev->pers)
3784 err = do_md_stop(mddev, 2, NULL);
3785 else
3786 err = 0; /* already inactive */
3787 break;
3788 case suspended:
3789 break; /* not supported yet */
3790 case readonly:
3791 if (mddev->pers)
3792 err = md_set_readonly(mddev, NULL);
3793 else {
3794 mddev->ro = 1;
3795 set_disk_ro(mddev->gendisk, 1);
3796 err = do_md_run(mddev);
3797 }
3798 break;
3799 case read_auto:
3800 if (mddev->pers) {
3801 if (mddev->ro == 0)
3802 err = md_set_readonly(mddev, NULL);
3803 else if (mddev->ro == 1)
3804 err = restart_array(mddev);
3805 if (err == 0) {
3806 mddev->ro = 2;
3807 set_disk_ro(mddev->gendisk, 0);
3808 }
3809 } else {
3810 mddev->ro = 2;
3811 err = do_md_run(mddev);
3812 }
3813 break;
3814 case clean:
3815 if (mddev->pers) {
3816 restart_array(mddev);
3817 spin_lock(&mddev->lock);
3818 if (atomic_read(&mddev->writes_pending) == 0) {
3819 if (mddev->in_sync == 0) {
3820 mddev->in_sync = 1;
3821 if (mddev->safemode == 1)
3822 mddev->safemode = 0;
3823 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3824 }
3825 err = 0;
3826 } else
3827 err = -EBUSY;
3828 spin_unlock(&mddev->lock);
3829 } else
3830 err = -EINVAL;
3831 break;
3832 case active:
3833 if (mddev->pers) {
3834 restart_array(mddev);
3835 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3836 wake_up(&mddev->sb_wait);
3837 err = 0;
3838 } else {
3839 mddev->ro = 0;
3840 set_disk_ro(mddev->gendisk, 0);
3841 err = do_md_run(mddev);
3842 }
3843 break;
3844 case write_pending:
3845 case active_idle:
3846 /* these cannot be set */
3847 break;
3848 }
3849
3850 if (!err) {
3851 if (mddev->hold_active == UNTIL_IOCTL)
3852 mddev->hold_active = 0;
3853 sysfs_notify_dirent_safe(mddev->sysfs_state);
3854 }
3855 mddev_unlock(mddev);
3856 return err ?: len;
3857 }
3858 static struct md_sysfs_entry md_array_state =
3859 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3860
3861 static ssize_t
3862 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3863 return sprintf(page, "%d\n",
3864 atomic_read(&mddev->max_corr_read_errors));
3865 }
3866
3867 static ssize_t
3868 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3869 {
3870 char *e;
3871 unsigned long n = simple_strtoul(buf, &e, 10);
3872
3873 if (*buf && (*e == 0 || *e == '\n')) {
3874 atomic_set(&mddev->max_corr_read_errors, n);
3875 return len;
3876 }
3877 return -EINVAL;
3878 }
3879
3880 static struct md_sysfs_entry max_corr_read_errors =
3881 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3882 max_corrected_read_errors_store);
3883
3884 static ssize_t
3885 null_show(struct mddev *mddev, char *page)
3886 {
3887 return -EINVAL;
3888 }
3889
3890 static ssize_t
3891 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3892 {
3893 /* buf must be %d:%d\n? giving major and minor numbers */
3894 /* The new device is added to the array.
3895 * If the array has a persistent superblock, we read the
3896 * superblock to initialise info and check validity.
3897 * Otherwise, only checking done is that in bind_rdev_to_array,
3898 * which mainly checks size.
3899 */
3900 char *e;
3901 int major = simple_strtoul(buf, &e, 10);
3902 int minor;
3903 dev_t dev;
3904 struct md_rdev *rdev;
3905 int err;
3906
3907 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3908 return -EINVAL;
3909 minor = simple_strtoul(e+1, &e, 10);
3910 if (*e && *e != '\n')
3911 return -EINVAL;
3912 dev = MKDEV(major, minor);
3913 if (major != MAJOR(dev) ||
3914 minor != MINOR(dev))
3915 return -EOVERFLOW;
3916
3917 flush_workqueue(md_misc_wq);
3918
3919 err = mddev_lock(mddev);
3920 if (err)
3921 return err;
3922 if (mddev->persistent) {
3923 rdev = md_import_device(dev, mddev->major_version,
3924 mddev->minor_version);
3925 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3926 struct md_rdev *rdev0
3927 = list_entry(mddev->disks.next,
3928 struct md_rdev, same_set);
3929 err = super_types[mddev->major_version]
3930 .load_super(rdev, rdev0, mddev->minor_version);
3931 if (err < 0)
3932 goto out;
3933 }
3934 } else if (mddev->external)
3935 rdev = md_import_device(dev, -2, -1);
3936 else
3937 rdev = md_import_device(dev, -1, -1);
3938
3939 if (IS_ERR(rdev))
3940 return PTR_ERR(rdev);
3941 err = bind_rdev_to_array(rdev, mddev);
3942 out:
3943 if (err)
3944 export_rdev(rdev);
3945 mddev_unlock(mddev);
3946 return err ? err : len;
3947 }
3948
3949 static struct md_sysfs_entry md_new_device =
3950 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3951
3952 static ssize_t
3953 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3954 {
3955 char *end;
3956 unsigned long chunk, end_chunk;
3957 int err;
3958
3959 err = mddev_lock(mddev);
3960 if (err)
3961 return err;
3962 if (!mddev->bitmap)
3963 goto out;
3964 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3965 while (*buf) {
3966 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3967 if (buf == end) break;
3968 if (*end == '-') { /* range */
3969 buf = end + 1;
3970 end_chunk = simple_strtoul(buf, &end, 0);
3971 if (buf == end) break;
3972 }
3973 if (*end && !isspace(*end)) break;
3974 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3975 buf = skip_spaces(end);
3976 }
3977 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3978 out:
3979 mddev_unlock(mddev);
3980 return len;
3981 }
3982
3983 static struct md_sysfs_entry md_bitmap =
3984 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3985
3986 static ssize_t
3987 size_show(struct mddev *mddev, char *page)
3988 {
3989 return sprintf(page, "%llu\n",
3990 (unsigned long long)mddev->dev_sectors / 2);
3991 }
3992
3993 static int update_size(struct mddev *mddev, sector_t num_sectors);
3994
3995 static ssize_t
3996 size_store(struct mddev *mddev, const char *buf, size_t len)
3997 {
3998 /* If array is inactive, we can reduce the component size, but
3999 * not increase it (except from 0).
4000 * If array is active, we can try an on-line resize
4001 */
4002 sector_t sectors;
4003 int err = strict_blocks_to_sectors(buf, &sectors);
4004
4005 if (err < 0)
4006 return err;
4007 err = mddev_lock(mddev);
4008 if (err)
4009 return err;
4010 if (mddev->pers) {
4011 err = update_size(mddev, sectors);
4012 md_update_sb(mddev, 1);
4013 } else {
4014 if (mddev->dev_sectors == 0 ||
4015 mddev->dev_sectors > sectors)
4016 mddev->dev_sectors = sectors;
4017 else
4018 err = -ENOSPC;
4019 }
4020 mddev_unlock(mddev);
4021 return err ? err : len;
4022 }
4023
4024 static struct md_sysfs_entry md_size =
4025 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4026
4027 /* Metadata version.
4028 * This is one of
4029 * 'none' for arrays with no metadata (good luck...)
4030 * 'external' for arrays with externally managed metadata,
4031 * or N.M for internally known formats
4032 */
4033 static ssize_t
4034 metadata_show(struct mddev *mddev, char *page)
4035 {
4036 if (mddev->persistent)
4037 return sprintf(page, "%d.%d\n",
4038 mddev->major_version, mddev->minor_version);
4039 else if (mddev->external)
4040 return sprintf(page, "external:%s\n", mddev->metadata_type);
4041 else
4042 return sprintf(page, "none\n");
4043 }
4044
4045 static ssize_t
4046 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4047 {
4048 int major, minor;
4049 char *e;
4050 int err;
4051 /* Changing the details of 'external' metadata is
4052 * always permitted. Otherwise there must be
4053 * no devices attached to the array.
4054 */
4055
4056 err = mddev_lock(mddev);
4057 if (err)
4058 return err;
4059 err = -EBUSY;
4060 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4061 ;
4062 else if (!list_empty(&mddev->disks))
4063 goto out_unlock;
4064
4065 err = 0;
4066 if (cmd_match(buf, "none")) {
4067 mddev->persistent = 0;
4068 mddev->external = 0;
4069 mddev->major_version = 0;
4070 mddev->minor_version = 90;
4071 goto out_unlock;
4072 }
4073 if (strncmp(buf, "external:", 9) == 0) {
4074 size_t namelen = len-9;
4075 if (namelen >= sizeof(mddev->metadata_type))
4076 namelen = sizeof(mddev->metadata_type)-1;
4077 strncpy(mddev->metadata_type, buf+9, namelen);
4078 mddev->metadata_type[namelen] = 0;
4079 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4080 mddev->metadata_type[--namelen] = 0;
4081 mddev->persistent = 0;
4082 mddev->external = 1;
4083 mddev->major_version = 0;
4084 mddev->minor_version = 90;
4085 goto out_unlock;
4086 }
4087 major = simple_strtoul(buf, &e, 10);
4088 err = -EINVAL;
4089 if (e==buf || *e != '.')
4090 goto out_unlock;
4091 buf = e+1;
4092 minor = simple_strtoul(buf, &e, 10);
4093 if (e==buf || (*e && *e != '\n') )
4094 goto out_unlock;
4095 err = -ENOENT;
4096 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4097 goto out_unlock;
4098 mddev->major_version = major;
4099 mddev->minor_version = minor;
4100 mddev->persistent = 1;
4101 mddev->external = 0;
4102 err = 0;
4103 out_unlock:
4104 mddev_unlock(mddev);
4105 return err ?: len;
4106 }
4107
4108 static struct md_sysfs_entry md_metadata =
4109 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4110
4111 static ssize_t
4112 action_show(struct mddev *mddev, char *page)
4113 {
4114 char *type = "idle";
4115 unsigned long recovery = mddev->recovery;
4116 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4117 type = "frozen";
4118 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4119 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4120 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4121 type = "reshape";
4122 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4123 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4124 type = "resync";
4125 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4126 type = "check";
4127 else
4128 type = "repair";
4129 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4130 type = "recover";
4131 }
4132 return sprintf(page, "%s\n", type);
4133 }
4134
4135 static ssize_t
4136 action_store(struct mddev *mddev, const char *page, size_t len)
4137 {
4138 if (!mddev->pers || !mddev->pers->sync_request)
4139 return -EINVAL;
4140
4141 if (cmd_match(page, "frozen"))
4142 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4143 else
4144 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4145
4146 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4147 flush_workqueue(md_misc_wq);
4148 if (mddev->sync_thread) {
4149 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4150 if (mddev_lock(mddev) == 0) {
4151 md_reap_sync_thread(mddev);
4152 mddev_unlock(mddev);
4153 }
4154 }
4155 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4156 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4157 return -EBUSY;
4158 else if (cmd_match(page, "resync"))
4159 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4160 else if (cmd_match(page, "recover")) {
4161 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4162 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4163 } else if (cmd_match(page, "reshape")) {
4164 int err;
4165 if (mddev->pers->start_reshape == NULL)
4166 return -EINVAL;
4167 err = mddev_lock(mddev);
4168 if (!err) {
4169 err = mddev->pers->start_reshape(mddev);
4170 mddev_unlock(mddev);
4171 }
4172 if (err)
4173 return err;
4174 sysfs_notify(&mddev->kobj, NULL, "degraded");
4175 } else {
4176 if (cmd_match(page, "check"))
4177 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4178 else if (!cmd_match(page, "repair"))
4179 return -EINVAL;
4180 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4181 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4182 }
4183 if (mddev->ro == 2) {
4184 /* A write to sync_action is enough to justify
4185 * canceling read-auto mode
4186 */
4187 mddev->ro = 0;
4188 md_wakeup_thread(mddev->sync_thread);
4189 }
4190 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4191 md_wakeup_thread(mddev->thread);
4192 sysfs_notify_dirent_safe(mddev->sysfs_action);
4193 return len;
4194 }
4195
4196 static struct md_sysfs_entry md_scan_mode =
4197 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4198
4199 static ssize_t
4200 last_sync_action_show(struct mddev *mddev, char *page)
4201 {
4202 return sprintf(page, "%s\n", mddev->last_sync_action);
4203 }
4204
4205 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4206
4207 static ssize_t
4208 mismatch_cnt_show(struct mddev *mddev, char *page)
4209 {
4210 return sprintf(page, "%llu\n",
4211 (unsigned long long)
4212 atomic64_read(&mddev->resync_mismatches));
4213 }
4214
4215 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4216
4217 static ssize_t
4218 sync_min_show(struct mddev *mddev, char *page)
4219 {
4220 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4221 mddev->sync_speed_min ? "local": "system");
4222 }
4223
4224 static ssize_t
4225 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4226 {
4227 int min;
4228 char *e;
4229 if (strncmp(buf, "system", 6)==0) {
4230 mddev->sync_speed_min = 0;
4231 return len;
4232 }
4233 min = simple_strtoul(buf, &e, 10);
4234 if (buf == e || (*e && *e != '\n') || min <= 0)
4235 return -EINVAL;
4236 mddev->sync_speed_min = min;
4237 return len;
4238 }
4239
4240 static struct md_sysfs_entry md_sync_min =
4241 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4242
4243 static ssize_t
4244 sync_max_show(struct mddev *mddev, char *page)
4245 {
4246 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4247 mddev->sync_speed_max ? "local": "system");
4248 }
4249
4250 static ssize_t
4251 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4252 {
4253 int max;
4254 char *e;
4255 if (strncmp(buf, "system", 6)==0) {
4256 mddev->sync_speed_max = 0;
4257 return len;
4258 }
4259 max = simple_strtoul(buf, &e, 10);
4260 if (buf == e || (*e && *e != '\n') || max <= 0)
4261 return -EINVAL;
4262 mddev->sync_speed_max = max;
4263 return len;
4264 }
4265
4266 static struct md_sysfs_entry md_sync_max =
4267 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4268
4269 static ssize_t
4270 degraded_show(struct mddev *mddev, char *page)
4271 {
4272 return sprintf(page, "%d\n", mddev->degraded);
4273 }
4274 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4275
4276 static ssize_t
4277 sync_force_parallel_show(struct mddev *mddev, char *page)
4278 {
4279 return sprintf(page, "%d\n", mddev->parallel_resync);
4280 }
4281
4282 static ssize_t
4283 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4284 {
4285 long n;
4286
4287 if (kstrtol(buf, 10, &n))
4288 return -EINVAL;
4289
4290 if (n != 0 && n != 1)
4291 return -EINVAL;
4292
4293 mddev->parallel_resync = n;
4294
4295 if (mddev->sync_thread)
4296 wake_up(&resync_wait);
4297
4298 return len;
4299 }
4300
4301 /* force parallel resync, even with shared block devices */
4302 static struct md_sysfs_entry md_sync_force_parallel =
4303 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4304 sync_force_parallel_show, sync_force_parallel_store);
4305
4306 static ssize_t
4307 sync_speed_show(struct mddev *mddev, char *page)
4308 {
4309 unsigned long resync, dt, db;
4310 if (mddev->curr_resync == 0)
4311 return sprintf(page, "none\n");
4312 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4313 dt = (jiffies - mddev->resync_mark) / HZ;
4314 if (!dt) dt++;
4315 db = resync - mddev->resync_mark_cnt;
4316 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4317 }
4318
4319 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4320
4321 static ssize_t
4322 sync_completed_show(struct mddev *mddev, char *page)
4323 {
4324 unsigned long long max_sectors, resync;
4325
4326 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4327 return sprintf(page, "none\n");
4328
4329 if (mddev->curr_resync == 1 ||
4330 mddev->curr_resync == 2)
4331 return sprintf(page, "delayed\n");
4332
4333 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4334 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4335 max_sectors = mddev->resync_max_sectors;
4336 else
4337 max_sectors = mddev->dev_sectors;
4338
4339 resync = mddev->curr_resync_completed;
4340 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4341 }
4342
4343 static struct md_sysfs_entry md_sync_completed =
4344 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4345
4346 static ssize_t
4347 min_sync_show(struct mddev *mddev, char *page)
4348 {
4349 return sprintf(page, "%llu\n",
4350 (unsigned long long)mddev->resync_min);
4351 }
4352 static ssize_t
4353 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4354 {
4355 unsigned long long min;
4356 int err;
4357 int chunk;
4358
4359 if (kstrtoull(buf, 10, &min))
4360 return -EINVAL;
4361
4362 spin_lock(&mddev->lock);
4363 err = -EINVAL;
4364 if (min > mddev->resync_max)
4365 goto out_unlock;
4366
4367 err = -EBUSY;
4368 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4369 goto out_unlock;
4370
4371 /* Must be a multiple of chunk_size */
4372 chunk = mddev->chunk_sectors;
4373 if (chunk) {
4374 sector_t temp = min;
4375
4376 err = -EINVAL;
4377 if (sector_div(temp, chunk))
4378 goto out_unlock;
4379 }
4380 mddev->resync_min = min;
4381 err = 0;
4382
4383 out_unlock:
4384 spin_unlock(&mddev->lock);
4385 return err ?: len;
4386 }
4387
4388 static struct md_sysfs_entry md_min_sync =
4389 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4390
4391 static ssize_t
4392 max_sync_show(struct mddev *mddev, char *page)
4393 {
4394 if (mddev->resync_max == MaxSector)
4395 return sprintf(page, "max\n");
4396 else
4397 return sprintf(page, "%llu\n",
4398 (unsigned long long)mddev->resync_max);
4399 }
4400 static ssize_t
4401 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4402 {
4403 int err;
4404 spin_lock(&mddev->lock);
4405 if (strncmp(buf, "max", 3) == 0)
4406 mddev->resync_max = MaxSector;
4407 else {
4408 unsigned long long max;
4409 int chunk;
4410
4411 err = -EINVAL;
4412 if (kstrtoull(buf, 10, &max))
4413 goto out_unlock;
4414 if (max < mddev->resync_min)
4415 goto out_unlock;
4416
4417 err = -EBUSY;
4418 if (max < mddev->resync_max &&
4419 mddev->ro == 0 &&
4420 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4421 goto out_unlock;
4422
4423 /* Must be a multiple of chunk_size */
4424 chunk = mddev->chunk_sectors;
4425 if (chunk) {
4426 sector_t temp = max;
4427
4428 err = -EINVAL;
4429 if (sector_div(temp, chunk))
4430 goto out_unlock;
4431 }
4432 mddev->resync_max = max;
4433 }
4434 wake_up(&mddev->recovery_wait);
4435 err = 0;
4436 out_unlock:
4437 spin_unlock(&mddev->lock);
4438 return err ?: len;
4439 }
4440
4441 static struct md_sysfs_entry md_max_sync =
4442 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4443
4444 static ssize_t
4445 suspend_lo_show(struct mddev *mddev, char *page)
4446 {
4447 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4448 }
4449
4450 static ssize_t
4451 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4452 {
4453 char *e;
4454 unsigned long long new = simple_strtoull(buf, &e, 10);
4455 unsigned long long old;
4456 int err;
4457
4458 if (buf == e || (*e && *e != '\n'))
4459 return -EINVAL;
4460
4461 err = mddev_lock(mddev);
4462 if (err)
4463 return err;
4464 err = -EINVAL;
4465 if (mddev->pers == NULL ||
4466 mddev->pers->quiesce == NULL)
4467 goto unlock;
4468 old = mddev->suspend_lo;
4469 mddev->suspend_lo = new;
4470 if (new >= old)
4471 /* Shrinking suspended region */
4472 mddev->pers->quiesce(mddev, 2);
4473 else {
4474 /* Expanding suspended region - need to wait */
4475 mddev->pers->quiesce(mddev, 1);
4476 mddev->pers->quiesce(mddev, 0);
4477 }
4478 err = 0;
4479 unlock:
4480 mddev_unlock(mddev);
4481 return err ?: len;
4482 }
4483 static struct md_sysfs_entry md_suspend_lo =
4484 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4485
4486 static ssize_t
4487 suspend_hi_show(struct mddev *mddev, char *page)
4488 {
4489 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4490 }
4491
4492 static ssize_t
4493 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4494 {
4495 char *e;
4496 unsigned long long new = simple_strtoull(buf, &e, 10);
4497 unsigned long long old;
4498 int err;
4499
4500 if (buf == e || (*e && *e != '\n'))
4501 return -EINVAL;
4502
4503 err = mddev_lock(mddev);
4504 if (err)
4505 return err;
4506 err = -EINVAL;
4507 if (mddev->pers == NULL ||
4508 mddev->pers->quiesce == NULL)
4509 goto unlock;
4510 old = mddev->suspend_hi;
4511 mddev->suspend_hi = new;
4512 if (new <= old)
4513 /* Shrinking suspended region */
4514 mddev->pers->quiesce(mddev, 2);
4515 else {
4516 /* Expanding suspended region - need to wait */
4517 mddev->pers->quiesce(mddev, 1);
4518 mddev->pers->quiesce(mddev, 0);
4519 }
4520 err = 0;
4521 unlock:
4522 mddev_unlock(mddev);
4523 return err ?: len;
4524 }
4525 static struct md_sysfs_entry md_suspend_hi =
4526 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4527
4528 static ssize_t
4529 reshape_position_show(struct mddev *mddev, char *page)
4530 {
4531 if (mddev->reshape_position != MaxSector)
4532 return sprintf(page, "%llu\n",
4533 (unsigned long long)mddev->reshape_position);
4534 strcpy(page, "none\n");
4535 return 5;
4536 }
4537
4538 static ssize_t
4539 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4540 {
4541 struct md_rdev *rdev;
4542 char *e;
4543 int err;
4544 unsigned long long new = simple_strtoull(buf, &e, 10);
4545
4546 if (buf == e || (*e && *e != '\n'))
4547 return -EINVAL;
4548 err = mddev_lock(mddev);
4549 if (err)
4550 return err;
4551 err = -EBUSY;
4552 if (mddev->pers)
4553 goto unlock;
4554 mddev->reshape_position = new;
4555 mddev->delta_disks = 0;
4556 mddev->reshape_backwards = 0;
4557 mddev->new_level = mddev->level;
4558 mddev->new_layout = mddev->layout;
4559 mddev->new_chunk_sectors = mddev->chunk_sectors;
4560 rdev_for_each(rdev, mddev)
4561 rdev->new_data_offset = rdev->data_offset;
4562 err = 0;
4563 unlock:
4564 mddev_unlock(mddev);
4565 return err ?: len;
4566 }
4567
4568 static struct md_sysfs_entry md_reshape_position =
4569 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4570 reshape_position_store);
4571
4572 static ssize_t
4573 reshape_direction_show(struct mddev *mddev, char *page)
4574 {
4575 return sprintf(page, "%s\n",
4576 mddev->reshape_backwards ? "backwards" : "forwards");
4577 }
4578
4579 static ssize_t
4580 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4581 {
4582 int backwards = 0;
4583 int err;
4584
4585 if (cmd_match(buf, "forwards"))
4586 backwards = 0;
4587 else if (cmd_match(buf, "backwards"))
4588 backwards = 1;
4589 else
4590 return -EINVAL;
4591 if (mddev->reshape_backwards == backwards)
4592 return len;
4593
4594 err = mddev_lock(mddev);
4595 if (err)
4596 return err;
4597 /* check if we are allowed to change */
4598 if (mddev->delta_disks)
4599 err = -EBUSY;
4600 else if (mddev->persistent &&
4601 mddev->major_version == 0)
4602 err = -EINVAL;
4603 else
4604 mddev->reshape_backwards = backwards;
4605 mddev_unlock(mddev);
4606 return err ?: len;
4607 }
4608
4609 static struct md_sysfs_entry md_reshape_direction =
4610 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4611 reshape_direction_store);
4612
4613 static ssize_t
4614 array_size_show(struct mddev *mddev, char *page)
4615 {
4616 if (mddev->external_size)
4617 return sprintf(page, "%llu\n",
4618 (unsigned long long)mddev->array_sectors/2);
4619 else
4620 return sprintf(page, "default\n");
4621 }
4622
4623 static ssize_t
4624 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4625 {
4626 sector_t sectors;
4627 int err;
4628
4629 err = mddev_lock(mddev);
4630 if (err)
4631 return err;
4632
4633 if (strncmp(buf, "default", 7) == 0) {
4634 if (mddev->pers)
4635 sectors = mddev->pers->size(mddev, 0, 0);
4636 else
4637 sectors = mddev->array_sectors;
4638
4639 mddev->external_size = 0;
4640 } else {
4641 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4642 err = -EINVAL;
4643 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4644 err = -E2BIG;
4645 else
4646 mddev->external_size = 1;
4647 }
4648
4649 if (!err) {
4650 mddev->array_sectors = sectors;
4651 if (mddev->pers) {
4652 set_capacity(mddev->gendisk, mddev->array_sectors);
4653 revalidate_disk(mddev->gendisk);
4654 }
4655 }
4656 mddev_unlock(mddev);
4657 return err ?: len;
4658 }
4659
4660 static struct md_sysfs_entry md_array_size =
4661 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4662 array_size_store);
4663
4664 static struct attribute *md_default_attrs[] = {
4665 &md_level.attr,
4666 &md_layout.attr,
4667 &md_raid_disks.attr,
4668 &md_chunk_size.attr,
4669 &md_size.attr,
4670 &md_resync_start.attr,
4671 &md_metadata.attr,
4672 &md_new_device.attr,
4673 &md_safe_delay.attr,
4674 &md_array_state.attr,
4675 &md_reshape_position.attr,
4676 &md_reshape_direction.attr,
4677 &md_array_size.attr,
4678 &max_corr_read_errors.attr,
4679 NULL,
4680 };
4681
4682 static struct attribute *md_redundancy_attrs[] = {
4683 &md_scan_mode.attr,
4684 &md_last_scan_mode.attr,
4685 &md_mismatches.attr,
4686 &md_sync_min.attr,
4687 &md_sync_max.attr,
4688 &md_sync_speed.attr,
4689 &md_sync_force_parallel.attr,
4690 &md_sync_completed.attr,
4691 &md_min_sync.attr,
4692 &md_max_sync.attr,
4693 &md_suspend_lo.attr,
4694 &md_suspend_hi.attr,
4695 &md_bitmap.attr,
4696 &md_degraded.attr,
4697 NULL,
4698 };
4699 static struct attribute_group md_redundancy_group = {
4700 .name = NULL,
4701 .attrs = md_redundancy_attrs,
4702 };
4703
4704 static ssize_t
4705 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4706 {
4707 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4708 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4709 ssize_t rv;
4710
4711 if (!entry->show)
4712 return -EIO;
4713 spin_lock(&all_mddevs_lock);
4714 if (list_empty(&mddev->all_mddevs)) {
4715 spin_unlock(&all_mddevs_lock);
4716 return -EBUSY;
4717 }
4718 mddev_get(mddev);
4719 spin_unlock(&all_mddevs_lock);
4720
4721 rv = entry->show(mddev, page);
4722 mddev_put(mddev);
4723 return rv;
4724 }
4725
4726 static ssize_t
4727 md_attr_store(struct kobject *kobj, struct attribute *attr,
4728 const char *page, size_t length)
4729 {
4730 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4731 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4732 ssize_t rv;
4733
4734 if (!entry->store)
4735 return -EIO;
4736 if (!capable(CAP_SYS_ADMIN))
4737 return -EACCES;
4738 spin_lock(&all_mddevs_lock);
4739 if (list_empty(&mddev->all_mddevs)) {
4740 spin_unlock(&all_mddevs_lock);
4741 return -EBUSY;
4742 }
4743 mddev_get(mddev);
4744 spin_unlock(&all_mddevs_lock);
4745 rv = entry->store(mddev, page, length);
4746 mddev_put(mddev);
4747 return rv;
4748 }
4749
4750 static void md_free(struct kobject *ko)
4751 {
4752 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4753
4754 if (mddev->sysfs_state)
4755 sysfs_put(mddev->sysfs_state);
4756
4757 if (mddev->gendisk) {
4758 del_gendisk(mddev->gendisk);
4759 put_disk(mddev->gendisk);
4760 }
4761 if (mddev->queue)
4762 blk_cleanup_queue(mddev->queue);
4763
4764 kfree(mddev);
4765 }
4766
4767 static const struct sysfs_ops md_sysfs_ops = {
4768 .show = md_attr_show,
4769 .store = md_attr_store,
4770 };
4771 static struct kobj_type md_ktype = {
4772 .release = md_free,
4773 .sysfs_ops = &md_sysfs_ops,
4774 .default_attrs = md_default_attrs,
4775 };
4776
4777 int mdp_major = 0;
4778
4779 static void mddev_delayed_delete(struct work_struct *ws)
4780 {
4781 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4782
4783 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4784 kobject_del(&mddev->kobj);
4785 kobject_put(&mddev->kobj);
4786 }
4787
4788 static int md_alloc(dev_t dev, char *name)
4789 {
4790 static DEFINE_MUTEX(disks_mutex);
4791 struct mddev *mddev = mddev_find(dev);
4792 struct gendisk *disk;
4793 int partitioned;
4794 int shift;
4795 int unit;
4796 int error;
4797
4798 if (!mddev)
4799 return -ENODEV;
4800
4801 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4802 shift = partitioned ? MdpMinorShift : 0;
4803 unit = MINOR(mddev->unit) >> shift;
4804
4805 /* wait for any previous instance of this device to be
4806 * completely removed (mddev_delayed_delete).
4807 */
4808 flush_workqueue(md_misc_wq);
4809
4810 mutex_lock(&disks_mutex);
4811 error = -EEXIST;
4812 if (mddev->gendisk)
4813 goto abort;
4814
4815 if (name) {
4816 /* Need to ensure that 'name' is not a duplicate.
4817 */
4818 struct mddev *mddev2;
4819 spin_lock(&all_mddevs_lock);
4820
4821 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4822 if (mddev2->gendisk &&
4823 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4824 spin_unlock(&all_mddevs_lock);
4825 goto abort;
4826 }
4827 spin_unlock(&all_mddevs_lock);
4828 }
4829
4830 error = -ENOMEM;
4831 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4832 if (!mddev->queue)
4833 goto abort;
4834 mddev->queue->queuedata = mddev;
4835
4836 blk_queue_make_request(mddev->queue, md_make_request);
4837 blk_set_stacking_limits(&mddev->queue->limits);
4838
4839 disk = alloc_disk(1 << shift);
4840 if (!disk) {
4841 blk_cleanup_queue(mddev->queue);
4842 mddev->queue = NULL;
4843 goto abort;
4844 }
4845 disk->major = MAJOR(mddev->unit);
4846 disk->first_minor = unit << shift;
4847 if (name)
4848 strcpy(disk->disk_name, name);
4849 else if (partitioned)
4850 sprintf(disk->disk_name, "md_d%d", unit);
4851 else
4852 sprintf(disk->disk_name, "md%d", unit);
4853 disk->fops = &md_fops;
4854 disk->private_data = mddev;
4855 disk->queue = mddev->queue;
4856 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4857 /* Allow extended partitions. This makes the
4858 * 'mdp' device redundant, but we can't really
4859 * remove it now.
4860 */
4861 disk->flags |= GENHD_FL_EXT_DEVT;
4862 mddev->gendisk = disk;
4863 /* As soon as we call add_disk(), another thread could get
4864 * through to md_open, so make sure it doesn't get too far
4865 */
4866 mutex_lock(&mddev->open_mutex);
4867 add_disk(disk);
4868
4869 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4870 &disk_to_dev(disk)->kobj, "%s", "md");
4871 if (error) {
4872 /* This isn't possible, but as kobject_init_and_add is marked
4873 * __must_check, we must do something with the result
4874 */
4875 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4876 disk->disk_name);
4877 error = 0;
4878 }
4879 if (mddev->kobj.sd &&
4880 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4881 printk(KERN_DEBUG "pointless warning\n");
4882 mutex_unlock(&mddev->open_mutex);
4883 abort:
4884 mutex_unlock(&disks_mutex);
4885 if (!error && mddev->kobj.sd) {
4886 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4887 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4888 }
4889 mddev_put(mddev);
4890 return error;
4891 }
4892
4893 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4894 {
4895 md_alloc(dev, NULL);
4896 return NULL;
4897 }
4898
4899 static int add_named_array(const char *val, struct kernel_param *kp)
4900 {
4901 /* val must be "md_*" where * is not all digits.
4902 * We allocate an array with a large free minor number, and
4903 * set the name to val. val must not already be an active name.
4904 */
4905 int len = strlen(val);
4906 char buf[DISK_NAME_LEN];
4907
4908 while (len && val[len-1] == '\n')
4909 len--;
4910 if (len >= DISK_NAME_LEN)
4911 return -E2BIG;
4912 strlcpy(buf, val, len+1);
4913 if (strncmp(buf, "md_", 3) != 0)
4914 return -EINVAL;
4915 return md_alloc(0, buf);
4916 }
4917
4918 static void md_safemode_timeout(unsigned long data)
4919 {
4920 struct mddev *mddev = (struct mddev *) data;
4921
4922 if (!atomic_read(&mddev->writes_pending)) {
4923 mddev->safemode = 1;
4924 if (mddev->external)
4925 sysfs_notify_dirent_safe(mddev->sysfs_state);
4926 }
4927 md_wakeup_thread(mddev->thread);
4928 }
4929
4930 static int start_dirty_degraded;
4931
4932 int md_run(struct mddev *mddev)
4933 {
4934 int err;
4935 struct md_rdev *rdev;
4936 struct md_personality *pers;
4937
4938 if (list_empty(&mddev->disks))
4939 /* cannot run an array with no devices.. */
4940 return -EINVAL;
4941
4942 if (mddev->pers)
4943 return -EBUSY;
4944 /* Cannot run until previous stop completes properly */
4945 if (mddev->sysfs_active)
4946 return -EBUSY;
4947
4948 /*
4949 * Analyze all RAID superblock(s)
4950 */
4951 if (!mddev->raid_disks) {
4952 if (!mddev->persistent)
4953 return -EINVAL;
4954 analyze_sbs(mddev);
4955 }
4956
4957 if (mddev->level != LEVEL_NONE)
4958 request_module("md-level-%d", mddev->level);
4959 else if (mddev->clevel[0])
4960 request_module("md-%s", mddev->clevel);
4961
4962 /*
4963 * Drop all container device buffers, from now on
4964 * the only valid external interface is through the md
4965 * device.
4966 */
4967 rdev_for_each(rdev, mddev) {
4968 if (test_bit(Faulty, &rdev->flags))
4969 continue;
4970 sync_blockdev(rdev->bdev);
4971 invalidate_bdev(rdev->bdev);
4972
4973 /* perform some consistency tests on the device.
4974 * We don't want the data to overlap the metadata,
4975 * Internal Bitmap issues have been handled elsewhere.
4976 */
4977 if (rdev->meta_bdev) {
4978 /* Nothing to check */;
4979 } else if (rdev->data_offset < rdev->sb_start) {
4980 if (mddev->dev_sectors &&
4981 rdev->data_offset + mddev->dev_sectors
4982 > rdev->sb_start) {
4983 printk("md: %s: data overlaps metadata\n",
4984 mdname(mddev));
4985 return -EINVAL;
4986 }
4987 } else {
4988 if (rdev->sb_start + rdev->sb_size/512
4989 > rdev->data_offset) {
4990 printk("md: %s: metadata overlaps data\n",
4991 mdname(mddev));
4992 return -EINVAL;
4993 }
4994 }
4995 sysfs_notify_dirent_safe(rdev->sysfs_state);
4996 }
4997
4998 if (mddev->bio_set == NULL)
4999 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5000
5001 spin_lock(&pers_lock);
5002 pers = find_pers(mddev->level, mddev->clevel);
5003 if (!pers || !try_module_get(pers->owner)) {
5004 spin_unlock(&pers_lock);
5005 if (mddev->level != LEVEL_NONE)
5006 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5007 mddev->level);
5008 else
5009 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5010 mddev->clevel);
5011 return -EINVAL;
5012 }
5013 spin_unlock(&pers_lock);
5014 if (mddev->level != pers->level) {
5015 mddev->level = pers->level;
5016 mddev->new_level = pers->level;
5017 }
5018 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5019
5020 if (mddev->reshape_position != MaxSector &&
5021 pers->start_reshape == NULL) {
5022 /* This personality cannot handle reshaping... */
5023 module_put(pers->owner);
5024 return -EINVAL;
5025 }
5026
5027 if (pers->sync_request) {
5028 /* Warn if this is a potentially silly
5029 * configuration.
5030 */
5031 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5032 struct md_rdev *rdev2;
5033 int warned = 0;
5034
5035 rdev_for_each(rdev, mddev)
5036 rdev_for_each(rdev2, mddev) {
5037 if (rdev < rdev2 &&
5038 rdev->bdev->bd_contains ==
5039 rdev2->bdev->bd_contains) {
5040 printk(KERN_WARNING
5041 "%s: WARNING: %s appears to be"
5042 " on the same physical disk as"
5043 " %s.\n",
5044 mdname(mddev),
5045 bdevname(rdev->bdev,b),
5046 bdevname(rdev2->bdev,b2));
5047 warned = 1;
5048 }
5049 }
5050
5051 if (warned)
5052 printk(KERN_WARNING
5053 "True protection against single-disk"
5054 " failure might be compromised.\n");
5055 }
5056
5057 mddev->recovery = 0;
5058 /* may be over-ridden by personality */
5059 mddev->resync_max_sectors = mddev->dev_sectors;
5060
5061 mddev->ok_start_degraded = start_dirty_degraded;
5062
5063 if (start_readonly && mddev->ro == 0)
5064 mddev->ro = 2; /* read-only, but switch on first write */
5065
5066 err = pers->run(mddev);
5067 if (err)
5068 printk(KERN_ERR "md: pers->run() failed ...\n");
5069 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5070 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5071 " but 'external_size' not in effect?\n", __func__);
5072 printk(KERN_ERR
5073 "md: invalid array_size %llu > default size %llu\n",
5074 (unsigned long long)mddev->array_sectors / 2,
5075 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5076 err = -EINVAL;
5077 }
5078 if (err == 0 && pers->sync_request &&
5079 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5080 err = bitmap_create(mddev);
5081 if (err)
5082 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5083 mdname(mddev), err);
5084 }
5085 if (err) {
5086 mddev_detach(mddev);
5087 if (mddev->private)
5088 pers->free(mddev, mddev->private);
5089 module_put(pers->owner);
5090 bitmap_destroy(mddev);
5091 return err;
5092 }
5093 if (mddev->queue) {
5094 mddev->queue->backing_dev_info.congested_data = mddev;
5095 mddev->queue->backing_dev_info.congested_fn = md_congested;
5096 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5097 }
5098 if (pers->sync_request) {
5099 if (mddev->kobj.sd &&
5100 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5101 printk(KERN_WARNING
5102 "md: cannot register extra attributes for %s\n",
5103 mdname(mddev));
5104 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5105 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5106 mddev->ro = 0;
5107
5108 atomic_set(&mddev->writes_pending,0);
5109 atomic_set(&mddev->max_corr_read_errors,
5110 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5111 mddev->safemode = 0;
5112 mddev->safemode_timer.function = md_safemode_timeout;
5113 mddev->safemode_timer.data = (unsigned long) mddev;
5114 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5115 mddev->in_sync = 1;
5116 smp_wmb();
5117 spin_lock(&mddev->lock);
5118 mddev->pers = pers;
5119 mddev->ready = 1;
5120 spin_unlock(&mddev->lock);
5121 rdev_for_each(rdev, mddev)
5122 if (rdev->raid_disk >= 0)
5123 if (sysfs_link_rdev(mddev, rdev))
5124 /* failure here is OK */;
5125
5126 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5127
5128 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5129 md_update_sb(mddev, 0);
5130
5131 md_new_event(mddev);
5132 sysfs_notify_dirent_safe(mddev->sysfs_state);
5133 sysfs_notify_dirent_safe(mddev->sysfs_action);
5134 sysfs_notify(&mddev->kobj, NULL, "degraded");
5135 return 0;
5136 }
5137 EXPORT_SYMBOL_GPL(md_run);
5138
5139 static int do_md_run(struct mddev *mddev)
5140 {
5141 int err;
5142
5143 err = md_run(mddev);
5144 if (err)
5145 goto out;
5146 err = bitmap_load(mddev);
5147 if (err) {
5148 bitmap_destroy(mddev);
5149 goto out;
5150 }
5151
5152 md_wakeup_thread(mddev->thread);
5153 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5154
5155 set_capacity(mddev->gendisk, mddev->array_sectors);
5156 revalidate_disk(mddev->gendisk);
5157 mddev->changed = 1;
5158 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5159 out:
5160 return err;
5161 }
5162
5163 static int restart_array(struct mddev *mddev)
5164 {
5165 struct gendisk *disk = mddev->gendisk;
5166
5167 /* Complain if it has no devices */
5168 if (list_empty(&mddev->disks))
5169 return -ENXIO;
5170 if (!mddev->pers)
5171 return -EINVAL;
5172 if (!mddev->ro)
5173 return -EBUSY;
5174 mddev->safemode = 0;
5175 mddev->ro = 0;
5176 set_disk_ro(disk, 0);
5177 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5178 mdname(mddev));
5179 /* Kick recovery or resync if necessary */
5180 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5181 md_wakeup_thread(mddev->thread);
5182 md_wakeup_thread(mddev->sync_thread);
5183 sysfs_notify_dirent_safe(mddev->sysfs_state);
5184 return 0;
5185 }
5186
5187 static void md_clean(struct mddev *mddev)
5188 {
5189 mddev->array_sectors = 0;
5190 mddev->external_size = 0;
5191 mddev->dev_sectors = 0;
5192 mddev->raid_disks = 0;
5193 mddev->recovery_cp = 0;
5194 mddev->resync_min = 0;
5195 mddev->resync_max = MaxSector;
5196 mddev->reshape_position = MaxSector;
5197 mddev->external = 0;
5198 mddev->persistent = 0;
5199 mddev->level = LEVEL_NONE;
5200 mddev->clevel[0] = 0;
5201 mddev->flags = 0;
5202 mddev->ro = 0;
5203 mddev->metadata_type[0] = 0;
5204 mddev->chunk_sectors = 0;
5205 mddev->ctime = mddev->utime = 0;
5206 mddev->layout = 0;
5207 mddev->max_disks = 0;
5208 mddev->events = 0;
5209 mddev->can_decrease_events = 0;
5210 mddev->delta_disks = 0;
5211 mddev->reshape_backwards = 0;
5212 mddev->new_level = LEVEL_NONE;
5213 mddev->new_layout = 0;
5214 mddev->new_chunk_sectors = 0;
5215 mddev->curr_resync = 0;
5216 atomic64_set(&mddev->resync_mismatches, 0);
5217 mddev->suspend_lo = mddev->suspend_hi = 0;
5218 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5219 mddev->recovery = 0;
5220 mddev->in_sync = 0;
5221 mddev->changed = 0;
5222 mddev->degraded = 0;
5223 mddev->safemode = 0;
5224 mddev->merge_check_needed = 0;
5225 mddev->bitmap_info.offset = 0;
5226 mddev->bitmap_info.default_offset = 0;
5227 mddev->bitmap_info.default_space = 0;
5228 mddev->bitmap_info.chunksize = 0;
5229 mddev->bitmap_info.daemon_sleep = 0;
5230 mddev->bitmap_info.max_write_behind = 0;
5231 }
5232
5233 static void __md_stop_writes(struct mddev *mddev)
5234 {
5235 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5236 flush_workqueue(md_misc_wq);
5237 if (mddev->sync_thread) {
5238 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5239 md_reap_sync_thread(mddev);
5240 }
5241
5242 del_timer_sync(&mddev->safemode_timer);
5243
5244 bitmap_flush(mddev);
5245 md_super_wait(mddev);
5246
5247 if (mddev->ro == 0 &&
5248 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5249 /* mark array as shutdown cleanly */
5250 mddev->in_sync = 1;
5251 md_update_sb(mddev, 1);
5252 }
5253 }
5254
5255 void md_stop_writes(struct mddev *mddev)
5256 {
5257 mddev_lock_nointr(mddev);
5258 __md_stop_writes(mddev);
5259 mddev_unlock(mddev);
5260 }
5261 EXPORT_SYMBOL_GPL(md_stop_writes);
5262
5263 static void mddev_detach(struct mddev *mddev)
5264 {
5265 struct bitmap *bitmap = mddev->bitmap;
5266 /* wait for behind writes to complete */
5267 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5268 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5269 mdname(mddev));
5270 /* need to kick something here to make sure I/O goes? */
5271 wait_event(bitmap->behind_wait,
5272 atomic_read(&bitmap->behind_writes) == 0);
5273 }
5274 if (mddev->pers && mddev->pers->quiesce) {
5275 mddev->pers->quiesce(mddev, 1);
5276 mddev->pers->quiesce(mddev, 0);
5277 }
5278 md_unregister_thread(&mddev->thread);
5279 if (mddev->queue)
5280 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5281 }
5282
5283 static void __md_stop(struct mddev *mddev)
5284 {
5285 struct md_personality *pers = mddev->pers;
5286 mddev_detach(mddev);
5287 spin_lock(&mddev->lock);
5288 mddev->ready = 0;
5289 mddev->pers = NULL;
5290 spin_unlock(&mddev->lock);
5291 pers->free(mddev, mddev->private);
5292 if (pers->sync_request && mddev->to_remove == NULL)
5293 mddev->to_remove = &md_redundancy_group;
5294 module_put(pers->owner);
5295 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5296 }
5297
5298 void md_stop(struct mddev *mddev)
5299 {
5300 /* stop the array and free an attached data structures.
5301 * This is called from dm-raid
5302 */
5303 __md_stop(mddev);
5304 bitmap_destroy(mddev);
5305 if (mddev->bio_set)
5306 bioset_free(mddev->bio_set);
5307 }
5308
5309 EXPORT_SYMBOL_GPL(md_stop);
5310
5311 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5312 {
5313 int err = 0;
5314 int did_freeze = 0;
5315
5316 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5317 did_freeze = 1;
5318 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5319 md_wakeup_thread(mddev->thread);
5320 }
5321 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5322 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5323 if (mddev->sync_thread)
5324 /* Thread might be blocked waiting for metadata update
5325 * which will now never happen */
5326 wake_up_process(mddev->sync_thread->tsk);
5327
5328 mddev_unlock(mddev);
5329 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5330 &mddev->recovery));
5331 mddev_lock_nointr(mddev);
5332
5333 mutex_lock(&mddev->open_mutex);
5334 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5335 mddev->sync_thread ||
5336 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5337 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5338 printk("md: %s still in use.\n",mdname(mddev));
5339 if (did_freeze) {
5340 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5342 md_wakeup_thread(mddev->thread);
5343 }
5344 err = -EBUSY;
5345 goto out;
5346 }
5347 if (mddev->pers) {
5348 __md_stop_writes(mddev);
5349
5350 err = -ENXIO;
5351 if (mddev->ro==1)
5352 goto out;
5353 mddev->ro = 1;
5354 set_disk_ro(mddev->gendisk, 1);
5355 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5356 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5357 md_wakeup_thread(mddev->thread);
5358 sysfs_notify_dirent_safe(mddev->sysfs_state);
5359 err = 0;
5360 }
5361 out:
5362 mutex_unlock(&mddev->open_mutex);
5363 return err;
5364 }
5365
5366 /* mode:
5367 * 0 - completely stop and dis-assemble array
5368 * 2 - stop but do not disassemble array
5369 */
5370 static int do_md_stop(struct mddev *mddev, int mode,
5371 struct block_device *bdev)
5372 {
5373 struct gendisk *disk = mddev->gendisk;
5374 struct md_rdev *rdev;
5375 int did_freeze = 0;
5376
5377 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5378 did_freeze = 1;
5379 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5380 md_wakeup_thread(mddev->thread);
5381 }
5382 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5383 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5384 if (mddev->sync_thread)
5385 /* Thread might be blocked waiting for metadata update
5386 * which will now never happen */
5387 wake_up_process(mddev->sync_thread->tsk);
5388
5389 mddev_unlock(mddev);
5390 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5391 !test_bit(MD_RECOVERY_RUNNING,
5392 &mddev->recovery)));
5393 mddev_lock_nointr(mddev);
5394
5395 mutex_lock(&mddev->open_mutex);
5396 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5397 mddev->sysfs_active ||
5398 mddev->sync_thread ||
5399 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5400 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5401 printk("md: %s still in use.\n",mdname(mddev));
5402 mutex_unlock(&mddev->open_mutex);
5403 if (did_freeze) {
5404 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5406 md_wakeup_thread(mddev->thread);
5407 }
5408 return -EBUSY;
5409 }
5410 if (mddev->pers) {
5411 if (mddev->ro)
5412 set_disk_ro(disk, 0);
5413
5414 __md_stop_writes(mddev);
5415 __md_stop(mddev);
5416 mddev->queue->merge_bvec_fn = NULL;
5417 mddev->queue->backing_dev_info.congested_fn = NULL;
5418
5419 /* tell userspace to handle 'inactive' */
5420 sysfs_notify_dirent_safe(mddev->sysfs_state);
5421
5422 rdev_for_each(rdev, mddev)
5423 if (rdev->raid_disk >= 0)
5424 sysfs_unlink_rdev(mddev, rdev);
5425
5426 set_capacity(disk, 0);
5427 mutex_unlock(&mddev->open_mutex);
5428 mddev->changed = 1;
5429 revalidate_disk(disk);
5430
5431 if (mddev->ro)
5432 mddev->ro = 0;
5433 } else
5434 mutex_unlock(&mddev->open_mutex);
5435 /*
5436 * Free resources if final stop
5437 */
5438 if (mode == 0) {
5439 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5440
5441 bitmap_destroy(mddev);
5442 if (mddev->bitmap_info.file) {
5443 struct file *f = mddev->bitmap_info.file;
5444 spin_lock(&mddev->lock);
5445 mddev->bitmap_info.file = NULL;
5446 spin_unlock(&mddev->lock);
5447 fput(f);
5448 }
5449 mddev->bitmap_info.offset = 0;
5450
5451 export_array(mddev);
5452
5453 md_clean(mddev);
5454 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5455 if (mddev->hold_active == UNTIL_STOP)
5456 mddev->hold_active = 0;
5457 }
5458 blk_integrity_unregister(disk);
5459 md_new_event(mddev);
5460 sysfs_notify_dirent_safe(mddev->sysfs_state);
5461 return 0;
5462 }
5463
5464 #ifndef MODULE
5465 static void autorun_array(struct mddev *mddev)
5466 {
5467 struct md_rdev *rdev;
5468 int err;
5469
5470 if (list_empty(&mddev->disks))
5471 return;
5472
5473 printk(KERN_INFO "md: running: ");
5474
5475 rdev_for_each(rdev, mddev) {
5476 char b[BDEVNAME_SIZE];
5477 printk("<%s>", bdevname(rdev->bdev,b));
5478 }
5479 printk("\n");
5480
5481 err = do_md_run(mddev);
5482 if (err) {
5483 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5484 do_md_stop(mddev, 0, NULL);
5485 }
5486 }
5487
5488 /*
5489 * lets try to run arrays based on all disks that have arrived
5490 * until now. (those are in pending_raid_disks)
5491 *
5492 * the method: pick the first pending disk, collect all disks with
5493 * the same UUID, remove all from the pending list and put them into
5494 * the 'same_array' list. Then order this list based on superblock
5495 * update time (freshest comes first), kick out 'old' disks and
5496 * compare superblocks. If everything's fine then run it.
5497 *
5498 * If "unit" is allocated, then bump its reference count
5499 */
5500 static void autorun_devices(int part)
5501 {
5502 struct md_rdev *rdev0, *rdev, *tmp;
5503 struct mddev *mddev;
5504 char b[BDEVNAME_SIZE];
5505
5506 printk(KERN_INFO "md: autorun ...\n");
5507 while (!list_empty(&pending_raid_disks)) {
5508 int unit;
5509 dev_t dev;
5510 LIST_HEAD(candidates);
5511 rdev0 = list_entry(pending_raid_disks.next,
5512 struct md_rdev, same_set);
5513
5514 printk(KERN_INFO "md: considering %s ...\n",
5515 bdevname(rdev0->bdev,b));
5516 INIT_LIST_HEAD(&candidates);
5517 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5518 if (super_90_load(rdev, rdev0, 0) >= 0) {
5519 printk(KERN_INFO "md: adding %s ...\n",
5520 bdevname(rdev->bdev,b));
5521 list_move(&rdev->same_set, &candidates);
5522 }
5523 /*
5524 * now we have a set of devices, with all of them having
5525 * mostly sane superblocks. It's time to allocate the
5526 * mddev.
5527 */
5528 if (part) {
5529 dev = MKDEV(mdp_major,
5530 rdev0->preferred_minor << MdpMinorShift);
5531 unit = MINOR(dev) >> MdpMinorShift;
5532 } else {
5533 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5534 unit = MINOR(dev);
5535 }
5536 if (rdev0->preferred_minor != unit) {
5537 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5538 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5539 break;
5540 }
5541
5542 md_probe(dev, NULL, NULL);
5543 mddev = mddev_find(dev);
5544 if (!mddev || !mddev->gendisk) {
5545 if (mddev)
5546 mddev_put(mddev);
5547 printk(KERN_ERR
5548 "md: cannot allocate memory for md drive.\n");
5549 break;
5550 }
5551 if (mddev_lock(mddev))
5552 printk(KERN_WARNING "md: %s locked, cannot run\n",
5553 mdname(mddev));
5554 else if (mddev->raid_disks || mddev->major_version
5555 || !list_empty(&mddev->disks)) {
5556 printk(KERN_WARNING
5557 "md: %s already running, cannot run %s\n",
5558 mdname(mddev), bdevname(rdev0->bdev,b));
5559 mddev_unlock(mddev);
5560 } else {
5561 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5562 mddev->persistent = 1;
5563 rdev_for_each_list(rdev, tmp, &candidates) {
5564 list_del_init(&rdev->same_set);
5565 if (bind_rdev_to_array(rdev, mddev))
5566 export_rdev(rdev);
5567 }
5568 autorun_array(mddev);
5569 mddev_unlock(mddev);
5570 }
5571 /* on success, candidates will be empty, on error
5572 * it won't...
5573 */
5574 rdev_for_each_list(rdev, tmp, &candidates) {
5575 list_del_init(&rdev->same_set);
5576 export_rdev(rdev);
5577 }
5578 mddev_put(mddev);
5579 }
5580 printk(KERN_INFO "md: ... autorun DONE.\n");
5581 }
5582 #endif /* !MODULE */
5583
5584 static int get_version(void __user *arg)
5585 {
5586 mdu_version_t ver;
5587
5588 ver.major = MD_MAJOR_VERSION;
5589 ver.minor = MD_MINOR_VERSION;
5590 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5591
5592 if (copy_to_user(arg, &ver, sizeof(ver)))
5593 return -EFAULT;
5594
5595 return 0;
5596 }
5597
5598 static int get_array_info(struct mddev *mddev, void __user *arg)
5599 {
5600 mdu_array_info_t info;
5601 int nr,working,insync,failed,spare;
5602 struct md_rdev *rdev;
5603
5604 nr = working = insync = failed = spare = 0;
5605 rcu_read_lock();
5606 rdev_for_each_rcu(rdev, mddev) {
5607 nr++;
5608 if (test_bit(Faulty, &rdev->flags))
5609 failed++;
5610 else {
5611 working++;
5612 if (test_bit(In_sync, &rdev->flags))
5613 insync++;
5614 else
5615 spare++;
5616 }
5617 }
5618 rcu_read_unlock();
5619
5620 info.major_version = mddev->major_version;
5621 info.minor_version = mddev->minor_version;
5622 info.patch_version = MD_PATCHLEVEL_VERSION;
5623 info.ctime = mddev->ctime;
5624 info.level = mddev->level;
5625 info.size = mddev->dev_sectors / 2;
5626 if (info.size != mddev->dev_sectors / 2) /* overflow */
5627 info.size = -1;
5628 info.nr_disks = nr;
5629 info.raid_disks = mddev->raid_disks;
5630 info.md_minor = mddev->md_minor;
5631 info.not_persistent= !mddev->persistent;
5632
5633 info.utime = mddev->utime;
5634 info.state = 0;
5635 if (mddev->in_sync)
5636 info.state = (1<<MD_SB_CLEAN);
5637 if (mddev->bitmap && mddev->bitmap_info.offset)
5638 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5639 info.active_disks = insync;
5640 info.working_disks = working;
5641 info.failed_disks = failed;
5642 info.spare_disks = spare;
5643
5644 info.layout = mddev->layout;
5645 info.chunk_size = mddev->chunk_sectors << 9;
5646
5647 if (copy_to_user(arg, &info, sizeof(info)))
5648 return -EFAULT;
5649
5650 return 0;
5651 }
5652
5653 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5654 {
5655 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5656 char *ptr;
5657 int err;
5658
5659 file = kmalloc(sizeof(*file), GFP_NOIO);
5660 if (!file)
5661 return -ENOMEM;
5662
5663 err = 0;
5664 spin_lock(&mddev->lock);
5665 /* bitmap disabled, zero the first byte and copy out */
5666 if (!mddev->bitmap_info.file)
5667 file->pathname[0] = '\0';
5668 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5669 file->pathname, sizeof(file->pathname))),
5670 IS_ERR(ptr))
5671 err = PTR_ERR(ptr);
5672 else
5673 memmove(file->pathname, ptr,
5674 sizeof(file->pathname)-(ptr-file->pathname));
5675 spin_unlock(&mddev->lock);
5676
5677 if (err == 0 &&
5678 copy_to_user(arg, file, sizeof(*file)))
5679 err = -EFAULT;
5680
5681 kfree(file);
5682 return err;
5683 }
5684
5685 static int get_disk_info(struct mddev *mddev, void __user * arg)
5686 {
5687 mdu_disk_info_t info;
5688 struct md_rdev *rdev;
5689
5690 if (copy_from_user(&info, arg, sizeof(info)))
5691 return -EFAULT;
5692
5693 rcu_read_lock();
5694 rdev = find_rdev_nr_rcu(mddev, info.number);
5695 if (rdev) {
5696 info.major = MAJOR(rdev->bdev->bd_dev);
5697 info.minor = MINOR(rdev->bdev->bd_dev);
5698 info.raid_disk = rdev->raid_disk;
5699 info.state = 0;
5700 if (test_bit(Faulty, &rdev->flags))
5701 info.state |= (1<<MD_DISK_FAULTY);
5702 else if (test_bit(In_sync, &rdev->flags)) {
5703 info.state |= (1<<MD_DISK_ACTIVE);
5704 info.state |= (1<<MD_DISK_SYNC);
5705 }
5706 if (test_bit(WriteMostly, &rdev->flags))
5707 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5708 } else {
5709 info.major = info.minor = 0;
5710 info.raid_disk = -1;
5711 info.state = (1<<MD_DISK_REMOVED);
5712 }
5713 rcu_read_unlock();
5714
5715 if (copy_to_user(arg, &info, sizeof(info)))
5716 return -EFAULT;
5717
5718 return 0;
5719 }
5720
5721 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5722 {
5723 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5724 struct md_rdev *rdev;
5725 dev_t dev = MKDEV(info->major,info->minor);
5726
5727 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5728 return -EOVERFLOW;
5729
5730 if (!mddev->raid_disks) {
5731 int err;
5732 /* expecting a device which has a superblock */
5733 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5734 if (IS_ERR(rdev)) {
5735 printk(KERN_WARNING
5736 "md: md_import_device returned %ld\n",
5737 PTR_ERR(rdev));
5738 return PTR_ERR(rdev);
5739 }
5740 if (!list_empty(&mddev->disks)) {
5741 struct md_rdev *rdev0
5742 = list_entry(mddev->disks.next,
5743 struct md_rdev, same_set);
5744 err = super_types[mddev->major_version]
5745 .load_super(rdev, rdev0, mddev->minor_version);
5746 if (err < 0) {
5747 printk(KERN_WARNING
5748 "md: %s has different UUID to %s\n",
5749 bdevname(rdev->bdev,b),
5750 bdevname(rdev0->bdev,b2));
5751 export_rdev(rdev);
5752 return -EINVAL;
5753 }
5754 }
5755 err = bind_rdev_to_array(rdev, mddev);
5756 if (err)
5757 export_rdev(rdev);
5758 return err;
5759 }
5760
5761 /*
5762 * add_new_disk can be used once the array is assembled
5763 * to add "hot spares". They must already have a superblock
5764 * written
5765 */
5766 if (mddev->pers) {
5767 int err;
5768 if (!mddev->pers->hot_add_disk) {
5769 printk(KERN_WARNING
5770 "%s: personality does not support diskops!\n",
5771 mdname(mddev));
5772 return -EINVAL;
5773 }
5774 if (mddev->persistent)
5775 rdev = md_import_device(dev, mddev->major_version,
5776 mddev->minor_version);
5777 else
5778 rdev = md_import_device(dev, -1, -1);
5779 if (IS_ERR(rdev)) {
5780 printk(KERN_WARNING
5781 "md: md_import_device returned %ld\n",
5782 PTR_ERR(rdev));
5783 return PTR_ERR(rdev);
5784 }
5785 /* set saved_raid_disk if appropriate */
5786 if (!mddev->persistent) {
5787 if (info->state & (1<<MD_DISK_SYNC) &&
5788 info->raid_disk < mddev->raid_disks) {
5789 rdev->raid_disk = info->raid_disk;
5790 set_bit(In_sync, &rdev->flags);
5791 clear_bit(Bitmap_sync, &rdev->flags);
5792 } else
5793 rdev->raid_disk = -1;
5794 rdev->saved_raid_disk = rdev->raid_disk;
5795 } else
5796 super_types[mddev->major_version].
5797 validate_super(mddev, rdev);
5798 if ((info->state & (1<<MD_DISK_SYNC)) &&
5799 rdev->raid_disk != info->raid_disk) {
5800 /* This was a hot-add request, but events doesn't
5801 * match, so reject it.
5802 */
5803 export_rdev(rdev);
5804 return -EINVAL;
5805 }
5806
5807 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5808 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5809 set_bit(WriteMostly, &rdev->flags);
5810 else
5811 clear_bit(WriteMostly, &rdev->flags);
5812
5813 rdev->raid_disk = -1;
5814 err = bind_rdev_to_array(rdev, mddev);
5815 if (!err && !mddev->pers->hot_remove_disk) {
5816 /* If there is hot_add_disk but no hot_remove_disk
5817 * then added disks for geometry changes,
5818 * and should be added immediately.
5819 */
5820 super_types[mddev->major_version].
5821 validate_super(mddev, rdev);
5822 err = mddev->pers->hot_add_disk(mddev, rdev);
5823 if (err)
5824 unbind_rdev_from_array(rdev);
5825 }
5826 if (err)
5827 export_rdev(rdev);
5828 else
5829 sysfs_notify_dirent_safe(rdev->sysfs_state);
5830
5831 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5832 if (mddev->degraded)
5833 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5834 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5835 if (!err)
5836 md_new_event(mddev);
5837 md_wakeup_thread(mddev->thread);
5838 return err;
5839 }
5840
5841 /* otherwise, add_new_disk is only allowed
5842 * for major_version==0 superblocks
5843 */
5844 if (mddev->major_version != 0) {
5845 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5846 mdname(mddev));
5847 return -EINVAL;
5848 }
5849
5850 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5851 int err;
5852 rdev = md_import_device(dev, -1, 0);
5853 if (IS_ERR(rdev)) {
5854 printk(KERN_WARNING
5855 "md: error, md_import_device() returned %ld\n",
5856 PTR_ERR(rdev));
5857 return PTR_ERR(rdev);
5858 }
5859 rdev->desc_nr = info->number;
5860 if (info->raid_disk < mddev->raid_disks)
5861 rdev->raid_disk = info->raid_disk;
5862 else
5863 rdev->raid_disk = -1;
5864
5865 if (rdev->raid_disk < mddev->raid_disks)
5866 if (info->state & (1<<MD_DISK_SYNC))
5867 set_bit(In_sync, &rdev->flags);
5868
5869 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5870 set_bit(WriteMostly, &rdev->flags);
5871
5872 if (!mddev->persistent) {
5873 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5874 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5875 } else
5876 rdev->sb_start = calc_dev_sboffset(rdev);
5877 rdev->sectors = rdev->sb_start;
5878
5879 err = bind_rdev_to_array(rdev, mddev);
5880 if (err) {
5881 export_rdev(rdev);
5882 return err;
5883 }
5884 }
5885
5886 return 0;
5887 }
5888
5889 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5890 {
5891 char b[BDEVNAME_SIZE];
5892 struct md_rdev *rdev;
5893
5894 rdev = find_rdev(mddev, dev);
5895 if (!rdev)
5896 return -ENXIO;
5897
5898 clear_bit(Blocked, &rdev->flags);
5899 remove_and_add_spares(mddev, rdev);
5900
5901 if (rdev->raid_disk >= 0)
5902 goto busy;
5903
5904 kick_rdev_from_array(rdev);
5905 md_update_sb(mddev, 1);
5906 md_new_event(mddev);
5907
5908 return 0;
5909 busy:
5910 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5911 bdevname(rdev->bdev,b), mdname(mddev));
5912 return -EBUSY;
5913 }
5914
5915 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5916 {
5917 char b[BDEVNAME_SIZE];
5918 int err;
5919 struct md_rdev *rdev;
5920
5921 if (!mddev->pers)
5922 return -ENODEV;
5923
5924 if (mddev->major_version != 0) {
5925 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5926 " version-0 superblocks.\n",
5927 mdname(mddev));
5928 return -EINVAL;
5929 }
5930 if (!mddev->pers->hot_add_disk) {
5931 printk(KERN_WARNING
5932 "%s: personality does not support diskops!\n",
5933 mdname(mddev));
5934 return -EINVAL;
5935 }
5936
5937 rdev = md_import_device(dev, -1, 0);
5938 if (IS_ERR(rdev)) {
5939 printk(KERN_WARNING
5940 "md: error, md_import_device() returned %ld\n",
5941 PTR_ERR(rdev));
5942 return -EINVAL;
5943 }
5944
5945 if (mddev->persistent)
5946 rdev->sb_start = calc_dev_sboffset(rdev);
5947 else
5948 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5949
5950 rdev->sectors = rdev->sb_start;
5951
5952 if (test_bit(Faulty, &rdev->flags)) {
5953 printk(KERN_WARNING
5954 "md: can not hot-add faulty %s disk to %s!\n",
5955 bdevname(rdev->bdev,b), mdname(mddev));
5956 err = -EINVAL;
5957 goto abort_export;
5958 }
5959 clear_bit(In_sync, &rdev->flags);
5960 rdev->desc_nr = -1;
5961 rdev->saved_raid_disk = -1;
5962 err = bind_rdev_to_array(rdev, mddev);
5963 if (err)
5964 goto abort_export;
5965
5966 /*
5967 * The rest should better be atomic, we can have disk failures
5968 * noticed in interrupt contexts ...
5969 */
5970
5971 rdev->raid_disk = -1;
5972
5973 md_update_sb(mddev, 1);
5974
5975 /*
5976 * Kick recovery, maybe this spare has to be added to the
5977 * array immediately.
5978 */
5979 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5980 md_wakeup_thread(mddev->thread);
5981 md_new_event(mddev);
5982 return 0;
5983
5984 abort_export:
5985 export_rdev(rdev);
5986 return err;
5987 }
5988
5989 static int set_bitmap_file(struct mddev *mddev, int fd)
5990 {
5991 int err = 0;
5992
5993 if (mddev->pers) {
5994 if (!mddev->pers->quiesce || !mddev->thread)
5995 return -EBUSY;
5996 if (mddev->recovery || mddev->sync_thread)
5997 return -EBUSY;
5998 /* we should be able to change the bitmap.. */
5999 }
6000
6001 if (fd >= 0) {
6002 struct inode *inode;
6003 struct file *f;
6004
6005 if (mddev->bitmap || mddev->bitmap_info.file)
6006 return -EEXIST; /* cannot add when bitmap is present */
6007 f = fget(fd);
6008
6009 if (f == NULL) {
6010 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6011 mdname(mddev));
6012 return -EBADF;
6013 }
6014
6015 inode = f->f_mapping->host;
6016 if (!S_ISREG(inode->i_mode)) {
6017 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6018 mdname(mddev));
6019 err = -EBADF;
6020 } else if (!(f->f_mode & FMODE_WRITE)) {
6021 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6022 mdname(mddev));
6023 err = -EBADF;
6024 } else if (atomic_read(&inode->i_writecount) != 1) {
6025 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6026 mdname(mddev));
6027 err = -EBUSY;
6028 }
6029 if (err) {
6030 fput(f);
6031 return err;
6032 }
6033 mddev->bitmap_info.file = f;
6034 mddev->bitmap_info.offset = 0; /* file overrides offset */
6035 } else if (mddev->bitmap == NULL)
6036 return -ENOENT; /* cannot remove what isn't there */
6037 err = 0;
6038 if (mddev->pers) {
6039 mddev->pers->quiesce(mddev, 1);
6040 if (fd >= 0) {
6041 err = bitmap_create(mddev);
6042 if (!err)
6043 err = bitmap_load(mddev);
6044 }
6045 if (fd < 0 || err) {
6046 bitmap_destroy(mddev);
6047 fd = -1; /* make sure to put the file */
6048 }
6049 mddev->pers->quiesce(mddev, 0);
6050 }
6051 if (fd < 0) {
6052 struct file *f = mddev->bitmap_info.file;
6053 if (f) {
6054 spin_lock(&mddev->lock);
6055 mddev->bitmap_info.file = NULL;
6056 spin_unlock(&mddev->lock);
6057 fput(f);
6058 }
6059 }
6060
6061 return err;
6062 }
6063
6064 /*
6065 * set_array_info is used two different ways
6066 * The original usage is when creating a new array.
6067 * In this usage, raid_disks is > 0 and it together with
6068 * level, size, not_persistent,layout,chunksize determine the
6069 * shape of the array.
6070 * This will always create an array with a type-0.90.0 superblock.
6071 * The newer usage is when assembling an array.
6072 * In this case raid_disks will be 0, and the major_version field is
6073 * use to determine which style super-blocks are to be found on the devices.
6074 * The minor and patch _version numbers are also kept incase the
6075 * super_block handler wishes to interpret them.
6076 */
6077 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6078 {
6079
6080 if (info->raid_disks == 0) {
6081 /* just setting version number for superblock loading */
6082 if (info->major_version < 0 ||
6083 info->major_version >= ARRAY_SIZE(super_types) ||
6084 super_types[info->major_version].name == NULL) {
6085 /* maybe try to auto-load a module? */
6086 printk(KERN_INFO
6087 "md: superblock version %d not known\n",
6088 info->major_version);
6089 return -EINVAL;
6090 }
6091 mddev->major_version = info->major_version;
6092 mddev->minor_version = info->minor_version;
6093 mddev->patch_version = info->patch_version;
6094 mddev->persistent = !info->not_persistent;
6095 /* ensure mddev_put doesn't delete this now that there
6096 * is some minimal configuration.
6097 */
6098 mddev->ctime = get_seconds();
6099 return 0;
6100 }
6101 mddev->major_version = MD_MAJOR_VERSION;
6102 mddev->minor_version = MD_MINOR_VERSION;
6103 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6104 mddev->ctime = get_seconds();
6105
6106 mddev->level = info->level;
6107 mddev->clevel[0] = 0;
6108 mddev->dev_sectors = 2 * (sector_t)info->size;
6109 mddev->raid_disks = info->raid_disks;
6110 /* don't set md_minor, it is determined by which /dev/md* was
6111 * openned
6112 */
6113 if (info->state & (1<<MD_SB_CLEAN))
6114 mddev->recovery_cp = MaxSector;
6115 else
6116 mddev->recovery_cp = 0;
6117 mddev->persistent = ! info->not_persistent;
6118 mddev->external = 0;
6119
6120 mddev->layout = info->layout;
6121 mddev->chunk_sectors = info->chunk_size >> 9;
6122
6123 mddev->max_disks = MD_SB_DISKS;
6124
6125 if (mddev->persistent)
6126 mddev->flags = 0;
6127 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6128
6129 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6130 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6131 mddev->bitmap_info.offset = 0;
6132
6133 mddev->reshape_position = MaxSector;
6134
6135 /*
6136 * Generate a 128 bit UUID
6137 */
6138 get_random_bytes(mddev->uuid, 16);
6139
6140 mddev->new_level = mddev->level;
6141 mddev->new_chunk_sectors = mddev->chunk_sectors;
6142 mddev->new_layout = mddev->layout;
6143 mddev->delta_disks = 0;
6144 mddev->reshape_backwards = 0;
6145
6146 return 0;
6147 }
6148
6149 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6150 {
6151 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6152
6153 if (mddev->external_size)
6154 return;
6155
6156 mddev->array_sectors = array_sectors;
6157 }
6158 EXPORT_SYMBOL(md_set_array_sectors);
6159
6160 static int update_size(struct mddev *mddev, sector_t num_sectors)
6161 {
6162 struct md_rdev *rdev;
6163 int rv;
6164 int fit = (num_sectors == 0);
6165
6166 if (mddev->pers->resize == NULL)
6167 return -EINVAL;
6168 /* The "num_sectors" is the number of sectors of each device that
6169 * is used. This can only make sense for arrays with redundancy.
6170 * linear and raid0 always use whatever space is available. We can only
6171 * consider changing this number if no resync or reconstruction is
6172 * happening, and if the new size is acceptable. It must fit before the
6173 * sb_start or, if that is <data_offset, it must fit before the size
6174 * of each device. If num_sectors is zero, we find the largest size
6175 * that fits.
6176 */
6177 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6178 mddev->sync_thread)
6179 return -EBUSY;
6180 if (mddev->ro)
6181 return -EROFS;
6182
6183 rdev_for_each(rdev, mddev) {
6184 sector_t avail = rdev->sectors;
6185
6186 if (fit && (num_sectors == 0 || num_sectors > avail))
6187 num_sectors = avail;
6188 if (avail < num_sectors)
6189 return -ENOSPC;
6190 }
6191 rv = mddev->pers->resize(mddev, num_sectors);
6192 if (!rv)
6193 revalidate_disk(mddev->gendisk);
6194 return rv;
6195 }
6196
6197 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6198 {
6199 int rv;
6200 struct md_rdev *rdev;
6201 /* change the number of raid disks */
6202 if (mddev->pers->check_reshape == NULL)
6203 return -EINVAL;
6204 if (mddev->ro)
6205 return -EROFS;
6206 if (raid_disks <= 0 ||
6207 (mddev->max_disks && raid_disks >= mddev->max_disks))
6208 return -EINVAL;
6209 if (mddev->sync_thread ||
6210 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6211 mddev->reshape_position != MaxSector)
6212 return -EBUSY;
6213
6214 rdev_for_each(rdev, mddev) {
6215 if (mddev->raid_disks < raid_disks &&
6216 rdev->data_offset < rdev->new_data_offset)
6217 return -EINVAL;
6218 if (mddev->raid_disks > raid_disks &&
6219 rdev->data_offset > rdev->new_data_offset)
6220 return -EINVAL;
6221 }
6222
6223 mddev->delta_disks = raid_disks - mddev->raid_disks;
6224 if (mddev->delta_disks < 0)
6225 mddev->reshape_backwards = 1;
6226 else if (mddev->delta_disks > 0)
6227 mddev->reshape_backwards = 0;
6228
6229 rv = mddev->pers->check_reshape(mddev);
6230 if (rv < 0) {
6231 mddev->delta_disks = 0;
6232 mddev->reshape_backwards = 0;
6233 }
6234 return rv;
6235 }
6236
6237 /*
6238 * update_array_info is used to change the configuration of an
6239 * on-line array.
6240 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6241 * fields in the info are checked against the array.
6242 * Any differences that cannot be handled will cause an error.
6243 * Normally, only one change can be managed at a time.
6244 */
6245 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6246 {
6247 int rv = 0;
6248 int cnt = 0;
6249 int state = 0;
6250
6251 /* calculate expected state,ignoring low bits */
6252 if (mddev->bitmap && mddev->bitmap_info.offset)
6253 state |= (1 << MD_SB_BITMAP_PRESENT);
6254
6255 if (mddev->major_version != info->major_version ||
6256 mddev->minor_version != info->minor_version ||
6257 /* mddev->patch_version != info->patch_version || */
6258 mddev->ctime != info->ctime ||
6259 mddev->level != info->level ||
6260 /* mddev->layout != info->layout || */
6261 !mddev->persistent != info->not_persistent||
6262 mddev->chunk_sectors != info->chunk_size >> 9 ||
6263 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6264 ((state^info->state) & 0xfffffe00)
6265 )
6266 return -EINVAL;
6267 /* Check there is only one change */
6268 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6269 cnt++;
6270 if (mddev->raid_disks != info->raid_disks)
6271 cnt++;
6272 if (mddev->layout != info->layout)
6273 cnt++;
6274 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6275 cnt++;
6276 if (cnt == 0)
6277 return 0;
6278 if (cnt > 1)
6279 return -EINVAL;
6280
6281 if (mddev->layout != info->layout) {
6282 /* Change layout
6283 * we don't need to do anything at the md level, the
6284 * personality will take care of it all.
6285 */
6286 if (mddev->pers->check_reshape == NULL)
6287 return -EINVAL;
6288 else {
6289 mddev->new_layout = info->layout;
6290 rv = mddev->pers->check_reshape(mddev);
6291 if (rv)
6292 mddev->new_layout = mddev->layout;
6293 return rv;
6294 }
6295 }
6296 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6297 rv = update_size(mddev, (sector_t)info->size * 2);
6298
6299 if (mddev->raid_disks != info->raid_disks)
6300 rv = update_raid_disks(mddev, info->raid_disks);
6301
6302 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6303 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6304 return -EINVAL;
6305 if (mddev->recovery || mddev->sync_thread)
6306 return -EBUSY;
6307 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6308 /* add the bitmap */
6309 if (mddev->bitmap)
6310 return -EEXIST;
6311 if (mddev->bitmap_info.default_offset == 0)
6312 return -EINVAL;
6313 mddev->bitmap_info.offset =
6314 mddev->bitmap_info.default_offset;
6315 mddev->bitmap_info.space =
6316 mddev->bitmap_info.default_space;
6317 mddev->pers->quiesce(mddev, 1);
6318 rv = bitmap_create(mddev);
6319 if (!rv)
6320 rv = bitmap_load(mddev);
6321 if (rv)
6322 bitmap_destroy(mddev);
6323 mddev->pers->quiesce(mddev, 0);
6324 } else {
6325 /* remove the bitmap */
6326 if (!mddev->bitmap)
6327 return -ENOENT;
6328 if (mddev->bitmap->storage.file)
6329 return -EINVAL;
6330 mddev->pers->quiesce(mddev, 1);
6331 bitmap_destroy(mddev);
6332 mddev->pers->quiesce(mddev, 0);
6333 mddev->bitmap_info.offset = 0;
6334 }
6335 }
6336 md_update_sb(mddev, 1);
6337 return rv;
6338 }
6339
6340 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6341 {
6342 struct md_rdev *rdev;
6343 int err = 0;
6344
6345 if (mddev->pers == NULL)
6346 return -ENODEV;
6347
6348 rcu_read_lock();
6349 rdev = find_rdev_rcu(mddev, dev);
6350 if (!rdev)
6351 err = -ENODEV;
6352 else {
6353 md_error(mddev, rdev);
6354 if (!test_bit(Faulty, &rdev->flags))
6355 err = -EBUSY;
6356 }
6357 rcu_read_unlock();
6358 return err;
6359 }
6360
6361 /*
6362 * We have a problem here : there is no easy way to give a CHS
6363 * virtual geometry. We currently pretend that we have a 2 heads
6364 * 4 sectors (with a BIG number of cylinders...). This drives
6365 * dosfs just mad... ;-)
6366 */
6367 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6368 {
6369 struct mddev *mddev = bdev->bd_disk->private_data;
6370
6371 geo->heads = 2;
6372 geo->sectors = 4;
6373 geo->cylinders = mddev->array_sectors / 8;
6374 return 0;
6375 }
6376
6377 static inline bool md_ioctl_valid(unsigned int cmd)
6378 {
6379 switch (cmd) {
6380 case ADD_NEW_DISK:
6381 case BLKROSET:
6382 case GET_ARRAY_INFO:
6383 case GET_BITMAP_FILE:
6384 case GET_DISK_INFO:
6385 case HOT_ADD_DISK:
6386 case HOT_REMOVE_DISK:
6387 case RAID_AUTORUN:
6388 case RAID_VERSION:
6389 case RESTART_ARRAY_RW:
6390 case RUN_ARRAY:
6391 case SET_ARRAY_INFO:
6392 case SET_BITMAP_FILE:
6393 case SET_DISK_FAULTY:
6394 case STOP_ARRAY:
6395 case STOP_ARRAY_RO:
6396 return true;
6397 default:
6398 return false;
6399 }
6400 }
6401
6402 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6403 unsigned int cmd, unsigned long arg)
6404 {
6405 int err = 0;
6406 void __user *argp = (void __user *)arg;
6407 struct mddev *mddev = NULL;
6408 int ro;
6409
6410 if (!md_ioctl_valid(cmd))
6411 return -ENOTTY;
6412
6413 switch (cmd) {
6414 case RAID_VERSION:
6415 case GET_ARRAY_INFO:
6416 case GET_DISK_INFO:
6417 break;
6418 default:
6419 if (!capable(CAP_SYS_ADMIN))
6420 return -EACCES;
6421 }
6422
6423 /*
6424 * Commands dealing with the RAID driver but not any
6425 * particular array:
6426 */
6427 switch (cmd) {
6428 case RAID_VERSION:
6429 err = get_version(argp);
6430 goto out;
6431
6432 #ifndef MODULE
6433 case RAID_AUTORUN:
6434 err = 0;
6435 autostart_arrays(arg);
6436 goto out;
6437 #endif
6438 default:;
6439 }
6440
6441 /*
6442 * Commands creating/starting a new array:
6443 */
6444
6445 mddev = bdev->bd_disk->private_data;
6446
6447 if (!mddev) {
6448 BUG();
6449 goto out;
6450 }
6451
6452 /* Some actions do not requires the mutex */
6453 switch (cmd) {
6454 case GET_ARRAY_INFO:
6455 if (!mddev->raid_disks && !mddev->external)
6456 err = -ENODEV;
6457 else
6458 err = get_array_info(mddev, argp);
6459 goto out;
6460
6461 case GET_DISK_INFO:
6462 if (!mddev->raid_disks && !mddev->external)
6463 err = -ENODEV;
6464 else
6465 err = get_disk_info(mddev, argp);
6466 goto out;
6467
6468 case SET_DISK_FAULTY:
6469 err = set_disk_faulty(mddev, new_decode_dev(arg));
6470 goto out;
6471
6472 case GET_BITMAP_FILE:
6473 err = get_bitmap_file(mddev, argp);
6474 goto out;
6475
6476 }
6477
6478 if (cmd == ADD_NEW_DISK)
6479 /* need to ensure md_delayed_delete() has completed */
6480 flush_workqueue(md_misc_wq);
6481
6482 if (cmd == HOT_REMOVE_DISK)
6483 /* need to ensure recovery thread has run */
6484 wait_event_interruptible_timeout(mddev->sb_wait,
6485 !test_bit(MD_RECOVERY_NEEDED,
6486 &mddev->flags),
6487 msecs_to_jiffies(5000));
6488 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6489 /* Need to flush page cache, and ensure no-one else opens
6490 * and writes
6491 */
6492 mutex_lock(&mddev->open_mutex);
6493 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6494 mutex_unlock(&mddev->open_mutex);
6495 err = -EBUSY;
6496 goto out;
6497 }
6498 set_bit(MD_STILL_CLOSED, &mddev->flags);
6499 mutex_unlock(&mddev->open_mutex);
6500 sync_blockdev(bdev);
6501 }
6502 err = mddev_lock(mddev);
6503 if (err) {
6504 printk(KERN_INFO
6505 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6506 err, cmd);
6507 goto out;
6508 }
6509
6510 if (cmd == SET_ARRAY_INFO) {
6511 mdu_array_info_t info;
6512 if (!arg)
6513 memset(&info, 0, sizeof(info));
6514 else if (copy_from_user(&info, argp, sizeof(info))) {
6515 err = -EFAULT;
6516 goto unlock;
6517 }
6518 if (mddev->pers) {
6519 err = update_array_info(mddev, &info);
6520 if (err) {
6521 printk(KERN_WARNING "md: couldn't update"
6522 " array info. %d\n", err);
6523 goto unlock;
6524 }
6525 goto unlock;
6526 }
6527 if (!list_empty(&mddev->disks)) {
6528 printk(KERN_WARNING
6529 "md: array %s already has disks!\n",
6530 mdname(mddev));
6531 err = -EBUSY;
6532 goto unlock;
6533 }
6534 if (mddev->raid_disks) {
6535 printk(KERN_WARNING
6536 "md: array %s already initialised!\n",
6537 mdname(mddev));
6538 err = -EBUSY;
6539 goto unlock;
6540 }
6541 err = set_array_info(mddev, &info);
6542 if (err) {
6543 printk(KERN_WARNING "md: couldn't set"
6544 " array info. %d\n", err);
6545 goto unlock;
6546 }
6547 goto unlock;
6548 }
6549
6550 /*
6551 * Commands querying/configuring an existing array:
6552 */
6553 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6554 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6555 if ((!mddev->raid_disks && !mddev->external)
6556 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6557 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6558 && cmd != GET_BITMAP_FILE) {
6559 err = -ENODEV;
6560 goto unlock;
6561 }
6562
6563 /*
6564 * Commands even a read-only array can execute:
6565 */
6566 switch (cmd) {
6567 case RESTART_ARRAY_RW:
6568 err = restart_array(mddev);
6569 goto unlock;
6570
6571 case STOP_ARRAY:
6572 err = do_md_stop(mddev, 0, bdev);
6573 goto unlock;
6574
6575 case STOP_ARRAY_RO:
6576 err = md_set_readonly(mddev, bdev);
6577 goto unlock;
6578
6579 case HOT_REMOVE_DISK:
6580 err = hot_remove_disk(mddev, new_decode_dev(arg));
6581 goto unlock;
6582
6583 case ADD_NEW_DISK:
6584 /* We can support ADD_NEW_DISK on read-only arrays
6585 * on if we are re-adding a preexisting device.
6586 * So require mddev->pers and MD_DISK_SYNC.
6587 */
6588 if (mddev->pers) {
6589 mdu_disk_info_t info;
6590 if (copy_from_user(&info, argp, sizeof(info)))
6591 err = -EFAULT;
6592 else if (!(info.state & (1<<MD_DISK_SYNC)))
6593 /* Need to clear read-only for this */
6594 break;
6595 else
6596 err = add_new_disk(mddev, &info);
6597 goto unlock;
6598 }
6599 break;
6600
6601 case BLKROSET:
6602 if (get_user(ro, (int __user *)(arg))) {
6603 err = -EFAULT;
6604 goto unlock;
6605 }
6606 err = -EINVAL;
6607
6608 /* if the bdev is going readonly the value of mddev->ro
6609 * does not matter, no writes are coming
6610 */
6611 if (ro)
6612 goto unlock;
6613
6614 /* are we are already prepared for writes? */
6615 if (mddev->ro != 1)
6616 goto unlock;
6617
6618 /* transitioning to readauto need only happen for
6619 * arrays that call md_write_start
6620 */
6621 if (mddev->pers) {
6622 err = restart_array(mddev);
6623 if (err == 0) {
6624 mddev->ro = 2;
6625 set_disk_ro(mddev->gendisk, 0);
6626 }
6627 }
6628 goto unlock;
6629 }
6630
6631 /*
6632 * The remaining ioctls are changing the state of the
6633 * superblock, so we do not allow them on read-only arrays.
6634 */
6635 if (mddev->ro && mddev->pers) {
6636 if (mddev->ro == 2) {
6637 mddev->ro = 0;
6638 sysfs_notify_dirent_safe(mddev->sysfs_state);
6639 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6640 /* mddev_unlock will wake thread */
6641 /* If a device failed while we were read-only, we
6642 * need to make sure the metadata is updated now.
6643 */
6644 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6645 mddev_unlock(mddev);
6646 wait_event(mddev->sb_wait,
6647 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6648 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6649 mddev_lock_nointr(mddev);
6650 }
6651 } else {
6652 err = -EROFS;
6653 goto unlock;
6654 }
6655 }
6656
6657 switch (cmd) {
6658 case ADD_NEW_DISK:
6659 {
6660 mdu_disk_info_t info;
6661 if (copy_from_user(&info, argp, sizeof(info)))
6662 err = -EFAULT;
6663 else
6664 err = add_new_disk(mddev, &info);
6665 goto unlock;
6666 }
6667
6668 case HOT_ADD_DISK:
6669 err = hot_add_disk(mddev, new_decode_dev(arg));
6670 goto unlock;
6671
6672 case RUN_ARRAY:
6673 err = do_md_run(mddev);
6674 goto unlock;
6675
6676 case SET_BITMAP_FILE:
6677 err = set_bitmap_file(mddev, (int)arg);
6678 goto unlock;
6679
6680 default:
6681 err = -EINVAL;
6682 goto unlock;
6683 }
6684
6685 unlock:
6686 if (mddev->hold_active == UNTIL_IOCTL &&
6687 err != -EINVAL)
6688 mddev->hold_active = 0;
6689 mddev_unlock(mddev);
6690 out:
6691 return err;
6692 }
6693 #ifdef CONFIG_COMPAT
6694 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6695 unsigned int cmd, unsigned long arg)
6696 {
6697 switch (cmd) {
6698 case HOT_REMOVE_DISK:
6699 case HOT_ADD_DISK:
6700 case SET_DISK_FAULTY:
6701 case SET_BITMAP_FILE:
6702 /* These take in integer arg, do not convert */
6703 break;
6704 default:
6705 arg = (unsigned long)compat_ptr(arg);
6706 break;
6707 }
6708
6709 return md_ioctl(bdev, mode, cmd, arg);
6710 }
6711 #endif /* CONFIG_COMPAT */
6712
6713 static int md_open(struct block_device *bdev, fmode_t mode)
6714 {
6715 /*
6716 * Succeed if we can lock the mddev, which confirms that
6717 * it isn't being stopped right now.
6718 */
6719 struct mddev *mddev = mddev_find(bdev->bd_dev);
6720 int err;
6721
6722 if (!mddev)
6723 return -ENODEV;
6724
6725 if (mddev->gendisk != bdev->bd_disk) {
6726 /* we are racing with mddev_put which is discarding this
6727 * bd_disk.
6728 */
6729 mddev_put(mddev);
6730 /* Wait until bdev->bd_disk is definitely gone */
6731 flush_workqueue(md_misc_wq);
6732 /* Then retry the open from the top */
6733 return -ERESTARTSYS;
6734 }
6735 BUG_ON(mddev != bdev->bd_disk->private_data);
6736
6737 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6738 goto out;
6739
6740 err = 0;
6741 atomic_inc(&mddev->openers);
6742 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6743 mutex_unlock(&mddev->open_mutex);
6744
6745 check_disk_change(bdev);
6746 out:
6747 return err;
6748 }
6749
6750 static void md_release(struct gendisk *disk, fmode_t mode)
6751 {
6752 struct mddev *mddev = disk->private_data;
6753
6754 BUG_ON(!mddev);
6755 atomic_dec(&mddev->openers);
6756 mddev_put(mddev);
6757 }
6758
6759 static int md_media_changed(struct gendisk *disk)
6760 {
6761 struct mddev *mddev = disk->private_data;
6762
6763 return mddev->changed;
6764 }
6765
6766 static int md_revalidate(struct gendisk *disk)
6767 {
6768 struct mddev *mddev = disk->private_data;
6769
6770 mddev->changed = 0;
6771 return 0;
6772 }
6773 static const struct block_device_operations md_fops =
6774 {
6775 .owner = THIS_MODULE,
6776 .open = md_open,
6777 .release = md_release,
6778 .ioctl = md_ioctl,
6779 #ifdef CONFIG_COMPAT
6780 .compat_ioctl = md_compat_ioctl,
6781 #endif
6782 .getgeo = md_getgeo,
6783 .media_changed = md_media_changed,
6784 .revalidate_disk= md_revalidate,
6785 };
6786
6787 static int md_thread(void *arg)
6788 {
6789 struct md_thread *thread = arg;
6790
6791 /*
6792 * md_thread is a 'system-thread', it's priority should be very
6793 * high. We avoid resource deadlocks individually in each
6794 * raid personality. (RAID5 does preallocation) We also use RR and
6795 * the very same RT priority as kswapd, thus we will never get
6796 * into a priority inversion deadlock.
6797 *
6798 * we definitely have to have equal or higher priority than
6799 * bdflush, otherwise bdflush will deadlock if there are too
6800 * many dirty RAID5 blocks.
6801 */
6802
6803 allow_signal(SIGKILL);
6804 while (!kthread_should_stop()) {
6805
6806 /* We need to wait INTERRUPTIBLE so that
6807 * we don't add to the load-average.
6808 * That means we need to be sure no signals are
6809 * pending
6810 */
6811 if (signal_pending(current))
6812 flush_signals(current);
6813
6814 wait_event_interruptible_timeout
6815 (thread->wqueue,
6816 test_bit(THREAD_WAKEUP, &thread->flags)
6817 || kthread_should_stop(),
6818 thread->timeout);
6819
6820 clear_bit(THREAD_WAKEUP, &thread->flags);
6821 if (!kthread_should_stop())
6822 thread->run(thread);
6823 }
6824
6825 return 0;
6826 }
6827
6828 void md_wakeup_thread(struct md_thread *thread)
6829 {
6830 if (thread) {
6831 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6832 set_bit(THREAD_WAKEUP, &thread->flags);
6833 wake_up(&thread->wqueue);
6834 }
6835 }
6836 EXPORT_SYMBOL(md_wakeup_thread);
6837
6838 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6839 struct mddev *mddev, const char *name)
6840 {
6841 struct md_thread *thread;
6842
6843 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6844 if (!thread)
6845 return NULL;
6846
6847 init_waitqueue_head(&thread->wqueue);
6848
6849 thread->run = run;
6850 thread->mddev = mddev;
6851 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6852 thread->tsk = kthread_run(md_thread, thread,
6853 "%s_%s",
6854 mdname(thread->mddev),
6855 name);
6856 if (IS_ERR(thread->tsk)) {
6857 kfree(thread);
6858 return NULL;
6859 }
6860 return thread;
6861 }
6862 EXPORT_SYMBOL(md_register_thread);
6863
6864 void md_unregister_thread(struct md_thread **threadp)
6865 {
6866 struct md_thread *thread = *threadp;
6867 if (!thread)
6868 return;
6869 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6870 /* Locking ensures that mddev_unlock does not wake_up a
6871 * non-existent thread
6872 */
6873 spin_lock(&pers_lock);
6874 *threadp = NULL;
6875 spin_unlock(&pers_lock);
6876
6877 kthread_stop(thread->tsk);
6878 kfree(thread);
6879 }
6880 EXPORT_SYMBOL(md_unregister_thread);
6881
6882 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6883 {
6884 if (!rdev || test_bit(Faulty, &rdev->flags))
6885 return;
6886
6887 if (!mddev->pers || !mddev->pers->error_handler)
6888 return;
6889 mddev->pers->error_handler(mddev,rdev);
6890 if (mddev->degraded)
6891 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6892 sysfs_notify_dirent_safe(rdev->sysfs_state);
6893 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6894 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6895 md_wakeup_thread(mddev->thread);
6896 if (mddev->event_work.func)
6897 queue_work(md_misc_wq, &mddev->event_work);
6898 md_new_event_inintr(mddev);
6899 }
6900 EXPORT_SYMBOL(md_error);
6901
6902 /* seq_file implementation /proc/mdstat */
6903
6904 static void status_unused(struct seq_file *seq)
6905 {
6906 int i = 0;
6907 struct md_rdev *rdev;
6908
6909 seq_printf(seq, "unused devices: ");
6910
6911 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6912 char b[BDEVNAME_SIZE];
6913 i++;
6914 seq_printf(seq, "%s ",
6915 bdevname(rdev->bdev,b));
6916 }
6917 if (!i)
6918 seq_printf(seq, "<none>");
6919
6920 seq_printf(seq, "\n");
6921 }
6922
6923 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6924 {
6925 sector_t max_sectors, resync, res;
6926 unsigned long dt, db;
6927 sector_t rt;
6928 int scale;
6929 unsigned int per_milli;
6930
6931 if (mddev->curr_resync <= 3)
6932 resync = 0;
6933 else
6934 resync = mddev->curr_resync
6935 - atomic_read(&mddev->recovery_active);
6936
6937 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6938 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6939 max_sectors = mddev->resync_max_sectors;
6940 else
6941 max_sectors = mddev->dev_sectors;
6942
6943 WARN_ON(max_sectors == 0);
6944 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6945 * in a sector_t, and (max_sectors>>scale) will fit in a
6946 * u32, as those are the requirements for sector_div.
6947 * Thus 'scale' must be at least 10
6948 */
6949 scale = 10;
6950 if (sizeof(sector_t) > sizeof(unsigned long)) {
6951 while ( max_sectors/2 > (1ULL<<(scale+32)))
6952 scale++;
6953 }
6954 res = (resync>>scale)*1000;
6955 sector_div(res, (u32)((max_sectors>>scale)+1));
6956
6957 per_milli = res;
6958 {
6959 int i, x = per_milli/50, y = 20-x;
6960 seq_printf(seq, "[");
6961 for (i = 0; i < x; i++)
6962 seq_printf(seq, "=");
6963 seq_printf(seq, ">");
6964 for (i = 0; i < y; i++)
6965 seq_printf(seq, ".");
6966 seq_printf(seq, "] ");
6967 }
6968 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6969 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6970 "reshape" :
6971 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6972 "check" :
6973 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6974 "resync" : "recovery"))),
6975 per_milli/10, per_milli % 10,
6976 (unsigned long long) resync/2,
6977 (unsigned long long) max_sectors/2);
6978
6979 /*
6980 * dt: time from mark until now
6981 * db: blocks written from mark until now
6982 * rt: remaining time
6983 *
6984 * rt is a sector_t, so could be 32bit or 64bit.
6985 * So we divide before multiply in case it is 32bit and close
6986 * to the limit.
6987 * We scale the divisor (db) by 32 to avoid losing precision
6988 * near the end of resync when the number of remaining sectors
6989 * is close to 'db'.
6990 * We then divide rt by 32 after multiplying by db to compensate.
6991 * The '+1' avoids division by zero if db is very small.
6992 */
6993 dt = ((jiffies - mddev->resync_mark) / HZ);
6994 if (!dt) dt++;
6995 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6996 - mddev->resync_mark_cnt;
6997
6998 rt = max_sectors - resync; /* number of remaining sectors */
6999 sector_div(rt, db/32+1);
7000 rt *= dt;
7001 rt >>= 5;
7002
7003 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7004 ((unsigned long)rt % 60)/6);
7005
7006 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7007 }
7008
7009 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7010 {
7011 struct list_head *tmp;
7012 loff_t l = *pos;
7013 struct mddev *mddev;
7014
7015 if (l >= 0x10000)
7016 return NULL;
7017 if (!l--)
7018 /* header */
7019 return (void*)1;
7020
7021 spin_lock(&all_mddevs_lock);
7022 list_for_each(tmp,&all_mddevs)
7023 if (!l--) {
7024 mddev = list_entry(tmp, struct mddev, all_mddevs);
7025 mddev_get(mddev);
7026 spin_unlock(&all_mddevs_lock);
7027 return mddev;
7028 }
7029 spin_unlock(&all_mddevs_lock);
7030 if (!l--)
7031 return (void*)2;/* tail */
7032 return NULL;
7033 }
7034
7035 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7036 {
7037 struct list_head *tmp;
7038 struct mddev *next_mddev, *mddev = v;
7039
7040 ++*pos;
7041 if (v == (void*)2)
7042 return NULL;
7043
7044 spin_lock(&all_mddevs_lock);
7045 if (v == (void*)1)
7046 tmp = all_mddevs.next;
7047 else
7048 tmp = mddev->all_mddevs.next;
7049 if (tmp != &all_mddevs)
7050 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7051 else {
7052 next_mddev = (void*)2;
7053 *pos = 0x10000;
7054 }
7055 spin_unlock(&all_mddevs_lock);
7056
7057 if (v != (void*)1)
7058 mddev_put(mddev);
7059 return next_mddev;
7060
7061 }
7062
7063 static void md_seq_stop(struct seq_file *seq, void *v)
7064 {
7065 struct mddev *mddev = v;
7066
7067 if (mddev && v != (void*)1 && v != (void*)2)
7068 mddev_put(mddev);
7069 }
7070
7071 static int md_seq_show(struct seq_file *seq, void *v)
7072 {
7073 struct mddev *mddev = v;
7074 sector_t sectors;
7075 struct md_rdev *rdev;
7076
7077 if (v == (void*)1) {
7078 struct md_personality *pers;
7079 seq_printf(seq, "Personalities : ");
7080 spin_lock(&pers_lock);
7081 list_for_each_entry(pers, &pers_list, list)
7082 seq_printf(seq, "[%s] ", pers->name);
7083
7084 spin_unlock(&pers_lock);
7085 seq_printf(seq, "\n");
7086 seq->poll_event = atomic_read(&md_event_count);
7087 return 0;
7088 }
7089 if (v == (void*)2) {
7090 status_unused(seq);
7091 return 0;
7092 }
7093
7094 spin_lock(&mddev->lock);
7095 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7096 seq_printf(seq, "%s : %sactive", mdname(mddev),
7097 mddev->pers ? "" : "in");
7098 if (mddev->pers) {
7099 if (mddev->ro==1)
7100 seq_printf(seq, " (read-only)");
7101 if (mddev->ro==2)
7102 seq_printf(seq, " (auto-read-only)");
7103 seq_printf(seq, " %s", mddev->pers->name);
7104 }
7105
7106 sectors = 0;
7107 rcu_read_lock();
7108 rdev_for_each_rcu(rdev, mddev) {
7109 char b[BDEVNAME_SIZE];
7110 seq_printf(seq, " %s[%d]",
7111 bdevname(rdev->bdev,b), rdev->desc_nr);
7112 if (test_bit(WriteMostly, &rdev->flags))
7113 seq_printf(seq, "(W)");
7114 if (test_bit(Faulty, &rdev->flags)) {
7115 seq_printf(seq, "(F)");
7116 continue;
7117 }
7118 if (rdev->raid_disk < 0)
7119 seq_printf(seq, "(S)"); /* spare */
7120 if (test_bit(Replacement, &rdev->flags))
7121 seq_printf(seq, "(R)");
7122 sectors += rdev->sectors;
7123 }
7124 rcu_read_unlock();
7125
7126 if (!list_empty(&mddev->disks)) {
7127 if (mddev->pers)
7128 seq_printf(seq, "\n %llu blocks",
7129 (unsigned long long)
7130 mddev->array_sectors / 2);
7131 else
7132 seq_printf(seq, "\n %llu blocks",
7133 (unsigned long long)sectors / 2);
7134 }
7135 if (mddev->persistent) {
7136 if (mddev->major_version != 0 ||
7137 mddev->minor_version != 90) {
7138 seq_printf(seq," super %d.%d",
7139 mddev->major_version,
7140 mddev->minor_version);
7141 }
7142 } else if (mddev->external)
7143 seq_printf(seq, " super external:%s",
7144 mddev->metadata_type);
7145 else
7146 seq_printf(seq, " super non-persistent");
7147
7148 if (mddev->pers) {
7149 mddev->pers->status(seq, mddev);
7150 seq_printf(seq, "\n ");
7151 if (mddev->pers->sync_request) {
7152 if (mddev->curr_resync > 2) {
7153 status_resync(seq, mddev);
7154 seq_printf(seq, "\n ");
7155 } else if (mddev->curr_resync >= 1)
7156 seq_printf(seq, "\tresync=DELAYED\n ");
7157 else if (mddev->recovery_cp < MaxSector)
7158 seq_printf(seq, "\tresync=PENDING\n ");
7159 }
7160 } else
7161 seq_printf(seq, "\n ");
7162
7163 bitmap_status(seq, mddev->bitmap);
7164
7165 seq_printf(seq, "\n");
7166 }
7167 spin_unlock(&mddev->lock);
7168
7169 return 0;
7170 }
7171
7172 static const struct seq_operations md_seq_ops = {
7173 .start = md_seq_start,
7174 .next = md_seq_next,
7175 .stop = md_seq_stop,
7176 .show = md_seq_show,
7177 };
7178
7179 static int md_seq_open(struct inode *inode, struct file *file)
7180 {
7181 struct seq_file *seq;
7182 int error;
7183
7184 error = seq_open(file, &md_seq_ops);
7185 if (error)
7186 return error;
7187
7188 seq = file->private_data;
7189 seq->poll_event = atomic_read(&md_event_count);
7190 return error;
7191 }
7192
7193 static int md_unloading;
7194 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7195 {
7196 struct seq_file *seq = filp->private_data;
7197 int mask;
7198
7199 if (md_unloading)
7200 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7201 poll_wait(filp, &md_event_waiters, wait);
7202
7203 /* always allow read */
7204 mask = POLLIN | POLLRDNORM;
7205
7206 if (seq->poll_event != atomic_read(&md_event_count))
7207 mask |= POLLERR | POLLPRI;
7208 return mask;
7209 }
7210
7211 static const struct file_operations md_seq_fops = {
7212 .owner = THIS_MODULE,
7213 .open = md_seq_open,
7214 .read = seq_read,
7215 .llseek = seq_lseek,
7216 .release = seq_release_private,
7217 .poll = mdstat_poll,
7218 };
7219
7220 int register_md_personality(struct md_personality *p)
7221 {
7222 printk(KERN_INFO "md: %s personality registered for level %d\n",
7223 p->name, p->level);
7224 spin_lock(&pers_lock);
7225 list_add_tail(&p->list, &pers_list);
7226 spin_unlock(&pers_lock);
7227 return 0;
7228 }
7229 EXPORT_SYMBOL(register_md_personality);
7230
7231 int unregister_md_personality(struct md_personality *p)
7232 {
7233 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7234 spin_lock(&pers_lock);
7235 list_del_init(&p->list);
7236 spin_unlock(&pers_lock);
7237 return 0;
7238 }
7239 EXPORT_SYMBOL(unregister_md_personality);
7240
7241 static int is_mddev_idle(struct mddev *mddev, int init)
7242 {
7243 struct md_rdev *rdev;
7244 int idle;
7245 int curr_events;
7246
7247 idle = 1;
7248 rcu_read_lock();
7249 rdev_for_each_rcu(rdev, mddev) {
7250 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7251 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7252 (int)part_stat_read(&disk->part0, sectors[1]) -
7253 atomic_read(&disk->sync_io);
7254 /* sync IO will cause sync_io to increase before the disk_stats
7255 * as sync_io is counted when a request starts, and
7256 * disk_stats is counted when it completes.
7257 * So resync activity will cause curr_events to be smaller than
7258 * when there was no such activity.
7259 * non-sync IO will cause disk_stat to increase without
7260 * increasing sync_io so curr_events will (eventually)
7261 * be larger than it was before. Once it becomes
7262 * substantially larger, the test below will cause
7263 * the array to appear non-idle, and resync will slow
7264 * down.
7265 * If there is a lot of outstanding resync activity when
7266 * we set last_event to curr_events, then all that activity
7267 * completing might cause the array to appear non-idle
7268 * and resync will be slowed down even though there might
7269 * not have been non-resync activity. This will only
7270 * happen once though. 'last_events' will soon reflect
7271 * the state where there is little or no outstanding
7272 * resync requests, and further resync activity will
7273 * always make curr_events less than last_events.
7274 *
7275 */
7276 if (init || curr_events - rdev->last_events > 64) {
7277 rdev->last_events = curr_events;
7278 idle = 0;
7279 }
7280 }
7281 rcu_read_unlock();
7282 return idle;
7283 }
7284
7285 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7286 {
7287 /* another "blocks" (512byte) blocks have been synced */
7288 atomic_sub(blocks, &mddev->recovery_active);
7289 wake_up(&mddev->recovery_wait);
7290 if (!ok) {
7291 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7292 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7293 md_wakeup_thread(mddev->thread);
7294 // stop recovery, signal do_sync ....
7295 }
7296 }
7297 EXPORT_SYMBOL(md_done_sync);
7298
7299 /* md_write_start(mddev, bi)
7300 * If we need to update some array metadata (e.g. 'active' flag
7301 * in superblock) before writing, schedule a superblock update
7302 * and wait for it to complete.
7303 */
7304 void md_write_start(struct mddev *mddev, struct bio *bi)
7305 {
7306 int did_change = 0;
7307 if (bio_data_dir(bi) != WRITE)
7308 return;
7309
7310 BUG_ON(mddev->ro == 1);
7311 if (mddev->ro == 2) {
7312 /* need to switch to read/write */
7313 mddev->ro = 0;
7314 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7315 md_wakeup_thread(mddev->thread);
7316 md_wakeup_thread(mddev->sync_thread);
7317 did_change = 1;
7318 }
7319 atomic_inc(&mddev->writes_pending);
7320 if (mddev->safemode == 1)
7321 mddev->safemode = 0;
7322 if (mddev->in_sync) {
7323 spin_lock(&mddev->lock);
7324 if (mddev->in_sync) {
7325 mddev->in_sync = 0;
7326 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7327 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7328 md_wakeup_thread(mddev->thread);
7329 did_change = 1;
7330 }
7331 spin_unlock(&mddev->lock);
7332 }
7333 if (did_change)
7334 sysfs_notify_dirent_safe(mddev->sysfs_state);
7335 wait_event(mddev->sb_wait,
7336 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7337 }
7338 EXPORT_SYMBOL(md_write_start);
7339
7340 void md_write_end(struct mddev *mddev)
7341 {
7342 if (atomic_dec_and_test(&mddev->writes_pending)) {
7343 if (mddev->safemode == 2)
7344 md_wakeup_thread(mddev->thread);
7345 else if (mddev->safemode_delay)
7346 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7347 }
7348 }
7349 EXPORT_SYMBOL(md_write_end);
7350
7351 /* md_allow_write(mddev)
7352 * Calling this ensures that the array is marked 'active' so that writes
7353 * may proceed without blocking. It is important to call this before
7354 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7355 * Must be called with mddev_lock held.
7356 *
7357 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7358 * is dropped, so return -EAGAIN after notifying userspace.
7359 */
7360 int md_allow_write(struct mddev *mddev)
7361 {
7362 if (!mddev->pers)
7363 return 0;
7364 if (mddev->ro)
7365 return 0;
7366 if (!mddev->pers->sync_request)
7367 return 0;
7368
7369 spin_lock(&mddev->lock);
7370 if (mddev->in_sync) {
7371 mddev->in_sync = 0;
7372 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7373 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7374 if (mddev->safemode_delay &&
7375 mddev->safemode == 0)
7376 mddev->safemode = 1;
7377 spin_unlock(&mddev->lock);
7378 md_update_sb(mddev, 0);
7379 sysfs_notify_dirent_safe(mddev->sysfs_state);
7380 } else
7381 spin_unlock(&mddev->lock);
7382
7383 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7384 return -EAGAIN;
7385 else
7386 return 0;
7387 }
7388 EXPORT_SYMBOL_GPL(md_allow_write);
7389
7390 #define SYNC_MARKS 10
7391 #define SYNC_MARK_STEP (3*HZ)
7392 #define UPDATE_FREQUENCY (5*60*HZ)
7393 void md_do_sync(struct md_thread *thread)
7394 {
7395 struct mddev *mddev = thread->mddev;
7396 struct mddev *mddev2;
7397 unsigned int currspeed = 0,
7398 window;
7399 sector_t max_sectors,j, io_sectors, recovery_done;
7400 unsigned long mark[SYNC_MARKS];
7401 unsigned long update_time;
7402 sector_t mark_cnt[SYNC_MARKS];
7403 int last_mark,m;
7404 struct list_head *tmp;
7405 sector_t last_check;
7406 int skipped = 0;
7407 struct md_rdev *rdev;
7408 char *desc, *action = NULL;
7409 struct blk_plug plug;
7410
7411 /* just incase thread restarts... */
7412 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7413 return;
7414 if (mddev->ro) {/* never try to sync a read-only array */
7415 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7416 return;
7417 }
7418
7419 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7420 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7421 desc = "data-check";
7422 action = "check";
7423 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7424 desc = "requested-resync";
7425 action = "repair";
7426 } else
7427 desc = "resync";
7428 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7429 desc = "reshape";
7430 else
7431 desc = "recovery";
7432
7433 mddev->last_sync_action = action ?: desc;
7434
7435 /* we overload curr_resync somewhat here.
7436 * 0 == not engaged in resync at all
7437 * 2 == checking that there is no conflict with another sync
7438 * 1 == like 2, but have yielded to allow conflicting resync to
7439 * commense
7440 * other == active in resync - this many blocks
7441 *
7442 * Before starting a resync we must have set curr_resync to
7443 * 2, and then checked that every "conflicting" array has curr_resync
7444 * less than ours. When we find one that is the same or higher
7445 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7446 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7447 * This will mean we have to start checking from the beginning again.
7448 *
7449 */
7450
7451 do {
7452 mddev->curr_resync = 2;
7453
7454 try_again:
7455 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7456 goto skip;
7457 for_each_mddev(mddev2, tmp) {
7458 if (mddev2 == mddev)
7459 continue;
7460 if (!mddev->parallel_resync
7461 && mddev2->curr_resync
7462 && match_mddev_units(mddev, mddev2)) {
7463 DEFINE_WAIT(wq);
7464 if (mddev < mddev2 && mddev->curr_resync == 2) {
7465 /* arbitrarily yield */
7466 mddev->curr_resync = 1;
7467 wake_up(&resync_wait);
7468 }
7469 if (mddev > mddev2 && mddev->curr_resync == 1)
7470 /* no need to wait here, we can wait the next
7471 * time 'round when curr_resync == 2
7472 */
7473 continue;
7474 /* We need to wait 'interruptible' so as not to
7475 * contribute to the load average, and not to
7476 * be caught by 'softlockup'
7477 */
7478 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7479 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7480 mddev2->curr_resync >= mddev->curr_resync) {
7481 printk(KERN_INFO "md: delaying %s of %s"
7482 " until %s has finished (they"
7483 " share one or more physical units)\n",
7484 desc, mdname(mddev), mdname(mddev2));
7485 mddev_put(mddev2);
7486 if (signal_pending(current))
7487 flush_signals(current);
7488 schedule();
7489 finish_wait(&resync_wait, &wq);
7490 goto try_again;
7491 }
7492 finish_wait(&resync_wait, &wq);
7493 }
7494 }
7495 } while (mddev->curr_resync < 2);
7496
7497 j = 0;
7498 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7499 /* resync follows the size requested by the personality,
7500 * which defaults to physical size, but can be virtual size
7501 */
7502 max_sectors = mddev->resync_max_sectors;
7503 atomic64_set(&mddev->resync_mismatches, 0);
7504 /* we don't use the checkpoint if there's a bitmap */
7505 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7506 j = mddev->resync_min;
7507 else if (!mddev->bitmap)
7508 j = mddev->recovery_cp;
7509
7510 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7511 max_sectors = mddev->resync_max_sectors;
7512 else {
7513 /* recovery follows the physical size of devices */
7514 max_sectors = mddev->dev_sectors;
7515 j = MaxSector;
7516 rcu_read_lock();
7517 rdev_for_each_rcu(rdev, mddev)
7518 if (rdev->raid_disk >= 0 &&
7519 !test_bit(Faulty, &rdev->flags) &&
7520 !test_bit(In_sync, &rdev->flags) &&
7521 rdev->recovery_offset < j)
7522 j = rdev->recovery_offset;
7523 rcu_read_unlock();
7524
7525 /* If there is a bitmap, we need to make sure all
7526 * writes that started before we added a spare
7527 * complete before we start doing a recovery.
7528 * Otherwise the write might complete and (via
7529 * bitmap_endwrite) set a bit in the bitmap after the
7530 * recovery has checked that bit and skipped that
7531 * region.
7532 */
7533 if (mddev->bitmap) {
7534 mddev->pers->quiesce(mddev, 1);
7535 mddev->pers->quiesce(mddev, 0);
7536 }
7537 }
7538
7539 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7540 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7541 " %d KB/sec/disk.\n", speed_min(mddev));
7542 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7543 "(but not more than %d KB/sec) for %s.\n",
7544 speed_max(mddev), desc);
7545
7546 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7547
7548 io_sectors = 0;
7549 for (m = 0; m < SYNC_MARKS; m++) {
7550 mark[m] = jiffies;
7551 mark_cnt[m] = io_sectors;
7552 }
7553 last_mark = 0;
7554 mddev->resync_mark = mark[last_mark];
7555 mddev->resync_mark_cnt = mark_cnt[last_mark];
7556
7557 /*
7558 * Tune reconstruction:
7559 */
7560 window = 32*(PAGE_SIZE/512);
7561 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7562 window/2, (unsigned long long)max_sectors/2);
7563
7564 atomic_set(&mddev->recovery_active, 0);
7565 last_check = 0;
7566
7567 if (j>2) {
7568 printk(KERN_INFO
7569 "md: resuming %s of %s from checkpoint.\n",
7570 desc, mdname(mddev));
7571 mddev->curr_resync = j;
7572 } else
7573 mddev->curr_resync = 3; /* no longer delayed */
7574 mddev->curr_resync_completed = j;
7575 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7576 md_new_event(mddev);
7577 update_time = jiffies;
7578
7579 blk_start_plug(&plug);
7580 while (j < max_sectors) {
7581 sector_t sectors;
7582
7583 skipped = 0;
7584
7585 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7586 ((mddev->curr_resync > mddev->curr_resync_completed &&
7587 (mddev->curr_resync - mddev->curr_resync_completed)
7588 > (max_sectors >> 4)) ||
7589 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7590 (j - mddev->curr_resync_completed)*2
7591 >= mddev->resync_max - mddev->curr_resync_completed
7592 )) {
7593 /* time to update curr_resync_completed */
7594 wait_event(mddev->recovery_wait,
7595 atomic_read(&mddev->recovery_active) == 0);
7596 mddev->curr_resync_completed = j;
7597 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7598 j > mddev->recovery_cp)
7599 mddev->recovery_cp = j;
7600 update_time = jiffies;
7601 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7602 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7603 }
7604
7605 while (j >= mddev->resync_max &&
7606 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7607 /* As this condition is controlled by user-space,
7608 * we can block indefinitely, so use '_interruptible'
7609 * to avoid triggering warnings.
7610 */
7611 flush_signals(current); /* just in case */
7612 wait_event_interruptible(mddev->recovery_wait,
7613 mddev->resync_max > j
7614 || test_bit(MD_RECOVERY_INTR,
7615 &mddev->recovery));
7616 }
7617
7618 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7619 break;
7620
7621 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7622 currspeed < speed_min(mddev));
7623 if (sectors == 0) {
7624 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7625 break;
7626 }
7627
7628 if (!skipped) { /* actual IO requested */
7629 io_sectors += sectors;
7630 atomic_add(sectors, &mddev->recovery_active);
7631 }
7632
7633 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7634 break;
7635
7636 j += sectors;
7637 if (j > 2)
7638 mddev->curr_resync = j;
7639 mddev->curr_mark_cnt = io_sectors;
7640 if (last_check == 0)
7641 /* this is the earliest that rebuild will be
7642 * visible in /proc/mdstat
7643 */
7644 md_new_event(mddev);
7645
7646 if (last_check + window > io_sectors || j == max_sectors)
7647 continue;
7648
7649 last_check = io_sectors;
7650 repeat:
7651 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7652 /* step marks */
7653 int next = (last_mark+1) % SYNC_MARKS;
7654
7655 mddev->resync_mark = mark[next];
7656 mddev->resync_mark_cnt = mark_cnt[next];
7657 mark[next] = jiffies;
7658 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7659 last_mark = next;
7660 }
7661
7662 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7663 break;
7664
7665 /*
7666 * this loop exits only if either when we are slower than
7667 * the 'hard' speed limit, or the system was IO-idle for
7668 * a jiffy.
7669 * the system might be non-idle CPU-wise, but we only care
7670 * about not overloading the IO subsystem. (things like an
7671 * e2fsck being done on the RAID array should execute fast)
7672 */
7673 cond_resched();
7674
7675 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7676 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7677 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7678
7679 if (currspeed > speed_min(mddev)) {
7680 if ((currspeed > speed_max(mddev)) ||
7681 !is_mddev_idle(mddev, 0)) {
7682 msleep(500);
7683 goto repeat;
7684 }
7685 }
7686 }
7687 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7688 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7689 ? "interrupted" : "done");
7690 /*
7691 * this also signals 'finished resyncing' to md_stop
7692 */
7693 blk_finish_plug(&plug);
7694 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7695
7696 /* tell personality that we are finished */
7697 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7698
7699 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7700 mddev->curr_resync > 2) {
7701 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7702 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7703 if (mddev->curr_resync >= mddev->recovery_cp) {
7704 printk(KERN_INFO
7705 "md: checkpointing %s of %s.\n",
7706 desc, mdname(mddev));
7707 if (test_bit(MD_RECOVERY_ERROR,
7708 &mddev->recovery))
7709 mddev->recovery_cp =
7710 mddev->curr_resync_completed;
7711 else
7712 mddev->recovery_cp =
7713 mddev->curr_resync;
7714 }
7715 } else
7716 mddev->recovery_cp = MaxSector;
7717 } else {
7718 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7719 mddev->curr_resync = MaxSector;
7720 rcu_read_lock();
7721 rdev_for_each_rcu(rdev, mddev)
7722 if (rdev->raid_disk >= 0 &&
7723 mddev->delta_disks >= 0 &&
7724 !test_bit(Faulty, &rdev->flags) &&
7725 !test_bit(In_sync, &rdev->flags) &&
7726 rdev->recovery_offset < mddev->curr_resync)
7727 rdev->recovery_offset = mddev->curr_resync;
7728 rcu_read_unlock();
7729 }
7730 }
7731 skip:
7732 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7733
7734 spin_lock(&mddev->lock);
7735 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7736 /* We completed so min/max setting can be forgotten if used. */
7737 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7738 mddev->resync_min = 0;
7739 mddev->resync_max = MaxSector;
7740 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7741 mddev->resync_min = mddev->curr_resync_completed;
7742 mddev->curr_resync = 0;
7743 spin_unlock(&mddev->lock);
7744
7745 wake_up(&resync_wait);
7746 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7747 md_wakeup_thread(mddev->thread);
7748 return;
7749 }
7750 EXPORT_SYMBOL_GPL(md_do_sync);
7751
7752 static int remove_and_add_spares(struct mddev *mddev,
7753 struct md_rdev *this)
7754 {
7755 struct md_rdev *rdev;
7756 int spares = 0;
7757 int removed = 0;
7758
7759 rdev_for_each(rdev, mddev)
7760 if ((this == NULL || rdev == this) &&
7761 rdev->raid_disk >= 0 &&
7762 !test_bit(Blocked, &rdev->flags) &&
7763 (test_bit(Faulty, &rdev->flags) ||
7764 ! test_bit(In_sync, &rdev->flags)) &&
7765 atomic_read(&rdev->nr_pending)==0) {
7766 if (mddev->pers->hot_remove_disk(
7767 mddev, rdev) == 0) {
7768 sysfs_unlink_rdev(mddev, rdev);
7769 rdev->raid_disk = -1;
7770 removed++;
7771 }
7772 }
7773 if (removed && mddev->kobj.sd)
7774 sysfs_notify(&mddev->kobj, NULL, "degraded");
7775
7776 if (this)
7777 goto no_add;
7778
7779 rdev_for_each(rdev, mddev) {
7780 if (rdev->raid_disk >= 0 &&
7781 !test_bit(In_sync, &rdev->flags) &&
7782 !test_bit(Faulty, &rdev->flags))
7783 spares++;
7784 if (rdev->raid_disk >= 0)
7785 continue;
7786 if (test_bit(Faulty, &rdev->flags))
7787 continue;
7788 if (mddev->ro &&
7789 ! (rdev->saved_raid_disk >= 0 &&
7790 !test_bit(Bitmap_sync, &rdev->flags)))
7791 continue;
7792
7793 if (rdev->saved_raid_disk < 0)
7794 rdev->recovery_offset = 0;
7795 if (mddev->pers->
7796 hot_add_disk(mddev, rdev) == 0) {
7797 if (sysfs_link_rdev(mddev, rdev))
7798 /* failure here is OK */;
7799 spares++;
7800 md_new_event(mddev);
7801 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7802 }
7803 }
7804 no_add:
7805 if (removed)
7806 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7807 return spares;
7808 }
7809
7810 static void md_start_sync(struct work_struct *ws)
7811 {
7812 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7813
7814 mddev->sync_thread = md_register_thread(md_do_sync,
7815 mddev,
7816 "resync");
7817 if (!mddev->sync_thread) {
7818 printk(KERN_ERR "%s: could not start resync"
7819 " thread...\n",
7820 mdname(mddev));
7821 /* leave the spares where they are, it shouldn't hurt */
7822 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7823 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7824 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7825 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7826 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7827 wake_up(&resync_wait);
7828 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7829 &mddev->recovery))
7830 if (mddev->sysfs_action)
7831 sysfs_notify_dirent_safe(mddev->sysfs_action);
7832 } else
7833 md_wakeup_thread(mddev->sync_thread);
7834 sysfs_notify_dirent_safe(mddev->sysfs_action);
7835 md_new_event(mddev);
7836 }
7837
7838 /*
7839 * This routine is regularly called by all per-raid-array threads to
7840 * deal with generic issues like resync and super-block update.
7841 * Raid personalities that don't have a thread (linear/raid0) do not
7842 * need this as they never do any recovery or update the superblock.
7843 *
7844 * It does not do any resync itself, but rather "forks" off other threads
7845 * to do that as needed.
7846 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7847 * "->recovery" and create a thread at ->sync_thread.
7848 * When the thread finishes it sets MD_RECOVERY_DONE
7849 * and wakeups up this thread which will reap the thread and finish up.
7850 * This thread also removes any faulty devices (with nr_pending == 0).
7851 *
7852 * The overall approach is:
7853 * 1/ if the superblock needs updating, update it.
7854 * 2/ If a recovery thread is running, don't do anything else.
7855 * 3/ If recovery has finished, clean up, possibly marking spares active.
7856 * 4/ If there are any faulty devices, remove them.
7857 * 5/ If array is degraded, try to add spares devices
7858 * 6/ If array has spares or is not in-sync, start a resync thread.
7859 */
7860 void md_check_recovery(struct mddev *mddev)
7861 {
7862 if (mddev->suspended)
7863 return;
7864
7865 if (mddev->bitmap)
7866 bitmap_daemon_work(mddev);
7867
7868 if (signal_pending(current)) {
7869 if (mddev->pers->sync_request && !mddev->external) {
7870 printk(KERN_INFO "md: %s in immediate safe mode\n",
7871 mdname(mddev));
7872 mddev->safemode = 2;
7873 }
7874 flush_signals(current);
7875 }
7876
7877 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7878 return;
7879 if ( ! (
7880 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7881 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7882 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7883 (mddev->external == 0 && mddev->safemode == 1) ||
7884 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7885 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7886 ))
7887 return;
7888
7889 if (mddev_trylock(mddev)) {
7890 int spares = 0;
7891
7892 if (mddev->ro) {
7893 /* On a read-only array we can:
7894 * - remove failed devices
7895 * - add already-in_sync devices if the array itself
7896 * is in-sync.
7897 * As we only add devices that are already in-sync,
7898 * we can activate the spares immediately.
7899 */
7900 remove_and_add_spares(mddev, NULL);
7901 /* There is no thread, but we need to call
7902 * ->spare_active and clear saved_raid_disk
7903 */
7904 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7905 md_reap_sync_thread(mddev);
7906 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7907 goto unlock;
7908 }
7909
7910 if (!mddev->external) {
7911 int did_change = 0;
7912 spin_lock(&mddev->lock);
7913 if (mddev->safemode &&
7914 !atomic_read(&mddev->writes_pending) &&
7915 !mddev->in_sync &&
7916 mddev->recovery_cp == MaxSector) {
7917 mddev->in_sync = 1;
7918 did_change = 1;
7919 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7920 }
7921 if (mddev->safemode == 1)
7922 mddev->safemode = 0;
7923 spin_unlock(&mddev->lock);
7924 if (did_change)
7925 sysfs_notify_dirent_safe(mddev->sysfs_state);
7926 }
7927
7928 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7929 md_update_sb(mddev, 0);
7930
7931 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7932 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7933 /* resync/recovery still happening */
7934 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7935 goto unlock;
7936 }
7937 if (mddev->sync_thread) {
7938 md_reap_sync_thread(mddev);
7939 goto unlock;
7940 }
7941 /* Set RUNNING before clearing NEEDED to avoid
7942 * any transients in the value of "sync_action".
7943 */
7944 mddev->curr_resync_completed = 0;
7945 spin_lock(&mddev->lock);
7946 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7947 spin_unlock(&mddev->lock);
7948 /* Clear some bits that don't mean anything, but
7949 * might be left set
7950 */
7951 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7952 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7953
7954 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7955 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7956 goto not_running;
7957 /* no recovery is running.
7958 * remove any failed drives, then
7959 * add spares if possible.
7960 * Spares are also removed and re-added, to allow
7961 * the personality to fail the re-add.
7962 */
7963
7964 if (mddev->reshape_position != MaxSector) {
7965 if (mddev->pers->check_reshape == NULL ||
7966 mddev->pers->check_reshape(mddev) != 0)
7967 /* Cannot proceed */
7968 goto not_running;
7969 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7970 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7971 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7972 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7973 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7974 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7975 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7976 } else if (mddev->recovery_cp < MaxSector) {
7977 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7978 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7979 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7980 /* nothing to be done ... */
7981 goto not_running;
7982
7983 if (mddev->pers->sync_request) {
7984 if (spares) {
7985 /* We are adding a device or devices to an array
7986 * which has the bitmap stored on all devices.
7987 * So make sure all bitmap pages get written
7988 */
7989 bitmap_write_all(mddev->bitmap);
7990 }
7991 INIT_WORK(&mddev->del_work, md_start_sync);
7992 queue_work(md_misc_wq, &mddev->del_work);
7993 goto unlock;
7994 }
7995 not_running:
7996 if (!mddev->sync_thread) {
7997 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7998 wake_up(&resync_wait);
7999 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8000 &mddev->recovery))
8001 if (mddev->sysfs_action)
8002 sysfs_notify_dirent_safe(mddev->sysfs_action);
8003 }
8004 unlock:
8005 wake_up(&mddev->sb_wait);
8006 mddev_unlock(mddev);
8007 }
8008 }
8009 EXPORT_SYMBOL(md_check_recovery);
8010
8011 void md_reap_sync_thread(struct mddev *mddev)
8012 {
8013 struct md_rdev *rdev;
8014
8015 /* resync has finished, collect result */
8016 md_unregister_thread(&mddev->sync_thread);
8017 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8018 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8019 /* success...*/
8020 /* activate any spares */
8021 if (mddev->pers->spare_active(mddev)) {
8022 sysfs_notify(&mddev->kobj, NULL,
8023 "degraded");
8024 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8025 }
8026 }
8027 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8028 mddev->pers->finish_reshape)
8029 mddev->pers->finish_reshape(mddev);
8030
8031 /* If array is no-longer degraded, then any saved_raid_disk
8032 * information must be scrapped.
8033 */
8034 if (!mddev->degraded)
8035 rdev_for_each(rdev, mddev)
8036 rdev->saved_raid_disk = -1;
8037
8038 md_update_sb(mddev, 1);
8039 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8040 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8041 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8042 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8043 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8044 wake_up(&resync_wait);
8045 /* flag recovery needed just to double check */
8046 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8047 sysfs_notify_dirent_safe(mddev->sysfs_action);
8048 md_new_event(mddev);
8049 if (mddev->event_work.func)
8050 queue_work(md_misc_wq, &mddev->event_work);
8051 }
8052 EXPORT_SYMBOL(md_reap_sync_thread);
8053
8054 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8055 {
8056 sysfs_notify_dirent_safe(rdev->sysfs_state);
8057 wait_event_timeout(rdev->blocked_wait,
8058 !test_bit(Blocked, &rdev->flags) &&
8059 !test_bit(BlockedBadBlocks, &rdev->flags),
8060 msecs_to_jiffies(5000));
8061 rdev_dec_pending(rdev, mddev);
8062 }
8063 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8064
8065 void md_finish_reshape(struct mddev *mddev)
8066 {
8067 /* called be personality module when reshape completes. */
8068 struct md_rdev *rdev;
8069
8070 rdev_for_each(rdev, mddev) {
8071 if (rdev->data_offset > rdev->new_data_offset)
8072 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8073 else
8074 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8075 rdev->data_offset = rdev->new_data_offset;
8076 }
8077 }
8078 EXPORT_SYMBOL(md_finish_reshape);
8079
8080 /* Bad block management.
8081 * We can record which blocks on each device are 'bad' and so just
8082 * fail those blocks, or that stripe, rather than the whole device.
8083 * Entries in the bad-block table are 64bits wide. This comprises:
8084 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8085 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8086 * A 'shift' can be set so that larger blocks are tracked and
8087 * consequently larger devices can be covered.
8088 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8089 *
8090 * Locking of the bad-block table uses a seqlock so md_is_badblock
8091 * might need to retry if it is very unlucky.
8092 * We will sometimes want to check for bad blocks in a bi_end_io function,
8093 * so we use the write_seqlock_irq variant.
8094 *
8095 * When looking for a bad block we specify a range and want to
8096 * know if any block in the range is bad. So we binary-search
8097 * to the last range that starts at-or-before the given endpoint,
8098 * (or "before the sector after the target range")
8099 * then see if it ends after the given start.
8100 * We return
8101 * 0 if there are no known bad blocks in the range
8102 * 1 if there are known bad block which are all acknowledged
8103 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8104 * plus the start/length of the first bad section we overlap.
8105 */
8106 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8107 sector_t *first_bad, int *bad_sectors)
8108 {
8109 int hi;
8110 int lo;
8111 u64 *p = bb->page;
8112 int rv;
8113 sector_t target = s + sectors;
8114 unsigned seq;
8115
8116 if (bb->shift > 0) {
8117 /* round the start down, and the end up */
8118 s >>= bb->shift;
8119 target += (1<<bb->shift) - 1;
8120 target >>= bb->shift;
8121 sectors = target - s;
8122 }
8123 /* 'target' is now the first block after the bad range */
8124
8125 retry:
8126 seq = read_seqbegin(&bb->lock);
8127 lo = 0;
8128 rv = 0;
8129 hi = bb->count;
8130
8131 /* Binary search between lo and hi for 'target'
8132 * i.e. for the last range that starts before 'target'
8133 */
8134 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8135 * are known not to be the last range before target.
8136 * VARIANT: hi-lo is the number of possible
8137 * ranges, and decreases until it reaches 1
8138 */
8139 while (hi - lo > 1) {
8140 int mid = (lo + hi) / 2;
8141 sector_t a = BB_OFFSET(p[mid]);
8142 if (a < target)
8143 /* This could still be the one, earlier ranges
8144 * could not. */
8145 lo = mid;
8146 else
8147 /* This and later ranges are definitely out. */
8148 hi = mid;
8149 }
8150 /* 'lo' might be the last that started before target, but 'hi' isn't */
8151 if (hi > lo) {
8152 /* need to check all range that end after 's' to see if
8153 * any are unacknowledged.
8154 */
8155 while (lo >= 0 &&
8156 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8157 if (BB_OFFSET(p[lo]) < target) {
8158 /* starts before the end, and finishes after
8159 * the start, so they must overlap
8160 */
8161 if (rv != -1 && BB_ACK(p[lo]))
8162 rv = 1;
8163 else
8164 rv = -1;
8165 *first_bad = BB_OFFSET(p[lo]);
8166 *bad_sectors = BB_LEN(p[lo]);
8167 }
8168 lo--;
8169 }
8170 }
8171
8172 if (read_seqretry(&bb->lock, seq))
8173 goto retry;
8174
8175 return rv;
8176 }
8177 EXPORT_SYMBOL_GPL(md_is_badblock);
8178
8179 /*
8180 * Add a range of bad blocks to the table.
8181 * This might extend the table, or might contract it
8182 * if two adjacent ranges can be merged.
8183 * We binary-search to find the 'insertion' point, then
8184 * decide how best to handle it.
8185 */
8186 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8187 int acknowledged)
8188 {
8189 u64 *p;
8190 int lo, hi;
8191 int rv = 1;
8192 unsigned long flags;
8193
8194 if (bb->shift < 0)
8195 /* badblocks are disabled */
8196 return 0;
8197
8198 if (bb->shift) {
8199 /* round the start down, and the end up */
8200 sector_t next = s + sectors;
8201 s >>= bb->shift;
8202 next += (1<<bb->shift) - 1;
8203 next >>= bb->shift;
8204 sectors = next - s;
8205 }
8206
8207 write_seqlock_irqsave(&bb->lock, flags);
8208
8209 p = bb->page;
8210 lo = 0;
8211 hi = bb->count;
8212 /* Find the last range that starts at-or-before 's' */
8213 while (hi - lo > 1) {
8214 int mid = (lo + hi) / 2;
8215 sector_t a = BB_OFFSET(p[mid]);
8216 if (a <= s)
8217 lo = mid;
8218 else
8219 hi = mid;
8220 }
8221 if (hi > lo && BB_OFFSET(p[lo]) > s)
8222 hi = lo;
8223
8224 if (hi > lo) {
8225 /* we found a range that might merge with the start
8226 * of our new range
8227 */
8228 sector_t a = BB_OFFSET(p[lo]);
8229 sector_t e = a + BB_LEN(p[lo]);
8230 int ack = BB_ACK(p[lo]);
8231 if (e >= s) {
8232 /* Yes, we can merge with a previous range */
8233 if (s == a && s + sectors >= e)
8234 /* new range covers old */
8235 ack = acknowledged;
8236 else
8237 ack = ack && acknowledged;
8238
8239 if (e < s + sectors)
8240 e = s + sectors;
8241 if (e - a <= BB_MAX_LEN) {
8242 p[lo] = BB_MAKE(a, e-a, ack);
8243 s = e;
8244 } else {
8245 /* does not all fit in one range,
8246 * make p[lo] maximal
8247 */
8248 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8249 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8250 s = a + BB_MAX_LEN;
8251 }
8252 sectors = e - s;
8253 }
8254 }
8255 if (sectors && hi < bb->count) {
8256 /* 'hi' points to the first range that starts after 's'.
8257 * Maybe we can merge with the start of that range */
8258 sector_t a = BB_OFFSET(p[hi]);
8259 sector_t e = a + BB_LEN(p[hi]);
8260 int ack = BB_ACK(p[hi]);
8261 if (a <= s + sectors) {
8262 /* merging is possible */
8263 if (e <= s + sectors) {
8264 /* full overlap */
8265 e = s + sectors;
8266 ack = acknowledged;
8267 } else
8268 ack = ack && acknowledged;
8269
8270 a = s;
8271 if (e - a <= BB_MAX_LEN) {
8272 p[hi] = BB_MAKE(a, e-a, ack);
8273 s = e;
8274 } else {
8275 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8276 s = a + BB_MAX_LEN;
8277 }
8278 sectors = e - s;
8279 lo = hi;
8280 hi++;
8281 }
8282 }
8283 if (sectors == 0 && hi < bb->count) {
8284 /* we might be able to combine lo and hi */
8285 /* Note: 's' is at the end of 'lo' */
8286 sector_t a = BB_OFFSET(p[hi]);
8287 int lolen = BB_LEN(p[lo]);
8288 int hilen = BB_LEN(p[hi]);
8289 int newlen = lolen + hilen - (s - a);
8290 if (s >= a && newlen < BB_MAX_LEN) {
8291 /* yes, we can combine them */
8292 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8293 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8294 memmove(p + hi, p + hi + 1,
8295 (bb->count - hi - 1) * 8);
8296 bb->count--;
8297 }
8298 }
8299 while (sectors) {
8300 /* didn't merge (it all).
8301 * Need to add a range just before 'hi' */
8302 if (bb->count >= MD_MAX_BADBLOCKS) {
8303 /* No room for more */
8304 rv = 0;
8305 break;
8306 } else {
8307 int this_sectors = sectors;
8308 memmove(p + hi + 1, p + hi,
8309 (bb->count - hi) * 8);
8310 bb->count++;
8311
8312 if (this_sectors > BB_MAX_LEN)
8313 this_sectors = BB_MAX_LEN;
8314 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8315 sectors -= this_sectors;
8316 s += this_sectors;
8317 }
8318 }
8319
8320 bb->changed = 1;
8321 if (!acknowledged)
8322 bb->unacked_exist = 1;
8323 write_sequnlock_irqrestore(&bb->lock, flags);
8324
8325 return rv;
8326 }
8327
8328 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8329 int is_new)
8330 {
8331 int rv;
8332 if (is_new)
8333 s += rdev->new_data_offset;
8334 else
8335 s += rdev->data_offset;
8336 rv = md_set_badblocks(&rdev->badblocks,
8337 s, sectors, 0);
8338 if (rv) {
8339 /* Make sure they get written out promptly */
8340 sysfs_notify_dirent_safe(rdev->sysfs_state);
8341 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8342 md_wakeup_thread(rdev->mddev->thread);
8343 }
8344 return rv;
8345 }
8346 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8347
8348 /*
8349 * Remove a range of bad blocks from the table.
8350 * This may involve extending the table if we spilt a region,
8351 * but it must not fail. So if the table becomes full, we just
8352 * drop the remove request.
8353 */
8354 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8355 {
8356 u64 *p;
8357 int lo, hi;
8358 sector_t target = s + sectors;
8359 int rv = 0;
8360
8361 if (bb->shift > 0) {
8362 /* When clearing we round the start up and the end down.
8363 * This should not matter as the shift should align with
8364 * the block size and no rounding should ever be needed.
8365 * However it is better the think a block is bad when it
8366 * isn't than to think a block is not bad when it is.
8367 */
8368 s += (1<<bb->shift) - 1;
8369 s >>= bb->shift;
8370 target >>= bb->shift;
8371 sectors = target - s;
8372 }
8373
8374 write_seqlock_irq(&bb->lock);
8375
8376 p = bb->page;
8377 lo = 0;
8378 hi = bb->count;
8379 /* Find the last range that starts before 'target' */
8380 while (hi - lo > 1) {
8381 int mid = (lo + hi) / 2;
8382 sector_t a = BB_OFFSET(p[mid]);
8383 if (a < target)
8384 lo = mid;
8385 else
8386 hi = mid;
8387 }
8388 if (hi > lo) {
8389 /* p[lo] is the last range that could overlap the
8390 * current range. Earlier ranges could also overlap,
8391 * but only this one can overlap the end of the range.
8392 */
8393 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8394 /* Partial overlap, leave the tail of this range */
8395 int ack = BB_ACK(p[lo]);
8396 sector_t a = BB_OFFSET(p[lo]);
8397 sector_t end = a + BB_LEN(p[lo]);
8398
8399 if (a < s) {
8400 /* we need to split this range */
8401 if (bb->count >= MD_MAX_BADBLOCKS) {
8402 rv = -ENOSPC;
8403 goto out;
8404 }
8405 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8406 bb->count++;
8407 p[lo] = BB_MAKE(a, s-a, ack);
8408 lo++;
8409 }
8410 p[lo] = BB_MAKE(target, end - target, ack);
8411 /* there is no longer an overlap */
8412 hi = lo;
8413 lo--;
8414 }
8415 while (lo >= 0 &&
8416 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8417 /* This range does overlap */
8418 if (BB_OFFSET(p[lo]) < s) {
8419 /* Keep the early parts of this range. */
8420 int ack = BB_ACK(p[lo]);
8421 sector_t start = BB_OFFSET(p[lo]);
8422 p[lo] = BB_MAKE(start, s - start, ack);
8423 /* now low doesn't overlap, so.. */
8424 break;
8425 }
8426 lo--;
8427 }
8428 /* 'lo' is strictly before, 'hi' is strictly after,
8429 * anything between needs to be discarded
8430 */
8431 if (hi - lo > 1) {
8432 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8433 bb->count -= (hi - lo - 1);
8434 }
8435 }
8436
8437 bb->changed = 1;
8438 out:
8439 write_sequnlock_irq(&bb->lock);
8440 return rv;
8441 }
8442
8443 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8444 int is_new)
8445 {
8446 if (is_new)
8447 s += rdev->new_data_offset;
8448 else
8449 s += rdev->data_offset;
8450 return md_clear_badblocks(&rdev->badblocks,
8451 s, sectors);
8452 }
8453 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8454
8455 /*
8456 * Acknowledge all bad blocks in a list.
8457 * This only succeeds if ->changed is clear. It is used by
8458 * in-kernel metadata updates
8459 */
8460 void md_ack_all_badblocks(struct badblocks *bb)
8461 {
8462 if (bb->page == NULL || bb->changed)
8463 /* no point even trying */
8464 return;
8465 write_seqlock_irq(&bb->lock);
8466
8467 if (bb->changed == 0 && bb->unacked_exist) {
8468 u64 *p = bb->page;
8469 int i;
8470 for (i = 0; i < bb->count ; i++) {
8471 if (!BB_ACK(p[i])) {
8472 sector_t start = BB_OFFSET(p[i]);
8473 int len = BB_LEN(p[i]);
8474 p[i] = BB_MAKE(start, len, 1);
8475 }
8476 }
8477 bb->unacked_exist = 0;
8478 }
8479 write_sequnlock_irq(&bb->lock);
8480 }
8481 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8482
8483 /* sysfs access to bad-blocks list.
8484 * We present two files.
8485 * 'bad-blocks' lists sector numbers and lengths of ranges that
8486 * are recorded as bad. The list is truncated to fit within
8487 * the one-page limit of sysfs.
8488 * Writing "sector length" to this file adds an acknowledged
8489 * bad block list.
8490 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8491 * been acknowledged. Writing to this file adds bad blocks
8492 * without acknowledging them. This is largely for testing.
8493 */
8494
8495 static ssize_t
8496 badblocks_show(struct badblocks *bb, char *page, int unack)
8497 {
8498 size_t len;
8499 int i;
8500 u64 *p = bb->page;
8501 unsigned seq;
8502
8503 if (bb->shift < 0)
8504 return 0;
8505
8506 retry:
8507 seq = read_seqbegin(&bb->lock);
8508
8509 len = 0;
8510 i = 0;
8511
8512 while (len < PAGE_SIZE && i < bb->count) {
8513 sector_t s = BB_OFFSET(p[i]);
8514 unsigned int length = BB_LEN(p[i]);
8515 int ack = BB_ACK(p[i]);
8516 i++;
8517
8518 if (unack && ack)
8519 continue;
8520
8521 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8522 (unsigned long long)s << bb->shift,
8523 length << bb->shift);
8524 }
8525 if (unack && len == 0)
8526 bb->unacked_exist = 0;
8527
8528 if (read_seqretry(&bb->lock, seq))
8529 goto retry;
8530
8531 return len;
8532 }
8533
8534 #define DO_DEBUG 1
8535
8536 static ssize_t
8537 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8538 {
8539 unsigned long long sector;
8540 int length;
8541 char newline;
8542 #ifdef DO_DEBUG
8543 /* Allow clearing via sysfs *only* for testing/debugging.
8544 * Normally only a successful write may clear a badblock
8545 */
8546 int clear = 0;
8547 if (page[0] == '-') {
8548 clear = 1;
8549 page++;
8550 }
8551 #endif /* DO_DEBUG */
8552
8553 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8554 case 3:
8555 if (newline != '\n')
8556 return -EINVAL;
8557 case 2:
8558 if (length <= 0)
8559 return -EINVAL;
8560 break;
8561 default:
8562 return -EINVAL;
8563 }
8564
8565 #ifdef DO_DEBUG
8566 if (clear) {
8567 md_clear_badblocks(bb, sector, length);
8568 return len;
8569 }
8570 #endif /* DO_DEBUG */
8571 if (md_set_badblocks(bb, sector, length, !unack))
8572 return len;
8573 else
8574 return -ENOSPC;
8575 }
8576
8577 static int md_notify_reboot(struct notifier_block *this,
8578 unsigned long code, void *x)
8579 {
8580 struct list_head *tmp;
8581 struct mddev *mddev;
8582 int need_delay = 0;
8583
8584 for_each_mddev(mddev, tmp) {
8585 if (mddev_trylock(mddev)) {
8586 if (mddev->pers)
8587 __md_stop_writes(mddev);
8588 if (mddev->persistent)
8589 mddev->safemode = 2;
8590 mddev_unlock(mddev);
8591 }
8592 need_delay = 1;
8593 }
8594 /*
8595 * certain more exotic SCSI devices are known to be
8596 * volatile wrt too early system reboots. While the
8597 * right place to handle this issue is the given
8598 * driver, we do want to have a safe RAID driver ...
8599 */
8600 if (need_delay)
8601 mdelay(1000*1);
8602
8603 return NOTIFY_DONE;
8604 }
8605
8606 static struct notifier_block md_notifier = {
8607 .notifier_call = md_notify_reboot,
8608 .next = NULL,
8609 .priority = INT_MAX, /* before any real devices */
8610 };
8611
8612 static void md_geninit(void)
8613 {
8614 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8615
8616 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8617 }
8618
8619 static int __init md_init(void)
8620 {
8621 int ret = -ENOMEM;
8622
8623 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8624 if (!md_wq)
8625 goto err_wq;
8626
8627 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8628 if (!md_misc_wq)
8629 goto err_misc_wq;
8630
8631 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8632 goto err_md;
8633
8634 if ((ret = register_blkdev(0, "mdp")) < 0)
8635 goto err_mdp;
8636 mdp_major = ret;
8637
8638 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8639 md_probe, NULL, NULL);
8640 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8641 md_probe, NULL, NULL);
8642
8643 register_reboot_notifier(&md_notifier);
8644 raid_table_header = register_sysctl_table(raid_root_table);
8645
8646 md_geninit();
8647 return 0;
8648
8649 err_mdp:
8650 unregister_blkdev(MD_MAJOR, "md");
8651 err_md:
8652 destroy_workqueue(md_misc_wq);
8653 err_misc_wq:
8654 destroy_workqueue(md_wq);
8655 err_wq:
8656 return ret;
8657 }
8658
8659 #ifndef MODULE
8660
8661 /*
8662 * Searches all registered partitions for autorun RAID arrays
8663 * at boot time.
8664 */
8665
8666 static LIST_HEAD(all_detected_devices);
8667 struct detected_devices_node {
8668 struct list_head list;
8669 dev_t dev;
8670 };
8671
8672 void md_autodetect_dev(dev_t dev)
8673 {
8674 struct detected_devices_node *node_detected_dev;
8675
8676 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8677 if (node_detected_dev) {
8678 node_detected_dev->dev = dev;
8679 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8680 } else {
8681 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8682 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8683 }
8684 }
8685
8686 static void autostart_arrays(int part)
8687 {
8688 struct md_rdev *rdev;
8689 struct detected_devices_node *node_detected_dev;
8690 dev_t dev;
8691 int i_scanned, i_passed;
8692
8693 i_scanned = 0;
8694 i_passed = 0;
8695
8696 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8697
8698 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8699 i_scanned++;
8700 node_detected_dev = list_entry(all_detected_devices.next,
8701 struct detected_devices_node, list);
8702 list_del(&node_detected_dev->list);
8703 dev = node_detected_dev->dev;
8704 kfree(node_detected_dev);
8705 rdev = md_import_device(dev,0, 90);
8706 if (IS_ERR(rdev))
8707 continue;
8708
8709 if (test_bit(Faulty, &rdev->flags))
8710 continue;
8711
8712 set_bit(AutoDetected, &rdev->flags);
8713 list_add(&rdev->same_set, &pending_raid_disks);
8714 i_passed++;
8715 }
8716
8717 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8718 i_scanned, i_passed);
8719
8720 autorun_devices(part);
8721 }
8722
8723 #endif /* !MODULE */
8724
8725 static __exit void md_exit(void)
8726 {
8727 struct mddev *mddev;
8728 struct list_head *tmp;
8729 int delay = 1;
8730
8731 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8732 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8733
8734 unregister_blkdev(MD_MAJOR,"md");
8735 unregister_blkdev(mdp_major, "mdp");
8736 unregister_reboot_notifier(&md_notifier);
8737 unregister_sysctl_table(raid_table_header);
8738
8739 /* We cannot unload the modules while some process is
8740 * waiting for us in select() or poll() - wake them up
8741 */
8742 md_unloading = 1;
8743 while (waitqueue_active(&md_event_waiters)) {
8744 /* not safe to leave yet */
8745 wake_up(&md_event_waiters);
8746 msleep(delay);
8747 delay += delay;
8748 }
8749 remove_proc_entry("mdstat", NULL);
8750
8751 for_each_mddev(mddev, tmp) {
8752 export_array(mddev);
8753 mddev->hold_active = 0;
8754 }
8755 destroy_workqueue(md_misc_wq);
8756 destroy_workqueue(md_wq);
8757 }
8758
8759 subsys_initcall(md_init);
8760 module_exit(md_exit)
8761
8762 static int get_ro(char *buffer, struct kernel_param *kp)
8763 {
8764 return sprintf(buffer, "%d", start_readonly);
8765 }
8766 static int set_ro(const char *val, struct kernel_param *kp)
8767 {
8768 char *e;
8769 int num = simple_strtoul(val, &e, 10);
8770 if (*val && (*e == '\0' || *e == '\n')) {
8771 start_readonly = num;
8772 return 0;
8773 }
8774 return -EINVAL;
8775 }
8776
8777 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8778 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8779 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8780
8781 MODULE_LICENSE("GPL");
8782 MODULE_DESCRIPTION("MD RAID framework");
8783 MODULE_ALIAS("md");
8784 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.215991 seconds and 5 git commands to generate.