Drop 'size' argument from bio_endio and bi_end_io
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47
48 #include <linux/init.h>
49
50 #include <linux/file.h>
51
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55
56 #include <asm/unaligned.h>
57
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66
67
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74
75 static void md_print_devices(void);
76
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78
79 /*
80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81 * is 1000 KB/sec, so the extra system load does not show up that much.
82 * Increase it if you want to have more _guaranteed_ speed. Note that
83 * the RAID driver will use the maximum available bandwidth if the IO
84 * subsystem is idle. There is also an 'absolute maximum' reconstruction
85 * speed limit - in case reconstruction slows down your system despite
86 * idle IO detection.
87 *
88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89 * or /sys/block/mdX/md/sync_speed_{min,max}
90 */
91
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 return mddev->sync_speed_min ?
97 mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99
100 static inline int speed_max(mddev_t *mddev)
101 {
102 return mddev->sync_speed_max ?
103 mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105
106 static struct ctl_table_header *raid_table_header;
107
108 static ctl_table raid_table[] = {
109 {
110 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
111 .procname = "speed_limit_min",
112 .data = &sysctl_speed_limit_min,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = &proc_dointvec,
116 },
117 {
118 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = &proc_dointvec,
124 },
125 { .ctl_name = 0 }
126 };
127
128 static ctl_table raid_dir_table[] = {
129 {
130 .ctl_name = DEV_RAID,
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
135 },
136 { .ctl_name = 0 }
137 };
138
139 static ctl_table raid_root_table[] = {
140 {
141 .ctl_name = CTL_DEV,
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { .ctl_name = 0 }
148 };
149
150 static struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /*
155 * We have a system wide 'event count' that is incremented
156 * on any 'interesting' event, and readers of /proc/mdstat
157 * can use 'poll' or 'select' to find out when the event
158 * count increases.
159 *
160 * Events are:
161 * start array, stop array, error, add device, remove device,
162 * start build, activate spare
163 */
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
167 {
168 atomic_inc(&md_event_count);
169 wake_up(&md_event_waiters);
170 sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 }
172 EXPORT_SYMBOL_GPL(md_new_event);
173
174 /* Alternate version that can be called from interrupts
175 * when calling sysfs_notify isn't needed.
176 */
177 static void md_new_event_inintr(mddev_t *mddev)
178 {
179 atomic_inc(&md_event_count);
180 wake_up(&md_event_waiters);
181 }
182
183 /*
184 * Enables to iterate over all existing md arrays
185 * all_mddevs_lock protects this list.
186 */
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
189
190
191 /*
192 * iterates through all used mddevs in the system.
193 * We take care to grab the all_mddevs_lock whenever navigating
194 * the list, and to always hold a refcount when unlocked.
195 * Any code which breaks out of this loop while own
196 * a reference to the current mddev and must mddev_put it.
197 */
198 #define ITERATE_MDDEV(mddev,tmp) \
199 \
200 for (({ spin_lock(&all_mddevs_lock); \
201 tmp = all_mddevs.next; \
202 mddev = NULL;}); \
203 ({ if (tmp != &all_mddevs) \
204 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 spin_unlock(&all_mddevs_lock); \
206 if (mddev) mddev_put(mddev); \
207 mddev = list_entry(tmp, mddev_t, all_mddevs); \
208 tmp != &all_mddevs;}); \
209 ({ spin_lock(&all_mddevs_lock); \
210 tmp = tmp->next;}) \
211 )
212
213
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
215 {
216 bio_io_error(bio);
217 return 0;
218 }
219
220 static inline mddev_t *mddev_get(mddev_t *mddev)
221 {
222 atomic_inc(&mddev->active);
223 return mddev;
224 }
225
226 static void mddev_put(mddev_t *mddev)
227 {
228 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 return;
230 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 list_del(&mddev->all_mddevs);
232 spin_unlock(&all_mddevs_lock);
233 blk_cleanup_queue(mddev->queue);
234 kobject_unregister(&mddev->kobj);
235 } else
236 spin_unlock(&all_mddevs_lock);
237 }
238
239 static mddev_t * mddev_find(dev_t unit)
240 {
241 mddev_t *mddev, *new = NULL;
242
243 retry:
244 spin_lock(&all_mddevs_lock);
245 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 if (mddev->unit == unit) {
247 mddev_get(mddev);
248 spin_unlock(&all_mddevs_lock);
249 kfree(new);
250 return mddev;
251 }
252
253 if (new) {
254 list_add(&new->all_mddevs, &all_mddevs);
255 spin_unlock(&all_mddevs_lock);
256 return new;
257 }
258 spin_unlock(&all_mddevs_lock);
259
260 new = kzalloc(sizeof(*new), GFP_KERNEL);
261 if (!new)
262 return NULL;
263
264 new->unit = unit;
265 if (MAJOR(unit) == MD_MAJOR)
266 new->md_minor = MINOR(unit);
267 else
268 new->md_minor = MINOR(unit) >> MdpMinorShift;
269
270 mutex_init(&new->reconfig_mutex);
271 INIT_LIST_HEAD(&new->disks);
272 INIT_LIST_HEAD(&new->all_mddevs);
273 init_timer(&new->safemode_timer);
274 atomic_set(&new->active, 1);
275 spin_lock_init(&new->write_lock);
276 init_waitqueue_head(&new->sb_wait);
277 new->reshape_position = MaxSector;
278
279 new->queue = blk_alloc_queue(GFP_KERNEL);
280 if (!new->queue) {
281 kfree(new);
282 return NULL;
283 }
284 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
285
286 blk_queue_make_request(new->queue, md_fail_request);
287
288 goto retry;
289 }
290
291 static inline int mddev_lock(mddev_t * mddev)
292 {
293 return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 }
295
296 static inline int mddev_trylock(mddev_t * mddev)
297 {
298 return mutex_trylock(&mddev->reconfig_mutex);
299 }
300
301 static inline void mddev_unlock(mddev_t * mddev)
302 {
303 mutex_unlock(&mddev->reconfig_mutex);
304
305 md_wakeup_thread(mddev->thread);
306 }
307
308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
309 {
310 mdk_rdev_t * rdev;
311 struct list_head *tmp;
312
313 ITERATE_RDEV(mddev,rdev,tmp) {
314 if (rdev->desc_nr == nr)
315 return rdev;
316 }
317 return NULL;
318 }
319
320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
321 {
322 struct list_head *tmp;
323 mdk_rdev_t *rdev;
324
325 ITERATE_RDEV(mddev,rdev,tmp) {
326 if (rdev->bdev->bd_dev == dev)
327 return rdev;
328 }
329 return NULL;
330 }
331
332 static struct mdk_personality *find_pers(int level, char *clevel)
333 {
334 struct mdk_personality *pers;
335 list_for_each_entry(pers, &pers_list, list) {
336 if (level != LEVEL_NONE && pers->level == level)
337 return pers;
338 if (strcmp(pers->name, clevel)==0)
339 return pers;
340 }
341 return NULL;
342 }
343
344 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
345 {
346 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
347 return MD_NEW_SIZE_BLOCKS(size);
348 }
349
350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
351 {
352 sector_t size;
353
354 size = rdev->sb_offset;
355
356 if (chunk_size)
357 size &= ~((sector_t)chunk_size/1024 - 1);
358 return size;
359 }
360
361 static int alloc_disk_sb(mdk_rdev_t * rdev)
362 {
363 if (rdev->sb_page)
364 MD_BUG();
365
366 rdev->sb_page = alloc_page(GFP_KERNEL);
367 if (!rdev->sb_page) {
368 printk(KERN_ALERT "md: out of memory.\n");
369 return -EINVAL;
370 }
371
372 return 0;
373 }
374
375 static void free_disk_sb(mdk_rdev_t * rdev)
376 {
377 if (rdev->sb_page) {
378 put_page(rdev->sb_page);
379 rdev->sb_loaded = 0;
380 rdev->sb_page = NULL;
381 rdev->sb_offset = 0;
382 rdev->size = 0;
383 }
384 }
385
386
387 static void super_written(struct bio *bio, int error)
388 {
389 mdk_rdev_t *rdev = bio->bi_private;
390 mddev_t *mddev = rdev->mddev;
391
392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 printk("md: super_written gets error=%d, uptodate=%d\n",
394 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 md_error(mddev, rdev);
397 }
398
399 if (atomic_dec_and_test(&mddev->pending_writes))
400 wake_up(&mddev->sb_wait);
401 bio_put(bio);
402 }
403
404 static void super_written_barrier(struct bio *bio, int error)
405 {
406 struct bio *bio2 = bio->bi_private;
407 mdk_rdev_t *rdev = bio2->bi_private;
408 mddev_t *mddev = rdev->mddev;
409
410 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
411 error == -EOPNOTSUPP) {
412 unsigned long flags;
413 /* barriers don't appear to be supported :-( */
414 set_bit(BarriersNotsupp, &rdev->flags);
415 mddev->barriers_work = 0;
416 spin_lock_irqsave(&mddev->write_lock, flags);
417 bio2->bi_next = mddev->biolist;
418 mddev->biolist = bio2;
419 spin_unlock_irqrestore(&mddev->write_lock, flags);
420 wake_up(&mddev->sb_wait);
421 bio_put(bio);
422 } else {
423 bio_put(bio2);
424 bio->bi_private = rdev;
425 super_written(bio, error);
426 }
427 }
428
429 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
430 sector_t sector, int size, struct page *page)
431 {
432 /* write first size bytes of page to sector of rdev
433 * Increment mddev->pending_writes before returning
434 * and decrement it on completion, waking up sb_wait
435 * if zero is reached.
436 * If an error occurred, call md_error
437 *
438 * As we might need to resubmit the request if BIO_RW_BARRIER
439 * causes ENOTSUPP, we allocate a spare bio...
440 */
441 struct bio *bio = bio_alloc(GFP_NOIO, 1);
442 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
443
444 bio->bi_bdev = rdev->bdev;
445 bio->bi_sector = sector;
446 bio_add_page(bio, page, size, 0);
447 bio->bi_private = rdev;
448 bio->bi_end_io = super_written;
449 bio->bi_rw = rw;
450
451 atomic_inc(&mddev->pending_writes);
452 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
453 struct bio *rbio;
454 rw |= (1<<BIO_RW_BARRIER);
455 rbio = bio_clone(bio, GFP_NOIO);
456 rbio->bi_private = bio;
457 rbio->bi_end_io = super_written_barrier;
458 submit_bio(rw, rbio);
459 } else
460 submit_bio(rw, bio);
461 }
462
463 void md_super_wait(mddev_t *mddev)
464 {
465 /* wait for all superblock writes that were scheduled to complete.
466 * if any had to be retried (due to BARRIER problems), retry them
467 */
468 DEFINE_WAIT(wq);
469 for(;;) {
470 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
471 if (atomic_read(&mddev->pending_writes)==0)
472 break;
473 while (mddev->biolist) {
474 struct bio *bio;
475 spin_lock_irq(&mddev->write_lock);
476 bio = mddev->biolist;
477 mddev->biolist = bio->bi_next ;
478 bio->bi_next = NULL;
479 spin_unlock_irq(&mddev->write_lock);
480 submit_bio(bio->bi_rw, bio);
481 }
482 schedule();
483 }
484 finish_wait(&mddev->sb_wait, &wq);
485 }
486
487 static void bi_complete(struct bio *bio, int error)
488 {
489 complete((struct completion*)bio->bi_private);
490 }
491
492 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
493 struct page *page, int rw)
494 {
495 struct bio *bio = bio_alloc(GFP_NOIO, 1);
496 struct completion event;
497 int ret;
498
499 rw |= (1 << BIO_RW_SYNC);
500
501 bio->bi_bdev = bdev;
502 bio->bi_sector = sector;
503 bio_add_page(bio, page, size, 0);
504 init_completion(&event);
505 bio->bi_private = &event;
506 bio->bi_end_io = bi_complete;
507 submit_bio(rw, bio);
508 wait_for_completion(&event);
509
510 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
511 bio_put(bio);
512 return ret;
513 }
514 EXPORT_SYMBOL_GPL(sync_page_io);
515
516 static int read_disk_sb(mdk_rdev_t * rdev, int size)
517 {
518 char b[BDEVNAME_SIZE];
519 if (!rdev->sb_page) {
520 MD_BUG();
521 return -EINVAL;
522 }
523 if (rdev->sb_loaded)
524 return 0;
525
526
527 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
528 goto fail;
529 rdev->sb_loaded = 1;
530 return 0;
531
532 fail:
533 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
534 bdevname(rdev->bdev,b));
535 return -EINVAL;
536 }
537
538 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
539 {
540 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
541 (sb1->set_uuid1 == sb2->set_uuid1) &&
542 (sb1->set_uuid2 == sb2->set_uuid2) &&
543 (sb1->set_uuid3 == sb2->set_uuid3))
544
545 return 1;
546
547 return 0;
548 }
549
550
551 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
552 {
553 int ret;
554 mdp_super_t *tmp1, *tmp2;
555
556 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
557 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
558
559 if (!tmp1 || !tmp2) {
560 ret = 0;
561 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
562 goto abort;
563 }
564
565 *tmp1 = *sb1;
566 *tmp2 = *sb2;
567
568 /*
569 * nr_disks is not constant
570 */
571 tmp1->nr_disks = 0;
572 tmp2->nr_disks = 0;
573
574 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
575 ret = 0;
576 else
577 ret = 1;
578
579 abort:
580 kfree(tmp1);
581 kfree(tmp2);
582 return ret;
583 }
584
585
586 static u32 md_csum_fold(u32 csum)
587 {
588 csum = (csum & 0xffff) + (csum >> 16);
589 return (csum & 0xffff) + (csum >> 16);
590 }
591
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 u64 newcsum = 0;
595 u32 *sb32 = (u32*)sb;
596 int i;
597 unsigned int disk_csum, csum;
598
599 disk_csum = sb->sb_csum;
600 sb->sb_csum = 0;
601
602 for (i = 0; i < MD_SB_BYTES/4 ; i++)
603 newcsum += sb32[i];
604 csum = (newcsum & 0xffffffff) + (newcsum>>32);
605
606
607 #ifdef CONFIG_ALPHA
608 /* This used to use csum_partial, which was wrong for several
609 * reasons including that different results are returned on
610 * different architectures. It isn't critical that we get exactly
611 * the same return value as before (we always csum_fold before
612 * testing, and that removes any differences). However as we
613 * know that csum_partial always returned a 16bit value on
614 * alphas, do a fold to maximise conformity to previous behaviour.
615 */
616 sb->sb_csum = md_csum_fold(disk_csum);
617 #else
618 sb->sb_csum = disk_csum;
619 #endif
620 return csum;
621 }
622
623
624 /*
625 * Handle superblock details.
626 * We want to be able to handle multiple superblock formats
627 * so we have a common interface to them all, and an array of
628 * different handlers.
629 * We rely on user-space to write the initial superblock, and support
630 * reading and updating of superblocks.
631 * Interface methods are:
632 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
633 * loads and validates a superblock on dev.
634 * if refdev != NULL, compare superblocks on both devices
635 * Return:
636 * 0 - dev has a superblock that is compatible with refdev
637 * 1 - dev has a superblock that is compatible and newer than refdev
638 * so dev should be used as the refdev in future
639 * -EINVAL superblock incompatible or invalid
640 * -othererror e.g. -EIO
641 *
642 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
643 * Verify that dev is acceptable into mddev.
644 * The first time, mddev->raid_disks will be 0, and data from
645 * dev should be merged in. Subsequent calls check that dev
646 * is new enough. Return 0 or -EINVAL
647 *
648 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
649 * Update the superblock for rdev with data in mddev
650 * This does not write to disc.
651 *
652 */
653
654 struct super_type {
655 char *name;
656 struct module *owner;
657 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
658 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
659 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
660 };
661
662 /*
663 * load_super for 0.90.0
664 */
665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
666 {
667 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
668 mdp_super_t *sb;
669 int ret;
670 sector_t sb_offset;
671
672 /*
673 * Calculate the position of the superblock,
674 * it's at the end of the disk.
675 *
676 * It also happens to be a multiple of 4Kb.
677 */
678 sb_offset = calc_dev_sboffset(rdev->bdev);
679 rdev->sb_offset = sb_offset;
680
681 ret = read_disk_sb(rdev, MD_SB_BYTES);
682 if (ret) return ret;
683
684 ret = -EINVAL;
685
686 bdevname(rdev->bdev, b);
687 sb = (mdp_super_t*)page_address(rdev->sb_page);
688
689 if (sb->md_magic != MD_SB_MAGIC) {
690 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
691 b);
692 goto abort;
693 }
694
695 if (sb->major_version != 0 ||
696 sb->minor_version < 90 ||
697 sb->minor_version > 91) {
698 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
699 sb->major_version, sb->minor_version,
700 b);
701 goto abort;
702 }
703
704 if (sb->raid_disks <= 0)
705 goto abort;
706
707 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
708 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
709 b);
710 goto abort;
711 }
712
713 rdev->preferred_minor = sb->md_minor;
714 rdev->data_offset = 0;
715 rdev->sb_size = MD_SB_BYTES;
716
717 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
718 if (sb->level != 1 && sb->level != 4
719 && sb->level != 5 && sb->level != 6
720 && sb->level != 10) {
721 /* FIXME use a better test */
722 printk(KERN_WARNING
723 "md: bitmaps not supported for this level.\n");
724 goto abort;
725 }
726 }
727
728 if (sb->level == LEVEL_MULTIPATH)
729 rdev->desc_nr = -1;
730 else
731 rdev->desc_nr = sb->this_disk.number;
732
733 if (refdev == 0)
734 ret = 1;
735 else {
736 __u64 ev1, ev2;
737 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
738 if (!uuid_equal(refsb, sb)) {
739 printk(KERN_WARNING "md: %s has different UUID to %s\n",
740 b, bdevname(refdev->bdev,b2));
741 goto abort;
742 }
743 if (!sb_equal(refsb, sb)) {
744 printk(KERN_WARNING "md: %s has same UUID"
745 " but different superblock to %s\n",
746 b, bdevname(refdev->bdev, b2));
747 goto abort;
748 }
749 ev1 = md_event(sb);
750 ev2 = md_event(refsb);
751 if (ev1 > ev2)
752 ret = 1;
753 else
754 ret = 0;
755 }
756 rdev->size = calc_dev_size(rdev, sb->chunk_size);
757
758 if (rdev->size < sb->size && sb->level > 1)
759 /* "this cannot possibly happen" ... */
760 ret = -EINVAL;
761
762 abort:
763 return ret;
764 }
765
766 /*
767 * validate_super for 0.90.0
768 */
769 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
770 {
771 mdp_disk_t *desc;
772 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
773 __u64 ev1 = md_event(sb);
774
775 rdev->raid_disk = -1;
776 rdev->flags = 0;
777 if (mddev->raid_disks == 0) {
778 mddev->major_version = 0;
779 mddev->minor_version = sb->minor_version;
780 mddev->patch_version = sb->patch_version;
781 mddev->persistent = ! sb->not_persistent;
782 mddev->chunk_size = sb->chunk_size;
783 mddev->ctime = sb->ctime;
784 mddev->utime = sb->utime;
785 mddev->level = sb->level;
786 mddev->clevel[0] = 0;
787 mddev->layout = sb->layout;
788 mddev->raid_disks = sb->raid_disks;
789 mddev->size = sb->size;
790 mddev->events = ev1;
791 mddev->bitmap_offset = 0;
792 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
793
794 if (mddev->minor_version >= 91) {
795 mddev->reshape_position = sb->reshape_position;
796 mddev->delta_disks = sb->delta_disks;
797 mddev->new_level = sb->new_level;
798 mddev->new_layout = sb->new_layout;
799 mddev->new_chunk = sb->new_chunk;
800 } else {
801 mddev->reshape_position = MaxSector;
802 mddev->delta_disks = 0;
803 mddev->new_level = mddev->level;
804 mddev->new_layout = mddev->layout;
805 mddev->new_chunk = mddev->chunk_size;
806 }
807
808 if (sb->state & (1<<MD_SB_CLEAN))
809 mddev->recovery_cp = MaxSector;
810 else {
811 if (sb->events_hi == sb->cp_events_hi &&
812 sb->events_lo == sb->cp_events_lo) {
813 mddev->recovery_cp = sb->recovery_cp;
814 } else
815 mddev->recovery_cp = 0;
816 }
817
818 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
819 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
820 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
821 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
822
823 mddev->max_disks = MD_SB_DISKS;
824
825 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
826 mddev->bitmap_file == NULL)
827 mddev->bitmap_offset = mddev->default_bitmap_offset;
828
829 } else if (mddev->pers == NULL) {
830 /* Insist on good event counter while assembling */
831 ++ev1;
832 if (ev1 < mddev->events)
833 return -EINVAL;
834 } else if (mddev->bitmap) {
835 /* if adding to array with a bitmap, then we can accept an
836 * older device ... but not too old.
837 */
838 if (ev1 < mddev->bitmap->events_cleared)
839 return 0;
840 } else {
841 if (ev1 < mddev->events)
842 /* just a hot-add of a new device, leave raid_disk at -1 */
843 return 0;
844 }
845
846 if (mddev->level != LEVEL_MULTIPATH) {
847 desc = sb->disks + rdev->desc_nr;
848
849 if (desc->state & (1<<MD_DISK_FAULTY))
850 set_bit(Faulty, &rdev->flags);
851 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
852 desc->raid_disk < mddev->raid_disks */) {
853 set_bit(In_sync, &rdev->flags);
854 rdev->raid_disk = desc->raid_disk;
855 }
856 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
857 set_bit(WriteMostly, &rdev->flags);
858 } else /* MULTIPATH are always insync */
859 set_bit(In_sync, &rdev->flags);
860 return 0;
861 }
862
863 /*
864 * sync_super for 0.90.0
865 */
866 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
867 {
868 mdp_super_t *sb;
869 struct list_head *tmp;
870 mdk_rdev_t *rdev2;
871 int next_spare = mddev->raid_disks;
872
873
874 /* make rdev->sb match mddev data..
875 *
876 * 1/ zero out disks
877 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
878 * 3/ any empty disks < next_spare become removed
879 *
880 * disks[0] gets initialised to REMOVED because
881 * we cannot be sure from other fields if it has
882 * been initialised or not.
883 */
884 int i;
885 int active=0, working=0,failed=0,spare=0,nr_disks=0;
886
887 rdev->sb_size = MD_SB_BYTES;
888
889 sb = (mdp_super_t*)page_address(rdev->sb_page);
890
891 memset(sb, 0, sizeof(*sb));
892
893 sb->md_magic = MD_SB_MAGIC;
894 sb->major_version = mddev->major_version;
895 sb->patch_version = mddev->patch_version;
896 sb->gvalid_words = 0; /* ignored */
897 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
898 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
899 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
900 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
901
902 sb->ctime = mddev->ctime;
903 sb->level = mddev->level;
904 sb->size = mddev->size;
905 sb->raid_disks = mddev->raid_disks;
906 sb->md_minor = mddev->md_minor;
907 sb->not_persistent = !mddev->persistent;
908 sb->utime = mddev->utime;
909 sb->state = 0;
910 sb->events_hi = (mddev->events>>32);
911 sb->events_lo = (u32)mddev->events;
912
913 if (mddev->reshape_position == MaxSector)
914 sb->minor_version = 90;
915 else {
916 sb->minor_version = 91;
917 sb->reshape_position = mddev->reshape_position;
918 sb->new_level = mddev->new_level;
919 sb->delta_disks = mddev->delta_disks;
920 sb->new_layout = mddev->new_layout;
921 sb->new_chunk = mddev->new_chunk;
922 }
923 mddev->minor_version = sb->minor_version;
924 if (mddev->in_sync)
925 {
926 sb->recovery_cp = mddev->recovery_cp;
927 sb->cp_events_hi = (mddev->events>>32);
928 sb->cp_events_lo = (u32)mddev->events;
929 if (mddev->recovery_cp == MaxSector)
930 sb->state = (1<< MD_SB_CLEAN);
931 } else
932 sb->recovery_cp = 0;
933
934 sb->layout = mddev->layout;
935 sb->chunk_size = mddev->chunk_size;
936
937 if (mddev->bitmap && mddev->bitmap_file == NULL)
938 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
939
940 sb->disks[0].state = (1<<MD_DISK_REMOVED);
941 ITERATE_RDEV(mddev,rdev2,tmp) {
942 mdp_disk_t *d;
943 int desc_nr;
944 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
945 && !test_bit(Faulty, &rdev2->flags))
946 desc_nr = rdev2->raid_disk;
947 else
948 desc_nr = next_spare++;
949 rdev2->desc_nr = desc_nr;
950 d = &sb->disks[rdev2->desc_nr];
951 nr_disks++;
952 d->number = rdev2->desc_nr;
953 d->major = MAJOR(rdev2->bdev->bd_dev);
954 d->minor = MINOR(rdev2->bdev->bd_dev);
955 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
956 && !test_bit(Faulty, &rdev2->flags))
957 d->raid_disk = rdev2->raid_disk;
958 else
959 d->raid_disk = rdev2->desc_nr; /* compatibility */
960 if (test_bit(Faulty, &rdev2->flags))
961 d->state = (1<<MD_DISK_FAULTY);
962 else if (test_bit(In_sync, &rdev2->flags)) {
963 d->state = (1<<MD_DISK_ACTIVE);
964 d->state |= (1<<MD_DISK_SYNC);
965 active++;
966 working++;
967 } else {
968 d->state = 0;
969 spare++;
970 working++;
971 }
972 if (test_bit(WriteMostly, &rdev2->flags))
973 d->state |= (1<<MD_DISK_WRITEMOSTLY);
974 }
975 /* now set the "removed" and "faulty" bits on any missing devices */
976 for (i=0 ; i < mddev->raid_disks ; i++) {
977 mdp_disk_t *d = &sb->disks[i];
978 if (d->state == 0 && d->number == 0) {
979 d->number = i;
980 d->raid_disk = i;
981 d->state = (1<<MD_DISK_REMOVED);
982 d->state |= (1<<MD_DISK_FAULTY);
983 failed++;
984 }
985 }
986 sb->nr_disks = nr_disks;
987 sb->active_disks = active;
988 sb->working_disks = working;
989 sb->failed_disks = failed;
990 sb->spare_disks = spare;
991
992 sb->this_disk = sb->disks[rdev->desc_nr];
993 sb->sb_csum = calc_sb_csum(sb);
994 }
995
996 /*
997 * version 1 superblock
998 */
999
1000 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1001 {
1002 __le32 disk_csum;
1003 u32 csum;
1004 unsigned long long newcsum;
1005 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1006 __le32 *isuper = (__le32*)sb;
1007 int i;
1008
1009 disk_csum = sb->sb_csum;
1010 sb->sb_csum = 0;
1011 newcsum = 0;
1012 for (i=0; size>=4; size -= 4 )
1013 newcsum += le32_to_cpu(*isuper++);
1014
1015 if (size == 2)
1016 newcsum += le16_to_cpu(*(__le16*) isuper);
1017
1018 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1019 sb->sb_csum = disk_csum;
1020 return cpu_to_le32(csum);
1021 }
1022
1023 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1024 {
1025 struct mdp_superblock_1 *sb;
1026 int ret;
1027 sector_t sb_offset;
1028 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1029 int bmask;
1030
1031 /*
1032 * Calculate the position of the superblock.
1033 * It is always aligned to a 4K boundary and
1034 * depeding on minor_version, it can be:
1035 * 0: At least 8K, but less than 12K, from end of device
1036 * 1: At start of device
1037 * 2: 4K from start of device.
1038 */
1039 switch(minor_version) {
1040 case 0:
1041 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1042 sb_offset -= 8*2;
1043 sb_offset &= ~(sector_t)(4*2-1);
1044 /* convert from sectors to K */
1045 sb_offset /= 2;
1046 break;
1047 case 1:
1048 sb_offset = 0;
1049 break;
1050 case 2:
1051 sb_offset = 4;
1052 break;
1053 default:
1054 return -EINVAL;
1055 }
1056 rdev->sb_offset = sb_offset;
1057
1058 /* superblock is rarely larger than 1K, but it can be larger,
1059 * and it is safe to read 4k, so we do that
1060 */
1061 ret = read_disk_sb(rdev, 4096);
1062 if (ret) return ret;
1063
1064
1065 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1066
1067 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1068 sb->major_version != cpu_to_le32(1) ||
1069 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1070 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1071 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1072 return -EINVAL;
1073
1074 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1075 printk("md: invalid superblock checksum on %s\n",
1076 bdevname(rdev->bdev,b));
1077 return -EINVAL;
1078 }
1079 if (le64_to_cpu(sb->data_size) < 10) {
1080 printk("md: data_size too small on %s\n",
1081 bdevname(rdev->bdev,b));
1082 return -EINVAL;
1083 }
1084 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1085 if (sb->level != cpu_to_le32(1) &&
1086 sb->level != cpu_to_le32(4) &&
1087 sb->level != cpu_to_le32(5) &&
1088 sb->level != cpu_to_le32(6) &&
1089 sb->level != cpu_to_le32(10)) {
1090 printk(KERN_WARNING
1091 "md: bitmaps not supported for this level.\n");
1092 return -EINVAL;
1093 }
1094 }
1095
1096 rdev->preferred_minor = 0xffff;
1097 rdev->data_offset = le64_to_cpu(sb->data_offset);
1098 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1099
1100 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1101 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1102 if (rdev->sb_size & bmask)
1103 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1104
1105 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1106 rdev->desc_nr = -1;
1107 else
1108 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1109
1110 if (refdev == 0)
1111 ret = 1;
1112 else {
1113 __u64 ev1, ev2;
1114 struct mdp_superblock_1 *refsb =
1115 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1116
1117 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1118 sb->level != refsb->level ||
1119 sb->layout != refsb->layout ||
1120 sb->chunksize != refsb->chunksize) {
1121 printk(KERN_WARNING "md: %s has strangely different"
1122 " superblock to %s\n",
1123 bdevname(rdev->bdev,b),
1124 bdevname(refdev->bdev,b2));
1125 return -EINVAL;
1126 }
1127 ev1 = le64_to_cpu(sb->events);
1128 ev2 = le64_to_cpu(refsb->events);
1129
1130 if (ev1 > ev2)
1131 ret = 1;
1132 else
1133 ret = 0;
1134 }
1135 if (minor_version)
1136 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1137 else
1138 rdev->size = rdev->sb_offset;
1139 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1140 return -EINVAL;
1141 rdev->size = le64_to_cpu(sb->data_size)/2;
1142 if (le32_to_cpu(sb->chunksize))
1143 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1144
1145 if (le64_to_cpu(sb->size) > rdev->size*2)
1146 return -EINVAL;
1147 return ret;
1148 }
1149
1150 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1151 {
1152 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1153 __u64 ev1 = le64_to_cpu(sb->events);
1154
1155 rdev->raid_disk = -1;
1156 rdev->flags = 0;
1157 if (mddev->raid_disks == 0) {
1158 mddev->major_version = 1;
1159 mddev->patch_version = 0;
1160 mddev->persistent = 1;
1161 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1162 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1163 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1164 mddev->level = le32_to_cpu(sb->level);
1165 mddev->clevel[0] = 0;
1166 mddev->layout = le32_to_cpu(sb->layout);
1167 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1168 mddev->size = le64_to_cpu(sb->size)/2;
1169 mddev->events = ev1;
1170 mddev->bitmap_offset = 0;
1171 mddev->default_bitmap_offset = 1024 >> 9;
1172
1173 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1174 memcpy(mddev->uuid, sb->set_uuid, 16);
1175
1176 mddev->max_disks = (4096-256)/2;
1177
1178 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1179 mddev->bitmap_file == NULL )
1180 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1181
1182 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1183 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1184 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1185 mddev->new_level = le32_to_cpu(sb->new_level);
1186 mddev->new_layout = le32_to_cpu(sb->new_layout);
1187 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1188 } else {
1189 mddev->reshape_position = MaxSector;
1190 mddev->delta_disks = 0;
1191 mddev->new_level = mddev->level;
1192 mddev->new_layout = mddev->layout;
1193 mddev->new_chunk = mddev->chunk_size;
1194 }
1195
1196 } else if (mddev->pers == NULL) {
1197 /* Insist of good event counter while assembling */
1198 ++ev1;
1199 if (ev1 < mddev->events)
1200 return -EINVAL;
1201 } else if (mddev->bitmap) {
1202 /* If adding to array with a bitmap, then we can accept an
1203 * older device, but not too old.
1204 */
1205 if (ev1 < mddev->bitmap->events_cleared)
1206 return 0;
1207 } else {
1208 if (ev1 < mddev->events)
1209 /* just a hot-add of a new device, leave raid_disk at -1 */
1210 return 0;
1211 }
1212 if (mddev->level != LEVEL_MULTIPATH) {
1213 int role;
1214 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1215 switch(role) {
1216 case 0xffff: /* spare */
1217 break;
1218 case 0xfffe: /* faulty */
1219 set_bit(Faulty, &rdev->flags);
1220 break;
1221 default:
1222 if ((le32_to_cpu(sb->feature_map) &
1223 MD_FEATURE_RECOVERY_OFFSET))
1224 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1225 else
1226 set_bit(In_sync, &rdev->flags);
1227 rdev->raid_disk = role;
1228 break;
1229 }
1230 if (sb->devflags & WriteMostly1)
1231 set_bit(WriteMostly, &rdev->flags);
1232 } else /* MULTIPATH are always insync */
1233 set_bit(In_sync, &rdev->flags);
1234
1235 return 0;
1236 }
1237
1238 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1239 {
1240 struct mdp_superblock_1 *sb;
1241 struct list_head *tmp;
1242 mdk_rdev_t *rdev2;
1243 int max_dev, i;
1244 /* make rdev->sb match mddev and rdev data. */
1245
1246 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1247
1248 sb->feature_map = 0;
1249 sb->pad0 = 0;
1250 sb->recovery_offset = cpu_to_le64(0);
1251 memset(sb->pad1, 0, sizeof(sb->pad1));
1252 memset(sb->pad2, 0, sizeof(sb->pad2));
1253 memset(sb->pad3, 0, sizeof(sb->pad3));
1254
1255 sb->utime = cpu_to_le64((__u64)mddev->utime);
1256 sb->events = cpu_to_le64(mddev->events);
1257 if (mddev->in_sync)
1258 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1259 else
1260 sb->resync_offset = cpu_to_le64(0);
1261
1262 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1263
1264 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1265 sb->size = cpu_to_le64(mddev->size<<1);
1266
1267 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1268 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1269 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1270 }
1271
1272 if (rdev->raid_disk >= 0 &&
1273 !test_bit(In_sync, &rdev->flags) &&
1274 rdev->recovery_offset > 0) {
1275 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1276 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1277 }
1278
1279 if (mddev->reshape_position != MaxSector) {
1280 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1281 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1282 sb->new_layout = cpu_to_le32(mddev->new_layout);
1283 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1284 sb->new_level = cpu_to_le32(mddev->new_level);
1285 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1286 }
1287
1288 max_dev = 0;
1289 ITERATE_RDEV(mddev,rdev2,tmp)
1290 if (rdev2->desc_nr+1 > max_dev)
1291 max_dev = rdev2->desc_nr+1;
1292
1293 if (max_dev > le32_to_cpu(sb->max_dev))
1294 sb->max_dev = cpu_to_le32(max_dev);
1295 for (i=0; i<max_dev;i++)
1296 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1297
1298 ITERATE_RDEV(mddev,rdev2,tmp) {
1299 i = rdev2->desc_nr;
1300 if (test_bit(Faulty, &rdev2->flags))
1301 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1302 else if (test_bit(In_sync, &rdev2->flags))
1303 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1304 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1305 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1306 else
1307 sb->dev_roles[i] = cpu_to_le16(0xffff);
1308 }
1309
1310 sb->sb_csum = calc_sb_1_csum(sb);
1311 }
1312
1313
1314 static struct super_type super_types[] = {
1315 [0] = {
1316 .name = "0.90.0",
1317 .owner = THIS_MODULE,
1318 .load_super = super_90_load,
1319 .validate_super = super_90_validate,
1320 .sync_super = super_90_sync,
1321 },
1322 [1] = {
1323 .name = "md-1",
1324 .owner = THIS_MODULE,
1325 .load_super = super_1_load,
1326 .validate_super = super_1_validate,
1327 .sync_super = super_1_sync,
1328 },
1329 };
1330
1331 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1332 {
1333 struct list_head *tmp, *tmp2;
1334 mdk_rdev_t *rdev, *rdev2;
1335
1336 ITERATE_RDEV(mddev1,rdev,tmp)
1337 ITERATE_RDEV(mddev2, rdev2, tmp2)
1338 if (rdev->bdev->bd_contains ==
1339 rdev2->bdev->bd_contains)
1340 return 1;
1341
1342 return 0;
1343 }
1344
1345 static LIST_HEAD(pending_raid_disks);
1346
1347 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1348 {
1349 char b[BDEVNAME_SIZE];
1350 struct kobject *ko;
1351 char *s;
1352 int err;
1353
1354 if (rdev->mddev) {
1355 MD_BUG();
1356 return -EINVAL;
1357 }
1358 /* make sure rdev->size exceeds mddev->size */
1359 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1360 if (mddev->pers) {
1361 /* Cannot change size, so fail
1362 * If mddev->level <= 0, then we don't care
1363 * about aligning sizes (e.g. linear)
1364 */
1365 if (mddev->level > 0)
1366 return -ENOSPC;
1367 } else
1368 mddev->size = rdev->size;
1369 }
1370
1371 /* Verify rdev->desc_nr is unique.
1372 * If it is -1, assign a free number, else
1373 * check number is not in use
1374 */
1375 if (rdev->desc_nr < 0) {
1376 int choice = 0;
1377 if (mddev->pers) choice = mddev->raid_disks;
1378 while (find_rdev_nr(mddev, choice))
1379 choice++;
1380 rdev->desc_nr = choice;
1381 } else {
1382 if (find_rdev_nr(mddev, rdev->desc_nr))
1383 return -EBUSY;
1384 }
1385 bdevname(rdev->bdev,b);
1386 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1387 return -ENOMEM;
1388 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1389 *s = '!';
1390
1391 rdev->mddev = mddev;
1392 printk(KERN_INFO "md: bind<%s>\n", b);
1393
1394 rdev->kobj.parent = &mddev->kobj;
1395 if ((err = kobject_add(&rdev->kobj)))
1396 goto fail;
1397
1398 if (rdev->bdev->bd_part)
1399 ko = &rdev->bdev->bd_part->kobj;
1400 else
1401 ko = &rdev->bdev->bd_disk->kobj;
1402 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1403 kobject_del(&rdev->kobj);
1404 goto fail;
1405 }
1406 list_add(&rdev->same_set, &mddev->disks);
1407 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1408 return 0;
1409
1410 fail:
1411 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1412 b, mdname(mddev));
1413 return err;
1414 }
1415
1416 static void delayed_delete(struct work_struct *ws)
1417 {
1418 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1419 kobject_del(&rdev->kobj);
1420 }
1421
1422 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1423 {
1424 char b[BDEVNAME_SIZE];
1425 if (!rdev->mddev) {
1426 MD_BUG();
1427 return;
1428 }
1429 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1430 list_del_init(&rdev->same_set);
1431 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1432 rdev->mddev = NULL;
1433 sysfs_remove_link(&rdev->kobj, "block");
1434
1435 /* We need to delay this, otherwise we can deadlock when
1436 * writing to 'remove' to "dev/state"
1437 */
1438 INIT_WORK(&rdev->del_work, delayed_delete);
1439 schedule_work(&rdev->del_work);
1440 }
1441
1442 /*
1443 * prevent the device from being mounted, repartitioned or
1444 * otherwise reused by a RAID array (or any other kernel
1445 * subsystem), by bd_claiming the device.
1446 */
1447 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1448 {
1449 int err = 0;
1450 struct block_device *bdev;
1451 char b[BDEVNAME_SIZE];
1452
1453 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1454 if (IS_ERR(bdev)) {
1455 printk(KERN_ERR "md: could not open %s.\n",
1456 __bdevname(dev, b));
1457 return PTR_ERR(bdev);
1458 }
1459 err = bd_claim(bdev, rdev);
1460 if (err) {
1461 printk(KERN_ERR "md: could not bd_claim %s.\n",
1462 bdevname(bdev, b));
1463 blkdev_put(bdev);
1464 return err;
1465 }
1466 rdev->bdev = bdev;
1467 return err;
1468 }
1469
1470 static void unlock_rdev(mdk_rdev_t *rdev)
1471 {
1472 struct block_device *bdev = rdev->bdev;
1473 rdev->bdev = NULL;
1474 if (!bdev)
1475 MD_BUG();
1476 bd_release(bdev);
1477 blkdev_put(bdev);
1478 }
1479
1480 void md_autodetect_dev(dev_t dev);
1481
1482 static void export_rdev(mdk_rdev_t * rdev)
1483 {
1484 char b[BDEVNAME_SIZE];
1485 printk(KERN_INFO "md: export_rdev(%s)\n",
1486 bdevname(rdev->bdev,b));
1487 if (rdev->mddev)
1488 MD_BUG();
1489 free_disk_sb(rdev);
1490 list_del_init(&rdev->same_set);
1491 #ifndef MODULE
1492 md_autodetect_dev(rdev->bdev->bd_dev);
1493 #endif
1494 unlock_rdev(rdev);
1495 kobject_put(&rdev->kobj);
1496 }
1497
1498 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1499 {
1500 unbind_rdev_from_array(rdev);
1501 export_rdev(rdev);
1502 }
1503
1504 static void export_array(mddev_t *mddev)
1505 {
1506 struct list_head *tmp;
1507 mdk_rdev_t *rdev;
1508
1509 ITERATE_RDEV(mddev,rdev,tmp) {
1510 if (!rdev->mddev) {
1511 MD_BUG();
1512 continue;
1513 }
1514 kick_rdev_from_array(rdev);
1515 }
1516 if (!list_empty(&mddev->disks))
1517 MD_BUG();
1518 mddev->raid_disks = 0;
1519 mddev->major_version = 0;
1520 }
1521
1522 static void print_desc(mdp_disk_t *desc)
1523 {
1524 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1525 desc->major,desc->minor,desc->raid_disk,desc->state);
1526 }
1527
1528 static void print_sb(mdp_super_t *sb)
1529 {
1530 int i;
1531
1532 printk(KERN_INFO
1533 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1534 sb->major_version, sb->minor_version, sb->patch_version,
1535 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1536 sb->ctime);
1537 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1538 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1539 sb->md_minor, sb->layout, sb->chunk_size);
1540 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1541 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1542 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1543 sb->failed_disks, sb->spare_disks,
1544 sb->sb_csum, (unsigned long)sb->events_lo);
1545
1546 printk(KERN_INFO);
1547 for (i = 0; i < MD_SB_DISKS; i++) {
1548 mdp_disk_t *desc;
1549
1550 desc = sb->disks + i;
1551 if (desc->number || desc->major || desc->minor ||
1552 desc->raid_disk || (desc->state && (desc->state != 4))) {
1553 printk(" D %2d: ", i);
1554 print_desc(desc);
1555 }
1556 }
1557 printk(KERN_INFO "md: THIS: ");
1558 print_desc(&sb->this_disk);
1559
1560 }
1561
1562 static void print_rdev(mdk_rdev_t *rdev)
1563 {
1564 char b[BDEVNAME_SIZE];
1565 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1566 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1567 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1568 rdev->desc_nr);
1569 if (rdev->sb_loaded) {
1570 printk(KERN_INFO "md: rdev superblock:\n");
1571 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1572 } else
1573 printk(KERN_INFO "md: no rdev superblock!\n");
1574 }
1575
1576 static void md_print_devices(void)
1577 {
1578 struct list_head *tmp, *tmp2;
1579 mdk_rdev_t *rdev;
1580 mddev_t *mddev;
1581 char b[BDEVNAME_SIZE];
1582
1583 printk("\n");
1584 printk("md: **********************************\n");
1585 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1586 printk("md: **********************************\n");
1587 ITERATE_MDDEV(mddev,tmp) {
1588
1589 if (mddev->bitmap)
1590 bitmap_print_sb(mddev->bitmap);
1591 else
1592 printk("%s: ", mdname(mddev));
1593 ITERATE_RDEV(mddev,rdev,tmp2)
1594 printk("<%s>", bdevname(rdev->bdev,b));
1595 printk("\n");
1596
1597 ITERATE_RDEV(mddev,rdev,tmp2)
1598 print_rdev(rdev);
1599 }
1600 printk("md: **********************************\n");
1601 printk("\n");
1602 }
1603
1604
1605 static void sync_sbs(mddev_t * mddev, int nospares)
1606 {
1607 /* Update each superblock (in-memory image), but
1608 * if we are allowed to, skip spares which already
1609 * have the right event counter, or have one earlier
1610 * (which would mean they aren't being marked as dirty
1611 * with the rest of the array)
1612 */
1613 mdk_rdev_t *rdev;
1614 struct list_head *tmp;
1615
1616 ITERATE_RDEV(mddev,rdev,tmp) {
1617 if (rdev->sb_events == mddev->events ||
1618 (nospares &&
1619 rdev->raid_disk < 0 &&
1620 (rdev->sb_events&1)==0 &&
1621 rdev->sb_events+1 == mddev->events)) {
1622 /* Don't update this superblock */
1623 rdev->sb_loaded = 2;
1624 } else {
1625 super_types[mddev->major_version].
1626 sync_super(mddev, rdev);
1627 rdev->sb_loaded = 1;
1628 }
1629 }
1630 }
1631
1632 static void md_update_sb(mddev_t * mddev, int force_change)
1633 {
1634 struct list_head *tmp;
1635 mdk_rdev_t *rdev;
1636 int sync_req;
1637 int nospares = 0;
1638
1639 repeat:
1640 spin_lock_irq(&mddev->write_lock);
1641
1642 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1643 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1644 force_change = 1;
1645 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1646 /* just a clean<-> dirty transition, possibly leave spares alone,
1647 * though if events isn't the right even/odd, we will have to do
1648 * spares after all
1649 */
1650 nospares = 1;
1651 if (force_change)
1652 nospares = 0;
1653 if (mddev->degraded)
1654 /* If the array is degraded, then skipping spares is both
1655 * dangerous and fairly pointless.
1656 * Dangerous because a device that was removed from the array
1657 * might have a event_count that still looks up-to-date,
1658 * so it can be re-added without a resync.
1659 * Pointless because if there are any spares to skip,
1660 * then a recovery will happen and soon that array won't
1661 * be degraded any more and the spare can go back to sleep then.
1662 */
1663 nospares = 0;
1664
1665 sync_req = mddev->in_sync;
1666 mddev->utime = get_seconds();
1667
1668 /* If this is just a dirty<->clean transition, and the array is clean
1669 * and 'events' is odd, we can roll back to the previous clean state */
1670 if (nospares
1671 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1672 && (mddev->events & 1)
1673 && mddev->events != 1)
1674 mddev->events--;
1675 else {
1676 /* otherwise we have to go forward and ... */
1677 mddev->events ++;
1678 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1679 /* .. if the array isn't clean, insist on an odd 'events' */
1680 if ((mddev->events&1)==0) {
1681 mddev->events++;
1682 nospares = 0;
1683 }
1684 } else {
1685 /* otherwise insist on an even 'events' (for clean states) */
1686 if ((mddev->events&1)) {
1687 mddev->events++;
1688 nospares = 0;
1689 }
1690 }
1691 }
1692
1693 if (!mddev->events) {
1694 /*
1695 * oops, this 64-bit counter should never wrap.
1696 * Either we are in around ~1 trillion A.C., assuming
1697 * 1 reboot per second, or we have a bug:
1698 */
1699 MD_BUG();
1700 mddev->events --;
1701 }
1702 sync_sbs(mddev, nospares);
1703
1704 /*
1705 * do not write anything to disk if using
1706 * nonpersistent superblocks
1707 */
1708 if (!mddev->persistent) {
1709 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1710 spin_unlock_irq(&mddev->write_lock);
1711 wake_up(&mddev->sb_wait);
1712 return;
1713 }
1714 spin_unlock_irq(&mddev->write_lock);
1715
1716 dprintk(KERN_INFO
1717 "md: updating %s RAID superblock on device (in sync %d)\n",
1718 mdname(mddev),mddev->in_sync);
1719
1720 bitmap_update_sb(mddev->bitmap);
1721 ITERATE_RDEV(mddev,rdev,tmp) {
1722 char b[BDEVNAME_SIZE];
1723 dprintk(KERN_INFO "md: ");
1724 if (rdev->sb_loaded != 1)
1725 continue; /* no noise on spare devices */
1726 if (test_bit(Faulty, &rdev->flags))
1727 dprintk("(skipping faulty ");
1728
1729 dprintk("%s ", bdevname(rdev->bdev,b));
1730 if (!test_bit(Faulty, &rdev->flags)) {
1731 md_super_write(mddev,rdev,
1732 rdev->sb_offset<<1, rdev->sb_size,
1733 rdev->sb_page);
1734 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1735 bdevname(rdev->bdev,b),
1736 (unsigned long long)rdev->sb_offset);
1737 rdev->sb_events = mddev->events;
1738
1739 } else
1740 dprintk(")\n");
1741 if (mddev->level == LEVEL_MULTIPATH)
1742 /* only need to write one superblock... */
1743 break;
1744 }
1745 md_super_wait(mddev);
1746 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1747
1748 spin_lock_irq(&mddev->write_lock);
1749 if (mddev->in_sync != sync_req ||
1750 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1751 /* have to write it out again */
1752 spin_unlock_irq(&mddev->write_lock);
1753 goto repeat;
1754 }
1755 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1756 spin_unlock_irq(&mddev->write_lock);
1757 wake_up(&mddev->sb_wait);
1758
1759 }
1760
1761 /* words written to sysfs files may, or my not, be \n terminated.
1762 * We want to accept with case. For this we use cmd_match.
1763 */
1764 static int cmd_match(const char *cmd, const char *str)
1765 {
1766 /* See if cmd, written into a sysfs file, matches
1767 * str. They must either be the same, or cmd can
1768 * have a trailing newline
1769 */
1770 while (*cmd && *str && *cmd == *str) {
1771 cmd++;
1772 str++;
1773 }
1774 if (*cmd == '\n')
1775 cmd++;
1776 if (*str || *cmd)
1777 return 0;
1778 return 1;
1779 }
1780
1781 struct rdev_sysfs_entry {
1782 struct attribute attr;
1783 ssize_t (*show)(mdk_rdev_t *, char *);
1784 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1785 };
1786
1787 static ssize_t
1788 state_show(mdk_rdev_t *rdev, char *page)
1789 {
1790 char *sep = "";
1791 int len=0;
1792
1793 if (test_bit(Faulty, &rdev->flags)) {
1794 len+= sprintf(page+len, "%sfaulty",sep);
1795 sep = ",";
1796 }
1797 if (test_bit(In_sync, &rdev->flags)) {
1798 len += sprintf(page+len, "%sin_sync",sep);
1799 sep = ",";
1800 }
1801 if (test_bit(WriteMostly, &rdev->flags)) {
1802 len += sprintf(page+len, "%swrite_mostly",sep);
1803 sep = ",";
1804 }
1805 if (!test_bit(Faulty, &rdev->flags) &&
1806 !test_bit(In_sync, &rdev->flags)) {
1807 len += sprintf(page+len, "%sspare", sep);
1808 sep = ",";
1809 }
1810 return len+sprintf(page+len, "\n");
1811 }
1812
1813 static ssize_t
1814 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1815 {
1816 /* can write
1817 * faulty - simulates and error
1818 * remove - disconnects the device
1819 * writemostly - sets write_mostly
1820 * -writemostly - clears write_mostly
1821 */
1822 int err = -EINVAL;
1823 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1824 md_error(rdev->mddev, rdev);
1825 err = 0;
1826 } else if (cmd_match(buf, "remove")) {
1827 if (rdev->raid_disk >= 0)
1828 err = -EBUSY;
1829 else {
1830 mddev_t *mddev = rdev->mddev;
1831 kick_rdev_from_array(rdev);
1832 if (mddev->pers)
1833 md_update_sb(mddev, 1);
1834 md_new_event(mddev);
1835 err = 0;
1836 }
1837 } else if (cmd_match(buf, "writemostly")) {
1838 set_bit(WriteMostly, &rdev->flags);
1839 err = 0;
1840 } else if (cmd_match(buf, "-writemostly")) {
1841 clear_bit(WriteMostly, &rdev->flags);
1842 err = 0;
1843 }
1844 return err ? err : len;
1845 }
1846 static struct rdev_sysfs_entry rdev_state =
1847 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1848
1849 static ssize_t
1850 super_show(mdk_rdev_t *rdev, char *page)
1851 {
1852 if (rdev->sb_loaded && rdev->sb_size) {
1853 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1854 return rdev->sb_size;
1855 } else
1856 return 0;
1857 }
1858 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1859
1860 static ssize_t
1861 errors_show(mdk_rdev_t *rdev, char *page)
1862 {
1863 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1864 }
1865
1866 static ssize_t
1867 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1868 {
1869 char *e;
1870 unsigned long n = simple_strtoul(buf, &e, 10);
1871 if (*buf && (*e == 0 || *e == '\n')) {
1872 atomic_set(&rdev->corrected_errors, n);
1873 return len;
1874 }
1875 return -EINVAL;
1876 }
1877 static struct rdev_sysfs_entry rdev_errors =
1878 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1879
1880 static ssize_t
1881 slot_show(mdk_rdev_t *rdev, char *page)
1882 {
1883 if (rdev->raid_disk < 0)
1884 return sprintf(page, "none\n");
1885 else
1886 return sprintf(page, "%d\n", rdev->raid_disk);
1887 }
1888
1889 static ssize_t
1890 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1891 {
1892 char *e;
1893 int slot = simple_strtoul(buf, &e, 10);
1894 if (strncmp(buf, "none", 4)==0)
1895 slot = -1;
1896 else if (e==buf || (*e && *e!= '\n'))
1897 return -EINVAL;
1898 if (rdev->mddev->pers)
1899 /* Cannot set slot in active array (yet) */
1900 return -EBUSY;
1901 if (slot >= rdev->mddev->raid_disks)
1902 return -ENOSPC;
1903 rdev->raid_disk = slot;
1904 /* assume it is working */
1905 rdev->flags = 0;
1906 set_bit(In_sync, &rdev->flags);
1907 return len;
1908 }
1909
1910
1911 static struct rdev_sysfs_entry rdev_slot =
1912 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1913
1914 static ssize_t
1915 offset_show(mdk_rdev_t *rdev, char *page)
1916 {
1917 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1918 }
1919
1920 static ssize_t
1921 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1922 {
1923 char *e;
1924 unsigned long long offset = simple_strtoull(buf, &e, 10);
1925 if (e==buf || (*e && *e != '\n'))
1926 return -EINVAL;
1927 if (rdev->mddev->pers)
1928 return -EBUSY;
1929 rdev->data_offset = offset;
1930 return len;
1931 }
1932
1933 static struct rdev_sysfs_entry rdev_offset =
1934 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1935
1936 static ssize_t
1937 rdev_size_show(mdk_rdev_t *rdev, char *page)
1938 {
1939 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1940 }
1941
1942 static ssize_t
1943 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1944 {
1945 char *e;
1946 unsigned long long size = simple_strtoull(buf, &e, 10);
1947 if (e==buf || (*e && *e != '\n'))
1948 return -EINVAL;
1949 if (rdev->mddev->pers)
1950 return -EBUSY;
1951 rdev->size = size;
1952 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1953 rdev->mddev->size = size;
1954 return len;
1955 }
1956
1957 static struct rdev_sysfs_entry rdev_size =
1958 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1959
1960 static struct attribute *rdev_default_attrs[] = {
1961 &rdev_state.attr,
1962 &rdev_super.attr,
1963 &rdev_errors.attr,
1964 &rdev_slot.attr,
1965 &rdev_offset.attr,
1966 &rdev_size.attr,
1967 NULL,
1968 };
1969 static ssize_t
1970 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1971 {
1972 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1973 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1974
1975 if (!entry->show)
1976 return -EIO;
1977 return entry->show(rdev, page);
1978 }
1979
1980 static ssize_t
1981 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1982 const char *page, size_t length)
1983 {
1984 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1985 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1986
1987 if (!entry->store)
1988 return -EIO;
1989 if (!capable(CAP_SYS_ADMIN))
1990 return -EACCES;
1991 return entry->store(rdev, page, length);
1992 }
1993
1994 static void rdev_free(struct kobject *ko)
1995 {
1996 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1997 kfree(rdev);
1998 }
1999 static struct sysfs_ops rdev_sysfs_ops = {
2000 .show = rdev_attr_show,
2001 .store = rdev_attr_store,
2002 };
2003 static struct kobj_type rdev_ktype = {
2004 .release = rdev_free,
2005 .sysfs_ops = &rdev_sysfs_ops,
2006 .default_attrs = rdev_default_attrs,
2007 };
2008
2009 /*
2010 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2011 *
2012 * mark the device faulty if:
2013 *
2014 * - the device is nonexistent (zero size)
2015 * - the device has no valid superblock
2016 *
2017 * a faulty rdev _never_ has rdev->sb set.
2018 */
2019 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2020 {
2021 char b[BDEVNAME_SIZE];
2022 int err;
2023 mdk_rdev_t *rdev;
2024 sector_t size;
2025
2026 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2027 if (!rdev) {
2028 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2029 return ERR_PTR(-ENOMEM);
2030 }
2031
2032 if ((err = alloc_disk_sb(rdev)))
2033 goto abort_free;
2034
2035 err = lock_rdev(rdev, newdev);
2036 if (err)
2037 goto abort_free;
2038
2039 rdev->kobj.parent = NULL;
2040 rdev->kobj.ktype = &rdev_ktype;
2041 kobject_init(&rdev->kobj);
2042
2043 rdev->desc_nr = -1;
2044 rdev->saved_raid_disk = -1;
2045 rdev->raid_disk = -1;
2046 rdev->flags = 0;
2047 rdev->data_offset = 0;
2048 rdev->sb_events = 0;
2049 atomic_set(&rdev->nr_pending, 0);
2050 atomic_set(&rdev->read_errors, 0);
2051 atomic_set(&rdev->corrected_errors, 0);
2052
2053 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2054 if (!size) {
2055 printk(KERN_WARNING
2056 "md: %s has zero or unknown size, marking faulty!\n",
2057 bdevname(rdev->bdev,b));
2058 err = -EINVAL;
2059 goto abort_free;
2060 }
2061
2062 if (super_format >= 0) {
2063 err = super_types[super_format].
2064 load_super(rdev, NULL, super_minor);
2065 if (err == -EINVAL) {
2066 printk(KERN_WARNING
2067 "md: %s does not have a valid v%d.%d "
2068 "superblock, not importing!\n",
2069 bdevname(rdev->bdev,b),
2070 super_format, super_minor);
2071 goto abort_free;
2072 }
2073 if (err < 0) {
2074 printk(KERN_WARNING
2075 "md: could not read %s's sb, not importing!\n",
2076 bdevname(rdev->bdev,b));
2077 goto abort_free;
2078 }
2079 }
2080 INIT_LIST_HEAD(&rdev->same_set);
2081
2082 return rdev;
2083
2084 abort_free:
2085 if (rdev->sb_page) {
2086 if (rdev->bdev)
2087 unlock_rdev(rdev);
2088 free_disk_sb(rdev);
2089 }
2090 kfree(rdev);
2091 return ERR_PTR(err);
2092 }
2093
2094 /*
2095 * Check a full RAID array for plausibility
2096 */
2097
2098
2099 static void analyze_sbs(mddev_t * mddev)
2100 {
2101 int i;
2102 struct list_head *tmp;
2103 mdk_rdev_t *rdev, *freshest;
2104 char b[BDEVNAME_SIZE];
2105
2106 freshest = NULL;
2107 ITERATE_RDEV(mddev,rdev,tmp)
2108 switch (super_types[mddev->major_version].
2109 load_super(rdev, freshest, mddev->minor_version)) {
2110 case 1:
2111 freshest = rdev;
2112 break;
2113 case 0:
2114 break;
2115 default:
2116 printk( KERN_ERR \
2117 "md: fatal superblock inconsistency in %s"
2118 " -- removing from array\n",
2119 bdevname(rdev->bdev,b));
2120 kick_rdev_from_array(rdev);
2121 }
2122
2123
2124 super_types[mddev->major_version].
2125 validate_super(mddev, freshest);
2126
2127 i = 0;
2128 ITERATE_RDEV(mddev,rdev,tmp) {
2129 if (rdev != freshest)
2130 if (super_types[mddev->major_version].
2131 validate_super(mddev, rdev)) {
2132 printk(KERN_WARNING "md: kicking non-fresh %s"
2133 " from array!\n",
2134 bdevname(rdev->bdev,b));
2135 kick_rdev_from_array(rdev);
2136 continue;
2137 }
2138 if (mddev->level == LEVEL_MULTIPATH) {
2139 rdev->desc_nr = i++;
2140 rdev->raid_disk = rdev->desc_nr;
2141 set_bit(In_sync, &rdev->flags);
2142 } else if (rdev->raid_disk >= mddev->raid_disks) {
2143 rdev->raid_disk = -1;
2144 clear_bit(In_sync, &rdev->flags);
2145 }
2146 }
2147
2148
2149
2150 if (mddev->recovery_cp != MaxSector &&
2151 mddev->level >= 1)
2152 printk(KERN_ERR "md: %s: raid array is not clean"
2153 " -- starting background reconstruction\n",
2154 mdname(mddev));
2155
2156 }
2157
2158 static ssize_t
2159 safe_delay_show(mddev_t *mddev, char *page)
2160 {
2161 int msec = (mddev->safemode_delay*1000)/HZ;
2162 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2163 }
2164 static ssize_t
2165 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2166 {
2167 int scale=1;
2168 int dot=0;
2169 int i;
2170 unsigned long msec;
2171 char buf[30];
2172 char *e;
2173 /* remove a period, and count digits after it */
2174 if (len >= sizeof(buf))
2175 return -EINVAL;
2176 strlcpy(buf, cbuf, len);
2177 buf[len] = 0;
2178 for (i=0; i<len; i++) {
2179 if (dot) {
2180 if (isdigit(buf[i])) {
2181 buf[i-1] = buf[i];
2182 scale *= 10;
2183 }
2184 buf[i] = 0;
2185 } else if (buf[i] == '.') {
2186 dot=1;
2187 buf[i] = 0;
2188 }
2189 }
2190 msec = simple_strtoul(buf, &e, 10);
2191 if (e == buf || (*e && *e != '\n'))
2192 return -EINVAL;
2193 msec = (msec * 1000) / scale;
2194 if (msec == 0)
2195 mddev->safemode_delay = 0;
2196 else {
2197 mddev->safemode_delay = (msec*HZ)/1000;
2198 if (mddev->safemode_delay == 0)
2199 mddev->safemode_delay = 1;
2200 }
2201 return len;
2202 }
2203 static struct md_sysfs_entry md_safe_delay =
2204 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2205
2206 static ssize_t
2207 level_show(mddev_t *mddev, char *page)
2208 {
2209 struct mdk_personality *p = mddev->pers;
2210 if (p)
2211 return sprintf(page, "%s\n", p->name);
2212 else if (mddev->clevel[0])
2213 return sprintf(page, "%s\n", mddev->clevel);
2214 else if (mddev->level != LEVEL_NONE)
2215 return sprintf(page, "%d\n", mddev->level);
2216 else
2217 return 0;
2218 }
2219
2220 static ssize_t
2221 level_store(mddev_t *mddev, const char *buf, size_t len)
2222 {
2223 int rv = len;
2224 if (mddev->pers)
2225 return -EBUSY;
2226 if (len == 0)
2227 return 0;
2228 if (len >= sizeof(mddev->clevel))
2229 return -ENOSPC;
2230 strncpy(mddev->clevel, buf, len);
2231 if (mddev->clevel[len-1] == '\n')
2232 len--;
2233 mddev->clevel[len] = 0;
2234 mddev->level = LEVEL_NONE;
2235 return rv;
2236 }
2237
2238 static struct md_sysfs_entry md_level =
2239 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2240
2241
2242 static ssize_t
2243 layout_show(mddev_t *mddev, char *page)
2244 {
2245 /* just a number, not meaningful for all levels */
2246 if (mddev->reshape_position != MaxSector &&
2247 mddev->layout != mddev->new_layout)
2248 return sprintf(page, "%d (%d)\n",
2249 mddev->new_layout, mddev->layout);
2250 return sprintf(page, "%d\n", mddev->layout);
2251 }
2252
2253 static ssize_t
2254 layout_store(mddev_t *mddev, const char *buf, size_t len)
2255 {
2256 char *e;
2257 unsigned long n = simple_strtoul(buf, &e, 10);
2258
2259 if (!*buf || (*e && *e != '\n'))
2260 return -EINVAL;
2261
2262 if (mddev->pers)
2263 return -EBUSY;
2264 if (mddev->reshape_position != MaxSector)
2265 mddev->new_layout = n;
2266 else
2267 mddev->layout = n;
2268 return len;
2269 }
2270 static struct md_sysfs_entry md_layout =
2271 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2272
2273
2274 static ssize_t
2275 raid_disks_show(mddev_t *mddev, char *page)
2276 {
2277 if (mddev->raid_disks == 0)
2278 return 0;
2279 if (mddev->reshape_position != MaxSector &&
2280 mddev->delta_disks != 0)
2281 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2282 mddev->raid_disks - mddev->delta_disks);
2283 return sprintf(page, "%d\n", mddev->raid_disks);
2284 }
2285
2286 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2287
2288 static ssize_t
2289 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2290 {
2291 char *e;
2292 int rv = 0;
2293 unsigned long n = simple_strtoul(buf, &e, 10);
2294
2295 if (!*buf || (*e && *e != '\n'))
2296 return -EINVAL;
2297
2298 if (mddev->pers)
2299 rv = update_raid_disks(mddev, n);
2300 else if (mddev->reshape_position != MaxSector) {
2301 int olddisks = mddev->raid_disks - mddev->delta_disks;
2302 mddev->delta_disks = n - olddisks;
2303 mddev->raid_disks = n;
2304 } else
2305 mddev->raid_disks = n;
2306 return rv ? rv : len;
2307 }
2308 static struct md_sysfs_entry md_raid_disks =
2309 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2310
2311 static ssize_t
2312 chunk_size_show(mddev_t *mddev, char *page)
2313 {
2314 if (mddev->reshape_position != MaxSector &&
2315 mddev->chunk_size != mddev->new_chunk)
2316 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2317 mddev->chunk_size);
2318 return sprintf(page, "%d\n", mddev->chunk_size);
2319 }
2320
2321 static ssize_t
2322 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2323 {
2324 /* can only set chunk_size if array is not yet active */
2325 char *e;
2326 unsigned long n = simple_strtoul(buf, &e, 10);
2327
2328 if (!*buf || (*e && *e != '\n'))
2329 return -EINVAL;
2330
2331 if (mddev->pers)
2332 return -EBUSY;
2333 else if (mddev->reshape_position != MaxSector)
2334 mddev->new_chunk = n;
2335 else
2336 mddev->chunk_size = n;
2337 return len;
2338 }
2339 static struct md_sysfs_entry md_chunk_size =
2340 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2341
2342 static ssize_t
2343 resync_start_show(mddev_t *mddev, char *page)
2344 {
2345 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2346 }
2347
2348 static ssize_t
2349 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2350 {
2351 /* can only set chunk_size if array is not yet active */
2352 char *e;
2353 unsigned long long n = simple_strtoull(buf, &e, 10);
2354
2355 if (mddev->pers)
2356 return -EBUSY;
2357 if (!*buf || (*e && *e != '\n'))
2358 return -EINVAL;
2359
2360 mddev->recovery_cp = n;
2361 return len;
2362 }
2363 static struct md_sysfs_entry md_resync_start =
2364 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2365
2366 /*
2367 * The array state can be:
2368 *
2369 * clear
2370 * No devices, no size, no level
2371 * Equivalent to STOP_ARRAY ioctl
2372 * inactive
2373 * May have some settings, but array is not active
2374 * all IO results in error
2375 * When written, doesn't tear down array, but just stops it
2376 * suspended (not supported yet)
2377 * All IO requests will block. The array can be reconfigured.
2378 * Writing this, if accepted, will block until array is quiessent
2379 * readonly
2380 * no resync can happen. no superblocks get written.
2381 * write requests fail
2382 * read-auto
2383 * like readonly, but behaves like 'clean' on a write request.
2384 *
2385 * clean - no pending writes, but otherwise active.
2386 * When written to inactive array, starts without resync
2387 * If a write request arrives then
2388 * if metadata is known, mark 'dirty' and switch to 'active'.
2389 * if not known, block and switch to write-pending
2390 * If written to an active array that has pending writes, then fails.
2391 * active
2392 * fully active: IO and resync can be happening.
2393 * When written to inactive array, starts with resync
2394 *
2395 * write-pending
2396 * clean, but writes are blocked waiting for 'active' to be written.
2397 *
2398 * active-idle
2399 * like active, but no writes have been seen for a while (100msec).
2400 *
2401 */
2402 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2403 write_pending, active_idle, bad_word};
2404 static char *array_states[] = {
2405 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2406 "write-pending", "active-idle", NULL };
2407
2408 static int match_word(const char *word, char **list)
2409 {
2410 int n;
2411 for (n=0; list[n]; n++)
2412 if (cmd_match(word, list[n]))
2413 break;
2414 return n;
2415 }
2416
2417 static ssize_t
2418 array_state_show(mddev_t *mddev, char *page)
2419 {
2420 enum array_state st = inactive;
2421
2422 if (mddev->pers)
2423 switch(mddev->ro) {
2424 case 1:
2425 st = readonly;
2426 break;
2427 case 2:
2428 st = read_auto;
2429 break;
2430 case 0:
2431 if (mddev->in_sync)
2432 st = clean;
2433 else if (mddev->safemode)
2434 st = active_idle;
2435 else
2436 st = active;
2437 }
2438 else {
2439 if (list_empty(&mddev->disks) &&
2440 mddev->raid_disks == 0 &&
2441 mddev->size == 0)
2442 st = clear;
2443 else
2444 st = inactive;
2445 }
2446 return sprintf(page, "%s\n", array_states[st]);
2447 }
2448
2449 static int do_md_stop(mddev_t * mddev, int ro);
2450 static int do_md_run(mddev_t * mddev);
2451 static int restart_array(mddev_t *mddev);
2452
2453 static ssize_t
2454 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2455 {
2456 int err = -EINVAL;
2457 enum array_state st = match_word(buf, array_states);
2458 switch(st) {
2459 case bad_word:
2460 break;
2461 case clear:
2462 /* stopping an active array */
2463 if (mddev->pers) {
2464 if (atomic_read(&mddev->active) > 1)
2465 return -EBUSY;
2466 err = do_md_stop(mddev, 0);
2467 }
2468 break;
2469 case inactive:
2470 /* stopping an active array */
2471 if (mddev->pers) {
2472 if (atomic_read(&mddev->active) > 1)
2473 return -EBUSY;
2474 err = do_md_stop(mddev, 2);
2475 }
2476 break;
2477 case suspended:
2478 break; /* not supported yet */
2479 case readonly:
2480 if (mddev->pers)
2481 err = do_md_stop(mddev, 1);
2482 else {
2483 mddev->ro = 1;
2484 err = do_md_run(mddev);
2485 }
2486 break;
2487 case read_auto:
2488 /* stopping an active array */
2489 if (mddev->pers) {
2490 err = do_md_stop(mddev, 1);
2491 if (err == 0)
2492 mddev->ro = 2; /* FIXME mark devices writable */
2493 } else {
2494 mddev->ro = 2;
2495 err = do_md_run(mddev);
2496 }
2497 break;
2498 case clean:
2499 if (mddev->pers) {
2500 restart_array(mddev);
2501 spin_lock_irq(&mddev->write_lock);
2502 if (atomic_read(&mddev->writes_pending) == 0) {
2503 mddev->in_sync = 1;
2504 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2505 }
2506 spin_unlock_irq(&mddev->write_lock);
2507 } else {
2508 mddev->ro = 0;
2509 mddev->recovery_cp = MaxSector;
2510 err = do_md_run(mddev);
2511 }
2512 break;
2513 case active:
2514 if (mddev->pers) {
2515 restart_array(mddev);
2516 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2517 wake_up(&mddev->sb_wait);
2518 err = 0;
2519 } else {
2520 mddev->ro = 0;
2521 err = do_md_run(mddev);
2522 }
2523 break;
2524 case write_pending:
2525 case active_idle:
2526 /* these cannot be set */
2527 break;
2528 }
2529 if (err)
2530 return err;
2531 else
2532 return len;
2533 }
2534 static struct md_sysfs_entry md_array_state =
2535 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2536
2537 static ssize_t
2538 null_show(mddev_t *mddev, char *page)
2539 {
2540 return -EINVAL;
2541 }
2542
2543 static ssize_t
2544 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2545 {
2546 /* buf must be %d:%d\n? giving major and minor numbers */
2547 /* The new device is added to the array.
2548 * If the array has a persistent superblock, we read the
2549 * superblock to initialise info and check validity.
2550 * Otherwise, only checking done is that in bind_rdev_to_array,
2551 * which mainly checks size.
2552 */
2553 char *e;
2554 int major = simple_strtoul(buf, &e, 10);
2555 int minor;
2556 dev_t dev;
2557 mdk_rdev_t *rdev;
2558 int err;
2559
2560 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2561 return -EINVAL;
2562 minor = simple_strtoul(e+1, &e, 10);
2563 if (*e && *e != '\n')
2564 return -EINVAL;
2565 dev = MKDEV(major, minor);
2566 if (major != MAJOR(dev) ||
2567 minor != MINOR(dev))
2568 return -EOVERFLOW;
2569
2570
2571 if (mddev->persistent) {
2572 rdev = md_import_device(dev, mddev->major_version,
2573 mddev->minor_version);
2574 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2575 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2576 mdk_rdev_t, same_set);
2577 err = super_types[mddev->major_version]
2578 .load_super(rdev, rdev0, mddev->minor_version);
2579 if (err < 0)
2580 goto out;
2581 }
2582 } else
2583 rdev = md_import_device(dev, -1, -1);
2584
2585 if (IS_ERR(rdev))
2586 return PTR_ERR(rdev);
2587 err = bind_rdev_to_array(rdev, mddev);
2588 out:
2589 if (err)
2590 export_rdev(rdev);
2591 return err ? err : len;
2592 }
2593
2594 static struct md_sysfs_entry md_new_device =
2595 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2596
2597 static ssize_t
2598 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2599 {
2600 char *end;
2601 unsigned long chunk, end_chunk;
2602
2603 if (!mddev->bitmap)
2604 goto out;
2605 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2606 while (*buf) {
2607 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2608 if (buf == end) break;
2609 if (*end == '-') { /* range */
2610 buf = end + 1;
2611 end_chunk = simple_strtoul(buf, &end, 0);
2612 if (buf == end) break;
2613 }
2614 if (*end && !isspace(*end)) break;
2615 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2616 buf = end;
2617 while (isspace(*buf)) buf++;
2618 }
2619 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2620 out:
2621 return len;
2622 }
2623
2624 static struct md_sysfs_entry md_bitmap =
2625 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2626
2627 static ssize_t
2628 size_show(mddev_t *mddev, char *page)
2629 {
2630 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2631 }
2632
2633 static int update_size(mddev_t *mddev, unsigned long size);
2634
2635 static ssize_t
2636 size_store(mddev_t *mddev, const char *buf, size_t len)
2637 {
2638 /* If array is inactive, we can reduce the component size, but
2639 * not increase it (except from 0).
2640 * If array is active, we can try an on-line resize
2641 */
2642 char *e;
2643 int err = 0;
2644 unsigned long long size = simple_strtoull(buf, &e, 10);
2645 if (!*buf || *buf == '\n' ||
2646 (*e && *e != '\n'))
2647 return -EINVAL;
2648
2649 if (mddev->pers) {
2650 err = update_size(mddev, size);
2651 md_update_sb(mddev, 1);
2652 } else {
2653 if (mddev->size == 0 ||
2654 mddev->size > size)
2655 mddev->size = size;
2656 else
2657 err = -ENOSPC;
2658 }
2659 return err ? err : len;
2660 }
2661
2662 static struct md_sysfs_entry md_size =
2663 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2664
2665
2666 /* Metdata version.
2667 * This is either 'none' for arrays with externally managed metadata,
2668 * or N.M for internally known formats
2669 */
2670 static ssize_t
2671 metadata_show(mddev_t *mddev, char *page)
2672 {
2673 if (mddev->persistent)
2674 return sprintf(page, "%d.%d\n",
2675 mddev->major_version, mddev->minor_version);
2676 else
2677 return sprintf(page, "none\n");
2678 }
2679
2680 static ssize_t
2681 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2682 {
2683 int major, minor;
2684 char *e;
2685 if (!list_empty(&mddev->disks))
2686 return -EBUSY;
2687
2688 if (cmd_match(buf, "none")) {
2689 mddev->persistent = 0;
2690 mddev->major_version = 0;
2691 mddev->minor_version = 90;
2692 return len;
2693 }
2694 major = simple_strtoul(buf, &e, 10);
2695 if (e==buf || *e != '.')
2696 return -EINVAL;
2697 buf = e+1;
2698 minor = simple_strtoul(buf, &e, 10);
2699 if (e==buf || (*e && *e != '\n') )
2700 return -EINVAL;
2701 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2702 return -ENOENT;
2703 mddev->major_version = major;
2704 mddev->minor_version = minor;
2705 mddev->persistent = 1;
2706 return len;
2707 }
2708
2709 static struct md_sysfs_entry md_metadata =
2710 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2711
2712 static ssize_t
2713 action_show(mddev_t *mddev, char *page)
2714 {
2715 char *type = "idle";
2716 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2717 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2718 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2719 type = "reshape";
2720 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2721 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2722 type = "resync";
2723 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2724 type = "check";
2725 else
2726 type = "repair";
2727 } else
2728 type = "recover";
2729 }
2730 return sprintf(page, "%s\n", type);
2731 }
2732
2733 static ssize_t
2734 action_store(mddev_t *mddev, const char *page, size_t len)
2735 {
2736 if (!mddev->pers || !mddev->pers->sync_request)
2737 return -EINVAL;
2738
2739 if (cmd_match(page, "idle")) {
2740 if (mddev->sync_thread) {
2741 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2742 md_unregister_thread(mddev->sync_thread);
2743 mddev->sync_thread = NULL;
2744 mddev->recovery = 0;
2745 }
2746 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2747 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2748 return -EBUSY;
2749 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2750 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2751 else if (cmd_match(page, "reshape")) {
2752 int err;
2753 if (mddev->pers->start_reshape == NULL)
2754 return -EINVAL;
2755 err = mddev->pers->start_reshape(mddev);
2756 if (err)
2757 return err;
2758 } else {
2759 if (cmd_match(page, "check"))
2760 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2761 else if (!cmd_match(page, "repair"))
2762 return -EINVAL;
2763 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2764 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2765 }
2766 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2767 md_wakeup_thread(mddev->thread);
2768 return len;
2769 }
2770
2771 static ssize_t
2772 mismatch_cnt_show(mddev_t *mddev, char *page)
2773 {
2774 return sprintf(page, "%llu\n",
2775 (unsigned long long) mddev->resync_mismatches);
2776 }
2777
2778 static struct md_sysfs_entry md_scan_mode =
2779 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2780
2781
2782 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2783
2784 static ssize_t
2785 sync_min_show(mddev_t *mddev, char *page)
2786 {
2787 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2788 mddev->sync_speed_min ? "local": "system");
2789 }
2790
2791 static ssize_t
2792 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2793 {
2794 int min;
2795 char *e;
2796 if (strncmp(buf, "system", 6)==0) {
2797 mddev->sync_speed_min = 0;
2798 return len;
2799 }
2800 min = simple_strtoul(buf, &e, 10);
2801 if (buf == e || (*e && *e != '\n') || min <= 0)
2802 return -EINVAL;
2803 mddev->sync_speed_min = min;
2804 return len;
2805 }
2806
2807 static struct md_sysfs_entry md_sync_min =
2808 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2809
2810 static ssize_t
2811 sync_max_show(mddev_t *mddev, char *page)
2812 {
2813 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2814 mddev->sync_speed_max ? "local": "system");
2815 }
2816
2817 static ssize_t
2818 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2819 {
2820 int max;
2821 char *e;
2822 if (strncmp(buf, "system", 6)==0) {
2823 mddev->sync_speed_max = 0;
2824 return len;
2825 }
2826 max = simple_strtoul(buf, &e, 10);
2827 if (buf == e || (*e && *e != '\n') || max <= 0)
2828 return -EINVAL;
2829 mddev->sync_speed_max = max;
2830 return len;
2831 }
2832
2833 static struct md_sysfs_entry md_sync_max =
2834 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2835
2836
2837 static ssize_t
2838 sync_speed_show(mddev_t *mddev, char *page)
2839 {
2840 unsigned long resync, dt, db;
2841 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2842 dt = ((jiffies - mddev->resync_mark) / HZ);
2843 if (!dt) dt++;
2844 db = resync - (mddev->resync_mark_cnt);
2845 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2846 }
2847
2848 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2849
2850 static ssize_t
2851 sync_completed_show(mddev_t *mddev, char *page)
2852 {
2853 unsigned long max_blocks, resync;
2854
2855 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2856 max_blocks = mddev->resync_max_sectors;
2857 else
2858 max_blocks = mddev->size << 1;
2859
2860 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2861 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2862 }
2863
2864 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2865
2866 static ssize_t
2867 suspend_lo_show(mddev_t *mddev, char *page)
2868 {
2869 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2870 }
2871
2872 static ssize_t
2873 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2874 {
2875 char *e;
2876 unsigned long long new = simple_strtoull(buf, &e, 10);
2877
2878 if (mddev->pers->quiesce == NULL)
2879 return -EINVAL;
2880 if (buf == e || (*e && *e != '\n'))
2881 return -EINVAL;
2882 if (new >= mddev->suspend_hi ||
2883 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2884 mddev->suspend_lo = new;
2885 mddev->pers->quiesce(mddev, 2);
2886 return len;
2887 } else
2888 return -EINVAL;
2889 }
2890 static struct md_sysfs_entry md_suspend_lo =
2891 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2892
2893
2894 static ssize_t
2895 suspend_hi_show(mddev_t *mddev, char *page)
2896 {
2897 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2898 }
2899
2900 static ssize_t
2901 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2902 {
2903 char *e;
2904 unsigned long long new = simple_strtoull(buf, &e, 10);
2905
2906 if (mddev->pers->quiesce == NULL)
2907 return -EINVAL;
2908 if (buf == e || (*e && *e != '\n'))
2909 return -EINVAL;
2910 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2911 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2912 mddev->suspend_hi = new;
2913 mddev->pers->quiesce(mddev, 1);
2914 mddev->pers->quiesce(mddev, 0);
2915 return len;
2916 } else
2917 return -EINVAL;
2918 }
2919 static struct md_sysfs_entry md_suspend_hi =
2920 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2921
2922 static ssize_t
2923 reshape_position_show(mddev_t *mddev, char *page)
2924 {
2925 if (mddev->reshape_position != MaxSector)
2926 return sprintf(page, "%llu\n",
2927 (unsigned long long)mddev->reshape_position);
2928 strcpy(page, "none\n");
2929 return 5;
2930 }
2931
2932 static ssize_t
2933 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
2934 {
2935 char *e;
2936 unsigned long long new = simple_strtoull(buf, &e, 10);
2937 if (mddev->pers)
2938 return -EBUSY;
2939 if (buf == e || (*e && *e != '\n'))
2940 return -EINVAL;
2941 mddev->reshape_position = new;
2942 mddev->delta_disks = 0;
2943 mddev->new_level = mddev->level;
2944 mddev->new_layout = mddev->layout;
2945 mddev->new_chunk = mddev->chunk_size;
2946 return len;
2947 }
2948
2949 static struct md_sysfs_entry md_reshape_position =
2950 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
2951 reshape_position_store);
2952
2953
2954 static struct attribute *md_default_attrs[] = {
2955 &md_level.attr,
2956 &md_layout.attr,
2957 &md_raid_disks.attr,
2958 &md_chunk_size.attr,
2959 &md_size.attr,
2960 &md_resync_start.attr,
2961 &md_metadata.attr,
2962 &md_new_device.attr,
2963 &md_safe_delay.attr,
2964 &md_array_state.attr,
2965 &md_reshape_position.attr,
2966 NULL,
2967 };
2968
2969 static struct attribute *md_redundancy_attrs[] = {
2970 &md_scan_mode.attr,
2971 &md_mismatches.attr,
2972 &md_sync_min.attr,
2973 &md_sync_max.attr,
2974 &md_sync_speed.attr,
2975 &md_sync_completed.attr,
2976 &md_suspend_lo.attr,
2977 &md_suspend_hi.attr,
2978 &md_bitmap.attr,
2979 NULL,
2980 };
2981 static struct attribute_group md_redundancy_group = {
2982 .name = NULL,
2983 .attrs = md_redundancy_attrs,
2984 };
2985
2986
2987 static ssize_t
2988 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2989 {
2990 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2991 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2992 ssize_t rv;
2993
2994 if (!entry->show)
2995 return -EIO;
2996 rv = mddev_lock(mddev);
2997 if (!rv) {
2998 rv = entry->show(mddev, page);
2999 mddev_unlock(mddev);
3000 }
3001 return rv;
3002 }
3003
3004 static ssize_t
3005 md_attr_store(struct kobject *kobj, struct attribute *attr,
3006 const char *page, size_t length)
3007 {
3008 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3009 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3010 ssize_t rv;
3011
3012 if (!entry->store)
3013 return -EIO;
3014 if (!capable(CAP_SYS_ADMIN))
3015 return -EACCES;
3016 rv = mddev_lock(mddev);
3017 if (!rv) {
3018 rv = entry->store(mddev, page, length);
3019 mddev_unlock(mddev);
3020 }
3021 return rv;
3022 }
3023
3024 static void md_free(struct kobject *ko)
3025 {
3026 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3027 kfree(mddev);
3028 }
3029
3030 static struct sysfs_ops md_sysfs_ops = {
3031 .show = md_attr_show,
3032 .store = md_attr_store,
3033 };
3034 static struct kobj_type md_ktype = {
3035 .release = md_free,
3036 .sysfs_ops = &md_sysfs_ops,
3037 .default_attrs = md_default_attrs,
3038 };
3039
3040 int mdp_major = 0;
3041
3042 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3043 {
3044 static DEFINE_MUTEX(disks_mutex);
3045 mddev_t *mddev = mddev_find(dev);
3046 struct gendisk *disk;
3047 int partitioned = (MAJOR(dev) != MD_MAJOR);
3048 int shift = partitioned ? MdpMinorShift : 0;
3049 int unit = MINOR(dev) >> shift;
3050
3051 if (!mddev)
3052 return NULL;
3053
3054 mutex_lock(&disks_mutex);
3055 if (mddev->gendisk) {
3056 mutex_unlock(&disks_mutex);
3057 mddev_put(mddev);
3058 return NULL;
3059 }
3060 disk = alloc_disk(1 << shift);
3061 if (!disk) {
3062 mutex_unlock(&disks_mutex);
3063 mddev_put(mddev);
3064 return NULL;
3065 }
3066 disk->major = MAJOR(dev);
3067 disk->first_minor = unit << shift;
3068 if (partitioned)
3069 sprintf(disk->disk_name, "md_d%d", unit);
3070 else
3071 sprintf(disk->disk_name, "md%d", unit);
3072 disk->fops = &md_fops;
3073 disk->private_data = mddev;
3074 disk->queue = mddev->queue;
3075 add_disk(disk);
3076 mddev->gendisk = disk;
3077 mutex_unlock(&disks_mutex);
3078 mddev->kobj.parent = &disk->kobj;
3079 mddev->kobj.k_name = NULL;
3080 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
3081 mddev->kobj.ktype = &md_ktype;
3082 if (kobject_register(&mddev->kobj))
3083 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3084 disk->disk_name);
3085 return NULL;
3086 }
3087
3088 static void md_safemode_timeout(unsigned long data)
3089 {
3090 mddev_t *mddev = (mddev_t *) data;
3091
3092 mddev->safemode = 1;
3093 md_wakeup_thread(mddev->thread);
3094 }
3095
3096 static int start_dirty_degraded;
3097
3098 static int do_md_run(mddev_t * mddev)
3099 {
3100 int err;
3101 int chunk_size;
3102 struct list_head *tmp;
3103 mdk_rdev_t *rdev;
3104 struct gendisk *disk;
3105 struct mdk_personality *pers;
3106 char b[BDEVNAME_SIZE];
3107
3108 if (list_empty(&mddev->disks))
3109 /* cannot run an array with no devices.. */
3110 return -EINVAL;
3111
3112 if (mddev->pers)
3113 return -EBUSY;
3114
3115 /*
3116 * Analyze all RAID superblock(s)
3117 */
3118 if (!mddev->raid_disks)
3119 analyze_sbs(mddev);
3120
3121 chunk_size = mddev->chunk_size;
3122
3123 if (chunk_size) {
3124 if (chunk_size > MAX_CHUNK_SIZE) {
3125 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3126 chunk_size, MAX_CHUNK_SIZE);
3127 return -EINVAL;
3128 }
3129 /*
3130 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3131 */
3132 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3133 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3134 return -EINVAL;
3135 }
3136 if (chunk_size < PAGE_SIZE) {
3137 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3138 chunk_size, PAGE_SIZE);
3139 return -EINVAL;
3140 }
3141
3142 /* devices must have minimum size of one chunk */
3143 ITERATE_RDEV(mddev,rdev,tmp) {
3144 if (test_bit(Faulty, &rdev->flags))
3145 continue;
3146 if (rdev->size < chunk_size / 1024) {
3147 printk(KERN_WARNING
3148 "md: Dev %s smaller than chunk_size:"
3149 " %lluk < %dk\n",
3150 bdevname(rdev->bdev,b),
3151 (unsigned long long)rdev->size,
3152 chunk_size / 1024);
3153 return -EINVAL;
3154 }
3155 }
3156 }
3157
3158 #ifdef CONFIG_KMOD
3159 if (mddev->level != LEVEL_NONE)
3160 request_module("md-level-%d", mddev->level);
3161 else if (mddev->clevel[0])
3162 request_module("md-%s", mddev->clevel);
3163 #endif
3164
3165 /*
3166 * Drop all container device buffers, from now on
3167 * the only valid external interface is through the md
3168 * device.
3169 */
3170 ITERATE_RDEV(mddev,rdev,tmp) {
3171 if (test_bit(Faulty, &rdev->flags))
3172 continue;
3173 sync_blockdev(rdev->bdev);
3174 invalidate_bdev(rdev->bdev);
3175
3176 /* perform some consistency tests on the device.
3177 * We don't want the data to overlap the metadata,
3178 * Internal Bitmap issues has handled elsewhere.
3179 */
3180 if (rdev->data_offset < rdev->sb_offset) {
3181 if (mddev->size &&
3182 rdev->data_offset + mddev->size*2
3183 > rdev->sb_offset*2) {
3184 printk("md: %s: data overlaps metadata\n",
3185 mdname(mddev));
3186 return -EINVAL;
3187 }
3188 } else {
3189 if (rdev->sb_offset*2 + rdev->sb_size/512
3190 > rdev->data_offset) {
3191 printk("md: %s: metadata overlaps data\n",
3192 mdname(mddev));
3193 return -EINVAL;
3194 }
3195 }
3196 }
3197
3198 md_probe(mddev->unit, NULL, NULL);
3199 disk = mddev->gendisk;
3200 if (!disk)
3201 return -ENOMEM;
3202
3203 spin_lock(&pers_lock);
3204 pers = find_pers(mddev->level, mddev->clevel);
3205 if (!pers || !try_module_get(pers->owner)) {
3206 spin_unlock(&pers_lock);
3207 if (mddev->level != LEVEL_NONE)
3208 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3209 mddev->level);
3210 else
3211 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3212 mddev->clevel);
3213 return -EINVAL;
3214 }
3215 mddev->pers = pers;
3216 spin_unlock(&pers_lock);
3217 mddev->level = pers->level;
3218 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3219
3220 if (mddev->reshape_position != MaxSector &&
3221 pers->start_reshape == NULL) {
3222 /* This personality cannot handle reshaping... */
3223 mddev->pers = NULL;
3224 module_put(pers->owner);
3225 return -EINVAL;
3226 }
3227
3228 if (pers->sync_request) {
3229 /* Warn if this is a potentially silly
3230 * configuration.
3231 */
3232 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3233 mdk_rdev_t *rdev2;
3234 struct list_head *tmp2;
3235 int warned = 0;
3236 ITERATE_RDEV(mddev, rdev, tmp) {
3237 ITERATE_RDEV(mddev, rdev2, tmp2) {
3238 if (rdev < rdev2 &&
3239 rdev->bdev->bd_contains ==
3240 rdev2->bdev->bd_contains) {
3241 printk(KERN_WARNING
3242 "%s: WARNING: %s appears to be"
3243 " on the same physical disk as"
3244 " %s.\n",
3245 mdname(mddev),
3246 bdevname(rdev->bdev,b),
3247 bdevname(rdev2->bdev,b2));
3248 warned = 1;
3249 }
3250 }
3251 }
3252 if (warned)
3253 printk(KERN_WARNING
3254 "True protection against single-disk"
3255 " failure might be compromised.\n");
3256 }
3257
3258 mddev->recovery = 0;
3259 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3260 mddev->barriers_work = 1;
3261 mddev->ok_start_degraded = start_dirty_degraded;
3262
3263 if (start_readonly)
3264 mddev->ro = 2; /* read-only, but switch on first write */
3265
3266 err = mddev->pers->run(mddev);
3267 if (!err && mddev->pers->sync_request) {
3268 err = bitmap_create(mddev);
3269 if (err) {
3270 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3271 mdname(mddev), err);
3272 mddev->pers->stop(mddev);
3273 }
3274 }
3275 if (err) {
3276 printk(KERN_ERR "md: pers->run() failed ...\n");
3277 module_put(mddev->pers->owner);
3278 mddev->pers = NULL;
3279 bitmap_destroy(mddev);
3280 return err;
3281 }
3282 if (mddev->pers->sync_request) {
3283 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3284 printk(KERN_WARNING
3285 "md: cannot register extra attributes for %s\n",
3286 mdname(mddev));
3287 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3288 mddev->ro = 0;
3289
3290 atomic_set(&mddev->writes_pending,0);
3291 mddev->safemode = 0;
3292 mddev->safemode_timer.function = md_safemode_timeout;
3293 mddev->safemode_timer.data = (unsigned long) mddev;
3294 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3295 mddev->in_sync = 1;
3296
3297 ITERATE_RDEV(mddev,rdev,tmp)
3298 if (rdev->raid_disk >= 0) {
3299 char nm[20];
3300 sprintf(nm, "rd%d", rdev->raid_disk);
3301 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3302 printk("md: cannot register %s for %s\n",
3303 nm, mdname(mddev));
3304 }
3305
3306 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3307
3308 if (mddev->flags)
3309 md_update_sb(mddev, 0);
3310
3311 set_capacity(disk, mddev->array_size<<1);
3312
3313 /* If we call blk_queue_make_request here, it will
3314 * re-initialise max_sectors etc which may have been
3315 * refined inside -> run. So just set the bits we need to set.
3316 * Most initialisation happended when we called
3317 * blk_queue_make_request(..., md_fail_request)
3318 * earlier.
3319 */
3320 mddev->queue->queuedata = mddev;
3321 mddev->queue->make_request_fn = mddev->pers->make_request;
3322
3323 /* If there is a partially-recovered drive we need to
3324 * start recovery here. If we leave it to md_check_recovery,
3325 * it will remove the drives and not do the right thing
3326 */
3327 if (mddev->degraded && !mddev->sync_thread) {
3328 struct list_head *rtmp;
3329 int spares = 0;
3330 ITERATE_RDEV(mddev,rdev,rtmp)
3331 if (rdev->raid_disk >= 0 &&
3332 !test_bit(In_sync, &rdev->flags) &&
3333 !test_bit(Faulty, &rdev->flags))
3334 /* complete an interrupted recovery */
3335 spares++;
3336 if (spares && mddev->pers->sync_request) {
3337 mddev->recovery = 0;
3338 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3339 mddev->sync_thread = md_register_thread(md_do_sync,
3340 mddev,
3341 "%s_resync");
3342 if (!mddev->sync_thread) {
3343 printk(KERN_ERR "%s: could not start resync"
3344 " thread...\n",
3345 mdname(mddev));
3346 /* leave the spares where they are, it shouldn't hurt */
3347 mddev->recovery = 0;
3348 }
3349 }
3350 }
3351 md_wakeup_thread(mddev->thread);
3352 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3353
3354 mddev->changed = 1;
3355 md_new_event(mddev);
3356 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3357 return 0;
3358 }
3359
3360 static int restart_array(mddev_t *mddev)
3361 {
3362 struct gendisk *disk = mddev->gendisk;
3363 int err;
3364
3365 /*
3366 * Complain if it has no devices
3367 */
3368 err = -ENXIO;
3369 if (list_empty(&mddev->disks))
3370 goto out;
3371
3372 if (mddev->pers) {
3373 err = -EBUSY;
3374 if (!mddev->ro)
3375 goto out;
3376
3377 mddev->safemode = 0;
3378 mddev->ro = 0;
3379 set_disk_ro(disk, 0);
3380
3381 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3382 mdname(mddev));
3383 /*
3384 * Kick recovery or resync if necessary
3385 */
3386 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3387 md_wakeup_thread(mddev->thread);
3388 md_wakeup_thread(mddev->sync_thread);
3389 err = 0;
3390 } else
3391 err = -EINVAL;
3392
3393 out:
3394 return err;
3395 }
3396
3397 /* similar to deny_write_access, but accounts for our holding a reference
3398 * to the file ourselves */
3399 static int deny_bitmap_write_access(struct file * file)
3400 {
3401 struct inode *inode = file->f_mapping->host;
3402
3403 spin_lock(&inode->i_lock);
3404 if (atomic_read(&inode->i_writecount) > 1) {
3405 spin_unlock(&inode->i_lock);
3406 return -ETXTBSY;
3407 }
3408 atomic_set(&inode->i_writecount, -1);
3409 spin_unlock(&inode->i_lock);
3410
3411 return 0;
3412 }
3413
3414 static void restore_bitmap_write_access(struct file *file)
3415 {
3416 struct inode *inode = file->f_mapping->host;
3417
3418 spin_lock(&inode->i_lock);
3419 atomic_set(&inode->i_writecount, 1);
3420 spin_unlock(&inode->i_lock);
3421 }
3422
3423 /* mode:
3424 * 0 - completely stop and dis-assemble array
3425 * 1 - switch to readonly
3426 * 2 - stop but do not disassemble array
3427 */
3428 static int do_md_stop(mddev_t * mddev, int mode)
3429 {
3430 int err = 0;
3431 struct gendisk *disk = mddev->gendisk;
3432
3433 if (mddev->pers) {
3434 if (atomic_read(&mddev->active)>2) {
3435 printk("md: %s still in use.\n",mdname(mddev));
3436 return -EBUSY;
3437 }
3438
3439 if (mddev->sync_thread) {
3440 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3441 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3442 md_unregister_thread(mddev->sync_thread);
3443 mddev->sync_thread = NULL;
3444 }
3445
3446 del_timer_sync(&mddev->safemode_timer);
3447
3448 invalidate_partition(disk, 0);
3449
3450 switch(mode) {
3451 case 1: /* readonly */
3452 err = -ENXIO;
3453 if (mddev->ro==1)
3454 goto out;
3455 mddev->ro = 1;
3456 break;
3457 case 0: /* disassemble */
3458 case 2: /* stop */
3459 bitmap_flush(mddev);
3460 md_super_wait(mddev);
3461 if (mddev->ro)
3462 set_disk_ro(disk, 0);
3463 blk_queue_make_request(mddev->queue, md_fail_request);
3464 mddev->pers->stop(mddev);
3465 mddev->queue->merge_bvec_fn = NULL;
3466 mddev->queue->unplug_fn = NULL;
3467 mddev->queue->issue_flush_fn = NULL;
3468 mddev->queue->backing_dev_info.congested_fn = NULL;
3469 if (mddev->pers->sync_request)
3470 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3471
3472 module_put(mddev->pers->owner);
3473 mddev->pers = NULL;
3474
3475 set_capacity(disk, 0);
3476 mddev->changed = 1;
3477
3478 if (mddev->ro)
3479 mddev->ro = 0;
3480 }
3481 if (!mddev->in_sync || mddev->flags) {
3482 /* mark array as shutdown cleanly */
3483 mddev->in_sync = 1;
3484 md_update_sb(mddev, 1);
3485 }
3486 if (mode == 1)
3487 set_disk_ro(disk, 1);
3488 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3489 }
3490
3491 /*
3492 * Free resources if final stop
3493 */
3494 if (mode == 0) {
3495 mdk_rdev_t *rdev;
3496 struct list_head *tmp;
3497
3498 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3499
3500 bitmap_destroy(mddev);
3501 if (mddev->bitmap_file) {
3502 restore_bitmap_write_access(mddev->bitmap_file);
3503 fput(mddev->bitmap_file);
3504 mddev->bitmap_file = NULL;
3505 }
3506 mddev->bitmap_offset = 0;
3507
3508 ITERATE_RDEV(mddev,rdev,tmp)
3509 if (rdev->raid_disk >= 0) {
3510 char nm[20];
3511 sprintf(nm, "rd%d", rdev->raid_disk);
3512 sysfs_remove_link(&mddev->kobj, nm);
3513 }
3514
3515 /* make sure all delayed_delete calls have finished */
3516 flush_scheduled_work();
3517
3518 export_array(mddev);
3519
3520 mddev->array_size = 0;
3521 mddev->size = 0;
3522 mddev->raid_disks = 0;
3523 mddev->recovery_cp = 0;
3524 mddev->reshape_position = MaxSector;
3525
3526 } else if (mddev->pers)
3527 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3528 mdname(mddev));
3529 err = 0;
3530 md_new_event(mddev);
3531 out:
3532 return err;
3533 }
3534
3535 #ifndef MODULE
3536 static void autorun_array(mddev_t *mddev)
3537 {
3538 mdk_rdev_t *rdev;
3539 struct list_head *tmp;
3540 int err;
3541
3542 if (list_empty(&mddev->disks))
3543 return;
3544
3545 printk(KERN_INFO "md: running: ");
3546
3547 ITERATE_RDEV(mddev,rdev,tmp) {
3548 char b[BDEVNAME_SIZE];
3549 printk("<%s>", bdevname(rdev->bdev,b));
3550 }
3551 printk("\n");
3552
3553 err = do_md_run (mddev);
3554 if (err) {
3555 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3556 do_md_stop (mddev, 0);
3557 }
3558 }
3559
3560 /*
3561 * lets try to run arrays based on all disks that have arrived
3562 * until now. (those are in pending_raid_disks)
3563 *
3564 * the method: pick the first pending disk, collect all disks with
3565 * the same UUID, remove all from the pending list and put them into
3566 * the 'same_array' list. Then order this list based on superblock
3567 * update time (freshest comes first), kick out 'old' disks and
3568 * compare superblocks. If everything's fine then run it.
3569 *
3570 * If "unit" is allocated, then bump its reference count
3571 */
3572 static void autorun_devices(int part)
3573 {
3574 struct list_head *tmp;
3575 mdk_rdev_t *rdev0, *rdev;
3576 mddev_t *mddev;
3577 char b[BDEVNAME_SIZE];
3578
3579 printk(KERN_INFO "md: autorun ...\n");
3580 while (!list_empty(&pending_raid_disks)) {
3581 int unit;
3582 dev_t dev;
3583 LIST_HEAD(candidates);
3584 rdev0 = list_entry(pending_raid_disks.next,
3585 mdk_rdev_t, same_set);
3586
3587 printk(KERN_INFO "md: considering %s ...\n",
3588 bdevname(rdev0->bdev,b));
3589 INIT_LIST_HEAD(&candidates);
3590 ITERATE_RDEV_PENDING(rdev,tmp)
3591 if (super_90_load(rdev, rdev0, 0) >= 0) {
3592 printk(KERN_INFO "md: adding %s ...\n",
3593 bdevname(rdev->bdev,b));
3594 list_move(&rdev->same_set, &candidates);
3595 }
3596 /*
3597 * now we have a set of devices, with all of them having
3598 * mostly sane superblocks. It's time to allocate the
3599 * mddev.
3600 */
3601 if (part) {
3602 dev = MKDEV(mdp_major,
3603 rdev0->preferred_minor << MdpMinorShift);
3604 unit = MINOR(dev) >> MdpMinorShift;
3605 } else {
3606 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3607 unit = MINOR(dev);
3608 }
3609 if (rdev0->preferred_minor != unit) {
3610 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3611 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3612 break;
3613 }
3614
3615 md_probe(dev, NULL, NULL);
3616 mddev = mddev_find(dev);
3617 if (!mddev) {
3618 printk(KERN_ERR
3619 "md: cannot allocate memory for md drive.\n");
3620 break;
3621 }
3622 if (mddev_lock(mddev))
3623 printk(KERN_WARNING "md: %s locked, cannot run\n",
3624 mdname(mddev));
3625 else if (mddev->raid_disks || mddev->major_version
3626 || !list_empty(&mddev->disks)) {
3627 printk(KERN_WARNING
3628 "md: %s already running, cannot run %s\n",
3629 mdname(mddev), bdevname(rdev0->bdev,b));
3630 mddev_unlock(mddev);
3631 } else {
3632 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3633 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3634 list_del_init(&rdev->same_set);
3635 if (bind_rdev_to_array(rdev, mddev))
3636 export_rdev(rdev);
3637 }
3638 autorun_array(mddev);
3639 mddev_unlock(mddev);
3640 }
3641 /* on success, candidates will be empty, on error
3642 * it won't...
3643 */
3644 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3645 export_rdev(rdev);
3646 mddev_put(mddev);
3647 }
3648 printk(KERN_INFO "md: ... autorun DONE.\n");
3649 }
3650 #endif /* !MODULE */
3651
3652 static int get_version(void __user * arg)
3653 {
3654 mdu_version_t ver;
3655
3656 ver.major = MD_MAJOR_VERSION;
3657 ver.minor = MD_MINOR_VERSION;
3658 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3659
3660 if (copy_to_user(arg, &ver, sizeof(ver)))
3661 return -EFAULT;
3662
3663 return 0;
3664 }
3665
3666 static int get_array_info(mddev_t * mddev, void __user * arg)
3667 {
3668 mdu_array_info_t info;
3669 int nr,working,active,failed,spare;
3670 mdk_rdev_t *rdev;
3671 struct list_head *tmp;
3672
3673 nr=working=active=failed=spare=0;
3674 ITERATE_RDEV(mddev,rdev,tmp) {
3675 nr++;
3676 if (test_bit(Faulty, &rdev->flags))
3677 failed++;
3678 else {
3679 working++;
3680 if (test_bit(In_sync, &rdev->flags))
3681 active++;
3682 else
3683 spare++;
3684 }
3685 }
3686
3687 info.major_version = mddev->major_version;
3688 info.minor_version = mddev->minor_version;
3689 info.patch_version = MD_PATCHLEVEL_VERSION;
3690 info.ctime = mddev->ctime;
3691 info.level = mddev->level;
3692 info.size = mddev->size;
3693 if (info.size != mddev->size) /* overflow */
3694 info.size = -1;
3695 info.nr_disks = nr;
3696 info.raid_disks = mddev->raid_disks;
3697 info.md_minor = mddev->md_minor;
3698 info.not_persistent= !mddev->persistent;
3699
3700 info.utime = mddev->utime;
3701 info.state = 0;
3702 if (mddev->in_sync)
3703 info.state = (1<<MD_SB_CLEAN);
3704 if (mddev->bitmap && mddev->bitmap_offset)
3705 info.state = (1<<MD_SB_BITMAP_PRESENT);
3706 info.active_disks = active;
3707 info.working_disks = working;
3708 info.failed_disks = failed;
3709 info.spare_disks = spare;
3710
3711 info.layout = mddev->layout;
3712 info.chunk_size = mddev->chunk_size;
3713
3714 if (copy_to_user(arg, &info, sizeof(info)))
3715 return -EFAULT;
3716
3717 return 0;
3718 }
3719
3720 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3721 {
3722 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3723 char *ptr, *buf = NULL;
3724 int err = -ENOMEM;
3725
3726 md_allow_write(mddev);
3727
3728 file = kmalloc(sizeof(*file), GFP_KERNEL);
3729 if (!file)
3730 goto out;
3731
3732 /* bitmap disabled, zero the first byte and copy out */
3733 if (!mddev->bitmap || !mddev->bitmap->file) {
3734 file->pathname[0] = '\0';
3735 goto copy_out;
3736 }
3737
3738 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3739 if (!buf)
3740 goto out;
3741
3742 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3743 if (!ptr)
3744 goto out;
3745
3746 strcpy(file->pathname, ptr);
3747
3748 copy_out:
3749 err = 0;
3750 if (copy_to_user(arg, file, sizeof(*file)))
3751 err = -EFAULT;
3752 out:
3753 kfree(buf);
3754 kfree(file);
3755 return err;
3756 }
3757
3758 static int get_disk_info(mddev_t * mddev, void __user * arg)
3759 {
3760 mdu_disk_info_t info;
3761 unsigned int nr;
3762 mdk_rdev_t *rdev;
3763
3764 if (copy_from_user(&info, arg, sizeof(info)))
3765 return -EFAULT;
3766
3767 nr = info.number;
3768
3769 rdev = find_rdev_nr(mddev, nr);
3770 if (rdev) {
3771 info.major = MAJOR(rdev->bdev->bd_dev);
3772 info.minor = MINOR(rdev->bdev->bd_dev);
3773 info.raid_disk = rdev->raid_disk;
3774 info.state = 0;
3775 if (test_bit(Faulty, &rdev->flags))
3776 info.state |= (1<<MD_DISK_FAULTY);
3777 else if (test_bit(In_sync, &rdev->flags)) {
3778 info.state |= (1<<MD_DISK_ACTIVE);
3779 info.state |= (1<<MD_DISK_SYNC);
3780 }
3781 if (test_bit(WriteMostly, &rdev->flags))
3782 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3783 } else {
3784 info.major = info.minor = 0;
3785 info.raid_disk = -1;
3786 info.state = (1<<MD_DISK_REMOVED);
3787 }
3788
3789 if (copy_to_user(arg, &info, sizeof(info)))
3790 return -EFAULT;
3791
3792 return 0;
3793 }
3794
3795 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3796 {
3797 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3798 mdk_rdev_t *rdev;
3799 dev_t dev = MKDEV(info->major,info->minor);
3800
3801 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3802 return -EOVERFLOW;
3803
3804 if (!mddev->raid_disks) {
3805 int err;
3806 /* expecting a device which has a superblock */
3807 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3808 if (IS_ERR(rdev)) {
3809 printk(KERN_WARNING
3810 "md: md_import_device returned %ld\n",
3811 PTR_ERR(rdev));
3812 return PTR_ERR(rdev);
3813 }
3814 if (!list_empty(&mddev->disks)) {
3815 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3816 mdk_rdev_t, same_set);
3817 int err = super_types[mddev->major_version]
3818 .load_super(rdev, rdev0, mddev->minor_version);
3819 if (err < 0) {
3820 printk(KERN_WARNING
3821 "md: %s has different UUID to %s\n",
3822 bdevname(rdev->bdev,b),
3823 bdevname(rdev0->bdev,b2));
3824 export_rdev(rdev);
3825 return -EINVAL;
3826 }
3827 }
3828 err = bind_rdev_to_array(rdev, mddev);
3829 if (err)
3830 export_rdev(rdev);
3831 return err;
3832 }
3833
3834 /*
3835 * add_new_disk can be used once the array is assembled
3836 * to add "hot spares". They must already have a superblock
3837 * written
3838 */
3839 if (mddev->pers) {
3840 int err;
3841 if (!mddev->pers->hot_add_disk) {
3842 printk(KERN_WARNING
3843 "%s: personality does not support diskops!\n",
3844 mdname(mddev));
3845 return -EINVAL;
3846 }
3847 if (mddev->persistent)
3848 rdev = md_import_device(dev, mddev->major_version,
3849 mddev->minor_version);
3850 else
3851 rdev = md_import_device(dev, -1, -1);
3852 if (IS_ERR(rdev)) {
3853 printk(KERN_WARNING
3854 "md: md_import_device returned %ld\n",
3855 PTR_ERR(rdev));
3856 return PTR_ERR(rdev);
3857 }
3858 /* set save_raid_disk if appropriate */
3859 if (!mddev->persistent) {
3860 if (info->state & (1<<MD_DISK_SYNC) &&
3861 info->raid_disk < mddev->raid_disks)
3862 rdev->raid_disk = info->raid_disk;
3863 else
3864 rdev->raid_disk = -1;
3865 } else
3866 super_types[mddev->major_version].
3867 validate_super(mddev, rdev);
3868 rdev->saved_raid_disk = rdev->raid_disk;
3869
3870 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3871 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3872 set_bit(WriteMostly, &rdev->flags);
3873
3874 rdev->raid_disk = -1;
3875 err = bind_rdev_to_array(rdev, mddev);
3876 if (!err && !mddev->pers->hot_remove_disk) {
3877 /* If there is hot_add_disk but no hot_remove_disk
3878 * then added disks for geometry changes,
3879 * and should be added immediately.
3880 */
3881 super_types[mddev->major_version].
3882 validate_super(mddev, rdev);
3883 err = mddev->pers->hot_add_disk(mddev, rdev);
3884 if (err)
3885 unbind_rdev_from_array(rdev);
3886 }
3887 if (err)
3888 export_rdev(rdev);
3889
3890 md_update_sb(mddev, 1);
3891 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3892 md_wakeup_thread(mddev->thread);
3893 return err;
3894 }
3895
3896 /* otherwise, add_new_disk is only allowed
3897 * for major_version==0 superblocks
3898 */
3899 if (mddev->major_version != 0) {
3900 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3901 mdname(mddev));
3902 return -EINVAL;
3903 }
3904
3905 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3906 int err;
3907 rdev = md_import_device (dev, -1, 0);
3908 if (IS_ERR(rdev)) {
3909 printk(KERN_WARNING
3910 "md: error, md_import_device() returned %ld\n",
3911 PTR_ERR(rdev));
3912 return PTR_ERR(rdev);
3913 }
3914 rdev->desc_nr = info->number;
3915 if (info->raid_disk < mddev->raid_disks)
3916 rdev->raid_disk = info->raid_disk;
3917 else
3918 rdev->raid_disk = -1;
3919
3920 rdev->flags = 0;
3921
3922 if (rdev->raid_disk < mddev->raid_disks)
3923 if (info->state & (1<<MD_DISK_SYNC))
3924 set_bit(In_sync, &rdev->flags);
3925
3926 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3927 set_bit(WriteMostly, &rdev->flags);
3928
3929 if (!mddev->persistent) {
3930 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3931 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3932 } else
3933 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3934 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3935
3936 err = bind_rdev_to_array(rdev, mddev);
3937 if (err) {
3938 export_rdev(rdev);
3939 return err;
3940 }
3941 }
3942
3943 return 0;
3944 }
3945
3946 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3947 {
3948 char b[BDEVNAME_SIZE];
3949 mdk_rdev_t *rdev;
3950
3951 if (!mddev->pers)
3952 return -ENODEV;
3953
3954 rdev = find_rdev(mddev, dev);
3955 if (!rdev)
3956 return -ENXIO;
3957
3958 if (rdev->raid_disk >= 0)
3959 goto busy;
3960
3961 kick_rdev_from_array(rdev);
3962 md_update_sb(mddev, 1);
3963 md_new_event(mddev);
3964
3965 return 0;
3966 busy:
3967 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3968 bdevname(rdev->bdev,b), mdname(mddev));
3969 return -EBUSY;
3970 }
3971
3972 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3973 {
3974 char b[BDEVNAME_SIZE];
3975 int err;
3976 unsigned int size;
3977 mdk_rdev_t *rdev;
3978
3979 if (!mddev->pers)
3980 return -ENODEV;
3981
3982 if (mddev->major_version != 0) {
3983 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3984 " version-0 superblocks.\n",
3985 mdname(mddev));
3986 return -EINVAL;
3987 }
3988 if (!mddev->pers->hot_add_disk) {
3989 printk(KERN_WARNING
3990 "%s: personality does not support diskops!\n",
3991 mdname(mddev));
3992 return -EINVAL;
3993 }
3994
3995 rdev = md_import_device (dev, -1, 0);
3996 if (IS_ERR(rdev)) {
3997 printk(KERN_WARNING
3998 "md: error, md_import_device() returned %ld\n",
3999 PTR_ERR(rdev));
4000 return -EINVAL;
4001 }
4002
4003 if (mddev->persistent)
4004 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4005 else
4006 rdev->sb_offset =
4007 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4008
4009 size = calc_dev_size(rdev, mddev->chunk_size);
4010 rdev->size = size;
4011
4012 if (test_bit(Faulty, &rdev->flags)) {
4013 printk(KERN_WARNING
4014 "md: can not hot-add faulty %s disk to %s!\n",
4015 bdevname(rdev->bdev,b), mdname(mddev));
4016 err = -EINVAL;
4017 goto abort_export;
4018 }
4019 clear_bit(In_sync, &rdev->flags);
4020 rdev->desc_nr = -1;
4021 rdev->saved_raid_disk = -1;
4022 err = bind_rdev_to_array(rdev, mddev);
4023 if (err)
4024 goto abort_export;
4025
4026 /*
4027 * The rest should better be atomic, we can have disk failures
4028 * noticed in interrupt contexts ...
4029 */
4030
4031 if (rdev->desc_nr == mddev->max_disks) {
4032 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4033 mdname(mddev));
4034 err = -EBUSY;
4035 goto abort_unbind_export;
4036 }
4037
4038 rdev->raid_disk = -1;
4039
4040 md_update_sb(mddev, 1);
4041
4042 /*
4043 * Kick recovery, maybe this spare has to be added to the
4044 * array immediately.
4045 */
4046 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4047 md_wakeup_thread(mddev->thread);
4048 md_new_event(mddev);
4049 return 0;
4050
4051 abort_unbind_export:
4052 unbind_rdev_from_array(rdev);
4053
4054 abort_export:
4055 export_rdev(rdev);
4056 return err;
4057 }
4058
4059 static int set_bitmap_file(mddev_t *mddev, int fd)
4060 {
4061 int err;
4062
4063 if (mddev->pers) {
4064 if (!mddev->pers->quiesce)
4065 return -EBUSY;
4066 if (mddev->recovery || mddev->sync_thread)
4067 return -EBUSY;
4068 /* we should be able to change the bitmap.. */
4069 }
4070
4071
4072 if (fd >= 0) {
4073 if (mddev->bitmap)
4074 return -EEXIST; /* cannot add when bitmap is present */
4075 mddev->bitmap_file = fget(fd);
4076
4077 if (mddev->bitmap_file == NULL) {
4078 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4079 mdname(mddev));
4080 return -EBADF;
4081 }
4082
4083 err = deny_bitmap_write_access(mddev->bitmap_file);
4084 if (err) {
4085 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4086 mdname(mddev));
4087 fput(mddev->bitmap_file);
4088 mddev->bitmap_file = NULL;
4089 return err;
4090 }
4091 mddev->bitmap_offset = 0; /* file overrides offset */
4092 } else if (mddev->bitmap == NULL)
4093 return -ENOENT; /* cannot remove what isn't there */
4094 err = 0;
4095 if (mddev->pers) {
4096 mddev->pers->quiesce(mddev, 1);
4097 if (fd >= 0)
4098 err = bitmap_create(mddev);
4099 if (fd < 0 || err) {
4100 bitmap_destroy(mddev);
4101 fd = -1; /* make sure to put the file */
4102 }
4103 mddev->pers->quiesce(mddev, 0);
4104 }
4105 if (fd < 0) {
4106 if (mddev->bitmap_file) {
4107 restore_bitmap_write_access(mddev->bitmap_file);
4108 fput(mddev->bitmap_file);
4109 }
4110 mddev->bitmap_file = NULL;
4111 }
4112
4113 return err;
4114 }
4115
4116 /*
4117 * set_array_info is used two different ways
4118 * The original usage is when creating a new array.
4119 * In this usage, raid_disks is > 0 and it together with
4120 * level, size, not_persistent,layout,chunksize determine the
4121 * shape of the array.
4122 * This will always create an array with a type-0.90.0 superblock.
4123 * The newer usage is when assembling an array.
4124 * In this case raid_disks will be 0, and the major_version field is
4125 * use to determine which style super-blocks are to be found on the devices.
4126 * The minor and patch _version numbers are also kept incase the
4127 * super_block handler wishes to interpret them.
4128 */
4129 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4130 {
4131
4132 if (info->raid_disks == 0) {
4133 /* just setting version number for superblock loading */
4134 if (info->major_version < 0 ||
4135 info->major_version >= ARRAY_SIZE(super_types) ||
4136 super_types[info->major_version].name == NULL) {
4137 /* maybe try to auto-load a module? */
4138 printk(KERN_INFO
4139 "md: superblock version %d not known\n",
4140 info->major_version);
4141 return -EINVAL;
4142 }
4143 mddev->major_version = info->major_version;
4144 mddev->minor_version = info->minor_version;
4145 mddev->patch_version = info->patch_version;
4146 mddev->persistent = !info->not_persistent;
4147 return 0;
4148 }
4149 mddev->major_version = MD_MAJOR_VERSION;
4150 mddev->minor_version = MD_MINOR_VERSION;
4151 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4152 mddev->ctime = get_seconds();
4153
4154 mddev->level = info->level;
4155 mddev->clevel[0] = 0;
4156 mddev->size = info->size;
4157 mddev->raid_disks = info->raid_disks;
4158 /* don't set md_minor, it is determined by which /dev/md* was
4159 * openned
4160 */
4161 if (info->state & (1<<MD_SB_CLEAN))
4162 mddev->recovery_cp = MaxSector;
4163 else
4164 mddev->recovery_cp = 0;
4165 mddev->persistent = ! info->not_persistent;
4166
4167 mddev->layout = info->layout;
4168 mddev->chunk_size = info->chunk_size;
4169
4170 mddev->max_disks = MD_SB_DISKS;
4171
4172 mddev->flags = 0;
4173 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4174
4175 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4176 mddev->bitmap_offset = 0;
4177
4178 mddev->reshape_position = MaxSector;
4179
4180 /*
4181 * Generate a 128 bit UUID
4182 */
4183 get_random_bytes(mddev->uuid, 16);
4184
4185 mddev->new_level = mddev->level;
4186 mddev->new_chunk = mddev->chunk_size;
4187 mddev->new_layout = mddev->layout;
4188 mddev->delta_disks = 0;
4189
4190 return 0;
4191 }
4192
4193 static int update_size(mddev_t *mddev, unsigned long size)
4194 {
4195 mdk_rdev_t * rdev;
4196 int rv;
4197 struct list_head *tmp;
4198 int fit = (size == 0);
4199
4200 if (mddev->pers->resize == NULL)
4201 return -EINVAL;
4202 /* The "size" is the amount of each device that is used.
4203 * This can only make sense for arrays with redundancy.
4204 * linear and raid0 always use whatever space is available
4205 * We can only consider changing the size if no resync
4206 * or reconstruction is happening, and if the new size
4207 * is acceptable. It must fit before the sb_offset or,
4208 * if that is <data_offset, it must fit before the
4209 * size of each device.
4210 * If size is zero, we find the largest size that fits.
4211 */
4212 if (mddev->sync_thread)
4213 return -EBUSY;
4214 ITERATE_RDEV(mddev,rdev,tmp) {
4215 sector_t avail;
4216 avail = rdev->size * 2;
4217
4218 if (fit && (size == 0 || size > avail/2))
4219 size = avail/2;
4220 if (avail < ((sector_t)size << 1))
4221 return -ENOSPC;
4222 }
4223 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4224 if (!rv) {
4225 struct block_device *bdev;
4226
4227 bdev = bdget_disk(mddev->gendisk, 0);
4228 if (bdev) {
4229 mutex_lock(&bdev->bd_inode->i_mutex);
4230 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4231 mutex_unlock(&bdev->bd_inode->i_mutex);
4232 bdput(bdev);
4233 }
4234 }
4235 return rv;
4236 }
4237
4238 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4239 {
4240 int rv;
4241 /* change the number of raid disks */
4242 if (mddev->pers->check_reshape == NULL)
4243 return -EINVAL;
4244 if (raid_disks <= 0 ||
4245 raid_disks >= mddev->max_disks)
4246 return -EINVAL;
4247 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4248 return -EBUSY;
4249 mddev->delta_disks = raid_disks - mddev->raid_disks;
4250
4251 rv = mddev->pers->check_reshape(mddev);
4252 return rv;
4253 }
4254
4255
4256 /*
4257 * update_array_info is used to change the configuration of an
4258 * on-line array.
4259 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4260 * fields in the info are checked against the array.
4261 * Any differences that cannot be handled will cause an error.
4262 * Normally, only one change can be managed at a time.
4263 */
4264 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4265 {
4266 int rv = 0;
4267 int cnt = 0;
4268 int state = 0;
4269
4270 /* calculate expected state,ignoring low bits */
4271 if (mddev->bitmap && mddev->bitmap_offset)
4272 state |= (1 << MD_SB_BITMAP_PRESENT);
4273
4274 if (mddev->major_version != info->major_version ||
4275 mddev->minor_version != info->minor_version ||
4276 /* mddev->patch_version != info->patch_version || */
4277 mddev->ctime != info->ctime ||
4278 mddev->level != info->level ||
4279 /* mddev->layout != info->layout || */
4280 !mddev->persistent != info->not_persistent||
4281 mddev->chunk_size != info->chunk_size ||
4282 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4283 ((state^info->state) & 0xfffffe00)
4284 )
4285 return -EINVAL;
4286 /* Check there is only one change */
4287 if (info->size >= 0 && mddev->size != info->size) cnt++;
4288 if (mddev->raid_disks != info->raid_disks) cnt++;
4289 if (mddev->layout != info->layout) cnt++;
4290 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4291 if (cnt == 0) return 0;
4292 if (cnt > 1) return -EINVAL;
4293
4294 if (mddev->layout != info->layout) {
4295 /* Change layout
4296 * we don't need to do anything at the md level, the
4297 * personality will take care of it all.
4298 */
4299 if (mddev->pers->reconfig == NULL)
4300 return -EINVAL;
4301 else
4302 return mddev->pers->reconfig(mddev, info->layout, -1);
4303 }
4304 if (info->size >= 0 && mddev->size != info->size)
4305 rv = update_size(mddev, info->size);
4306
4307 if (mddev->raid_disks != info->raid_disks)
4308 rv = update_raid_disks(mddev, info->raid_disks);
4309
4310 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4311 if (mddev->pers->quiesce == NULL)
4312 return -EINVAL;
4313 if (mddev->recovery || mddev->sync_thread)
4314 return -EBUSY;
4315 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4316 /* add the bitmap */
4317 if (mddev->bitmap)
4318 return -EEXIST;
4319 if (mddev->default_bitmap_offset == 0)
4320 return -EINVAL;
4321 mddev->bitmap_offset = mddev->default_bitmap_offset;
4322 mddev->pers->quiesce(mddev, 1);
4323 rv = bitmap_create(mddev);
4324 if (rv)
4325 bitmap_destroy(mddev);
4326 mddev->pers->quiesce(mddev, 0);
4327 } else {
4328 /* remove the bitmap */
4329 if (!mddev->bitmap)
4330 return -ENOENT;
4331 if (mddev->bitmap->file)
4332 return -EINVAL;
4333 mddev->pers->quiesce(mddev, 1);
4334 bitmap_destroy(mddev);
4335 mddev->pers->quiesce(mddev, 0);
4336 mddev->bitmap_offset = 0;
4337 }
4338 }
4339 md_update_sb(mddev, 1);
4340 return rv;
4341 }
4342
4343 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4344 {
4345 mdk_rdev_t *rdev;
4346
4347 if (mddev->pers == NULL)
4348 return -ENODEV;
4349
4350 rdev = find_rdev(mddev, dev);
4351 if (!rdev)
4352 return -ENODEV;
4353
4354 md_error(mddev, rdev);
4355 return 0;
4356 }
4357
4358 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4359 {
4360 mddev_t *mddev = bdev->bd_disk->private_data;
4361
4362 geo->heads = 2;
4363 geo->sectors = 4;
4364 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4365 return 0;
4366 }
4367
4368 static int md_ioctl(struct inode *inode, struct file *file,
4369 unsigned int cmd, unsigned long arg)
4370 {
4371 int err = 0;
4372 void __user *argp = (void __user *)arg;
4373 mddev_t *mddev = NULL;
4374
4375 if (!capable(CAP_SYS_ADMIN))
4376 return -EACCES;
4377
4378 /*
4379 * Commands dealing with the RAID driver but not any
4380 * particular array:
4381 */
4382 switch (cmd)
4383 {
4384 case RAID_VERSION:
4385 err = get_version(argp);
4386 goto done;
4387
4388 case PRINT_RAID_DEBUG:
4389 err = 0;
4390 md_print_devices();
4391 goto done;
4392
4393 #ifndef MODULE
4394 case RAID_AUTORUN:
4395 err = 0;
4396 autostart_arrays(arg);
4397 goto done;
4398 #endif
4399 default:;
4400 }
4401
4402 /*
4403 * Commands creating/starting a new array:
4404 */
4405
4406 mddev = inode->i_bdev->bd_disk->private_data;
4407
4408 if (!mddev) {
4409 BUG();
4410 goto abort;
4411 }
4412
4413 err = mddev_lock(mddev);
4414 if (err) {
4415 printk(KERN_INFO
4416 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4417 err, cmd);
4418 goto abort;
4419 }
4420
4421 switch (cmd)
4422 {
4423 case SET_ARRAY_INFO:
4424 {
4425 mdu_array_info_t info;
4426 if (!arg)
4427 memset(&info, 0, sizeof(info));
4428 else if (copy_from_user(&info, argp, sizeof(info))) {
4429 err = -EFAULT;
4430 goto abort_unlock;
4431 }
4432 if (mddev->pers) {
4433 err = update_array_info(mddev, &info);
4434 if (err) {
4435 printk(KERN_WARNING "md: couldn't update"
4436 " array info. %d\n", err);
4437 goto abort_unlock;
4438 }
4439 goto done_unlock;
4440 }
4441 if (!list_empty(&mddev->disks)) {
4442 printk(KERN_WARNING
4443 "md: array %s already has disks!\n",
4444 mdname(mddev));
4445 err = -EBUSY;
4446 goto abort_unlock;
4447 }
4448 if (mddev->raid_disks) {
4449 printk(KERN_WARNING
4450 "md: array %s already initialised!\n",
4451 mdname(mddev));
4452 err = -EBUSY;
4453 goto abort_unlock;
4454 }
4455 err = set_array_info(mddev, &info);
4456 if (err) {
4457 printk(KERN_WARNING "md: couldn't set"
4458 " array info. %d\n", err);
4459 goto abort_unlock;
4460 }
4461 }
4462 goto done_unlock;
4463
4464 default:;
4465 }
4466
4467 /*
4468 * Commands querying/configuring an existing array:
4469 */
4470 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4471 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4472 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4473 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4474 && cmd != GET_BITMAP_FILE) {
4475 err = -ENODEV;
4476 goto abort_unlock;
4477 }
4478
4479 /*
4480 * Commands even a read-only array can execute:
4481 */
4482 switch (cmd)
4483 {
4484 case GET_ARRAY_INFO:
4485 err = get_array_info(mddev, argp);
4486 goto done_unlock;
4487
4488 case GET_BITMAP_FILE:
4489 err = get_bitmap_file(mddev, argp);
4490 goto done_unlock;
4491
4492 case GET_DISK_INFO:
4493 err = get_disk_info(mddev, argp);
4494 goto done_unlock;
4495
4496 case RESTART_ARRAY_RW:
4497 err = restart_array(mddev);
4498 goto done_unlock;
4499
4500 case STOP_ARRAY:
4501 err = do_md_stop (mddev, 0);
4502 goto done_unlock;
4503
4504 case STOP_ARRAY_RO:
4505 err = do_md_stop (mddev, 1);
4506 goto done_unlock;
4507
4508 /*
4509 * We have a problem here : there is no easy way to give a CHS
4510 * virtual geometry. We currently pretend that we have a 2 heads
4511 * 4 sectors (with a BIG number of cylinders...). This drives
4512 * dosfs just mad... ;-)
4513 */
4514 }
4515
4516 /*
4517 * The remaining ioctls are changing the state of the
4518 * superblock, so we do not allow them on read-only arrays.
4519 * However non-MD ioctls (e.g. get-size) will still come through
4520 * here and hit the 'default' below, so only disallow
4521 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4522 */
4523 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4524 mddev->ro && mddev->pers) {
4525 if (mddev->ro == 2) {
4526 mddev->ro = 0;
4527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4528 md_wakeup_thread(mddev->thread);
4529
4530 } else {
4531 err = -EROFS;
4532 goto abort_unlock;
4533 }
4534 }
4535
4536 switch (cmd)
4537 {
4538 case ADD_NEW_DISK:
4539 {
4540 mdu_disk_info_t info;
4541 if (copy_from_user(&info, argp, sizeof(info)))
4542 err = -EFAULT;
4543 else
4544 err = add_new_disk(mddev, &info);
4545 goto done_unlock;
4546 }
4547
4548 case HOT_REMOVE_DISK:
4549 err = hot_remove_disk(mddev, new_decode_dev(arg));
4550 goto done_unlock;
4551
4552 case HOT_ADD_DISK:
4553 err = hot_add_disk(mddev, new_decode_dev(arg));
4554 goto done_unlock;
4555
4556 case SET_DISK_FAULTY:
4557 err = set_disk_faulty(mddev, new_decode_dev(arg));
4558 goto done_unlock;
4559
4560 case RUN_ARRAY:
4561 err = do_md_run (mddev);
4562 goto done_unlock;
4563
4564 case SET_BITMAP_FILE:
4565 err = set_bitmap_file(mddev, (int)arg);
4566 goto done_unlock;
4567
4568 default:
4569 err = -EINVAL;
4570 goto abort_unlock;
4571 }
4572
4573 done_unlock:
4574 abort_unlock:
4575 mddev_unlock(mddev);
4576
4577 return err;
4578 done:
4579 if (err)
4580 MD_BUG();
4581 abort:
4582 return err;
4583 }
4584
4585 static int md_open(struct inode *inode, struct file *file)
4586 {
4587 /*
4588 * Succeed if we can lock the mddev, which confirms that
4589 * it isn't being stopped right now.
4590 */
4591 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4592 int err;
4593
4594 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4595 goto out;
4596
4597 err = 0;
4598 mddev_get(mddev);
4599 mddev_unlock(mddev);
4600
4601 check_disk_change(inode->i_bdev);
4602 out:
4603 return err;
4604 }
4605
4606 static int md_release(struct inode *inode, struct file * file)
4607 {
4608 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4609
4610 BUG_ON(!mddev);
4611 mddev_put(mddev);
4612
4613 return 0;
4614 }
4615
4616 static int md_media_changed(struct gendisk *disk)
4617 {
4618 mddev_t *mddev = disk->private_data;
4619
4620 return mddev->changed;
4621 }
4622
4623 static int md_revalidate(struct gendisk *disk)
4624 {
4625 mddev_t *mddev = disk->private_data;
4626
4627 mddev->changed = 0;
4628 return 0;
4629 }
4630 static struct block_device_operations md_fops =
4631 {
4632 .owner = THIS_MODULE,
4633 .open = md_open,
4634 .release = md_release,
4635 .ioctl = md_ioctl,
4636 .getgeo = md_getgeo,
4637 .media_changed = md_media_changed,
4638 .revalidate_disk= md_revalidate,
4639 };
4640
4641 static int md_thread(void * arg)
4642 {
4643 mdk_thread_t *thread = arg;
4644
4645 /*
4646 * md_thread is a 'system-thread', it's priority should be very
4647 * high. We avoid resource deadlocks individually in each
4648 * raid personality. (RAID5 does preallocation) We also use RR and
4649 * the very same RT priority as kswapd, thus we will never get
4650 * into a priority inversion deadlock.
4651 *
4652 * we definitely have to have equal or higher priority than
4653 * bdflush, otherwise bdflush will deadlock if there are too
4654 * many dirty RAID5 blocks.
4655 */
4656
4657 allow_signal(SIGKILL);
4658 while (!kthread_should_stop()) {
4659
4660 /* We need to wait INTERRUPTIBLE so that
4661 * we don't add to the load-average.
4662 * That means we need to be sure no signals are
4663 * pending
4664 */
4665 if (signal_pending(current))
4666 flush_signals(current);
4667
4668 wait_event_interruptible_timeout
4669 (thread->wqueue,
4670 test_bit(THREAD_WAKEUP, &thread->flags)
4671 || kthread_should_stop(),
4672 thread->timeout);
4673
4674 clear_bit(THREAD_WAKEUP, &thread->flags);
4675
4676 thread->run(thread->mddev);
4677 }
4678
4679 return 0;
4680 }
4681
4682 void md_wakeup_thread(mdk_thread_t *thread)
4683 {
4684 if (thread) {
4685 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4686 set_bit(THREAD_WAKEUP, &thread->flags);
4687 wake_up(&thread->wqueue);
4688 }
4689 }
4690
4691 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4692 const char *name)
4693 {
4694 mdk_thread_t *thread;
4695
4696 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4697 if (!thread)
4698 return NULL;
4699
4700 init_waitqueue_head(&thread->wqueue);
4701
4702 thread->run = run;
4703 thread->mddev = mddev;
4704 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4705 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4706 if (IS_ERR(thread->tsk)) {
4707 kfree(thread);
4708 return NULL;
4709 }
4710 return thread;
4711 }
4712
4713 void md_unregister_thread(mdk_thread_t *thread)
4714 {
4715 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4716
4717 kthread_stop(thread->tsk);
4718 kfree(thread);
4719 }
4720
4721 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4722 {
4723 if (!mddev) {
4724 MD_BUG();
4725 return;
4726 }
4727
4728 if (!rdev || test_bit(Faulty, &rdev->flags))
4729 return;
4730 /*
4731 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4732 mdname(mddev),
4733 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4734 __builtin_return_address(0),__builtin_return_address(1),
4735 __builtin_return_address(2),__builtin_return_address(3));
4736 */
4737 if (!mddev->pers)
4738 return;
4739 if (!mddev->pers->error_handler)
4740 return;
4741 mddev->pers->error_handler(mddev,rdev);
4742 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4743 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4744 md_wakeup_thread(mddev->thread);
4745 md_new_event_inintr(mddev);
4746 }
4747
4748 /* seq_file implementation /proc/mdstat */
4749
4750 static void status_unused(struct seq_file *seq)
4751 {
4752 int i = 0;
4753 mdk_rdev_t *rdev;
4754 struct list_head *tmp;
4755
4756 seq_printf(seq, "unused devices: ");
4757
4758 ITERATE_RDEV_PENDING(rdev,tmp) {
4759 char b[BDEVNAME_SIZE];
4760 i++;
4761 seq_printf(seq, "%s ",
4762 bdevname(rdev->bdev,b));
4763 }
4764 if (!i)
4765 seq_printf(seq, "<none>");
4766
4767 seq_printf(seq, "\n");
4768 }
4769
4770
4771 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4772 {
4773 sector_t max_blocks, resync, res;
4774 unsigned long dt, db, rt;
4775 int scale;
4776 unsigned int per_milli;
4777
4778 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4779
4780 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4781 max_blocks = mddev->resync_max_sectors >> 1;
4782 else
4783 max_blocks = mddev->size;
4784
4785 /*
4786 * Should not happen.
4787 */
4788 if (!max_blocks) {
4789 MD_BUG();
4790 return;
4791 }
4792 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4793 * in a sector_t, and (max_blocks>>scale) will fit in a
4794 * u32, as those are the requirements for sector_div.
4795 * Thus 'scale' must be at least 10
4796 */
4797 scale = 10;
4798 if (sizeof(sector_t) > sizeof(unsigned long)) {
4799 while ( max_blocks/2 > (1ULL<<(scale+32)))
4800 scale++;
4801 }
4802 res = (resync>>scale)*1000;
4803 sector_div(res, (u32)((max_blocks>>scale)+1));
4804
4805 per_milli = res;
4806 {
4807 int i, x = per_milli/50, y = 20-x;
4808 seq_printf(seq, "[");
4809 for (i = 0; i < x; i++)
4810 seq_printf(seq, "=");
4811 seq_printf(seq, ">");
4812 for (i = 0; i < y; i++)
4813 seq_printf(seq, ".");
4814 seq_printf(seq, "] ");
4815 }
4816 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4817 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4818 "reshape" :
4819 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4820 "check" :
4821 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4822 "resync" : "recovery"))),
4823 per_milli/10, per_milli % 10,
4824 (unsigned long long) resync,
4825 (unsigned long long) max_blocks);
4826
4827 /*
4828 * We do not want to overflow, so the order of operands and
4829 * the * 100 / 100 trick are important. We do a +1 to be
4830 * safe against division by zero. We only estimate anyway.
4831 *
4832 * dt: time from mark until now
4833 * db: blocks written from mark until now
4834 * rt: remaining time
4835 */
4836 dt = ((jiffies - mddev->resync_mark) / HZ);
4837 if (!dt) dt++;
4838 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4839 - mddev->resync_mark_cnt;
4840 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4841
4842 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4843
4844 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4845 }
4846
4847 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4848 {
4849 struct list_head *tmp;
4850 loff_t l = *pos;
4851 mddev_t *mddev;
4852
4853 if (l >= 0x10000)
4854 return NULL;
4855 if (!l--)
4856 /* header */
4857 return (void*)1;
4858
4859 spin_lock(&all_mddevs_lock);
4860 list_for_each(tmp,&all_mddevs)
4861 if (!l--) {
4862 mddev = list_entry(tmp, mddev_t, all_mddevs);
4863 mddev_get(mddev);
4864 spin_unlock(&all_mddevs_lock);
4865 return mddev;
4866 }
4867 spin_unlock(&all_mddevs_lock);
4868 if (!l--)
4869 return (void*)2;/* tail */
4870 return NULL;
4871 }
4872
4873 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4874 {
4875 struct list_head *tmp;
4876 mddev_t *next_mddev, *mddev = v;
4877
4878 ++*pos;
4879 if (v == (void*)2)
4880 return NULL;
4881
4882 spin_lock(&all_mddevs_lock);
4883 if (v == (void*)1)
4884 tmp = all_mddevs.next;
4885 else
4886 tmp = mddev->all_mddevs.next;
4887 if (tmp != &all_mddevs)
4888 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4889 else {
4890 next_mddev = (void*)2;
4891 *pos = 0x10000;
4892 }
4893 spin_unlock(&all_mddevs_lock);
4894
4895 if (v != (void*)1)
4896 mddev_put(mddev);
4897 return next_mddev;
4898
4899 }
4900
4901 static void md_seq_stop(struct seq_file *seq, void *v)
4902 {
4903 mddev_t *mddev = v;
4904
4905 if (mddev && v != (void*)1 && v != (void*)2)
4906 mddev_put(mddev);
4907 }
4908
4909 struct mdstat_info {
4910 int event;
4911 };
4912
4913 static int md_seq_show(struct seq_file *seq, void *v)
4914 {
4915 mddev_t *mddev = v;
4916 sector_t size;
4917 struct list_head *tmp2;
4918 mdk_rdev_t *rdev;
4919 struct mdstat_info *mi = seq->private;
4920 struct bitmap *bitmap;
4921
4922 if (v == (void*)1) {
4923 struct mdk_personality *pers;
4924 seq_printf(seq, "Personalities : ");
4925 spin_lock(&pers_lock);
4926 list_for_each_entry(pers, &pers_list, list)
4927 seq_printf(seq, "[%s] ", pers->name);
4928
4929 spin_unlock(&pers_lock);
4930 seq_printf(seq, "\n");
4931 mi->event = atomic_read(&md_event_count);
4932 return 0;
4933 }
4934 if (v == (void*)2) {
4935 status_unused(seq);
4936 return 0;
4937 }
4938
4939 if (mddev_lock(mddev) < 0)
4940 return -EINTR;
4941
4942 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4943 seq_printf(seq, "%s : %sactive", mdname(mddev),
4944 mddev->pers ? "" : "in");
4945 if (mddev->pers) {
4946 if (mddev->ro==1)
4947 seq_printf(seq, " (read-only)");
4948 if (mddev->ro==2)
4949 seq_printf(seq, "(auto-read-only)");
4950 seq_printf(seq, " %s", mddev->pers->name);
4951 }
4952
4953 size = 0;
4954 ITERATE_RDEV(mddev,rdev,tmp2) {
4955 char b[BDEVNAME_SIZE];
4956 seq_printf(seq, " %s[%d]",
4957 bdevname(rdev->bdev,b), rdev->desc_nr);
4958 if (test_bit(WriteMostly, &rdev->flags))
4959 seq_printf(seq, "(W)");
4960 if (test_bit(Faulty, &rdev->flags)) {
4961 seq_printf(seq, "(F)");
4962 continue;
4963 } else if (rdev->raid_disk < 0)
4964 seq_printf(seq, "(S)"); /* spare */
4965 size += rdev->size;
4966 }
4967
4968 if (!list_empty(&mddev->disks)) {
4969 if (mddev->pers)
4970 seq_printf(seq, "\n %llu blocks",
4971 (unsigned long long)mddev->array_size);
4972 else
4973 seq_printf(seq, "\n %llu blocks",
4974 (unsigned long long)size);
4975 }
4976 if (mddev->persistent) {
4977 if (mddev->major_version != 0 ||
4978 mddev->minor_version != 90) {
4979 seq_printf(seq," super %d.%d",
4980 mddev->major_version,
4981 mddev->minor_version);
4982 }
4983 } else
4984 seq_printf(seq, " super non-persistent");
4985
4986 if (mddev->pers) {
4987 mddev->pers->status (seq, mddev);
4988 seq_printf(seq, "\n ");
4989 if (mddev->pers->sync_request) {
4990 if (mddev->curr_resync > 2) {
4991 status_resync (seq, mddev);
4992 seq_printf(seq, "\n ");
4993 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4994 seq_printf(seq, "\tresync=DELAYED\n ");
4995 else if (mddev->recovery_cp < MaxSector)
4996 seq_printf(seq, "\tresync=PENDING\n ");
4997 }
4998 } else
4999 seq_printf(seq, "\n ");
5000
5001 if ((bitmap = mddev->bitmap)) {
5002 unsigned long chunk_kb;
5003 unsigned long flags;
5004 spin_lock_irqsave(&bitmap->lock, flags);
5005 chunk_kb = bitmap->chunksize >> 10;
5006 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5007 "%lu%s chunk",
5008 bitmap->pages - bitmap->missing_pages,
5009 bitmap->pages,
5010 (bitmap->pages - bitmap->missing_pages)
5011 << (PAGE_SHIFT - 10),
5012 chunk_kb ? chunk_kb : bitmap->chunksize,
5013 chunk_kb ? "KB" : "B");
5014 if (bitmap->file) {
5015 seq_printf(seq, ", file: ");
5016 seq_path(seq, bitmap->file->f_path.mnt,
5017 bitmap->file->f_path.dentry," \t\n");
5018 }
5019
5020 seq_printf(seq, "\n");
5021 spin_unlock_irqrestore(&bitmap->lock, flags);
5022 }
5023
5024 seq_printf(seq, "\n");
5025 }
5026 mddev_unlock(mddev);
5027
5028 return 0;
5029 }
5030
5031 static struct seq_operations md_seq_ops = {
5032 .start = md_seq_start,
5033 .next = md_seq_next,
5034 .stop = md_seq_stop,
5035 .show = md_seq_show,
5036 };
5037
5038 static int md_seq_open(struct inode *inode, struct file *file)
5039 {
5040 int error;
5041 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5042 if (mi == NULL)
5043 return -ENOMEM;
5044
5045 error = seq_open(file, &md_seq_ops);
5046 if (error)
5047 kfree(mi);
5048 else {
5049 struct seq_file *p = file->private_data;
5050 p->private = mi;
5051 mi->event = atomic_read(&md_event_count);
5052 }
5053 return error;
5054 }
5055
5056 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5057 {
5058 struct seq_file *m = filp->private_data;
5059 struct mdstat_info *mi = m->private;
5060 int mask;
5061
5062 poll_wait(filp, &md_event_waiters, wait);
5063
5064 /* always allow read */
5065 mask = POLLIN | POLLRDNORM;
5066
5067 if (mi->event != atomic_read(&md_event_count))
5068 mask |= POLLERR | POLLPRI;
5069 return mask;
5070 }
5071
5072 static const struct file_operations md_seq_fops = {
5073 .owner = THIS_MODULE,
5074 .open = md_seq_open,
5075 .read = seq_read,
5076 .llseek = seq_lseek,
5077 .release = seq_release_private,
5078 .poll = mdstat_poll,
5079 };
5080
5081 int register_md_personality(struct mdk_personality *p)
5082 {
5083 spin_lock(&pers_lock);
5084 list_add_tail(&p->list, &pers_list);
5085 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5086 spin_unlock(&pers_lock);
5087 return 0;
5088 }
5089
5090 int unregister_md_personality(struct mdk_personality *p)
5091 {
5092 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5093 spin_lock(&pers_lock);
5094 list_del_init(&p->list);
5095 spin_unlock(&pers_lock);
5096 return 0;
5097 }
5098
5099 static int is_mddev_idle(mddev_t *mddev)
5100 {
5101 mdk_rdev_t * rdev;
5102 struct list_head *tmp;
5103 int idle;
5104 long curr_events;
5105
5106 idle = 1;
5107 ITERATE_RDEV(mddev,rdev,tmp) {
5108 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5109 curr_events = disk_stat_read(disk, sectors[0]) +
5110 disk_stat_read(disk, sectors[1]) -
5111 atomic_read(&disk->sync_io);
5112 /* sync IO will cause sync_io to increase before the disk_stats
5113 * as sync_io is counted when a request starts, and
5114 * disk_stats is counted when it completes.
5115 * So resync activity will cause curr_events to be smaller than
5116 * when there was no such activity.
5117 * non-sync IO will cause disk_stat to increase without
5118 * increasing sync_io so curr_events will (eventually)
5119 * be larger than it was before. Once it becomes
5120 * substantially larger, the test below will cause
5121 * the array to appear non-idle, and resync will slow
5122 * down.
5123 * If there is a lot of outstanding resync activity when
5124 * we set last_event to curr_events, then all that activity
5125 * completing might cause the array to appear non-idle
5126 * and resync will be slowed down even though there might
5127 * not have been non-resync activity. This will only
5128 * happen once though. 'last_events' will soon reflect
5129 * the state where there is little or no outstanding
5130 * resync requests, and further resync activity will
5131 * always make curr_events less than last_events.
5132 *
5133 */
5134 if (curr_events - rdev->last_events > 4096) {
5135 rdev->last_events = curr_events;
5136 idle = 0;
5137 }
5138 }
5139 return idle;
5140 }
5141
5142 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5143 {
5144 /* another "blocks" (512byte) blocks have been synced */
5145 atomic_sub(blocks, &mddev->recovery_active);
5146 wake_up(&mddev->recovery_wait);
5147 if (!ok) {
5148 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5149 md_wakeup_thread(mddev->thread);
5150 // stop recovery, signal do_sync ....
5151 }
5152 }
5153
5154
5155 /* md_write_start(mddev, bi)
5156 * If we need to update some array metadata (e.g. 'active' flag
5157 * in superblock) before writing, schedule a superblock update
5158 * and wait for it to complete.
5159 */
5160 void md_write_start(mddev_t *mddev, struct bio *bi)
5161 {
5162 if (bio_data_dir(bi) != WRITE)
5163 return;
5164
5165 BUG_ON(mddev->ro == 1);
5166 if (mddev->ro == 2) {
5167 /* need to switch to read/write */
5168 mddev->ro = 0;
5169 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5170 md_wakeup_thread(mddev->thread);
5171 }
5172 atomic_inc(&mddev->writes_pending);
5173 if (mddev->in_sync) {
5174 spin_lock_irq(&mddev->write_lock);
5175 if (mddev->in_sync) {
5176 mddev->in_sync = 0;
5177 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5178 md_wakeup_thread(mddev->thread);
5179 }
5180 spin_unlock_irq(&mddev->write_lock);
5181 }
5182 wait_event(mddev->sb_wait, mddev->flags==0);
5183 }
5184
5185 void md_write_end(mddev_t *mddev)
5186 {
5187 if (atomic_dec_and_test(&mddev->writes_pending)) {
5188 if (mddev->safemode == 2)
5189 md_wakeup_thread(mddev->thread);
5190 else if (mddev->safemode_delay)
5191 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5192 }
5193 }
5194
5195 /* md_allow_write(mddev)
5196 * Calling this ensures that the array is marked 'active' so that writes
5197 * may proceed without blocking. It is important to call this before
5198 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5199 * Must be called with mddev_lock held.
5200 */
5201 void md_allow_write(mddev_t *mddev)
5202 {
5203 if (!mddev->pers)
5204 return;
5205 if (mddev->ro)
5206 return;
5207
5208 spin_lock_irq(&mddev->write_lock);
5209 if (mddev->in_sync) {
5210 mddev->in_sync = 0;
5211 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5212 if (mddev->safemode_delay &&
5213 mddev->safemode == 0)
5214 mddev->safemode = 1;
5215 spin_unlock_irq(&mddev->write_lock);
5216 md_update_sb(mddev, 0);
5217 } else
5218 spin_unlock_irq(&mddev->write_lock);
5219 }
5220 EXPORT_SYMBOL_GPL(md_allow_write);
5221
5222 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5223
5224 #define SYNC_MARKS 10
5225 #define SYNC_MARK_STEP (3*HZ)
5226 void md_do_sync(mddev_t *mddev)
5227 {
5228 mddev_t *mddev2;
5229 unsigned int currspeed = 0,
5230 window;
5231 sector_t max_sectors,j, io_sectors;
5232 unsigned long mark[SYNC_MARKS];
5233 sector_t mark_cnt[SYNC_MARKS];
5234 int last_mark,m;
5235 struct list_head *tmp;
5236 sector_t last_check;
5237 int skipped = 0;
5238 struct list_head *rtmp;
5239 mdk_rdev_t *rdev;
5240 char *desc;
5241
5242 /* just incase thread restarts... */
5243 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5244 return;
5245 if (mddev->ro) /* never try to sync a read-only array */
5246 return;
5247
5248 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5249 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5250 desc = "data-check";
5251 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5252 desc = "requested-resync";
5253 else
5254 desc = "resync";
5255 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5256 desc = "reshape";
5257 else
5258 desc = "recovery";
5259
5260 /* we overload curr_resync somewhat here.
5261 * 0 == not engaged in resync at all
5262 * 2 == checking that there is no conflict with another sync
5263 * 1 == like 2, but have yielded to allow conflicting resync to
5264 * commense
5265 * other == active in resync - this many blocks
5266 *
5267 * Before starting a resync we must have set curr_resync to
5268 * 2, and then checked that every "conflicting" array has curr_resync
5269 * less than ours. When we find one that is the same or higher
5270 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5271 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5272 * This will mean we have to start checking from the beginning again.
5273 *
5274 */
5275
5276 do {
5277 mddev->curr_resync = 2;
5278
5279 try_again:
5280 if (kthread_should_stop()) {
5281 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5282 goto skip;
5283 }
5284 ITERATE_MDDEV(mddev2,tmp) {
5285 if (mddev2 == mddev)
5286 continue;
5287 if (mddev2->curr_resync &&
5288 match_mddev_units(mddev,mddev2)) {
5289 DEFINE_WAIT(wq);
5290 if (mddev < mddev2 && mddev->curr_resync == 2) {
5291 /* arbitrarily yield */
5292 mddev->curr_resync = 1;
5293 wake_up(&resync_wait);
5294 }
5295 if (mddev > mddev2 && mddev->curr_resync == 1)
5296 /* no need to wait here, we can wait the next
5297 * time 'round when curr_resync == 2
5298 */
5299 continue;
5300 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5301 if (!kthread_should_stop() &&
5302 mddev2->curr_resync >= mddev->curr_resync) {
5303 printk(KERN_INFO "md: delaying %s of %s"
5304 " until %s has finished (they"
5305 " share one or more physical units)\n",
5306 desc, mdname(mddev), mdname(mddev2));
5307 mddev_put(mddev2);
5308 schedule();
5309 finish_wait(&resync_wait, &wq);
5310 goto try_again;
5311 }
5312 finish_wait(&resync_wait, &wq);
5313 }
5314 }
5315 } while (mddev->curr_resync < 2);
5316
5317 j = 0;
5318 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5319 /* resync follows the size requested by the personality,
5320 * which defaults to physical size, but can be virtual size
5321 */
5322 max_sectors = mddev->resync_max_sectors;
5323 mddev->resync_mismatches = 0;
5324 /* we don't use the checkpoint if there's a bitmap */
5325 if (!mddev->bitmap &&
5326 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5327 j = mddev->recovery_cp;
5328 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5329 max_sectors = mddev->size << 1;
5330 else {
5331 /* recovery follows the physical size of devices */
5332 max_sectors = mddev->size << 1;
5333 j = MaxSector;
5334 ITERATE_RDEV(mddev,rdev,rtmp)
5335 if (rdev->raid_disk >= 0 &&
5336 !test_bit(Faulty, &rdev->flags) &&
5337 !test_bit(In_sync, &rdev->flags) &&
5338 rdev->recovery_offset < j)
5339 j = rdev->recovery_offset;
5340 }
5341
5342 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5343 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5344 " %d KB/sec/disk.\n", speed_min(mddev));
5345 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5346 "(but not more than %d KB/sec) for %s.\n",
5347 speed_max(mddev), desc);
5348
5349 is_mddev_idle(mddev); /* this also initializes IO event counters */
5350
5351 io_sectors = 0;
5352 for (m = 0; m < SYNC_MARKS; m++) {
5353 mark[m] = jiffies;
5354 mark_cnt[m] = io_sectors;
5355 }
5356 last_mark = 0;
5357 mddev->resync_mark = mark[last_mark];
5358 mddev->resync_mark_cnt = mark_cnt[last_mark];
5359
5360 /*
5361 * Tune reconstruction:
5362 */
5363 window = 32*(PAGE_SIZE/512);
5364 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5365 window/2,(unsigned long long) max_sectors/2);
5366
5367 atomic_set(&mddev->recovery_active, 0);
5368 init_waitqueue_head(&mddev->recovery_wait);
5369 last_check = 0;
5370
5371 if (j>2) {
5372 printk(KERN_INFO
5373 "md: resuming %s of %s from checkpoint.\n",
5374 desc, mdname(mddev));
5375 mddev->curr_resync = j;
5376 }
5377
5378 while (j < max_sectors) {
5379 sector_t sectors;
5380
5381 skipped = 0;
5382 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5383 currspeed < speed_min(mddev));
5384 if (sectors == 0) {
5385 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5386 goto out;
5387 }
5388
5389 if (!skipped) { /* actual IO requested */
5390 io_sectors += sectors;
5391 atomic_add(sectors, &mddev->recovery_active);
5392 }
5393
5394 j += sectors;
5395 if (j>1) mddev->curr_resync = j;
5396 mddev->curr_mark_cnt = io_sectors;
5397 if (last_check == 0)
5398 /* this is the earliers that rebuilt will be
5399 * visible in /proc/mdstat
5400 */
5401 md_new_event(mddev);
5402
5403 if (last_check + window > io_sectors || j == max_sectors)
5404 continue;
5405
5406 last_check = io_sectors;
5407
5408 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5409 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5410 break;
5411
5412 repeat:
5413 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5414 /* step marks */
5415 int next = (last_mark+1) % SYNC_MARKS;
5416
5417 mddev->resync_mark = mark[next];
5418 mddev->resync_mark_cnt = mark_cnt[next];
5419 mark[next] = jiffies;
5420 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5421 last_mark = next;
5422 }
5423
5424
5425 if (kthread_should_stop()) {
5426 /*
5427 * got a signal, exit.
5428 */
5429 printk(KERN_INFO
5430 "md: md_do_sync() got signal ... exiting\n");
5431 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5432 goto out;
5433 }
5434
5435 /*
5436 * this loop exits only if either when we are slower than
5437 * the 'hard' speed limit, or the system was IO-idle for
5438 * a jiffy.
5439 * the system might be non-idle CPU-wise, but we only care
5440 * about not overloading the IO subsystem. (things like an
5441 * e2fsck being done on the RAID array should execute fast)
5442 */
5443 mddev->queue->unplug_fn(mddev->queue);
5444 cond_resched();
5445
5446 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5447 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5448
5449 if (currspeed > speed_min(mddev)) {
5450 if ((currspeed > speed_max(mddev)) ||
5451 !is_mddev_idle(mddev)) {
5452 msleep(500);
5453 goto repeat;
5454 }
5455 }
5456 }
5457 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5458 /*
5459 * this also signals 'finished resyncing' to md_stop
5460 */
5461 out:
5462 mddev->queue->unplug_fn(mddev->queue);
5463
5464 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5465
5466 /* tell personality that we are finished */
5467 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5468
5469 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5470 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5471 mddev->curr_resync > 2) {
5472 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5473 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5474 if (mddev->curr_resync >= mddev->recovery_cp) {
5475 printk(KERN_INFO
5476 "md: checkpointing %s of %s.\n",
5477 desc, mdname(mddev));
5478 mddev->recovery_cp = mddev->curr_resync;
5479 }
5480 } else
5481 mddev->recovery_cp = MaxSector;
5482 } else {
5483 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5484 mddev->curr_resync = MaxSector;
5485 ITERATE_RDEV(mddev,rdev,rtmp)
5486 if (rdev->raid_disk >= 0 &&
5487 !test_bit(Faulty, &rdev->flags) &&
5488 !test_bit(In_sync, &rdev->flags) &&
5489 rdev->recovery_offset < mddev->curr_resync)
5490 rdev->recovery_offset = mddev->curr_resync;
5491 }
5492 }
5493 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5494
5495 skip:
5496 mddev->curr_resync = 0;
5497 wake_up(&resync_wait);
5498 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5499 md_wakeup_thread(mddev->thread);
5500 }
5501 EXPORT_SYMBOL_GPL(md_do_sync);
5502
5503
5504 static int remove_and_add_spares(mddev_t *mddev)
5505 {
5506 mdk_rdev_t *rdev;
5507 struct list_head *rtmp;
5508 int spares = 0;
5509
5510 ITERATE_RDEV(mddev,rdev,rtmp)
5511 if (rdev->raid_disk >= 0 &&
5512 (test_bit(Faulty, &rdev->flags) ||
5513 ! test_bit(In_sync, &rdev->flags)) &&
5514 atomic_read(&rdev->nr_pending)==0) {
5515 if (mddev->pers->hot_remove_disk(
5516 mddev, rdev->raid_disk)==0) {
5517 char nm[20];
5518 sprintf(nm,"rd%d", rdev->raid_disk);
5519 sysfs_remove_link(&mddev->kobj, nm);
5520 rdev->raid_disk = -1;
5521 }
5522 }
5523
5524 if (mddev->degraded) {
5525 ITERATE_RDEV(mddev,rdev,rtmp)
5526 if (rdev->raid_disk < 0
5527 && !test_bit(Faulty, &rdev->flags)) {
5528 rdev->recovery_offset = 0;
5529 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5530 char nm[20];
5531 sprintf(nm, "rd%d", rdev->raid_disk);
5532 if (sysfs_create_link(&mddev->kobj,
5533 &rdev->kobj, nm))
5534 printk(KERN_WARNING
5535 "md: cannot register "
5536 "%s for %s\n",
5537 nm, mdname(mddev));
5538 spares++;
5539 md_new_event(mddev);
5540 } else
5541 break;
5542 }
5543 }
5544 return spares;
5545 }
5546 /*
5547 * This routine is regularly called by all per-raid-array threads to
5548 * deal with generic issues like resync and super-block update.
5549 * Raid personalities that don't have a thread (linear/raid0) do not
5550 * need this as they never do any recovery or update the superblock.
5551 *
5552 * It does not do any resync itself, but rather "forks" off other threads
5553 * to do that as needed.
5554 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5555 * "->recovery" and create a thread at ->sync_thread.
5556 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5557 * and wakeups up this thread which will reap the thread and finish up.
5558 * This thread also removes any faulty devices (with nr_pending == 0).
5559 *
5560 * The overall approach is:
5561 * 1/ if the superblock needs updating, update it.
5562 * 2/ If a recovery thread is running, don't do anything else.
5563 * 3/ If recovery has finished, clean up, possibly marking spares active.
5564 * 4/ If there are any faulty devices, remove them.
5565 * 5/ If array is degraded, try to add spares devices
5566 * 6/ If array has spares or is not in-sync, start a resync thread.
5567 */
5568 void md_check_recovery(mddev_t *mddev)
5569 {
5570 mdk_rdev_t *rdev;
5571 struct list_head *rtmp;
5572
5573
5574 if (mddev->bitmap)
5575 bitmap_daemon_work(mddev->bitmap);
5576
5577 if (mddev->ro)
5578 return;
5579
5580 if (signal_pending(current)) {
5581 if (mddev->pers->sync_request) {
5582 printk(KERN_INFO "md: %s in immediate safe mode\n",
5583 mdname(mddev));
5584 mddev->safemode = 2;
5585 }
5586 flush_signals(current);
5587 }
5588
5589 if ( ! (
5590 mddev->flags ||
5591 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5592 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5593 (mddev->safemode == 1) ||
5594 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5595 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5596 ))
5597 return;
5598
5599 if (mddev_trylock(mddev)) {
5600 int spares = 0;
5601
5602 spin_lock_irq(&mddev->write_lock);
5603 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5604 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5605 mddev->in_sync = 1;
5606 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5607 }
5608 if (mddev->safemode == 1)
5609 mddev->safemode = 0;
5610 spin_unlock_irq(&mddev->write_lock);
5611
5612 if (mddev->flags)
5613 md_update_sb(mddev, 0);
5614
5615
5616 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5617 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5618 /* resync/recovery still happening */
5619 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5620 goto unlock;
5621 }
5622 if (mddev->sync_thread) {
5623 /* resync has finished, collect result */
5624 md_unregister_thread(mddev->sync_thread);
5625 mddev->sync_thread = NULL;
5626 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5627 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5628 /* success...*/
5629 /* activate any spares */
5630 mddev->pers->spare_active(mddev);
5631 }
5632 md_update_sb(mddev, 1);
5633
5634 /* if array is no-longer degraded, then any saved_raid_disk
5635 * information must be scrapped
5636 */
5637 if (!mddev->degraded)
5638 ITERATE_RDEV(mddev,rdev,rtmp)
5639 rdev->saved_raid_disk = -1;
5640
5641 mddev->recovery = 0;
5642 /* flag recovery needed just to double check */
5643 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5644 md_new_event(mddev);
5645 goto unlock;
5646 }
5647 /* Clear some bits that don't mean anything, but
5648 * might be left set
5649 */
5650 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5651 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5652 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5653 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5654
5655 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5656 goto unlock;
5657 /* no recovery is running.
5658 * remove any failed drives, then
5659 * add spares if possible.
5660 * Spare are also removed and re-added, to allow
5661 * the personality to fail the re-add.
5662 */
5663
5664 if (mddev->reshape_position != MaxSector) {
5665 if (mddev->pers->check_reshape(mddev) != 0)
5666 /* Cannot proceed */
5667 goto unlock;
5668 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5669 } else if ((spares = remove_and_add_spares(mddev))) {
5670 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5671 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5672 } else if (mddev->recovery_cp < MaxSector) {
5673 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5674 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5675 /* nothing to be done ... */
5676 goto unlock;
5677
5678 if (mddev->pers->sync_request) {
5679 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5680 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5681 /* We are adding a device or devices to an array
5682 * which has the bitmap stored on all devices.
5683 * So make sure all bitmap pages get written
5684 */
5685 bitmap_write_all(mddev->bitmap);
5686 }
5687 mddev->sync_thread = md_register_thread(md_do_sync,
5688 mddev,
5689 "%s_resync");
5690 if (!mddev->sync_thread) {
5691 printk(KERN_ERR "%s: could not start resync"
5692 " thread...\n",
5693 mdname(mddev));
5694 /* leave the spares where they are, it shouldn't hurt */
5695 mddev->recovery = 0;
5696 } else
5697 md_wakeup_thread(mddev->sync_thread);
5698 md_new_event(mddev);
5699 }
5700 unlock:
5701 mddev_unlock(mddev);
5702 }
5703 }
5704
5705 static int md_notify_reboot(struct notifier_block *this,
5706 unsigned long code, void *x)
5707 {
5708 struct list_head *tmp;
5709 mddev_t *mddev;
5710
5711 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5712
5713 printk(KERN_INFO "md: stopping all md devices.\n");
5714
5715 ITERATE_MDDEV(mddev,tmp)
5716 if (mddev_trylock(mddev)) {
5717 do_md_stop (mddev, 1);
5718 mddev_unlock(mddev);
5719 }
5720 /*
5721 * certain more exotic SCSI devices are known to be
5722 * volatile wrt too early system reboots. While the
5723 * right place to handle this issue is the given
5724 * driver, we do want to have a safe RAID driver ...
5725 */
5726 mdelay(1000*1);
5727 }
5728 return NOTIFY_DONE;
5729 }
5730
5731 static struct notifier_block md_notifier = {
5732 .notifier_call = md_notify_reboot,
5733 .next = NULL,
5734 .priority = INT_MAX, /* before any real devices */
5735 };
5736
5737 static void md_geninit(void)
5738 {
5739 struct proc_dir_entry *p;
5740
5741 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5742
5743 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5744 if (p)
5745 p->proc_fops = &md_seq_fops;
5746 }
5747
5748 static int __init md_init(void)
5749 {
5750 if (register_blkdev(MAJOR_NR, "md"))
5751 return -1;
5752 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5753 unregister_blkdev(MAJOR_NR, "md");
5754 return -1;
5755 }
5756 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5757 md_probe, NULL, NULL);
5758 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5759 md_probe, NULL, NULL);
5760
5761 register_reboot_notifier(&md_notifier);
5762 raid_table_header = register_sysctl_table(raid_root_table);
5763
5764 md_geninit();
5765 return (0);
5766 }
5767
5768
5769 #ifndef MODULE
5770
5771 /*
5772 * Searches all registered partitions for autorun RAID arrays
5773 * at boot time.
5774 */
5775 static dev_t detected_devices[128];
5776 static int dev_cnt;
5777
5778 void md_autodetect_dev(dev_t dev)
5779 {
5780 if (dev_cnt >= 0 && dev_cnt < 127)
5781 detected_devices[dev_cnt++] = dev;
5782 }
5783
5784
5785 static void autostart_arrays(int part)
5786 {
5787 mdk_rdev_t *rdev;
5788 int i;
5789
5790 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5791
5792 for (i = 0; i < dev_cnt; i++) {
5793 dev_t dev = detected_devices[i];
5794
5795 rdev = md_import_device(dev,0, 90);
5796 if (IS_ERR(rdev))
5797 continue;
5798
5799 if (test_bit(Faulty, &rdev->flags)) {
5800 MD_BUG();
5801 continue;
5802 }
5803 list_add(&rdev->same_set, &pending_raid_disks);
5804 }
5805 dev_cnt = 0;
5806
5807 autorun_devices(part);
5808 }
5809
5810 #endif /* !MODULE */
5811
5812 static __exit void md_exit(void)
5813 {
5814 mddev_t *mddev;
5815 struct list_head *tmp;
5816
5817 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5818 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5819
5820 unregister_blkdev(MAJOR_NR,"md");
5821 unregister_blkdev(mdp_major, "mdp");
5822 unregister_reboot_notifier(&md_notifier);
5823 unregister_sysctl_table(raid_table_header);
5824 remove_proc_entry("mdstat", NULL);
5825 ITERATE_MDDEV(mddev,tmp) {
5826 struct gendisk *disk = mddev->gendisk;
5827 if (!disk)
5828 continue;
5829 export_array(mddev);
5830 del_gendisk(disk);
5831 put_disk(disk);
5832 mddev->gendisk = NULL;
5833 mddev_put(mddev);
5834 }
5835 }
5836
5837 subsys_initcall(md_init);
5838 module_exit(md_exit)
5839
5840 static int get_ro(char *buffer, struct kernel_param *kp)
5841 {
5842 return sprintf(buffer, "%d", start_readonly);
5843 }
5844 static int set_ro(const char *val, struct kernel_param *kp)
5845 {
5846 char *e;
5847 int num = simple_strtoul(val, &e, 10);
5848 if (*val && (*e == '\0' || *e == '\n')) {
5849 start_readonly = num;
5850 return 0;
5851 }
5852 return -EINVAL;
5853 }
5854
5855 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5856 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5857
5858
5859 EXPORT_SYMBOL(register_md_personality);
5860 EXPORT_SYMBOL(unregister_md_personality);
5861 EXPORT_SYMBOL(md_error);
5862 EXPORT_SYMBOL(md_done_sync);
5863 EXPORT_SYMBOL(md_write_start);
5864 EXPORT_SYMBOL(md_write_end);
5865 EXPORT_SYMBOL(md_register_thread);
5866 EXPORT_SYMBOL(md_unregister_thread);
5867 EXPORT_SYMBOL(md_wakeup_thread);
5868 EXPORT_SYMBOL(md_check_recovery);
5869 MODULE_LICENSE("GPL");
5870 MODULE_ALIAS("md");
5871 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.277756 seconds and 5 git commands to generate.